WO2020230994A1 - Multilayer nano hard coating film for tooth-shaped forming tool - Google Patents

Multilayer nano hard coating film for tooth-shaped forming tool Download PDF

Info

Publication number
WO2020230994A1
WO2020230994A1 PCT/KR2020/003738 KR2020003738W WO2020230994A1 WO 2020230994 A1 WO2020230994 A1 WO 2020230994A1 KR 2020003738 W KR2020003738 W KR 2020003738W WO 2020230994 A1 WO2020230994 A1 WO 2020230994A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating film
hard coating
multilayer nano
tool
Prior art date
Application number
PCT/KR2020/003738
Other languages
French (fr)
Korean (ko)
Inventor
이병열
서형권
김용희
이미경
윤수경
Original Assignee
주식회사 다올플라즈마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다올플라즈마 filed Critical 주식회사 다올플라즈마
Publication of WO2020230994A1 publication Critical patent/WO2020230994A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • the present invention relates to a multi-layer nano hard coating film for a forming tooth tool, and more particularly, to a multi-layer nano hard coating film for forming tooth tool having a composite multi-layer structure on nano-ized coating particles to improve the abrasion resistance and life characteristics of the forming tooth tool.
  • a multi-layer nano hard coating film for a forming tooth tool and more particularly, to a multi-layer nano hard coating film for forming tooth tool having a composite multi-layer structure on nano-ized coating particles to improve the abrasion resistance and life characteristics of the forming tooth tool.
  • the tool In order to improve the performance of the tool, it is mainly made of high-quality materials such as fine powder alloy carbide, cermet, or powdered high-speed steel, and is designed in an optimal shape and surface coating is applied to improve life.
  • high-quality materials such as fine powder alloy carbide, cermet, or powdered high-speed steel
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • TiAlN coating by physical vapor deposition is widely used as a method for wear prevention application.
  • European Patent No. 1173528 discloses a technique for a coating film consisting of a plurality of individual layers for a tool.
  • the first layer of the technology is made of nitride, carbide, carbonitride, boride, oxide, etc. of the elements Ti, Al and or Cr
  • the second layer includes at least one Si and periodic table IVa, Va and VIa groups It is made of elemental nitride, carbide, carbonitride, boride, oxide, etc., and such a coating film is advantageous in that abrasion resistance and oxidation resistance are significantly improved by Si in the upper layer.
  • a cover layer based on Cr-Si is It is characterized by improved longevity.
  • a TiAlN-layer, a CrAlN-layer, and a TiN-layer are selected as lower layers.
  • European Patent No. 1422311 Hard film and hard film coated tool
  • a hard material layer based on Al-Cr-(Si)-O
  • the material layer is nitride, carbide, oxide, It can be configured as boride or the like.
  • This technique applies to all layers that a small amount of oxygen content (1 to 25 atomic%) is contained in the layer, and an additional hard material layer can be applied to the coating film, in particular Ti-Si-N, Ti -BN, Cr-Si-N, etc. are presented.
  • an advantage of this technique mention is made, in particular, of oxygen or a small amount of acceptance of silicon and oxygen, since this leads to a higher hardness as well as improved abrasion resistance and high temperature oxidation resistance.
  • European Patent No. 1219723 Hard film for cutting tools
  • a coating film based on Ti-Al-Cr-X-N where X may represent Si, B and/or C.
  • wear resistance is improved compared to a conventional coating film, and it is described that it should be made of at least Ti, Al, and Cr.
  • a hard material coating film based on Ti-Al-N or Al-Cr-N has a short lasting life.
  • the coating film according to the prior art in the case of the Al-Cr-N coating layer, has a disadvantage that the decomposition of the coating film is already started at about 900° C. under an inert gas atmosphere (eg, argon atmosphere) at a high temperature.
  • an inert gas atmosphere eg, argon atmosphere
  • the decomposition step moves to a higher temperature range, especially when considering a continuous step in the chipping process, locally exceeds 1000°C at the contact surface between the tool surface and the product. Very high temperatures occur. Therefore, if the contact surface is large enough so that oxygen cannot act stably at all/almost on the surface of the coating film, the Cubic CrN is decayed into hexagonal Cr2N and in a subsequent step at a higher temperature, such a coating film The decomposition process leads to premature wear of the coating film.
  • the present invention was conceived to solve the above problems, and an object of the present invention is a multi-layer for forming tooth tool deposited to have a composite multi-layer structure on nano-coated particles in order to improve the tool life of the forming tooth tool It is to provide a nano hard coating film.
  • another object of the present invention is to provide a multilayer nano hard coating film for a forming tooth tool having a special multilayer structure in order to prevent rapid decomposition (wear) of the coating film in the use of the tool.
  • the present invention provides a multilayer nano hard coating film for a forming tooth tool in order to achieve the above object, comprising: a first layer having a composition of the following formula (1) formed on a metal substrate layer which is a forming tooth tool; A second layer formed on an upper surface of the first layer and having a mixed composition of the following formula 1 and the following formula 2; And a third layer having a composition of the following formula (2) formed on the upper surface of the second layer; it is possible to provide a multilayer nano hard coating film, characterized in that it is continuously repeatedly formed.
  • X represents one of the group consisting of N, CN, BN, NO, CNO, CBN, BNO and CNBO
  • Me is V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, Nb It represents one of the crowds consisting of, and a, b, u, v, and w represent the stoichiometric composition of the target part.
  • a thickness ratio of the second layer or the third layer to the first layer is greater than 0.5.
  • the first layer, the second layer, or the third layer may be deposited by performing any one of an ion gun etching process, a halo cathode etching process, and a metal ion etching process.
  • the first layer, the second layer, or the third layer is deposited by applying a negative bias voltage of 35 to 300V, but is deposited by applying the negative bias voltage in a stepwise manner over time. To do.
  • the present invention has the advantage of improving the tool life of products such as tooth pin manufacturing tools, cutting and forming tools, or machining devices and parts.
  • the present invention has the advantage that the hard coating film has a special multilayer structure, so that rapid decomposition (wear) of the coating film can be prevented in the use of a tool, and the wear resistance life of the coating film can be increased by imparting lubricating properties. have.
  • FIG. 1 is a view showing the structure of a multilayer nano hard coating film for a forming tooth tool according to the present invention.
  • Figure 2 is a photograph showing the structure of the multilayer nano-hard coating film for a forming tooth tool according to the present invention.
  • FIG 3 is a plan view schematically illustrating a vacuum deposition chamber shown as an exemplary embodiment of the present invention.
  • Multilayer nano hard coating film according to the present invention is a tool, a machining tool, a forming and chippin processing tool, a milling tool, a cutting tool, a turning tool, a tapping tool, and a reamer. It can be applied to improve wear resistance and life characteristics of (Reamer), Endmill, Drill, Cutting Insert, Gear Cutting Tool, Insert, Hob, Cutter, etc. ,
  • a forming tooth tool the following describes a multilayer nano-hard coating film for a forming tooth tool according to the present invention, but this is only an example to aid understanding of the present invention, and the scope of the present invention is limited thereto It does not become.
  • FIG. 1 is a view showing the structure of a multi-layer nano hard coating film for a forming tooth tool according to the present invention
  • Figure 2 is a photograph showing the structure of the multi-layer nano hard coating film for a forming tooth tool according to the present invention.
  • the first layer formed on the metal substrate layer, which is a forming tooth tool, the second layer formed on the upper surface of the first layer, and the third layer formed on the upper surface of the second layer are continuously repeated. Is formed.
  • the first layer It has a composition of
  • the third layer is And the second layer for improved adhesion between the first layer and the third layer and It has a mixed composition of, and the first to third layers are sequentially stacked and formed, and it is preferable that the hard coating layer is repeatedly formed 8 or more times to improve the performance.
  • X represents one of the group consisting of N, CN, BN, NO, CNO, CBN, BNO and CNBO, preferably N or CN, and more preferably N.
  • Me represents one or a mixture of two or more of the group consisting of V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, and Nb, and a, b, u, v, w are the target portion. Represent stoichiometric composition.
  • a is 0.5 ⁇ a ⁇ 0.7
  • b is 0.05 ⁇ b ⁇ 0.1
  • u is 0.5 ⁇ u ⁇ 0.7
  • v is 0.02 ⁇ v ⁇ 0.08, and w is 0.01 ⁇ w ⁇ 0.08.
  • the first layer, the second layer, or the third layer may be deposited by performing at least one selected from an ion gun etching process, a halo cathode etching process, and a metal ion etching process, and the first layer or The third layer has a microcrystalline form having an average particle size of about 5 to 150 nm, preferably 10 to 120 nm.
  • the thickness ratio of the second layer or the third layer to the first layer is set to exceed 0.5.
  • the second layer or the third layer includes two or more crystalline phases, and preferably, an equiaxed crystal system and a hexagonal crystal system).
  • the hard coating film is a cube And the first layer of, and Of the second layer of the mixed composition of and the cube
  • the third layer of is alternately deposited to have a multi-layered structure, as shown in FIG. 2, the thickness is uniform and the possibility of occurrence of defects such as cracks is significantly reduced to have a dense structure. Can improve.
  • the hard coating film is applied with a negative bias voltage of 35 to 300V in order to further improve the wear resistance and life characteristics of the forming tooth tool, but the bias voltage is increased stepwise with time, and applied for each step section. It is formed by evaporation, and a detailed description thereof will be described later.
  • FIG 3 is a plan view schematically illustrating a vacuum deposition chamber according to an exemplary embodiment of the present invention.
  • the hard coating film that is, the Al-Cr-SiN/AlTiMoMeN hard layers
  • an AIP type industrial coating facility of ISYS is used.
  • the refined forming tooth tool is fixed on a double rotary substrate carrier according to the diameter, or on a triple rotary substrate carrier for a diameter of less than 50 mm, and a target made of an Al-Cr-Si alloy manufactured by powder metal metallurgy. And a target made of an Al-Ti-Mo-Me alloy is placed in twelve cathode arc power sources provided on the walls of the coating installation as shown in FIG. 3.
  • the targets disposed in the first to third negative arc power sources (1, 2, 3) and the seventh to ninth negative arc power sources (7, 8, 9) are targets made of Al-Cr-Si alloy, and 4
  • the targets disposed in the sixth to sixth negative arc power supply (4, 5, 6) and the seventh to ninth negative arc power supply (10, 11, 12) is preferably a target made of an Al-Ti-Mo-Me alloy, It is not limited to this.
  • the geometry of the target arrangement is substantially determined by the octagonal plan view of the AIP type industrial coating facility, and is disposed within the intermediate element of each ternary group, but is not limited thereto, and the first to third layers are manufactured. Other target placements are also possible.
  • the second layer is additionally deposited with a multi-layered structure having a very delicate layer due to the rotation of the product during deposition due to the geometric target arrangement of the coating facility.
  • Al-Cr-Si and Al-Ti-Mo-Me Since individual targets based are used to form the coating film, the width of the second layer is changed in the range of several nanometers.
  • first to third layers may be deposited at the same coating layer height of a single rotational or multiple rotational substrate fixing device, and preferably in all installations including at least three arc cathodes at geometrically equivalent positions. Can be deposited.
  • the operator can influence the layer thickness or position of each layer by the placement of the target according to each type of equipment, and also, the control of the movement or rotation of each substrate, or the angular velocity of product rotation. By affecting the layer thickness or location of individual layers.
  • the foaming tooth tool which is a product to be coated, is provided at a temperature of about 500°C in a radiant heating device provided in the facility, and the surface is then subjected to a pressure of 0.2Pa by application of a DC-bias voltage of -300 to -600V under Ar atmosphere. It is provided through an etching purification process by Ar ions and a hollow cathode ion cleaning process.
  • Al-Cr-Si-N hard layer of about 0.2 mu m thickness was deposited by operation of six Al-Cr-Si power supplies using 80A output and application of a voltage of -35V substrate bias for about 5 minutes.
  • a multilayer is intentionally formed.
  • an additional six Al-Ti-Mo-Me power supplies are similarly switched on to 150A each, and a substrate bias of -150V for about 3 minutes. It is operated jointly by applying voltage.
  • six Al-Cr-Si power supplies are switched off and only an Al-Ti-Mo-Me-N coating layer is deposited by applying a substrate bias voltage of -300V for about 3 minutes.
  • This stepwise voltage application process is repeatedly performed eight times during the deposition process within the scope of the present invention, and all layers are deposited at a pressure of about 40 mtorr and a negative substrate bias voltage of about 35V to 300V in a pure nitrogen (N) atmosphere.
  • Comparative Example 1 is a target made of an Al-Cr alloy having a composition of 60 atomic% Al and 40 atomic% Cr, as shown in Table 1, and an Al-Ti- having a composition of 67 atomic% Al, 31 atomic% Ti and 2 atomic% Mo. It is a coating film deposited with a target made of Mo alloy.
  • Comparative Example 1 was a ⁇ 127mm, a 15T disk type (disc type) target was used.
  • Example 1 the target composition of the layer forming the coating film was different, and the coating film was formed according to the target performance of Table 2, the process parameters such as the minor substrate bias voltage, the process pressure and temperature. .
  • the target used in Examples 1 to 9 is a ⁇ 127mm, 15T disk type target, as shown in FIG. 3, the first to third negative arc power sources (1, 2, 3) And the 7th to ninth negative arc power source (7, 8, 9) was arranged to insert a target made of an Al-Cr-Si alloy, the fourth to sixth negative arc power source (4, 5, 6) and the 7th to Targets made of an Al-Ti-Mo-Me alloy were inserted into the ninth cathode arc power sources 10, 11, and 12.
  • the thickness, hardness, adhesion and roughness of each of the hard coating films of Examples 1 to 9 were measured and shown in Table 3.
  • the thickness of the hard coating film was measured by a Calotest, and the hardness was measured by a Vickers hardness tester. Tester).
  • the adhesion of the hard coating film was measured by a scratch test, and the measured roughness is an arithmetic average roughness (Ra), and the unit is micrometer ( ⁇ m).
  • Example 1 Number of times result thickness Hardness (Hv) Adhesion (N) Illuminance (Ra( ⁇ m)) Comparative Example 1 4.5 3,241.4 78.1 0.11
  • Example 1 5.2 3,369.2 80 0.09
  • Example 2 5.4 3,312.7 80 0.10
  • Example 3 4.7 3,431.8 80 0.18
  • Example 4 5.6 3,285.6 80 0.12
  • Example 5 5.0 3,342.7 80 0.10
  • Example 6 5.3 3,542.3 80 0.11
  • Example 7 6.2 3,489.6 80 0.11
  • Examples 1 to 7 which are coating films deposited with a target made of an Al-Cr-Si alloy and a target made of an Al-Ti-Mo-Me alloy, are a target made of an Al-Cr alloy and an Al-Ti It was confirmed that the thickness of the coating film was increased compared to Comparative Example 1, which is a coating film deposited with a target made of -Mo alloy, and adhesion and hardness were also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The present invention relates to a multilayer nano hard coating film for a tooth-shaped forming tool, and more specifically, to a multilayer nano hard coating film for a tooth-shaped forming tool, wherein nano-sized coating particles are provided in a composite multilayer structure in order to improve the wear resistance and lifespan characteristics of the tooth-shaped forming tool.

Description

포밍 치형공구용 다층나노 경질 코팅막Multi-layer nano hard coating film for forming tooth tool
본 발명은 포밍 치형공구용 다층나노 경질 코팅막에 관한 것으로서, 더욱 상세하게는 포밍 치형공구의 내마모성과 수명 특성을 개선시키기 위해 나노화된 코팅입자에 복합다층구조를 가지는 포밍 치형공구용 다층나노 경질 코팅막에 관한 것이다.The present invention relates to a multi-layer nano hard coating film for a forming tooth tool, and more particularly, to a multi-layer nano hard coating film for forming tooth tool having a composite multi-layer structure on nano-ized coating particles to improve the abrasion resistance and life characteristics of the forming tooth tool. About.
오늘날 금속가공 산업에 있어서 관련 환경기준이 더욱 강화되면서 가공에 사용된 냉각제에 대한 처리 비용이 증가하기 때문에 최근에는 건식가공이 더욱 관심을 끌고 있으며, 특히, 생산성 향상의 측면에서 고속절삭 또는 난삭재의 기계가공과 같은 새로운 제조 방법을 가속화되고 있다.In today's metal processing industry, as related environmental standards are further strengthened, the treatment cost for the coolant used for processing increases, so in recent years, dry processing is attracting more attention.In particular, high-speed cutting or difficult-to-cut materials machinery in terms of productivity improvement New manufacturing methods such as processing are being accelerated.
그러나, 생산 공정에서 공구는 아주 심한 기계적, 윤할학적 열 하중을 받기 쉬우며, 마찰, 크레이터 마모, 날파손 및 용착에 의해 잘 파손되므로 새로운 재질과 형상 및 우수한 성능을 가지는 공구들이 개발되고 있다.However, in the production process, tools are susceptible to very severe mechanical and lubricating thermal loads, and are easily damaged by friction, crater wear, blade breakage, and welding, so new materials and shapes and tools having excellent performance are being developed.
공구의 성능향상을 위해서는 주로 미세 분말 합금의 초경, 서멧 또는 분말 고속도강과 같은 고품질의 재료로 제작되며, 최적형상으로 디자인될 뿐만 수명향상을 위해 표면코팅이 실시된다.In order to improve the performance of the tool, it is mainly made of high-quality materials such as fine powder alloy carbide, cermet, or powdered high-speed steel, and is designed in an optimal shape and surface coating is applied to improve life.
공구에 대한 표면코팅방법으로 주로 기상증착법이 적용되며, 물리적 기상 증착법(Physical Vapor Deposition, PVD)과 화학적 기상 증착법(Chemical Vapor Deposition, CVD)으로 나눠진다.As a surface coating method for tools, vapor deposition is mainly applied, and it is divided into physical vapor deposition (PVD) and chemical vapor deposition (CVD).
화학적 기상 증착법은 1,000℃ 내외의 높은 온도에서 코팅하므로 세라믹을 제외한 금속소재 기판(Substrate)은 이러한 온도범위에서 기계적 성질 및 치수의 변화가 수반되기 때문에 적용이 제한되는 반면, 물리적 기상 증착법은 600℃ 이하(철강재료의 상변태 온도 이하)의 낮은 온도영역에서 코팅하기 때문에 기판의 선택이 자유롭고, 다양하게 적용할 수 있어 화학적 기상 증착법에 의한 코팅에서 점차 물리적 기상 증착법을 이용한 코팅으로 대체되고 있고 있는 실정이다. Since chemical vapor deposition is coated at a high temperature of around 1,000℃, the application of metal substrates other than ceramics is limited due to changes in mechanical properties and dimensions within this temperature range, whereas physical vapor deposition is less than 600℃. Since the coating is performed in a low temperature range of (below the phase transformation temperature of the steel material), the substrate can be freely selected and applied in a variety of ways, so it is gradually being replaced by the coating using the physical vapor deposition method from the coating by the chemical vapor deposition method.
특히, 물리적 기상 증착법에 의한 TiAlN 코팅은 마모 방지 적용을 위한 방법으로 널리 사용되고 있다.In particular, TiAlN coating by physical vapor deposition is widely used as a method for wear prevention application.
유럽등록특허 제1174528호(Multilayer-coated cutting tool)는 공구에 대한 일련의 다수의 개별 층들로 이루어진 코팅막에 관한 기술을 공지한 바 있다. 해당 기술의 제1층은 원소 Ti, Al 및 또는 Cr의 나이트라이드, 카바이드, 카보나이트라이드, 보라이드, 옥사이드 등으로 이루어지고, 제2층은 적어도 하나의 Si 및 주기율표 Ⅳa족, Ⅴa족 및 Ⅵa족 원소의 나이트라이드, 카바이드, 카보나이트라이드, 보라이드, 옥사이드 등으로 이루어지며, 이러한 코팅막은 상부층 내의 Si에 의해 내마모성 및 산화 방지성이 현저히 개선되는 것이 장점으로, 특히 Cr-Si에 기초하는 커버 층은 지속 수명에 있어서 개선되는 것이 특징이다. 이때, 하부 층으로서 TiAlN-층, CrAlN-층 및 TiN-층이 선택된다.European Patent No. 1173528 (Multilayer-coated cutting tool) discloses a technique for a coating film consisting of a plurality of individual layers for a tool. The first layer of the technology is made of nitride, carbide, carbonitride, boride, oxide, etc. of the elements Ti, Al and or Cr, and the second layer includes at least one Si and periodic table IVa, Va and VIa groups It is made of elemental nitride, carbide, carbonitride, boride, oxide, etc., and such a coating film is advantageous in that abrasion resistance and oxidation resistance are significantly improved by Si in the upper layer.In particular, a cover layer based on Cr-Si is It is characterized by improved longevity. At this time, a TiAlN-layer, a CrAlN-layer, and a TiN-layer are selected as lower layers.
또한, 유럽등록특허 제1422311호(Hard film and hard film coated tool)는 Al-Cr-(Si)-O에 기초하는 경질 재료 층을 공지한 바 있으며, 상기 재료 층은 나이트라이드, 카바이드, 옥사이드, 보라이드 등으로서 구성될 수 있다. 이러한 기술은 적은 양의 산소 함량(1 내지 25 원자%)이 층 내에 함유되는 것은 모든 층들에 대해 적용되고, 추가의 경질 재료 층이 코팅막에 도포될 수 있으며, 특히, Ti-Si-N, Ti-B-N, Cr-Si-N 등이 제시된다. 이러한 기술의 장점으로서, 특히 산소 또는 규소와 산소에 대한 적은 양의 수용이 언급되는데, 이는 더욱 높은 경도뿐만 아니라 개선된 내마모성 및 고온 산화 방지성을 유도하기 때문이다.In addition, European Patent No. 1422311 (Hard film and hard film coated tool) has known a hard material layer based on Al-Cr-(Si)-O, and the material layer is nitride, carbide, oxide, It can be configured as boride or the like. This technique applies to all layers that a small amount of oxygen content (1 to 25 atomic%) is contained in the layer, and an additional hard material layer can be applied to the coating film, in particular Ti-Si-N, Ti -BN, Cr-Si-N, etc. are presented. As an advantage of this technique, mention is made, in particular, of oxygen or a small amount of acceptance of silicon and oxygen, since this leads to a higher hardness as well as improved abrasion resistance and high temperature oxidation resistance.
반면, 유럽등록특허 제1219723호(Hard film for cutting tools)는 Ti-Al-Cr-X-N에 기초하는 코팅막을 공지한 바 있으며, 여기서 X는 Si, B 및/또는 C를 나타낼 수 있다. 이러한 코팅막의 장점으로서 종래의 코팅막에 비해 내마모성이 개선된 것으로 제시되며, 적어도 Ti, Al 및 Cr로 이루어져야 하는 것으로 기재되어 있다.On the other hand, European Patent No. 1219723 (Hard film for cutting tools) has known a coating film based on Ti-Al-Cr-X-N, where X may represent Si, B and/or C. As an advantage of such a coating film, it is suggested that wear resistance is improved compared to a conventional coating film, and it is described that it should be made of at least Ti, Al, and Cr.
그러나, 상기한 종래기술과 같이, Ti-Al-N 혹은 Al-Cr-N에 기초하는 경질재료 코팅막의 경우, 짧은 지속 수명을 갖는다.However, as in the prior art described above, a hard material coating film based on Ti-Al-N or Al-Cr-N has a short lasting life.
또한, 종래 기술에 따른 코팅막은, Al-Cr-N 코팅층의 경우, 고온에서 비활성 기체 대기(예를 들어, 아르곤 대기)하에 코팅막의 분해가 이미 약 900℃에서 시작된다는 단점이 있다.In addition, the coating film according to the prior art, in the case of the Al-Cr-N coating layer, has a disadvantage that the decomposition of the coating film is already started at about 900° C. under an inert gas atmosphere (eg, argon atmosphere) at a high temperature.
이러한 열처리 단계가 산소 대기하에 수행되면, 상기 분해 단계는 더욱 높은 온도 범위로 이동하며, 특히, 치핑 과정에서 연속적인 단계를 고려하는 경우, 공구의 표면과 제품 사이의 접촉면에서 국부적으로 1000℃를 초과하는 매우 높은 온도가 발생하게 된다. 따라서, 코팅막의 표면에서 산소가 전혀/거의 안정하게 작용할 수 없을 정도로 상기 접촉면이 충분히 큰 경우, 입방체의 CrN은 육방 정계의 Cr2N으로 붕괴되고 더욱 높은 온도의 후속 단계에서 금속 Cr로 붕괴되므로, 이러한 코팅막의 분해 과정은 코팅막의 조기 마모를 유도한다.When this heat treatment step is carried out in an oxygen atmosphere, the decomposition step moves to a higher temperature range, especially when considering a continuous step in the chipping process, locally exceeds 1000°C at the contact surface between the tool surface and the product. Very high temperatures occur. Therefore, if the contact surface is large enough so that oxygen cannot act stably at all/almost on the surface of the coating film, the Cubic CrN is decayed into hexagonal Cr2N and in a subsequent step at a higher temperature, such a coating film The decomposition process leads to premature wear of the coating film.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 포밍 치형공구의 수명(Tool Life)을 개선시키기 위하여 나노화된 코팅 입자에 복합다층구조를 가지도록 증착된 포밍 치형공구용 다층나노 경질 코팅막을 제공하는 것이다.The present invention was conceived to solve the above problems, and an object of the present invention is a multi-layer for forming tooth tool deposited to have a composite multi-layer structure on nano-coated particles in order to improve the tool life of the forming tooth tool It is to provide a nano hard coating film.
또한, 본 발명의 다른 목적은, 공구의 사용에 있어서, 코팅막의 급속한 분해(마모)를 방지하기 위하여 특수한 다층구조를 가지는 포밍 치형공구용 다층나노 경질 코팅막을 제공하는 것이다.In addition, another object of the present invention is to provide a multilayer nano hard coating film for a forming tooth tool having a special multilayer structure in order to prevent rapid decomposition (wear) of the coating film in the use of the tool.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명의 기술분야에서 통상의 지식을 지닌 자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those of ordinary skill in the art from the following description.
본 발명은 상기의 목적을 달성하기 위하여 포밍 치형공구용 다층나노 경질 코팅막에 있어서, 포밍 치형공구인 금속 기재층 상부에 형성되는 하기 화학식 1의 조성을 가진 제1층; 상기 제1층 상면에 형성되는 하기 화학식 1과 하기 화학식 2의 혼합조성을 지니는 제2층; 및 상기 제2층 상면에 형성되는 하기 화학식 2의 조성을 가진 제3층;이 연속적으로 반복형성되는 것을 특징으로 하는 다층나노 경질 코팅막을 제공할 수 있다.The present invention provides a multilayer nano hard coating film for a forming tooth tool in order to achieve the above object, comprising: a first layer having a composition of the following formula (1) formed on a metal substrate layer which is a forming tooth tool; A second layer formed on an upper surface of the first layer and having a mixed composition of the following formula 1 and the following formula 2; And a third layer having a composition of the following formula (2) formed on the upper surface of the second layer; it is possible to provide a multilayer nano hard coating film, characterized in that it is continuously repeatedly formed.
[화학식 1][Formula 1]
Figure PCTKR2020003738-appb-I000001
Figure PCTKR2020003738-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2020003738-appb-I000002
Figure PCTKR2020003738-appb-I000002
여기서, X는 N, CN, BN, NO, CNO, CBN, BNO 및 CNBO로 구성된 군중의 하나를 나타내고, Me는 V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, Nb로 구성된 군중의 하나를 나타내며, a, b, u, v, w는 타켓부분의 화학양론 조성을 나타낸다.Here, X represents one of the group consisting of N, CN, BN, NO, CNO, CBN, BNO and CNBO, and Me is V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, Nb It represents one of the crowds consisting of, and a, b, u, v, and w represent the stoichiometric composition of the target part.
또한, 상기 제1층에 대한 상기 제2층 혹은 상기 제3층의 두께비가 0.5 초과인 것을 특징으로 한다.In addition, a thickness ratio of the second layer or the third layer to the first layer is greater than 0.5.
이때, 0.5≤a≤0.7이며, 0.05<b<0.1이고, 0.5≤u≤0.7이며, 0.02<v<0.08이고, 0.01<w<0.08인 것을 특징으로 한다.In this case, 0.5≤a≤0.7, 0.05<b<0.1, 0.5≤u≤0.7, 0.02<v<0.08, and 0.01<w<0.08.
한편, 상기 제1층, 상기 제2층 혹은 상기 제3층은, 이온 건 에칭공정, 할로캐소드 에칭공정 및 메탈이온 에칭공정 중 선택된 어느 하나의 공정을 수행하여 증착되는 것을 특징으로 한다.Meanwhile, the first layer, the second layer, or the third layer may be deposited by performing any one of an ion gun etching process, a halo cathode etching process, and a metal ion etching process.
이와 더불어, 상기 제1층, 상기 제2층 혹은 상기 제3층은, 35 내지 300V의 마이너스 바이어스 전압을 인가하여 증착되되, 상기 마이너스 바이어스 전압을 시간에 따라 계단식으로 증가시켜 인가함으로써 증착되는 것을 특징으로 한다.In addition, the first layer, the second layer, or the third layer is deposited by applying a negative bias voltage of 35 to 300V, but is deposited by applying the negative bias voltage in a stepwise manner over time. To do.
본 발명은 포밍 치형공구 외에도 치형핀 제작 공구, 절삭 및 성형 공구 또는 기계가공 장치 및 부품과 같은 제품들의 수명(Tool Life)을 개선 시킬 수 있다는 이점이 있다.In addition to the forming tooth tool, the present invention has the advantage of improving the tool life of products such as tooth pin manufacturing tools, cutting and forming tools, or machining devices and parts.
또한, 본 발명은, 경질 코팅막이 특수한 다층구조를 가짐으로써 공구의 사용에 있어서 코팅막의 급속한 분해(마모)를 방지할 수 있으며, 윤활 특성을 부여하여 코팅막의 내마모 수명을 증가시킬 수 있다는 이점이 있다.In addition, the present invention has the advantage that the hard coating film has a special multilayer structure, so that rapid decomposition (wear) of the coating film can be prevented in the use of a tool, and the wear resistance life of the coating film can be increased by imparting lubricating properties. have.
도 1은 본 발명에 따른 포밍 치형공구용 다층나노 경질 코팅막의 구조를 나타낸 도면.1 is a view showing the structure of a multilayer nano hard coating film for a forming tooth tool according to the present invention.
도 2는 본 발명에 따른 포밍 치형공구용 다층나노 경질 코팅막의 조직을 나타내는 사진.Figure 2 is a photograph showing the structure of the multilayer nano-hard coating film for a forming tooth tool according to the present invention.
도 3은 본 발명의 예시적으로 나타낸 진공증착 챔버를 도식화한 평면도.3 is a plan view schematically illustrating a vacuum deposition chamber shown as an exemplary embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms different from each other, and only these embodiments make the disclosure of the present invention complete, and common knowledge in the technical field to which the present invention pertains. It is provided to completely inform the scope of the invention to those who have it, and the invention is only defined by the scope of the claims.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.With reference to the accompanying drawings will be described in detail for the implementation of the present invention. Regardless of the drawings, the same reference numerals refer to the same elements, and "and/or" includes each and all combinations of one or more of the mentioned items.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도있음은 물론이다. Although the first, second, and the like are used to describe various components, it goes without saying that these components are not limited by these terms. These terms are only used to distinguish one component from another component. Therefore, it goes without saying that the first component mentioned below may be the second component within the technical idea of the present invention.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며, 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terms used in this specification are for describing exemplary embodiments, and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase. As used in the specification, “comprises” and/or “comprising” do not exclude the presence or addition of one or more other elements other than the mentioned elements.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used as meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically.
본 발명에 따른 다층나노 경질 코팅막은 공구, 기계가공공구, 포밍 및 치핀 가공공구, 밀링공구(Milling Tool), 절삭공구(Cutting Tool), 터닝공구(Turning Tool), 탭핑공구(Tapping Tool), 리머(Reamer), 엔드밀(Endmill), 드릴, 절삭인서트(Cutting Insert), 기어절삭공구, 인서트(Insert), 호브(Hob), 커터(Cutter) 등의 내마모성과 수명 특성을 개선시키기 위해 적용 가능하며, 바람직하게는 포밍 치형공구에 적용 가능한 것으로, 하기에서는 본 발명에 따른 포밍 치형공구용 다층나노 경질 코팅막을 설명하나, 이는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Multilayer nano hard coating film according to the present invention is a tool, a machining tool, a forming and chippin processing tool, a milling tool, a cutting tool, a turning tool, a tapping tool, and a reamer. It can be applied to improve wear resistance and life characteristics of (Reamer), Endmill, Drill, Cutting Insert, Gear Cutting Tool, Insert, Hob, Cutter, etc. , Preferably, as applicable to a forming tooth tool, the following describes a multilayer nano-hard coating film for a forming tooth tool according to the present invention, but this is only an example to aid understanding of the present invention, and the scope of the present invention is limited thereto It does not become.
도 1은 본 발명에 따른 포밍 치형공구용 다층나노 경질 코팅막의 구조를 나타낸 도면이며, 도 2는 본 발명에 따른 포밍 치형공구용 다층나노 경질 코팅막의 조직을 나타내는 사진이다.1 is a view showing the structure of a multi-layer nano hard coating film for a forming tooth tool according to the present invention, Figure 2 is a photograph showing the structure of the multi-layer nano hard coating film for a forming tooth tool according to the present invention.
도 1에 도시된 바와 같이, 포밍 치형공구인 금속 기재층 상부에 형성되는 제1층, 상기 제1층 상면에 형성되는 제2층 및 상기 제2층 상면에 형성되는 제3층이 연속적으로 반복형성된다.As shown in Fig. 1, the first layer formed on the metal substrate layer, which is a forming tooth tool, the second layer formed on the upper surface of the first layer, and the third layer formed on the upper surface of the second layer are continuously repeated. Is formed.
구체적으로, 상기 제1층은
Figure PCTKR2020003738-appb-I000003
의 조성을 가지며, 상기 제3층은
Figure PCTKR2020003738-appb-I000004
의 조성을 가지며, 상기 제2층은 상기 제1층과 상기 제3층 사이의 개선된 접착을 위해
Figure PCTKR2020003738-appb-I000005
Figure PCTKR2020003738-appb-I000006
의 혼합조성을 가지며, 제1층 내지 제3층이 순차적으로 적층 형성되되, 상기 경질 코팅막의 성능 향상을 위하여 8회 이상 반복형성되는 것이 바람직하다.
Specifically, the first layer
Figure PCTKR2020003738-appb-I000003
It has a composition of, and the third layer is
Figure PCTKR2020003738-appb-I000004
And the second layer for improved adhesion between the first layer and the third layer
Figure PCTKR2020003738-appb-I000005
and
Figure PCTKR2020003738-appb-I000006
It has a mixed composition of, and the first to third layers are sequentially stacked and formed, and it is preferable that the hard coating layer is repeatedly formed 8 or more times to improve the performance.
여기서, X는 N, CN, BN, NO, CNO, CBN, BNO 및 CNBO로 구성된 군중의 하나를 나타내며, 바람직하게는 N 또는 CN 이고, 보다 바람직하게는 N이다.Here, X represents one of the group consisting of N, CN, BN, NO, CNO, CBN, BNO and CNBO, preferably N or CN, and more preferably N.
또한, Me는 V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, Nb로 구성된 군중의 하나 또는 둘 이상의 혼합물을 나타내며, a, b, u, v, w는 타켓부분의 화학양론 조성을 나타낸다.In addition, Me represents one or a mixture of two or more of the group consisting of V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, and Nb, and a, b, u, v, w are the target portion. Represent stoichiometric composition.
이때, a는 0.5≤a≤0.7이며, b는 0.05<b<0.1이다. 이와 더불어, u는 0.5≤u≤0.7이며, v는 0.02<v<0.08이고, w는 0.01<w<0.08인 것이 바람직하다.In this case, a is 0.5≦a≦0.7, and b is 0.05<b<0.1. In addition, it is preferable that u is 0.5≦u≦0.7, v is 0.02<v<0.08, and w is 0.01<w<0.08.
한편, 상기 제1층, 상기 제2층 혹은 상기 제3층은, 이온 건 에칭공정, 할로캐소드 에칭공정 및 메탈이온 에칭공정 중 선택된 하나 이상의 공정을 수행하여 증착될 수 있으며, 상기 제1층 혹은 상기 제3층의 평균 입자 크기가 약 5 내지 150 nm, 바람직하게는 10 내지 120nm인 마이크로 결정 형태를 가진다.Meanwhile, the first layer, the second layer, or the third layer may be deposited by performing at least one selected from an ion gun etching process, a halo cathode etching process, and a metal ion etching process, and the first layer or The third layer has a microcrystalline form having an average particle size of about 5 to 150 nm, preferably 10 to 120 nm.
또한, 상기 제1층에 대한 상기 제2층 혹은 상기 제3층의 두께비가 0.5 초과하도록 한다.In addition, the thickness ratio of the second layer or the third layer to the first layer is set to exceed 0.5.
또한, 상기 제2층 혹은 상기 제3층은 2개 이상의 결정질 상을 포함하며, 바람직하게는, 등축정계 및 육방정계)를 포함한다.In addition, the second layer or the third layer includes two or more crystalline phases, and preferably, an equiaxed crystal system and a hexagonal crystal system).
다시, 상기 경질 코팅막은 입방체의
Figure PCTKR2020003738-appb-I000007
의 상기 제1층과,
Figure PCTKR2020003738-appb-I000008
Figure PCTKR2020003738-appb-I000009
의 혼합조성의 상기 제2층과, 상기 입방체의
Figure PCTKR2020003738-appb-I000010
의 제3층이 교호로 증착되어 다층 구조를 가짐으로써, 도 2와 같이, 두께가 균일하고 균열 등의 결함 발생 가능성이 현저히 감소하여 치밀한 조직을 가지게 되며, 이를 통해 포밍 치형공구의 내마모성과 수명 특성을 개선시킬 수 있는 것이다.
Again, the hard coating film is a cube
Figure PCTKR2020003738-appb-I000007
And the first layer of,
Figure PCTKR2020003738-appb-I000008
and
Figure PCTKR2020003738-appb-I000009
Of the second layer of the mixed composition of and the cube
Figure PCTKR2020003738-appb-I000010
As the third layer of is alternately deposited to have a multi-layered structure, as shown in FIG. 2, the thickness is uniform and the possibility of occurrence of defects such as cracks is significantly reduced to have a dense structure. Can improve.
이와 더불어, 상기 경질 코팅막은 포밍 치형공구의 내마모성과 수명 특성을 보다 향상시키기 위해 35 내지 300V의 마이너스 바이어스 전압을 인가하되, 바이어스 전압을 시간에 따라 계단식으로 증가시켜, 스텝(STEP) 구간별로 인가하여 증착시킴으로써 형성되며, 이에 대한 구체적인 설명은 후술하도록 한다.In addition, the hard coating film is applied with a negative bias voltage of 35 to 300V in order to further improve the wear resistance and life characteristics of the forming tooth tool, but the bias voltage is increased stepwise with time, and applied for each step section. It is formed by evaporation, and a detailed description thereof will be described later.
도 3은 본 발명의 예시적으로 나타낸 진공증착 챔버를 도식화한 평면도이다.3 is a plan view schematically illustrating a vacuum deposition chamber according to an exemplary embodiment of the present invention.
상기 경질 코팅막 즉, Al-Cr-SiN/AlTiMoMeN 경질 층들의 증착을 위해, 아이시스(ISYS)사의 AIP타입의 공업용 코팅 설비가 사용된다. For the deposition of the hard coating film, that is, the Al-Cr-SiN/AlTiMoMeN hard layers, an AIP type industrial coating facility of ISYS is used.
또한, 정제된 포밍 치형공구는 직경에 따라 이중 회전식 기판 캐리어 상에, 또는 50mm 미만의 직경에 대해서는 삼중 회전식 기판 캐리어 상에 고정되고, 분말 금속 야금에 의해 제조된 Al-Cr-Si 합금으로 이루어진 타겟 및 Al-Ti-Mo-Me 합금으로 이루어진 타겟은 도 3에 도시된 바와 같이 코팅 설비의 벽들에 제공된 12개의 음극 아크 전원 내에 배치된다.In addition, the refined forming tooth tool is fixed on a double rotary substrate carrier according to the diameter, or on a triple rotary substrate carrier for a diameter of less than 50 mm, and a target made of an Al-Cr-Si alloy manufactured by powder metal metallurgy. And a target made of an Al-Ti-Mo-Me alloy is placed in twelve cathode arc power sources provided on the walls of the coating installation as shown in FIG. 3.
이때, 제1 내지 제3 음극 아크 전원(1, 2, 3)과 제7 내지 제9 음극 아크 전원(7, 8, 9) 내에 배치된 타겟은 Al-Cr-Si 합금으로 이루어진 타겟이며, 4 내지 제6 음극 아크 전원(4, 5, 6)과 제7 내지 제9 음극 아크 전원(10, 11, 12) 내에 배치된 타겟은 Al-Ti-Mo-Me 합금으로 이루어진 타겟인 것이 바람직하나, 이에 한정하지 않는다.At this time, the targets disposed in the first to third negative arc power sources (1, 2, 3) and the seventh to ninth negative arc power sources (7, 8, 9) are targets made of Al-Cr-Si alloy, and 4 The targets disposed in the sixth to sixth negative arc power supply (4, 5, 6) and the seventh to ninth negative arc power supply (10, 11, 12) is preferably a target made of an Al-Ti-Mo-Me alloy, It is not limited to this.
구체적으로 타겟 배치의 기하 구조는 실질적으로 AIP타입의 공업용 코팅 설비의 8각형 평면도에 의해 결정되며, 각각의 삼원 그룹의 중간 요소 내에 배치되나, 이에 한정하지 않으며, 상기 제1 내지 제3층들을 제조하기 위한 다른 타겟 배치도 가능하다.Specifically, the geometry of the target arrangement is substantially determined by the octagonal plan view of the AIP type industrial coating facility, and is disposed within the intermediate element of each ternary group, but is not limited thereto, and the first to third layers are manufactured. Other target placements are also possible.
또한, 상기 제2층은 코팅 설비의 기하 구조적 타겟 배치로 인해 증착 중 제품의 회전으로 인해 매우 섬세한 층을 갖는 다층 구조가 추가로 증착되는데, Al-Cr-Si 및 Al-Ti-Mo-Me에 기초하는 개별 타겟들이 상기 코팅막의 형성을 위해 사용되므로 상기 제2층의 폭은 수 나노미터의 범위에서 변경된다.In addition, the second layer is additionally deposited with a multi-layered structure having a very delicate layer due to the rotation of the product during deposition due to the geometric target arrangement of the coating facility. Al-Cr-Si and Al-Ti-Mo-Me Since individual targets based are used to form the coating film, the width of the second layer is changed in the range of several nanometers.
이와 더불어, 상기 제1 내지 제3층들은, 단일 회전식 또는 다중 회전식 기판 고정 장치의 동일한 코팅층 높이에서 증착될 수 있으며, 바람직하게는 기하 구조적으로 동등한 위치에서 적어도 세 개의 아크 음극을 포함하는 모든 설비에서 증착될 수 있다. In addition, the first to third layers may be deposited at the same coating layer height of a single rotational or multiple rotational substrate fixing device, and preferably in all installations including at least three arc cathodes at geometrically equivalent positions. Can be deposited.
예를 들어, 작업자는 각각의 설비 유형에 따른 타겟의 배치에 의해 각 층들의 층 두께 또는 위치에 영향을 미칠 수 있으며, 또한, 각각의 기판 운동의 조절 또는 회전 조절 또는 제품 회전의 각속도의 조절에 의해 개별 층들의 층 두께에 또는 위치에 영향을 미칠 수 있다.For example, the operator can influence the layer thickness or position of each layer by the placement of the target according to each type of equipment, and also, the control of the movement or rotation of each substrate, or the angular velocity of product rotation. By affecting the layer thickness or location of individual layers.
한편, 코팅 대상 제품인 포밍 치형공구는 설비에 제공된 복사 가열 장치 내에서 약 500℃의 온도에 제공된 다음, 그 표면은 Ar 대기하에 -300 내지 -600V의 DC-바이어스 전압의 인가에 의해 0.2Pa의 압력에서 Ar 이온에 의한 에칭 정제 과정과 할로우캐소드(Hollow cathod) 이온 세정 과정을 거쳐 제공된다.On the other hand, the foaming tooth tool, which is a product to be coated, is provided at a temperature of about 500°C in a radiant heating device provided in the facility, and the surface is then subjected to a pressure of 0.2Pa by application of a DC-bias voltage of -300 to -600V under Ar atmosphere. It is provided through an etching purification process by Ar ions and a hollow cathode ion cleaning process.
이후, 80A 출력을 사용하는 6개의 Al-Cr-Si 전원의 작동 및 약 5분 동안 -35V의 기판 바이어스의 전압 인가에 의해 약 0.2㎛ 두께의 Al-Cr-Si-N 경질층이 증착된다. Thereafter, an Al-Cr-Si-N hard layer of about 0.2 mu m thickness was deposited by operation of six Al-Cr-Si power supplies using 80A output and application of a voltage of -35V substrate bias for about 5 minutes.
이어서, 의도적으로 다층이 형성되는데, 우선 6개의 Al-Cr-Si 전원에 대해 추가로 6개의 Al-Ti-Mo-Me 전원이 마찬가지로 각각 150A로 스위치 온되고, 약 3분 동안 -150V의 기판 바이어스 전압인가에 의해 공동으로 작동된다. 연속해서 6개의 Al-Cr-Si 전원이 스위치 오프되고 오로지 Al-Ti-Mo-Me-N 코팅층이 약 3분 동안 -300V의 기판 바이어스 전압인가에 의해 증착된다. Subsequently, a multilayer is intentionally formed.First, for the six Al-Cr-Si power supplies, an additional six Al-Ti-Mo-Me power supplies are similarly switched on to 150A each, and a substrate bias of -150V for about 3 minutes. It is operated jointly by applying voltage. Successively, six Al-Cr-Si power supplies are switched off and only an Al-Ti-Mo-Me-N coating layer is deposited by applying a substrate bias voltage of -300V for about 3 minutes.
이러한 계단식 전압 인가 과정은 본 발명의 범주 내에서 증착 과정 중에 8회 반복 수행되며, 모든 층들은 순수하게 질소(N) 대기에서 약 40mtorr의 압력 및 약 35V ~ 300V의 마이너스 기판 바이어스 전압에서 증착된다.This stepwise voltage application process is repeatedly performed eight times during the deposition process within the scope of the present invention, and all layers are deposited at a pressure of about 40 mtorr and a negative substrate bias voltage of about 35V to 300V in a pure nitrogen (N) atmosphere.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples to aid understanding of the present invention, and the scope of the present invention is not limited thereto.
비교예Comparative example
비교예 1은 표 1과 같이, Al 60원자% 및 Cr 40원자%의 조성을 갖는 Al-Cr 합금으로 이루어진 타겟과 Al 67원자%, Ti 31원자% 및 Mo 2원자%의 조성을 갖는 Al-Ti-Mo 합금으로 이루어진 타겟으로 증착된 코팅막이다.Comparative Example 1 is a target made of an Al-Cr alloy having a composition of 60 atomic% Al and 40 atomic% Cr, as shown in Table 1, and an Al-Ti- having a composition of 67 atomic% Al, 31 atomic% Ti and 2 atomic% Mo. It is a coating film deposited with a target made of Mo alloy.
이때, 비교예 1은 Φ127mm이며, 15 T인 디스크 형태(disc type) 타겟을 사용하였다.At this time, Comparative Example 1 was a Φ127mm, a 15T disk type (disc type) target was used.
실시예Example
실시예 1 내지 8은 표 1에 나타낸 바와 같이, 코팅막을 이루는 층의 타겟 조성을 달리하였으며, 표 2의 타겟 성능, 마이너트 기판 바이어스 전압, 프로세스 압력 및 온도와 같은 프로세스 파라미터들에 따라 코팅막을 형성하였다.In Examples 1 to 8, as shown in Table 1, the target composition of the layer forming the coating film was different, and the coating film was formed according to the target performance of Table 2, the process parameters such as the minor substrate bias voltage, the process pressure and temperature. .
이때, 실시예 1 내지 9에서 사용된 타겟은 Φ127mm이며, 15 T인 디스크 형태(disc type) 타겟으로, 도 3에 도시된 바와 같이, 제1 내지 제3 음극 아크 전원(1, 2, 3)과 제7 내지 제9 음극 아크 전원(7, 8, 9)에는 Al-Cr-Si 합금으로 이루어진 타겟을 삽입 배치하였으며, 제4 내지 제6 음극 아크 전원(4, 5, 6)과 제7 내지 제9 음극 아크 전원(10, 11, 12)에는 Al-Ti-Mo-Me 합금으로 이루어진 타겟을 삽입 배치하였다.At this time, the target used in Examples 1 to 9 is a Φ127mm, 15T disk type target, as shown in FIG. 3, the first to third negative arc power sources (1, 2, 3) And the 7th to ninth negative arc power source (7, 8, 9) was arranged to insert a target made of an Al-Cr-Si alloy, the fourth to sixth negative arc power source (4, 5, 6) and the 7th to Targets made of an Al-Ti-Mo-Me alloy were inserted into the ninth cathode arc power sources 10, 11, and 12.
Figure PCTKR2020003738-appb-T000001
Figure PCTKR2020003738-appb-T000001
횟수Count ARC 전류ARC current Bias 전압(V)Bias voltage (V) 진공도Degree of vacuum 온도Temperature
Al-Cr-SiAl-Cr-Si Al-Ti-Mo-MeAl-Ti-Mo-Me
ARC 1, 2, 3ARC 1, 2, 3 ARC 7, 8, 9ARC 7, 8, 9 ARC4, 5, 6ARC4, 5, 6 ARC10, 11, 12ARC10, 11, 12 STEP 구간STEP section (mTorr)(mTorr) (℃)(℃)
비교예 1Comparative Example 1 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 3535 480480
실시예 1Example 1 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 3535 480480
실시예 2Example 2 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 4040 480480
실시예 3Example 3 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 4040 480480
실시예 4Example 4 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 4040 480480
실시예 5Example 5 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 4040 480480
실시예 6Example 6 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 4040 480480
실시예 7Example 7 80 A80 A 100 A100 A 120 A120 A 150 A150 A (-)35/(-)150/(-)300(-)35/(-)150/(-)300 4040 480480
실험예Experimental example
실시예 1 내지 9의 경질 코팅막 각각 두께, 경도, 접착력 및 조도를 측청하여 표 3에 나타내었으며, 이때, 상기 경질 코팅막의 두께는 칼로테스트(Calotest)에 의해 측정되었으며, 경도는 비커스 경도계(Vickers hardness Tester)를 사용하여 측정하였다. The thickness, hardness, adhesion and roughness of each of the hard coating films of Examples 1 to 9 were measured and shown in Table 3. In this case, the thickness of the hard coating film was measured by a Calotest, and the hardness was measured by a Vickers hardness tester. Tester).
또한, 상기 경질 코팅막의 접착력은 스크래치 시험(Scratch test)을 측정되었으며, 측정된 조도는 산술평균조도(Ra)로서, 단위는 마이크로 미터(㎛)이다.In addition, the adhesion of the hard coating film was measured by a scratch test, and the measured roughness is an arithmetic average roughness (Ra), and the unit is micrometer (µm).
횟 수 Number of times 결 과 result
두께thickness 경도(Hv) Hardness (Hv) 접착력(N)Adhesion (N) 조 도(Ra(㎛))Illuminance (Ra(㎛))
비교예 1Comparative Example 1 4.5 4.5 3,241.43,241.4 78.1 78.1 0.110.11
실시예 1Example 1 5.25.2 3,369.23,369.2 8080 0.090.09
실시예 2Example 2 5.45.4 3,312.73,312.7 8080 0.100.10
실시예 3Example 3 4.74.7 3,431.83,431.8 8080 0.180.18
실시예 4Example 4 5.65.6 3,285.63,285.6 8080 0.120.12
실시예 5Example 5 5.05.0 3,342.73,342.7 8080 0.100.10
실시예 6Example 6 5.35.3 3,542.33,542.3 8080 0.110.11
실시예 7Example 7 6.26.2 3,489.63,489.6 8080 0.110.11
표 3과 같이, Al-Cr-Si 합금으로 이루어진 타겟과 Al-Ti-Mo-Me 합금으로 이루어진 타겟으로 증착된 코팅막인 실시예 1 내지 실시예 7은 Al-Cr 합금으로 이루어진 타겟과 Al-Ti-Mo 합금으로 이루어진 타겟으로 증착된 코팅막인 비교예 1보다 코팅막의 두께가 증가하였으며, 접착력 및 경도 또한 향상되었음을 확인할 수 있었다.As shown in Table 3, Examples 1 to 7, which are coating films deposited with a target made of an Al-Cr-Si alloy and a target made of an Al-Ti-Mo-Me alloy, are a target made of an Al-Cr alloy and an Al-Ti It was confirmed that the thickness of the coating film was increased compared to Comparative Example 1, which is a coating film deposited with a target made of -Mo alloy, and adhesion and hardness were also improved.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.Although the embodiments of the present invention have been described with reference to the above and the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can implement the present invention in other specific forms without changing the technical spirit or essential features. You can understand that there is. Therefore, it is to be understood that the embodiments described above are illustrative and non-limiting in all respects.

Claims (5)

  1. 포밍 치형공구용 다층나노 경질 코팅막에 있어서, In the multilayer nano hard coating film for forming tooth tool,
    포밍 치형공구인 금속 기재층 상부에 형성되는 하기 화학식 1의 조성을 가진 제1층;A first layer having a composition of the following formula (1) formed on the metal substrate layer, which is a forming tooth tool;
    상기 제1층 상면에 형성되는 하기 화학식 1과 하기 화학식 2의 혼합조성을 지니는 제2층; 및A second layer formed on an upper surface of the first layer and having a mixed composition of the following formula 1 and the following formula 2; And
    상기 제2층 상면에 형성되는 하기 화학식 2의 조성을 가진 제3층;이 연속적으로 반복형성되는 것을 특징으로 하는 다층나노 경질 코팅막:A third layer having a composition of the following formula (2) formed on the upper surface of the second layer; a multilayer nano hard coating film, characterized in that it is continuously repeatedly formed
    [화학식 1][Formula 1]
    Figure PCTKR2020003738-appb-I000011
    Figure PCTKR2020003738-appb-I000011
    [화학식 2][Formula 2]
    Figure PCTKR2020003738-appb-I000012
    Figure PCTKR2020003738-appb-I000012
    여기서, X는 N, CN, BN, NO, CNO, CBN, BNO 및 CNBO로 구성된 군중의 하나를 나타내고, Me는 V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, Nb로 구성된 군중의 하나를 나타내며, a, b, u, v, w는 타켓부분의 화학양론 조성을 나타낸다.Here, X represents one of the group consisting of N, CN, BN, NO, CNO, CBN, BNO and CNBO, and Me is V, Nd, Sm, Eu, Hf, In, Sn, Zr, Ta, W, Nb It represents one of the crowds consisting of, and a, b, u, v, and w represent the stoichiometric composition of the target part.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1층에 대한 상기 제2층 혹은 상기 제3층의 두께비가 0.5 초과인 것을 특징으로 하는 다층나노 경질 코팅막.A multilayer nano hard coating film, characterized in that the thickness ratio of the second layer or the third layer to the first layer is greater than 0.5.
  3. 제 1항에 있어서,The method of claim 1,
    0.5≤a≤0.7이며, 0.05<b<0.1이고,0.5≤a≤0.7, 0.05<b<0.1,
    0.5≤u≤0.7이며, 0.02<v<0.08이고, 0.01<w<0.08인 것을 특징으로 하는 다층나노 경질 코팅막.0.5≦u≦0.7, 0.02<v<0.08, and 0.01<w<0.08.
  4. 제 1항에 있어서,The method of claim 1,
    상기 제1층, 상기 제2층 혹은 상기 제3층은,The first layer, the second layer or the third layer,
    이온 건 에칭공정, 할로캐소드 에칭공정 및 메탈이온 에칭공정 중 선택된 어느 하나의 공정을 수행하여 증착되는 것을 특징으로 하는 다층나노 경질 코팅막.A multilayer nano hard coating film, characterized in that it is deposited by performing any one of an ion gun etching process, a halo cathode etching process, and a metal ion etching process.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제1층, 상기 제2층 혹은 상기 제3층은,The first layer, the second layer or the third layer,
    35 내지 300V의 마이너스 바이어스 전압을 인가하여 증착되되, 상기 마이너스 바이어스 전압을 시간에 따라 계단식으로 증가시켜 인가함으로써 증착되는 것을 특징으로 하는 다층나노 경질 코팅막.Deposited by applying a negative bias voltage of 35 to 300V, the multilayer nano-hard coating film, characterized in that the deposition by applying the negative bias voltage is increased stepwise over time.
PCT/KR2020/003738 2019-05-13 2020-03-19 Multilayer nano hard coating film for tooth-shaped forming tool WO2020230994A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190055948A KR102074469B1 (en) 2019-05-13 2019-05-13 Multilayer Nano Hard Coating Film for Forming Tool
KR10-2019-0055948 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230994A1 true WO2020230994A1 (en) 2020-11-19

Family

ID=69569963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003738 WO2020230994A1 (en) 2019-05-13 2020-03-19 Multilayer nano hard coating film for tooth-shaped forming tool

Country Status (2)

Country Link
KR (1) KR102074469B1 (en)
WO (1) WO2020230994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216726A (en) * 2022-08-24 2022-10-21 烟台佳隆纳米产业有限公司 High-performance thin film material and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074469B1 (en) * 2019-05-13 2020-02-07 주식회사 다올플라즈마 Multilayer Nano Hard Coating Film for Forming Tool
KR102577510B1 (en) * 2021-05-25 2023-09-12 주식회사 다올플라즈마 Keyway making tool with improved tool life

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082209A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2007191765A (en) * 2006-01-20 2007-08-02 Kobe Steel Ltd Hard film
KR20080061323A (en) * 2006-12-27 2008-07-02 산드빅 인터렉츄얼 프로퍼티 에이비 Multilayered coated cutting tool
KR101616600B1 (en) * 2009-11-12 2016-04-28 오에스지 가부시키가이샤 Tool coated with hard coating
US20160194748A1 (en) * 2012-09-04 2016-07-07 FoxyLED GmbH Coated cutting tool and a method for coating the cutting tool
KR102074469B1 (en) * 2019-05-13 2020-02-07 주식회사 다올플라즈마 Multilayer Nano Hard Coating Film for Forming Tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417907B2 (en) 2000-07-13 2003-06-16 日立ツール株式会社 Multi-layer coating tool
ES2273772T3 (en) 2000-12-28 2007-05-16 Kabushiki Kaisha Kobe Seiko Sho A HARD FILM FOR CUTTING TOOLS.
DK1422311T3 (en) 2002-11-19 2007-06-11 Hitachi Tool Eng Hard film and tool coated with hard film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082209A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2007191765A (en) * 2006-01-20 2007-08-02 Kobe Steel Ltd Hard film
KR20080061323A (en) * 2006-12-27 2008-07-02 산드빅 인터렉츄얼 프로퍼티 에이비 Multilayered coated cutting tool
KR101616600B1 (en) * 2009-11-12 2016-04-28 오에스지 가부시키가이샤 Tool coated with hard coating
US20160194748A1 (en) * 2012-09-04 2016-07-07 FoxyLED GmbH Coated cutting tool and a method for coating the cutting tool
KR102074469B1 (en) * 2019-05-13 2020-02-07 주식회사 다올플라즈마 Multilayer Nano Hard Coating Film for Forming Tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216726A (en) * 2022-08-24 2022-10-21 烟台佳隆纳米产业有限公司 High-performance thin film material and preparation method thereof
CN115216726B (en) * 2022-08-24 2023-11-14 烟台佳隆纳米产业有限公司 High-performance film material and preparation method thereof

Also Published As

Publication number Publication date
KR102074469B1 (en) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020230994A1 (en) Multilayer nano hard coating film for tooth-shaped forming tool
KR101227337B1 (en) Multi-Layered Hard Material Coating for Tools
EP0833957B1 (en) Hard material coating with yttrium and method for its deposition
US5330853A (en) Multilayer Ti-Al-N coating for tools
EP1791986B1 (en) Cutting tool with wear resistant coating and method of making the same
US6767627B2 (en) Hard film, wear-resistant object and method of manufacturing wear-resistant object
JP4502475B2 (en) Hard coating, wear-resistant member and method for producing the same
WO2009131310A2 (en) Multi-layer hard film for indexable insert
CN1273640C (en) Fullerene coated component of semiconductor processing equipment
EP1099003B1 (en) Pvd coated cutting tool and method of its production
WO2014104495A1 (en) Multilayer thin film for cutting tool and cutting tool comprising same
JP2011115941A (en) Multilayer coated cutting tool
SE528377C2 (en) Multi-layer film on a substrate of cemented carbide, cermet, ceramic material or high-speed steel, and a process for making it
KR0146410B1 (en) Method for forming ti-tin laminates and magnetron cathode
WO2022102929A1 (en) Hard coating film for cutting tool
KR101660995B1 (en) NON GAMMAPHASE CUBIC AlCrO
MXPA04007119A (en) Coating with high abrasion resistance and high hardness.
JP3416938B2 (en) Laminate
US7326461B2 (en) Composite material
SE530755C2 (en) Coated cermet cutter and its use
Delplancke-Ogletree et al. Deposition of titanium carbide films from mixed carbon and titanium plasma streams
JP3697221B2 (en) High wear and hardness coating with excellent high temperature oxidation resistance
CA1260334A (en) Surface treatment of a molybdenum screening mask
WO2023090620A1 (en) Cutting tool having hard coating with excellent wear resistance and toughness
WO2012067300A1 (en) Film for cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806576

Country of ref document: EP

Kind code of ref document: A1