WO2020230842A1 - Resin particles, conductive particles, conductive material and connection structure - Google Patents

Resin particles, conductive particles, conductive material and connection structure Download PDF

Info

Publication number
WO2020230842A1
WO2020230842A1 PCT/JP2020/019227 JP2020019227W WO2020230842A1 WO 2020230842 A1 WO2020230842 A1 WO 2020230842A1 JP 2020019227 W JP2020019227 W JP 2020019227W WO 2020230842 A1 WO2020230842 A1 WO 2020230842A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
resin particles
particles
resin
weight
Prior art date
Application number
PCT/JP2020/019227
Other languages
French (fr)
Japanese (ja)
Inventor
厚喜 久保
恭幸 山田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020558069A priority Critical patent/JPWO2020230842A1/ja
Publication of WO2020230842A1 publication Critical patent/WO2020230842A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to resin particles which are polymers of polymerizable components.
  • the present invention also relates to conductive particles, conductive materials and connecting structures using the above resin particles.
  • Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known.
  • anisotropic conductive material conductive particles are dispersed in the binder resin.
  • the anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit board (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure.
  • connection target members such as a flexible printed circuit board (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure.
  • FPC flexible printed circuit board
  • conductive particles conductive particles having a base material particles and a conductive layer arranged on the surface of the base material particles may be used. Resin particles may be used as the base particles.
  • Patent Document 1 discloses metal-coated fine particles including synthetic resin fine particles and a metal film formed on the surface thereof.
  • the synthetic resin fine particles are composed of a copolymer obtained by polymerizing a monomer mixture containing a carboxyl group-containing monomer and a polyfunctional monomer.
  • a gap material is added to the adhesive in order to make the thickness of the adhesive layer formed by the adhesive uniform and to control the distance (gap) between the two members to be connected (adhesive).
  • Resin particles may be used as the gap material (spacer).
  • thermocompression bonding when mounting a flexible substrate in the FOG method, an anisotropic conductive material is arranged on the glass substrate, the flexible substrate is laminated, and thermocompression bonding is performed.
  • the frame of the liquid crystal panel has been narrowed and the glass substrate has been made thinner.
  • thermocompression bonding is performed at a high pressure and a high temperature when the flexible substrate is mounted, the flexible substrate may be distorted and display unevenness may occur. Therefore, when mounting a flexible substrate in the FOG method, it is desirable to perform thermocompression bonding at a relatively low pressure. In addition to the FOG method, it may be required to relatively reduce the pressure and temperature during thermocompression bonding.
  • the connection resistance may increase.
  • the conductive particles do not sufficiently contact the electrode (adhesive body), the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles is low, and the conductive portion is cracked. It may be peeled off.
  • the conventional resin particles there is a limit in improving the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles, and the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles is limited. It can be difficult to get enough sex.
  • the resin particles when a conductive portion (plating layer) is formed by plating, the resin particles may aggregate with each other, making it difficult to perform plating well.
  • the particle size of the conductive particles may vary, or the thickness of the conductive portion of the conductive particles may vary, so that the conductive particles do not come into uniform contact with the electrodes and the connection resistance may increase.
  • the conventional resin particles are used as the gap material (spacer), it is difficult to maintain a good dispersed state, and the resin particles may aggregate with each other. Further, with the conventional resin particles, the resin particles may not sufficiently contact the member to be connected or the like (adhesive body), and a sufficient gap control effect may not be obtained.
  • An object of the present invention is that aggregation can be effectively suppressed, and when conductive particles having a conductive portion formed on the surface are used to electrically connect the electrodes, the adhesion to the conductive portion is effective. It is an object of the present invention to provide resin particles which can be effectively increased and further can effectively reduce the connection resistance. Another object of the present invention is to provide conductive particles, a conductive material, and a connecting structure using the above resin particles.
  • the compression elastic modulus of when compressed 10% it is 500 N / mm 2 or more 4500N / mm 2 or less.
  • the compression elastic modulus upon compression of 30% is 300N / mm 2 or more 4000 N / mm 2 or less.
  • the resin particles are a polymer of a polymerizable component containing a plurality of polymerizable compounds.
  • the polymerizable component constituting the polymer contains a crosslinkable compound, and the content of the crosslinkable compound is 30% by weight in 100% by weight of the polymerizable component. % Or more.
  • the polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group, and is contained in 100% by weight of the polymerizable component.
  • the content of the crosslinkable compound is less than 30% by weight, and the content of the polymerizable compound having a polar functional group is 0.5% by weight or more and 30% by weight or less in 100% by weight of the polymerizable component. ..
  • the polymerizable compound having a polar functional group includes a polymerizable compound having a hydroxyl group, a polymerizable compound having a carboxy group, or a polymerizable compound having a phosphoric acid group. ..
  • the crosslinkable compound is divinylbenzene, tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate. , Pentaerythritol tetra (meth) acrylate, glycerindi (meth) acrylate, or 2- (meth) acrylic leuroxyethyl acid phosphate.
  • the resin particles are used as a spacer, or a conductive portion is formed on the surface of the resin particles in order to obtain conductive particles having the conductive portion. Used.
  • a conductive particle comprising the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • the conductive particles further comprise an insulating material disposed on the outer surface of the conductive portion.
  • the conductive particles have protrusions on the outer surface of the conductive portion.
  • a conductive material containing conductive particles and a binder resin wherein the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of a conductive particle or a conductive material containing the conductive particle and a binder resin.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles, and the first electrode and the second electrode are electrically formed by the conductive particles.
  • a connected, connected structure is provided.
  • the ratio of the OH - ion intensity to the total intensity of all negative ions is determined. It is 2.0 ⁇ 10-2 or more. Since the resin particles according to the present invention have the above-mentioned structure, aggregation can be effectively suppressed, and the electrodes are electrically connected using the conductive particles having a conductive portion formed on the surface. In this case, the adhesion to the conductive portion can be effectively increased, and the connection resistance can be effectively reduced.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of an electronic component device using the resin particles according to the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing a joint portion in the electronic component device shown in FIG.
  • the resin particles according to the present invention have the above-mentioned structure, aggregation can be effectively suppressed, and the electrodes are electrically connected using the conductive particles having a conductive portion formed on the surface. In this case, the adhesion to the conductive portion can be effectively increased, and the connection resistance can be effectively reduced.
  • the intensity of OH - ions satisfies a specific relationship, so that a relatively large amount is present on the outer surface of the resin particles. Hydroxyl groups can be placed.
  • the adhesion between the resin particles and the conductive portion can be enhanced by the interaction with the hydroxyl groups, effectively causing cracks in the conductive portion and peeling of the conductive portion. It can be suppressed.
  • the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively enhanced.
  • connection structure in which the electrodes are electrically connected by the conductive particles using the resin particles according to the present invention is left for a long time under high temperature and high humidity conditions, the connection resistance is unlikely to increase further. , Continuity failure is less likely to occur.
  • the resin particles according to the present invention can effectively suppress the aggregation of the resin particles.
  • the dispersed state can be kept good and the particle size of the spacer can be made uniform. Further, it can be sufficiently brought into contact with the member to be connected and the like, and a sufficient gap control effect can be obtained.
  • OH - ions when a negative spectrum is obtained on the outer surface of the resin particles by time-of-flight secondary ion mass spectrometry (TOF-SIMS), OH - ions with respect to the total intensity of all negative ions.
  • the ratio of OH - ionic strength / total negative ionic strength is 2.0 ⁇ 10 -2 or more.
  • the outer surface of the resin particles is sputtered twice, and the ratio (total of OH - ionic strength / total negative ion strength) is measured using TOF-SIMS. Measured in a state where 40 to 60 of the above resin particles are dispersed in a region of 500 ⁇ m ⁇ 500 ⁇ m, and the ratio until the number of detection integration reaches 50 times (OH - ionic strength / total negative ion strength) The average value of) is adopted. If it is difficult to arrange 40 to 60 pieces in a region of 500 ⁇ m ⁇ 500 ⁇ m due to the size of the resin particles, the number of the resin particles may be appropriately reduced for measurement.
  • a measurement result of a region having a thickness of about 2 nm from the outer surface to the inside of the resin particles can be obtained. Further, in the above measurement, it is preferable to calculate the above ratio by arithmetically averaging the ratio (total of OH - ionic strength / total negative ion strength) of three arbitrarily selected resin particles.
  • the above ratio (total of OH - ionic strength / total negative ion strength) is preferably 2.5 ⁇ 10 -2 or more, more preferably 3.0 ⁇ 10 -2 or more.
  • the upper limit of the above ratio (OH - ion strength / total negative ion strength) is not particularly limited.
  • the above ratio (total of OH - ionic strength / total negative ion strength) may be 9.0 ⁇ 10-2 or less.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • TOF-SIMS type 5" manufactured by ION TOF or the like is used.
  • a Bi 3+ ion gun is used as the primary ion source for measurement, and the conditions are 25 keV. You just have to measure.
  • an inert gas such as argon is introduced in a vacuum, a negative voltage is applied to the target to generate a glow discharge, the inert gas atom is ionized, and the gas ion collides with the surface of the target at high speed. This is a method of tapping the surface violently.
  • the surface of the target can be ground to a depth on the order of nanometers to micrometers. Specifically, for example, by performing sputtering using O 2 +, can go digging the surface of the resin particles at a depth of about 1 nm / dose. By performing the sputtering twice, the ratio of the OH - ion intensity to the total ionic strength in the region having a thickness of about 2 nm from the outer surface to the inside of the resin particles can be measured by TOF-SIMS. ..
  • the compression modulus when the resin particles were compressed 10% (10% K value) is preferably 500 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 6000 N / mm 2 or less, more preferably the 5000N / mm 2 or less, more preferably 4500N / mm 2, particularly preferably not more than 3500 N / mm 2.
  • the 10% K value is at least the above lower limit and at least the above upper limit, agglutination can be suppressed more effectively.
  • the electrodes are in close contact with the conductive portion when the electrodes are electrically connected by using conductive particles having a conductive portion formed on the surface. The property can be further effectively enhanced, and the connection resistance can be further effectively lowered.
  • the compression modulus when the resin particles were compressed 30% (30% K value) is preferably 300N / mm 2 or more, more preferably 500 N / mm 2 or more, preferably 5500N / mm 2 or less, more preferably the 4500N / mm 2 or less, more preferably 4000 N / mm 2, particularly preferably not more than 3000N / mm 2.
  • 30% K value is at least the above lower limit and at least the above upper limit, agglutination can be suppressed more effectively.
  • the electrodes are electrically connected to each other by using conductive particles having a conductive portion formed on the surface, and the electrode adheres to the conductive portion. The property can be further effectively enhanced, and the connection resistance can be further effectively lowered.
  • the compressive elastic modulus (10% K value and 30% K value) of the resin particles can be measured as follows.
  • one resin particle is compressed on a smoothing indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) under the conditions of 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. ..
  • the load value (N) and compressive displacement (mm) at this time are measured.
  • the compressive elastic modulus (10% K value or 30% K value) can be calculated by the following formula.
  • the microcompression tester for example, "Fisherscope H-100" manufactured by Fisher Co., Ltd. is used.
  • the compressive elastic modulus (10% K value or 30% K value) of the resin particles is an arithmetic mean of the compressive elastic modulus (10% K value or 30% K value) of 50 arbitrarily selected resin particles. It is preferable to calculate by doing so.
  • the compressive elastic modulus universally and quantitatively represents the hardness of the resin particles. By using the compressive elastic modulus, the hardness of the resin particles can be expressed quantitatively and uniquely.
  • the compression recovery rate of the resin particles is preferably 5% or more, more preferably 10% or more, preferably 60% or less, and more preferably 45% or less.
  • agglutination can be suppressed more effectively.
  • the compression recovery rate is equal to or higher than the lower limit and lower than the upper limit, the adhesion to the conductive portion is obtained when the electrodes are electrically connected using conductive particles having a conductive portion formed on the surface. Can be further effectively increased, and further, the connection resistance can be lowered even more effectively.
  • the compression recovery rate of the resin particles can be measured as follows.
  • the resin particles are sprayed on the sample table. For one sprayed resin particle, 30% compression deformation of the resin particle toward the center of the resin particle at 25 ° C. on the smoothing indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) using a microcompression tester. A load (reversal load value) is applied until After that, the load is removed to the origin load value (0.40 mN). The load-compressive displacement during this period can be measured, and the compression recovery rate can be calculated from the following formula. The load speed is 0.33 mN / sec. As the microcompression tester, for example, "Fisherscope H-100" manufactured by Fisher Co., Ltd. is used.
  • Compression recovery rate (%) [L2 / L1] x 100
  • L1 Compressive displacement from the origin load value to the reverse load value when a load is applied
  • L2 Unloading displacement from the inverted load value when the load is released to the origin load value
  • the use of the resin particles is not particularly limited.
  • the resin particles can be suitably used for various purposes.
  • the resin particles are preferably used as a spacer, or are preferably used to obtain conductive particles having the conductive portion by forming a conductive portion on the surface.
  • the conductive portion is formed on the surface of the resin particles.
  • the resin particles are preferably used to obtain conductive particles having the conductive portion by forming a conductive portion on the surface.
  • the conductive particles are preferably used to electrically connect the electrodes.
  • the conductive particles may be used as a gap material (spacer).
  • the resin particles are preferably used as a gap material (spacer).
  • Examples of the method of using the gap material (spacer) include a spacer for a liquid crystal display element, a spacer for gap control, and a spacer for stress relaxation.
  • the gap control spacer is used for gap control of laminated chips and electronic component devices for ensuring standoff height and flatness, and for optical components for ensuring the smoothness of the glass surface and the thickness of the adhesive layer. It can be used for gap control and the like.
  • the stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, stress relaxation of a connecting portion connecting two members to be connected, and the like. Further, when the resin particles are used as a gap material (spacer), the dispersed state can be kept good and the particle diameter of the spacer can be made uniform. Further, it can be sufficiently brought into contact with the member to be connected and the like, and a sufficient gap control effect can be obtained.
  • the resin particles are preferably used as a spacer for a liquid crystal display element, and are preferably used as a peripheral sealant for a liquid crystal display element.
  • the resin particles preferably function as spacers. Since the resin particles have good compressive deformation characteristics and good compressive fracture characteristics, the resin particles can be arranged between substrates by using the resin particles as spacers, or a conductive portion is formed on the surface and used as the conductive particles for an electrode. Spacers or conductive particles are efficiently placed between the substrates or between the electrodes when the spaces are electrically connected. Further, since the resin particles can suppress damage to the liquid crystal display element member and the like, poor connection in the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles. And display defects are less likely to occur.
  • the resin particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber.
  • the resin particles can be used as an alternative to rubber, springs, and the like.
  • the resin particles are preferably a polymer of a polymerizable component containing a plurality of polymerizable compounds.
  • the central portion of the resin particles and the surface portion of the resin particles are composed of the same polymerizable component.
  • the compounding ratio of the polymerizable component in the central portion of the resin particles and the compounding ratio of the polymerizable component in the surface portion of the resin particles may be the same or different.
  • the composition ratio of the constituent components in the central portion of the resin particles and the composition ratio of the constituent components in the surface portion of the resin particles may be the same or different.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • the central portion of the resin particles is formed of the central portion forming material and the surface portion of the resin particles is formed of the surface portion forming material.
  • the component of the central portion forming material and the component of the surface portion forming material are the same.
  • the component ratio of the central portion forming material and the component ratio of the surface portion forming material may be the same or different. Further, in the resin particles, it is preferable that a region including both the central portion forming material and the surface portion forming material exists.
  • the resin particles it is preferable that the resin particles have a region in the center portion that includes the center portion forming material and does not contain the surface portion forming material or contains the surface portion forming material in an amount of less than 25% by weight. In the resin particles, it is preferable that the resin particles have a region on the surface portion that includes the surface portion forming material and does not contain the center portion forming material or contains the center portion forming material in an amount of less than 25% by weight.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • the resin particles are preferably not core-shell particles having a core and a shell arranged on the surface of the core, and preferably do not have an interface between the core and the shell in the resin particles.
  • the resin particles preferably do not have an interface in the resin particles, and more preferably do not have an interface in which different surfaces are in contact with each other.
  • the resin particles preferably do not have a discontinuity in which a surface exists, and preferably do not have a discontinuity in which a structural surface exists.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • the polymerizable component constituting the polymer preferably contains a crosslinkable compound.
  • the content of the crosslinkable compound is preferably 30% by weight or more, preferably 40% by weight, based on 100% by weight of the polymerizable component. The above is more preferable.
  • the upper limit of the content of the crosslinkable compound is not particularly limited.
  • the content of the crosslinkable compound is preferably 80% by weight or less, more preferably 70% by weight or less, and further preferably 60% by weight or less.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • the polymerizable component constituting the polymer is a polymerizable component containing a crosslinkable compound having no polar functional group and not containing a crosslinkable compound having a polar functional group, and a polar functional group. It may be any of a polymerizable component containing a crosslinkable compound having no effect and a crosslinkable compound having a polar functional group.
  • the polymerizable component constituting the polymer may be a polymerizable component containing a crosslinkable compound having no polar functional group and not containing a crosslinkable compound having a polar functional group.
  • the polymerizable component constituting the polymer may be a polymerizable component containing a crosslinkable compound having no polar functional group and a crosslinkable compound having a polar functional group.
  • the polarity in 100% by weight of the polymerizable component is preferably 30% by weight or more, and more preferably 40% by weight or more.
  • the upper limit of the content of the crosslinkable compound having no polar functional group is not particularly limited.
  • the content of the crosslinkable compound having no polar functional group is preferably 80% by weight or less, more preferably 70% by weight or less, and further preferably 60% by weight or less.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • the polar functional group is contained in 100% by weight of the polymerizable component.
  • the total content of the crosslinkable compound having no functional group and the crosslinkable compound having a polar functional group is preferably 30% by weight or more, more preferably 40% by weight or more.
  • the upper limit of the total content of the crosslinkable compound having no polar functional group and the crosslinkable compound having a polar functional group is not particularly limited.
  • the total content of the crosslinkable compound having no polar functional group and the crosslinkable compound having a polar functional group is preferably 80% by weight or less, more preferably 70% by weight or less, and 60% by weight.
  • the resin particles satisfy the above-mentioned preferable aspects aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.
  • the polymerizable component constituting the polymer preferably contains a crosslinkable compound and a polymerizable compound having a polar functional group.
  • the content of the crosslinkable compound is 30% by weight in 100% by weight of the polymerizable component. It is preferably less than, more preferably 20% by weight or less.
  • the lower limit of the content of the crosslinkable compound is not particularly limited.
  • the content of the crosslinkable compound may be 5% by weight or more.
  • the polymerizable compound constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group
  • the polymerizable compound having the polar functional group is contained in 100% by weight of the polymerizable component.
  • the amount is preferably 0.5% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the polymerizable component constituting the polymer preferably contains a crosslinkable compound having no polar functional group and a polymerizable compound having no crosslinkability and having a polar functional group.
  • the weight of the polymerizable component is 100.
  • the content of the crosslinkable compound having no polar functional group is preferably less than 30% by weight, more preferably 20% by weight or less.
  • the lower limit of the content of the crosslinkable compound having no polar functional group is not particularly limited.
  • the content of the crosslinkable compound having no polar functional group may be 5% by weight or more.
  • the weight of the polymerizable component is 100.
  • the content of the polymerizable compound having no crosslinkability and having a polar functional group is preferably 0.5% by weight or more, more preferably 2% by weight or more, and preferably 30% by weight or less. It is preferably 20% by weight or less.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface.
  • the connection resistance can be lowered even more effectively.
  • the resin particles when a negative spectrum was obtained by time-of-flight secondary ion mass spectrometry, the ratio of OH - ionic strength to the total strength of all negative ions was 2.0 ⁇ 10. From the viewpoint of further facilitating the setting of -2 or more, the resin particles preferably satisfy any of the following relationships. 1)
  • the polymerizable component constituting the polymer contains a crosslinkable compound, and the content of the crosslinkable compound is 30% by weight or more in 100% by weight of the polymerizable component.
  • the polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group, and the content of the crosslinkable compound is 30% by weight in 100% by weight of the polymerizable component.
  • the content of the polymerizable compound having a polar functional group is 0.5% by weight or more and 30% by weight or less.
  • the ratio of the OH - ionic strength to the total strength of all negative ions can be more easily determined. It can be 0 ⁇ 10 -2 or more.
  • the polymerizable compound having the above polar functional group is not particularly limited.
  • the polar functional group is not particularly limited. Examples of the polar functional group include a hydroxyl group, a carboxy group, a sulfonic acid group and a phosphoric acid group.
  • the polymerizable compound having the polar functional group only one kind may be used, or two or more kinds may be used in combination.
  • Examples of the polymerizable compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, glycerindi (meth) acrylate, and 2-hydroxy-3-phenoxy.
  • Chrylate (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalate, and polyethylene Glycol (meth) acrylate and the like can be mentioned.
  • Examples of the polymerizable compound having a carboxy group include (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, and 2- (meth) acryloyloxyethyl succinic acid.
  • Examples of the polymerizable compound having a sulfonic acid group include 3-sulfopropyl (meth) acrylate.
  • Examples of the polymerizable compound having a phosphoric acid group include 2- (meth) acrylic leuroxyethyl acid phosphate and the like.
  • the polymerizable compound having a polar functional group preferably contains a polymerizable compound having a hydroxyl group, a polymerizable compound having a carboxy group, or a polymerizable compound having a phosphoric acid group.
  • the polymerizable compound having the polar functional group is 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, or 2- (meth) acrylic. More preferably, it contains leuroxyethyl acid phosphate.
  • the polymerizable compound having the polar functional group may contain (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, or 2- (meth) acrylic leuroxyethyl acid phosphate. More preferred.
  • aggregation can be suppressed more effectively.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.
  • the crosslinkable compound is not particularly limited.
  • examples of the crosslinkable compound include divinylbenzene, (di / tri / tetra) methylene glycol (meth) acrylate, (di / tri / tetra) ethylene glycol (meth) acrylate, and polytetramethylene glycol di (meth) acrylate, 1.
  • the crosslinkable compound preferably contains the following compound.
  • the above compounds include divinylbenzene, tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and glycerin di (meth).
  • examples thereof include acrylate and 2- (meth) acrylic leuroxyethyl acid phosphate (“light ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd.).
  • the crosslinkable compound is glycerin di (meth) acrylate, 2- (meth) acrylic leuroxyethyl acid phosphate (“light ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd.), or pentaerythritol tri (meth). More preferably, it contains an acrylate.
  • the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively.
  • the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.
  • the polymerizable compound having the polar functional group may be a crosslinkable compound.
  • the crosslinkable compound may be a polymerizable compound having a polar functional group.
  • the polymerizable component contains a compound having a crosslinkability, a polar functional group and a polymerizable compound
  • the polymerizable compound contains both a crosslinkable compound and a polymerizable compound having a polar functional group.
  • the content of the crosslinkable compound includes the content of the compound having the crosslinkability, the polar functional group and the polymerizable compound.
  • the content of the polymerizable compound having the polar functional group includes the content of the compound having the crosslinkability, the polar functional group and the polymerizable compound.
  • the polymerizable component constituting the polymer does not contain or contains a non-crosslinkable compound.
  • the polymerizable component constituting the polymer does not have to contain a non-crosslinkable compound.
  • the polymerizable component constituting the polymer may contain a non-crosslinkable compound.
  • the non-crosslinkable compound may be a non-crosslinkable compound having no polar functional group. Only one kind of the non-crosslinkable compound may be used, or two or more kinds thereof may be used in combination.
  • non-crosslinkable compound examples include styrene monomers such as styrene, ⁇ -methylstyrene and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether and propylvinyl ether; vinyl acetate, vinyl butyrate and vinyl laurate.
  • Acid vinyl ester compounds such as vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Alkyl (meth) acrylates such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate.
  • Oxygen atom-containing (meth) acrylate compounds such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate; nitrile-containing simple compounds such as (meth) acrylonitrile.
  • Halogen-containing (meth) acrylate compounds such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate
  • olefin compounds such as diisobutylene, isobutylene, linearene, ethylene and propylene as ⁇ -olefin compounds
  • conjugate Examples of the diene compound include isoprene and butadiene.
  • the polymerizable component constituting the polymer contains the non-crosslinkable compound, even if the content of the non-crosslinkable compound is 1% by weight or more in 100% by weight of the polymerizable component. Well, it may be 5% by weight or more, 10% by weight or more, 20% by weight or more, 30% by weight or more, or 40% by weight or more. Good.
  • the polymerizable component constituting the polymer contains the non-crosslinkable compound, even if the content of the non-crosslinkable compound is 90% by weight or less in 100% by weight of the polymerizable component. It may be 80% by weight or less, 70% by weight or less, 60% by weight or less, or 50% by weight or less.
  • the particle size of the resin particles can be appropriately set according to the intended use.
  • the particle size of the resin particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably. It is 30 ⁇ m or less.
  • the resin particles can be more preferably used depending on the use of the conductive particles or the spacer.
  • the particle size of the resin particles is 0.5 ⁇ m or more and 500 ⁇ m or less, the resin particles can be suitably used for the purpose of conductive particles.
  • the resin particles can be suitably used for spacer applications.
  • the particle size of the resin particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the resin particles can be obtained, for example, by observing 50 arbitrary resin particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each resin particle, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each resin particle is determined as the particle size in the equivalent circle diameter. When observed with an electron microscope or an optical microscope, the average particle diameter of any 50 resin particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each resin particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the resin particles is preferably calculated by a particle size distribution measuring device.
  • the measurement can be performed as follows.
  • the coefficient of variation (CV value) of the particle size of the resin particles is preferably 10% or less, more preferably 7% or less.
  • the resin particles can be more preferably used depending on the use of the spacer and the conductive particles.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of resin particles Dn: Mean value of particle size of resin particles
  • the shape of the resin particles is not particularly limited.
  • the shape of the resin particles may be spherical, non-spherical, flat or the like.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.
  • the conductive particles 1 shown in FIG. 1 have resin particles 11 and conductive portions 2 arranged on the surface of the resin particles 11.
  • the conductive portion 2 is in contact with the surface of the resin particles 11.
  • the conductive portion 2 covers the surface of the resin particles 11.
  • the conductive particles 1 are coated particles in which the surface of the resin particles 11 is coated with the conductive portion 2.
  • the conductive portion 2 is a single-layer conductive portion (conductive layer).
  • FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.
  • the conductive particles 21 shown in FIG. 2 have resin particles 11 and conductive portions 22 arranged on the surface of the resin particles 11.
  • the conductive portion 22 as a whole has a first conductive portion 22A on the resin particle 11 side and a second conductive portion 22B on the side opposite to the resin particle 11 side.
  • the conductive portion 22 is different between the conductive particles 1 shown in FIG. 1 and the conductive particles 21 shown in FIG. That is, while the conductive particle 1 has a one-layer structure conductive portion, the conductive particle 21 has a two-layer structure first conductive portion 22A and a second conductive portion 22B. There is.
  • the first conductive portion 22A and the second conductive portion 22B may be formed as different conductive portions or may be formed as the same conductive portion.
  • the first conductive portion 22A is arranged on the surface of the resin particles 11.
  • the first conductive portion 22A is arranged between the resin particles 11 and the second conductive portion 22B.
  • the first conductive portion 22A is in contact with the resin particles 11.
  • the second conductive portion 22B is in contact with the first conductive portion 22A.
  • the first conductive portion 22A is arranged on the surface of the resin particles 11, and the second conductive portion 22B is arranged on the surface of the first conductive portion 22A.
  • FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.
  • the conductive particles 31 shown in FIG. 3 include resin particles 11, conductive portions 32, a plurality of core substances 33, and a plurality of insulating substances 34.
  • the conductive portion 32 is arranged on the surface of the resin particles 11.
  • the plurality of core substances 33 are arranged on the surface of the resin particles 11.
  • the conductive portion 32 is arranged on the surface of the resin particles 11 so as to cover the resin particles 11 and the plurality of core substances 33.
  • the conductive portion 32 is a single-layer conductive portion (conductive layer).
  • the conductive particles 31 have a plurality of protrusions 31a on the outer surface.
  • the conductive portion 32 has a plurality of protrusions 32a on the outer surface.
  • the plurality of core substances 33 raise the outer surface of the conductive portion 32.
  • the protrusions 31a and 32a are formed by raising the outer surface of the conductive portion 32 by the plurality of core substances 33.
  • the plurality of core substances 33 are embedded in the conductive portion 32.
  • the core material 33 is arranged inside the protrusions 31a and 32a.
  • a plurality of core substances 33 are used to form the protrusions 31a and 32a.
  • the conductive particles do not have to include the plurality of core substances.
  • the conductive particles 31 have an insulating substance 34 arranged on the outer surface of the conductive portion 32. At least a part of the outer surface of the conductive portion 32 is covered with the insulating substance 34.
  • the insulating substance 34 is formed of a material having an insulating property and is an insulating particle.
  • the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles do not necessarily have an insulating substance. The conductive particles do not have to include a plurality of insulating substances.
  • the metal for forming the conductive portion is not particularly limited.
  • the metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, silicon, tungsten and molybdenum. And these alloys and the like.
  • the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of further enhancing the connection reliability between the electrodes, the metal is preferably a tin-containing alloy, nickel, palladium, copper or gold, and preferably nickel or palladium.
  • the conductive portion and the outer surface portion of the conductive portion contain nickel.
  • the content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. Is 90% by weight or more.
  • the content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.
  • hydroxyl groups are often present on the surface of the conductive portion due to oxidation.
  • a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation.
  • An insulating substance can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.
  • the conductive portion may be formed by one layer.
  • the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer or an alloy layer containing tin and silver, and is preferably a gold layer. Is more preferable.
  • the connection resistance between the electrodes can be further effectively lowered. Further, when the outermost layer is a gold layer, the corrosion resistance can be further effectively enhanced.
  • the method of forming the conductive portion on the surface of the resin particles is not particularly limited.
  • Examples of the method for forming the conductive portion include a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating a metal powder or a paste containing a metal powder and a binder on the surface of resin particles. And so on. Since the formation of the conductive portion is simple, the method by electroless plating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the particle size of the conductive particles is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, particularly preferably. Is 30 ⁇ m or less.
  • the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the contact area between the conductive particles and the electrodes becomes sufficiently large. It becomes difficult to form agglomerated conductive particles when forming the conductive portion.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles.
  • the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle diameter of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than spherical, it is assumed to be a true sphere corresponding to the volume. Means the diameter of.
  • the particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the circle equivalent diameter is substantially equal to the average particle diameter in the sphere equivalent diameter. In the particle size distribution measuring device, the particle size of each conductive particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the particle size of the conductive particles is preferably calculated by a particle size distribution measuring device.
  • the thickness of the conductive portion is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, still more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers. When the thickness of the conductive portion is at least the above lower limit and at least the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not too hard and the conductive particles are sufficiently deformed at the time of connection between the electrodes. To do.
  • the thickness of the conductive portion of the outermost layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably. Is 0.1 ⁇ m or less.
  • the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the coating by the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficient. To be low. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.
  • the thickness of the conductive portion can be measured by observing the cross section of the conductive particles, for example, using a transmission electron microscope (TEM). Regarding the thickness of the conductive portion, it is preferable to calculate the average value of the thickness of any of the conductive portions at five points as the thickness of the conductive portion of one conductive particle, and the average value of the thickness of the entire conductive portion is one. It is more preferable to calculate as the thickness of the conductive portion of the conductive particles. The thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 10 arbitrary conductive particles.
  • TEM transmission electron microscope
  • the conductive particles preferably have protrusions on the outer surface of the conductive portion. It is more preferable that the conductive particles have a plurality of protrusions on the outer surface of the conductive portion. Since the conductive particles have a plurality of protrusions on the outer surface of the conductive portion, the conduction reliability between the electrodes can be further improved.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. Further, an oxide film is often formed on the surface of the conductive portion of the conductive particles.
  • the electrodes and the conductive particles can be brought into contact with each other more reliably, and the connection resistance between the electrodes can be lowered even more effectively.
  • the conductive particles have an insulating substance on the surface, or when the conductive particles are dispersed in the binder resin and used as a conductive material, the protrusions of the conductive particles cause the conductive particles to be connected to the electrode.
  • the insulating material and binder resin between them are effectively eliminated. Therefore, the conduction reliability between the electrodes can be further effectively improved.
  • the core material does not necessarily have to be used in order to form protrusions on the surface of the conductive portion of the conductive particles.
  • a method of forming protrusions on the surface of the conductive particles As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive portion by electroless plating after adhering a core substance to the surface of the resin particles, and a method of forming a conductive portion on the surface of the resin particles by electroless plating. Examples thereof include a method in which a core material is attached after the portion is formed, and then a conductive portion is formed by electroless plating. Further, it is not necessary to use the core substance in order to form the protrusions.
  • Examples of the method for forming the protrusions include the following methods.
  • metal nuclei are generated by electroless plating, metal nuclei are attached to the surface of resin particles or conductive parts, and the conductive parts are further formed by electroless plating. how to.
  • the material of the core substance is not particularly limited.
  • Examples of the material of the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene and the like.
  • Examples of the non-conductive substance include silica, alumina, barium titanate and zirconia. Metals are preferred because they can increase conductivity and effectively reduce connection resistance.
  • the core material is preferably metal particles. As the metal that is the material of the core substance, the metal mentioned as the metal for forming the conductive portion can be appropriately used.
  • the conductive particles further include an insulating substance arranged on the outer surface of the conductive portion.
  • an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction rather than between the upper and lower electrodes.
  • the insulating substance is preferably insulating particles because the insulating substance can be more easily removed during pressure bonding between the electrodes.
  • Materials of the insulating substance include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermosetting resins, water-soluble resins and the like. Can be mentioned.
  • As the material of the insulating substance only one kind may be used, or two or more kinds may be used in combination.
  • Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers.
  • thermosetting resin examples include epoxy resin, phenol resin, melamine resin and the like.
  • cross-linking of the thermoplastic resin include introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like.
  • a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
  • Examples of the method of arranging the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum deposition methods. Since the insulating substance is difficult to be detached, a method of arranging the insulating substance on the surface of the conductive portion via a chemical bond is preferable.
  • the outer surface of the conductive portion and the surface of the insulating substance may each be coated with a compound having a reactive functional group.
  • the outer surface of the conductive portion and the surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the surface of the insulating substance via a polymer electrolyte such as polyethyleneimine.
  • the conductive material according to the present invention includes the above-mentioned conductive particles and a binder.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • the conductive particles are preferably dispersed in a binder and used, and preferably dispersed in a binder and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a conductive material for circuit connection.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. Only one kind of the binder resin may be used, or two or more kinds may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like.
  • the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins.
  • Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene.
  • -Hydrogen additives for styrene block copolymers and the like can be mentioned.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizer. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
  • the method for dispersing the conductive particles in the binder resin can be a conventionally known dispersion method and is not particularly limited.
  • Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.
  • the viscosity ( ⁇ 25) of the conductive material at 25 ° C. is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, and more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the type and amount of the compounding components.
  • the viscosity ( ⁇ 25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material can be used as a conductive paste, a conductive film, or the like.
  • the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is at least the above lower limit and at least the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connecting target member connected by the conductive material is further improved. ..
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, still more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes is further effective. Can be enhanced to.
  • connection structure can be obtained by connecting the members to be connected using the above-mentioned conductive particles or a conductive material containing the above-mentioned conductive particles and a binder resin.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the second connection target member. It is provided with a connecting portion that connects the member to be connected.
  • the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder resin.
  • the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.
  • the first electrode and the second electrode are electrically connected by the conductive particles.
  • the connecting portion itself is the conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles.
  • the conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
  • FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • connection structure 41 shown in FIG. 4 is a connection connecting the first connection target member 42, the second connection target member 43, the first connection target member 42, and the second connection target member 43.
  • a unit 44 is provided.
  • the connecting portion 44 is formed of a conductive material containing the conductive particles 1 and the binder resin.
  • the conductive particles 1 are shown schematically. Instead of the conductive particles 1, other conductive particles 21 and 31 may be used.
  • the first connection target member 42 has a plurality of first electrodes 42a on the surface (upper surface).
  • the second connection target member 43 has a plurality of second electrodes 43a on the surface (lower surface).
  • the first electrode 42a and the second electrode 43a are electrically connected by one or more conductive particles 1. Therefore, the first and second connection target members 42 and 43 are electrically connected by the conductive particles 1.
  • the method for manufacturing the connection structure is not particularly limited.
  • a method for manufacturing a connection structure a method in which the conductive material is arranged between a first connection target member and a second connection target member, a laminate is obtained, and then the laminate is heated and pressurized. And so on.
  • the pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less.
  • the temperature at the time of heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower.
  • the first connection target member and the second connection target member are not particularly limited.
  • Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards.
  • the first connection target member and the second connection target member are preferably electronic components.
  • the conductive material is preferably a conductive material for connecting electronic components.
  • the conductive paste is a paste-like conductive material, and is preferably coated on the connection target member in the paste-like state.
  • connection target member is a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film.
  • the connection target member is preferably a flexible substrate, and is preferably a connection target member in which electrodes are arranged on the surface of the resin film.
  • the flexible substrate is a flexible printed circuit board or the like, the flexible substrate generally has electrodes on its surface.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
  • the resin particles can be suitably used as a spacer for a liquid crystal display element.
  • the first connection target member may be a first liquid crystal display element member.
  • the second connection target member may be a second liquid crystal display element member.
  • the first liquid crystal display element member and the second liquid crystal display element member are in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. It may be a sealing portion that seals the outer periphery of and.
  • the resin particles can also be used as a peripheral sealant for a liquid crystal display element.
  • the liquid crystal display element includes a first liquid crystal display element member and a second liquid crystal display element member.
  • the first liquid crystal display element member and the second liquid crystal display element member are in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other.
  • a seal portion that seals the outer periphery of the liquid crystal, and a liquid crystal that is arranged inside the seal portion between the first liquid crystal display element member and the second liquid crystal display element member. Be prepared.
  • the liquid crystal dropping method is applied, and the sealing portion is formed by thermosetting the sealing agent for the liquid crystal dropping method.
  • the arrangement density of the spacers for the liquid crystal display element per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less.
  • the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform.
  • the arrangement density is 1000 pieces / mm 2 or less, the contrast of the liquid crystal display element becomes even better.
  • the resin particles or conductive particles described above are arranged between the first ceramic member and the second ceramic member on the outer peripheral portion between the first ceramic member and the second ceramic member, and are a gap control material and a conductive material. It can also be used as a connecting material.
  • FIG. 5 is a cross-sectional view showing an example of an electronic component device using the resin particles according to the present invention.
  • FIG. 6 is an enlarged cross-sectional view showing a joint portion in the electronic component device shown in FIG.
  • the electronic component device 81 shown in FIGS. 5 and 6 includes a first ceramic member 82, a second ceramic member 83, a joint portion 84, an electronic component 85, and a lead frame 86.
  • the first and second ceramic members 82 and 83 are each made of a ceramic material.
  • the first and second ceramic members 82 and 83 are, for example, housings, respectively.
  • the first ceramic member 82 is, for example, a substrate.
  • the second ceramic member 83 is, for example, a lid.
  • the first ceramic member 82 has a convex portion protruding toward the second ceramic member 83 side (upper side) on the outer peripheral portion.
  • the first ceramic member 82 has a recess on the second ceramic member 83 side (upper side) that forms an internal space R for accommodating the electronic component 85.
  • the first ceramic member 82 does not have to have a convex portion.
  • the second ceramic member 83 has a convex portion protruding toward the first ceramic member 82 side (lower side) on the outer peripheral portion.
  • the second ceramic member 83 has a recess on the first ceramic member 82 side (lower side) that forms an internal space R for accommodating the electronic component 85.
  • the second ceramic member 83 does not have to have a convex portion.
  • the internal space R is formed by the first ceramic member 82 and the second ceramic member 83.
  • the joint portion 84 joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. Specifically, the joint portion 84 joins the convex portion of the outer peripheral portion of the first ceramic member 82 and the convex portion of the outer peripheral portion of the second ceramic member 83.
  • the package is formed by the first and second ceramic members 82 and 83 joined by the joining portion 84.
  • the interior space R is formed by the package.
  • the joint portion 84 seals the internal space R in a liquid-tight and airtight manner.
  • the joint portion 84 is a sealing portion.
  • the electronic component 85 is arranged in the internal space R of the package. Specifically, the electronic component 85 is arranged on the first ceramic member 82. In this embodiment, two electronic components 85 are used.
  • the joint portion 84 includes a plurality of resin particles 11 and glass 84B.
  • the bonding portion 84 is formed by using a bonding material containing a plurality of resin particles 11 different from the glass particles and the glass 84B.
  • This bonding material is a bonding material for ceramic packages.
  • the bonding material may contain the above-mentioned conductive particles instead of the above-mentioned resin particles.
  • the bonding material may contain a solvent or a resin.
  • glass 84B such as glass particles is melted and bonded and then solidified.
  • Examples of electronic components include sensor elements, MEMS, bare chips, and the like.
  • Examples of the sensor element include a pressure sensor element, an acceleration sensor element, a CMOS sensor element, a CCD sensor element, and a housing of the various sensor elements.
  • the lead frame 86 is arranged between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the lead frame 86 extends to the internal space R side and the external space side of the package.
  • the terminal of the electronic component 85 and the lead frame 86 are electrically connected via a wire.
  • the joint portion 84 partially directly joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, and partially indirectly joins them.
  • the joint portion 84 is the outer peripheral portion of the first ceramic member 82 at the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the outer peripheral portion of the second ceramic member 83 are indirectly joined via the lead frame 86.
  • the first ceramic member 82 is in contact with the lead frame 86
  • the lead frame 86 is in contact with the lead frame 86.
  • the joint portion 84 is a portion between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 where there is no lead frame 86, and the outer peripheral portion of the first ceramic member 82 and the second ceramic It is directly joined to the outer peripheral portion of the member 83.
  • the joint portion 84 is formed with the first ceramic member 82 and the second ceramic member 83. Is in contact with.
  • the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 In the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83.
  • the distance between the ceramic particles and the ceramic particles 11 is controlled by the plurality of resin particles 11 contained in the joint portion 84.
  • the joint portion may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member.
  • An electrical connection method other than the lead frame may be adopted.
  • the electronic component device includes, for example, a first ceramic member formed of a ceramic material, a second ceramic member formed of a ceramic material, a joint portion, and an electronic component. May be provided.
  • the joint portion may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member.
  • the package may be formed by the first and second ceramic members joined by the joining portion.
  • the electronic component may be arranged in the internal space of the package, and the joint may include a plurality of resin particles and glass.
  • the ceramic package bonding material is used in the electronic component device to form the bonding portion, and includes resin particles and glass.
  • An electrical connection method containing only resin particles and not glass may be adopted.
  • the joint portion may contain the above-mentioned conductive particles instead of the above-mentioned resin particles.
  • Example 1 Preparation of resin particles Polystyrene (PS) particles having an average particle diameter of 0.80 ⁇ m were prepared as seed particles.
  • a mixed solution seed particle dispersion was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5 wt% aqueous solution of polyvinyl alcohol. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
  • divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.) was prepared as a crosslinkable compound. 100 parts by weight of divinylbenzene, 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.) and 2 parts by weight of benzoyl peroxide (“Niper BW” manufactured by Nichiyu Co., Ltd.) 8 parts by weight of triethanolamine lauryl sulfate, 100 parts by weight of ethanol, and 1000 parts by weight of ion-exchanged water were further added to prepare an emulsion.
  • V-601 2,2'-azobis (methyl isobutyrate)
  • benzoyl peroxide (“Niper BW” manufactured by Nichiyu Co., Ltd.) 8 parts by weight of triethanolamine lauryl sulfate
  • 100 parts by weight of ethanol 100 parts by weight of ethanol
  • the emulsion was further added to the mixed solution in the separable flask, and the mixture was stirred for 4 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen.
  • Thermosetting compound A Epoxy compound (“EP-3300P” manufactured by Nagase ChemteX Corporation)
  • Thermosetting compound B Epoxy compound ("EPICLON HP-4032D” manufactured by DIC Corporation)
  • Thermosetting compound C Epoxy compound ("Epogosei PT” manufactured by Yokkaichi Chemical Co., Ltd., polytetramethylene glycol diglycidyl ether)
  • Thermosetting agent Thermal cation generator (Sun Aid "SI-60” manufactured by Sanshin Chemical Co., Ltd.)
  • Filler Silica (average particle size 0.25 ⁇ m)
  • a conductive material (anisotropic conductive paste) was prepared as follows.
  • thermosetting compound A (Method for producing conductive material (anisotropic conductive paste)) A compound was obtained by blending 10 parts by weight of the thermosetting compound A, 10 parts by weight of the thermosetting compound B, 15 parts by weight of the thermosetting compound C, 5 parts by weight of the thermosetting agent, and 20 parts by weight of the filler. Further, the obtained conductive particles were added so that the content in 100% by weight of the formulation was 10% by weight, and then stirred at 2000 rpm for 5 minutes using a planetary stirrer to obtain a conductive material (differential). Conductive paste) was obtained.
  • connection structure As the first connection target member, a glass substrate having an aluminum electrode pattern having an L / S of 20 ⁇ m / 20 ⁇ m on the upper surface was prepared. Further, as a second connection target member, a semiconductor chip having a gold electrode pattern (gold electrode thickness 20 ⁇ m) having an L / S of 20 ⁇ m / 20 ⁇ m on the lower surface was prepared.
  • a conductive material (anisotropic conductive paste) immediately after production was applied to the upper surface of the glass substrate so as to have a thickness of 30 ⁇ m to form a conductive material (anisotropic conductive paste) layer.
  • the semiconductor chips were laminated on the upper surface of the conductive material (anisotropic conductive paste) layer so that the electrodes face each other.
  • the pressure heating head is placed on the upper surface of the semiconductor chip while adjusting the temperature of the head so that the temperature of the conductive material (anisotropic conductive paste) layer becomes 170 ° C.
  • the layer was cured under the conditions of 170 ° C., 1 MPa, and 15 seconds to obtain a connected structure.
  • Example 2 When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound), 50 parts by weight of divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.) and pentaerythritol triacrylate (“Light Acrylate PE-” manufactured by Kyoei Co., Ltd. 4A ”) Changed to 50 parts by weight. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.
  • Example 3 When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 80 parts by weight of polytetramethylene glucol diacrylate (“light acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.). When producing the resin particles, 20 parts by weight of styrene (manufactured by NS Styrene Monomer Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.
  • Example 4 When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 60 parts by weight of 1,4-butanediol dimethacrylate (“Light Ester 1.4BG” manufactured by Kyoeisha Chemical Co., Ltd.). In producing the resin particles, 40 parts by weight of isobornyl acrylate (“Light Acrylate IB-XA” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.
  • Example 5 When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 30 parts by weight of polytetramethylene glucol diacrylate (“light acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.). When producing the resin particles, 70 parts by weight of isobornyl acrylate (“Light Acrylate IB-XA” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.
  • Example 6 When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 50 parts by weight of glycerin dimethacrylate (“Light Ester G-101P” manufactured by Kyoeisha Chemical Co., Ltd.). In producing the resin particles, 50 parts by weight of cyclohexyl methacrylate (“light ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.
  • Example 7 When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 20 parts by weight of divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.). When producing resin particles, 79.5 parts by weight of cyclohexyl methacrylate (“Light Ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) as a non-crosslinkable compound and methacrylic acid (“Light Ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) as a polymerizable compound having a polar functional group are used. Light ester A ”) 0.5 parts by weight was further used. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.
  • Example 8 When preparing the resin particles, the polystyrene particles (seed particles) having an average particle diameter of 0.80 ⁇ m were changed to polystyrene particles having an average particle diameter of 3 ⁇ m.
  • 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 5 parts by weight of polytetramethylene glucol diacrylate (“Light Acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.).
  • the thickness of the nickel layer was changed from 0.1 ⁇ m to 1 ⁇ m.
  • the thickness of the nickel layer was changed from 0.1 ⁇ m to 1 ⁇ m.
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) for resin particles
  • TOF-SIMS Time-of-flight secondary ion mass spectrometry
  • TOF-SIMS Time-of-flight secondary ion mass spectrometry
  • TOF-SIMS Time-of-flight secondary ion mass spectrometry
  • TOF-SIMS Time-of-flight secondary ion mass spectrometry
  • Cohesiveness of resin particles The cohesiveness of the resin particles was evaluated by measuring the sedimentation rate when the obtained resin particles were mixed with an organic solvent and allowed to stand.
  • a mixed solution is prepared by mixing 2.5 g of the obtained resin particles and 25 mL of acetone, and the prepared mixed solution is ultrasonically used for 1 minute with an ultrasonic cleaner (“VS-1003” manufactured by AS ONE Corporation). Dispersed. Then, it was placed in a 20 mL glass measuring cylinder and allowed to stand.
  • the measured sedimentation velocity was calculated by confirming the sedimentation of the resin particles every 60 minutes.
  • the ratio of the theoretical sedimentation velocity to the actual sedimentation velocity [theoretical sedimentation velocity (m / h) / measured sedimentation velocity value (m / h)]) was calculated and judged according to the following criteria.
  • Theoretical sedimentation velocity (m / h) D p 2 ( ⁇ p - ⁇ f ) g / 18 ⁇ D p : Particle diameter (m) of resin particles ⁇ p : Density of resin particles (kg / m 3 ) ⁇ f : Acetone density (kg / m 3 ): 784 kg / m 3 g: Gravitational acceleration (m / s) ⁇ : Acetone viscosity (kg / m ⁇ s): 0.00032 kg / m ⁇ s
  • a dry automatic densitometer (“Acupic” manufactured by Shimadzu Corporation) was used to measure the density of resin particles.
  • 1 g of the resin particles was immersed in 100 g of methanol at 25 ° C. for 20 hours, and then vacuum dried at 40 ° C. for 12 hours.
  • Thickness of conductive part The obtained conductive particles were added to "Technobit 4000” manufactured by Kulzer and dispersed so as to have a content of 30% by weight to prepare an embedded resin body for inspection. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-TEM field emission transmission electron microscope
  • connection structure Adhesion between resin particles and conductive parts
  • the conductive particles in the connection portion were observed using a scanning electron microscope (“Regulus 8220” manufactured by Hitachi High-Technology Co., Ltd.).
  • the conductive portion arranged on the surface of the resin particles it was confirmed whether or not the conductive portion was cracked or the conductive portion was peeled off. The number of conductive particles observed was 100.
  • the adhesion between the resin particles and the conductive portion was judged according to the following criteria.
  • Average value of connection resistance is 1.5 ⁇ or less ⁇ : The average value of the connection resistance exceeds 1.5 ⁇ and 2.0 ⁇ or less. ⁇ : The average value of the connection resistance exceeds 2.0 ⁇ and 5.0 ⁇ or less. ⁇ : The average value of the connection resistance exceeds 5.0 ⁇ and is 10 ⁇ or less. X: The average value of the connection resistance exceeds 10 ⁇
  • connection reliability after high temperature and high humidity conditions The 100 connection structures obtained in the above (8) evaluation of connection reliability were left at 85 ° C. and 85% RH for 100 hours. For 100 connection structures after being left to stand, it was evaluated whether or not there was a conduction failure between the upper and lower electrodes. The connection reliability after high temperature and high humidity conditions was judged according to the following criteria.
  • XX Of the 100 connection structures, the number of poor continuity is 1 or less. ⁇ : Of the 100 connection structures, the number of poor continuity is 2 or more and 5 or less. ⁇ : Of the 100 connection structures, the number of poor continuity is 6 or more and 10 or less. X: Of the 100 connection structures, 11 or more have poor continuity.
  • Tables 1 and 2 show the materials used for producing the resin particles of Examples 1 to 8 and Comparative Examples 1 and 2. The results are shown in Tables 3 and 4 below.
  • Example of use as a spacer for gap control Fabrication of bonding materials for ceramic packages In Examples 1 to 8, a joint for a ceramic package containing 30 parts by weight of the obtained resin particles and 70 parts by weight of glass (composition: Ag-V-Te-W-P-W-Ba-O, melting point 264 ° C.). Obtained the material.
  • the electronic component device shown in FIG. 5 was manufactured using the obtained bonding material. Specifically, the bonding material was applied to the outer peripheral portion of the first ceramic member by a screen printing method. After that, the second ceramic member was installed facing each other, the joint portion was irradiated with a semiconductor laser and fired, and the first ceramic member and the second ceramic member were joined.
  • the distance between the first ceramic member and the second ceramic member was well regulated. Moreover, the obtained electronic component device worked well. In addition, the airtightness inside the package was well maintained. In addition, the resin particles were well dispersed at the joint.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention provides resin particles which are able to be effectively suppressed in aggregation, and which are capable of effectively enhancing adhesion to conductive parts if conductive particles are obtained by forming the conductive parts on the surfaces of the resin particles so as to be used for electrical connection between electrodes, while being also capable of effectively lowering the connection resistance. With respect to the resin particles according to the present invention, the ratio of the OH- ion strength to the total strength of all negative ions in the outer surfaces of the resin particles is 2.0 × 10-2 or more if a negative spectrum is obtained by means of time-of-flight secondary ion mass spectrometry.

Description

樹脂粒子、導電性粒子、導電材料及び接続構造体Resin particles, conductive particles, conductive materials and connecting structures

 本発明は、重合性成分の重合体である樹脂粒子に関する。また、本発明は、上記樹脂粒子を用いた導電性粒子、導電材料及び接続構造体に関する。

The present invention relates to resin particles which are polymers of polymerizable components. The present invention also relates to conductive particles, conductive materials and connecting structures using the above resin particles.

 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。

Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the anisotropic conductive material, conductive particles are dispersed in the binder resin.

 上記異方性導電材料は、フレキシブルプリント基板(FPC)、ガラス基板、ガラスエポキシ基板及び半導体チップなどの様々な接続対象部材の電極間を電気的に接続し、接続構造体を得るために用いられている。また、上記導電性粒子として、基材粒子と、該基材粒子の表面上に配置された導電層とを有する導電性粒子が用いられることがある。上記基材粒子として、樹脂粒子が用いられることがある。

The anisotropic conductive material is used to electrically connect electrodes of various connection target members such as a flexible printed circuit board (FPC), a glass substrate, a glass epoxy substrate, and a semiconductor chip to obtain a connection structure. ing. Further, as the conductive particles, conductive particles having a base material particles and a conductive layer arranged on the surface of the base material particles may be used. Resin particles may be used as the base particles.

 上記導電性粒子の一例として、下記の特許文献1では、合成樹脂微粒子と、その表面に形成された金属膜とを備える金属被覆微粒子が開示されている。上記金属被覆微粒子では、上記合成樹脂微粒子が、カルボキシル基含有モノマーと多官能モノマーとを含有するモノマー混合物を重合させた共重合体から構成されている。

As an example of the conductive particles, Patent Document 1 below discloses metal-coated fine particles including synthetic resin fine particles and a metal film formed on the surface thereof. In the metal-coated fine particles, the synthetic resin fine particles are composed of a copolymer obtained by polymerizing a monomer mixture containing a carboxyl group-containing monomer and a polyfunctional monomer.

 また、2つの接続対象部材等(被着体)を接着するために、様々な接着剤が用いられている。該接着剤により形成される接着層の厚みを均一にし、2つの接続対象部材等(被着体)の間隔(ギャップ)を制御するために、接着剤にギャップ材(スペーサ)が配合されることがある。上記ギャップ材(スペーサ)として、樹脂粒子が用いられることがある。

In addition, various adhesives are used to bond the two members to be connected (adhesive body) and the like. A gap material (spacer) is added to the adhesive in order to make the thickness of the adhesive layer formed by the adhesive uniform and to control the distance (gap) between the two members to be connected (adhesive). There is. Resin particles may be used as the gap material (spacer).

特開平10-259253号公報Japanese Unexamined Patent Publication No. 10-259253

 近年、導電性粒子を含む導電材料や接続材料を用いて電極間を電気的に接続する際に、比較的低い圧力であっても、電極間を電気的に確実に接続し、接続抵抗を低くすることが望まれている。例えば、液晶表示装置の製造方法において、FOG工法におけるフレキシブル基板の実装時には、ガラス基板上に異方性導電材料を配置し、フレキシブル基板を積層し、熱圧着が行われている。近年、液晶パネルの狭額縁化やガラス基板の薄型化が進行している。この場合に、フレキシブル基板の実装時に、高い圧力及び高い温度で熱圧着を行うと、フレキシブル基板に歪みが生じ、表示むらが発生することがある。従って、FOG工法におけるフレキシブル基板の実装時には、比較的低い圧力で熱圧着を行うことが望ましい。また、FOG工法以外でも、熱圧着時の圧力や温度を比較的低くすることが求められることがある。

In recent years, when electrically connecting electrodes using a conductive material or a connecting material containing conductive particles, the electrodes are reliably electrically connected even at a relatively low pressure, and the connection resistance is lowered. It is desired to do. For example, in the manufacturing method of a liquid crystal display device, when mounting a flexible substrate in the FOG method, an anisotropic conductive material is arranged on the glass substrate, the flexible substrate is laminated, and thermocompression bonding is performed. In recent years, the frame of the liquid crystal panel has been narrowed and the glass substrate has been made thinner. In this case, if thermocompression bonding is performed at a high pressure and a high temperature when the flexible substrate is mounted, the flexible substrate may be distorted and display unevenness may occur. Therefore, when mounting a flexible substrate in the FOG method, it is desirable to perform thermocompression bonding at a relatively low pressure. In addition to the FOG method, it may be required to relatively reduce the pressure and temperature during thermocompression bonding.

 従来の樹脂粒子を用いた導電性粒子として用いる場合には、比較的低い圧力で電極間を電気的に接続すると、接続抵抗が高くなることがある。この原因としては、導電性粒子が電極(被着体)に十分に接触しないことや、樹脂粒子と該樹脂粒子の表面上に配置された導電部との密着性が低く、導電部が割れたり剥離したりすることが挙げられる。従来の樹脂粒子では、樹脂粒子と該樹脂粒子の表面上に配置された導電部との密着性の向上に限界があり、樹脂粒子と該樹脂粒子の表面上に配置された導電部との密着性を十分に高めることが困難なことがある。

When used as conductive particles using conventional resin particles, if the electrodes are electrically connected at a relatively low pressure, the connection resistance may increase. The cause of this is that the conductive particles do not sufficiently contact the electrode (adhesive body), the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles is low, and the conductive portion is cracked. It may be peeled off. In the conventional resin particles, there is a limit in improving the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles, and the adhesion between the resin particles and the conductive portion arranged on the surface of the resin particles is limited. It can be difficult to get enough sex.

 また、従来の樹脂粒子では、めっきにより導電部(めっき層)を形成する際に、樹脂粒子同士が凝集し、めっきを良好に実施することが困難な場合がある。結果として、導電性粒子の粒子径がばらついたり、導電性粒子における導電部の厚みがばらついたりして、導電性粒子が電極に均一に接触せず、接続抵抗が高くなることがある。

Further, with conventional resin particles, when a conductive portion (plating layer) is formed by plating, the resin particles may aggregate with each other, making it difficult to perform plating well. As a result, the particle size of the conductive particles may vary, or the thickness of the conductive portion of the conductive particles may vary, so that the conductive particles do not come into uniform contact with the electrodes and the connection resistance may increase.

 また、従来の樹脂粒子をギャップ材(スペーサ)として用いる場合には、分散状態を良好に保つことが困難であり、樹脂粒子同士が凝集することがある。また、従来の樹脂粒子では、樹脂粒子が接続対象部材等(被着体)に十分に接触せず、十分なギャップ制御効果が得られないことがある。

Further, when the conventional resin particles are used as the gap material (spacer), it is difficult to maintain a good dispersed state, and the resin particles may aggregate with each other. Further, with the conventional resin particles, the resin particles may not sufficiently contact the member to be connected or the like (adhesive body), and a sufficient gap control effect may not be obtained.

 本発明の目的は、凝集を効果的に抑制することができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる樹脂粒子を提供することである。また、本発明の目的は、上記樹脂粒子を用いた導電性粒子、導電材料及び接続構造体を提供することである。

An object of the present invention is that aggregation can be effectively suppressed, and when conductive particles having a conductive portion formed on the surface are used to electrically connect the electrodes, the adhesion to the conductive portion is effective. It is an object of the present invention to provide resin particles which can be effectively increased and further can effectively reduce the connection resistance. Another object of the present invention is to provide conductive particles, a conductive material, and a connecting structure using the above resin particles.

 本発明の広い局面によれば、樹脂粒子の外表面において、飛行時間型二次イオン質量分析法により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比が、2.0×10-2以上である、樹脂粒子が提供される。

According to a broad aspect of the present invention, the ratio of OH - ionic strength to the total strength of all negative ions on the outer surface of the resin particles when a negative spectrum is obtained by time-of-flight secondary ion mass spectrometry. , 2.0 × 10-2 or higher, resin particles are provided.

 本発明に係る樹脂粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が、500N/mm以上4500N/mm以下である。

In a specific aspect of the resin particles according to the present invention, the compression elastic modulus of when compressed 10%, it is 500 N / mm 2 or more 4500N / mm 2 or less.

 本発明に係る樹脂粒子のある特定の局面では、30%圧縮したときの圧縮弾性率が、300N/mm以上4000N/mm以下である。

In a specific aspect of the resin particles according to the present invention, the compression elastic modulus upon compression of 30%, is 300N / mm 2 or more 4000 N / mm 2 or less.

 本発明に係る樹脂粒子のある特定の局面では、前記樹脂粒子が、複数の重合性化合物を含む重合性成分の重合体である。

In a specific aspect of the resin particles according to the present invention, the resin particles are a polymer of a polymerizable component containing a plurality of polymerizable compounds.

 本発明に係る樹脂粒子のある特定の局面では、前記重合体を構成する前記重合性成分が、架橋性化合物を含み、前記重合性成分100重量%中、前記架橋性化合物の含有量が30重量%以上である。

In a specific aspect of the resin particles according to the present invention, the polymerizable component constituting the polymer contains a crosslinkable compound, and the content of the crosslinkable compound is 30% by weight in 100% by weight of the polymerizable component. % Or more.

 本発明に係る樹脂粒子のある特定の局面では、前記重合体を構成する前記重合性成分が、架橋性化合物と、極性官能基を有する重合性化合物とを含み、前記重合性成分100重量%中、前記架橋性化合物の含有量が30重量%未満であり、前記重合性成分100重量%中、前記極性官能基を有する重合性化合物の含有量が0.5重量%以上30重量%以下である。

In a specific aspect of the resin particles according to the present invention, the polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group, and is contained in 100% by weight of the polymerizable component. The content of the crosslinkable compound is less than 30% by weight, and the content of the polymerizable compound having a polar functional group is 0.5% by weight or more and 30% by weight or less in 100% by weight of the polymerizable component. ..

 本発明に係る樹脂粒子のある特定の局面では、前記極性官能基を有する重合性化合物が、水酸基を有する重合性化合物、カルボキシ基を有する重合性化合物、又はリン酸基を有する重合性化合物を含む。

In certain aspects of the resin particles according to the present invention, the polymerizable compound having a polar functional group includes a polymerizable compound having a hydroxyl group, a polymerizable compound having a carboxy group, or a polymerizable compound having a phosphoric acid group. ..

 本発明に係る樹脂粒子のある特定の局面では、前記架橋性化合物が、ジビニルベンゼン、テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、又は2-(メタ)アクリルロイロキシエチルアシッドホスフェートを含む。

In certain aspects of the resin particles according to the present invention, the crosslinkable compound is divinylbenzene, tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate. , Pentaerythritol tetra (meth) acrylate, glycerindi (meth) acrylate, or 2- (meth) acrylic leuroxyethyl acid phosphate.

 本発明に係る樹脂粒子のある特定の局面では、前記樹脂粒子は、スペーサとして用いられるか、又は、表面上に導電部が形成されることで、前記導電部を有する導電性粒子を得るために用いられる。

In a specific aspect of the resin particles according to the present invention, the resin particles are used as a spacer, or a conductive portion is formed on the surface of the resin particles in order to obtain conductive particles having the conductive portion. Used.

 本発明の広い局面によれば、上述した樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備える、導電性粒子が提供される。

According to a broad aspect of the present invention, there is provided a conductive particle comprising the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.

 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面上に配置された絶縁性物質をさらに備える。

In certain aspects of the conductive particles according to the present invention, the conductive particles further comprise an insulating material disposed on the outer surface of the conductive portion.

 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面に突起を有する。

In certain aspects of the conductive particles according to the present invention, the conductive particles have protrusions on the outer surface of the conductive portion.

 本発明の広い局面によれば、導電性粒子と、バインダー樹脂とを含み、前記導電性粒子が、上述した樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備える、導電材料が提供される。

According to a broad aspect of the present invention, a conductive material containing conductive particles and a binder resin, wherein the conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles. Is provided.

 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備え、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。

According to a broad aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of a conductive particle or a conductive material containing the conductive particle and a binder resin. The conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles, and the first electrode and the second electrode are electrically formed by the conductive particles. A connected, connected structure is provided.

 本発明に係る樹脂粒子では、樹脂粒子の外表面において、飛行時間型二次イオン質量分析法により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比が、2.0×10-2以上である。本発明に係る樹脂粒子では、上記の構成が備えられているので、凝集を効果的に抑制することができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる。

In the resin particles according to the present invention, when a negative spectrum is obtained by time-of-flight secondary ion mass spectrometry on the outer surface of the resin particles, the ratio of the OH - ion intensity to the total intensity of all negative ions is determined. It is 2.0 × 10-2 or more. Since the resin particles according to the present invention have the above-mentioned structure, aggregation can be effectively suppressed, and the electrodes are electrically connected using the conductive particles having a conductive portion formed on the surface. In this case, the adhesion to the conductive portion can be effectively increased, and the connection resistance can be effectively reduced.

図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles according to a third embodiment of the present invention. 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention. 図5は、本発明に係る樹脂粒子を用いた電子部品装置の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of an electronic component device using the resin particles according to the present invention. 図6は、図5に示す電子部品装置における接合部部分を拡大して示す断面図である。FIG. 6 is an enlarged cross-sectional view showing a joint portion in the electronic component device shown in FIG.

 以下、本発明の詳細を説明する。

The details of the present invention will be described below.

 (樹脂粒子)

 本発明に係る樹脂粒子では、樹脂粒子の外表面において、飛行時間型二次イオン質量分析法により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比が、2.0×10-2以上である。

(Resin particles)

In the resin particles according to the present invention, when a negative spectrum is obtained by time-of-flight secondary ion mass spectrometry on the outer surface of the resin particles, the ratio of the OH - ion intensity to the total intensity of all negative ions is determined. It is 2.0 × 10-2 or more.

 本発明に係る樹脂粒子では、上記の構成が備えられているので、凝集を効果的に抑制することができ、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性を効果的に高めることができ、さらに、接続抵抗を効果的に低くすることができる。

Since the resin particles according to the present invention have the above-mentioned structure, aggregation can be effectively suppressed, and the electrodes are electrically connected using the conductive particles having a conductive portion formed on the surface. In this case, the adhesion to the conductive portion can be effectively increased, and the connection resistance can be effectively reduced.

 本発明に係る樹脂粒子では、飛行時間型二次イオン質量分析法により負スペクトルを得たときに、OHイオンの強度が特定の関係を満足するので、樹脂粒子の外表面に比較的多くの水酸基を配置することができる。樹脂粒子の外表面に水酸基が配置されていると、樹脂粒子と導電部との密着性を水酸基との相互作用により高めることができ、導電部の割れや導電部の剥離の発生を効果的に抑制することができる。また、本発明に係る樹脂粒子を用いた導電性粒子では、電極間の接続抵抗を効果的に低くすることができ、電極間の接続信頼性を効果的に高めることができる。例えば、本発明に係る樹脂粒子を用いた導電性粒子により電極間が電気的に接続された接続構造体を高温及び高湿条件下で長時間放置しても、接続抵抗がより一層高くなり難く、導通不良がより一層生じ難くなる。

In the resin particles according to the present invention, when a negative spectrum is obtained by time-of-flight secondary ion mass spectrometry, the intensity of OH - ions satisfies a specific relationship, so that a relatively large amount is present on the outer surface of the resin particles. Hydroxyl groups can be placed. When hydroxyl groups are arranged on the outer surface of the resin particles, the adhesion between the resin particles and the conductive portion can be enhanced by the interaction with the hydroxyl groups, effectively causing cracks in the conductive portion and peeling of the conductive portion. It can be suppressed. Further, in the conductive particles using the resin particles according to the present invention, the connection resistance between the electrodes can be effectively reduced, and the connection reliability between the electrodes can be effectively enhanced. For example, even if the connection structure in which the electrodes are electrically connected by the conductive particles using the resin particles according to the present invention is left for a long time under high temperature and high humidity conditions, the connection resistance is unlikely to increase further. , Continuity failure is less likely to occur.

 さらに、本発明に係る樹脂粒子では、樹脂粒子同士の凝集を効果的に抑制することができる。結果として、本発明に係る樹脂粒子をギャップ材(スペーサ)として用いる場合には、分散状態を良好に保つことができ、スペーサの粒子径を均一にすることができる。さらに、接続対象部材等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。

Further, the resin particles according to the present invention can effectively suppress the aggregation of the resin particles. As a result, when the resin particles according to the present invention are used as the gap material (spacer), the dispersed state can be kept good and the particle size of the spacer can be made uniform. Further, it can be sufficiently brought into contact with the member to be connected and the like, and a sufficient gap control effect can be obtained.

 本発明に係る樹脂粒子では、上記樹脂粒子の外表面において、飛行時間型二次イオン質量分析法(TOF-SIMS)により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比(OHイオンの強度/全負イオンの強度の合計)は、2.0×10-2以上である。

In the resin particles according to the present invention, when a negative spectrum is obtained on the outer surface of the resin particles by time-of-flight secondary ion mass spectrometry (TOF-SIMS), OH - ions with respect to the total intensity of all negative ions. The ratio of OH - ionic strength / total negative ionic strength is 2.0 × 10 -2 or more.

 上記TOF-SIMSの測定では、上記樹脂粒子の外表面において、2回スパッタリングし、TOF-SIMSを用いて、比(OHイオンの強度/全負イオンの強度の合計)を測定する。500μm×500μmの領域に40~60個の上記樹脂粒子が配置するように分散させた状態で測定し、検出積算回数が50回到達時までの比(OHイオンの強度/全負イオンの強度の合計)の平均値を採用する。なお、上記樹脂粒子の大きさから500μm×500μmの領域に40~60個配置することが困難な場合は、適宜、配置する数を減らして測定してもよい。上記の測定では、例えば、上記樹脂粒子の外表面から内側に向かって約2nm程度の厚みの領域の測定結果が得られる。また、上記の測定では、任意に選択された3個の樹脂粒子の比(OHイオンの強度/全負イオンの強度の合計)を算術平均することにより、上記比を算出することが好ましい。

In the measurement of TOF-SIMS, the outer surface of the resin particles is sputtered twice, and the ratio (total of OH - ionic strength / total negative ion strength) is measured using TOF-SIMS. Measured in a state where 40 to 60 of the above resin particles are dispersed in a region of 500 μm × 500 μm, and the ratio until the number of detection integration reaches 50 times (OH - ionic strength / total negative ion strength) The average value of) is adopted. If it is difficult to arrange 40 to 60 pieces in a region of 500 μm × 500 μm due to the size of the resin particles, the number of the resin particles may be appropriately reduced for measurement. In the above measurement, for example, a measurement result of a region having a thickness of about 2 nm from the outer surface to the inside of the resin particles can be obtained. Further, in the above measurement, it is preferable to calculate the above ratio by arithmetically averaging the ratio (total of OH - ionic strength / total negative ion strength) of three arbitrarily selected resin particles.

 上記比(OHイオンの強度/全負イオンの強度の合計)は、好ましくは2.5×10-2以上、より好ましくは3.0×10-2以上である。上記比(OHイオンの強度/全負イオンの強度の合計)の上限は特に限定されない。上記比(OHイオンの強度/全負イオンの強度の合計)は9.0×10-2以下であってもよい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

The above ratio (total of OH - ionic strength / total negative ion strength) is preferably 2.5 × 10 -2 or more, more preferably 3.0 × 10 -2 or more. The upper limit of the above ratio (OH - ion strength / total negative ion strength) is not particularly limited. The above ratio (total of OH - ionic strength / total negative ion strength) may be 9.0 × 10-2 or less. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記TOF-SIMSには、ION TOF社製「TOF-SIMS 5型」等が用いられる。TOF-SIMS分析装置を用いて上記樹脂粒子の外表面のOHイオンの強度及びトータルイオン強度を測定するためには、例えば、Bi3+イオンガンを測定用の一次イオン源とし、25keVの条件にて測定すればよい。スパッタリングは、真空中でアルゴン等の不活性ガスを導入し、ターゲットにマイナスの電圧を印加してグロー放電を発生させ、不活性ガス原子をイオン化し、高速でターゲットの表面にガスイオンを衝突させて、該表面を激しく叩く方法である。ターゲットの表面をナノメートル~マイクロメートルオーダーの深さで研削していくことができる。具体的には例えば、O を用いてスパッタリングを行うことにより、約1nm/回の深さで樹脂粒子の表面を掘り進んでいくことができる。2回のスパッタリングを行うことで、TOF-SIMSにて上記樹脂粒子の外表面から内側に向かって約2nm程度の厚みの領域のOHイオンの強度とトータルイオン強度の比を測定することができる。

For the TOF-SIMS, "TOF-SIMS type 5" manufactured by ION TOF or the like is used. In order to measure the OH - ion intensity and total ionic strength of the outer surface of the resin particles using the TOF-SIMS analyzer, for example, a Bi 3+ ion gun is used as the primary ion source for measurement, and the conditions are 25 keV. You just have to measure. In sputtering, an inert gas such as argon is introduced in a vacuum, a negative voltage is applied to the target to generate a glow discharge, the inert gas atom is ionized, and the gas ion collides with the surface of the target at high speed. This is a method of tapping the surface violently. The surface of the target can be ground to a depth on the order of nanometers to micrometers. Specifically, for example, by performing sputtering using O 2 +, can go digging the surface of the resin particles at a depth of about 1 nm / dose. By performing the sputtering twice, the ratio of the OH - ion intensity to the total ionic strength in the region having a thickness of about 2 nm from the outer surface to the inside of the resin particles can be measured by TOF-SIMS. ..

 上記樹脂粒子を10%圧縮したときの圧縮弾性率(10%K値)は、好ましくは500N/mm以上、より好ましくは1000N/mm以上であり、好ましくは6000N/mm以下、より好ましくは5000N/mm以下、更に好ましくは4500N/mm以下、特に好ましくは3500N/mm以下である。上記10%K値が、上記下限以上及び上記上限以下であると、凝集をより一層効果的に抑制することができる。また、上記10%K値が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

The compression modulus when the resin particles were compressed 10% (10% K value) is preferably 500 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 6000 N / mm 2 or less, more preferably the 5000N / mm 2 or less, more preferably 4500N / mm 2, particularly preferably not more than 3500 N / mm 2. When the 10% K value is at least the above lower limit and at least the above upper limit, agglutination can be suppressed more effectively. When the 10% K value is equal to or higher than the lower limit and lower than the upper limit, the electrodes are in close contact with the conductive portion when the electrodes are electrically connected by using conductive particles having a conductive portion formed on the surface. The property can be further effectively enhanced, and the connection resistance can be further effectively lowered.

 上記樹脂粒子を30%圧縮したときの圧縮弾性率(30%K値)は、好ましくは300N/mm以上、より好ましくは500N/mm以上であり、好ましくは5500N/mm以下、より好ましくは4500N/mm以下、更に好ましくは4000N/mm以下、特に好ましくは3000N/mm以下である。上記30%K値が、上記下限以上及び上記上限以下であると、凝集をより一層効果的に抑制することができる。また、上記30%K値が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

The compression modulus when the resin particles were compressed 30% (30% K value) is preferably 300N / mm 2 or more, more preferably 500 N / mm 2 or more, preferably 5500N / mm 2 or less, more preferably the 4500N / mm 2 or less, more preferably 4000 N / mm 2, particularly preferably not more than 3000N / mm 2. When the 30% K value is at least the above lower limit and at least the above upper limit, agglutination can be suppressed more effectively. When the 30% K value is equal to or higher than the lower limit and lower than the upper limit, the electrodes are electrically connected to each other by using conductive particles having a conductive portion formed on the surface, and the electrode adheres to the conductive portion. The property can be further effectively enhanced, and the connection resistance can be further effectively lowered.

 上記樹脂粒子における上記圧縮弾性率(10%K値及び30%K値)は、以下のようにして測定できる。

The compressive elastic modulus (10% K value and 30% K value) of the resin particles can be measured as follows.

 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で1個の樹脂粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値又は30%K値)を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記樹脂粒子における上記圧縮弾性率(10%K値又は30%K値)は、任意に選択された50個の樹脂粒子の上記圧縮弾性率(10%K値又は30%K値)を算術平均することにより、算出することが好ましい。

Using a microcompression tester, one resin particle is compressed on a smoothing indenter end face of a cylinder (diameter 50 μm, made of diamond) under the conditions of 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. .. The load value (N) and compressive displacement (mm) at this time are measured. From the obtained measured values, the compressive elastic modulus (10% K value or 30% K value) can be calculated by the following formula. As the microcompression tester, for example, "Fisherscope H-100" manufactured by Fisher Co., Ltd. is used. The compressive elastic modulus (10% K value or 30% K value) of the resin particles is an arithmetic mean of the compressive elastic modulus (10% K value or 30% K value) of 50 arbitrarily selected resin particles. It is preferable to calculate by doing so.

 10%K値又は30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2

 F:樹脂粒子が10%又は30%圧縮変形したときの荷重値(N)

 S:樹脂粒子が10%又は30%圧縮変形したときの圧縮変位(mm)

 R:樹脂粒子の半径(mm)

10% K value or 30% K value (N / mm 2 ) = (3/2 1/2 ) ・ F ・ S -3/2・ R- 1 / 2

F: Load value (N) when the resin particles are compressed and deformed by 10% or 30%.

S: Compressive displacement (mm) when the resin particles are compressed and deformed by 10% or 30%

R: Radius of resin particles (mm)

 上記圧縮弾性率は、樹脂粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、樹脂粒子の硬さを定量的かつ一義的に表すことができる。

The compressive elastic modulus universally and quantitatively represents the hardness of the resin particles. By using the compressive elastic modulus, the hardness of the resin particles can be expressed quantitatively and uniquely.

 上記樹脂粒子の圧縮回復率は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは60%以下、より好ましくは45%以下である。上記圧縮回復率が、上記下限以上及び上記上限以下であると、凝集をより一層効果的に抑制することができる。また、上記圧縮回復率が、上記下限以上及び上記上限以下であると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

The compression recovery rate of the resin particles is preferably 5% or more, more preferably 10% or more, preferably 60% or less, and more preferably 45% or less. When the compression recovery rate is at least the above lower limit and at least the above upper limit, agglutination can be suppressed more effectively. When the compression recovery rate is equal to or higher than the lower limit and lower than the upper limit, the adhesion to the conductive portion is obtained when the electrodes are electrically connected using conductive particles having a conductive portion formed on the surface. Can be further effectively increased, and further, the connection resistance can be lowered even more effectively.

 上記樹脂粒子における上記圧縮回復率は、以下のようにして測定できる。

The compression recovery rate of the resin particles can be measured as follows.

 試料台上に樹脂粒子を散布する。散布された1個の樹脂粒子について、微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃で、樹脂粒子の中心方向に、樹脂粒子が30%圧縮変形するまで負荷(反転荷重値)を与える。その後、原点用荷重値(0.40mN)まで除荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。

The resin particles are sprayed on the sample table. For one sprayed resin particle, 30% compression deformation of the resin particle toward the center of the resin particle at 25 ° C. on the smoothing indenter end face of a cylinder (diameter 50 μm, made of diamond) using a microcompression tester. A load (reversal load value) is applied until After that, the load is removed to the origin load value (0.40 mN). The load-compressive displacement during this period can be measured, and the compression recovery rate can be calculated from the following formula. The load speed is 0.33 mN / sec. As the microcompression tester, for example, "Fisherscope H-100" manufactured by Fisher Co., Ltd. is used.

 圧縮回復率(%)=[L2/L1]×100

 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでの圧縮変位

 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの除荷変位

Compression recovery rate (%) = [L2 / L1] x 100

L1: Compressive displacement from the origin load value to the reverse load value when a load is applied

L2: Unloading displacement from the inverted load value when the load is released to the origin load value

 上記樹脂粒子の用途は特に限定されない。上記樹脂粒子は、様々な用途に好適に用いることができる。上記樹脂粒子は、スペーサとして用いられるか、又は、表面上に導電部が形成されることで、上記導電部を有する導電性粒子を得るために用いられることが好ましい。上記導電性粒子において、上記導電部は、上記樹脂粒子の表面上に形成される。上記樹脂粒子は、表面上に導電部が形成されることで、上記導電部を有する導電性粒子を得るために用いられることが好ましい。上記導電性粒子は、電極間を電気的に接続するために用いられることが好ましい。上記導電性粒子は、ギャップ材(スペーサ)として用いられてもよい。上記樹脂粒子は、ギャップ材(スペーサ)として用いられることが好ましい。上記ギャップ材(スペーサ)の使用方法としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、及び応力緩和用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップや電子部品装置のギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。また、上記樹脂粒子をギャップ材(スペーサ)として用いる場合には、分散状態を良好に保つことができ、スペーサの粒子径を均一にすることができる。さらに、接続対象部材等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。

The use of the resin particles is not particularly limited. The resin particles can be suitably used for various purposes. The resin particles are preferably used as a spacer, or are preferably used to obtain conductive particles having the conductive portion by forming a conductive portion on the surface. In the conductive particles, the conductive portion is formed on the surface of the resin particles. The resin particles are preferably used to obtain conductive particles having the conductive portion by forming a conductive portion on the surface. The conductive particles are preferably used to electrically connect the electrodes. The conductive particles may be used as a gap material (spacer). The resin particles are preferably used as a gap material (spacer). Examples of the method of using the gap material (spacer) include a spacer for a liquid crystal display element, a spacer for gap control, and a spacer for stress relaxation. The gap control spacer is used for gap control of laminated chips and electronic component devices for ensuring standoff height and flatness, and for optical components for ensuring the smoothness of the glass surface and the thickness of the adhesive layer. It can be used for gap control and the like. The stress relaxation spacer can be used for stress relaxation of a sensor chip or the like, stress relaxation of a connecting portion connecting two members to be connected, and the like. Further, when the resin particles are used as a gap material (spacer), the dispersed state can be kept good and the particle diameter of the spacer can be made uniform. Further, it can be sufficiently brought into contact with the member to be connected and the like, and a sufficient gap control effect can be obtained.

 上記樹脂粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記樹脂粒子は、スペーサとして機能することが好ましい。上記樹脂粒子は、良好な圧縮変形特性及び良好な圧縮破壊特性を有するので、上記樹脂粒子をスペーサとして用いて基板間に配置したり、表面に導電部を形成して導電性粒子として用いて電極間を電気的に接続したりした場合に、スペーサ又は導電性粒子が、基板間又は電極間に効率的に配置される。さらに、上記樹脂粒子では、液晶表示素子用部材等の傷付きを抑えることができるので、上記液晶表示素子用スペーサを用いた液晶表示素子及び上記導電性粒子を用いた接続構造体において、接続不良及び表示不良が生じ難くなる。

The resin particles are preferably used as a spacer for a liquid crystal display element, and are preferably used as a peripheral sealant for a liquid crystal display element. In the peripheral sealant for a liquid crystal display element, the resin particles preferably function as spacers. Since the resin particles have good compressive deformation characteristics and good compressive fracture characteristics, the resin particles can be arranged between substrates by using the resin particles as spacers, or a conductive portion is formed on the surface and used as the conductive particles for an electrode. Spacers or conductive particles are efficiently placed between the substrates or between the electrodes when the spaces are electrically connected. Further, since the resin particles can suppress damage to the liquid crystal display element member and the like, poor connection in the liquid crystal display element using the liquid crystal display element spacer and the connection structure using the conductive particles. And display defects are less likely to occur.

 さらに、上記樹脂粒子は、無機充填材、トナーの添加剤、衝撃吸収剤又は振動吸収剤としても好適に用いられる。例えば、ゴム又はバネ等の代替品として、上記樹脂粒子を用いることができる。

Further, the resin particles are also suitably used as an inorganic filler, a toner additive, a shock absorber or a vibration absorber. For example, the resin particles can be used as an alternative to rubber, springs, and the like.

 以下、樹脂粒子の他の詳細を説明する。

Hereinafter, other details of the resin particles will be described.

 (樹脂粒子の他の詳細)

 上記樹脂粒子は、複数の重合性化合物を含む重合性成分の重合体であることが好ましい。上記樹脂粒子では、樹脂粒子の中心部と樹脂粒子の表面部とが同一の上記重合性成分で構成されていることが好ましい。上記樹脂粒子の中心部における重合性成分の配合比と、上記樹脂粒子の表面部における重合性成分の配合比とは、同一であってもよく、異なっていてもよい。上記樹脂粒子の中心部における構成成分の構成比と、上記樹脂粒子の表面部における構成成分の構成比とは、同一であってもよく、異なっていてもよい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

(Other details of resin particles)

The resin particles are preferably a polymer of a polymerizable component containing a plurality of polymerizable compounds. In the resin particles, it is preferable that the central portion of the resin particles and the surface portion of the resin particles are composed of the same polymerizable component. The compounding ratio of the polymerizable component in the central portion of the resin particles and the compounding ratio of the polymerizable component in the surface portion of the resin particles may be the same or different. The composition ratio of the constituent components in the central portion of the resin particles and the composition ratio of the constituent components in the surface portion of the resin particles may be the same or different. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記樹脂粒子では、樹脂粒子の中心部が中心部形成材料により形成されており、樹脂粒子の表面部が表面部形成材料により形成されていることが好ましい。上記樹脂粒子では、上記中心部形成材料の成分と上記表面部形成材料の成分とは、同一であることが好ましい。上記樹脂粒子では、上記中心部形成材料の成分比と上記表面部形成材料の成分比とは、同一であってもよく、異なっていてもよい。また、上記樹脂粒子では、上記中心部形成材料と上記表面部形成材料との双方を含む領域が存在することが好ましい。上記樹脂粒子では、上記中心部形成材料を含み、かつ上記表面部形成材料を含まないか又は上記表面部形成材料を25重量%未満で含む領域を、樹脂粒子が中心部に有することが好ましい。上記樹脂粒子では、上記表面部形成材料を含み、かつ上記中心部形成材料を含まないか又は上記中心部形成材料を25重量%未満で含む領域を、樹脂粒子が表面部に有することが好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

In the resin particles, it is preferable that the central portion of the resin particles is formed of the central portion forming material and the surface portion of the resin particles is formed of the surface portion forming material. In the resin particles, it is preferable that the component of the central portion forming material and the component of the surface portion forming material are the same. In the resin particles, the component ratio of the central portion forming material and the component ratio of the surface portion forming material may be the same or different. Further, in the resin particles, it is preferable that a region including both the central portion forming material and the surface portion forming material exists. In the resin particles, it is preferable that the resin particles have a region in the center portion that includes the center portion forming material and does not contain the surface portion forming material or contains the surface portion forming material in an amount of less than 25% by weight. In the resin particles, it is preferable that the resin particles have a region on the surface portion that includes the surface portion forming material and does not contain the center portion forming material or contains the center portion forming material in an amount of less than 25% by weight. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記樹脂粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子ではないことが好ましく、樹脂粒子内で、コアとシェルとの界面を有しないことが好ましい。上記樹脂粒子は、樹脂粒子内で、界面を有しないことが好ましく、異なる面同士が接触している界面を有しないことがより好ましい。上記樹脂粒子は、表面が存在する不連続部分を有しないことが好ましく、構造表面が存在する不連続部分を有しないことが好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

The resin particles are preferably not core-shell particles having a core and a shell arranged on the surface of the core, and preferably do not have an interface between the core and the shell in the resin particles. The resin particles preferably do not have an interface in the resin particles, and more preferably do not have an interface in which different surfaces are in contact with each other. The resin particles preferably do not have a discontinuity in which a surface exists, and preferably do not have a discontinuity in which a structural surface exists. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記樹脂粒子では、上記重合体を構成する上記重合性成分は、架橋性化合物を含むことが好ましい。上記重合体を構成する上記重合性成分が架橋性化合物を含む場合には、上記重合性成分100重量%中、上記架橋性化合物の含有量は30重量%以上であることが好ましく、40重量%以上であることがより好ましい。上記架橋性化合物の含有量の上限は特に限定されない。上記架橋性化合物の含有量は80重量%以下であることが好ましく、70重量%以下であることがより好ましく、60重量%以下であることがさらに好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

In the resin particles, the polymerizable component constituting the polymer preferably contains a crosslinkable compound. When the polymerizable component constituting the polymer contains a crosslinkable compound, the content of the crosslinkable compound is preferably 30% by weight or more, preferably 40% by weight, based on 100% by weight of the polymerizable component. The above is more preferable. The upper limit of the content of the crosslinkable compound is not particularly limited. The content of the crosslinkable compound is preferably 80% by weight or less, more preferably 70% by weight or less, and further preferably 60% by weight or less. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記樹脂粒子では、上記重合体を構成する上記重合性成分は、極性官能基を有さない架橋性化合物を含みかつ極性官能基を有する架橋性化合物を含まない重合性成分、及び、極性官能基を有さない架橋性化合物と極性官能基を有する架橋性化合物とを含む重合性成分のいずれかであってもよい。上記樹脂粒子では、上記重合体を構成する上記重合性成分は、極性官能基を有さない架橋性化合物を含みかつ極性官能基を有する架橋性化合物を含まない重合性成分であってもよい。上記樹脂粒子では、上記重合体を構成する上記重合性成分は、極性官能基を有さない架橋性化合物と極性官能基を有する架橋性化合物とを含む重合性成分であってもよい。

In the resin particles, the polymerizable component constituting the polymer is a polymerizable component containing a crosslinkable compound having no polar functional group and not containing a crosslinkable compound having a polar functional group, and a polar functional group. It may be any of a polymerizable component containing a crosslinkable compound having no effect and a crosslinkable compound having a polar functional group. In the resin particles, the polymerizable component constituting the polymer may be a polymerizable component containing a crosslinkable compound having no polar functional group and not containing a crosslinkable compound having a polar functional group. In the resin particles, the polymerizable component constituting the polymer may be a polymerizable component containing a crosslinkable compound having no polar functional group and a crosslinkable compound having a polar functional group.

 上記重合体を構成する上記重合性成分が極性官能基を有さない架橋性化合物を含みかつ極性官能基を有する架橋性化合物を含まない場合には、上記重合性成分100重量%中、上記極性官能基を有さない架橋性化合物の含有量は30重量%以上であることが好ましく、40重量%以上であることがより好ましい。上記極性官能基を有さない架橋性化合物の含有量の上限は特に限定されない。上記極性官能基を有さない架橋性化合物の含有量は80重量%以下であることが好ましく、70重量%以下であることがより好ましく、60重量%以下であることがさらに好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

When the polymerizable component constituting the polymer contains a crosslinkable compound having no polar functional group and does not contain a crosslinkable compound having a polar functional group, the polarity in 100% by weight of the polymerizable component The content of the crosslinkable compound having no functional group is preferably 30% by weight or more, and more preferably 40% by weight or more. The upper limit of the content of the crosslinkable compound having no polar functional group is not particularly limited. The content of the crosslinkable compound having no polar functional group is preferably 80% by weight or less, more preferably 70% by weight or less, and further preferably 60% by weight or less. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記重合体を構成する上記重合性成分が極性官能基を有さない架橋性化合物と極性官能基を有する架橋性化合物とを含む場合には、上記重合性成分100重量%中、上記極性官能基を有さない架橋性化合物と極性官能基を有する架橋性化合物との合計の含有量は30重量%以上であることが好ましく、40重量%以上であることがより好ましい。上記極性官能基を有さない架橋性化合物と極性官能基を有する架橋性化合物との合計の含有量の上限は特に限定されない。上記極性官能基を有さない架橋性化合物と極性官能基を有する架橋性化合物との合計の含有量は80重量%以下であることが好ましく、70重量%以下であることがより好ましく、60重量%以下であることがさらに好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

When the polymerizable component constituting the polymer contains a crosslinkable compound having no polar functional group and a crosslinkable compound having a polar functional group, the polar functional group is contained in 100% by weight of the polymerizable component. The total content of the crosslinkable compound having no functional group and the crosslinkable compound having a polar functional group is preferably 30% by weight or more, more preferably 40% by weight or more. The upper limit of the total content of the crosslinkable compound having no polar functional group and the crosslinkable compound having a polar functional group is not particularly limited. The total content of the crosslinkable compound having no polar functional group and the crosslinkable compound having a polar functional group is preferably 80% by weight or less, more preferably 70% by weight or less, and 60% by weight. It is more preferably% or less. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記樹脂粒子では、上記重合体を構成する上記重合性成分は、架橋性化合物と極性官能基を有する重合性化合物とを含むことが好ましい。上記重合体を構成する上記重合性成分が架橋性化合物と極性官能基を有する重合性化合物とを含む場合には、上記重合性成分100重量%中、上記架橋性化合物の含有量は30重量%未満であることが好ましく、20重量%以下であることがより好ましい。上記架橋性化合物の含有量の下限は特に限定されない。上記架橋性化合物の含有量は5重量%以上であってもよい。上記重合体を構成する上記重合性成分が架橋性化合物と極性官能基を有する重合性化合物とを含む場合には、上記重合性成分100重量%中、上記極性官能基を有する重合性化合物の含有量は好ましくは0.5重量%以上、より好ましくは2重量%以上であり、好ましくは30重量%以下、より好ましくは20重量%以下である。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

In the resin particles, the polymerizable component constituting the polymer preferably contains a crosslinkable compound and a polymerizable compound having a polar functional group. When the polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group, the content of the crosslinkable compound is 30% by weight in 100% by weight of the polymerizable component. It is preferably less than, more preferably 20% by weight or less. The lower limit of the content of the crosslinkable compound is not particularly limited. The content of the crosslinkable compound may be 5% by weight or more. When the polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group, the polymerizable compound having the polar functional group is contained in 100% by weight of the polymerizable component. The amount is preferably 0.5% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, and more preferably 20% by weight or less. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記樹脂粒子では、上記重合体を構成する上記重合性成分は、極性官能基を有さない架橋性化合物と架橋性を有さずかつ極性官能基を有する重合性化合物とを含むことが好ましい。上記重合体を構成する上記重合性成分が極性官能基を有さない架橋性化合物と架橋性を有さずかつ極性官能基を有する重合性化合物とを含む場合には、上記重合性成分100重量%中、上記極性官能基を有さない架橋性化合物の含有量は30重量%未満であることが好ましく、20重量%以下であることがより好ましい。上記極性官能基を有さない架橋性化合物の含有量の下限は特に限定されない。上記極性官能基を有さない架橋性化合物の含有量は5重量%以上であってもよい。上記重合体を構成する上記重合性成分が極性官能基を有さない架橋性化合物と架橋性を有さずかつ極性官能基を有する重合性化合物とを含む場合には、上記重合性成分100重量%中、上記架橋性を有さずかつ極性官能基を有する重合性化合物の含有量は好ましくは0.5重量%以上、より好ましくは2重量%以上であり、好ましくは30重量%以下、より好ましくは20重量%以下である。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

In the resin particles, the polymerizable component constituting the polymer preferably contains a crosslinkable compound having no polar functional group and a polymerizable compound having no crosslinkability and having a polar functional group. When the polymerizable component constituting the polymer contains a crosslinkable compound having no polar functional group and a polymerizable compound having no crosslinkability and having a polar functional group, the weight of the polymerizable component is 100. The content of the crosslinkable compound having no polar functional group is preferably less than 30% by weight, more preferably 20% by weight or less. The lower limit of the content of the crosslinkable compound having no polar functional group is not particularly limited. The content of the crosslinkable compound having no polar functional group may be 5% by weight or more. When the polymerizable component constituting the polymer contains a crosslinkable compound having no polar functional group and a polymerizable compound having no crosslinkability and having a polar functional group, the weight of the polymerizable component is 100. The content of the polymerizable compound having no crosslinkability and having a polar functional group is preferably 0.5% by weight or more, more preferably 2% by weight or more, and preferably 30% by weight or less. It is preferably 20% by weight or less. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 また、上記樹脂粒子の外表面において、飛行時間型二次イオン質量分析法により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比が、2.0×10-2以上とすることをより一層容易にする観点から、上記樹脂粒子は、以下のいずれかの関係を満足することが好ましい。

 1)上記重合体を構成する上記重合性成分が、架橋性化合物を含み、上記重合性成分100重量%中、上記架橋性化合物の含有量が30重量%以上である。

 2)上記重合体を構成する上記重合性成分が、架橋性化合物と、極性官能基を有する重合性化合物とを含み、上記重合性成分100重量%中、上記架橋性化合物の含有量が30重量%未満であり、上記極性官能基を有する重合性化合物の含有量が0.5重量%以上、30重量%以下である。

Further, on the outer surface of the resin particles, when a negative spectrum was obtained by time-of-flight secondary ion mass spectrometry, the ratio of OH - ionic strength to the total strength of all negative ions was 2.0 × 10. From the viewpoint of further facilitating the setting of -2 or more, the resin particles preferably satisfy any of the following relationships.

1) The polymerizable component constituting the polymer contains a crosslinkable compound, and the content of the crosslinkable compound is 30% by weight or more in 100% by weight of the polymerizable component.

2) The polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group, and the content of the crosslinkable compound is 30% by weight in 100% by weight of the polymerizable component. The content of the polymerizable compound having a polar functional group is 0.5% by weight or more and 30% by weight or less.

 特に、上記1)において、上記架橋性化合物の含有量が30重量%以上、80重量%以下であると、より一層容易に全負イオンの強度の合計に対するOHイオンの強度の比を2.0×10-2以上とすることができる。

In particular, in 1) above, when the content of the crosslinkable compound is 30% by weight or more and 80% by weight or less, the ratio of the OH - ionic strength to the total strength of all negative ions can be more easily determined. It can be 0 × 10 -2 or more.

 上記極性官能基を有する重合性化合物は特に限定されない。上記極性官能基は特に限定されない。上記極性官能基としては、水酸基、カルボキシ基、スルホン酸基及びリン酸基等が挙げられる。上記極性官能基を有する重合性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。

The polymerizable compound having the above polar functional group is not particularly limited. The polar functional group is not particularly limited. Examples of the polar functional group include a hydroxyl group, a carboxy group, a sulfonic acid group and a phosphoric acid group. As the polymerizable compound having the polar functional group, only one kind may be used, or two or more kinds may be used in combination.

 水酸基を有する重合性化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、及びポリエチレングリコール(メタ)アクリレート等が挙げられる。

Examples of the polymerizable compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, glycerindi (meth) acrylate, and 2-hydroxy-3-phenoxy. Chrylate (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalate, and polyethylene Glycol (meth) acrylate and the like can be mentioned.

 カルボキシ基を有する重合性化合物としては、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、及び2-(メタ)アクリロイロキシエチルコハク酸等が挙げられる。

Examples of the polymerizable compound having a carboxy group include (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, and 2- (meth) acryloyloxyethyl succinic acid.

 スルホン酸基を有する重合性化合物としては、3-スルホプロピル(メタ)アクリレート等が挙げられる。

Examples of the polymerizable compound having a sulfonic acid group include 3-sulfopropyl (meth) acrylate.

 リン酸基を有する重合性化合物としては、2-(メタ)アクリルロイロキシエチルアシッドホスフェート等が挙げられる。

Examples of the polymerizable compound having a phosphoric acid group include 2- (meth) acrylic leuroxyethyl acid phosphate and the like.

 上記樹脂粒子では、上記極性官能基を有する重合性化合物は、水酸基を有する重合性化合物、カルボキシ基を有する重合性化合物、又はリン酸基を有する重合性化合物を含むことが好ましい。上記樹脂粒子では、上記極性官能基を有する重合性化合物は、2-ヒドロキシプロピル(メタ)アクリレート、(メタ)アクリル酸、2-(メタ)アクリロイロキシエチルコハク酸、又は2-(メタ)アクリルロイロキシエチルアシッドホスフェートを含むことがより好ましい。上記樹脂粒子では、上記極性官能基を有する重合性化合物は、(メタ)アクリル酸、2-(メタ)アクリロイロキシエチルコハク酸、又は2-(メタ)アクリルロイロキシエチルアシッドホスフェートを含むことがさらに好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

In the resin particles, the polymerizable compound having a polar functional group preferably contains a polymerizable compound having a hydroxyl group, a polymerizable compound having a carboxy group, or a polymerizable compound having a phosphoric acid group. In the resin particles, the polymerizable compound having the polar functional group is 2-hydroxypropyl (meth) acrylate, (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, or 2- (meth) acrylic. More preferably, it contains leuroxyethyl acid phosphate. In the resin particles, the polymerizable compound having the polar functional group may contain (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, or 2- (meth) acrylic leuroxyethyl acid phosphate. More preferred. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記架橋性化合物は特に限定されない。上記架橋性化合物としては、ジビニルベンゼン、(ジ/トリ/テトラ)メチレングリコール(メタ)アクリレート、(ジ/トリ/テトラ)エチレングリコール(メタ)アクリレート、ポリテトラメチレングルコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,9-ノナンジオール(メタ)アクリレート、ジメチロール-トリシクロデカンジメタクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、及び2-(メタ)アクリルロイロキシエチルアシッドホスフェート(共栄社化学社製「ライトエステルP-2M」)等が挙げられる。上記架橋性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。

The crosslinkable compound is not particularly limited. Examples of the crosslinkable compound include divinylbenzene, (di / tri / tetra) methylene glycol (meth) acrylate, (di / tri / tetra) ethylene glycol (meth) acrylate, and polytetramethylene glycol di (meth) acrylate, 1. , 4-Butandiol di (meth) acrylate, 1,6-hexanediol (meth) acrylate, 1,9-nonanediol (meth) acrylate, dimethylol-tricyclodecanedimethacrylate, pentaerythritol tri (meth) acrylate, penta Examples thereof include erythritol tetra (meth) acrylate, glycerindi (meth) acrylate, and 2- (meth) acrylic leuroxyethyl acid phosphate (“Light Ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd.). Only one kind of the crosslinkable compound may be used, or two or more kinds may be used in combination.

 上記樹脂粒子では、上記架橋性化合物は、下記の化合物を含むことが好ましい。上記化合物としては、ジビニルベンゼン、テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、及び2-(メタ)アクリルロイロキシエチルアシッドホスフェート(共栄社化学社製「ライトエステルP-2M」)等が挙げられる。上記樹脂粒子では、上記架橋性化合物は、グリセリンジ(メタ)アクリレート、2-(メタ)アクリルロイロキシエチルアシッドホスフェート(共栄社化学社製「ライトエステルP-2M」)、又はペンタエリスリトールトリ(メタ)アクリレートを含むことがより好ましい。上記樹脂粒子が、上記の好ましい態様を満足すると、凝集をより一層効果的に抑制することができる。また、上記樹脂粒子が、上記の好ましい態様を満足すると、表面上に導電部を形成した導電性粒子を用いて電極間を電気的に接続した場合に、導電部との密着性をより一層効果的に高めることができ、さらに、接続抵抗をより一層効果的に低くすることができる。

In the resin particles, the crosslinkable compound preferably contains the following compound. Examples of the above compounds include divinylbenzene, tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and glycerin di (meth). Examples thereof include acrylate and 2- (meth) acrylic leuroxyethyl acid phosphate (“light ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd.). In the resin particles, the crosslinkable compound is glycerin di (meth) acrylate, 2- (meth) acrylic leuroxyethyl acid phosphate (“light ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd.), or pentaerythritol tri (meth). More preferably, it contains an acrylate. When the resin particles satisfy the above-mentioned preferable aspects, aggregation can be suppressed more effectively. Further, when the resin particles satisfy the above-mentioned preferable aspects, the adhesiveness with the conductive portion is further effective when the electrodes are electrically connected by using the conductive particles having the conductive portion formed on the surface. In addition, the connection resistance can be lowered even more effectively.

 上記極性官能基を有する重合性化合物は、架橋性化合物であってもよい。上記架橋性化合物は、極性官能基を有する重合性化合物であってもよい。上記重合性成分が、架橋性、極性官能基及び重合性を有する化合物を含む場合に、上記重合性化合物は、架橋性化合物と、極性官能基を有する重合性化合物との双方を含む。上記架橋性化合物の含有量には、上記架橋性、極性官能基及び重合性を有する化合物の含有量が含まれる。上記極性官能基を有する重合性化合物の含有量には、上記架橋性、極性官能基及び重合性を有する化合物の含有量が含まれる。

The polymerizable compound having the polar functional group may be a crosslinkable compound. The crosslinkable compound may be a polymerizable compound having a polar functional group. When the polymerizable component contains a compound having a crosslinkability, a polar functional group and a polymerizable compound, the polymerizable compound contains both a crosslinkable compound and a polymerizable compound having a polar functional group. The content of the crosslinkable compound includes the content of the compound having the crosslinkability, the polar functional group and the polymerizable compound. The content of the polymerizable compound having the polar functional group includes the content of the compound having the crosslinkability, the polar functional group and the polymerizable compound.

 上記樹脂粒子では、上記重合体を構成する上記重合性成分は、非架橋性化合物を含まないか又は含む。上記樹脂粒子では、上記重合体を構成する上記重合性成分は、非架橋性化合物を含んでいなくてもよい。上記樹脂粒子では、上記重合体を構成する上記重合性成分は、非架橋性化合物を含んでいてもよい。上記非架橋性化合物は、極性官能基を有さない非架橋性化合物であってもよい。上記非架橋性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。

In the resin particles, the polymerizable component constituting the polymer does not contain or contains a non-crosslinkable compound. In the resin particles, the polymerizable component constituting the polymer does not have to contain a non-crosslinkable compound. In the resin particles, the polymerizable component constituting the polymer may contain a non-crosslinkable compound. The non-crosslinkable compound may be a non-crosslinkable compound having no polar functional group. Only one kind of the non-crosslinkable compound may be used, or two or more kinds thereof may be used in combination.

 上記非架橋性化合物としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。

Examples of the non-crosslinkable compound include styrene monomers such as styrene, α-methylstyrene and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether and propylvinyl ether; vinyl acetate, vinyl butyrate and vinyl laurate. , Acid vinyl ester compounds such as vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, Alkyl (meth) acrylates such as butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, and isobornyl (meth) acrylate. Compounds; Oxygen atom-containing (meth) acrylate compounds such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acrylate; nitrile-containing simple compounds such as (meth) acrylonitrile. Quantities: Halogen-containing (meth) acrylate compounds such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; olefin compounds such as diisobutylene, isobutylene, linearene, ethylene and propylene as α-olefin compounds; conjugate Examples of the diene compound include isoprene and butadiene.

 上記重合体を構成する上記重合性成分が、上記非架橋性化合物を含む場合には、上記重合性成分100重量%中、上記非架橋性化合物の含有量は、1重量%以上であってもよく、5重量%以上であってもよく、10重量%以上であってもよく、20重量%以上であってもよく、30重量%以上であってもよく、40重量%以上であってもよい。上記重合体を構成する上記重合性成分が、上記非架橋性化合物を含む場合には、上記重合性成分100重量%中、上記非架橋性化合物の含有量は、90重量%以下であってもよく、80重量%以下であってもよく、70重量%以下であってもよく、60重量%以下であってもよく、50重量%以下であってもよい。

When the polymerizable component constituting the polymer contains the non-crosslinkable compound, even if the content of the non-crosslinkable compound is 1% by weight or more in 100% by weight of the polymerizable component. Well, it may be 5% by weight or more, 10% by weight or more, 20% by weight or more, 30% by weight or more, or 40% by weight or more. Good. When the polymerizable component constituting the polymer contains the non-crosslinkable compound, even if the content of the non-crosslinkable compound is 90% by weight or less in 100% by weight of the polymerizable component. It may be 80% by weight or less, 70% by weight or less, 60% by weight or less, or 50% by weight or less.

 上記樹脂粒子の粒子径は、用途に応じて適宜設定することができる。上記樹脂粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは300μm以下、より一層好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは30μm以下である。上記樹脂粒子の粒子径が、上記下限以上及び上記上限以下であると、樹脂粒子を導電性粒子又はスペーサの用途により一層好適に用いることができる。上記樹脂粒子の粒子径が、0.5μm以上500μm以下であると、上記樹脂粒子を導電性粒子の用途に好適に用いることができる。上記樹脂粒子の粒子径が、0.5μm以上500μm以下であると、上記樹脂粒子をスペーサの用途に好適に用いることができる。

The particle size of the resin particles can be appropriately set according to the intended use. The particle size of the resin particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 300 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, particularly preferably. It is 30 μm or less. When the particle size of the resin particles is not less than the above lower limit and not more than the above upper limit, the resin particles can be more preferably used depending on the use of the conductive particles or the spacer. When the particle size of the resin particles is 0.5 μm or more and 500 μm or less, the resin particles can be suitably used for the purpose of conductive particles. When the particle size of the resin particles is 0.5 μm or more and 500 μm or less, the resin particles can be suitably used for spacer applications.

 上記樹脂粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記樹脂粒子の粒子径は、例えば、任意の樹脂粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各樹脂粒子の粒子径の平均値を算出することや、粒度分布測定装置により求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの樹脂粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の樹脂粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの樹脂粒子の粒子径は、球相当径での粒子径として求められる。上記樹脂粒子の平均粒子径は、粒度分布測定装置により算出することが好ましい。

The particle size of the resin particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the resin particles can be obtained, for example, by observing 50 arbitrary resin particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each resin particle, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each resin particle is determined as the particle size in the equivalent circle diameter. When observed with an electron microscope or an optical microscope, the average particle diameter of any 50 resin particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each resin particle is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the resin particles is preferably calculated by a particle size distribution measuring device.

 また、導電性粒子において、上記樹脂粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。

Further, when measuring the particle size of the resin particles in the conductive particles, for example, the measurement can be performed as follows.

 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の樹脂粒子を観察する。各導電性粒子における樹脂粒子の粒子径を計測し、それらを算術平均して樹脂粒子の粒子径とする。

It is added to "Technobit 4000" manufactured by Kulzer Co., Ltd. and dispersed so that the content of the conductive particles is 30% by weight to prepare an embedded resin body for conducting a conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 25000 times, 50 conductive particles are randomly selected, and the resin particles of each conductive particle are observed. .. The particle size of the resin particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the resin particles.

 上記樹脂粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは7%以下である。上記樹脂粒子の粒子径の変動係数が、上記上限以下であると、上記樹脂粒子をスペーサ及び導電性粒子の用途により一層好適に用いることができる。

The coefficient of variation (CV value) of the particle size of the resin particles is preferably 10% or less, more preferably 7% or less. When the coefficient of variation of the particle size of the resin particles is not more than the upper limit, the resin particles can be more preferably used depending on the use of the spacer and the conductive particles.

 上記変動係数(CV値)は、以下のようにして測定できる。

The coefficient of variation (CV value) can be measured as follows.

 CV値(%)=(ρ/Dn)×100

 ρ:樹脂粒子の粒子径の標準偏差

 Dn:樹脂粒子の粒子径の平均値

CV value (%) = (ρ / Dn) × 100

ρ: Standard deviation of particle size of resin particles

Dn: Mean value of particle size of resin particles

 上記樹脂粒子の形状は特に限定されない。上記樹脂粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。

The shape of the resin particles is not particularly limited. The shape of the resin particles may be spherical, non-spherical, flat or the like.

 (導電性粒子)

 上記導電性粒子は、上述した樹脂粒子と、上記樹脂粒子の表面上に配置された導電部とを備える。

(Conductive particles)

The conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles.

 図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。

FIG. 1 is a cross-sectional view showing conductive particles according to the first embodiment of the present invention.

 図1に示す導電性粒子1は、樹脂粒子11と、樹脂粒子11の表面上に配置された導電部2とを有する。導電部2は、樹脂粒子11の表面に接している。導電部2は、樹脂粒子11の表面を覆っている。導電性粒子1は、樹脂粒子11の表面が導電部2により被覆された被覆粒子である。導電性粒子1では、導電部2は、単層の導電部(導電層)である。

The conductive particles 1 shown in FIG. 1 have resin particles 11 and conductive portions 2 arranged on the surface of the resin particles 11. The conductive portion 2 is in contact with the surface of the resin particles 11. The conductive portion 2 covers the surface of the resin particles 11. The conductive particles 1 are coated particles in which the surface of the resin particles 11 is coated with the conductive portion 2. In the conductive particles 1, the conductive portion 2 is a single-layer conductive portion (conductive layer).

 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。

FIG. 2 is a cross-sectional view showing conductive particles according to a second embodiment of the present invention.

 図2に示す導電性粒子21は、樹脂粒子11と、樹脂粒子11の表面上に配置された導電部22とを有する。導電部22は全体で、樹脂粒子11側に第1の導電部22Aと、樹脂粒子11側とは反対側に第2の導電部22Bとを有する。

The conductive particles 21 shown in FIG. 2 have resin particles 11 and conductive portions 22 arranged on the surface of the resin particles 11. The conductive portion 22 as a whole has a first conductive portion 22A on the resin particle 11 side and a second conductive portion 22B on the side opposite to the resin particle 11 side.

 図1に示す導電性粒子1と図2に示す導電性粒子21とでは、導電部22のみが異なっている。すなわち、導電性粒子1では、1層構造の導電部が形成されているのに対し、導電性粒子21では、2層構造の第1の導電部22A及び第2の導電部22Bが形成されている。第1の導電部22Aと第2の導電部22Bとは、異なる導電部として形成されていてもよく、同一の導電部として形成されていてもよい。

Only the conductive portion 22 is different between the conductive particles 1 shown in FIG. 1 and the conductive particles 21 shown in FIG. That is, while the conductive particle 1 has a one-layer structure conductive portion, the conductive particle 21 has a two-layer structure first conductive portion 22A and a second conductive portion 22B. There is. The first conductive portion 22A and the second conductive portion 22B may be formed as different conductive portions or may be formed as the same conductive portion.

 第1の導電部22Aは、樹脂粒子11の表面上に配置されている。樹脂粒子11と第2の導電部22Bとの間に、第1の導電部22Aが配置されている。第1の導電部22Aは、樹脂粒子11に接している。第2の導電部22Bは、第1の導電部22Aに接している。樹脂粒子11の表面上に第1の導電部22Aが配置されており、第1の導電部22Aの表面上に第2の導電部22Bが配置されている。

The first conductive portion 22A is arranged on the surface of the resin particles 11. The first conductive portion 22A is arranged between the resin particles 11 and the second conductive portion 22B. The first conductive portion 22A is in contact with the resin particles 11. The second conductive portion 22B is in contact with the first conductive portion 22A. The first conductive portion 22A is arranged on the surface of the resin particles 11, and the second conductive portion 22B is arranged on the surface of the first conductive portion 22A.

 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。

FIG. 3 is a cross-sectional view showing the conductive particles according to the third embodiment of the present invention.

 図3に示す導電性粒子31は、樹脂粒子11と、導電部32と、複数の芯物質33と、複数の絶縁性物質34とを有する。導電部32は、樹脂粒子11の表面上に配置されている。複数の芯物質33は、樹脂粒子11の表面上に配置されている。導電部32は、樹脂粒子11と、複数の芯物質33とを覆うように、樹脂粒子11の表面上に配置されている。導電性粒子31では、導電部32は、単層の導電部(導電層)である。

The conductive particles 31 shown in FIG. 3 include resin particles 11, conductive portions 32, a plurality of core substances 33, and a plurality of insulating substances 34. The conductive portion 32 is arranged on the surface of the resin particles 11. The plurality of core substances 33 are arranged on the surface of the resin particles 11. The conductive portion 32 is arranged on the surface of the resin particles 11 so as to cover the resin particles 11 and the plurality of core substances 33. In the conductive particles 31, the conductive portion 32 is a single-layer conductive portion (conductive layer).

 導電性粒子31は外表面に、複数の突起31aを有する。導電性粒子31では、導電部32は外表面に、複数の突起32aを有する。複数の芯物質33は、導電部32の外表面を***させている。導電部32の外表面が複数の芯物質33によって***されていることで、突起31a及び32aが形成されている。複数の芯物質33は導電部32内に埋め込まれている。突起31a及び32aの内側に、芯物質33が配置されている。導電性粒子31では、突起31a及び32aを形成するために、複数の芯物質33を用いている。上記導電性粒子では、上記突起を形成するために、複数の上記芯物質を用いなくてもよい。上記導電性粒子は、複数の上記芯物質を備えていなくてもよい。

The conductive particles 31 have a plurality of protrusions 31a on the outer surface. In the conductive particles 31, the conductive portion 32 has a plurality of protrusions 32a on the outer surface. The plurality of core substances 33 raise the outer surface of the conductive portion 32. The protrusions 31a and 32a are formed by raising the outer surface of the conductive portion 32 by the plurality of core substances 33. The plurality of core substances 33 are embedded in the conductive portion 32. The core material 33 is arranged inside the protrusions 31a and 32a. In the conductive particles 31, a plurality of core substances 33 are used to form the protrusions 31a and 32a. In the conductive particles, it is not necessary to use a plurality of the core substances in order to form the protrusions. The conductive particles do not have to include the plurality of core substances.

 導電性粒子31は、導電部32の外表面上に配置された絶縁性物質34を有する。導電部32の外表面の少なくとも一部の領域が、絶縁性物質34により被覆されている。絶縁性物質34は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電部の外表面上に配置された絶縁性物質を有していてもよい。但し、上記導電性粒子は、絶縁性物質を必ずしも有していなくてもよい。上記導電性粒子は、複数の絶縁性物質を備えていなくてもよい。

The conductive particles 31 have an insulating substance 34 arranged on the outer surface of the conductive portion 32. At least a part of the outer surface of the conductive portion 32 is covered with the insulating substance 34. The insulating substance 34 is formed of a material having an insulating property and is an insulating particle. As described above, the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles do not necessarily have an insulating substance. The conductive particles do not have to include a plurality of insulating substances.

 導電部:

 上記導電部を形成するための金属は特に限定されない。上記金属としては、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。電極間の接続信頼性をより一層高める観点からは、上記金属は、錫を含む合金、ニッケル、パラジウム、銅又は金であることが好ましく、ニッケル又はパラジウムであることが好ましい。

Conductive part:

The metal for forming the conductive portion is not particularly limited. Examples of the metals include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, silicon, tungsten and molybdenum. And these alloys and the like. Examples of the metal include tin-doped indium oxide (ITO) and solder. From the viewpoint of further enhancing the connection reliability between the electrodes, the metal is preferably a tin-containing alloy, nickel, palladium, copper or gold, and preferably nickel or palladium.

 また、導通信頼性を効果的に高めることができるので、上記導電部及び上記導電部の外表面部分はニッケルを含むことが好ましい。ニッケルを含む導電部100重量%中のニッケルの含有量は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有量は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよい。

Further, since the conduction reliability can be effectively improved, it is preferable that the conductive portion and the outer surface portion of the conductive portion contain nickel. The content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. Is 90% by weight or more. The content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.

 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性物質を配置することができる。

In addition, hydroxyl groups are often present on the surface of the conductive portion due to oxidation. Generally, a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation. An insulating substance can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.

 導電性粒子1,31のように、上記導電部は、1つの層により形成されていてもよい。導電性粒子21のように、上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。導電部が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電部である場合には、電極間の接続抵抗をより一層効果的に低くすることができる。また、最外層が金層である場合には、耐腐食性をより一層効果的に高めることができる。

Like the conductive particles 1, 31, the conductive portion may be formed by one layer. Like the conductive particles 21, the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers. When the conductive portion is formed by a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer or an alloy layer containing tin and silver, and is preferably a gold layer. Is more preferable. When the outermost layer is these preferable conductive portions, the connection resistance between the electrodes can be further effectively lowered. Further, when the outermost layer is a gold layer, the corrosion resistance can be further effectively enhanced.

 上記樹脂粒子の表面に上記導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを樹脂粒子の表面にコーティングする方法等が挙げられる。導電部の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。

The method of forming the conductive portion on the surface of the resin particles is not particularly limited. Examples of the method for forming the conductive portion include a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating a metal powder or a paste containing a metal powder and a binder on the surface of resin particles. And so on. Since the formation of the conductive portion is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.

 上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上であり、好ましくは500μm以下、より好ましくは300μm以下、より一層好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは30μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が樹脂粒子の表面から剥離し難くなる。また、上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に使用可能である。

The particle size of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, preferably 500 μm or less, more preferably 300 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, particularly preferably. Is 30 μm or less. When the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the contact area between the conductive particles and the electrodes becomes sufficiently large. It becomes difficult to form agglomerated conductive particles when forming the conductive portion. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles. Further, when the particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.

 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。

The particle diameter of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than spherical, it is assumed to be a true sphere corresponding to the volume. Means the diameter of.

 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記導電性粒子の粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、粒度分布測定装置により求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、粒度分布測定装置により算出することが好ましい。

The particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating an average value, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the circle equivalent diameter is substantially equal to the average particle diameter in the sphere equivalent diameter. In the particle size distribution measuring device, the particle size of each conductive particle is obtained as the particle size in the equivalent diameter of a sphere. The particle size of the conductive particles is preferably calculated by a particle size distribution measuring device.

 上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電部の厚みは、導電部が多層である場合には導電部全体の厚みである。導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が十分に変形する。

The thickness of the conductive portion is preferably 0.005 μm or more, more preferably 0.01 μm or more, preferably 10 μm or less, more preferably 1 μm or less, still more preferably 0.3 μm or less. The thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers. When the thickness of the conductive portion is at least the above lower limit and at least the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not too hard and the conductive particles are sufficiently deformed at the time of connection between the electrodes. To do.

 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、最外層の導電部による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗が十分に低くなる。また、上記最外層が金層である場合に、金層の厚みが薄いほど、コストが低くなる。

When the conductive portion is formed of a plurality of layers, the thickness of the conductive portion of the outermost layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably. Is 0.1 μm or less. When the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the coating by the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficient. To be low. Further, when the outermost layer is a gold layer, the thinner the gold layer, the lower the cost.

 上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。上記導電部の厚みについては、任意の導電部の厚み5箇所の平均値を1個の導電性粒子の導電部の厚みとして算出することが好ましく、導電部全体の厚みの平均値を1個の導電性粒子の導電部の厚みとして算出することがより好ましい。上記導電部の厚みは、任意の導電性粒子10個について、各導電性粒子の導電部の厚みの平均値を算出することにより求めることが好ましい。

The thickness of the conductive portion can be measured by observing the cross section of the conductive particles, for example, using a transmission electron microscope (TEM). Regarding the thickness of the conductive portion, it is preferable to calculate the average value of the thickness of any of the conductive portions at five points as the thickness of the conductive portion of one conductive particle, and the average value of the thickness of the entire conductive portion is one. It is more preferable to calculate as the thickness of the conductive portion of the conductive particles. The thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 10 arbitrary conductive particles.

 芯物質:

 上記導電性粒子は、上記導電部の外表面に突起を有することが好ましい。上記導電性粒子は、上記導電部の外表面に複数の突起を有することがより好ましい。上記導電性粒子が、上記導電部の外表面に複数の突起を有していることで、電極間の導通信頼性をより一層高めることができる。上記導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。さらに、上記導電性粒子の導電部の表面には、酸化被膜が形成されていることが多い。上記突起を有する導電性粒子を用いることで、電極間に導電性粒子を配置した後、圧着させることにより、突起により酸化被膜が効果的に排除される。このため、電極と導電性粒子とをより一層確実に接触させることができ、電極間の接続抵抗をより一層効果的に低くすることができる。さらに、上記導電性粒子が表面に絶縁性物質を有する場合、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質やバインダー樹脂が効果的に排除される。このため、電極間の導通信頼性をより一層効果的に高めることができる。

Core material:

The conductive particles preferably have protrusions on the outer surface of the conductive portion. It is more preferable that the conductive particles have a plurality of protrusions on the outer surface of the conductive portion. Since the conductive particles have a plurality of protrusions on the outer surface of the conductive portion, the conduction reliability between the electrodes can be further improved. An oxide film is often formed on the surface of the electrode connected by the conductive particles. Further, an oxide film is often formed on the surface of the conductive portion of the conductive particles. By using the conductive particles having the above-mentioned protrusions, the oxide film is effectively removed by the protrusions by arranging the conductive particles between the electrodes and then crimping them. Therefore, the electrodes and the conductive particles can be brought into contact with each other more reliably, and the connection resistance between the electrodes can be lowered even more effectively. Further, when the conductive particles have an insulating substance on the surface, or when the conductive particles are dispersed in the binder resin and used as a conductive material, the protrusions of the conductive particles cause the conductive particles to be connected to the electrode. The insulating material and binder resin between them are effectively eliminated. Therefore, the conduction reliability between the electrodes can be further effectively improved.

 上記芯物質が上記導電部中に埋め込まれていることによって、上記導電部の外表面に複数の突起を容易に形成することができる。但し、導電性粒子の導電部の表面に突起を形成するために、芯物質を必ずしも用いなくてもよい。

By embedding the core substance in the conductive portion, a plurality of protrusions can be easily formed on the outer surface of the conductive portion. However, the core material does not necessarily have to be used in order to form protrusions on the surface of the conductive portion of the conductive particles.

 上記導電性粒子の表面に突起を形成する方法としては、樹脂粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、及び樹脂粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いなくてもよい。

As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive portion by electroless plating after adhering a core substance to the surface of the resin particles, and a method of forming a conductive portion on the surface of the resin particles by electroless plating. Examples thereof include a method in which a core material is attached after the portion is formed, and then a conductive portion is formed by electroless plating. Further, it is not necessary to use the core substance in order to form the protrusions.

 上記突起を形成する方法としては、以下の方法等も挙げられる。樹脂粒子の表面に無電解めっきにより導電部を形成する途中段階で芯物質を添加する方法。無電解めっきにより芯物質を用いずに突起を形成する方法として、無電解めっきにより金属核を発生させ、樹脂粒子又は導電部の表面に金属核を付着させ、さらに無電解めっきにより導電部を形成する方法。

Examples of the method for forming the protrusions include the following methods. A method of adding a core substance in the middle of forming a conductive portion by electroless plating on the surface of resin particles. As a method of forming protrusions by electroless plating without using a core substance, metal nuclei are generated by electroless plating, metal nuclei are attached to the surface of resin particles or conductive parts, and the conductive parts are further formed by electroless plating. how to.

 上記芯物質の材料は特に限定されない。上記芯物質の材料としては、例えば、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、チタン酸バリウム及びジルコニア等が挙げられる。導電性を高めることができ、さらに接続抵抗を効果的に低くすることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。上記芯物質の材料である金属としては、上記導電部を形成するための金属として挙げた金属を適宜使用可能である。

The material of the core substance is not particularly limited. Examples of the material of the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene and the like. Examples of the non-conductive substance include silica, alumina, barium titanate and zirconia. Metals are preferred because they can increase conductivity and effectively reduce connection resistance. The core material is preferably metal particles. As the metal that is the material of the core substance, the metal mentioned as the metal for forming the conductive portion can be appropriately used.

 絶縁性物質:

 上記導電性粒子は、上記導電部の外表面上に配置された絶縁性物質をさらに備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡をより一層防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。上記導電性粒子が導電部の外表面に複数の突起を有する場合には、導電性粒子の導電部と電極との間の絶縁性物質をより一層容易に排除できる。

Insulating material:

It is preferable that the conductive particles further include an insulating substance arranged on the outer surface of the conductive portion. In this case, if conductive particles are used for the connection between the electrodes, short circuits between adjacent electrodes can be further prevented. Specifically, when a plurality of conductive particles come into contact with each other, an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction rather than between the upper and lower electrodes. By pressurizing the conductive particles with the two electrodes at the time of connection between the electrodes, the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily removed. When the conductive particles have a plurality of protrusions on the outer surface of the conductive portion, the insulating substance between the conductive portion of the conductive particles and the electrodes can be more easily removed.

 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。

The insulating substance is preferably insulating particles because the insulating substance can be more easily removed during pressure bonding between the electrodes.

 上記絶縁性物質の材料としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。上記絶縁性物質の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。

Materials of the insulating substance include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermosetting resins, water-soluble resins and the like. Can be mentioned. As the material of the insulating substance, only one kind may be used, or two or more kinds may be used in combination.

 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリドデシル(メタ)アクリレート及びポリステアリル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記熱可塑性樹脂の架橋としては、ポリエチレングリコールメタクリレート、アルコキシ化トリメチロールプロパンメタクリレートやアルコキシ化ペンタエリスリトールメタクリレート等の導入が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。また、重合度の調整に、連鎖移動剤を使用してもよい。連鎖移動剤としては、チオールや四塩化炭素等が挙げられる。

Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin and the like. Examples of the cross-linking of the thermoplastic resin include introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like. Further, a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.

 上記導電部の表面上に絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。絶縁性物質が脱離し難いことから、上記導電部の表面に、化学結合を介して上記絶縁性物質を配置する方法が好ましい。

Examples of the method of arranging the insulating substance on the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum deposition methods. Since the insulating substance is difficult to be detached, a method of arranging the insulating substance on the surface of the conductive portion via a chemical bond is preferable.

 上記導電部の外表面、及び絶縁性物質の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。導電部の外表面と絶縁性物質の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性物質の表面の官能基と化学結合していても構わない。

The outer surface of the conductive portion and the surface of the insulating substance may each be coated with a compound having a reactive functional group. The outer surface of the conductive portion and the surface of the insulating substance may not be directly chemically bonded, or may be indirectly chemically bonded by a compound having a reactive functional group. After introducing a carboxyl group into the outer surface of the conductive portion, the carboxyl group may be chemically bonded to a functional group on the surface of the insulating substance via a polymer electrolyte such as polyethyleneimine.

 (導電材料)

 本発明に係る導電材料は、上述した導電性粒子と、バインダーとを含む。上記導電性粒子は、上述した樹脂粒子と、上記樹脂粒子の表面上に配置された導電部とを備える。上記導電性粒子は、バインダー中に分散されて用いられることが好ましく、バインダー中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。

(Conductive material)

The conductive material according to the present invention includes the above-mentioned conductive particles and a binder. The conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles. The conductive particles are preferably dispersed in a binder and used, and preferably dispersed in a binder and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection between electrodes. The conductive material is preferably a conductive material for circuit connection.

 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。

The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. Only one kind of the binder resin may be used, or two or more kinds may be used in combination.

 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。

Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like. Examples of the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogen additives for styrene block copolymers and the like can be mentioned. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.

 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。

In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, a bulking agent, a softening agent, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizer. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.

 上記バインダー樹脂中に上記導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。

The method for dispersing the conductive particles in the binder resin can be a conventionally known dispersion method and is not particularly limited. Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.

 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の接続信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。

The viscosity (η25) of the conductive material at 25 ° C. is preferably 30 Pa · s or more, more preferably 50 Pa · s or more, preferably 400 Pa · s or less, and more preferably 300 Pa · s or less. When the viscosity of the conductive material at 25 ° C. is equal to or higher than the lower limit and lower than the upper limit, the connection reliability between the electrodes can be further effectively enhanced. The viscosity (η25) can be appropriately adjusted depending on the type and amount of the compounding components.

 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。

The viscosity (η25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).

 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。

The conductive material can be used as a conductive paste, a conductive film, or the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.

 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。

The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is at least the above lower limit and at least the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connecting target member connected by the conductive material is further improved. ..

 上記導電材料100重量%中、上記導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、より一層好ましくは40重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下である。上記導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。

The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, still more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes is further effective. Can be enhanced to.

 (接続構造体)

 上述した導電性粒子、又は上述した導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。

(Connection structure)

A connection structure can be obtained by connecting the members to be connected using the above-mentioned conductive particles or a conductive material containing the above-mentioned conductive particles and a binder resin.

 上記接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部とを備える。上記接続構造体では、上記接続部が、導電性粒子により形成されているか、又は上記導電性粒子とバインダー樹脂とを含む導電材料により形成されている。上記導電性粒子は、上述した樹脂粒子と、上記樹脂粒子の表面上に配置された導電部とを備える。上記接続構造体では、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されている。

The connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the second connection target member. It is provided with a connecting portion that connects the member to be connected. In the connection structure, the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and a binder resin. The conductive particles include the above-mentioned resin particles and a conductive portion arranged on the surface of the resin particles. In the connection structure, the first electrode and the second electrode are electrically connected by the conductive particles.

 上記導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。即ち、上記第1の接続対象部材と上記第2の接続対象部材とが上記導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。

When the conductive particles are used alone, the connecting portion itself is the conductive particles. That is, the first connection target member and the second connection target member are connected by the conductive particles. The conductive material used to obtain the connection structure is preferably an anisotropic conductive material.

 図4は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。

FIG. 4 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.

 図4に示す接続構造体41は、第1の接続対象部材42と、第2の接続対象部材43と、第1の接続対象部材42と第2の接続対象部材43とを接続している接続部44とを備える。接続部44は、導電性粒子1とバインダー樹脂とを含む導電材料により形成されている。図4では、図示の便宜上、導電性粒子1は略図的に示されている。導電性粒子1に代えて、導電性粒子21,31の他の導電性粒子を用いてもよい。

The connection structure 41 shown in FIG. 4 is a connection connecting the first connection target member 42, the second connection target member 43, the first connection target member 42, and the second connection target member 43. A unit 44 is provided. The connecting portion 44 is formed of a conductive material containing the conductive particles 1 and the binder resin. In FIG. 4, for convenience of illustration, the conductive particles 1 are shown schematically. Instead of the conductive particles 1, other conductive particles 21 and 31 may be used.

 第1の接続対象部材42は表面(上面)に、複数の第1の電極42aを有する。第2の接続対象部材43は表面(下面)に、複数の第2の電極43aを有する。第1の電極42aと第2の電極43aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材42,43が導電性粒子1により電気的に接続されている。

The first connection target member 42 has a plurality of first electrodes 42a on the surface (upper surface). The second connection target member 43 has a plurality of second electrodes 43a on the surface (lower surface). The first electrode 42a and the second electrode 43a are electrically connected by one or more conductive particles 1. Therefore, the first and second connection target members 42 and 43 are electrically connected by the conductive particles 1.

 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧時の圧力は、好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記加熱時の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。

The method for manufacturing the connection structure is not particularly limited. As an example of a method for manufacturing a connection structure, a method in which the conductive material is arranged between a first connection target member and a second connection target member, a laminate is obtained, and then the laminate is heated and pressurized. And so on. The pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less. The temperature at the time of heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower.

 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。

The first connection target member and the second connection target member are not particularly limited. Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards. The first connection target member and the second connection target member are preferably electronic components.

 上記導電材料は、電子部品を接続するための導電材料であることが好ましい。上記導電ペーストはペースト状の導電材料であり、ペースト状の状態で接続対象部材上に塗工されることが好ましい。

The conductive material is preferably a conductive material for connecting electronic components. The conductive paste is a paste-like conductive material, and is preferably coated on the connection target member in the paste-like state.

 上記導電性粒子、上記導電材料及び上記接続材料は、タッチパネルにも好適に用いられる。従って、上記接続対象部材は、フレキシブル基板であるか、又は樹脂フィルムの表面上に電極が配置された接続対象部材であることも好ましい。上記接続対象部材は、フレキシブル基板であることが好ましく、樹脂フィルムの表面上に電極が配置された接続対象部材であることが好ましい。上記フレキシブル基板がフレキシブルプリント基板等である場合に、フレキシブル基板は一般に電極を表面に有する。

The conductive particles, the conductive material, and the connecting material are also suitably used for a touch panel. Therefore, it is also preferable that the connection target member is a flexible substrate or a connection target member in which electrodes are arranged on the surface of the resin film. The connection target member is preferably a flexible substrate, and is preferably a connection target member in which electrodes are arranged on the surface of the resin film. When the flexible substrate is a flexible printed circuit board or the like, the flexible substrate generally has electrodes on its surface.

 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。

Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the connection target member is a flexible printed substrate, the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes. When the member to be connected is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.

 また、上記樹脂粒子は、液晶表示素子用スペーサとして好適に用いることができる。上記第1の接続対象部材は、第1の液晶表示素子用部材であってもよい。上記第2の接続対象部材は、第2の液晶表示素子用部材であってもよい。上記接続部は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部であってもよい。

Further, the resin particles can be suitably used as a spacer for a liquid crystal display element. The first connection target member may be a first liquid crystal display element member. The second connection target member may be a second liquid crystal display element member. In the connecting portion, the first liquid crystal display element member and the second liquid crystal display element member are in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. It may be a sealing portion that seals the outer periphery of and.

 上記樹脂粒子は、液晶表示素子用周辺シール剤に用いることもできる。液晶表示素子は、第1の液晶表示素子用部材と、第2の液晶表示素子用部材とを備える。液晶表示素子は、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材とが対向した状態で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との外周をシールしているシール部と、上記シール部の内側で、上記第1の液晶表示素子用部材と上記第2の液晶表示素子用部材との間に配置されている液晶とをさらに備える。この液晶表示素子では、液晶滴下工法が適用され、かつ上記シール部が、液晶滴下工法用シール剤を熱硬化させることにより形成されている。

The resin particles can also be used as a peripheral sealant for a liquid crystal display element. The liquid crystal display element includes a first liquid crystal display element member and a second liquid crystal display element member. In the liquid crystal display element, the first liquid crystal display element member and the second liquid crystal display element member are in a state where the first liquid crystal display element member and the second liquid crystal display element member face each other. A seal portion that seals the outer periphery of the liquid crystal, and a liquid crystal that is arranged inside the seal portion between the first liquid crystal display element member and the second liquid crystal display element member. Be prepared. In this liquid crystal display element, the liquid crystal dropping method is applied, and the sealing portion is formed by thermosetting the sealing agent for the liquid crystal dropping method.

 上記液晶表示素子において1mmあたりの液晶表示素子用スペーサの配置密度は、好ましくは10個/mm以上であり、好ましくは1000個/mm以下である。上記配置密度が10個/mm以上であると、セルギャップがより一層均一になる。上記配置密度が1000個/mm以下であると、液晶表示素子のコントラストがより一層良好になる。

In the liquid crystal display element, the arrangement density of the spacers for the liquid crystal display element per 1 mm 2 is preferably 10 pieces / mm 2 or more, and preferably 1000 pieces / mm 2 or less. When the arrangement density is 10 pieces / mm 2 or more, the cell gap becomes even more uniform. When the arrangement density is 1000 pieces / mm 2 or less, the contrast of the liquid crystal display element becomes even better.

 (電子部品装置)

 上述した樹脂粒子又は導電性粒子は、第1のセラミック部材と第2のセラミック部材との外周部において、第1のセラミック部材と第2のセラミック部材との間に配置され、ギャップ制御材及び導電接続材として用いることもできる。

(Electronic component equipment)

The resin particles or conductive particles described above are arranged between the first ceramic member and the second ceramic member on the outer peripheral portion between the first ceramic member and the second ceramic member, and are a gap control material and a conductive material. It can also be used as a connecting material.

 図5は、本発明に係る樹脂粒子を用いた電子部品装置の一例を示す断面図である。図6は、図5に示す電子部品装置における接合部部分を拡大して示す断面図である。

FIG. 5 is a cross-sectional view showing an example of an electronic component device using the resin particles according to the present invention. FIG. 6 is an enlarged cross-sectional view showing a joint portion in the electronic component device shown in FIG.

 図5,6に示す電子部品装置81は、第1のセラミック部材82と、第2のセラミック部材83と、接合部84と、電子部品85と、リードフレーム86とを備える。

The electronic component device 81 shown in FIGS. 5 and 6 includes a first ceramic member 82, a second ceramic member 83, a joint portion 84, an electronic component 85, and a lead frame 86.

 第1,第2のセラミック部材82,83はそれぞれ、セラミック材料により形成されている。第1,第2のセラミック部材82,83はそれぞれ、例えば、筐体である。第1のセラミック部材82は、例えば、基板である。第2のセラミック部材83は、例えば蓋である。第1のセラミック部材82は、外周部に、第2のセラミック部材83側(上側)に突出した凸部を有する。第1のセラミック部材82は、第2のセラミック部材83側(上側)に、電子部品85を収納するための内部空間Rを形成する凹部を有する。なお、第1のセラミック部材82は、凸部を有していなくてもよい。第2のセラミック部材83は、外周部に、第1のセラミック部材82側(下側)に突出した凸部を有する。第2のセラミック部材83は、第1のセラミック部材82側(下側)に、電子部品85を収納するための内部空間Rを形成する凹部を有する。なお、第2のセラミック部材83は、凸部を有していなくてもよい。第1のセラミック部材82と第2のセラミック部材83とによって、内部空間Rが形成されている。

The first and second ceramic members 82 and 83 are each made of a ceramic material. The first and second ceramic members 82 and 83 are, for example, housings, respectively. The first ceramic member 82 is, for example, a substrate. The second ceramic member 83 is, for example, a lid. The first ceramic member 82 has a convex portion protruding toward the second ceramic member 83 side (upper side) on the outer peripheral portion. The first ceramic member 82 has a recess on the second ceramic member 83 side (upper side) that forms an internal space R for accommodating the electronic component 85. The first ceramic member 82 does not have to have a convex portion. The second ceramic member 83 has a convex portion protruding toward the first ceramic member 82 side (lower side) on the outer peripheral portion. The second ceramic member 83 has a recess on the first ceramic member 82 side (lower side) that forms an internal space R for accommodating the electronic component 85. The second ceramic member 83 does not have to have a convex portion. The internal space R is formed by the first ceramic member 82 and the second ceramic member 83.

 接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを接合している。具体的には、接合部84は、第1のセラミック部材82の外周部の凸部と、第2のセラミック部材83の外周部の凸部とを接合している。

The joint portion 84 joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. Specifically, the joint portion 84 joins the convex portion of the outer peripheral portion of the first ceramic member 82 and the convex portion of the outer peripheral portion of the second ceramic member 83.

 接合部84により接合された第1,第2のセラミック部材82,83によってパッケージが形成されている。パッケージによって、内部空間Rが形成されている。接合部84は、内部空間Rを液密的及び気密的に封止している。接合部84は、封止部である。

The package is formed by the first and second ceramic members 82 and 83 joined by the joining portion 84. The interior space R is formed by the package. The joint portion 84 seals the internal space R in a liquid-tight and airtight manner. The joint portion 84 is a sealing portion.

 電子部品85は、上記パッケージの内部空間R内に配置されている。具体的には、第1のセラミック部材82上に、電子部品85が配置されている。本実施形態では、2つの電子部品85が用いられている。

The electronic component 85 is arranged in the internal space R of the package. Specifically, the electronic component 85 is arranged on the first ceramic member 82. In this embodiment, two electronic components 85 are used.

 接合部84は、複数の樹脂粒子11とガラス84Bとを含む。接合部84は、ガラス粒子とは異なる複数の樹脂粒子11とガラス84Bとを含む接合材料を用いて形成されている。この接合材料は、セラミックパッケージ用接合材料である。上記接合材料は、上記樹脂粒子の代わりに、上述した導電性粒子を含んでいてもよい。

The joint portion 84 includes a plurality of resin particles 11 and glass 84B. The bonding portion 84 is formed by using a bonding material containing a plurality of resin particles 11 different from the glass particles and the glass 84B. This bonding material is a bonding material for ceramic packages. The bonding material may contain the above-mentioned conductive particles instead of the above-mentioned resin particles.

 接合材料は、溶剤を含んでいてもよく、樹脂を含んでいてもよい。接合部84では、ガラス粒子等のガラス84Bが溶融及び結合した後に固化している。

The bonding material may contain a solvent or a resin. At the joint portion 84, glass 84B such as glass particles is melted and bonded and then solidified.

 電子部品としては、センサ素子、MEMS及びベアチップ等が挙げられる。上記センサ素子としては、圧力センサ素子、加速度センサ素子、CMOSセンサ素子、CCDセンサ素子及び上記各種センサ素子の筐体等が挙げられる。

Examples of electronic components include sensor elements, MEMS, bare chips, and the like. Examples of the sensor element include a pressure sensor element, an acceleration sensor element, a CMOS sensor element, a CCD sensor element, and a housing of the various sensor elements.

 リードフレーム86は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間に配置されている。リードフレーム86は、パッケージの内部空間R側と外部空間側とに延びている。電子部品85の端子とリードフレーム86とがワイヤーを介して、電気的に接続されている。

The lead frame 86 is arranged between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. The lead frame 86 extends to the internal space R side and the external space side of the package. The terminal of the electronic component 85 and the lead frame 86 are electrically connected via a wire.

 接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを部分的に直接に接合しており、部分的に間接に接合している。具体的には、接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とをリードフレーム86を介して間接に接合している。第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82がリードフレーム86と接しており、リードフレーム86が第1のセラミック部材82と接合部84とに接している。さらに、接合部84がリードフレーム86と第2のセラミック部材83とに接しており、第2のセラミック部材83が接合部84と接している。接合部84は、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がない部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部とを直接に接合している。第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がない部分において、接合部84が、第1のセラミック部材82と第2のセラミック部材83とに接している。

The joint portion 84 partially directly joins the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, and partially indirectly joins them. Specifically, the joint portion 84 is the outer peripheral portion of the first ceramic member 82 at the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. And the outer peripheral portion of the second ceramic member 83 are indirectly joined via the lead frame 86. In the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the first ceramic member 82 is in contact with the lead frame 86, and the lead frame 86 is in contact with the lead frame 86. It is in contact with the first ceramic member 82 and the joint portion 84. Further, the joint portion 84 is in contact with the lead frame 86 and the second ceramic member 83, and the second ceramic member 83 is in contact with the joint portion 84. The joint portion 84 is a portion between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83 where there is no lead frame 86, and the outer peripheral portion of the first ceramic member 82 and the second ceramic It is directly joined to the outer peripheral portion of the member 83. In the portion where there is no lead frame 86 between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the joint portion 84 is formed with the first ceramic member 82 and the second ceramic member 83. Is in contact with.

 第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との間のリードフレーム86がある部分において、第1のセラミック部材82の外周部と第2のセラミック部材83の外周部との隙間の距離は、接合部84に含まれる複数の樹脂粒子11により制御されている。

In the portion where the lead frame 86 is located between the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83, the outer peripheral portion of the first ceramic member 82 and the outer peripheral portion of the second ceramic member 83. The distance between the ceramic particles and the ceramic particles 11 is controlled by the plurality of resin particles 11 contained in the joint portion 84.

 接合部は、第1のセラミック部材の外周部と第2のセラミック部材の外周部とを直接又は間接に接合していればよい。なお、リードフレーム以外の電気的接続方法を採用してもよい。

The joint portion may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member. An electrical connection method other than the lead frame may be adopted.

 電子部品装置81のように、電子部品装置は、例えば、セラミック材料により形成されている第1のセラミック部材と、セラミック材料により形成されている第2のセラミック部材と、接合部と、電子部品とを備えていてもよい。上記電子部品装置では、上記接合部が、上記第1のセラミック部材の外周部と上記第2のセラミック部材の外周部とを直接又は間接に接合していてもよい。上記電子部品装置では、上記接合部により接合された上記第1,第2のセラミック部材によってパッケージが形成されていてもよい。上記電子部品装置では、上記電子部品が、上記パッケージの内部空間内に配置されており、上記接合部が、複数の樹脂粒子とガラスとを含んでいてもよい。

Like the electronic component device 81, the electronic component device includes, for example, a first ceramic member formed of a ceramic material, a second ceramic member formed of a ceramic material, a joint portion, and an electronic component. May be provided. In the electronic component device, the joint portion may directly or indirectly join the outer peripheral portion of the first ceramic member and the outer peripheral portion of the second ceramic member. In the electronic component device, the package may be formed by the first and second ceramic members joined by the joining portion. In the electronic component device, the electronic component may be arranged in the internal space of the package, and the joint may include a plurality of resin particles and glass.

 また、電子部品装置81で用いた接合材料のように、上記セラミックパッケージ用接合材料は、上記電子部品装置において、上記接合部を形成するために用いられ、樹脂粒子と、ガラスとを含む。なお、樹脂粒子のみを含み、ガラスを含まない電気的接続方法を採用してもよい。また、上記接合部は、上記樹脂粒子の代わりに、上述した導電性粒子を含んでいてもよい。

Further, like the bonding material used in the electronic component device 81, the ceramic package bonding material is used in the electronic component device to form the bonding portion, and includes resin particles and glass. An electrical connection method containing only resin particles and not glass may be adopted. Further, the joint portion may contain the above-mentioned conductive particles instead of the above-mentioned resin particles.

 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。

Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

 (実施例1)

 (1)樹脂粒子の作製

 種粒子として平均粒子径0.80μmのポリスチレン(PS)粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、ポリビニルアルコールの5重量%水溶液120重量部とを混合し、混合液(種粒子分散液)を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。

(Example 1)

(1) Preparation of resin particles

Polystyrene (PS) particles having an average particle diameter of 0.80 μm were prepared as seed particles. A mixed solution (seed particle dispersion) was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5 wt% aqueous solution of polyvinyl alcohol. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.

 また、架橋性化合物としてジビニルベンゼン(NSスチレンモノマー社製「DVB960」)を用意した。ジビニルベンゼン100重量部に、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを添加し、ラウリル硫酸トリエタノールアミン8重量部と、エタノール100重量部と、イオン交換水1000重量部とをさらに添加し、乳化液を調製した。

Further, divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.) was prepared as a crosslinkable compound. 100 parts by weight of divinylbenzene, 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.) and 2 parts by weight of benzoyl peroxide ("Niper BW" manufactured by Nichiyu Co., Ltd.) 8 parts by weight of triethanolamine lauryl sulfate, 100 parts by weight of ethanol, and 1000 parts by weight of ion-exchanged water were further added to prepare an emulsion.

 セパラブルフラスコ中の上記混合液に、上記乳化液をさらに添加し、4時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。

The emulsion was further added to the mixed solution in the separable flask, and the mixture was stirred for 4 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen.

 その後、ポリビニルアルコールの5重量%水溶液490重量部を添加し、加熱を開始して85℃で10時間反応させ、樹脂粒子を得た。

Then, 490 parts by weight of a 5 wt% aqueous solution of polyvinyl alcohol was added, and heating was started and reacted at 85 ° C. for 10 hours to obtain resin particles.

 (2)導電性粒子の作製

 得られた樹脂粒子を洗浄し、分級操作を行った後に乾燥した。その後、無電解めっき法により、得られた樹脂粒子の表面に、ニッケル層を形成し、導電性粒子を作製した。なお、ニッケル層の厚さは、0.1μmであった。

(2) Preparation of conductive particles

The obtained resin particles were washed, classified, and then dried. Then, a nickel layer was formed on the surface of the obtained resin particles by an electroless plating method to prepare conductive particles. The thickness of the nickel layer was 0.1 μm.

 (3)導電材料(異方性導電ペースト)の作製

 導電材料(異方性導電ペースト)を作製するため、以下の材料を用意した。

(3) Preparation of conductive material (anisotropic conductive paste)

The following materials were prepared to prepare a conductive material (anisotropic conductive paste).

 (導電材料(異方性導電ペースト)の材料)

 熱硬化性化合物A:エポキシ化合物(ナガセケムテックス社製「EP-3300P」)

 熱硬化性化合物B:エポキシ化合物(DIC社製「EPICLON HP-4032D」)

 熱硬化性化合物C:エポキシ化合物(四日市合成社製「エポゴーセーPT」、ポリテトラメチレングリコールジグリシジルエーテル)

 熱硬化剤:熱カチオン発生剤(三新化学社製 サンエイド「SI-60」)

 フィラー:シリカ(平均粒子径0.25μm)

(Material of conductive material (anisotropic conductive paste))

Thermosetting compound A: Epoxy compound (“EP-3300P” manufactured by Nagase ChemteX Corporation)

Thermosetting compound B: Epoxy compound ("EPICLON HP-4032D" manufactured by DIC Corporation)

Thermosetting compound C: Epoxy compound ("Epogosei PT" manufactured by Yokkaichi Chemical Co., Ltd., polytetramethylene glycol diglycidyl ether)

Thermosetting agent: Thermal cation generator (Sun Aid "SI-60" manufactured by Sanshin Chemical Co., Ltd.)

Filler: Silica (average particle size 0.25 μm)

 導電材料(異方性導電ペースト)を以下のようにして作製した。

A conductive material (anisotropic conductive paste) was prepared as follows.

 (導電材料(異方性導電ペースト)の作製方法)

 熱硬化性化合物A10重量部と、熱硬化性化合物B10重量部と、熱硬化性化合物C15重量部と、熱硬化剤5重量部と、フィラー20重量部とを配合し、配合物を得た。さらに得られた導電性粒子を配合物100重量%中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、導電材料(異方性導電ペースト)を得た。

(Method for producing conductive material (anisotropic conductive paste))

A compound was obtained by blending 10 parts by weight of the thermosetting compound A, 10 parts by weight of the thermosetting compound B, 15 parts by weight of the thermosetting compound C, 5 parts by weight of the thermosetting agent, and 20 parts by weight of the filler. Further, the obtained conductive particles were added so that the content in 100% by weight of the formulation was 10% by weight, and then stirred at 2000 rpm for 5 minutes using a planetary stirrer to obtain a conductive material (differential). Conductive paste) was obtained.

 (4)接続構造体の作製

 第1の接続対象部材として、L/Sが20μm/20μmのアルミニウム電極パターンを上面に有するガラス基板を用意した。また、第2の接続対象部材として、L/Sが20μm/20μmの金電極パターン(金電極厚み20μm)を下面に有する半導体チップを用意した。

(4) Preparation of connection structure

As the first connection target member, a glass substrate having an aluminum electrode pattern having an L / S of 20 μm / 20 μm on the upper surface was prepared. Further, as a second connection target member, a semiconductor chip having a gold electrode pattern (gold electrode thickness 20 μm) having an L / S of 20 μm / 20 μm on the lower surface was prepared.

 上記ガラス基板の上面に、作製直後の導電材料(異方性導電ペースト)を厚さ30μmとなるように塗工し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、導電材料(異方性導電ペースト)層の温度が170℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、導電材料(異方性導電ペースト)層を170℃、1MPa、及び15秒間の条件で硬化させ、接続構造体を得た。

A conductive material (anisotropic conductive paste) immediately after production was applied to the upper surface of the glass substrate so as to have a thickness of 30 μm to form a conductive material (anisotropic conductive paste) layer. Next, the semiconductor chips were laminated on the upper surface of the conductive material (anisotropic conductive paste) layer so that the electrodes face each other. After that, the pressure heating head is placed on the upper surface of the semiconductor chip while adjusting the temperature of the head so that the temperature of the conductive material (anisotropic conductive paste) layer becomes 170 ° C. The layer was cured under the conditions of 170 ° C., 1 MPa, and 15 seconds to obtain a connected structure.

 (実施例2)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ジビニルベンゼン(NSスチレンモノマー社製「DVB960」)50重量部及びペンタエリスリトールトリアクリレート(共栄社化学社製「ライトアクリレートPE-4A」)50重量部に変更した。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Example 2)

When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound), 50 parts by weight of divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.) and pentaerythritol triacrylate (“Light Acrylate PE-” manufactured by Kyoei Co., Ltd. 4A ") Changed to 50 parts by weight. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (実施例3)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ポリテトラメチレングルコールジアクリレート(共栄社化学社製「ライトアクリレートPTMGA-250」)80重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてスチレン(NSスチレンモノマー社製)20重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Example 3)

When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 80 parts by weight of polytetramethylene glucol diacrylate (“light acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.). When producing the resin particles, 20 parts by weight of styrene (manufactured by NS Styrene Monomer Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (実施例4)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、1,4-ブタンジオールジメタクリレート(共栄社化学社製「ライトエステル1.4BG」)60重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてイソボルニルアクリレート(共栄社化学社製「ライトアクリレートIB-XA」)40重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Example 4)

When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 60 parts by weight of 1,4-butanediol dimethacrylate (“Light Ester 1.4BG” manufactured by Kyoeisha Chemical Co., Ltd.). In producing the resin particles, 40 parts by weight of isobornyl acrylate (“Light Acrylate IB-XA” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (実施例5)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ポリテトラメチレングルコールジアクリレート(共栄社化学社製「ライトアクリレートPTMGA-250」)30重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてイソボルニルアクリレート(共栄社化学社製「ライトアクリレートIB-XA」)70重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Example 5)

When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 30 parts by weight of polytetramethylene glucol diacrylate (“light acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.). When producing the resin particles, 70 parts by weight of isobornyl acrylate (“Light Acrylate IB-XA” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (実施例6)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、グリセリンジメタクリレート(共栄社化学社製「ライトエステルG-101P」)50重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてシクロヘキシルメタクリレート(共栄社化学社製「ライトエステルCH」)50重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Example 6)

When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 50 parts by weight of glycerin dimethacrylate (“Light Ester G-101P” manufactured by Kyoeisha Chemical Co., Ltd.). In producing the resin particles, 50 parts by weight of cyclohexyl methacrylate (“light ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (実施例7)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ジビニルベンゼン(NSスチレンモノマー社製「DVB960」)20重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてシクロヘキシルメタクリレート(共栄社化学社製「ライトエステルCH」)79.5重量部と、極性官能基を有する重合性化合物としてメタクリル酸(共栄社化学社製「ライトエステルA」)0.5重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Example 7)

When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 20 parts by weight of divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.). When producing resin particles, 79.5 parts by weight of cyclohexyl methacrylate (“Light Ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) as a non-crosslinkable compound and methacrylic acid (“Light Ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) as a polymerizable compound having a polar functional group are used. Light ester A ") 0.5 parts by weight was further used. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (実施例8)

 樹脂粒子を作製する際に、平均粒子径0.80μmのポリスチレン粒子(種粒子)を、平均粒子径3μmのポリスチレン粒子に変更した。樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ポリテトラメチレングルコールジアクリレート(共栄社化学社製「ライトアクリレートPTMGA-250」)5重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてイソボルニルアクリレート(共栄社化学社製「ライトアクリレートIB-XA」)65重量部と、極性官能基を有する重合性化合物として2-メタクロイロキシエチルアシッドホスフェート(共栄社化学社製「ライトエステルP-1M」)30重量部とを用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子を得た。

(Example 8)

When preparing the resin particles, the polystyrene particles (seed particles) having an average particle diameter of 0.80 μm were changed to polystyrene particles having an average particle diameter of 3 μm. When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 5 parts by weight of polytetramethylene glucol diacrylate (“Light Acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.). When producing resin particles, 65 parts by weight of isobornyl acrylate (“light acrylate IB-XA” manufactured by Kyoeisha Chemical Co., Ltd.) as a non-crosslinkable compound and 2-methacryloxyethyl as a polymerizable compound having a polar functional group. 30 parts by weight of acid phosphate (“Light Ester P-1M” manufactured by Kyoeisha Chemical Co., Ltd.) was used. Resin particles were obtained in the same manner as in Example 1 except for the above changes.

 導電性粒子を作製する際に、ニッケル層の厚さを0.1μmから1μmに変更した。

When producing the conductive particles, the thickness of the nickel layer was changed from 0.1 μm to 1 μm.

 上記の変更以外は、導電性粒子、導電材料及び接続構造体を得た。

Except for the above changes, conductive particles, conductive materials and connecting structures were obtained.

 (比較例1)

 樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ジビニルベンゼン(NSスチレンモノマー社製「DVB960」)20重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてシクロヘキシルメタクリレート(共栄社化学社製「ライトエステルCH」)80重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子、導電性粒子、導電材料及び接続構造体を得た。

(Comparative Example 1)

When the resin particles were produced, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 20 parts by weight of divinylbenzene (“DVB960” manufactured by NS Styrene Monomer Co., Ltd.). When producing the resin particles, 80 parts by weight of cyclohexyl methacrylate (“light ester CH” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Except for the above changes, resin particles, conductive particles, conductive materials, and connecting structures were obtained in the same manner as in Example 1.

 (比較例2)

 樹脂粒子を作製する際に、平均粒子径0.80μmのポリスチレン粒子(種粒子)を、平均粒子径3μmのポリスチレン粒子に変更した。樹脂粒子を作製する際に、ジビニルベンゼン(架橋性化合物)100重量部を、ポリテトラメチレングルコールジアクリレート(共栄社化学社製「ライトアクリレートPTMGA-250」)7.5重量部に変更した。樹脂粒子を作製する際に、非架橋性化合物としてイソボルニルアクリレート(共栄社化学社製「ライトアクリレートIB-XA」)82.5重量部を更に用いた。上記の変更以外は、実施例1と同様にして、樹脂粒子を得た。

(Comparative Example 2)

When preparing the resin particles, the polystyrene particles (seed particles) having an average particle diameter of 0.80 μm were changed to polystyrene particles having an average particle diameter of 3 μm. When producing the resin particles, 100 parts by weight of divinylbenzene (crosslinkable compound) was changed to 7.5 parts by weight of polytetramethylene glucol diacrylate (“Light Acrylate PTMGA-250” manufactured by Kyoeisha Chemical Co., Ltd.). In producing the resin particles, 82.5 parts by weight of isobornyl acrylate (“Light Acrylate IB-XA” manufactured by Kyoeisha Chemical Co., Ltd.) was further used as the non-crosslinkable compound. Resin particles were obtained in the same manner as in Example 1 except for the above changes.

 導電性粒子を作製する際に、ニッケル層の厚さを0.1μmから1μmに変更した。

When producing the conductive particles, the thickness of the nickel layer was changed from 0.1 μm to 1 μm.

 上記の変更以外は、導電性粒子、導電材料及び接続構造体を得た。

Except for the above changes, conductive particles, conductive materials and connecting structures were obtained.

 (評価)

 (1)樹脂粒子及び導電性粒子の粒子径

 得られた樹脂粒子及び導電性粒子の粒子径を、精密粒度分布測定(ベックマン・コールター社製「Multisizer3」)を用いて測定した。

(Evaluation)

(1) Particle diameter of resin particles and conductive particles

The particle diameters of the obtained resin particles and conductive particles were measured using a precise particle size distribution measurement (“Multisizer 3” manufactured by Beckman Coulter).

 (2)樹脂粒子の圧縮弾性率

 得られた樹脂粒子の圧縮弾性率(10%K値及び30%K値)を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。

(2) Compressive elastic modulus of resin particles

The compressive elastic modulus (10% K value and 30% K value) of the obtained resin particles was measured by the above-mentioned method using a microcompression tester (“Fisherscope H-100” manufactured by Fisher).

 (3)樹脂粒子の圧縮回復率

 得られた樹脂粒子の圧縮回復率を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて測定した。

(3) Compression recovery rate of resin particles

The compression recovery rate of the obtained resin particles was measured by a microcompression tester (“Fisherscope H-100” manufactured by Fisher) by the method described above.

 (4)樹脂粒子の飛行時間型二次イオン質量分析法(TOF-SIMS)

 得られた樹脂粒子を用いて、飛行時間型二次イオン質量分析法(TOF-SIMS)を実施した。具体的には、以下のようにして分析した。上記TOF-SIMSには、ION TOF社製「TOF-SIMS 5型」を用いた。TOF-SIMS分析装置を用いて上記樹脂粒子の外表面のOHイオンの強度及びトータルイオン強度を測定するために、Bi3+イオンガンを測定用の一次イオン源とし、25keVの条件にて測定を行った。スパッタリングは、真空中でアルゴン等の不活性ガスを導入し、ターゲットにマイナスの電圧を印加してグロー放電を発生させ、不活性ガス原子をイオン化し、ターゲットの表面を研削した。2回のスパッタリングを行うことで、TOF-SIMSにて上記樹脂粒子の外表面から内側に向かって約2nm程度の厚みの領域における各イオン強度の検出結果を得た。

(4) Time-of-flight secondary ion mass spectrometry (TOF-SIMS) for resin particles

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was performed using the obtained resin particles. Specifically, the analysis was performed as follows. For the TOF-SIMS, "TOF-SIMS Type 5" manufactured by ION TOF was used. In order to measure the OH - ion strength and total ionic strength of the outer surface of the resin particles using a TOF-SIMS analyzer, the measurement was performed under the condition of 25 keV using a Bi 3+ ion gun as the primary ion source for measurement. It was. In sputtering, an inert gas such as argon was introduced in a vacuum, a negative voltage was applied to the target to generate a glow discharge, the inert gas atom was ionized, and the surface of the target was ground. By performing the sputtering twice, the detection result of each ionic strength in the region having a thickness of about 2 nm from the outer surface to the inside of the resin particles was obtained by TOF-SIMS.

 得られた結果から、上記樹脂粒子の外表面において、飛行時間型二次イオン質量分析法(TOF-SIMS)により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比(OHイオンの強度/全負イオンの強度の合計)を算出した。

From the obtained results, when a negative spectrum was obtained on the outer surface of the resin particles by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the strength of OH - ions with respect to the total strength of all negative ions. (OH - ionic strength / total negative ion strength) was calculated.

 (5)樹脂粒子の凝集性

 得られた樹脂粒子を有機溶媒と混合し静置した際の沈降速度を測定することで、樹脂粒子の凝集性を評価した。得られた樹脂粒子2.5gとアセトンを25mLとを混合して混合液を作製し、作製した混合液を超音波洗浄機(アズワン社製「VS-1003」)にて1分間、超音波によって分散させた。その後、20mLのガラスメスシリンダーに入れ静置した。60分ごとに樹脂粒子の沈降を確認することで、実測沈降速度を算出した。理論沈降速度の実測沈降速度に対する比([理論沈降速度(m/h)/実測沈降速度値(m/h)])を算出し、以下の基準で判定した。

(5) Cohesiveness of resin particles

The cohesiveness of the resin particles was evaluated by measuring the sedimentation rate when the obtained resin particles were mixed with an organic solvent and allowed to stand. A mixed solution is prepared by mixing 2.5 g of the obtained resin particles and 25 mL of acetone, and the prepared mixed solution is ultrasonically used for 1 minute with an ultrasonic cleaner (“VS-1003” manufactured by AS ONE Corporation). Dispersed. Then, it was placed in a 20 mL glass measuring cylinder and allowed to stand. The measured sedimentation velocity was calculated by confirming the sedimentation of the resin particles every 60 minutes. The ratio of the theoretical sedimentation velocity to the actual sedimentation velocity ([theoretical sedimentation velocity (m / h) / measured sedimentation velocity value (m / h)]) was calculated and judged according to the following criteria.

 また、理論沈降速度はストークスの式を用いて算出した。真球状の粒子が、単粒子で存在すると仮定した際に用いられる式である。ただし、スラリー濃度による項は含まないため考慮されていない。

The theoretical sedimentation velocity was calculated using Stokes' equation. This formula is used when it is assumed that spherical particles exist as single particles. However, it is not considered because it does not include the term depending on the slurry concentration.

 理論沈降速度(m/h)=D (ρ-ρ)g/18η

 D:樹脂粒子の粒子径(m)

 ρ:樹脂粒子の密度(kg/m

 ρ:アセトンの密度(kg/m):784kg/m

 g:重力加速度(m/s)

 η:アセトンの粘度(kg/m・s):0.00032kg/m・s

Theoretical sedimentation velocity (m / h) = D p 2pf ) g / 18η

D p : Particle diameter (m) of resin particles

ρ p : Density of resin particles (kg / m 3 )

ρ f : Acetone density (kg / m 3 ): 784 kg / m 3

g: Gravitational acceleration (m / s)

η: Acetone viscosity (kg / m · s): 0.00032 kg / m · s

 樹脂粒子の密度測定には、乾式自動密度計(島津製作所製「アキュピック」)を用いた。樹脂粒子の密度測定には、樹脂粒子1gを、メタノール100g中に25℃で20時間浸漬し、その後、40℃で12時間真空乾燥させた樹脂粒子を用いた。

A dry automatic densitometer (“Acupic” manufactured by Shimadzu Corporation) was used to measure the density of resin particles. For the density measurement of the resin particles, 1 g of the resin particles was immersed in 100 g of methanol at 25 ° C. for 20 hours, and then vacuum dried at 40 ° C. for 12 hours.

 [樹脂粒子の凝集性の判定基準]

 ○:上記比([理論沈降速度(m/h)/実測沈降速度値(m/h)])の値が0.55未満(樹脂粒子が凝集した凝集物が全く認められない)

 △:上記比([理論沈降速度(m/h)/実測沈降速度値(m/h)])の値が0.55以上0.75未満(樹脂粒子が凝集した凝集物がごくわずかに認められる)

 ×:上記比([理論沈降速度(m/h)/実測沈降速度値(m/h)])の値が0.75以上(樹脂粒子が凝集した凝集物が認められる)

[Criteria for determining the cohesiveness of resin particles]

◯: The value of the above ratio ([theoretical sedimentation velocity (m / h) / measured sedimentation velocity value (m / h)]) is less than 0.55 (no agglomerates of agglomerated resin particles are observed).

Δ: The value of the above ratio ([theoretical sedimentation velocity (m / h) / measured sedimentation velocity value (m / h)]) is 0.55 or more and less than 0.75 (agglomerates of agglomerated resin particles are observed very slightly. To be)

X: The value of the above ratio ([theoretical sedimentation velocity (m / h) / measured sedimentation velocity value (m / h)]) is 0.75 or more (aggregates in which resin particles are aggregated are observed).

 (6)導電部の厚み

 得られた導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂体を作製した。その検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。

(6) Thickness of conductive part

The obtained conductive particles were added to "Technobit 4000" manufactured by Kulzer and dispersed so as to have a content of 30% by weight to prepare an embedded resin body for inspection. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.

 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、10個の導電性粒子を無作為に選択し、それぞれの導電性粒子の導電部を観察した。各導電性粒子における導電部の厚みを計測し、それを算術平均して導電部の厚みとした。

Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 10 conductive particles were randomly selected. The conductive part of each conductive particle was observed. The thickness of the conductive portion of each conductive particle was measured and arithmetically averaged to obtain the thickness of the conductive portion.

 (7)樹脂粒子と導電部との密着性

 得られた接続構造体について、接続部中の導電性粒子を走査型電子顕微鏡(日立ハイテクノロジー社製「Regulus8220」)を用いて観察した。樹脂粒子の表面上に配置された導電部について、導電部の割れ又は導電部の剥離が発生しているか否かを確認した。なお、観察した導電性粒子の個数は100個である。樹脂粒子と導電部との密着性を以下の基準で判定した。

(7) Adhesion between resin particles and conductive parts

With respect to the obtained connection structure, the conductive particles in the connection portion were observed using a scanning electron microscope (“Regulus 8220” manufactured by Hitachi High-Technology Co., Ltd.). Regarding the conductive portion arranged on the surface of the resin particles, it was confirmed whether or not the conductive portion was cracked or the conductive portion was peeled off. The number of conductive particles observed was 100. The adhesion between the resin particles and the conductive portion was judged according to the following criteria.

 [樹脂粒子と導電部との密着性の判定基準]

 ○○○:導電部の割れ又は導電部の剥離が発生した導電性粒子が0個

 ○○:導電部の割れ又は導電部の剥離が発生した導電性粒子が0個を超え15個以下

 ○:導電部の割れ又は導電部の剥離が発生した導電性粒子が15個を超え30個以下

 △:導電部の割れ又は導電部の剥離が発生した導電性粒子が30個を超え50個以下

 ×:導電部の割れ又は導電部の剥離が発生した導電性粒子が50個を超える

[Criteria for determining the adhesion between resin particles and conductive parts]

○○○: 0 conductive particles with cracked conductive part or peeled conductive part

○○: The number of conductive particles in which the conductive part is cracked or the conductive part is peeled off exceeds 0 and 15 or less.

◯: The number of conductive particles in which the conductive portion is cracked or the conductive portion is peeled off exceeds 15 and 30 or less.

Δ: The number of conductive particles in which the conductive portion is cracked or the conductive portion is peeled off is more than 30 and 50 or less.

X: More than 50 conductive particles in which the conductive portion is cracked or the conductive portion is peeled off.

 (8)接続信頼性(上下の電極間)

 得られた100個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続信頼性を以下の基準で判定した。

(8) Connection reliability (between the upper and lower electrodes)

The connection resistance between the upper and lower electrodes of the obtained 100 connection structures was measured by the 4-terminal method, respectively. The average value of the connection resistance was calculated. From the relationship of voltage = current x resistance, the connection resistance can be obtained by measuring the voltage when a constant current is passed. The connection reliability was judged according to the following criteria.

 [接続信頼性の判定基準]

 ○○○:接続抵抗の平均値が1.5Ω以下

 ○○:接続抵抗の平均値が1.5Ωを超え2.0Ω以下

 ○:接続抵抗の平均値が2.0Ωを超え5.0Ω以下

 △:接続抵抗の平均値が5.0Ωを超え10Ω以下

 ×:接続抵抗の平均値が10Ωを超える

[Criteria for connection reliability]

○○○: Average value of connection resistance is 1.5Ω or less

○○: The average value of the connection resistance exceeds 1.5Ω and 2.0Ω or less.

◯: The average value of the connection resistance exceeds 2.0Ω and 5.0Ω or less.

Δ: The average value of the connection resistance exceeds 5.0 Ω and is 10 Ω or less.

X: The average value of the connection resistance exceeds 10Ω

 (9)高温及び高湿条件後の接続信頼性

 上記(8)接続信頼性の評価で得られた接続構造体100個を、85℃、85%RHにて100時間放置した。放置後の100個の接続構造体について、上下の電極間の導通不良が生じているか否かを評価した。高温及び高湿条件後の接続信頼性を以下の基準で判定した。

(9) Connection reliability after high temperature and high humidity conditions

The 100 connection structures obtained in the above (8) evaluation of connection reliability were left at 85 ° C. and 85% RH for 100 hours. For 100 connection structures after being left to stand, it was evaluated whether or not there was a conduction failure between the upper and lower electrodes. The connection reliability after high temperature and high humidity conditions was judged according to the following criteria.

 [高温及び高湿条件後の接続信頼性の判定基準]

 ○○:接続構造体100個の内、導通不良が生じている個数が1個以下である

 ○:接続構造体100個の内、導通不良が生じている個数が2個以上5個以下である

 △:接続構造体100個の内、導通不良が生じている個数が6個以上10個以下である

 ×:接続構造体100個の内、導通不良が生じている個数が11個以上である

[Criteria for connection reliability after high temperature and high humidity conditions]

XX: Of the 100 connection structures, the number of poor continuity is 1 or less.

◯: Of the 100 connection structures, the number of poor continuity is 2 or more and 5 or less.

Δ: Of the 100 connection structures, the number of poor continuity is 6 or more and 10 or less.

X: Of the 100 connection structures, 11 or more have poor continuity.

 実施例1~8及び比較例1,2の樹脂粒子の作製時の材料を表1,2に示す。結果を下記の表3,4に示す。

Tables 1 and 2 show the materials used for producing the resin particles of Examples 1 to 8 and Comparative Examples 1 and 2. The results are shown in Tables 3 and 4 below.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

 (10)ギャップ制御用スペーサとしての使用例

 セラミックパッケージ用接合材料の作製:

 実施例1~8において、得られた樹脂粒子30重量部とガラス(組成:Ag-V-Te-W-P-W-Ba-O、融点264℃)70重量部とを含むセラミックパッケージ用接合材料を得た。

(10) Example of use as a spacer for gap control

Fabrication of bonding materials for ceramic packages:

In Examples 1 to 8, a joint for a ceramic package containing 30 parts by weight of the obtained resin particles and 70 parts by weight of glass (composition: Ag-V-Te-W-P-W-Ba-O, melting point 264 ° C.). Obtained the material.

 電子部品装置の作製:

 得られた接合材料を用いて、図5に示す電子部品装置を作製した。具体的には、接合材料を第1のセラミック部材の外周部にスクリーン印刷法によって塗布した。その後、第2のセラミック部材を対向して設置し、接合部に半導体レーザーを照射して焼成し、第1のセラミック部材と第2のセラミック部材とを接合した。

Manufacture of electronic component equipment:

The electronic component device shown in FIG. 5 was manufactured using the obtained bonding material. Specifically, the bonding material was applied to the outer peripheral portion of the first ceramic member by a screen printing method. After that, the second ceramic member was installed facing each other, the joint portion was irradiated with a semiconductor laser and fired, and the first ceramic member and the second ceramic member were joined.

 得られた電子部品装置では、第1のセラミック部材と第2のセラミック部材との間隔が良好に規制されていた。また、得られた電子部品装置は良好に作動した。また、パッケージ内部の気密性も良好に保たれていた。また、接合部において、樹脂粒子は良好に分散していた。

In the obtained electronic component device, the distance between the first ceramic member and the second ceramic member was well regulated. Moreover, the obtained electronic component device worked well. In addition, the airtightness inside the package was well maintained. In addition, the resin particles were well dispersed at the joint.

 1…導電性粒子

 2…導電部

 11…樹脂粒子

 21…導電性粒子

 22…導電部

 22A…第1の導電部

 22B…第2の導電部

 31…導電性粒子

 31a…突起

 32…導電部

 32a…突起

 33…芯物質

 34…絶縁性物質

 41…接続構造体

 42…第1の接続対象部材

 42a…第1の電極

 43…第2の接続対象部材

 43a…第2の電極

 44…接続部

 81…電子部品装置

 82…第1のセラミック部材

 83…第2のセラミック部材

 84…接合部

 84B…ガラス

 85…電子部品

 86…リードフレーム

 R…内部空間

1 ... Conductive particles

2 ... Conductive part

11 ... Resin particles

21 ... Conductive particles

22 ... Conductive part

22A ... First conductive portion

22B ... Second conductive part

31 ... Conductive particles

31a ... protrusion

32 ... Conductive part

32a ... protrusion

33 ... Core material

34 ... Insulating material

41 ... Connection structure

42 ... First member to be connected

42a ... First electrode

43 ... Second member to be connected

43a ... Second electrode

44 ... Connection

81 ... Electronic component equipment

82 ... First ceramic member

83 ... Second ceramic member

84 ... Joint

84B ... Glass

85 ... Electronic components

86 ... Lead frame

R ... Internal space

Claims (14)


  1.  樹脂粒子の外表面において、飛行時間型二次イオン質量分析法により負スペクトルを得たときに、全負イオンの強度の合計に対するOHイオンの強度の比が、2.0×10-2以上である、樹脂粒子。

    When a negative spectrum was obtained by time-of-flight secondary ion mass spectrometry on the outer surface of the resin particles, the ratio of OH - ionic strength to the total strength of all negative ions was 2.0 × 10-2 or more. Is a resin particle.

  2.  10%圧縮したときの圧縮弾性率が、500N/mm以上4500N/mm以下である、請求項1に記載の樹脂粒子。

    Compressive modulus upon compression 10%, is 500 N / mm 2 or more 4500N / mm 2 or less, the resin particles of claim 1.

  3.  30%圧縮したときの圧縮弾性率が、300N/mm以上4000N/mm以下である、請求項1又は2に記載の樹脂粒子。

    Compressive modulus upon compression 30%, 300N / mm 2 or more 4000 N / mm 2 or less, the resin particles according to claim 1 or 2.

  4.  複数の重合性化合物を含む重合性成分の重合体である、請求項1~3のいずれか1項に記載の樹脂粒子。

    The resin particle according to any one of claims 1 to 3, which is a polymer of a polymerizable component containing a plurality of polymerizable compounds.

  5.  前記重合体を構成する前記重合性成分が、架橋性化合物を含み、

     前記重合性成分100重量%中、前記架橋性化合物の含有量が30重量%以上である、請求項4に記載の樹脂粒子。

    The polymerizable component constituting the polymer contains a crosslinkable compound and contains.

    The resin particles according to claim 4, wherein the content of the crosslinkable compound is 30% by weight or more in 100% by weight of the polymerizable component.

  6.  前記重合体を構成する前記重合性成分が、架橋性化合物と、極性官能基を有する重合性化合物とを含み、

     前記重合性成分100重量%中、前記架橋性化合物の含有量が30重量%未満であり、

     前記重合性成分100重量%中、前記極性官能基を有する重合性化合物の含有量が0.5重量%以上30重量%以下である、請求項4に記載の樹脂粒子。

    The polymerizable component constituting the polymer contains a crosslinkable compound and a polymerizable compound having a polar functional group.

    The content of the crosslinkable compound is less than 30% by weight in 100% by weight of the polymerizable component.

    The resin particles according to claim 4, wherein the content of the polymerizable compound having a polar functional group is 0.5% by weight or more and 30% by weight or less in 100% by weight of the polymerizable component.

  7.  前記極性官能基を有する重合性化合物が、水酸基を有する重合性化合物、カルボキシ基を有する重合性化合物、又はリン酸基を有する重合性化合物を含む、請求項6に記載の樹脂粒子。

    The resin particles according to claim 6, wherein the polymerizable compound having a polar functional group contains a polymerizable compound having a hydroxyl group, a polymerizable compound having a carboxy group, or a polymerizable compound having a phosphoric acid group.

  8.  前記架橋性化合物が、ジビニルベンゼン、テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、又は2-(メタ)アクリルロイロキシエチルアシッドホスフェートを含む、請求項5~7のいずれか1項に記載の樹脂粒子。

    The crosslinkable compounds are divinylbenzene, tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and glycerindi (meth). ) The resin particle according to any one of claims 5 to 7, which comprises acrylate or 2- (meth) acrylic leuroxyethyl acid phosphate.

  9.  スペーサとして用いられるか、又は、表面上に導電部が形成されることで、前記導電部を有する導電性粒子を得るために用いられる、請求項1~8のいずれか1項に記載の樹脂粒子。

    The resin particle according to any one of claims 1 to 8, which is used as a spacer or is used to obtain conductive particles having the conductive portion by forming a conductive portion on the surface. ..

  10.  請求項1~9のいずれか1項に記載の樹脂粒子と、

     前記樹脂粒子の表面上に配置された導電部とを備える、導電性粒子。

    The resin particles according to any one of claims 1 to 9 and

    A conductive particle comprising a conductive portion arranged on the surface of the resin particle.

  11.  前記導電部の外表面上に配置された絶縁性物質をさらに備える、請求項10に記載の導電性粒子。

    The conductive particle according to claim 10, further comprising an insulating substance arranged on the outer surface of the conductive portion.

  12.  前記導電部の外表面に突起を有する、請求項10又は11に記載の導電性粒子。

    The conductive particle according to claim 10 or 11, which has protrusions on the outer surface of the conductive portion.

  13.  導電性粒子と、バインダー樹脂とを含み、

     前記導電性粒子が、請求項1~9のいずれか1項に記載の樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備える、導電材料。

    Contains conductive particles and binder resin,

    A conductive material in which the conductive particles include the resin particles according to any one of claims 1 to 9 and a conductive portion arranged on the surface of the resin particles.

  14.  第1の電極を表面に有する第1の接続対象部材と、

     第2の電極を表面に有する第2の接続対象部材と、

     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、

     前記接続部が、導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されており、

     前記導電性粒子が、請求項1~9のいずれか1項に記載の樹脂粒子と、前記樹脂粒子の表面上に配置された導電部とを備え、

     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。

    A first connection target member having a first electrode on its surface,

    A second connection target member having a second electrode on the surface,

    A connecting portion connecting the first connection target member and the second connection target member is provided.

    The connecting portion is formed of conductive particles, or is formed of a conductive material containing the conductive particles and a binder resin.

    The conductive particles include the resin particles according to any one of claims 1 to 9 and a conductive portion arranged on the surface of the resin particles.

    A connecting structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2020/019227 2019-05-14 2020-05-14 Resin particles, conductive particles, conductive material and connection structure WO2020230842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558069A JPWO2020230842A1 (en) 2019-05-14 2020-05-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-091545 2019-05-14
JP2019091545 2019-05-14

Publications (1)

Publication Number Publication Date
WO2020230842A1 true WO2020230842A1 (en) 2020-11-19

Family

ID=73289805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019227 WO2020230842A1 (en) 2019-05-14 2020-05-14 Resin particles, conductive particles, conductive material and connection structure

Country Status (3)

Country Link
JP (1) JPWO2020230842A1 (en)
TW (1) TW202110980A (en)
WO (1) WO2020230842A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461272B2 (en) 2020-10-19 2024-04-03 積水化学工業株式会社 Silver-containing particles and pasty compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259253A (en) * 1997-03-21 1998-09-29 Hayakawa Rubber Co Ltd Metal-coated particle and conductive material
JP2001135141A (en) * 1999-11-04 2001-05-18 Soken Chem & Eng Co Ltd Anisotropic conductive bonding ink, liquid crystal display device and method of producing liquid crystal display device
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
WO2009119788A1 (en) * 2008-03-27 2009-10-01 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material, and connection structure
JP2013214509A (en) * 2012-03-06 2013-10-17 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
WO2018230470A1 (en) * 2017-06-12 2018-12-20 積水化学工業株式会社 Resin particles, conductive particles, conductive material, adhesive, connection structure and liquid crystal display element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259253A (en) * 1997-03-21 1998-09-29 Hayakawa Rubber Co Ltd Metal-coated particle and conductive material
JP2001135141A (en) * 1999-11-04 2001-05-18 Soken Chem & Eng Co Ltd Anisotropic conductive bonding ink, liquid crystal display device and method of producing liquid crystal display device
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
WO2009119788A1 (en) * 2008-03-27 2009-10-01 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material, and connection structure
JP2013214509A (en) * 2012-03-06 2013-10-17 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
WO2018230470A1 (en) * 2017-06-12 2018-12-20 積水化学工業株式会社 Resin particles, conductive particles, conductive material, adhesive, connection structure and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461272B2 (en) 2020-10-19 2024-04-03 積水化学工業株式会社 Silver-containing particles and pasty compositions

Also Published As

Publication number Publication date
JPWO2020230842A1 (en) 2020-11-19
TW202110980A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
JP5060655B2 (en) Conductive particles with insulating particles, anisotropic conductive material, and connection structure
TWI766040B (en) Resin particles, conductive particles, conductive materials, adhesives, connection structures, and liquid crystal display elements
JP7036872B2 (en) Conductive particles, conductive materials, and connecting structures
JP5530571B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
WO2020230842A1 (en) Resin particles, conductive particles, conductive material and connection structure
WO2020189697A1 (en) Resin particles, conductive particles, conductive material and connection structure
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP7463069B2 (en) Conductive particles, conductive material, connection structure, and method for producing connection structure
JPWO2020175691A1 (en) Conductive particles, conductive materials and connecting structures
WO2022092188A1 (en) Electroconductive particles, electroconductive material, and connection structure
WO2021025114A1 (en) Resin particle, electroconductive particle, electroconductive material, and connected structure
JP2022022293A (en) Conductive particle, conductive material, and connection structure
WO2017051872A1 (en) Connection structure production method, conductive particles, conductive film, and connection structure
JP2021055034A (en) Resin particle, conductive particle, conductive material and connection structure
JP2017063033A (en) Conductive particle, conductive film, connection structure and method for manufacturing connection structure
JP5996806B2 (en) Conductive particles, conductive materials, and connection structures
JP2015187984A (en) Conductive particles with insulating particles, conductive materials and connection structure
WO2021025112A1 (en) Resin particle, electrically conductive particle, electrically conductive material, and connected structure
WO2021025113A1 (en) Resin particle, electroconductive particle, electroconductive material, and connected structure
JP7288487B2 (en) Conductive particles, method for producing conductive particles, conductive material and connection structure
JP7474047B2 (en) Resin particles, conductive particles, conductive materials and connection structures
JP7348839B2 (en) Base material particles, conductive particles, conductive materials and connected structures
US20220262537A1 (en) Conductive particles and connection structure
JP2020200458A (en) Particle, conductive particle, conductive material and connection structure
JP2024035972A (en) Coated particles, resin compositions and connected structures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558069

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806333

Country of ref document: EP

Kind code of ref document: A1