WO2020231100A1 - 광 투과율을 개선한 증강 현실용 광학 장치 - Google Patents

광 투과율을 개선한 증강 현실용 광학 장치 Download PDF

Info

Publication number
WO2020231100A1
WO2020231100A1 PCT/KR2020/006095 KR2020006095W WO2020231100A1 WO 2020231100 A1 WO2020231100 A1 WO 2020231100A1 KR 2020006095 W KR2020006095 W KR 2020006095W WO 2020231100 A1 WO2020231100 A1 WO 2020231100A1
Authority
WO
WIPO (PCT)
Prior art keywords
image light
augmented reality
image
wavelength band
belonging
Prior art date
Application number
PCT/KR2020/006095
Other languages
English (en)
French (fr)
Inventor
하정훈
Original Assignee
주식회사 레티널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레티널 filed Critical 주식회사 레티널
Priority to EP20806154.9A priority Critical patent/EP3958042B1/en
Priority to US17/611,567 priority patent/US20220229220A1/en
Priority to CN202080023195.5A priority patent/CN113614612B/zh
Publication of WO2020231100A1 publication Critical patent/WO2020231100A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to an optical device for augmented reality, and more particularly, to an optical device for augmented reality capable of increasing light transmittance for image light from the real world.
  • Augmented Reality means providing a virtual image or image generated by a computer or the like superimposed on an actual image of the real world, as is well known.
  • an optical system In order to implement such augmented reality, an optical system is required that allows a virtual image or image generated by a device such as a computer to be superimposed on an image of the real world and provided.
  • a technique using optical means such as a prism for reflecting or refracting a virtual image using a head mounted display (HMD) or a glasses-type device is known.
  • HMD head mounted display
  • devices using such conventional optical systems have a problem in that they are inconvenient for users to wear because their configuration is complex and thus their weight and volume are significant, and manufacturing processes are also complex, resulting in a high manufacturing cost.
  • the applicant of the present invention is a device capable of implementing augmented reality by projecting a virtual image onto the retina through the pupil using a reflector having a size smaller than that of a human pupil, as described in Patent Document 1 Has been developed.
  • FIG. 1 is a diagram showing an optical device for augmented reality as disclosed in Prior Art Document 1 below.
  • the image output unit 30 is a means for emitting image light corresponding to an image for augmented reality, and may be implemented as, for example, a small display device.
  • the reflecting unit 20 provides an image for augmented reality by reflecting the image light corresponding to the image for augmented reality emitted from the image output unit 30 toward the pupil of the user.
  • the optical means 10 is a means for transmitting at least a portion of the image light emitted from an actual object, and may be, for example, a spectacle lens, and a reflective unit 20 is embedded therein.
  • the frame portion 40 is a means for fixing and supporting the image output portion 30 and the optical means 10.
  • the reflective part 20 of FIG. 1 is formed to have a size smaller than the size of a human pupil, that is, 8 mm or less, and by forming the reflective part 20 to be smaller than the pupil size as described above, it enters the pupil through the reflective part 20
  • the depth of field for light can be almost infinite, that is, the depth of field can be made very deep.
  • the depth of field refers to the range recognized as being in focus.
  • the focal length of the image for augmented reality increases. Therefore, the focal length of the real world while the user gazes at the real world. Regardless of this, the focus of the augmented reality image is always recognized as being correct. This can be seen as a kind of pinhole effect. Accordingly, a clear virtual image can always be provided for an image for augmented reality regardless of whether the user changes the focal length while gazing at a real object existing in the real world.
  • This technology has the advantage of deepening the depth of field and obtaining a pinhole effect, but the image light that passes through the reflective unit 20 among the image light incident from the real world is reflected by the reflective unit 20 and thus can be transmitted to the pupil. Since there is no light transmittance, there is a problem in that it is difficult to expand the size of the reflective unit 20 due to the fact that the light transmittance may be lowered.
  • An object of the present invention is to provide an optical device for augmented reality that can increase light transmittance for image light from the real world, as to solve the above limitation.
  • another object of the present invention is to provide an optical device for augmented reality capable of improving optical uniformity by increasing the size of the reflecting unit.
  • the present invention provides an augmented reality optical device having improved light transmittance, comprising: an image output unit for emitting augmented reality image light corresponding to an image for augmented reality; A reflection unit for providing an augmented reality image to a user by reflecting and transmitting the image light for augmented reality emitted from the image output unit toward the pupil of the user's eye; And optical means for transmitting at least a part of the image light of the real object emitted from the real object toward the pupil of the user's eye, wherein the reflecting unit is formed to have a size of 4 mm or less, and a wavelength band of a specific color
  • the reflecting unit is formed to have a size of 4 mm or less, and a wavelength band of a specific color
  • the reflecting unit reflects and transmits only the augmented reality image light belonging to the wavelength band of the specific color among the augmented reality image light emitted from the image output unit to the pupil of the user's eye, and is emitted from an actual object to the reflecting unit.
  • image light having a wavelength other than the wavelength band of the specific color may be transmitted and transmitted to the pupil of the user's eye.
  • the optical filter is a red reflective filter that reflects image light belonging to a red wavelength band and transmits image light belonging to another wavelength band, and reflects image light belonging to a green wavelength band and transmits image light belonging to another wavelength band. It may be composed of any one of a green reflection filter that reflects the image light belonging to the blue wavelength band and transmits image light belonging to the other wavelength band, or a combination of two or more of them.
  • the augmented reality image light emitted from the image output unit may be composed of only image light belonging to a wavelength band of a color reflected by the optical filter constituting the reflection unit.
  • a plurality of reflective units may be formed.
  • At least a portion of the reflecting unit may be disposed so that at least a portion of the optical axis of the image light emitted from the image output unit overlaps.
  • each of the plurality of reflectors reflects image light belonging to at least one of a plurality of wavelength bands obtained by dividing a wavelength band of a specific color, and belongs to a wavelength band other than at least one of the plurality of wavelength bands.
  • Image lights may be formed with an optical filter that transmits.
  • an augmented reality optical device capable of increasing the light transmittance of image light from the real world.
  • an augmented reality optical device capable of improving light uniformity by increasing the size of the reflective portion.
  • FIG. 1 is a view showing an optical device for augmented reality as disclosed in Prior Art Document 1;
  • FIG. 2 is a diagram showing the configuration of an embodiment of an augmented reality optical device 100 having improved light transmittance according to the present invention.
  • 3 is a graph showing reflection/transmittance according to wavelength of a blue reflection filter.
  • FIG 4 is a view for explaining the operation of the reflective portion 20 formed of the optical filter according to the present invention.
  • FIG. 5 is a view showing an optical device 200 according to another embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of an embodiment of an augmented reality optical device 100 having improved light transmittance according to the present invention.
  • an augmented reality optical device 100 (hereinafter simply referred to as "optical device 100") with improved light transmittance according to the present embodiment includes an image output unit 10 and a reflection unit 20 And optical means 30.
  • the image output unit 10 is a means for emitting augmented reality image light corresponding to an image for augmented reality, for example, a display device such as a small LCD, or reflecting, refracting, or diffracting image light emitted from the display device to emit it. It may be reflective means, refraction means or diffraction means.
  • the image output unit 10 refers to a display device that displays an image for an augmented reality, or other various means such as reflection, refraction, or diffraction means for emitting augmented reality image light emitted from the display device.
  • Such an image output unit 10 itself is not a direct object of the present invention and is known by the prior art, and thus a detailed description thereof will be omitted.
  • the augmented reality image is a virtual image displayed on the display device and transmitted to the user's pupil 40 through the reflective unit 20 when the display device is the image output unit 10, or the display device emits an image. If it is not the part 10, it means a virtual image displayed on the display device and transmitted to the user's pupil 40 through the image outputting unit 10 and the reflecting unit 20.
  • the image for augmented reality may be a still image or a moving image in the form of an image.
  • the augmented reality image is emitted from the image output unit 10 and transmitted to the user's pupil 40 through the reflecting unit 20 to provide a virtual image to the user, and at the same time, the real world through the optical means 30 Since the image light emitted from the real object existing in is transmitted to the user, the virtual image is superimposed on the real object and thus the user can receive the augmented reality service.
  • the image output unit 10 is arranged in a direction perpendicular to the pupil 40 around the reflective unit 20, and is shown to be disposed on the side when the user gazes at the front, but this is an example. It may be placed at the top or bottom when staring, or at a different angle.
  • the reflecting unit 20 provides an augmented reality image to the user by reflecting and transmitting the augmented reality image light corresponding to the augmented reality image emitted from the image output unit 10 toward the pupil 40 of the user's eye. It is a means to do.
  • the reflective part 20 is completely buried in the interior of the optical means 30 and spaced apart from the surface of the optical means 30. However, in some cases, it may be disposed on the surface of the optical means 30 (the user's pupil 40 side).
  • the reflecting unit 20 is disposed at an appropriate angle between the image emitting unit 10 and the pupil 40 so that the augmented reality image light can be reflected toward the pupil 40.
  • the reflection unit 20 is an augmented reality image emitted from the pupil 40 in the front direction and the image output unit 10
  • the center of the optical axis of the light may be arranged at an angle of 45 degrees.
  • the reflector 20 is formed to have a size smaller than the size of a human pupil, that is, 8 mm or less, and more preferably 4 mm or less, to obtain a pinhole effect by deepening the depth as described in the background art. It is desirable to be.
  • the reflective part 20 by forming the reflective part 20 to have a size smaller than the general pupil size of a person, the depth of field for light incident through the reflecting part 20 to the pupil 40 is almost infinite, that is, , The depth of field can be made very deep, so even if the user changes the focal length to the real world while gazing at the real world, regardless of this, a pinhole effect occurs in which the focus of the augmented reality image is always correct. I can make it.
  • the size of the reflective part 20 is too small, diffraction may occur, and thus it is preferable to increase the size of the reflector 20 to about 700 ⁇ m.
  • the reflector 20 in the present invention is characterized in that it is formed of an optical filter that reflects only image light belonging to a wavelength band of a specific color and transmits image light having a wavelength other than the wavelength band of the specific color. do.
  • the reflection unit 20 of the present invention reflects and transmits only image light belonging to the wavelength band of the specific color among the augmented reality image light emitted from the image output unit 10 to the pupil 40 of the user's eye. , Among the augmented reality image light emitted from the image output unit 10, image light having a wavelength other than the wavelength band of the specific color is transmitted.
  • the reflecting unit 20 transmits image light having a wavelength other than the wavelength band of the specific color among the image light of the real object emitted from the real object and incident to the reflecting unit 20, so that the pupil of the user's eye 40 ), and reflects the image light belonging to the wavelength band of the specific color among the image light of the actual object emitted from the actual object and incident on the reflecting unit 20.
  • the reflecting unit 20 reflects and transmits the image light belonging to the wavelength band of the specific color among the augmented reality image light emitted from the image output unit 10 to the pupil 40 of the user's eye, and transmits the It is formed of an optical filter that transmits image light having a wavelength other than the wavelength band of the specific color among the image light of the actual object emitted from and incident on the reflecting unit 20 to be transmitted to the pupil 40 of the user's eye.
  • the optical filter may be an optical filter that reflects only image light belonging to at least one of red, green, and blue wavelength bands.
  • the optical filter is a red reflective filter that reflects image light belonging to a red wavelength band and transmits image light belonging to another wavelength band, and reflects image light belonging to a green wavelength band and transmits image light belonging to another wavelength band. Any one of a green reflective filter, a blue reflective filter that reflects image light belonging to a blue wavelength band and transmits image light belonging to another wavelength band, or a combination of two or more of them may be configured.
  • 3 is a graph showing reflection/transmittance according to wavelength of a blue reflection filter.
  • the horizontal axis represents the wavelength ( ⁇ , nm), and the vertical axis represents the transmittance according to the wavelength.
  • the blue reflective filter reflects image light in the vicinity of a wavelength of about 350 nm to 370 nm belonging to the blue wavelength band, and transmits image light belonging to other wavelength bands.
  • the reflective unit 20 may be formed by an optical filter that reflects image light belonging to a wavelength band of a specific color and transmits image light belonging to a wavelength band of another color.
  • the optical means 30, the reflective unit 20 is buried and disposed therein, and transmits at least part of the image light of the real object emitted from the real object toward the pupil 40 of the user's eye. It is a means.
  • the reflective portion 20 is disposed to be embedded in the inner surface of the optical means 30, but may be disposed on the surface of the optical means 30.
  • the optical means 30 may be formed of a material such as glass or transparent plastic, and when in use, the pupil 40 is disposed in front of the user's pupil 40 to transmit the image light of a real object emitted from a real object existing in the real world. Penetrate through.
  • the optical means 30 may be implemented with a translucent material, and in this case, the image light emitted from an actual object is partially transmitted through the pupil 40.
  • the optical means 30 may be coupled in the form of a module to the surface of a lens of an apparatus for providing augmented reality in the form of glasses (not shown) composed of a lens and a frame.
  • the lens itself of the augmented reality providing device may be configured with the optical means 30.
  • the image light corresponding to the image for augmented reality emitted from the image output unit 10 may be directly transmitted to the reflection unit 20, but after being reflected at least once from the inner surface of the optical means 30 May be.
  • FIG 4 is a view for explaining the operation of the reflective portion 20 formed of the optical filter according to the present invention.
  • the reflecting unit 20 is formed of a red, green, and blue reflective filter, which is a combination of a red reflective filter, a green reflective filter, and a blue reflective filter, as described above, and reflects image light belonging to the wavelength bands of red, green, and blue. It has the property of transmitting light of wavelengths other than the red, green, and blue wavelength bands.
  • the image light A1 belonging to the wavelength band of red, green, and blue is a red, green, and blue reflection filter.
  • the actual object image light (A2) which is reflected in a downward direction by the reflective unit 20 formed as a color, belongs to a wavelength band of colors other than red, green, and blue, passes through the reflective unit 20 and is transmitted to the pupil 40. Can be seen. That is, image light A2 belonging to the rest of the wavelength bands excluding image light A1 belonging to the wavelength band of red, green, and blue among the image light A of the real object emitted from an actual object and incident on the reflector 20 Only is passed to the pupil 40.
  • the augmented reality image light B emitted from the image emitting unit 10 and incident on the reflecting unit 20 image light B1 belonging to the wavelength band of red, green, and blue
  • image light B1 belonging to the wavelength band of red, green, and blue Is reflected by the reflecting unit 20 formed of a red, green, and blue reflective filter and transmitted to the pupil 40
  • image light B2 belonging to a wavelength band of colors other than red, green, and blue reflects the reflective unit 20. It can be seen that it penetrates and moves downward. That is, the augmented reality image light B emitted from the image emitting unit 10 and transmitted to the reflecting unit 20 is transmitted to the pupil 40 only with image light B1 belonging to the wavelength bands of red, green, and blue. .
  • the right diagram of FIG. 4 is from the real object image light A emitted from the real object and incident on the reflecting unit 20 and the augmented reality image light B emitted from the image output unit 10 to the pupil 40. It shows the incident image light (A2+B1) together. As shown, other than the augmented reality image light B1 belonging to the wavelength band of red, green, and blue from the image output unit 10 and the red, green, and blue light emitted from the actual object and submitted to the reflection unit 20 It can be seen that the actual object image light A2 belonging to the wavelength band of A2 reaches the pupil 40.
  • the wavelength band of the augmented reality image light emitted from the image output unit 10 may be adjusted according to the properties of the optical filter in which the reflective unit 20 is formed. That is, it may be configured so that only the augmented reality image light belonging to the wavelength band of the color reflected by the optical filter forming the reflecting unit 20 is emitted from the image emitting unit 10.
  • the augmented reality image light emitted from the image output unit 10 may be composed of only image light belonging to a wavelength band of red, green, and blue. .
  • FIG. 5 is a view showing an optical device 200 according to another embodiment of the present invention.
  • FIG. 5 is basically the same as the embodiment of FIGS. 2 to 4, but differs in that the reflective part 20 is configured in plural.
  • the plurality of reflecting units 20 are at least partially overlapped with each other when viewed in the optical axis direction of the augmented reality image light emitted from the image output unit 10, so that the augmented reality image light emitted from the image output unit 10 It may be arranged so that at least a portion is blocked.
  • the reflecting units 20 are arranged side by side in the direction of the optical axis of image light emitted from the image output unit 10, and the reflecting units 20 arranged side by side are Since they overlap when viewed from the optical axis direction, in FIG. 5, at least a portion of the image light emitted from the image output unit 10 is blocked by the reflection unit 20 on the left side in FIG. 5.
  • each of the reflecting units 20 arranged side by side reflects image light belonging to at least one of a plurality of wavelength bands obtained by dividing a wavelength band of a specific color, and reflects image light other than at least one of the plurality of wavelength bands.
  • Image lights belonging to different wavelength bands may be formed with an optical filter that transmits.
  • the blue wavelength band when the blue wavelength band is 350 nm to 370 nm, it is divided into wavelength bands of 350 nm to 360 nm and 360 to 370 nm, and reflects the reflective unit 20 as an optical filter that reflects only image light belonging to a plurality of divided wavelength bands. Each can be formed.
  • the reflective part 20 on the right is formed of an optical filter that reflects image light having a wavelength of 350 nm to 360 nm and transmits image light of a different wavelength band
  • the reflecting part 20 on the left has a wavelength of 360 to 370 nm. It can be formed with an optical filter that reflects the image light of and transmits image light of a different wavelength band.
  • image light having a wavelength of 360 to 370 nm passes through the reflection part 20 on the right, reaches the reflection part 20 on the left, and is transmitted to the pupil 40 by the reflection part 20 on the left.
  • image light having a wavelength of 350 nm to 360 nm may be reflected by the reflecting portion 20 on the right side and transmitted to the pupil 40. Accordingly, a specific color that a person recognizes as the same color can be divided into a plurality of wavelength bands, and each of the reflectors 20 can independently reflect image light belonging to the divided wavelength bands.
  • the reflective unit 20 is arranged side by side in the optical axis direction of the image light emitted from the image output unit 10 and is shown to completely overlap each other, but this is exemplary, and only a part of the optical axis direction is partially Of course, it can be arranged to overlap with each other.
  • the plurality of reflection units 20 are arranged so that they do not overlap each other when viewed from the optical axis direction of the augmented reality image light emitted from the image output unit 10 so that the image light emitted from the image output unit 10 is not blocked. have.
  • an optical filter that reflects image light in a wavelength band of red, green, and blue has been mainly described, but an optical filter that reflects image light in a wavelength band other than these colors can be used as the reflecting unit 20. Yes, of course.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

본 발명은 광 투과율을 개선한 증강 현실용 광학 장치에 관한 것으로서, 증강 현실용 화상에 상응하는 증강 현실 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사되는 증강 현실용 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및 상기 반사부가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 반사부는 4mm 이하의 크기로 형성되고, 특정 색상의 파장 대역에 속하는 화상광만을 반사시키고 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광은 투과시키는 광학 필터로 형성되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치를 제공한다.

Description

광 투과율을 개선한 증강 현실용 광학 장치
본 발명은 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 실제 세계로부터의 화상광에 대한 광 투과율을 높일 수 있는 증강 현실용 광학 장치에 관한 것이다.
증강 현실(Augmented Reality, AR)이라 함은, 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 생성되는 가상의 영상이나 이미지를 겹쳐서 제공하는 것을 의미한다.
이러한 증강 현실을 구현하기 위해서는, 컴퓨터와 같은 디바이스에 의해 생성되는 가상의 영상이나 이미지를 현실 세계의 영상에 겹쳐서 제공할 수 있도록 하는 광학계를 필요로 한다. 이러한 광학계로서는 HMD(Head Mounted Display)나 안경형의 장치를 이용하여 가상 영상을 반사 또는 굴절시키는 프리즘 등과 같은 광학 수단을 사용하는 기술이 알려져 있다.
그러나, 이러한 종래의 광학계를 이용한 장치들은, 그 구성이 복잡하여 무게와 부피가 상당하므로 사용자가 착용하기에 불편함이 있고 제조 공정 또한 복잡하므로 제조 비용이 높다는 문제가 있다.
또한, 종래의 장치들은, 사용자가 현실 세계를 응시할 때 초점 거리를 변경하는 경우 가상 영상의 초점이 맞지 않게 된다는 한계가 있다. 이를 해결하기 위하여 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘과 같은 구성을 이용하거나 초점 거리의 변경에 따라 가변형 초점 렌즈를 전기적으로 제어하는 등의 기술이 제안되어 있다. 그러나, 이러한 기술 또한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하거나 초점 거리의 제어를 위한 별도의 프로세서 등과 같은 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.
이와 같은 종래 기술의 문제점을 해결하기 위하여, 본 출원인은 특허 문헌 1에 기재된 바와 같이, 사람의 동공보다 작은 크기의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영함으로써 증강 현실을 구현할 수 있는 장치를 개발한 바 있다.
도 1은 하기 선행 기술 문헌 1에 개시된 바와 같은 증강 현실용 광학 장치를 나타낸 도면이다.
도 1을 참조하면, 화상 출사부(30)는 증강 현실용 화상에 상응하는 화상광을 출사하는 수단으로서 예컨대 소형 디스플레이 장치로 구현될 수 있다. 반사부(20)는 화상 출사부(30)로부터 출사된 증강 현실용 화상에 상응하는 화상광을 사용자의 동공을 향해 반사시킴으로써 증강 현실용 화상을 제공한다.
광학 수단(10)는 실제 사물로부터 출사된 화상광의 적어도 일부를 투과시키는 수단으로써 예컨대 안경 렌즈일 수 있으며, 그 내부에 반사부(20)가 매립되어 있다. 프레임부(40)는 화상 출사부(30)와 광학 수단(10)을 고정 및 지지하는 수단이다.
도 1의 반사부(20)는, 사람의 동공 크기보다 작은 크기 즉, 8mm 이하로 형성되어 있는데, 이와 같이 반사부(20)를 동공 크기보다 작게 형성함으로써 반사부(20)를 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있다. 여기서, 심도라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지게 되면 증강 현실용 화상에 대한 초점 거리도 깊어진다는 것을 의미하고 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 증강 현실용 화상의 초점은 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pinhole effect)라고 볼 수 있다. 따라서, 사용자가 실제 세계에 존재하는 실제 사물을 응시하면서 초점 거리를 변경하는 것과 상관없이 증강 현실용 화상에 대해서는 항상 선명한 가상 영상을 제공할 수 있다.
이러한 기술은 심도를 깊게 하고 핀홀 효과를 얻을 수 있다는 장점이 있으나, 실제 세계로부터 입사하는 화상광 중에서 반사부(20)를 거치는 화상광은 반사부(20)에 의해 반사되기 때문에 동공으로 전달될 수 없어서 광 투과율이 낮아질 수 있다는 점과, 이로 인하여 반사부(20)의 크기를 확장시키기 어렵다는 문제점이 있다.
[선행기술문헌]
대한민국 등록특허공보 10-1660519호(2016.09.29 공고)
본 발명은 상기한 바와 같은 한계점을 해결하기 위한 것으로서, 실제 세계로부터의 화상광에 대한 광 투과율을 높일 수 있는 증강 현실용 광학 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 반사부의 크기를 증가시켜서 광균일도를 향상시킬 수 있는 증강 현실용 광학 장치를 제공하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 과제를 달성하기 위하여 본 발명은, 광 투과율을 개선한 증강 현실용 광학 장치로서, 증강 현실용 화상에 상응하는 증강 현실 화상광을 출사하는 화상 출사부; 상기 화상 출사부로부터 출사되는 증강 현실용 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및 상기 반사부가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 반사부는 4mm 이하의 크기로 형성되고, 특정 색상의 파장 대역에 속하는 화상광만을 반사시키고 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광은 투과시키는 광학 필터로 형성되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 반사부는, 상기 화상 출사부로부터 출사되는 증강 현실 화상광 중 상기 특정 색상의 파장 대역에 속하는 증강 현실 화상광만을 사용자의 눈의 동공으로 반사시켜 전달하고, 실제 사물로부터 출사되어 반사부로 입사하는 실제 사물 화상광 중 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광을 투과시켜서 사용자의 눈의 동공으로 전달할 수 있다.
또한, 상기 광학 필터는, 적색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 적색 반사 필터, 녹색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 녹색 반사 필터 및 청색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 청색 반사 필터 중 어느 하나이거나 이들 중 2 이상의 결합으로 구성될 수 있다.
또한, 상기 화상 출사부로부터 출사되는 증강 현실 화상광은 반사부를 구성하는 광학 필터가 반사시키는 색상의 파장 대역에 속하는 화상광만으로 구성될 수 있다.
또한, 상기 반사부는 복수개로 형성될 수 있다.
또한, 상기 반사부 중 적어도 일부는, 화상 출사부로부터 출사되는 화상광의 광축과 적어도 일부분이 겹치도록 배치될 수 있다.
또한, 상기 복수개의 반사부 각각은, 특정 색상의 파장 대역을 분할한 복수개의 파장 대역 중 적어도 어느 하나에 속하는 화상광을 반사시키고, 상기 복수개의 파장 대역 중 적어도 어느 하나 이외의 다른 파장 대역에 속하는 화상광들은 투과시키는 광학 필터로 형성될 수 있다.
본 발명에 의하면, 실제 세계로부터의 화상광에 대한 광 투과율을 높일 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
또한, 본 발명에 의하면, 반사부의 크기를 증가시켜서 광균일도를 향상시킬 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
도 1은 선행 기술 문헌 1에 개시된 바와 같은 증강 현실용 광학 장치를 나타낸 도면이다.
도 2는 본 발명에 의한 광 투과율을 개선한 증강 현실용 광학 장치(100)의 일실시예의 구성을 나타낸 도면이다.
도 3은 청색 반사 필터의 파장에 따른 반사/투과율을 나타낸 그래프이다.
도 4는 본 발명에 의한 광학 필터로 형성된 반사부(20)의 작용을 설명하기 위한 도면이다.
도 5는 본 발명의 다른 실시예에 의한 광학 장치(200)를 나타낸 도면이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예를 상세하게 설명하기로 한다.
도 2는 본 발명에 의한 광 투과율을 개선한 증강 현실용 광학 장치(100)의 일실시예의 구성을 나타낸 도면이다.
도 2를 참조하면, 본 실시예에 의한 광 투과율을 개선한 증강 현실용 광학 장치(100, 이하 간단히 "광학 장치(100)"라 한다)는, 화상 출사부(10), 반사부(20) 및 광학 수단(30)을 포함한다.
화상 출사부(10)는 증강 현실용 화상에 상응하는 증강 현실 화상광을 출사하는 수단으로서, 예컨대 소형의 LCD와 같은 디스플레이 장치이거나, 디스플레이 장치로부터 출사되는 화상광을 반사, 굴절 또는 회절시켜서 출사하는 반사 수단, 굴절 수단 또는 회절 수단일 수 있다.
즉, 화상 출사부(10)는 증강 현실용 화상을 표시하는 디스플레이 장치 자체이거나 디스플레이 장치로부터 출사된 증강 현실 화상광을 출사하는 반사, 굴절 또는 회절 수단 등과 같은 기타 다양한 수단을 의미한다.
이러한 화상 출사부(10) 자체는 본 발명의 직접적인 목적이 아니며 종래 기술에 의해 알려져 있는 것이므로 여기에서는 상세 설명은 생략한다.
한편, 증강 현실용 화상이라 함은, 디스플레이 장치가 화상 출사부(10)인 경우 디스플레이 장치에 표시되어 반사부(20)를 통해 사용자의 동공(40)으로 전달되는 가상 화상이거나 디스플레이 장치가 화상 출사부(10)가 아닌 경우 디스플레이 장치에 표시되어 화상 출사부(10) 및 반사부(20)를 통해 사용자의 동공(40)으로 전달되는 가상 화상을 의미한다.
이러한 증강 현실용 화상은 이미지 형태의 정지 영상이거나 동영상과 같은 것일 수 있다.
증강 현실용 화상은 화상 출사부(10)에서 출사되어 반사부(20)를 통해 사용자의 동공(40)으로 전달됨으로써 사용자에게 가상 화상을 제공하게 되고, 이와 동시에 광학 수단(30)을 통해 실제 세계에 존재하는 실제 사물로부터 출사되는 화상광이 사용자에게 전달되므로, 실제 사물에 겹쳐서 가상 화상을 제공받게 되고 따라서 사용자는 증강 현실 서비스를 제공받을 수 있게 된다.
한편, 화상 출사부(10)는 반사부(20)를 중심으로 동공(40)과 수직하는 방향에 배치되어 사용자가 정면을 응시할 때 측면에 배치된 것으로 나타내었으나 이는 예시적인 것이며, 사용자가 정면을 응시할 때 상부, 하부 등에 배치되거나 다른 각도를 가지고 배치될 수도 있다.
반사부(20)는, 화상 출사부(10)로부터 출사되는 증강 현실용 화상에 상응하는 증강 현실 화상광을 사용자의 눈의 동공(40)을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 수단이다.
반사부(20)는 광학 수단(30)의 내부에 광학 수단(30)의 표면으로부터 이격되어 완전히 매립되어 배치되는 것이 바람직하다. 다만, 경우에 따라서는 광학 수단(30)의 표면(사용자의 동공(40)쪽 면)에 배치될 수도 있다.
반사부(20)는, 동공(40)을 향해 증강 현실 화상광을 반사시킬 수 있도록 화상 출사부(10)와 동공(40) 사이에서 적절한 각도를 가지고 배치된다. 예컨대, 도 2와 같이 화상 출사부(10)가 광학 수단(30)의 우측면에 배치된 경우 반사부(20)는 동공(40)으로부터 정면 방향과 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 광축의 중심이 45도의 각도를 가지고 배치될 수 있다.
한편, 반사부(20)는, 앞서 배경 기술에서 설명한 바와 같이, 심도를 깊게 하여 핀홀 효과를 얻을 수 있도록 사람의 동공 크기보다 작은 크기 즉, 8mm 이하로, 보다 바람직하게는 4mm 이하의 크기로 형성되는 것이 바람직하다.
즉, 반사부(20)를 사람의 일반적인 동공 크기보다 작은 크기로 형성함으로써, 반사부(20)를 통해 동공(40)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게, 즉, 심도를 매우 깊게 할 수 있고, 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 증강 현실용 화상의 초점은 항상 맞는 것으로 인식하게 하는 핀홀 효과(pinhole effect)를 발생시킬 수 있다.
한편, 반사부(20)의 크기가 지나치게 작은 경우에는 회절 현상이 발생할 수 있으므로, 대략 700㎛ 보다 크게 하는 것이 바람직하다.
한편, 본 발명에 있어서의 반사부(20)는, 특정 색상의 파장 대역에 속하는 화상광만을 반사시키고 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광을 투과시키는 광학 필터로 형성되는 것을 특징으로 한다.
즉, 본 발명의 반사부(20)는, 화상 출사부(10)로부터 출사되는 증강 현실 화상광 중 상기 특정 색상의 파장 대역에 속하는 화상광만을 사용자의 눈의 동공(40)으로 반사시켜 전달하고, 화상 출사부(10)로부터 출사되는 증강 현실 화상광 중 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광은 투과시킨다.
또한, 반사부(20)는, 실제 사물로부터 출사되어 반사부(20)로 입사하는 실제 사물 화상광 중 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광을 투과시켜서 사용자의 눈의 동공(40)으로 전달하고, 실제 사물로부터 출사되어 반사부(20)로 입사하는 실제 사물 화상광 중에서 상기 특정 색상의 파장 대역에 속하는 화상광은 반사시킨다.
즉, 반사부(20)는 화상 출사부(10)로부터 출사되는 증강 현실 화상광 중 상기 특정 색상의 파장 대역에 속하는 화상광을 사용자의 눈의 동공(40)으로 반사시켜 전달하는 한편, 실제 사물로부터 출사되어 반사부(20)로 입사하는 실제 사물 화상광 중 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광을 투과시켜서 사용자의 눈의 동공(40)으로 전달하는 광학 필터로 형성된다.
여기에서, 광학 필터(optical filter)로서는, 적색, 녹색 및 청색 파장 대역 중 적어도 어느 하나에 속하는 화상광만을 반사시키는 광학 필터일 수 있다.
즉, 광학 필터는, 적색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 적색 반사 필터, 녹색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 녹색 반사 필터, 청색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 청색 반사 필터 중 어느 하나이거나 이들 중 2 이상의 결합으로 구성될 수 있다.
이러한 광학 필터는 종래 기술에 의해 알려져 있는 것을 사용할 수 있으며, 이것 자체는 본 발명의 직접적인 목적은 아니므로 여기서는 상세 설명은 생략한다.
도 3은 청색 반사 필터의 파장에 따른 반사/투과율을 나타낸 그래프이다.
도 3에서 가로축은 파장(λ,nm)을 나타낸 것으로 세로축은 파장에 따른 투과율을 나타낸 것이다.
도 3에 나타낸 바와 같이, 청색 반사 필터는 청색 파장 대역에 속하는 파장 약 350nm~370nm 근방의 화상광을 반사시키고, 다른 파장 대역에 속하는 화상광은 투과시킴을 알 수 있다.
이와 같이, 특정 색상의 파장 대역에 속하는 화상광을 반사시키고 다른 색상의 파장 대역에 속하는 화상광은 투과시키는 광학 필터에 의해 반사부(20)를 형성할 수 있다.
다시 도 2를 참조하면, 광학 수단(30)은, 반사부(20)가 내부에 매립 배치되며, 실제 사물로부터 출사된 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공(40)을 향해 투과시키는 수단이다.
반사부(20)는 광학 수단(30)의 내면에 매립되어 배치되지만, 광학 수단(30)의 표면에 배치될 수도 있다.
광학 수단(30)은 유리나 투명 플라스틱 등과 같은 재질로 형성될 수 있으며, 사용시에 사용자의 동공(40)의 앞쪽에 배치되어 현실 세계에 존재하는 실제 사물로부터 출사되는 실제 사물 화상광을 동공(40)으로 투과시킨다. 광학 수단(30)은 반투명 재질로 구현될 수 있으며 이러한 경우 실제 사물로부터 출사된 화상광을 부분적으로 동공(40)으로 투과시킨다.
광학 수단(30)은 렌즈와 프레임으로 구성되는 안경 형태의 증강 현실 제공 장치(미도시)의 렌즈의 표면에 모듈 형태로 결합될 수 있다. 또는, 증강 현실 제공 장치의 렌즈 자체를 광학 수단(30)으로 구성할 수도 있다.
한편, 화상 출사부(10)로부터 출사되는 증강 현실용 화상에 상응하는 화상광은 직접 반사부(20)로 전달될 수 있으나, 광학 수단(30)의 내면에서 적어도 1회 반사된 후 전달되도록 할 수도 있다.
도 4는 본 발명에 의한 광학 필터로 형성된 반사부(20)의 작용을 설명하기 위한 도면이다.
도 4에서 반사부(20)는 전술한 바와 같이, 적색 반사 필터, 녹색 반사 필터 및 청색 반사 필터의 결합인 적녹청 반사 필터로 형성되어, 적색, 녹색, 청색의 파장 대역에 속하는 화상광을 반사시키고 적색, 녹색, 청색 파장 대역이 아닌 다른 파장 대역에 속하는 파장의 빛은 투과시키는 성질을 갖는다.
도 4의 좌측 도면을 참조하면, 실제 사물로부터 출사되어 반사부(20)로 입사하는 실제 사물 화상광(A) 중에서 적색, 녹색, 청색의 파장 대역에 속하는 화상광(A1)은 적녹청 반사 필터로 형성된 반사부(20)에 의해 아래쪽 방향으로 반사되고, 적색, 녹색, 청색 이외의 색상의 파장 대역에 속하는 실제 사물 화상광(A2)은 반사부(20)를 투과하여 동공(40)으로 전달됨을 알 수 있다. 즉, 실제 사물로부터 출사되어 반사부(20)로 입사하는 실제 사물 화상광(A) 중에서 적색, 녹색, 청색의 파장 대역에 속하는 화상광(A1)을 제외한 나머지 파장 대역에 속하는 화상광(A2)만이 동공(40)으로 전달된다.
또한, 도 4의 가운데 도면을 참조하면, 화상 출사부(10)로부터 출사되어 반사부(20)로 입사하는 증강 현실 화상광(B) 중에서 적색, 녹색, 청색의 파장 대역에 속하는 화상광(B1)은 적녹청 반사 필터로 형성된 반사부(20)에 의해 반사되어 동공(40)으로 전달되고, 적색, 녹색, 청색 이외의 색상의 파장 대역에 속하는 화상광(B2)은 반사부(20)를 투과하여 아래쪽 방향으로 이동함을 알 수 있다. 즉, 화상 출사부(10)로부터 출사되어 반사부(20)로 전달되는 증강 현실 화상광(B)은 적색, 녹색, 청색의 파장 대역에 속하는 화상광(B1)만이 동공(40)으로 전달된다.
도 4의 우측 도면은, 실제 사물로부터 출사되어 반사부(20)로 입사하는 실제 사물 화상광(A)과 화상 출사부(10)로부터 출사되는 증강 현실 화상광(B)으로부터 동공(40)으로 입사하는 화상광(A2+B1)을 함께 나타낸 것이다. 도시된 바와 같이, 화상 출사부(10)로부터의 적색, 녹색, 청색의 파장 대역에 속하는 증강 현실 화상광(B1)과 실제 사물로부터 출사되어 반사부(20)를 투고한 적색, 녹색, 청색 이외의 파장 대역에 속하는 실제 사물 화상광(A2)이 동공(40)으로 도달함을 알 수 있다.
한편, 반사부(20)를 형성한 광학 필터의 성질에 상응하여 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 파장 대역을 조절할 수도 있다. 즉, 반사부(20)를 형성하는 광학 필터가 반사하는 색상의 파장 대역에 속하는 증강 현실 화상광만을 화상 출사부(10)에서 출사하도록 구성할 수도 있다.
예컨대, 광학 필터가 도 4에 나타낸 바와 같은 적녹청 반사 필터인 경우, 화상 출사부(10)로부터 출사되는 증강 현실 화상광들은 적색, 녹색, 청색의 파장 대역에 속하는 화상광만으로 구성되도록 할 수 있다.
도 5는 본 발명의 다른 실시예에 의한 광학 장치(200)를 나타낸 도면이다.
도 5는 도 2 내지 도 4의 실시예와 기본적으로 동일하되, 반사부(20)를 복수개로 구성했다는 점에서 차이가 있다.
도 5를 참조하면, 복수개의 반사부(20)는 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 광축 방향에서 볼 때 적어도 일부분이 서로 겹쳐서 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 적어도 일부분이 차단되도록 배치될 수도 있다.
예컨대, 도 5에서 반사부(20)는 화상 출사부(10)로부터 출사되는 화상광의 광축 방향으로 나란히 배치되어 있으며, 나란히 배치된 반사부(20)들은 화상 출사부(10)로부터 출사되는 화상광의 광축 방향에서 볼 때 겹쳐지므로, 도 5에서 좌측의 반사부(20)는 우측의 반사부(20)에 의해 화상 출사부(10)로부터 출사되는 화상광의 적어도 일부분이 차단되게 된다.
이 경우, 나란히 배치된 반사부(20)들 각각은, 특정 색상의 파장 대역을 분할한 복수개의 파장 대역 중 적어도 어느 하나에 속하는 화상광을 반사시키고, 상기 복수개의 파장 대역 중 적어도 어느 하나 이외의 다른 파장 대역에 속하는 화상광들은 투과시키는 광학 필터로 형성될 수 있다.
예컨대, 청색 파장 대역을 350nm~370nm이라 할 때, 이를 350nm~360nm, 360~370nm의 파장 대역으로 분할하고, 분할된 복수개의 파장 대역에 속하는 화상광만을 반사시키는 광학 필터로 반사부(20)를 각각 형성할 수 있다.
즉, 도 5에서 우측의 반사부(20)는 파장 350nm~360nm의 화상광을 반사하고 다른 파장 대역의 화상광은 투과시키는 광학 필터로 형성하고, 좌측의 반사부(20)는 파장 360~370nm의 화상광을 반사하고 다른 파장 대역의 화상광은 투과시키는 광학 필터로 형성할 수 있다.
이러한 배치 구조에 의하면, 파장 360~370nm의 화상광은 우측의 반사부(20)를 투과하여 좌측의 반사부(20)로 도달하고 좌측의 반사부(20)에 의해 동공(40)으로 전달될 수 있다. 또한, 파장 350nm~360nm의 화상광은 우측의 반사부(20)에 의해 반사되어 동공(40)으로 전달될 수 있다. 따라서, 사람이 동일한 색상으로 인식하는 특정 색상을 복수개의 파장 대역으로 분할하고 분할된 파장 대역에 속하는 화상광을 각각의 반사부(20)가 독립적으로 반사시킬 수 있다.
한편, 도 5의 실시예에서 반사부(20)는 화상 출사부(10)로부터 출사되는 화상광의 광축 방향으로 나란히 배치되어 서로 완전히 겹치도록 나타나 있으나, 이는 예시적인 것이며, 광축 방향과 일부분만이 부분적으로 겹치도록 배치될 수 있음은 물론이다.
한편, 복수개의 반사부(20)는 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 광축 방향에서 볼 때 서로 겹치지 않도록 배치하여 화상 출사부(10)로부터 출사되는 화상광이 차단되지 않도록 할 수 있다.
이상에서 본 발명의 바람직한 실시예를 참조하여 본 발명을 설명하였으나 본 발명은 상기 실시예에 한정되는 것이 아님은 물론이며, 본 발명의 범위 내에서 다양한 수정 및 변형 실시가 가능하다는점을 유의해야 한다.
예컨대, 상기 실시예에서는 적색, 녹색, 청색의 파장 대역의 화상광을 반사하는 광학 필터를 주로 설명하였으나 이들 색상 이외의 다른 파장 대역의 화상광을 반사시키는 광학 필터를 반사부(20)로 사용할 수 있음은 물론이다.

Claims (7)

  1. 광 투과율을 개선한 증강 현실용 광학 장치로서,
    증강 현실용 화상에 상응하는 증강 현실 화상광을 출사하는 화상 출사부;
    상기 화상 출사부로부터 출사되는 증강 현실용 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사부; 및
    상기 반사부가 배치되며, 실제 사물로부터 출사된 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단
    을 포함하고,
    상기 반사부는 4mm 이하의 크기로 형성되고, 특정 색상의 파장 대역에 속하는 화상광만을 반사시키고 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광은 투과시키는 광학 필터로 형성되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
  2. 청구항 1에 있어서,
    상기 반사부는, 상기 화상 출사부로부터 출사되는 증강 현실 화상광 중 상기 특정 색상의 파장 대역에 속하는 증강 현실 화상광만을 사용자의 눈의 동공으로 반사시켜 전달하고, 실제 사물로부터 출사되어 반사부로 입사하는 실제 사물 화상광 중 상기 특정 색상의 파장 대역 이외의 파장을 갖는 화상광을 투과시켜서 사용자의 눈의 동공으로 전달하는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
  3. 청구항 1에 있어서,
    상기 광학 필터는, 적색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 적색 반사 필터, 녹색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 녹색 반사 필터 및 청색 파장 대역에 속하는 화상광을 반사하고 다른 파장 대역에 속하는 화상광을 투과시키는 청색 반사 필터 중 어느 하나이거나 이들 중 2 이상의 결합으로 구성되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
  4. 청구항 1에 있어서,
    상기 화상 출사부로부터 출사되는 증강 현실 화상광은 반사부를 구성하는 광학 필터가 반사시키는 색상의 파장 대역에 속하는 화상광만으로 구성되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
  5. 청구항 1에 있어서,
    상기 반사부는 복수개로 형성된 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
  6. 청구항 5에 있어서,
    상기 반사부 중 적어도 일부는, 화상 출사부로부터 출사되는 화상광의 광축과 적어도 일부분이 겹치도록 배치되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
  7. 청구항 6에 있어서,
    상기 복수개의 반사부 각각은, 특정 색상의 파장 대역을 분할한 복수개의 파장 대역 중 적어도 어느 하나에 속하는 화상광을 반사시키고, 상기 복수개의 파장 대역 중 적어도 어느 하나 이외의 다른 파장 대역에 속하는 화상광들은 투과시키는 광학 필터로 형성되는 것을 특징으로 하는 광 투과율을 개선한 증강 현실용 광학 장치.
PCT/KR2020/006095 2019-05-16 2020-05-08 광 투과율을 개선한 증강 현실용 광학 장치 WO2020231100A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20806154.9A EP3958042B1 (en) 2019-05-16 2020-05-08 Optical device for augmented reality with improved light transmittance
US17/611,567 US20220229220A1 (en) 2019-05-16 2020-05-08 Optical device for augmented reality having improved light transmittance
CN202080023195.5A CN113614612B (zh) 2019-05-16 2020-05-08 透光率提高的增强现实用光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0057542 2019-05-16
KR1020190057542A KR102153616B1 (ko) 2019-05-16 2019-05-16 광 투과율을 개선한 증강 현실용 광학 장치

Publications (1)

Publication Number Publication Date
WO2020231100A1 true WO2020231100A1 (ko) 2020-11-19

Family

ID=72471751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006095 WO2020231100A1 (ko) 2019-05-16 2020-05-08 광 투과율을 개선한 증강 현실용 광학 장치

Country Status (5)

Country Link
US (1) US20220229220A1 (ko)
EP (1) EP3958042B1 (ko)
KR (1) KR102153616B1 (ko)
CN (1) CN113614612B (ko)
WO (1) WO2020231100A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136891B1 (ko) * 1993-09-01 1998-06-15 쯔지 하루오 안경형 디스플레이 장치
KR100873409B1 (ko) * 2006-07-12 2008-12-11 헤드플레이 (바베이도스), 인코포레이션 헤드 장착 디스플레이용 다중 이미지화 장치들
JP2016528533A (ja) * 2013-06-27 2016-09-15 コチ・ウニヴェルシテシKoc Universitesi 眼鏡型画像表示装置
KR20160109021A (ko) * 2015-03-09 2016-09-21 하정훈 증강 현실 구현 장치
KR20180028339A (ko) * 2016-09-08 2018-03-16 주식회사 레티널 광학 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520724B2 (en) * 2016-01-29 2019-12-31 Automotive Visual Technologies, Llc Multi-wavelength head up display systems and methods
US20170329139A1 (en) * 2016-02-26 2017-11-16 Fusar Technologies, Inc. Method and notch reflector projection system
US9964769B2 (en) * 2016-06-10 2018-05-08 Google Llc Head-wearable displays with a tiled field of view using a single microdisplay
CN107085306B (zh) * 2017-06-15 2023-07-04 优奈柯恩(北京)科技有限公司 增强现实设备的显示装置、增强现实设备及平视显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136891B1 (ko) * 1993-09-01 1998-06-15 쯔지 하루오 안경형 디스플레이 장치
KR100873409B1 (ko) * 2006-07-12 2008-12-11 헤드플레이 (바베이도스), 인코포레이션 헤드 장착 디스플레이용 다중 이미지화 장치들
JP2016528533A (ja) * 2013-06-27 2016-09-15 コチ・ウニヴェルシテシKoc Universitesi 眼鏡型画像表示装置
KR20160109021A (ko) * 2015-03-09 2016-09-21 하정훈 증강 현실 구현 장치
KR101660519B1 (ko) 2015-03-09 2016-09-29 하정훈 증강 현실 구현 장치
KR20180028339A (ko) * 2016-09-08 2018-03-16 주식회사 레티널 광학 장치

Also Published As

Publication number Publication date
EP3958042A1 (en) 2022-02-23
EP3958042B1 (en) 2024-04-10
EP3958042A4 (en) 2022-06-15
EP3958042C0 (en) 2024-04-10
KR102153616B1 (ko) 2020-09-08
CN113614612A (zh) 2021-11-05
CN113614612B (zh) 2023-08-18
US20220229220A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2018048018A1 (ko) 광학 장치
CN107490860B (zh) 使用单个微显示器的具有平铺视场的头戴式显示器
US8998414B2 (en) Integrated eye tracking and display system
WO2018048017A1 (ko) 반사 렌즈 모듈
WO2015174794A1 (ko) 헤드 마운트 디스플레이용 광학 시스템
WO2020004966A1 (ko) 플라스틱 엘시디 셰이드를 구비한 증강현실 및 가상현실 겸용 스마트 글라스 디스플레이 장치
WO2017022998A1 (ko) 헤드 마운트 디스플레이용 광학 시스템
WO2022014967A1 (ko) 증강 현실 표시 장치
WO2021002728A1 (ko) 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
WO2023128167A1 (ko) 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
WO2020166785A1 (ko) 근접 거리의 증강 현실용 화상을 제공할 수 있는 증강 현실용 광학 장치
WO2020197134A1 (ko) 복수개의 증강 현실용 화상을 이용한 증강 현실용 광학 장치
WO2020231100A1 (ko) 광 투과율을 개선한 증강 현실용 광학 장치
WO2020171338A1 (ko) 컴팩트형 증강 현실용 광학 장치
WO2022014952A1 (ko) 증강 현실 표시 장치
WO2020138669A1 (ko) 증강 현실용 광학 장치
WO2013147530A1 (ko) 2d 영상 또는 사물 이미지를 3d 영상으로 볼 수 있게 하는 입체안경
WO2020218790A1 (ko) 외부 빛샘 방지 기능을 갖는 증강 현실용 광학 장치
CN113795783A (zh) 用于头戴式显示器的与显示器集成的成像设备
WO1998018038A1 (en) Optical system for head up display
WO2012134064A2 (ko) 입체 영상 디스플레이 장치
WO2015111944A1 (ko) 복안형 표시장치
WO2022014875A1 (ko) 전반사를 이용한 컴팩트형 증강 현실용 광학 장치
WO2021080342A1 (ko) 고스트 이미지 차단 기능을 갖는 증강 현실용 광학 장치
KR102248623B1 (ko) 광 투과율을 개선한 증강 현실용 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806154

Country of ref document: EP

Effective date: 20211116