WO2020230996A1 - 플로우셀장치 - Google Patents

플로우셀장치 Download PDF

Info

Publication number
WO2020230996A1
WO2020230996A1 PCT/KR2020/003823 KR2020003823W WO2020230996A1 WO 2020230996 A1 WO2020230996 A1 WO 2020230996A1 KR 2020003823 W KR2020003823 W KR 2020003823W WO 2020230996 A1 WO2020230996 A1 WO 2020230996A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow cell
unit
flow
medium
cell body
Prior art date
Application number
PCT/KR2020/003823
Other languages
English (en)
French (fr)
Inventor
박현국
박성환
Original Assignee
주식회사 제우스
주식회사 제우스이엔피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제우스, 주식회사 제우스이엔피 filed Critical 주식회사 제우스
Priority to KR1020217016064A priority Critical patent/KR102531525B1/ko
Priority to CN202080004011.0A priority patent/CN112654852A/zh
Priority to US17/268,158 priority patent/US12013327B2/en
Publication of WO2020230996A1 publication Critical patent/WO2020230996A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • G01N2021/054Bubble trap; Debubbling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3122Atomic absorption analysis using a broad source with a monochromator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N2021/3129Determining multicomponents by multiwavelength light
    • G01N2021/3137Determining multicomponents by multiwavelength light with selection of wavelengths after the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the present invention relates to a flow cell device, and more particularly, to a flow cell device capable of accurately monitoring a state of a fluid medium under conditions of use of the fluid medium.
  • an etching process is performed in a semiconductor manufacturing process such as a semiconductor wafer or a solar cell.
  • a high temperature etching solution such as a phosphoric acid solution is used to etch the silicon nitride film. Since the eluate such as silicon is dissolved in the semiconductor wafer and contained in the etching solution, the concentration of the eluate in the etching solution increases as the etching process of the semiconductor wafer proceeds. When the concentration of the eluate in the etching solution increases by more than a certain concentration, the etching solution is replaced.
  • the concentration of the etching solution is detected after performing a chemical treatment a plurality of times.
  • the background technology of the present invention is disclosed in Korean Patent Publication No. 1785859 (registered on September 29, 2017, title of the invention: fluorescent silicon nanoparticles for detecting copper ions, a method of manufacturing the same, and a detection sensor using the same).
  • a flow cell device capable of accurately monitoring a state of a fluid medium under conditions of use of the fluid medium.
  • the flow cell apparatus is characterized in that it comprises: a flow passage portion through which a fluid medium flows, and a flow cell portion in which the flow passage portion is formed.
  • the flow cell part includes a flow cell body part in which the flow passage part is formed; A supply pipe portion connected to one side of the flow cell body portion to supply a fluid medium to the flow cell body portion; And a discharge pipe part connected to the other side of the flow cell body part so that the flow medium of the flow cell body part is discharged.
  • the supply pipe part may be connected to a lower side of the flow cell body part, and the discharge pipe part may be connected to an upper side of the flow cell body part.
  • a cross-sectional area of the flow cell body portion may be larger than a cross-sectional area of the supply pipe portion so that the flow medium forms turbulent flow in the flow cell body portion.
  • the supply pipe portion is a first supply pipe portion to which a fluid medium is supplied;
  • a second supply pipe portion formed larger than a diameter of the first supply pipe portion such that the fluid medium supplied from the first supply pipe portion forms turbulence;
  • a third supply pipe part extending from the second supply pipe part and connected to one side of the flow cell body part.
  • the present invention is a first optical unit installed to irradiate the light irradiated from the light source unit to the flow medium of the flow cell unit; And a second optical unit installed to irradiate light to the light detection unit while transmitting the flow medium of the flow passage and absorbing the wavelength of the flowing medium.
  • the first optical unit may be disposed on one side of the flow cell body to irradiate light parallel to the flow direction of the flow medium.
  • the first optical unit includes a first optical slider unit disposed on one side of the flow cell body unit; A first reflective mirror disposed on the first optical slider to irradiate the light incident from the light source to the flowing medium of the flow cell body; And a first position adjusting part installed on the first optical slider to adjust the position of the first reflective mirror.
  • the second optical part may include a second optical slider part disposed on the other side of the flow cell body part; A second reflective mirror disposed on the second optical slider to irradiate light absorbing the wavelength of the flowing medium of the flow cell body to the light detection unit; And a second position adjusting unit installed on the second optical slider to adjust the position of the second reflective mirror.
  • the flow cell device may further include an elastic pressing part installed in the housing part to elastically support the outer surface of the flow cell part.
  • a spaced space part may be formed inside the housing part to allow an expansion space of the flow cell part.
  • the flow cell device includes: a first collimator unit facing the first optical unit and to which a first optical unit is connected; And a second collimator unit facing the second optical unit and connected to the second optical unit.
  • the flow cell device may further include a bubble removing unit connected to the flow medium inlet side of the flow cell unit and configured to remove bubbles mixed in the flow medium flowing into the flow cell unit.
  • the bubble removal unit includes a bubble discharge line connected to the flow medium inlet side of the flow cell unit; And a bubble discharge valve installed in the bubble discharge line.
  • One side of the bubble discharge line may be connected to a circulation pump installed in a circulation passage.
  • the bubble removal unit may further include a medium discharge valve installed in the bubble discharge line to discharge the fluid medium accommodated in the flow cell unit.
  • a high-temperature fluid medium flows into the flow cell and the wavelength of the fluid is absorbed by light, so the concentration of the fluid medium is measured under conditions used in the actual semiconductor process, and the detection sensitivity of the fluid medium is increased. In order to do this, it is not necessary to chemically treat the fluid medium multiple times.
  • the elastic pressing unit elastically supports the outer surface of the flow cell unit, the elastic pressing unit can stably support the flow cell unit even if the flow cell unit is expanded or contracted by the temperature of the fluid medium. Accordingly, it is possible to prevent damage due to pressure by the housing unit when the flow cell unit expands and contracts.
  • FIG. 1 is a cross-sectional view showing a flow cell device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a flow cell unit in a flow cell device according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a state in which a flow cell device according to an embodiment of the present invention is installed at an angle.
  • FIG. 4 is a diagram schematically showing a state in which a bubble removing unit is installed in a flow cell device according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a first embodiment of a nickname device to which a flow cell device according to an embodiment of the present invention is applied.
  • FIG. 6 is a block diagram showing a second embodiment of a nickname device to which a flow cell device according to an embodiment of the present invention is applied.
  • FIG. 7 is a block diagram showing a third embodiment of a nickname device to which a flow cell device according to an embodiment of the present invention is applied.
  • FIG. 8 is a graph showing a first method of measuring the concentration of a fluid medium in a flow cell device according to an embodiment of the present invention.
  • FIG. 9 is a graph showing a second method of measuring the concentration of a fluid medium in a flow cell device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a flow cell device according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a flow cell unit in a flow cell device according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention. It is a view schematically showing a state in which the flow cell device according to the embodiment is installed at an angle.
  • a flow cell device 100 includes a housing unit 110, a flow cell unit 120, a first optical unit 130, and a second optical unit 140. ).
  • the housing portion 110 is formed to be elongated along the length direction.
  • the housing unit 110 may be formed in a rectangular box shape.
  • the housing unit 110 may be formed of a heat-resistant material to prevent thermal deformation at high temperatures.
  • the flow cell part 120 is accommodated in the housing part 110, and a flow passage part 122 is formed so that the fluid medium flows.
  • the cross section of the flow passage part 122 is formed in a circular shape to reduce the resistance of the flow medium.
  • the fluid medium may be an etching solution used in a semiconductor process when manufacturing a semiconductor wafer or a solar cell.
  • the etching solution may be a 150-200°C phosphoric acid solution.
  • the flow cell unit 120 may be formed of any one of a quartz material, a pyrex glass, a teflon material, a sapphire material, etc. to prevent heat deformation and corrosion by a fluid medium of 150-200°C. .
  • the flow cell unit 120 flows the fluid medium heated to 150-200°C to suppress the precipitation of the material contained in the fluid medium, so the flow cell unit 120 has a high temperature so that the wavelength of the high temperature fluid is absorbed by light.
  • the fluid medium can flow.
  • the first optical unit 130 is disposed in the housing unit 110 to irradiate the light irradiated from the light source unit 171 in parallel with the flow direction of the flow medium of the flow cell unit 120.
  • the light proceeds in the flow cell unit 120 along the traveling direction of the fluid medium, it is possible to reduce light loss by minimizing scattering and refraction by bubbles or eluate when the light passes through the fluid medium.
  • the light passes through the fluid medium and can smoothly absorb the wavelength of the eluate contained in the fluid medium, light detection efficiency can be improved.
  • the second optical unit 140 is disposed on the housing unit 110 so as to irradiate the light detecting unit 173 with light that absorbs the wavelength of the moving medium while passing through the moving medium of the flow passage unit 122.
  • the flow cell part 120 includes a flow cell body part 121, a supply pipe part 123, and a discharge pipe part 125.
  • the flow cell body portion 121 is accommodated in the housing portion 110, and a flow passage portion 122 is formed therein.
  • the cross section of the flow cell body 121 is formed in a circular shape. Since the cross section of the flow cell body portion 121 is formed in a circular shape, the flow resistance of the flow medium flowing along the flow passage portion 122 can be reduced.
  • the supply pipe part 123 is connected to one side of the flow cell body part 121 so that a fluid medium is supplied to the flow cell body part 121.
  • the cross section of the supply pipe part 123 is formed in a circular shape to reduce the flow resistance of the fluid medium.
  • the discharge pipe part 125 is connected to the other side of the flow cell body part 121 so that the fluid medium of the flow cell body part 121 is discharged.
  • the cross section of the discharge pipe part 125 is formed in a circular shape to reduce the flow resistance of the fluid medium.
  • the fluid medium is connected to one side of the flow cell body part 121 It flows to the other side of the flow cell body 121 at.
  • the supply pipe part 123 is connected to the lower side of the flow cell body part 121, and the discharge pipe part 125 is connected to the upper side of the flow cell body part 121. At this time, the specific gravity of the air bubbles contained in the fluid medium is lighter than that of the fluid medium.
  • the cross-sectional area of the flow cell body portion 121 may be larger than the cross-sectional area of the supply pipe portion 123 so that the flow medium forms turbulent flow in the flow cell body portion 121. Therefore, since the cross-sectional area of the flow cell body portion 121 is rapidly increased compared to the cross-sectional area of the supply pipe portion 123, the flow medium due to turbulence when the flowing medium of the supply pipe portion 123 flows into the flow cell body portion 121 It is possible to prevent a portion of the flow cell unit 120 from being congested inside. Accordingly, when light passes through the fluid medium, the concentration of the fluid medium can be accurately measured.
  • the inlet pipe part is connected to the lower part of the flow cell part 120 and the discharge pipe part 125 is connected to the upper side of the flow cell part 120, the flow medium flows from the lower side of the flow cell part 120 to the upper side.
  • most of the bubbles contained in the flow medium flow across the diameter of the flow cell unit 120 and then flow along the upper side of the flow cell unit 120, when the light flows along the inside of the flow cell unit 120 As the light is scattered or refracted, it is possible to minimize the occurrence of light loss.
  • the supply pipe part 123 includes a first supply pipe part 123a, a second supply pipe part 123b, and a third supply pipe part 123c.
  • a fluid medium is supplied to the first supply pipe part 123a.
  • the first supply pipe portion 123a is disposed to be spaced apart from one side of the flow cell body portion 121 to the central portion at a predetermined interval.
  • the second supply pipe part 123b is formed to be wider than the diameter of the first supply pipe part 123a so that the flowing medium supplied from the first supply pipe part 123a forms a turbulent flow. Since the second supply pipe part 123b is enlarged than the diameter of the first supply pipe part 123a, the flow velocity increases as it diffuses when the fluid medium of the first supply pipe part 123a flows into the second supply pipe part 123b. Accordingly, as the fluid medium forms turbulent flow in the second supply pipe portion 123b, it is possible to suppress some of the fluid medium from stagnating inside the flow cell portion 120.
  • the third supply pipe part 123c extends from the second supply pipe part 123b and is connected to one side of the flow cell body part 121 so as to be inclined with the longitudinal direction of the flow cell body part 121.
  • the third supply pipe portion 123c is formed to be inclined downward from one side of the flow cell body portion 121 toward the other side of the flow cell body portion 121. Since the third supply pipe part 123c is connected to the flow cell body part 121 in an oblique direction with the length direction of the flow cell body part 121, the air bubbles contained in the flow medium flow along the upper side of the third supply pipe part 123c. And then flows to the upper side of the flow cell body 121. Accordingly, it is possible to minimize scattering or refracting light by air bubbles contained in the fluid medium.
  • the discharge pipe part 125 is a first discharge pipe part 125a extending perpendicular to the upper side of the flow cell body part 121, and the first discharge pipe part 125a to be perpendicular to the length direction of the flow cell body part 121 It includes a second discharge pipe portion (125b) extending.
  • the diameter of the first discharge pipe portion 125a is formed equal to or substantially the same as the diameter of the flow cell body portion 121. Since the first discharge pipe part 125a extends vertically to the upper side of the flow cell body part 121, the flow medium discharged from the flow cell body part 121 moves to the lower side of the first discharge pipe part 125a due to a pressure difference. It can minimize backflow.
  • the first optical unit 130 is disposed on one side of the flow cell body 121 to irradiate light in parallel with the flow direction of the fluid medium. Since light proceeds in the flow cell body 121 along the traveling direction of the fluid medium, scattering and refraction by bubbles or eluates when the light passes through the fluid medium can be minimized, thereby reducing light loss. In addition, since the light passes through the fluid medium and can smoothly absorb the wavelength of the eluate contained in the fluid medium, light detection efficiency can be improved.
  • the first optical unit 130, the flow cell body unit 121, and the second optical unit 140 are disposed in a straight line. Accordingly, light irradiated from the first optical unit 130 may travel along a straight line through the flow cell body unit 121 and the second optical unit 140.
  • the first optical unit 130 includes a first optical slider unit 131, a first reflective mirror 133, and a first position adjusting unit 135.
  • the first optical slider part 131 is disposed on one side of the flow cell body part 121.
  • the first optical slider part 131 is installed to be movable.
  • the first reflective mirror 133 is disposed on the first optical slider unit 131 to irradiate the light incident from the light source unit 171 onto the flowing medium of the flow cell body unit 121.
  • the first reflective mirror 133 is disposed to be inclined by approximately 45°.
  • the first position adjusting part 135 is installed on the first optical slider part 131 to adjust the position of the first reflective mirror 133.
  • the first position adjusting part 135 is installed on the first optical slider part 131 to adjust the position of the first reflective mirror 133.
  • the first position adjusting part 135 may be formed in a screw shape. As the first position adjusting part 135 is rotated, the first optical slider part 131 and the first reflective mirror 133 are moved.
  • the second optical unit 140 includes a second optical slider unit 141, a second reflective mirror 143, and a second position adjusting unit 145.
  • the second optical slider part 141 is disposed on the other side of the flow cell body part 121.
  • the second optical slider part 141 is installed to be movable.
  • the second reflective mirror 143 is disposed on the second optical slider unit 141 to irradiate the light incident from the light source unit 171 onto the flowing medium of the flow cell body unit 121.
  • the second reflective mirror 143 is disposed to be inclined by approximately 45°.
  • the second position adjusting unit 145 is installed on the second optical slider unit 141 to adjust the position of the second reflective mirror 143.
  • the second position adjusting unit 145 is installed on the second optical slider unit 141 to adjust the position of the second reflective mirror 143.
  • the second position control unit 145 may be formed in a screw shape. As the second position adjusting unit 145 is rotated, the second optical slider unit 141 and the second reflective mirror 143 are moved.
  • the flow cell device 100 further includes an elastic pressing unit 114 installed on the housing unit 110 to elastically support the outer surface of the flow cell unit 120.
  • the elastic pressing unit 114 includes a pressing rod unit 114a supporting the outer surface of the flow cell unit 120 and an elastic member 114b installed to move the pressing rod unit 114a toward the flow cell unit 120. Include.
  • a plurality of elastic pressing parts 114 are disposed along the longitudinal direction of the flow cell part 120. Since the elastic pressing unit 114 elastically supports the outer surface of the flow cell unit 120, the elastic pressing unit 114 stabilizes the flow cell unit 120 even if the flow cell unit 120 expands or contracts by the temperature of the flow medium. Can be supported by Therefore, when the flow cell unit 120 expands and contracts, it is possible to prevent damage due to pressure by the housing unit 110.
  • a spaced space part 112 is formed inside the housing part 110 to allow an expansion space of the flow cell part 120. Accordingly, even if the flow cell unit 120 is expanded and contracted by the fluid medium, it is possible to prevent damage by being pressed against the housing unit 110.
  • the flow cell device 100 is opposed to the first optical unit 130, the first collimator unit 150 to which the first optical fiber unit 154 is connected, and the second optical unit 140, respectively. It further includes a second collimator unit 160 to which the 2 optical fiber unit 164 is connected.
  • the first collimator unit 150 collimates the light irradiated from the light source unit 171 in parallel. Since the first collimator unit 150 collimates the light in parallel, the light irradiated from the first light source unit 171 enters the flow cell unit 120 in parallel.
  • a first adjusting screw part 152 is installed in the first collimator part 150 to adjust the position.
  • the light source unit 171 may be installed to be spaced apart from the flow cell unit 120. Since the high temperature fluid medium of about 150-200° C. passes through the flow cell unit 120, the flow cell unit 120 is heated by the high temperature fluid medium. Since the light source unit 171 and the light detection unit 173 are installed to be spaced apart from the flow cell unit 120 by the first optical fiber unit 154 and the second optical fiber unit 164, the light source unit 171 is It can prevent overheating by heat. In addition, it is not necessary to install a separate cooling device or a heat insulating member to cool or insulate the light source unit 171.
  • the second collimator unit 160 condenses the parallel light irradiated from the flow cell body unit 121 to the light detection unit 173. Since parallel light is condensed while passing through the second collimator unit 160, Detection efficiency in the photodetector 173 may be improved.
  • a second adjustment screw 162 is installed in the second collimator unit 160 to adjust the position.
  • the light detection unit 173 may be installed to be spaced apart from the flow cell unit 120. Since the high temperature fluid medium of about 150-200° C. passes through the flow cell unit 120, the flow cell unit 120 is heated by the high temperature fluid medium. Since the light detection unit 173 is installed to be spaced apart from the flow cell unit 120 by the second optical fiber unit 164, it is possible to prevent the light detection unit 173 from being overheated by the heat of the flow cell unit 120. In addition, it is not necessary to install a separate cooling device or a heat insulating member to cool or insulate the photodetector 173.
  • the first optical fiber unit 154 and the second optical fiber unit 164 are installed on both sides of the flow cell unit 120, it is not necessary to arrange the flow cell unit 120, the light source unit 171, and the light detection unit 173 in a line. do. Accordingly, the degree of freedom of installation of the flow cell apparatus 100 can be increased.
  • the flow cell unit 120 may be disposed to be inclined upward from the supply pipe unit 123 side (one side) to the discharge pipe unit 125 side (the other side). Since the flow cell unit 120 is disposed to be inclined upward toward the discharge side of the fluid medium, air bubbles contained in the fluid medium flow along the upper side of the flow cell unit 120. Accordingly, it is possible to minimize the occurrence of light loss due to bubbles when light flows along the inside of the flow cell unit 120.
  • the flow cell device 100 is connected to the flow medium inlet side of the flow cell unit 120, the bubble removing unit 180 for removing air bubbles mixed in the flow medium flowing into the flow cell unit 120 Include more. Since the air bubbles mixed in the fluid medium are removed by the bubble removal unit 180, and the fluid medium from which the air bubbles have been removed flows into the flow cell unit 120, the light irradiated to the fluid medium is prevented from being scattered or refracted by the bubbles. It is possible to suppress the occurrence of optical loss. Therefore, it is possible to improve the accuracy of the concentration measurement of the fluid medium.
  • the bubble removing unit 180 includes a bubble discharge line 181 connected to the flow medium inlet side of the flow cell unit 120 and a bubble discharge valve 183 installed in the bubble discharge line 181. As the bubble discharge valve 183 is opened, bubbles may be discharged through the bubble discharge line 181.
  • the bubble discharge valve 183 may have an opening degree adjusted to adjust the exhaust pressure of the bubble discharge line 181.
  • the bubble discharge valve 183 may have an opening degree adjusted according to the pumping pressure of the circulation pump 41. Accordingly, it is possible to adjust the amount of air bubbles discharged from the bubble discharge line 181 and prevent the flowing medium from being discharged through the bubble discharge line 181.
  • One side of the bubble discharge line 181 may be connected to a circulation pump 41 installed in the circulation passage part 30. Accordingly, the bubbles of the bubble discharge line 181 may be discharged to the circulation passage part 30 by the suction pressure of the circulation pump 41.
  • One side of the bubble discharge line 181 may be installed to be exposed to the atmosphere. At this time, since the bubbles of the bubble discharge line 181 do not flow into the circulation passage part 30, the flow medium from which the bubbles are removed is supplied to the inner tank 20. Accordingly, it is possible to prevent the air bubbles mixed with the fluid medium from adhering to the wafer, thereby improving the processing precision of the wafer and reducing the defect rate.
  • the bubble removal unit 180 may further include a medium discharge valve 185 installed in the bubble discharge line 181 to discharge a fluid medium accommodated in the flow cell unit 120.
  • the other side of the bubble discharge line 181 may be connected to a drain bath (not shown).
  • the medium discharge valve 185 may be opened to discharge the fluid medium accommodated in the flow cell unit 120.
  • FIG. 5 is a block diagram showing a first embodiment of an etching apparatus to which a flow cell apparatus according to an embodiment of the present invention is applied.
  • the etching apparatus includes an outer tub 10 and an inner tub 20.
  • the inner tub 20 and the outer tub 10 are connected to the circulation passage part 30.
  • a circulation pump 41, a damper 42, a filter part 43, a main valve 32, a heater part 44, a bubble cutter 45, and a concentration measuring part 46 are sequentially It is installed as.
  • the fluid medium accommodated in the inner tank 20 overflows with the outer tank 10.
  • the flowing medium of the outer tank 10 flows to the damper 42 by the circulation pump 41, and the filter unit 43 filters the flowing medium flowing therein.
  • the fluid medium filtered by the filter unit 43 flows through the main valve 32 to the heater unit 44 and is heated by the heater unit 44. Bubbles are removed from the fluidized medium heated by the heater unit 44 by the bubble cutter 45, and the concentration measuring unit 46 measures the concentration of the phosphoric acid solution.
  • the bypass flow path part 35 is connected to the circulation flow path part 30.
  • the bypass flow path part 35 is the discharge side of the outer tub 20 and the inflow side of the pump 41, or the discharge side of the damper 42 and the inflow side of the filter part 43, or the discharge side of the filter part 43 and the heater.
  • the inlet side of the part 44 can be connected.
  • the high-temperature fluid medium flowing along the circulation passage part 30 is supplied to the flow cell apparatus 100 through the bypass passage part 35. In the flow cell device 100, after measuring the concentration of the fluid medium, the fluid medium is recovered in the circulation passage part 30.
  • the bubble removing unit 180 when the bubble removing unit 180 is installed on the inflow side of the flow cell device 100 in the bypass flow path part 35, the bubbles mixed with the fluid medium are bubble removed at the inflow side of the flow cell device 100. ). Since the flow medium from which the air bubbles have been removed flows into the flow cell apparatus 100, it is possible to prevent light from being scattered or refracted by the air bubbles when measuring the concentration of the flow medium, thereby improving the concentration measurement precision.
  • a fluid medium heated to 150-200°C flows through the flow cell device 100 to suppress precipitation of substances contained in the fluid medium.
  • a high-temperature fluid medium may flow through the flow cell device 100 so that the wavelength of the heated fluid medium is absorbed by light.
  • the flow cell unit 120 may be disposed to be inclined upward from the supply pipe unit 123 side (one side) to the discharge pipe unit 125 side (the other side). Since the flow cell unit 120 is disposed to be inclined upward toward the discharge side of the fluid medium, air bubbles contained in the fluid medium flow along the upper side of the flow cell unit 120. Accordingly, it is possible to minimize the occurrence of light loss due to bubbles when light flows along the inside of the flow cell unit 120.
  • FIG. 6 is a block diagram showing a second embodiment of a nickname device to which a flow cell device according to an embodiment of the present invention is applied.
  • the etching apparatus includes an outer tub 10 and an inner tub 20.
  • the inner tub 20 and the outer tub 10 are connected to the circulation passage part 30.
  • a circulation pump 41, a damper 42, a filter part 43, a main valve 32, a heater part 44, a bubble cutter 45, and a concentration measuring part 46 are sequentially It is installed as.
  • a drain pipe part 38 is connected to the circulation passage part 30.
  • a drain valve 39 and a flow cell device 100 are installed in the drain pipe portion 38. As the drain valve 39 is opened, the fluid medium flows into the flow cell device 100, and the flow cell device 100 measures the concentration of the fluid medium. The flowing medium discharged to the flow cell apparatus 100 is discharged to the outside of the etching apparatus through the drain pipe portion 38.
  • the bubble removing unit 180 when the bubble removing unit 180 is installed on the inflow side of the flow cell device 100 in the drain pipe part 38, the flow medium from which the bubbles are removed flows into the flow cell device 100.
  • the concentration of the fluid medium it is possible to improve the accuracy of the concentration measurement by preventing the light from being scattered or refracted by bubbles.
  • FIG. 7 is a block diagram showing a third embodiment of a nickname device to which a flow cell device according to an embodiment of the present invention is applied.
  • the etching apparatus includes an outer tub 10 and an inner tub 20.
  • the inner tub 20 and the outer tub 10 are connected to the circulation passage part 30.
  • a circulation pump 41, a damper 42, a filter part 43, a main valve 32, a heater part 44, a bubble cutter 45, and a concentration measuring part 46 are sequentially It is installed as.
  • the flow cell device 100 is directly installed in the circulation passage part 30. At this time, the drain pipe part or the bypass pipe part is not installed in the circulation passage part.
  • the flow medium flowing along the circulation passage part flows into the flow cell apparatus 100, and the flow cell apparatus 100 measures the concentration of the flow medium.
  • the fluid medium discharged from the flow cell device 100 flows into the inner tank.
  • FIG. 8 is a graph showing a first method of measuring the concentration of a fluid medium in a flow cell device according to an embodiment of the present invention.
  • the flow device measures the concentration of the fluid medium. As the wafer is etched, the eluate continues to elute from the wafer. When the concentration of the fluid medium is continuously measured when the wafer is first etched in the etching apparatus, a section in which the concentration of the fluid medium increases and then stagnates occurs. This period of congestion is determined as the primary ending point and the wafer is replaced. When the first etching process is completed, a second etching process is performed. Even in the secondary etching process, when the concentration of the fluid medium increases and a period of stagnation occurs, the secondary etched wafer is replaced. Therefore, since the concentration of the fluid medium is measured under conditions in which the fluid medium is used in an actual semiconductor process, the state of the fluid medium and the timing of replacing the wafer can be accurately determined.
  • FIG. 9 is a graph showing a second method of measuring the concentration of a fluid medium in a flow cell device according to an embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명의 플로우셀장치는: 유동매체가 유동되는 유동통로부 및 유동통로부가 형성되는 플로우셀부를 포함하는 것을 특징으로 한다.

Description

플로우셀장치
본 발명은 플로우셀장치에 관한 것으로서, 보다 상세하게는 유동매체의 사용 조건에서 유동매체의 상태를 정확하게 모니터링할 수 있는 플로우셀장치에 관한 것이다.
일반적으로 반도체 웨이퍼나 태양광셀 등의 반도체 제조 공정에는 에칭공정이 수행된다. 에칭공정에서는 실리콘질화막을 에칭하기 위해 인산 용액과 같은 고온의 에칭용액(유동매체)이 사용된다. 반도체 웨이퍼에서 실리콘과 같은 용출물이 녹아 에칭용액에 함유되므로, 반도체 웨이퍼의 에칭공정이 진행될수록 에칭용액에서 용출물의 농도가 증가된다. 에칭용액에서 용출물의 농도가 일정 농도 이상 증가되면, 에칭용액을 교체한다.
에칭용액이 고온 상태에서 실리콘의 농도를 미량 분석하는 것이 어려우므로, 에칭용액의 일부를 수집하여 상온으로 냉각시킨다. 냉각된 에칭용액의 검출 감도를 증가시키기 위해 화학처리를 복수 번 수행한 후 에칭용액의 농도를 검출한다.
그러나, 종래에는 에칭용액을 상온으로 냉각시킨 후 복수 번의 화학처리를 수행하므로, 에칭용액의 온도차에 따라 검출 오차 범위가 증가된다. 따라서, 실제 반도체 공정에서 적용되는 사용 조건에서 에칭용액의 상태를 정확하게 예측하기 어려웠다.
또한, 고온의 에칭용액을 상온으로 낮출 때에 에칭용액에서 용출물이 쉽게 석출되므로, 에칭용액에서 용출물의 농도를 정확하게 측정하기 어려울 수 있다.
또한, 에칭용액의 농도를 정확하게 측정하기 위해 화학처리를 복수 번에 걸쳐 수행하므로, 농도 분석 중 매트릭스를 복잡하게 만들어 분석 농도의 정확성을 저하시키게 된다.
본 발명의 배경기술은 대한민국 등록특허공보 제1785859호(2017. 09. 29 등록, 발명의 명칭: 구리이온 검출용 형광실리콘 나노입자, 이의 제조방법, 및 이를 이용한 검출센서)에 개시되어 있다.
본 발명의 일 실시예에 의하면, 유동매체의 사용 조건에서 유동매체의 상태를 정확하게 모니터링할 수 있는 플로우셀장치를 제공하는 것이다.
본 발명에 따른 플로우셀장치는: 유동매체가 유동되는 유동통로부 및 상기 유동통로부가 형성되는 플로우셀부를 포함하는 것을 특징으로 한다.
상기 플로우셀부는 상기 유동통로부가 형성되는 플로우셀 바디부; 상기 플로우셀 바디부에 유동매체가 공급되도록 상기 플로우셀 바디부의 일측에 연결되는 공급관부; 및 상기 플로우셀 바디부의 유동매체가 배출되도록 상기 플로우셀 바디부의 타측에 연결되는 배출관부를 포함할 수 있다.
상기 공급관부는 상기 플로우셀 바디부의 하측에 연결되고, 상기 배출관부는 상기 플로우셀 바디부의 상측에 연결될 수 있다.
상기 플로우셀 바디부에서 유동매체가 난류를 형성하도록 상기 플로우셀 바디부의 단면적은 상기 공급관부의 단면적보다 크게 형성될 수 있다.
상기 공급관부는 유동매체가 공급되는 제1 공급관부; 상기 제1 공급관부에서 공급되는 유동매체가 난류를 형성하도록 상기 제1 공급관부의 직경보다 크게 형성되는 제2 공급관부; 및 상기 제2 공급관부에서 연장되고, 상기 플로우셀 바디부의 일측에 연결되는 제3 공급관부를 포함할 수 있다.
또한 본 발명은 광원부에서 조사되는 광을 상기 플로우셀부의 유동매체에 조사하도록 설치되는 제1 광학부; 및 상기 유동통로부의 유동매체를 투과하면서 유동매체의 파장이 흡수되는 광을 광검출부에 광을 조사하도록 설치되는 제2 광학부를 더 포함할 수 있다.
상기 제1 광학부는 유동매체의 유동방향과 나란하게 광을 조사하도록 상기 플로우셀 바디부의 일측에 배치될 수 있다.
상기 제1 광학부는 상기 플로우셀 바디부의 일측에 배치되는 제1 광학 슬라이더부; 상기 광원부에서 입사되는 광을 상기 플로우셀 바디부의 유동매체에 조사하도록 상기 제1 광학 슬라이더부에 배치되는 제1 반사거울; 및 상기 제1 반사거울의 위치를 조절하도록 상기 제1 광학 슬라이더부에 설치되는 제1 위치조절부를 포함할 수 있다.
상기 제2 광학부는 상기 플로우셀 바디부의 타측에 배치되는 제2 광학 슬라이더부; 상기 플로우셀 바디부의 유동매체의 파장을 흡수한 광을 상기 광검출부에 조사하도록 상기 제2 광학 슬라이더부에 배치되는 제2 반사거울; 및 상기 제2 반사거울의 위치를 조절하도록 상기 제2 광학 슬라이더부에 설치되는 제2 위치조절부를 포함할 수 있다.
상기 플로우셀장치는 상기 플로우셀부의 외측면을 탄성 지지하도록 하우징부에 설치되는 탄성 가압부를 더 포함할 수 있다.
상기 하우징부의 내부에는 상기 플로우셀부의 팽창 공간을 허용하도록 이격 공간부가 형성될 수 있다.
상기 플로우셀장치는 상기 제1 광학부에 대향되고, 제1 광섬유부가 연결되는 제1 컬리메이터부; 및 상기 제2 광학부에 대향되고, 제2 광섬유부가 연결되는 제2 컬리메이터부를 더 포함할 수 있다.
상기 플로우셀장치는 상기 플로우셀부의 유동매체 유입측에 연결되고, 상기 플로우셀부로 유입되는 유동매체에 혼합된 기포를 제거하는 기포제거부를 더 포함할 수 있다.
상기 기포제거부는 상기 플로우셀부의 유동매체 유입측에 연결되는 기포배출라인; 및 상기 기포배출라인에 설치되는 기포배출밸브를 포함할 수 있다.
상기 기포배출라인의 일측은 순환유로부에 설치되는 순환펌프에 연결될 수 있다.
상기 기포제거부는 상기 플로우셀부에 수용되는 유동매체를 배출시키도록 상기 기포배출라인에 설치되는 매체배출밸브를 더 포함할 수 있다.
본 발명에 따르면, 플로우셀부에 고온의 유동매체가 유동되고, 유동매체의 파장이 광에 흡수되므로, 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하고, 유동매체의 검출 감도를 증가시키기 위해 유동매체를 복수 번에 걸쳐 화학처리 하지 않아도 된다.
또한, 본 발명에 따르면, 탄성 가압부가 플로우셀부의 외측면을 탄성 지지하므로, 플로우셀부가 유동매체의 온도에 의해 팽창하거나 수축되더라도 탄성 가압부가 플로우셀부를 안정적으로 지지할 수 있다. 따라서, 플로우셀부가 팽창 및 수축할 때에 하우징부에 의해 피가압되어 손상되는 것을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 플로우셀장치를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 플로우셀장치에서 플로우셀부를 도시한 사시도이다.
도 3은 본 발명의 일 실시예에 따른 플로우셀장치가 경사지게 설치된 상태를 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 플로우셀장치에 기포제거부가 설치된 상태를 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 플로우셀장치가 적용되는 애칭장치의 제1실시예를 도시한 블록도이다.
도 6은 본 발명의 일 실시예에 따른 플로우셀장치가 적용되는 애칭장치의 제2실시예를 도시한 블록도이다.
도 7은 본 발명의 일 실시예에 따른 플로우셀장치가 적용되는 애칭장치의 제3실시예를 도시한 블록도이다.
도 8은 본 발명의 일 실시예에 따른 플로우셀장치에서 유동매체의 농도를 측정하는 제1 방식을 도시한 그래프이다.
도 9는 본 발명의 일 실시예에 따른 플로우셀장치에서 유동매체의 농도를 측정하는 제2 방식을 도시한 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 플로우셀장치의 일 실시예를 설명한다. 플로우셀장치를 설명하는 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 플로우셀장치를 도시한 단면도이고, 도 2는 본 발명의 일 실시예에 따른 플로우셀장치에서 플로우셀부를 도시한 사시도이고, 도 3은 본 발명의 일 실시예에 따른 플로우셀장치가 경사지게 설치된 상태를 개략적으로 도시한 도면이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 플로우셀장치(100)는 하우징부(110), 플로우셀부(120), 제1 광학부(130) 및 제2 광학부(140)를 포함한다.
하우징부(110)는 길이방향을 따라 길게 형성된다. 하우징부(110)는 직사각 박스 형태로 형성될 수 있다. 하우징부(110)는 고온에서 열변형되는 것을 방지하도록 내열성 재질로 형성될 수 있다.
플로우셀부(120)는 하우징부(110)에 수용되고, 유동매체가 유동되도록 유동통로부(122)가 형성된다. 유동통로부(122)의 단면은 유동매체의 저항을 감소시키도록 원형으로 형성된다. 유동매체는 반도체 웨이퍼나 태양광셀 등을 제조할 때에 반도체 공정에 사용되는 에칭용액일 수 있다. 에칭용액으로는 150-200℃의 인산용액일 수 있다. 플로우셀부(120)는 150-200℃ 정도의 유동매체에 의해 열변형 및 부식되는 것을 방지하도록 석영재질, 파이렉스 글라스(pyrex glass), 테프론 재질(teflon) 및 사파이어 재질 등 중 어느 하나로 형성될 수 있다.
플로우셀부(120)에는 유동매체에 함유된 물질이 석출되는 것을 억제하도록 150-200℃로 가열된 유동매체가 유동되므로, 플로우셀부(120)에는 고온의 유동매체의 파장이 광에 흡수되도록 고온의 유동매체가 유동될 수 있다.
따라서, 유동매체가 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하고, 유동매체의 검출 감도를 증가시키기 위해 유동매체를 복수 번에 걸쳐 화학처리 할 필요가 없다. 또한, 유동매체를 상온으로 냉각하지 않아도 되므로, 유동매체의 온도차에 의해 검출 오차가 발생되는 것을 방지하고, 실제 반도체 공정에서 적용되는 사용 조건에서 유동매체의 상태를 정확하게 예측할 수 있다. 또한, 농도 분석 중 매트릭스를 간단하게 만들어 분석 농도의 정확성을 향상시킬 수 있다.
제1 광학부(130)는 광원부(171)에서 조사되는 광을 플로우셀부(120)의 유동매체의 유동방향과 나란하게 조사하도록 하우징부(110)에 배치된다. 이때, 플로우셀부(120)에서 유동매체의 진행방향을 따라 광이 진행되므로, 광이 유동매체를 투과할 때에 기포나 용출물에 의해 산란 및 굴절되는 것을 최소화하여 광 손실을 감소시킬 수 있다. 또한, 광이 유동매체를 투과하면서 유동매체에 함유된 용출물의 파장을 원활하게 흡수할 수 있으므로, 광검출 효율이 향상될 수 있다.
제2 광학부(140)는 유동통로부(122)의 유동매체를 투과하면서 유동매체의 파장을 흡수하는 광을 광검출부(173)에 조사하도록 하우징부(110)에 배치된다.
플로우셀부(120)는 플로우셀 바디부(121), 공급관부(123) 및 배출관부(125)를 포함한다.
플로우셀 바디부(121)는 하우징부(110)의 내부에 수용되고, 그 내부에 유동통로부(122)가 형성된다. 플로우셀 바디부(121)의 단면은 원형으로 형성된다. 플로우셀 바디부(121)의 단면이 원형으로 형성되므로, 유동통로부(122)를 따라 유동되는 유동매체의 유동 저항이 감소될 수 있다.
공급관부(123)는 플로우셀 바디부(121)에 유동매체가 공급되도록 플로우셀 바디부(121)의 일측에 연결된다. 공급관부(123)의 단면은 유동매체의 유동 저항을 감소시키도록 원형으로 형성된다.
배출관부(125)는 플로우셀 바디부(121)의 유동매체가 배출되도록 플로우셀 바디부(121)의 타측에 연결된다. 배출관부(125)의 단면은 유동매체의 유동 저항을 감소시키도록 원형으로 형성된다.
공급관부(123)가 플로우셀 바디부(121)의 일측에 연결되고, 배출관부(125)가 플로우셀 바디부(121)의 타측에 연결되므로, 유동매체가 플로우셀 바디부(121)의 일측에서 플로우셀 바디부(121)의 타측으로 유동된다.
공급관부(123)는 플로우셀 바디부(121)의 하측에 연결되고, 배출관부(125)는 플로우셀 바디부(121)의 상측에 연결된다. 이때, 유동매체에 함유된 기포의 비중은 유동매체의 비중 보다 가볍다.
플로우셀 바디부(121)에서 유동매체가 난류를 형성하도록 플로우셀 바디부(121)의 단면적은 공급관부(123)의 단면적보다 크게 형성될 수 있다. 따라서, 플로우셀 바디부(121)의 단면적이 공급관부(123)의 단면적에 비해 급격히 증가되므로, 공급관부(123)의 유동매체가 플로우셀 바디부(121)에 유입될 때에 난류로 인해 유동매체의 일부가 플로우셀부(120)의 내부에 정체되는 것을 방지할 수 있다. 따라서, 광이 유동매체를 투과할 때에 유동매체의 농도를 정확하게 측정할 수 있다.
유입관부가 플로우셀부(120)의 하부에 연결되고, 배출관부(125)가 플로우셀부(120)의 상측에 연결되므로, 유동매체가 플로우셀부(120)의 하측에서 상측으로 유동된다. 또한, 유동매체에 함유된 기포는 대부분 플로우셀부(120)의 직경을 가로질러 유동된 후 플로우셀부(120)의 상측을 따라 유동되므로, 광이 플로우셀부(120)의 내부를 따라 유동될 때에 기포에 의해 광이 산란되거나 굴절됨에 따라 광손실이 발생되는 것을 최소화할 수 있다.
공급관부(123)는 제1 공급관부(123a), 제2 공급관부(123b) 및 제3 공급관부(123c)를 포함한다.
제1 공급관부(123a)에는 유동매체가 공급된다. 제1 공급관부(123a)는 플로우셀 바디부(121)의 일측에서 중심부 측으로 일정 간격 이격되게 배치된다.
제2 공급관부(123b)는 제1 공급관부(123a)에서 공급되는 유동매체가 난류를 형성하도록 제1 공급관부(123a)의 직경보다 확관되게 형성된다. 제2 공급관부(123b)가 제1 공급관부(123a)의 직경보다 확관되므로, 제1 공급관부(123a)의 유동매체가 제2 공급관부(123b)에 유입될 때에 확산되면서 유속이 증가된다. 따라서, 제2 공급관부(123b)에서 유동매체가 난류를 형성함에 따라 유동매체 중 일부가 플로우셀부(120) 내부에 정체되는 것을 억제할 수 있다.
제3 공급관부(123c)는 제2 공급관부(123b)에서 연장되고, 플로우셀 바디부(121)의 길이방향과 경사지도록 플로우셀 바디부(121)의 일측에 연결된다. 이때, 제3 공급관부(123c)는 플로우셀 바디부(121)의 일측에서 플로우셀 바디부(121)의 타측을 향하여 하향으로 경사지게 형성된다. 제3 공급관부(123c)가 플로우셀 바디부(121)의 길이방향과 경사지게 플로우셀 바디부(121)에 연결되므로, 유동매체에 함유된 기포가 제3 공급관부(123c)의 상측을 따라 유동된 후 플로우셀 바디부(121)의 상측으로 유동된다. 따라서, 유동매체에 함유된 기포에 의해 광이 산란되거나 굴절되는 것을 최소화할 수 있다.
배출관부(125)는 플로우셀 바디부(121)의 상측에 수직하게 연장되는 제1 배출관부(125a)와, 제1 배출관부(125a)에서 플로우셀 바디부(121)의 길이방향과 수직하게 연장되는 제2 배출관부(125b)를 포함한다. 제1 배출관부(125a)의 직경은 플로우셀 바디부(121)의 직경과 동일하거나 거의 동일하게 형성된다. 제1 배출관부(125a)가 플로우셀 바디부(121)의 상측에 수직하게 연장되므로, 플로우셀 바디부(121)에서 배출되는 유동매체가 압력차에 의해 제1 배출관부(125a)의 하측으로 역류되는 것을 최소화할 수 있다.
제1 광학부(130)는 유동매체의 유동방향과 나란하게 광을 조사하도록 플로우셀 바디부(121)의 일측에 배치된다. 플로우셀 바디부(121)에서 유동매체의 진행방향을 따라 광이 진행되므로, 광이 유동매체를 투과할 때에 기포나 용출물에 의해 산란 및 굴절되는 것을 최소화하여 광 손실을 감소시킬 수 있다. 또한, 광이 유동매체를 투과하면서 유동매체에 함유된 용출물의 파장을 원활하게 흡수할 수 있으므로, 광검출 효율이 향상될 수 있다.
제1 광학부(130), 플로우셀 바디부(121) 및 제2 광학부(140)는 일직선상에 배치된다. 따라서, 제1 광학부(130)에서 조사되는 광이 플로우셀 바디부(121) 및 제2 광학부(140)를 통해 일직선을 따라 진행될 수 있다.
제1 광학부(130)는 제1 광학 슬라이더부(131), 제1 반사거울(133) 및 제1 위치 조절부(135)를 포함한다.
제1 광학 슬라이더부(131)는 플로우셀 바디부(121)의 일측에 배치된다. 제1 광학 슬라이더부(131)는 이동 가능하게 설치된다. 제1 반사거울(133)은 광원부(171)에서 입사되는 광을 플로우셀 바디부(121)의 유동매체에 조사하도록 제1 광학 슬라이더부(131)에 배치된다. 제1 반사거울(133)은 대략 45° 정도 경사지게 배치된다. 제1 위치조절부(135)는 제1 반사거울(133)의 위치를 조절하도록 제1 광학 슬라이더부(131)에 설치된다. 제1 위치조절부(135)는 제1 반사거울(133)의 위치를 조절하도록 제1 광학 슬라이더부(131)에 설치된다. 제1 위치조절부(135)는 나사 형태로 형성될 수 있다. 제1 위치 조절부(135)가 회전됨에 따라 제1 광학 슬라이더부(131)와 제1 반사거울(133)이 이동된다.
제2 광학부(140)는 제2 광학 슬라이더부(141), 제2 반사거울(143) 및 제2 위치 조절부(145)를 포함한다. 제2 광학 슬라이더부(141)는 플로우셀 바디부(121)의 타측에 배치된다. 제2 광학 슬라이더부(141)는 이동 가능하게 설치된다. 제2 반사거울(143)은 광원부(171)에서 입사되는 광을 플로우셀 바디부(121)의 유동매체에 조사하도록 제2 광학 슬라이더부(141)에 배치된다. 제2 반사거울(143)은 대략 45° 정도 경사지게 배치된다. 제2 위치조절부(145)는 제2 반사거울(143)의 위치를 조절하도록 제2 광학 슬라이더부(141)에 설치된다. 제2 위치조절부(145)는 제2 반사거울(143)의 위치를 조절하도록 제2 광학 슬라이더부(141)에 설치된다. 제2 위치조절부(145)는 나사 형태로 형성될 수 있다. 제2 위치 조절부(145)가 회전됨에 따라 제2 광학 슬라이더부(141)와 제2 반사거울(143)이 이동된다.
플로우셀장치(100)는 플로우셀부(120)의 외측면을 탄성 지지하도록 하우징부(110)에 설치되는 탄성 가압부(114)를 더 포함한다. 탄성 가압부(114)는 플로우셀부(120)의 외측면을 지지하는 가압 로드부(114a)와, 가압 로드부(114a)를 플로우셀부(120) 측으로 이동시키도록 설치되는 탄성부재(114b)를 포함한다. 탄성 가압부(114)는 플로우셀부(120)의 길이방향을 따라 복수 개가 배치된다. 탄성 가압부(114)가 플로우셀부(120)의 외측면을 탄성 지지하므로, 플로우셀부(120)가 유동매체의 온도에 의해 팽창하거나 수축되더라도 탄성 가압부(114)가 플로우셀부(120)를 안정적으로 지지할 수 있다. 따라서, 플로우셀부(120)가 팽창 및 수축할 때에 하우징부(110)에 의해 피가압되어 손상되는 것을 방지할 수 있다.
하우징부(110)의 내부에는 플로우셀부(120)의 팽창 공간을 허용하도록 이격공간부(112)가 형성된다. 따라서, 플로우셀부(120)가 유동매체에 의해 팽창 및 수축되더라도 하우징부(110)에 눌려 손상되는 것을 방지할 수 있다.
플로우셀장치(100)는 제1 광학부(130)에 대향되고, 제1 광섬유부(154)가 연결되는 제1 컬리메이터부(150)와, 제2 광학부(140)에 대향되고, 제2 광섬유부(164)가 연결되는 제2 컬리메이터부(160)를 더 포함한다.
제1 컬리메이터부(150)는 광원부(171)에서 조사되는 광을 평행하게 시준(collimating)한다. 제1 컬리메이터부(150)에서 광을 평행하게 시준하므로, 플로우셀부(120)에는 제1 광원부(171)에서 조사된 광이 평행하게 입사된다. 제1 컬리메이터부(150)에는 위치를 조절할 있도록 제1 조절 나사부(152)가 설치된다.
제1 광섬유부(154)가 광원부(171)와 제1 컬리메이터부(150)에 연결되므로, 광원부(171)가 플로우셀부(120)와 이격되게 설치될 수 있다. 150-200℃ 정도의 고온의 유동매체가 플로우셀부(120)를 통과하므로, 플로우셀부(120)가 고온의 유동매체에 의해 가열된다. 광원부(171)와 광검출부(173)가 제1 광섬유부(154)와 제2 광섬유부(164)에 의해 플로우셀부(120)와 이격되게 설치되므로, 광원부(171)가 플로우셀부(120)의 열기에 의해 과열되는 것을 방지할 수 있다. 또한, 광원부(171)를 냉각시키거나 단열시키기 위해 별도의 냉각장치나 단열부재를 설치하지 않아도 된다.
제2 컬리메이터부(160)는 플로우셀 바디부(121)에서 조사되는 평행광을 광검출부(173)에 집광한다. 평행한 광이 제2 컬리메이터부(160)를 투과하면서 집광되므로, 광검출부(173)에서 검출 효율이 향상될 수 있다. 제2 컬리메이터부(160)에는 위치를 조절할 있도록 제2 조절 나사부(162)가 설치된다.
제2 광섬유부(164)가 광검출부(173)와 제2 컬리메이터부(160)에 연결되므로, 광검출부(173)가 플로우셀부(120)와 이격되게 설치될 수 있다. 150-200℃ 정도의 고온의 유동매체가 플로우셀부(120)를 통과하므로, 플로우셀부(120)가 고온의 유동매체에 의해 가열된다. 광검출부(173)가 제2 광섬유부(164)에 의해 플로우셀부(120)와 이격되게 설치되므로, 광검출부(173)가 플로우셀부(120)의 열기에 의해 과열되는 것을 방지할 수 있다. 또한, 광검출부(173)를 냉각시키거나 단열시키기 위해 별도의 냉각장치나 단열부재를 설치하지 않아도 된다.
플로우셀부(120)의 양측에 제1 광섬유부(154)와 제2 광섬유부(164)가 설치되므로, 플로우셀부(120), 광원부(171) 및 광검출부(173)를 일렬로 배열해야 하지 않아도 된다. 따라서, 플로우셀장치(100)의 설치 자유도를 증가시킬 수 있다.
또한, 플로우셀장치(100)에서 플로우셀부(120)는 공급관부(123) 측(일측)에서 배출관부(125) 측(타측)으로 갈수록 상향으로 경사지게 배치될 수 있다. 플로우셀부(120)가 유동매체의 배출측으로 상향으로 경사지게 배치되므로, 유동매체에 함유된 기포가 플로우셀부(120)의 상측을 따라 유동된다. 따라서, 광이 플로우셀부(120)의 내부를 따라 유동될 때에 기포에 의해 광손실이 발생되는 것을 최소화할 수 있다.
도 4를 참조하면, 플로우셀장치(100)는 플로우셀부(120)의 유동매체 유입측에 연결되고, 플로우셀부(120)로 유입되는 유동매체에 혼합된 기포를 제거하는 기포제거부(180)를 더 포함한다. 유동매체에 혼합된 기포가 기포제거부(180)에 의해 제거되고, 기포가 제거된 유동매체가 플로우셀부(120)에 유입되므로, 유동매체에 조사되는 광이 기포에 의해 산란되거나 굴절되는 것을 방지하여 광손실이 발생되는 것을 억제할 수 있다. 따라서, 유동매체의 농도측정 정밀도를 향상시킬 수 있다.
기포제거부(180)는 플로우셀부(120)의 유동매체 유입측에 연결되는 기포배출라인(181)과, 기포배출라인(181)에 설치되는 기포배출밸브(183)를 포함한다. 기포배출밸브(183)가 개방됨에 따라 기포배출라인(181)을 통해 기포가 배출될 수 있다.
이때, 기포배출밸브(183)는 기포배출라인(181)의 배기압력을 조절하도록 개도가 조절될 수 있다. 기포배출밸브(183)는 순환펌프(41)의 펌핑 압력에 따라 개도가 조절될 수 있다. 따라서, 기포배출라인(181)에서 배출되는 기포의 양을 조절하고, 기포배출라인(181)을 통해 유동매체가 배출되는 것을 방지할 수 있다.
기포배출라인(181)의 일측은 순환유로부(30)에 설치되는 순환펌프(41)에 연결될 수 있다. 따라서, 기포배출라인(181)의 기포는 순환펌프(41)의 흡입압력에 의해 순환유로부(30)에 배출될 수 있다.
기포배출라인(181)의 일측은 대기 중에 노출되게 설치될 수 있다. 이때, 기포배출라인(181)의 기포는 순환유로부(30)에 유입되지 않으므로, 내조(20)에는 기포가 제거된 유동매체가 공급된다. 따라서, 유동매체에 혼합된 기포가 웨이퍼에 부착되는 것을 방지할 수 있으므로, 웨이퍼의 처리 정밀도를 향상시키고 불량율을 감소시킬 수 있다.
기포제거부(180)는 플로우셀부(120)에 수용되는 유동매체를 배출시키도록 기포배출라인(181)에 설치되는 매체배출밸브(185)를 더 포함할 수 있다. 기포배출라인(181)의 타측은 드레인 배스(미도시)에 연결될 수 있다. 웨이퍼 처리 공정이 정지된 후 플로우셀부(120)를 세정할 때에, 매체배출밸브(185)를 개방하여 플로우셀부(120)에 수용되는 유동매체를 배출시킬 수 있다.
상기와 같은 플로우셀장치가 적용된 에칭장치의 제1실시예에 관해 설명하기로 한다.
도 5는 본 발명의 일 실시예에 따른 플로우셀장치가 적용되는 에칭장치의 제1실시예를 도시한 블록도이다.
도 5를 참조하면, 에칭장치는 외조(10)와 내조(20)를 포함한다. 내조(20)와 외조(10)는 순환유로부(30)에 연결된다. 순환유로부(30)에는 순환펌프(41), 댐퍼(42), 필터부(43), 메인 밸브(32), 히터부(44), 버블커터(45) 및 농도 측정부(46)가 순차적으로 설치된다.
내조(20)에 수용되는 유동매체는 외조(10)에 오버 플로우(over flow) 된다. 외조(10)의 유동매체는 순환펌프(41)에 의해 댐퍼(42)에 유동되고, 필터부(43)는 유입되는 유동매체를 여과한다. 필터부(43)에서 여과된 유동매체는 메인 밸브(32)를 통해 히터부(44)에 유동되고, 히터부(44)에서 가열된다. 히터부(44)에서 가열된 유동매체는 버블커터(45)에 의해 기포가 제거되고, 농도 측정부(46)는 인산용액의 농도를 측정한다.
순환유로부(30)에는 바이패스 유로부(35)가 연결된다. 바이패스 유로부(35)는 외조(20)의 토출측과 펌프(41)의 유입측, 또는 댐퍼(42)의 토출측과 필터부(43)의 유입측, 또는 필터부(43)의 토출측과 히터부(44)의 유입측을 연결할 수 있다. 순환유로부(30)를 따라 유동되는 고온의 유동매체는 바이패스 유로부(35)를 통해 플로우셀장치(100)에 공급된다. 플로우셀장치(100)에서는 유동매체의 농도를 측정한 후 순환유로부(30)에 유동매체가 회수된다.
이때, 바이패스 유로부(35)에서 플로우셀장치(100)의 유입 측에 기포제거부(180)가 설치되는 경우, 플로우셀장치(100)의 유입측에서는 유동매체에 혼합된 기포가 기포제거부(180)에 의해 제거된다. 기포가 제거된 유동매체가 플로우셀장치(100)에 유입되므로, 유동매체의 농도 측정시 광이 기포에 의해 산란되거나 굴절되는 것을 방지하여 농도 측정 정밀도를 향상시킬 수 있다.
또한, 플로우셀장치(100)에는 유동매체에 함유된 물질이 석출되는 것을 억제하도록 150-200℃로 가열된 유동매체가 유동된다. 또한, 플로우셀장치(100)에는 가열된 유동매체의 파장이 광에 흡수되도록 고온의 유동매체가 유동될 수 있다.
따라서, 유동매체가 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하고, 유동매체의 검출 감도를 증가시키기 위해 유동매체를 복수 번에 걸쳐 화학처리 할 필요가 없다. 또한, 유동매체를 상온으로 냉각하지 않아도 되므로, 유동매체의 온도차에 의해 검출 오차가 발생되는 것을 방지하고, 실제 반도체 공정에서 적용되는 사용 조건에서 유동매체의 상태를 정확하게 예측할 수 있다. 또한, 농도 분석 중 매트릭스를 간단하게 만들어 분석 농도의 정확성을 향상시킬 수 있다.
또한, 플로우셀장치(100)에서 플로우셀부(120)는 공급관부(123) 측(일측)에서 배출관부(125) 측(타측)으로 갈수록 상향으로 경사지게 배치될 수 있다. 플로우셀부(120)가 유동매체의 배출측으로 상향으로 경사지게 배치되므로, 유동매체에 함유된 기포가 플로우셀부(120)의 상측을 따라 유동된다. 따라서, 광이 플로우셀부(120)의 내부를 따라 유동될 때에 기포에 의해 광손실이 발생되는 것을 최소화할 수 있다.
도 6은 본 발명의 일 실시예에 따른 플로우셀장치가 적용되는 애칭장치의 제2실시예를 도시한 블록도이다.
도 6을 참조하면, 에칭장치는 외조(10)와 내조(20)를 포함한다. 내조(20)와 외조(10)는 순환유로부(30)에 연결된다. 순환유로부(30)에는 순환펌프(41), 댐퍼(42), 필터부(43), 메인 밸브(32), 히터부(44), 버블커터(45) 및 농도 측정부(46)가 순차적으로 설치된다.
순환유로부(30)에는 드레인관부(38)가 연결된다. 드레인관부(38)에는 드레인 밸브(39)와 플로우셀장치(100)가 설치된다. 드레인 밸브(39)가 개방됨에 따라 플로우셀장치(100)에 유동매체가 유입되고, 플로우셀장치(100)에서 유동매체의 농도가 측정된다. 플로우셀장치(100)에 배출되는 유동매체는 드레인관부(38)를 통해 에칭장치의 외부로 배출된다.
이때, 드레인관부(38)에서 플로우셀장치(100)의 유입 측에 기포제거부(180)가 설치되는 경우, 기포가 제거된 유동매체가 플로우셀장치(100)에 유입된다. 유동매체의 농도 측정시 광이 기포에 의해 산란되거나 굴절되는 것을 방지하여 농도 측정 정밀도를 향상시킬 수 있다.
도 7은 본 발명의 일 실시예에 따른 플로우셀장치가 적용되는 애칭장치의 제3실시예를 도시한 블록도이다.
도 7을 참조하면, 에칭장치는 외조(10)와 내조(20)를 포함한다. 내조(20)와 외조(10)는 순환유로부(30)에 연결된다. 순환유로부(30)에는 순환펌프(41), 댐퍼(42), 필터부(43), 메인 밸브(32), 히터부(44), 버블커터(45) 및 농도 측정부(46)가 순차적으로 설치된다.
순환유로부(30)에는 플로우셀장치(100)가 직접 설치된다. 이때, 순환유로부에는 드레인관부나 바이패관부가 설치되지 않는다.
순환유로부를 따라 유동되는 유동매체는 플로우셀장치(100)에 유입되고, 플로우셀장치(100)에서는 유동매체의 농도가 측정된다. 플로우셀장치(100)에서 배출되는 유동매체는 내조로 유입된다.
이때, 순환유로 유로부(35)에서 플로우셀장치의 유입 측에 기포제거부가 설치되는 경우, 플로우셀장치(100)의 유입측에서는 유동매체에 혼합된 기포가 기포제거부에 의해 제거된다. 기포가 제거된 유동매체가 플로우셀장치(100)에 유입되므로, 유동매체의 농도 측정시 광이 기포에 의해 산란되거나 굴절되는 것을 방지하여 농도 측정 정밀도를 향상시킬 수 있다.
다음으로, 플로우셀장치에서 웨이퍼의 교체 시기를 판단하는 방법에 관해 설명하기로 한다.
도 8은 본 발명의 일 실시예에 따른 플로우셀장치에서 유동매체의 농도를 측정하는 제1 방식을 도시한 그래프이다.
도 8을 참조하면, 플로우장치에서 유동매체의 농도가 측정된다. 웨이퍼가 에칭됨에 따라 웨이퍼에서 용출물이 계속적으로 용출된다. 에칭장치에서 웨이퍼가 1차 에칭될 때의 유동매체의 농도를 계속적으로 측정하면, 유동매체의 농도가 증가하다가 정체되는 구간이 발생된다. 이렇게 정체되는 구간을 1차 엔딩 포인트로 판단하고 웨이퍼를 교체한다. 1차 에칭 공정이 완료되면, 2차 에칭 공정을 수행한다. 2차 에칭 공정에서도 유동매체의 농도가 증가하다가 정체되는 구간이 발생되면 2차 에칭된 웨이퍼를 교체한다. 따라서, 유동매체가 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하므로, 유동매체의 상태와 웨이퍼의 교환 시기를 정확하게 판단할 수 있다.
도 9는 본 발명의 일 실시예에 따른 플로우셀장치에서 유동매체의 농도를 측정하는 제2 방식을 도시한 그래프이다.
도 9를 참조하면, 에칭장치에서 웨이퍼가 1차 에칭될 때의 유동매체의 농도를 계속적으로 측정하면, 유동매체의 농도가 증가하다가 정체되는 구간이 발생된다. 이렇게 정체되는 구간을 1차 엔딩 포인트로 판단하고 웨이퍼를 교체한다. 웨이퍼를 교체한 후 1차 엔딩 포인트 값을 초기화 시킨다. 초기화된 값을 시작으로 2차 에칭 공정이 수행된다. 2차 에칭 공정에서도 유동매체의 농도가 증가하다가 정체되는 구간이 발생되면 2차 에칭된 웨이퍼를 교체한다. 웨이퍼를 교체한 후 2차 엔딩 포인트 값을 초기화 시킨다. 이러한 과정을 통해 웨이퍼의 교체 시기를 예측할 수 있다. 따라서, 유동매체가 실제의 반도체 공정에 사용되는 조건에서 유동매체의 농도를 측정하므로, 유동매체의 상태와 웨이퍼의 교환 시기를 정확하게 판단할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.
따라서, 본 발명의 진정한 기술적 보호범위는 청구범위에 의해서 정하여져야 할 것이다.

Claims (16)

  1. 유동매체가 유동되는 유동통로부; 및
    상기 유동통로부가 형성되는 플로우셀부;를 포함하는 것을 특징으로 하는 플로우셀장치.
  2. 제1항에 있어서,
    상기 플로우셀부는,
    상기 유동통로부가 형성되는 플로우셀 바디부;
    상기 플로우셀 바디부에 유동매체가 공급되도록 상기 플로우셀 바디부의 일측에 연결되는 공급관부; 및
    상기 플로우셀 바디부의 유동매체가 배출되도록 상기 플로우셀 바디부의 타측에 연결되는 배출관부를 포함하는 것을 특징으로 하는 플로우셀장치.
  3. 제2 항에 있어서,
    상기 공급관부는 상기 플로우셀 바디부의 하측에 연결되고,
    상기 배출관부는 상기 플로우셀 바디부의 상측에 연결되는 것을 특징으로 하는 플로우셀장치.
  4. 제2 항에 있어서,
    상기 플로우셀 바디부에서 유동매체가 난류를 형성하도록 상기 플로우셀 바디부의 단면적은 상기 공급관부의 단면적보다 크게 형성되는 것을 특징으로 하는 플로우셀장치.
  5. 제2 항에 있어서,
    상기 공급관부는,
    유동매체가 공급되는 제1 공급관부;
    상기 제1 공급관부에서 공급되는 유동매체가 난류를 형성하도록 상기 제1 공급관부의 직경보다 크게 형성되는 제2 공급관부; 및
    상기 제2 공급관부에서 연장되고, 상기 플로우셀 바디부의 일측에 연결되는 제3 공급관부를 포함하는 것을 특징으로 하는 플로우셀장치.
  6. 제2 항에 있어서,
    광원부에서 조사되는 광을 상기 플로우셀부의 유동매체에 조사하도록 설치되는 제1 광학부; 및
    상기 유동통로부의 유동매체를 투과하면서 유동매체의 파장이 흡수되는 광을 광검출부에 광을 조사하도록 설치되는 제2 광학부를 더 포함하는 것을 특징으로 하는 플로우셀장치.
  7. 제6 항에 있어서,
    상기 제1 광학부는 유동매체의 유동방향과 나란하게 광을 조사하도록 상기 플로우셀 바디부의 일측에 배치되는 것을 특징으로 하는 플로우셀장치.
  8. 제7 항에 있어서,
    상기 제1 광학부는,
    상기 플로우셀 바디부의 일측에 배치되는 제1 광학 슬라이더부;
    상기 광원부에서 입사되는 광을 상기 플로우셀 바디부의 유동매체에 조사하도록 상기 제1 광학 슬라이더부에 배치되는 제1 반사거울; 및
    상기 제1 반사거울의 위치를 조절하도록 상기 제1 광학 슬라이더부에 설치되는 제1 위치조절부를 포함하는 것을 특징으로 하는 플로우셀장치.
  9. 제8 항에 있어서,
    상기 제2 광학부는,
    상기 플로우셀 바디부의 타측에 배치되는 제2 광학 슬라이더부;
    상기 플로우셀 바디부의 유동매체의 파장을 흡수한 광을 상기 광검출부에 조사하도록 상기 제2 광학 슬라이더부에 배치되는 제2 반사거울; 및
    상기 제2 반사거울의 위치를 조절하도록 상기 제2 광학 슬라이더부에 설치되는 제2 위치조절부를 포함하는 것을 특징으로 하는 플로우셀장치.
  10. 제1 항에 있어서,
    상기 플로우셀부의 외측면을 탄성 지지하도록 하우징부에 설치되는 탄성 가압부를 더 포함하는 것을 특징으로 하는 플로우셀장치.
  11. 제10 항에 있어서,
    상기 하우징부의 내부에는 상기 플로우셀부의 팽창 공간을 허용하도록 이격 공간부가 형성되는 것을 특징으로 하는 플로우셀장치.
  12. 제6 항에 있어서,
    상기 제1 광학부에 대향되고, 제1 광섬유부가 연결되는 제1 컬리메이터부; 및
    상기 제2 광학부에 대향되고, 제2 광섬유부가 연결되는 제2 컬리메이터부를 더 포함하는 것을 특징으로 하는 플로우셀장치.
  13. 제1 항에 있어서,
    상기 플로우셀부의 유동매체 유입측에 연결되고, 상기 플로우셀부로 유입되는 유동매체에 혼합된 기포를 제거하는 기포제거부를 더 포함하는 것을 특징으로 하는 플로우셀장치.
  14. 제13 항에 있어서,
    상기 기포제거부는,
    상기 플로우셀부의 유동매체 유입측에 연결되는 기포배출라인; 및
    상기 기포배출라인에 설치되는 기포배출밸브를 포함하는 것을 특징으로 하는 플로우셀장치.
  15. 제14 항에 있어서,
    상기 기포배출라인의 일측은 순환유로부에 설치되는 순환펌프에 연결되는 것을 특징으로 하는 플로우셀장치.
  16. 제14 항에 있어서,
    상기 기포제거부는 상기 플로우셀부에 수용되는 유동매체를 배출시키도록 상기 기포배출라인에 설치되는 매체배출밸브를 더 포함하는 것을 특징으로 하는 플로우셀장치.
PCT/KR2020/003823 2018-09-20 2020-03-20 플로우셀장치 WO2020230996A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217016064A KR102531525B1 (ko) 2018-09-20 2020-03-20 플로우셀장치
CN202080004011.0A CN112654852A (zh) 2018-09-20 2020-03-20 流动池装置
US17/268,158 US12013327B2 (en) 2018-09-20 2020-03-20 Flow cell device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20180113038 2018-09-20
KR1020190055828A KR20200034564A (ko) 2018-09-20 2019-05-13 플로우셀장치
KR10-2019-0055828 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230996A1 true WO2020230996A1 (ko) 2020-11-19

Family

ID=70002293

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2020/003823 WO2020230996A1 (ko) 2018-09-20 2020-03-20 플로우셀장치
PCT/KR2020/003822 WO2020230995A1 (ko) 2018-09-20 2020-03-20 유동매체 모니터링장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003822 WO2020230995A1 (ko) 2018-09-20 2020-03-20 유동매체 모니터링장치

Country Status (5)

Country Link
US (2) US11674875B2 (ko)
KR (4) KR20200034563A (ko)
CN (2) CN112654852A (ko)
TW (2) TWI741537B (ko)
WO (2) WO2020230996A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100196198B1 (ko) * 1995-09-30 1999-06-15 가시마 쥰이치로 코리오리 유량계
WO2007062800A1 (en) * 2005-11-29 2007-06-07 Ge Healthcare Bio-Sciences Ab Methods and apparatus for measuring the concentration of a substance in a solution
KR20120096832A (ko) * 2011-02-23 2012-08-31 (주)원우시스템즈 태양전지 측정시스템과 그 제어방법
KR20180027331A (ko) * 2016-09-06 2018-03-14 (주)링크옵틱스 유체포커싱채널부를 구비하는 세포 계수 및 세포 크기 측정시스템
WO2018123771A1 (ja) * 2016-12-27 2018-07-05 国立研究開発法人産業技術総合研究所 光学測定用フローセル

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH452233A (de) * 1964-10-08 1968-05-31 Ceskoslovenska Akademie Ved Durchflussphotometer-Anordnung
DE1598269A1 (de) * 1965-05-27 1971-12-23 Ceskoslovenska Akademie Ved Kuevette fuer Durchflussphotometer
US3514210A (en) * 1968-01-15 1970-05-26 Jiri Hrdina Device for programmed drawing off of gas bubbles from a measuring cell separator and the liquid from the extinction cell space
US4368047A (en) * 1981-04-27 1983-01-11 University Of Utah Research Foundation Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
US4663961A (en) * 1985-09-17 1987-05-12 Westinghouse Electric Corp. System for remote chemical analysis
JP2622567B2 (ja) * 1986-11-26 1997-06-18 リシュブルーク・ジョン 高感度光学的イメージ装置
JPH02212742A (ja) * 1989-02-13 1990-08-23 Kowa Co 液中微粒子測定装置
US5242586A (en) * 1990-12-17 1993-09-07 Biotage Inc. Column protection system for liquid chromatography system
JPH10300671A (ja) * 1997-04-22 1998-11-13 Yokogawa Electric Corp 微粒子計測装置
US6082205A (en) * 1998-02-06 2000-07-04 Ohio State University System and device for determining particle characteristics
CN1339610A (zh) 2001-10-09 2002-03-13 张添 基因芯片时间分辨荧光检测方法及检测装置
US6854522B2 (en) 2002-09-23 2005-02-15 Halliburton Energy Services, Inc. Annular isolators for expandable tubulars in wellbores
WO2004040717A2 (en) 2002-10-28 2004-05-13 University Of Washington Wavelength tunable surface plasmon resonance sensor
US20060182664A1 (en) * 2005-02-14 2006-08-17 Peck Bill J Flow cell devices, systems and methods of using the same
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
CN100419406C (zh) 2006-03-31 2008-09-17 洪陵成 流动光度分析流通池
JP4964647B2 (ja) * 2007-03-30 2012-07-04 ジーエルサイエンス株式会社 蛍光検出装置
JP2009002806A (ja) * 2007-06-21 2009-01-08 Hitachi Ltd 化学発光計測装置
US20090139311A1 (en) * 2007-10-05 2009-06-04 Applied Biosystems Inc. Biological Analysis Systems, Devices, and Methods
JP2009162592A (ja) * 2007-12-28 2009-07-23 Nippon Applied Technology Inc 微弱発光分析装置
JP5190945B2 (ja) * 2008-07-14 2013-04-24 富士フイルム株式会社 検出方法、検出装置、検出用試料セルおよび検出用キット
JP5066110B2 (ja) * 2009-01-30 2012-11-07 株式会社日立ハイテクノロジーズ 蛍光分析装置、及び蛍光分析方法
JP2010217031A (ja) * 2009-03-17 2010-09-30 Shimadzu Corp 光学式ガス分析システム及びガスフローセル
CN101634748A (zh) * 2009-08-27 2010-01-27 上海交通大学 微弱发光及荧光光学成像装置及其成像方法
DE102009059684A1 (de) 2009-12-19 2011-06-22 J. Eberspächer GmbH & Co. KG, 73730 Abgasbehandlungseinrichtung
US8817259B2 (en) * 2011-03-25 2014-08-26 Parker-Hannifin Corporation Optical sensors for monitoring biopharmaceutical solutions in single-use containers
JP5906407B2 (ja) * 2011-04-11 2016-04-20 パナソニックIpマネジメント株式会社 気体成分検出装置
JP5516486B2 (ja) * 2011-04-14 2014-06-11 株式会社島津製作所 分光測定装置及びプログラム
KR101958387B1 (ko) 2011-07-28 2019-03-20 주식회사 동진쎄미켐 근적외선 분광기를 이용한 구리막 식각 공정 제어방법 및 구리막 식각액 조성물의 재생방법
CN202994641U (zh) * 2012-11-13 2013-06-12 北京瑞升特科技有限公司 一种连续流动分析用气泡脱离装置
JP6121319B2 (ja) * 2013-03-29 2017-04-26 シスメックス株式会社 粒子測定装置、照射光学系および照射位置調整方法
CN104103546A (zh) * 2013-04-02 2014-10-15 盛美半导体设备(上海)有限公司 化学液供应与回收装置
CN104865393B (zh) 2014-02-26 2017-04-05 王军 一种可脱气的在线连续液体检测池
CN104280355B (zh) * 2014-10-24 2017-07-14 中国科学院上海光学精密机械研究所 氨气和二氧化硫气体浓度的检测装置和检测方法
CN112326557A (zh) * 2015-03-24 2021-02-05 伊鲁米那股份有限公司 对样品成像用于生物或化学分析的方法、载体组件和***
JP6708884B2 (ja) * 2015-04-21 2020-06-17 国立大学法人 香川大学 分光測定装置
WO2016170681A1 (ja) 2015-04-24 2016-10-27 株式会社島津製作所 光学測定装置
CN107923841B (zh) * 2015-08-18 2021-07-13 国立大学法人德岛大学 浓度测定装置
JP6103008B2 (ja) * 2015-09-09 2017-03-29 ソニー株式会社 非線形ラマン分光装置、顕微分光装置及び顕微分光イメージング装置
CN205235481U (zh) 2015-12-24 2016-05-18 福建中烟工业有限责任公司 显色池气泡脱除装置以及连续流动分析设备
RU172097U1 (ru) * 2016-04-27 2017-06-28 Общество с ограниченной ответственностью "Производственно-технологический центр "УралАлмазИнвест" Фотометрическое устройство распознавания многокомпонентных примесей нефтепродуктов в воде
CN107339522A (zh) 2016-05-03 2017-11-10 扬中市宏彬冷暖设备有限公司 一种抗冻弹性管道
KR102025667B1 (ko) * 2016-06-17 2019-09-30 주식회사 제우스 솔더링장치
KR101785859B1 (ko) 2016-08-04 2017-10-16 중앙대학교 산학협력단 구리이온 검출용 형광실리콘 나노입자, 이의 제조방법, 및 이를 이용한 검출센서
CN206906244U (zh) 2017-04-25 2018-01-19 南京舜唯科技工程有限公司 基于近红外光谱的磨煤机气体分析仪
US10591408B2 (en) * 2017-06-20 2020-03-17 Ci Systems (Israel) Ltd. Flow cell and optical system for analyzing fluid
JP7081146B2 (ja) * 2017-12-27 2022-06-07 富士電機株式会社 ガス分析装置
US10677767B2 (en) * 2018-06-12 2020-06-09 Vuv Analytics, Inc. Vacuum ultraviolet absorption spectroscopy system and method
CN208651968U (zh) 2018-07-23 2019-03-26 临沂红阳管业有限公司 城镇供热预制直埋蒸汽保温管
CN113358604B (zh) * 2021-06-02 2022-11-01 天津大学 一种斜入射式光谱型反射差分测量装置及方法
CN113659220A (zh) * 2021-08-05 2021-11-16 中国民航大学 基于腔衰荡光谱技术的锂电池热失控早期预警***及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100196198B1 (ko) * 1995-09-30 1999-06-15 가시마 쥰이치로 코리오리 유량계
WO2007062800A1 (en) * 2005-11-29 2007-06-07 Ge Healthcare Bio-Sciences Ab Methods and apparatus for measuring the concentration of a substance in a solution
KR20120096832A (ko) * 2011-02-23 2012-08-31 (주)원우시스템즈 태양전지 측정시스템과 그 제어방법
KR20180027331A (ko) * 2016-09-06 2018-03-14 (주)링크옵틱스 유체포커싱채널부를 구비하는 세포 계수 및 세포 크기 측정시스템
WO2018123771A1 (ja) * 2016-12-27 2018-07-05 国立研究開発法人産業技術総合研究所 光学測定用フローセル

Also Published As

Publication number Publication date
US20220057314A1 (en) 2022-02-24
US20220349814A1 (en) 2022-11-03
KR102580490B1 (ko) 2023-09-21
TWI741537B (zh) 2021-10-01
KR20210074392A (ko) 2021-06-21
US11674875B2 (en) 2023-06-13
WO2020230995A1 (ko) 2020-11-19
KR20210093917A (ko) 2021-07-28
KR102531525B1 (ko) 2023-05-15
TW202109005A (zh) 2021-03-01
CN112654853A (zh) 2021-04-13
KR20200034564A (ko) 2020-03-31
US12013327B2 (en) 2024-06-18
TW202107062A (zh) 2021-02-16
TWI784250B (zh) 2022-11-21
KR20200034563A (ko) 2020-03-31
CN112654852A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
US20080066863A1 (en) Substrate processing apparatus for performing etching process with phosphoric acid solution
US20070166655A1 (en) Thermal processing apparatus
WO2015060664A1 (en) Multi sampling port monitoring apparatus for measuring pollution level and monitoring method using the same
WO2020230996A1 (ko) 플로우셀장치
WO2016175440A1 (ko) 대기오염 측정 분석을 위한 전처리 장치 및 방법
TWI698631B (zh) 毫秒退火系統的漏液偵測
TWI399619B (zh) 曝光系統及製造裝置的方法
JPH09257667A (ja) ダスト濃度測定装置
WO2016140494A1 (en) Apparatus and method for detecting pollution location and computer readable recording medium
TWI768687B (zh) 雙重管結構流動池裝置
JP3206240U (ja) 分析装置
WO2023163283A1 (ko) 딥러닝 기반 반도체 약액의 정밀 온도 제어 시스템
WO2019088479A1 (ko) 야외용 tdlas 멀티패스 셀
CN106124406B (zh) 烟气的原位检测装置
CN220542599U (zh) 半导体工艺设备及其检测装置
TW202129429A (zh) 光學系統中的組件,特別是微影投射曝光裝置中的組件
JP2003510567A (ja) プレーナ型光学コンポーネントの温度制御収容装置
KR102074727B1 (ko) 가스 농도 측정 장치
WO2024043377A1 (ko) 수분 응축 기반 공기 중 입자 농축-측정 장치
TWM516717U (zh) 晶舟盒微汙染檢測設備
TW202219485A (zh) 胞單元、測定裝置及基板處理裝置
WO2019045137A1 (ko) 미세먼지 전구물질의 정밀 측정 시스템
KR20020065669A (ko) 반도체 제조장비의 웨이퍼 감지 오동작 방지장치
JP2009079827A (ja) 熱処理装置における昇華物の測定装置
CN103323397A (zh) 气室管组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806279

Country of ref document: EP

Kind code of ref document: A1