WO2020230742A1 - Semiconductor light-emitting device for plant growth, lighting method, and design method - Google Patents

Semiconductor light-emitting device for plant growth, lighting method, and design method Download PDF

Info

Publication number
WO2020230742A1
WO2020230742A1 PCT/JP2020/018736 JP2020018736W WO2020230742A1 WO 2020230742 A1 WO2020230742 A1 WO 2020230742A1 JP 2020018736 W JP2020018736 W JP 2020018736W WO 2020230742 A1 WO2020230742 A1 WO 2020230742A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
wavelength
emission
Prior art date
Application number
PCT/JP2020/018736
Other languages
French (fr)
Japanese (ja)
Inventor
義英 中澤
Original Assignee
シチズン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズン電子株式会社 filed Critical シチズン電子株式会社
Priority to JP2021519416A priority Critical patent/JP7145328B2/en
Publication of WO2020230742A1 publication Critical patent/WO2020230742A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a semiconductor light emitting device for efficiently growing plants.
  • JP-A-2016-122722 Japanese Unexamined Patent Publication No. 2011-200204
  • the present invention provides a new semiconductor light emitting device for plant growth that can efficiently grow plants and the appearance of colors for grasping the degree of growth of plants.
  • the present inventors have conducted research in order to solve the above problems, and in the spectrum of light emitted from the semiconductor light emitting device, the green region is provided with a certain amount of light emission intensity, and the change in the light emission intensity is made gentle. We have found that the problem can be solved and completed the present invention.
  • One embodiment of the present invention is a semiconductor light emitting device for growing a plant, which comprises at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
  • the light emitted from the semiconductor light emitting device is a semiconductor light emitting device for plant growth, which satisfies ⁇ 0.050 ⁇ Duv ⁇ ⁇ 0.030 and its spectrum satisfies the following (i).
  • (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. Satisfy 3 or less
  • another embodiment of the present invention is a semiconductor light emitting device for growing a plant, which includes at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
  • a semiconductor light emitting device for plant growth wherein the spectrum of light emitted from the semiconductor light emitting device satisfies the following (ii). (Ii) the vertical axis (Y), the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), horizontal axis (X) in the graph the wavelength (nm), and the I BG, wavelength 555nm
  • the slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 in the above satisfies 0 ⁇ a ⁇ 0.004.
  • the spectrum of the light emitted from the semiconductor light emitting device further satisfies the following (iii) and / or (iv). Further, it is preferable to satisfy the following (v).
  • the red phosphor preferably contains a nitride phosphor, and preferably contains a red phosphor having a half width of 75 nm or more.
  • the green phosphor preferably contains a green phosphor having a peak wavelength of 510 nm or more and 540 nm or less and a half width of 100 nm or more and 120 nm or less.
  • Another embodiment of the present invention is a lighting method including at least a lighting step of irradiating a plant with light emitted from a semiconductor light emitting device including a blue semiconductor light emitting device and a phosphor.
  • the lighting step when the light emitted from the semiconductor light emitting device illuminates the plant, the light measured at the position of the plant satisfies ⁇ 0.050 ⁇ Duv ⁇ ⁇ 0.030, and the spectrum thereof is as follows.
  • a lighting method that satisfies (i) and (ii).
  • (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0.
  • the vertical axis (Y) satisfying 3 or less is the relative emission intensity (%) with the emission peak intensity of the spectrum as 100%, and the horizontal axis (X) is the wavelength (nm)
  • the IBG And the slope a of the straight line connecting the emission intensity I 555 at the wavelength of 555 nm satisfies 0 ⁇ a ⁇ 0.004.
  • the distance between the semiconductor light emitting device and the plant is 10 cm to 60 cm and the semiconductor light emitting device has an SMD configuration, and the distance between the semiconductor light emitting device and the plant is 60 cm to 2 m. It is preferable that the semiconductor light emitting device has a COB configuration.
  • another embodiment of the present invention designs a spectrum of light emitted from a plant growing semiconductor light emitting device including at least a blue semiconductor light emitting device and a wavelength conversion layer containing a green phosphor and a red phosphor. It ’s a method, The step of preparing the wavelength conversion layer so that the light emitted from the semiconductor light emitting device satisfies ⁇ 0.050 ⁇ Duv ⁇ ⁇ 0.030 and the spectrum satisfies the following (i) and (ii). , Including, is a design method.
  • (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0.
  • the vertical axis (Y) satisfying 3 or less is the relative emission intensity (%) with the emission peak intensity of the spectrum as 100%, and the horizontal axis (X) is the wavelength (nm)
  • the IBG And the slope a of the straight line connecting the emission intensity I 555 at the wavelength of 555 nm satisfies 0 ⁇ a ⁇ 0.004.
  • the present invention it is possible to provide a new semiconductor light emitting device for plant growth that can achieve both efficient growth of plants and color appearance for grasping the degree of growth of plants. Further, since the red phosphor is used instead of the red semiconductor light emitting element, the spectrum balance can be maintained even if it is used for a long time. Moreover, since only one type of semiconductor light emitting element is used, the drive circuit can be simplified.
  • One embodiment of the present invention is a semiconductor light emitting device for growing a plant, which comprises at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
  • the light emitted from the semiconductor light emitting device is a semiconductor light emitting device for plant growth, which satisfies ⁇ 0.050 ⁇ Duv ⁇ ⁇ 0.030 and its spectrum satisfies the following (i).
  • (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. 3 or less is satisfied.
  • Another embodiment of the present invention is a semiconductor light emitting device for growing a plant, which includes at least a blue semiconductor light emitting element, a green phosphor, and a red phosphor.
  • a semiconductor light emitting device for plant growth wherein the spectrum of light emitted from the semiconductor light emitting device satisfies the following (ii). (Ii) the vertical axis (Y), the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), horizontal axis (X) in the graph the wavelength (nm), and the I BG, wavelength 555nm
  • the slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 in the above satisfies 0 ⁇ a ⁇ 0.004.
  • the blue semiconductor light emitting device is a semiconductor light emitting device having a normal emission peak wavelength range of 430 nm or more and 490 nm or less.
  • the lower limit of the emission peak wavelength of the blue semiconductor light emitting device may be 435 nm and may be 440 nm.
  • the upper limit of the emission peak wavelength may be 480 nm or less, 475 nm or less, or 470 nm or less.
  • the semiconductor light emitting device may have only one blue semiconductor light emitting element, or may have a plurality of blue semiconductor light emitting elements. When there are a plurality of blue semiconductor light emitting elements, the blue semiconductor light emitting elements may be arranged linearly or planarly, and the arrangement may have regularity or may be at random.
  • the green phosphor is a phosphor having a normal emission peak wavelength range of 490 nm or more and 570 nm or less.
  • the emission peak wavelength may be 495 nm or more, 500 nm or more, and 510 nm or more. Further, it may be 560 nm or less, 550 nm or less, and 540 nm or less.
  • the half-value width of the green phosphor is not particularly limited, but the half-value width may be 60 nm or more, 70 nm or more, 80 nm or more, 90 nm or more, or 100 nm or more. Further, it may be 130 nm or less, 120 nm or less, 115 nm or less, and 110 nm or less.
  • the red phosphor is a phosphor having a normal emission peak wavelength range of 590 nm or more and 700 nm or less.
  • the emission peak wavelength may be 600 nm or more, and may be 610 nm or more. Further, it may be 680 nm or less, and may be 660 nm or less.
  • the half-value width of the red phosphor is not particularly limited, but the half-value width may be 1 nm or more, 2 nm or more, 15 nm or less, and 10 nm or less. In another example, the full width at half maximum may be 70 nm or more, 75 nm or more, 80 nm or more, 90 nm or more, 120 nm or less, 115 nm or less. , 110 nm or less, and may be 100 nm or less.
  • green phosphor, aluminate was Ce 3+ and activator, yttrium aluminum oxide and activator of Ce 3+, Eu 2+ activated alkaline-earth silicate crystals, Eu 2+ -activated
  • green phosphors based on alkaline earth silicate nitride These green phosphors can usually be excited using a blue semiconductor light emitting device.
  • Ce 3+ activated aluminate phosphor examples include a green phosphor represented by the following general formula (2).
  • the Ce 3+ activated aluminate phosphor represented by the general formula (2) is called a G-YAG phosphor.
  • Ce 3+ activated yttrium aluminum oxide-based phosphor examples include a green phosphor represented by the following general formula (3).
  • the Ce 3+ activated yttrium aluminum oxide-based phosphor represented by the general formula (3) is called a LuAG phosphor.
  • green phosphors represented by the following general formula (4) and the following general formula (5) can be mentioned.
  • M 1 a M 2 b M 3 c Od (4) (In the general formula (4), M 1 represents a divalent metal element, M 2 represents a trivalent metal element, M 3 represents a tetravalent metal element, and a, b, c and d are 2.7. ⁇ a ⁇ 3.3, 1.8 ⁇ b ⁇ 2.2, 2.7 ⁇ c ⁇ 3.3, 11.0 ⁇ d ⁇ 13.0.)
  • the phosphor represented by the general formula (4) is called a CSMS phosphor.
  • M 1 is a divalent metal element, but it is preferably at least one selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and Mg is preferable. , Ca, or Zn, and Ca is particularly preferable. In this case, Ca may be a single system or a composite system with Mg. Further, M 1 may contain other divalent metal elements.
  • M 2 is a trivalent metal element, it is preferably at least one selected from the group consisting of Al, Sc, Ga, Y, In, La, Gd, and Lu, and is preferably Al, Sc, Y, Or Lu is more preferable, and Sc is particularly preferable.
  • Sc may be a single system or a complex system with Y or Lu.
  • M 2 is an essential to include Ce, M 2 may contain other trivalent metal elements.
  • M 3 is a tetravalent metal element, but preferably contains at least Si.
  • the tetravalent metal element M 3 other than Si it is preferable that it is at least one selected from the group consisting of Ti, Ge, Zr, Sn, and Hf, and Ti, Zr, Sn, and Hf. It is more preferable that it is at least one selected from the group consisting of, and it is particularly preferable that it is Sn.
  • M 3 is Si.
  • M 3 may contain other tetravalent metal elements.
  • the lower limit of the percentage of total M 2 of Ce contained in M 2 is 0.01 or more, more preferably 0.02 or more.
  • the upper limit of the percentage of total M 2 of Ce contained in M 2 is preferably 0.10 or less, more preferably 0.06 or less.
  • the lower limit of the ratio of Mg contained in the M 1 element to the entire M 1 is preferably 0.01 or more, and more preferably 0.03 or more.
  • the upper limit is preferably 0.30 or less, and more preferably 0.10 or less.
  • M 1 a M 2 b M 3 c Od (5)
  • M 1 represents an activator element containing at least Ce
  • M 2 represents a divalent metal element
  • M 3 represents a trivalent metal element
  • a, b, c and d are 0.0001 ⁇ a ⁇ 0.2, 0.8 ⁇ b ⁇ 1.2, 1.6 ⁇ c ⁇ 2.4, and 3.2 ⁇ d ⁇ 4.8 are satisfied.
  • the phosphor represented by the general formula (5) is called a CSO phosphor.
  • M 1 is an activator element contained in the crystal matrix and contains at least Ce. Further, at least one 2 to 4 selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. It can contain valent elements.
  • M 2 is a divalent metal element, it is preferably at least one selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and is preferably Mg, Ca, or Sr. Is more preferable, and it is particularly preferable that 50 mol% or more of the element of M 2 is Ca.
  • M 3 is a trivalent metal element, it is preferably at least one selected from the group consisting of Al, Sc, Ga, Y, In, La, Gd, Yb, and Lu, preferably Al, Sc, Yb, or more preferably in the range of Lu, Sc, or Sc and Al, or more preferably more that is Sc and Lu, and particularly preferably 50 mol% or more of the elements of M 3 is Sc.
  • M 2 and M 3 represent divalent and trivalent metal elements, respectively, but a small part of M 2 and / or M 3 is used as a metal element having a valence of either monovalent, tetravalent, or pentavalent.
  • trace amounts of anions such as halogen elements (F, Cl, Br, I), nitrogen, sulfur, selenium and the like may be contained in the compound.
  • a specific example of a phosphor based on Eu 2+ activated alkaline earth silicate crystals is a green phosphor represented by the following general formula (6).
  • the alkaline earth silicate phosphor represented by the general formula (6) is called a BSS phosphor.
  • a specific example of a phosphor based on Eu 2+ activated alkaline earth silicate nitride is a green phosphor represented by the following general formula (7).
  • the phosphor represented by the general formula (7) is called a BSON phosphor.
  • the divalent metal elements (Ba, Ca, Sr, Mg, Zn, Eu) that can be selected in the general formula (7), it is preferable to use a combination of Ba, Sr, and Eu, and further, the ratio of Sr to Ba is More preferably, it is 10 to 30%.
  • Yttrium aluminum garnet-based phosphor (this is called a YAG phosphor) represented by (.5) and Ca 1.5x La 3-X Si 6 N 11 : Ce (where x is It may contain a yellow phosphor such as a lanthanum silicon nitride phosphor represented by 0 ⁇ x ⁇ 1) (this is referred to as an LSN phosphor).
  • SiAlON phosphor) and Ca 8 MgSi 4 O 16 Cl 2 : Eu this is called a chlorosilicate fluorescent substance.
  • Sr 3 Si 13 Al 3 O 2 N 21 Eu 2+ phosphor and (Ca, Sr) Ga 2 S 4 : Eu 2+ phosphor may be contained.
  • green phosphor only one kind of green phosphor may be used, or two or more kinds may be used in combination.
  • red phosphor examples include a fluorescent substance using Eu 2+ as an activator and having a crystal composed of an alkaline earth silicate, ⁇ -sialon or an alkaline earth silicate as a base. This type of red phosphor can usually be excited using a blue semiconductor light emitting device.
  • alkaline earth silica nitride crystals include a phosphor represented by CaAlSiN 3 : Eu (this is called a CASN phosphor), (Ca, Sr, Ba, Mg) AlSiN 3 : Eu.
  • Mn 4+ activated fluoride complex phosphors can also be mentioned.
  • the Mn 4+ activated fluoride complex phosphor is a phosphor having Mn 4+ as an activator and a fluoride complex salt of an alkali metal, an amine or an alkaline earth metal as a parent crystal.
  • the fluoride complex forming the parent crystal has a coordination center of a trivalent metal (B, Al, Ga, In, Y, Sc, lanthanoid) and a tetravalent metal (Si, Ge, Sn, Ti, Zr, Re, Hf) and pentavalent metals (V, P, Nb, Ta) are available, and the number of fluorine atoms coordinated around them is 5 to 7.
  • Mn 4+ -activated fluoride complex phosphor the alkali metal hexafluoro complex salt as host crystals A 2 + x M y Mn z F n (A is Na and / or K; M is Si and Al -1 ⁇ x ⁇ 1 and 0.9 ⁇ y + z ⁇ 1.1 and 0.001 ⁇ z ⁇ 0.4 and 5 ⁇ n ⁇ 7).
  • K potassium or Na (sodium) from one or more selected
  • M is Si (silicon) or Ti (titanium) or Ge (germanium), for example, K 2 SiF 6: Mn (This is called a KSF phosphor), K 2 Si 1-x Na x Al x F 6 : Mn (this is KSNAF fluorescence) in which a part (preferably 10 mol% or less) of this constituent element is replaced with Al and Na. (Called the body) and the like.
  • a phosphor represented by the following general formula (8) and a phosphor represented by the following general formula (9) can also be mentioned.
  • (La 1-x-y Eu x Ln y) 2 O 2 S (8) (In the general formula (8), x and y represent numbers satisfying 0.02 ⁇ x ⁇ 0.50 and 0 ⁇ y ⁇ 0.50, respectively, and Ln is of Y, Gd, Lu, Sc, Sm and Er. Represents at least one trivalent rare earth element.)
  • the lanthanum acid sulfide phosphor represented by the general formula (8) is called a LOS phosphor.
  • k, x, and y represent numbers satisfying 2.8 ⁇ k ⁇ 5, 0.1 ⁇ x ⁇ 0.7, and 0.005 ⁇ y ⁇ 0.015, respectively.
  • A is calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), or a mixture thereof.
  • the germanate phosphor represented by the general formula (9) is called an MGOF phosphor.
  • SrSi 7 Al 3 O 2 N 13 Eu 2+ phosphor and CaS: Eu 2+ phosphor may be contained.
  • red fluorescent material only one type of red fluorescent material may be used, or two or more types may be used in combination.
  • the semiconductor light emitting device of the present embodiment may include other phosphors in addition to the above green phosphor and red phosphor.
  • examples of other phosphors include a blue phosphor, a yellow fluorescent substance, an orange fluorescent substance, and the like.
  • the spectrum of light emitted by the semiconductor light emitting device of the present embodiment can satisfy ⁇ 0.050 ⁇ Duv ⁇ ⁇ 0.030.
  • Duv is below -0.050, the plant may appear red or dark.
  • ⁇ 0.030 the light intensity in the wavelength range that does not contribute to photosynthesis becomes high, and it may be difficult to grow plants efficiently.
  • the semiconductor light emitting device of the present embodiment can satisfy the above requirements (i) and / or (ii).
  • the bottom peak (minimum emission value: IBG ) of the emission spectrum exists between the blue region and the green region, and the emission intensity of the bottom peak is the peak intensity (maximum emission value) in the red region.
  • IBG minimum emission value
  • the emission intensity of the bottom peak is the peak intensity (maximum emission value) in the red region.
  • the requirement (ii) means that the change in the spectrum from the bottom peak wavelength between the blue region and the green region to the wavelength of 555 nm is gentle. That is, the vertical axis (Y), the graph of the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), transverse axis (X) and the wavelength (nm), and the I BG, at a wavelength of 555nm
  • the slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 satisfies 0 ⁇ a ⁇ 0.004.
  • the upper limit of the slope a may be 0.0038 or less, 0.0036 or less, 0.0034 or less, 0.0032 or less, 0.003 or less. Good. Since there is no sudden change in the spectrum of the green region, especially the region up to 555 nm where the luminosity factor is maximized, the Duv value tends to be in a specific range, and the plant looks red and dark. , Can be prevented.
  • the semiconductor light emitting device of the present embodiment further preferably satisfies the following (iii).
  • (Iii) Wavelength 400nm or 500nm in the following areas have an emission maximum value I B, 0.8 ⁇ I B / I above requirements satisfying R ⁇ 1.3
  • (iii) is, of the light emitted from the semiconductor light emitting device in the spectrum, the emission peak intensity of the blue region (emission maximum value I B) and the emission peak intensity of the red region (emission maximum values: I R) indicate that are substantially the same.
  • the light absorption balance between the photoreceptors chlorophyll a and chlorophyll b of the chloroplast that performs photosynthesis is good, and photosynthesis can be efficiently performed.
  • the I B / I R is 0.8 to 1.2, also 1.0, i.e., emission maxima I R is preferably made as emission maxima in the entire spectrum.
  • the semiconductor light emitting device of the present embodiment further preferably satisfies the following (iv).
  • (iv) the spectrum emitted from the semiconductor light emitting device means having an emission maximum value I R in 650nm or longer wavelength region .
  • the wavelength of light that contributes to photosynthesis is considered to be 400 nm to 700 nm, but the present inventors have confirmed that light in a long wavelength region exceeding 700 nm also contributes to photosynthesis. Therefore, for a spectrum having an emission intensity in the above region 700 nm, preferably has an emission maximum value I R in 650nm or longer wavelength region.
  • the semiconductor light emitting device of the present embodiment further preferably satisfies the following (v).
  • (V) In the range from the wavelength ⁇ I BG nm of the emission minimum value I BG to the wavelength 555 nm, the emission intensity I 555 at the wavelength 555 nm is the maximum value of the emission intensity.
  • the above requirement (v) is that the spectrum emitted from the semiconductor light emitting device is In the range from the wavelength ⁇ I BG nm of the emission minimum value I BG to the wavelength 555 nm, the intensity does not decrease as the wavelength becomes longer, which means that there is no top peak in the region.
  • a semiconductor light emitting device that emits a spectrum that satisfies the above Duv conditions and the conditions (i) to (v)
  • LuAG LuAG
  • a wideband green phosphor it is easy to form a spectrum having a certain degree of emission intensity in the medium wavelength region of 500 nm to 600 nm, and by having a wide range of emission intensity in the medium wavelength region, color appearance can be reproduced. Great contribution to sex.
  • the broadband red phosphor when a SCASN phosphor or a CASN phosphor, which is a nitride phosphor, is used as the broadband red phosphor, it is easy to form a spectrum having a large emission intensity in a long wavelength region (red region) of 600 nm or more, and for photosynthesis.
  • the amount of energy required in the red region is larger than that in the case where the red semiconductor light emitting element is used as the light emitting source in the red region, which is preferable for growing plants.
  • the configuration of the semiconductor light emitting device described above is not particularly limited, and usually, a sealing resin in which a semiconductor light emitting element is mounted on a substrate and various phosphors are mixed (a form of a wavelength conversion layer described below). It has a structure in which a semiconductor light emitting element is sealed with.
  • the sealing resin is a form of the wavelength conversion layer described below.
  • the substrate is typically a ceramic substrate or an aluminum substrate, and may be a laminated substrate in which an aluminum substrate and a glass epoxy substrate are laminated, and is not particularly limited.
  • the shape of the substrate is also not particularly limited, and is typically a rectangle such as a square or a rectangle, and has a light emitting region (wavelength conversion region or sealing region) such as a rectangle, a circle, or an ellipse on such a substrate. ..
  • the form of the semiconductor light emitting device may be a bullet-shaped LED, an SMD (surface mount device), or a COB (chip on board).
  • SMD surface mount device
  • COB chip on board
  • the SMD configuration is more preferable for plant irradiation in an environment where the distance from the plant is short because of its light distribution characteristics.
  • the distance between the semiconductor light emitting device and the plant is short, if the COB configuration has a high output, the light intensity of the portion near the center of the light emitting region becomes strong, and the irradiation light may become non-uniform with respect to the plant. is there. Therefore, when the distance between the semiconductor light emitting device and the plant is about 10 cm to 60 cm, it is preferable to illuminate the semiconductor light emitting device as an SMD configuration having a small light emitting surface.
  • the COB configuration since the COB configuration has a high output, it is preferable to illuminate the semiconductor light emitting device as the COB configuration when the distance between the semiconductor light emitting device and the plant is about 60 cm to 2 m.
  • a long COB configuration in which semiconductor light emitting elements are arranged side by side on a rectangular substrate that is long in the longitudinal direction.
  • five or more, 10 or more, 15 or more, 20 or more semiconductor light emitting elements may be arranged in the longitudinal direction regularly or at random, and may be appropriately set according to a desired illumination range. it can.
  • a reflective film such as silver on the mounting surface of the semiconductor light emitting device because the light synchrotron radiation coefficient of the semiconductor light emitting device is improved.
  • the semiconductor light emitting device of the present embodiment is preferably used as a semiconductor light emitting device for plant irradiation, may be used in a closed plant factory in which external light is shut out, or in a green house in which sunlight and a semiconductor light emitting device are used in combination. You may use it.
  • the semiconductor light emitting device of the present embodiment is effective for the growth of photosynthetic plants in general, and includes, for example, vegetables, fruits, leaves, lawns, and seedlings. It can also be applied to the cultivation of new seedlings (grain seedlings) to respond to environmental changes such as warming.
  • another embodiment of the present invention designs a spectrum of light emitted from a semiconductor light emitting device for plant growth, which includes at least a blue semiconductor light emitting device and a wavelength conversion layer containing a green phosphor and a red phosphor. It ’s a method, Preferably, the above (iii) to (v) so that the light emitted from the semiconductor light emitting device satisfies ⁇ 0.050 ⁇ Duv ⁇ ⁇ 0.030 and the spectrum thereof satisfies the above (i) and (ii). ) Is a design method including a step of preparing the wavelength conversion layer so as to further satisfy at least one of the above.
  • the wavelength conversion layer can be prepared, for example, by mixing a matrix for dispersing the phosphor and the phosphor.
  • the matrix may be a resin matrix, a glass matrix, or a ceramic matrix.
  • a phosphor containing a green phosphor and a red phosphor is provided so as to satisfy the above (i) and (ii), preferably further satisfying at least one of the above (iii) to (v).
  • the green phosphor is 75% by weight or more and 90% by weight or less
  • the red phosphor is 10% by weight or more and 25% by weight or less with respect to the total amount of phosphors in the wavelength conversion layer.
  • a trader can appropriately adjust the type and content of the phosphor in the wavelength conversion layer based on the characteristics and characteristics of the phosphor used.
  • the semiconductor light emitting device 7 was manufactured by using a blue light emitting diode (peak wavelength 451 nm) and a red phosphor (SCASN, peak wavelength 629 nm, half width 84 nm).
  • a semiconductor light emitting device 8 having a CCT 4000K was prepared with Ra80.
  • the spectra of the emitted light of the semiconductor light emitting devices 1, 2, 7 and 8 are shown in FIG. 1, and the characteristic parameters relating to the spectra of the emitted light are shown in Table 1.
  • Table 2 shows the color rendering index evaluation numbers of the emitted light of each semiconductor light emitting device.
  • the color rendering index R3, R4, R11, R14 which mainly affects the appearance of green parts such as leaves, stems, and young fruits of plants; mainly fruits such as tomato and paprika.
  • the semiconductor light emitting devices 1 to 6 and 8 are the semiconductor light emitting device 7. It was a high color rendering index. From these, it can be said that the semiconductor light emitting devices 1 to 6 and 8 emit light having a spectrum having higher color fidelity required for grasping the degree of plant growth as compared with the semiconductor light emitting device 7.
  • a photograph of a developing cherry tomato irradiated with light emitted from the semiconductor light emitting device 1 and a developing cherry tomato irradiated with light emitted from the semiconductor light emitting device 7 is shown in FIG.
  • ⁇ Growth evaluation I> In a solar-combined plant factory for cultivating leaf lettuce by supplying a culture solution, leaf lettuce was irradiated using a high-pressure sodium lamp (HPS) and semiconductor light emitting devices 1 and 7, and their growth was evaluated.
  • the cultivation environment is room temperature 22 ° C., humidity 50-70%, culture solution pH 5.5-6.0, culture solution conductivity EC1.5-2.0 mS / cm, PPFD (photosynthetic effective photon bundle density) 230 ⁇ mol / It was cultivated for 35 days at sec ⁇ m 2 and light timing ON / OFF 12 hours. The results are shown in FIG. From FIG.
  • the leaf lettuce irradiated with the light emitted from the semiconductor light emitting devices 1 and 7 irradiates the light emitted from the HPS light source widely used for indoor plant cultivation. It showed high growth compared to the leaf lettuce. In the color appearance evaluation, it can be understood that there is no significant difference in plant development between the semiconductor light emitting devices 1 and 7, which have a large difference in color reproducibility.
  • the leaf lettuce was irradiated and the growth was evaluated in the same manner as in the method of the growth evaluation I described above.
  • the leaf lettuce irradiated with the light emitted from the semiconductor light emitting device 2 has a leaf weight of about 27% and a leaf size of about 27% as compared with the leaf lettuce irradiated with the light emitted from the semiconductor light emitting device 8. It showed 33% higher growth. It can be understood that there is a large difference in plant development between the semiconductor light emitting devices 2 and 8 in which the color reproducibility was not significantly different in the color appearance evaluation.
  • the semiconductor light emitting device 8 has a too large output in the green region, so that the conversion efficiency of the red phosphor is reduced and the light output in the red region is small, so that photosynthetic loss occurs, and the dry weight and frond area are reduced. Is considered to have decreased together. Further, although light in a wavelength region longer than 700 nm is usually not considered in the calculation of the photosynthetic photon flux density, the semiconductor light emitting device 2 having more light output in the wavelength region longer than 700 nm is equivalent to the semiconductor light emitting device 7. I got the growth result of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a novel semiconductor light-emitting device for plant growth which is capable of both achieving efficient plant growth and presenting a color by which to ascertain a degree of plant growth. The semiconductor light-emitting device for plant growth at least includes a blue semiconductor light-emitting element, a green phosphor, and a red phosphor, and is configured such that light emitted from the semiconductor light-emitting device satisfies -0.050 ≤ Duv ≤ -0.030 and the spectrum thereof has a predetermined shape.

Description

植物育成用半導体発光装置、並びに照明方法及び設計方法Semiconductor light emitting device for plant growth, lighting method and design method
 本発明は、植物を効率よく育成するための半導体発光装置に関する。 The present invention relates to a semiconductor light emitting device for efficiently growing plants.
 屋内で野菜や花卉などの植物等を育てる植物工場では、効率良く植物を育成するために、白色蛍光灯、ナトリウム電球、LED等を用いて植物等に対して光を照射する。そして、植物の光合成は、植物に含まれる葉緑体により行われ、主に波長域400nm~700nmの光が使用される。 At a plant factory that grows plants such as vegetables and flowers indoors, in order to grow plants efficiently, white fluorescent lamps, sodium bulbs, LEDs, etc. are used to irradiate the plants with light. Then, photosynthesis of plants is carried out by chloroplasts contained in plants, and light having a wavelength range of 400 nm to 700 nm is mainly used.
 上記光合成に使用される波長域の光のうち、特に長波長側の赤色領域でエネルギー変換効率が高いとされており、青色領域と赤色領域の光を適切なものとすることで、光合成に好適な光を発する光源が提案されている(特許文献1参照)。 Of the light in the wavelength range used for photosynthesis, it is said that the energy conversion efficiency is particularly high in the red region on the long wavelength side, and it is suitable for photosynthesis by making the light in the blue region and the red region appropriate. A light source that emits a large amount of light has been proposed (see Patent Document 1).
 一方で、植物の生長を優先するため赤色用発光ダイオードを多く用いる植物育成用の照明装置では、赤色発光ダイオードからの赤色光が植物に照射されるため、人間の目には植物が黒ずんで見えるという問題があった。このような問題に対し、白色用発光ダイオードと赤色用発光ダイオードを有し、赤色用発光ダイオードから発する光の放射エネルギーが、白色用発光ダイオードから発する光の放射エネルギーの1/2以下となるように制御することが提案されている(特許文献2参照)。 On the other hand, in a lighting device for plant growth that uses a lot of red light emitting diodes to give priority to plant growth, the red light from the red light emitting diode irradiates the plant, so that the plant looks dark to the human eye. There was a problem. To solve such a problem, a white light emitting diode and a red light emitting diode are provided, and the radiant energy of the light emitted from the red light emitting diode is reduced to 1/2 or less of the radiant energy of the light emitted from the white light emitting diode. It has been proposed to control the light (see Patent Document 2).
特開2016-122722号公報JP-A-2016-122722 特開2011-200204号公報Japanese Unexamined Patent Publication No. 2011-200204
 しかしながら上記特許文献2の技術では、白色用発光ダイオードの光の放射エネルギーが大きいため、光合成に寄与しない領域の光が多く含まれ、植物の効率的な育成には改善の余地があった。また、赤色LEDは白色LEDと比較して劣化が早いため、長時間の使用により、照明装置から照射される光から、光合成に寄与する赤色光を失ってしまうことがあった。
 本発明は、植物を効率的に育成できることと、植物の成長度合いを把握するための色の見えと、を両立できる新たな植物育成用半導体発光装置を提供するものである。
However, in the technique of Patent Document 2, since the radiant energy of the light of the white light emitting diode is large, a large amount of light in a region that does not contribute to photosynthesis is contained, and there is room for improvement in the efficient growth of plants. Further, since the red LED deteriorates faster than the white LED, the red light that contributes to photosynthesis may be lost from the light emitted from the lighting device after being used for a long time.
The present invention provides a new semiconductor light emitting device for plant growth that can efficiently grow plants and the appearance of colors for grasping the degree of growth of plants.
 本発明者らは、上記課題を解決すべく研究を重ね、半導体発光装置から出射する光のスペクトルにおいて、緑色領域にある程度発光強度を持たせ、且つその発光強度変化をなだらかにすることで、上記課題を解決できることを見出し、本発明を完成させた。 The present inventors have conducted research in order to solve the above problems, and in the spectrum of light emitted from the semiconductor light emitting device, the green region is provided with a certain amount of light emission intensity, and the change in the light emission intensity is made gentle. We have found that the problem can be solved and completed the present invention.
 本発明の一形態は、少なくとも、青色半導体発光素子と、緑色蛍光体と、赤色蛍光体と、を含む植物育成用半導体発光装置であって、
 前記半導体発光装置から出射する光は、-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)を満たす、植物育成用半導体発光装置、である。
(i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
One embodiment of the present invention is a semiconductor light emitting device for growing a plant, which comprises at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
The light emitted from the semiconductor light emitting device is a semiconductor light emitting device for plant growth, which satisfies −0.050 ≦ Duv ≦ −0.030 and its spectrum satisfies the following (i).
(I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. Satisfy 3 or less
 また、本発明の別形態は、少なくとも、青色半導体発光素子と、緑色蛍光体と、赤色蛍光体と、を含む植物育成用半導体発光装置であって、
 前記半導体発光装置から出射する光のスペクトルが以下の(ii)を満たす、植物育成用半導体発光装置、である。
(ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
Further, another embodiment of the present invention is a semiconductor light emitting device for growing a plant, which includes at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
A semiconductor light emitting device for plant growth, wherein the spectrum of light emitted from the semiconductor light emitting device satisfies the following (ii).
(Ii) the vertical axis (Y), the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), horizontal axis (X) in the graph the wavelength (nm), and the I BG, wavelength 555nm The slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 in the above satisfies 0 <a≤0.004.
 また、前記半導体発光装置から出射する光のスペクトルは、更に、以下の(iii)及び/又は(iv)を満たすことが好ましい。更に以下の(v)を満たすことが好ましい。
(iii)波長400nm以上500nm以下の領域に発光極大値Iを有し、0.8≦I/I≦1.3を満たす
(iv)波長650nm以上の領域に発光極大値Iを有する
(v)発光極小値IBGの波長λIBGnmから波長555nmの範囲において、波長555nmにおける発光強度I555が発光強度の最大値である
Further, it is preferable that the spectrum of the light emitted from the semiconductor light emitting device further satisfies the following (iii) and / or (iv). Further, it is preferable to satisfy the following (v).
Has an emission maximum value I B in (iii) Wavelength 400nm or 500nm following areas, a 0.8 ≦ I B / I R ≦ 1.3 satisfy (iv) emission maximum in the wavelength 650nm or more domain values I R in a (v) the range of wavelengths 555nm wavelength λI BG nm emitting minima I BG, the emission intensity I 555 at a wavelength of 555nm is the maximum value of the luminous intensity
 また、前記赤色蛍光体は、窒化物蛍光体を含むことが好ましく、半値幅が75nm以上である赤色蛍光体を含むことが好ましい。更に、前記緑色蛍光体は、ピーク波長が510nm以上540nm以下であり、且つ半値幅が100nm以上120nm以下である緑色蛍光体を含むことが好ましい。 Further, the red phosphor preferably contains a nitride phosphor, and preferably contains a red phosphor having a half width of 75 nm or more. Further, the green phosphor preferably contains a green phosphor having a peak wavelength of 510 nm or more and 540 nm or less and a half width of 100 nm or more and 120 nm or less.
 また、本発明の別の形態は、少なくとも青色半導体発光素子と蛍光体と含む半導体発光装置から出射する光により植物を照射する照明工程、を含む照明方法であって、
 前記照明工程において、前記半導体発光装置から出射する光が植物を照明した際に、前記植物の位置で測定した光が-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)及び(ii)を満たす、照明方法。
(i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
(ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
Another embodiment of the present invention is a lighting method including at least a lighting step of irradiating a plant with light emitted from a semiconductor light emitting device including a blue semiconductor light emitting device and a phosphor.
In the lighting step, when the light emitted from the semiconductor light emitting device illuminates the plant, the light measured at the position of the plant satisfies −0.050 ≦ Duv ≦ −0.030, and the spectrum thereof is as follows. A lighting method that satisfies (i) and (ii).
(I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. In a graph in which the vertical axis (Y) satisfying 3 or less is the relative emission intensity (%) with the emission peak intensity of the spectrum as 100%, and the horizontal axis (X) is the wavelength (nm), the IBG And the slope a of the straight line connecting the emission intensity I 555 at the wavelength of 555 nm satisfies 0 <a≤0.004.
 また、前記半導体発光装置と植物との距離が10cm~60cmであって、前記半導体発光装置がSMD構成であることが好ましく、前記半導体発光装置と植物との距離が60cm~2mであって、前記半導体発光装置がCOB構成であることが好ましい。 Further, it is preferable that the distance between the semiconductor light emitting device and the plant is 10 cm to 60 cm and the semiconductor light emitting device has an SMD configuration, and the distance between the semiconductor light emitting device and the plant is 60 cm to 2 m. It is preferable that the semiconductor light emitting device has a COB configuration.
 更に、本発明の別の形態は、少なくとも、青色半導体発光素子と、緑色蛍光体及び赤色蛍光体を含む波長変換層と、を備えた植物育成用半導体発光装置から出射する光のスペクトルを設計する方法であって、
 前記半導体発光装置から出射する光が、-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)及び(ii)を満たすように、前記波長変換層を調製するステップ、を含む、設計方法である。
(i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
(ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
Further, another embodiment of the present invention designs a spectrum of light emitted from a plant growing semiconductor light emitting device including at least a blue semiconductor light emitting device and a wavelength conversion layer containing a green phosphor and a red phosphor. It ’s a method,
The step of preparing the wavelength conversion layer so that the light emitted from the semiconductor light emitting device satisfies −0.050 ≦ Duv ≦ −0.030 and the spectrum satisfies the following (i) and (ii). , Including, is a design method.
(I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. In a graph in which the vertical axis (Y) satisfying 3 or less is the relative emission intensity (%) with the emission peak intensity of the spectrum as 100%, and the horizontal axis (X) is the wavelength (nm), the IBG And the slope a of the straight line connecting the emission intensity I 555 at the wavelength of 555 nm satisfies 0 <a≤0.004.
 本発明により、植物を効率的に育成できることと、植物の成長度合いを把握するための色の見えと、を両立できる新たな植物育成用半導体発光装置を提供できる。
 また、赤色半導体発光素子を使用せず、赤色蛍光体を使用することから、長時間使用しても、スペクトルバランスを維持することができる。また、1種類の半導体発光素子のみを使用するため、駆動回路をシンプルにできる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a new semiconductor light emitting device for plant growth that can achieve both efficient growth of plants and color appearance for grasping the degree of growth of plants.
Further, since the red phosphor is used instead of the red semiconductor light emitting element, the spectrum balance can be maintained even if it is used for a long time. Moreover, since only one type of semiconductor light emitting element is used, the drive circuit can be simplified.
半導体発光装置1の出射光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the emitted light of the semiconductor light emitting device 1. 半導体発光装置2の出射光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the emitted light of the semiconductor light emitting device 2. 半導体発光装置7の出射光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the emitted light of the semiconductor light emitting device 7. 半導体発光装置8の出射光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the emitted light of the semiconductor light emitting device 8. (a)半導体発光装置1から出射する光で照射した発育途中のミニトマトと、(b)半導体発光装置7から出射する光で照射した発育途中のミニトマトの写真である(図面代用写真)。It is a photograph of (a) a developing cherry tomato irradiated with light emitted from a semiconductor light emitting device 1 and (b) a developing cherry tomato irradiated with light emitted from a semiconductor light emitting device 7 (drawing substitute photograph). 高圧ナトリウムランプ(HPS)、半導体発光装置1及び7を用いてリーフレタスを照射し、その発育を評価した結果を示すグラフである。図中(a)は葉の重量の推移を示し、図中(b)は葉の大きさを示す。It is a graph which shows the result of having irradiated leaf lettuce using a high pressure sodium lamp (HPS), a semiconductor light emitting device 1 and 7, and evaluated the growth. (A) in the figure shows the transition of the weight of the leaf, and (b) in the figure shows the size of the leaf.
 以下、本発明をより詳細に説明する。
 本発明の一形態は、少なくとも、青色半導体発光素子と、緑色蛍光体と、赤色蛍光体と、を含む植物育成用半導体発光装置であって、
 前記半導体発光装置から出射する光は、-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)を満たす、植物育成用半導体発光装置、である。
(i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
 また、本発明の別形態は、少なくとも、青色半導体発光素子と、緑色蛍光体と、赤色蛍光体と、を含む植物育成用半導体発光装置であって、
 前記半導体発光装置から出射する光のスペクトルが以下の(ii)を満たす、植物育成用半導体発光装置、である。
(ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
Hereinafter, the present invention will be described in more detail.
One embodiment of the present invention is a semiconductor light emitting device for growing a plant, which comprises at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
The light emitted from the semiconductor light emitting device is a semiconductor light emitting device for plant growth, which satisfies −0.050 ≦ Duv ≦ −0.030 and its spectrum satisfies the following (i).
(I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. 3 or less is satisfied. Another embodiment of the present invention is a semiconductor light emitting device for growing a plant, which includes at least a blue semiconductor light emitting element, a green phosphor, and a red phosphor.
A semiconductor light emitting device for plant growth, wherein the spectrum of light emitted from the semiconductor light emitting device satisfies the following (ii).
(Ii) the vertical axis (Y), the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), horizontal axis (X) in the graph the wavelength (nm), and the I BG, wavelength 555nm The slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 in the above satisfies 0 <a ≦ 0.004.
 青色半導体発光素子は、通常発光ピーク波長域が430nm以上490nm以下である半導体発光素子である。青色半導体発光素子は、発光ピーク波長の下限が435nmであってよく、440nmであってよい。発光ピーク波長の上限は480nm以下であってよく、475nm以下であってよく、470nm以下であってよい。半導体発光装置は青色半導体発光素子を1つだけ有してもよく、複数有してもよい。複数有する場合、青色半導体発光素子が線状に配列されていてもよく、面状に配列されていてもよく、配列は規則性を有していても、アトランダムであってもよい。 The blue semiconductor light emitting device is a semiconductor light emitting device having a normal emission peak wavelength range of 430 nm or more and 490 nm or less. The lower limit of the emission peak wavelength of the blue semiconductor light emitting device may be 435 nm and may be 440 nm. The upper limit of the emission peak wavelength may be 480 nm or less, 475 nm or less, or 470 nm or less. The semiconductor light emitting device may have only one blue semiconductor light emitting element, or may have a plurality of blue semiconductor light emitting elements. When there are a plurality of blue semiconductor light emitting elements, the blue semiconductor light emitting elements may be arranged linearly or planarly, and the arrangement may have regularity or may be at random.
 緑色蛍光体は、通常発光ピーク波長域が490nm以上570nm以下である蛍光体である。発光ピーク波長は495nm以上であってよく、500nm以上であってよく、510nm以上であってよい。また560nm以下であってよく、550nm以下であってよく、540nm以下であってよい。
 緑色蛍光体の半値幅は特段限定されないが、半値幅が60nm以上であってよく、70nm以上であってよく、80nm以上であってよく、90nm以上であってよく、100nm以上であってよい。また130nm以下であってよく、120nm以下であってよく、115nm以下であってよく、110nm以下であってよい。
The green phosphor is a phosphor having a normal emission peak wavelength range of 490 nm or more and 570 nm or less. The emission peak wavelength may be 495 nm or more, 500 nm or more, and 510 nm or more. Further, it may be 560 nm or less, 550 nm or less, and 540 nm or less.
The half-value width of the green phosphor is not particularly limited, but the half-value width may be 60 nm or more, 70 nm or more, 80 nm or more, 90 nm or more, or 100 nm or more. Further, it may be 130 nm or less, 120 nm or less, 115 nm or less, and 110 nm or less.
 赤色蛍光体は、通常発光ピーク波長域が590nm以上700nm以下である蛍光体である。発光ピーク波長は600nm以上であってよく、610nm以上であってよい。また680nm以下であってよく、660nm以下であってよい。
 赤色蛍光体の半値幅は特段限定されないが、半値幅が1nm以上であってよく、2nm以上であってよく、また15nm以下であってよく、10nm以下であってよい。別の例では、半値幅が70nm以上であってよく、75nm以上であってよく、80nm以上であってよく、90nm以上であってよく、また120nm以下であってよく、115nm以下であってよく、110nm以下であってよく、100nm以下であってよい。
The red phosphor is a phosphor having a normal emission peak wavelength range of 590 nm or more and 700 nm or less. The emission peak wavelength may be 600 nm or more, and may be 610 nm or more. Further, it may be 680 nm or less, and may be 660 nm or less.
The half-value width of the red phosphor is not particularly limited, but the half-value width may be 1 nm or more, 2 nm or more, 15 nm or less, and 10 nm or less. In another example, the full width at half maximum may be 70 nm or more, 75 nm or more, 80 nm or more, 90 nm or more, 120 nm or less, 115 nm or less. , 110 nm or less, and may be 100 nm or less.
 緑色蛍光体の具体例としては、Ce3+を付活剤としたアルミン酸塩、Ce3+を付活剤としたイットリウムアルミニウム酸化物、Eu2+付活アルカリ土類ケイ酸塩結晶、Eu2+付活アルカリ土類ケイ酸窒化物を母体とする緑色蛍光体がある。これらの緑色蛍光体は、通常、青色半導体発光素子を用いて励起可能である。 Specific examples of the green phosphor, aluminate was Ce 3+ and activator, yttrium aluminum oxide and activator of Ce 3+, Eu 2+ activated alkaline-earth silicate crystals, Eu 2+ -activated There are green phosphors based on alkaline earth silicate nitride. These green phosphors can usually be excited using a blue semiconductor light emitting device.
 Ce3+付活アルミン酸塩蛍光体の具体例には、下記一般式(2)で表される緑色蛍光体が挙げられる。
 Y(Ce,Tb,Lu)(Ga,Sc)Al    (2)
 (一般式(2)において、a、b、c、d、eが、a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0.1≦c≦2.6、および10.8≦e≦13.4を満たす。)
 なお、一般式(2)で表されるCe3+付活アルミン酸塩蛍光体をG-YAG蛍光体と呼ぶ。
Specific examples of the Ce 3+ activated aluminate phosphor include a green phosphor represented by the following general formula (2).
Y a (Ce, Tb, Lu ) b (Ga, Sc) c Al d O e (2)
(In the general formula (2), a, b, c, d, e are a + b = 3, 0 ≦ b ≦ 0.2, 4.5 ≦ c + d ≦ 5.5, 0.1 ≦ c ≦ 2.6. , And 10.8 ≦ e ≦ 13.4.)
The Ce 3+ activated aluminate phosphor represented by the general formula (2) is called a G-YAG phosphor.
 Ce3+付活イットリウムアルミニウム酸化物系蛍光体の具体例には、下記一般式(3)で表される緑色蛍光体が挙げられる。
 Lu(Ce,Tb,Y)(Ga,Sc)Al    (3)
 (一般式(3)において、a、b、c、d、eが、a+b=3、0≦b≦0.2、4.5≦c+d≦5.5、0≦c≦2.6、および10.8≦e≦13.4を満たす。)
 なお、一般式(3)で表されるCe3+付活イットリウムアルミニウム酸化物系蛍光体をLuAG蛍光体と呼ぶ。
Specific examples of the Ce 3+ activated yttrium aluminum oxide-based phosphor include a green phosphor represented by the following general formula (3).
Lu a (Ce, Tb, Y) b (Ga, Sc) c Al d Oe (3)
(In the general formula (3), a, b, c, d, e are a + b = 3, 0 ≦ b ≦ 0.2, 4.5 ≦ c + d ≦ 5.5, 0 ≦ c ≦ 2.6, and 10.8 ≦ e ≦ 13.4 is satisfied.)
The Ce 3+ activated yttrium aluminum oxide-based phosphor represented by the general formula (3) is called a LuAG phosphor.
 その他、下記一般式(4)および下記一般式(5)で表される緑色蛍光体が挙げられる。
 M     (4)
 (一般式(4)において、Mは2価の金属元素、Mは3価の金属元素、Mは4価の金属元素をそれぞれ示し、a、b、cおよびdが、2.7≦a≦3.3、1.8≦b≦2.2、2.7≦c≦3.3、11.0≦d≦13.0を満たす。)
 なお、一般式(4)で表される蛍光体をCSMS蛍光体と呼ぶ。
In addition, green phosphors represented by the following general formula (4) and the following general formula (5) can be mentioned.
M 1 a M 2 b M 3 c Od (4)
(In the general formula (4), M 1 represents a divalent metal element, M 2 represents a trivalent metal element, M 3 represents a tetravalent metal element, and a, b, c and d are 2.7. ≤a≤3.3, 1.8≤b≤2.2, 2.7≤c≤3.3, 11.0≤d≤13.0.)
The phosphor represented by the general formula (4) is called a CSMS phosphor.
 なお、上記式(4)において、Mは2価の金属元素であるが、Mg、Ca、Zn、Sr、Cd、及びBaからなる群から選択された少なくとも1種であるのが好ましく、Mg、Ca、又はZnであるのが更に好ましく、Caが特に好ましい。この場合、Caは単独系でもよく、Mgとの複合系でもよい。また、Mは他の2価の金属元素を含んでいてもよい。
 Mは3価の金属元素であるが、Al、Sc、Ga、Y、In、La、Gd、及びLuからなる群から選択された少なくとも1種であるのが好ましく、Al、Sc、Y、又はLuであるのが更に好ましく、Scが特に好ましい。この場合、Scは単独系でもよく、YまたはLuとの複合系でもよい。また、MはCeを含むことを必須とし、Mは他の3価の金属元素を含んでいてもよい。
 Mは4価の金属元素であるが、少なくともSiを含むことが好ましい。Si以外の4価の金属元素Mの具体例としては、Ti、Ge、Zr、Sn、及びHfからなる群から選択された少なくとも1種であるのが好ましく、Ti、Zr、Sn、及びHfからなる群から選択された少なくとも1種であるのがより好ましく、Snであることが特に好ましい。特に、MがSiであることが好ましい。また、Mは他の4価の金属元素を含んでいてもよい。
In the above formula (4), M 1 is a divalent metal element, but it is preferably at least one selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and Mg is preferable. , Ca, or Zn, and Ca is particularly preferable. In this case, Ca may be a single system or a composite system with Mg. Further, M 1 may contain other divalent metal elements.
Although M 2 is a trivalent metal element, it is preferably at least one selected from the group consisting of Al, Sc, Ga, Y, In, La, Gd, and Lu, and is preferably Al, Sc, Y, Or Lu is more preferable, and Sc is particularly preferable. In this case, Sc may be a single system or a complex system with Y or Lu. Further, M 2 is an essential to include Ce, M 2 may contain other trivalent metal elements.
M 3 is a tetravalent metal element, but preferably contains at least Si. As a specific example of the tetravalent metal element M 3 other than Si, it is preferable that it is at least one selected from the group consisting of Ti, Ge, Zr, Sn, and Hf, and Ti, Zr, Sn, and Hf. It is more preferable that it is at least one selected from the group consisting of, and it is particularly preferable that it is Sn. In particular, it is preferable that M 3 is Si. Further, M 3 may contain other tetravalent metal elements.
 Mに含まれるCeのM全体に占める割合の下限は0.01以上であることが好ましく、0.02以上であることがより好ましい。また、Mに含まれるCeのM全体に占める割合の上限は、0.10以下であることが好ましく、0.06以下であることがより好ましい。更に、M元素に含まれるMgのM全体に占める割合の下限は0.01以上であることが好ましく、0.03以上であることがより好ましい。一方、上限は0.30以下であることが好ましく、0.10以下であることがより好ましい。 Preferably the lower limit of the percentage of total M 2 of Ce contained in M 2 is 0.01 or more, more preferably 0.02 or more. The upper limit of the percentage of total M 2 of Ce contained in M 2 is preferably 0.10 or less, more preferably 0.06 or less. Further, the lower limit of the ratio of Mg contained in the M 1 element to the entire M 1 is preferably 0.01 or more, and more preferably 0.03 or more. On the other hand, the upper limit is preferably 0.30 or less, and more preferably 0.10 or less.
 M     (5)
 (一般式(5)において、Mは少なくともCeを含む付活剤元素、Mは2価の金属元素、Mは3価の金属元素をそれぞれ示し、a、b、cおよびdが、0.0001≦a≦0.2、0.8≦b≦1.2、1.6≦c≦2.4、および3.2≦d≦4.8を満たす。)
 なお、一般式(5)で表される蛍光体をCSO蛍光体と呼ぶ。
M 1 a M 2 b M 3 c Od (5)
(In the general formula (5), M 1 represents an activator element containing at least Ce, M 2 represents a divalent metal element, M 3 represents a trivalent metal element, and a, b, c and d are 0.0001 ≦ a ≦ 0.2, 0.8 ≦ b ≦ 1.2, 1.6 ≦ c ≦ 2.4, and 3.2 ≦ d ≦ 4.8 are satisfied.)
The phosphor represented by the general formula (5) is called a CSO phosphor.
 なお、上記式(5)において、Mは、結晶母体中に含有される付活剤元素であり、少なくともCeを含む。また、Cr、Mn、Fe、Co、Ni、Cu、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbからなる群から選択された少なくとも1種の2~4価の元素を含有させることができる。
 Mは2価の金属元素であるが、Mg、Ca、Zn、Sr、Cd、及びBaからなる群から選択された少なくとも1種であるのが好ましく、Mg、Ca、又は、Srであるのが更に好ましく、Mの元素の50モル%以上がCaであることが特に好ましい。
 Mは3価の金属元素であるが、Al、Sc、Ga、Y、In、La、Gd、Yb、及びLuからなる群から選択された少なくとも1種であるのが好ましく、Al、Sc、Yb、又はLuであるのが更に好ましく、Sc、又はScとAl、又はScとLuであるのがより一層好ましく、Mの元素の50モル%以上がScであることが特に好ましい。
 M及びMは、それぞれ2価及び3価の金属元素を表すが、M及び/又はMのごく一部を1価、4価、5価のいずれかの価数の金属元素としてもよく、さらに、微量の陰イオン、たとえば、ハロゲン元素(F、Cl、Br、I)、窒素、硫黄、セレンなどが、化合物の中に含まれていてもよい。
In the above formula (5), M 1 is an activator element contained in the crystal matrix and contains at least Ce. Further, at least one 2 to 4 selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb. It can contain valent elements.
Although M 2 is a divalent metal element, it is preferably at least one selected from the group consisting of Mg, Ca, Zn, Sr, Cd, and Ba, and is preferably Mg, Ca, or Sr. Is more preferable, and it is particularly preferable that 50 mol% or more of the element of M 2 is Ca.
Although M 3 is a trivalent metal element, it is preferably at least one selected from the group consisting of Al, Sc, Ga, Y, In, La, Gd, Yb, and Lu, preferably Al, Sc, Yb, or more preferably in the range of Lu, Sc, or Sc and Al, or more preferably more that is Sc and Lu, and particularly preferably 50 mol% or more of the elements of M 3 is Sc.
M 2 and M 3 represent divalent and trivalent metal elements, respectively, but a small part of M 2 and / or M 3 is used as a metal element having a valence of either monovalent, tetravalent, or pentavalent. In addition, trace amounts of anions such as halogen elements (F, Cl, Br, I), nitrogen, sulfur, selenium and the like may be contained in the compound.
 さらに、Eu2+付活アルカリ土類ケイ酸塩結晶を母体とする蛍光体の具体例には、下記一般式(6)で表される緑色蛍光体が挙げられる。
 (BaCaSrMgEu)SiO    (6)
 (一般式(6)においてa、b、c、dおよびxが、a+b+c+d+x=2、1.0≦a≦2.0、0≦b<0.2、0.2≦c≦1,0、0≦d<0.2および0<x≦0.5を満たす。)
 なお、一般式(6)で表されるアルカリ土類ケイ酸塩蛍光体をBSS蛍光体と呼ぶ。
Further, a specific example of a phosphor based on Eu 2+ activated alkaline earth silicate crystals is a green phosphor represented by the following general formula (6).
(Ba a Ca b Sr c Mg d Eu x ) SiO 4 (6)
(In the general formula (6), a, b, c, d and x are a + b + c + d + x = 2, 1.0 ≦ a ≦ 2.0, 0 ≦ b <0.2, 0.2 ≦ c ≦ 1,0, 0 ≦ d <0.2 and 0 <x ≦ 0.5 are satisfied.)
The alkaline earth silicate phosphor represented by the general formula (6) is called a BSS phosphor.
 さらに、Eu2+付活アルカリ土類ケイ酸窒化物を母体とする蛍光体の具体例には、下記一般式(7)で表される緑色蛍光体が挙げられる。
 (Ba,Ca,Sr,Mg,Zn,Eu)Si12    (7)
 なお、一般式(7)で表される蛍光体をBSON蛍光体と呼ぶ。
 一般式(7)において選択できる2価金属元素(Ba,Ca,Sr,Mg,Zn,Eu)のうち、BaとSrとEuの組合せとすることが好ましく、さらには、Baに対するSrの比率は10~30%とすることがより好ましい。
Further, a specific example of a phosphor based on Eu 2+ activated alkaline earth silicate nitride is a green phosphor represented by the following general formula (7).
(Ba, Ca, Sr, Mg, Zn, Eu) 3 Si 6 O 12 N 2 (7)
The phosphor represented by the general formula (7) is called a BSON phosphor.
Of the divalent metal elements (Ba, Ca, Sr, Mg, Zn, Eu) that can be selected in the general formula (7), it is preferable to use a combination of Ba, Sr, and Eu, and further, the ratio of Sr to Ba is More preferably, it is 10 to 30%.
 また、その他、(Y1-uGd(Al1-vGa12:Ce,Eu(但し、u及びvはそれぞれ0≦u≦0.3、及び0≦v≦0.5を満たす。)で表されるイットリウム・アルミニウム・ガーネット系蛍光体(これをYAG蛍光体と呼ぶ。)や、Ca1.5xLa3-XSi11:Ce(但し、xは、0≦x≦1)で表されるランタン窒化ケイ素蛍光体(これをLSN蛍光体と呼ぶ。)などの黄色蛍光体を含んでもよい。また、Eu2+付活サイアロン結晶を母体とするSi6-zAl8-z:Eu(ただし0<z<4.2)で表される狭帯域緑色蛍光体(これをβ-SiAlON蛍光体と呼ぶ)やCaMgSi16Cl:Eu(これをクロロシリケート蛍光体と呼ぶ。なお、クロロシリケート蛍光体と結晶構造が同一で、元素の一部が置換された蛍光体も、クロロシリケート蛍光体に含まれる)を含んでもよい。更に、SrSi13Al21:Eu2+蛍光体や、(Ca,Sr)Ga:Eu2+蛍光体を含んでもよい。 In addition, (Y 1-u Gd u ) 3 (Al 1-v Ga v ) 5 O 12 : Ce, Eu (however, u and v are 0 ≦ u ≦ 0.3 and 0 ≦ v ≦ 0, respectively. Yttrium aluminum garnet-based phosphor (this is called a YAG phosphor) represented by (.5) and Ca 1.5x La 3-X Si 6 N 11 : Ce (where x is It may contain a yellow phosphor such as a lanthanum silicon nitride phosphor represented by 0 ≦ x ≦ 1) (this is referred to as an LSN phosphor). Further, a narrow-band green phosphor represented by Si 6-z Al z O z N 8-z : Eu (where 0 <z <4.2) based on Eu 2+ activated sialone crystal (this is β-). SiAlON phosphor) and Ca 8 MgSi 4 O 16 Cl 2 : Eu (this is called a chlorosilicate fluorescent substance. A fluorescent substance having the same crystal structure as the chlorosilicate phosphor and having some of the elements substituted. Also included in the chlorosilicate phosphor). Further, Sr 3 Si 13 Al 3 O 2 N 21 : Eu 2+ phosphor and (Ca, Sr) Ga 2 S 4 : Eu 2+ phosphor may be contained.
 緑色蛍光体は、1種類の緑色蛍光体のみを用いてよく、2種以上を組み合わせて用いてもよい。 As the green phosphor, only one kind of green phosphor may be used, or two or more kinds may be used in combination.
 赤色蛍光体の具体例としては、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、αサイアロンまたはアルカリ土類ケイ酸塩からなる結晶を母体とする蛍光体が挙げられる。この種の赤色蛍光体は、通常、青色半導体発光素子を用いて励起可能である。 Specific examples of the red phosphor include a fluorescent substance using Eu 2+ as an activator and having a crystal composed of an alkaline earth silicate, α-sialon or an alkaline earth silicate as a base. This type of red phosphor can usually be excited using a blue semiconductor light emitting device.
 アルカリ土類ケイ窒化物結晶を母体とするものの具体例には、CaAlSiN:Euで表される蛍光体(これをCASN蛍光体と呼ぶ)、(Ca,Sr,Ba,Mg)AlSiN:Euおよび/または(Ca,Sr,Ba)AlSiN:Euで表される蛍光体(これをSCASN蛍光体と呼ぶ)、(CaAlSiN1-x(SiO):Eu(ただし、xは0<x<0.5)で表される蛍光体(これをCASON蛍光体と呼ぶ)、(Sr,Ca,Ba)AlSi5-x8-x:Eu(ただし0≦x≦2)で表される蛍光体、Eu(Sr,Ca,Ba)1-y:Al1+xSi4-x7-x(ただし0≦x<4、0≦y<0.2)で表される蛍光体が挙げられる。 Specific examples of those based on alkaline earth silica nitride crystals include a phosphor represented by CaAlSiN 3 : Eu (this is called a CASN phosphor), (Ca, Sr, Ba, Mg) AlSiN 3 : Eu. And / or (Ca, Sr, Ba) AlSiN 3 : Fluorescent material represented by Eu (this is called a SCASN fluorescent material), (CaAlSiN 3 ) 1-x (Si 2 N 2 O) x : Eu (however, however x is a phosphor represented by 0 <x <0.5 (this is called a CASON phosphor), (Sr, Ca, Ba) 2 Al x Si 5-x O x N 8-x : Eu (however) phosphor represented by 0 ≦ x ≦ 2), Eu y (Sr, Ca, Ba) 1-y: Al 1 + x Si 4-x O x N 7-x ( except 0 ≦ x <4,0 ≦ y < Examples thereof include a fluorescent substance represented by 0.2).
 その他、Mn4+付活フッ化物錯体蛍光体も挙げられる。Mn4+付活フッ化物錯体蛍光体は、Mn4+を付活剤とし、アルカリ金属、アミンまたはアルカリ土類金属のフッ化物錯体塩を母体結晶とする蛍光体である。母体結晶を形成するフッ化物錯体には、配位中心が3価金属(B、Al、Ga、In、Y、Sc、ランタノイド)のもの、4価金属(Si、Ge、Sn、Ti、Zr、Re、Hf)のもの、5価金属(V、P、Nb、Ta)のものがあり、その周りに配位するフッ素原子の数は5~7である。 In addition, Mn 4+ activated fluoride complex phosphors can also be mentioned. The Mn 4+ activated fluoride complex phosphor is a phosphor having Mn 4+ as an activator and a fluoride complex salt of an alkali metal, an amine or an alkaline earth metal as a parent crystal. The fluoride complex forming the parent crystal has a coordination center of a trivalent metal (B, Al, Ga, In, Y, Sc, lanthanoid) and a tetravalent metal (Si, Ge, Sn, Ti, Zr, Re, Hf) and pentavalent metals (V, P, Nb, Ta) are available, and the number of fluorine atoms coordinated around them is 5 to 7.
 具体的には、Mn4+付活フッ化物錯体蛍光体は、アルカリ金属のヘキサフルオロ錯体塩を母体結晶とするA2+xMn(AはNaおよび/またはK;MはSiおよびAl;-1≦x≦1かつ0.9≦y+z≦1.1かつ0.001≦z≦0.4かつ5≦n≦7)などが挙げられる。この中でも、AがK(カリウム)またはNa(ナトリウム)から選ばれる1種以上で、MがSi(ケイ素)またはTi(チタン)またはGe(ゲルマニウム)であるもの、例えば、KSiF:Mn(これをKSF蛍光体と呼ぶ)、この構成元素の一部(好ましくは10モル%以下)をAlとNaで置換したKSi1-xNaAl:Mn(これをKSNAF蛍光体と呼ぶ)などが挙げられる。 Specifically, Mn 4+ -activated fluoride complex phosphor, the alkali metal hexafluoro complex salt as host crystals A 2 + x M y Mn z F n (A is Na and / or K; M is Si and Al -1 ≦ x ≦ 1 and 0.9 ≦ y + z ≦ 1.1 and 0.001 ≦ z ≦ 0.4 and 5 ≦ n ≦ 7). Among these, those in A is K (potassium) or Na (sodium) from one or more selected, M is Si (silicon) or Ti (titanium) or Ge (germanium), for example, K 2 SiF 6: Mn (This is called a KSF phosphor), K 2 Si 1-x Na x Al x F 6 : Mn (this is KSNAF fluorescence) in which a part (preferably 10 mol% or less) of this constituent element is replaced with Al and Na. (Called the body) and the like.
 その他、下記一般式(8)で表される蛍光体、および下記一般式(9)で表される蛍光体も挙げられる。
 (La1-x-yEuLnS    (8)
 (一般式(8)において、x及びyはそれぞれ0.02≦x≦0.50及び0≦y≦0.50を満たす数を表し、LnはY、Gd、Lu、Sc、Sm及びErの少なくとも1種の3価希土類元素を表す。)
 なお、一般式(8)で表される酸硫化ランタン蛍光体をLOS蛍光体と呼ぶ。
 (k-x)MgO・xAF・GeO:yMn4+    (9)
 (一般式(9)において、k、x、yは、各々、2.8≦k≦5、0.1≦x≦0.7、0.005≦y≦0.015を満たす数を表し、Aはカルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)、またはこれらの混合物である。)
 なお、一般式(9)で表されるジャーマネート蛍光体をMGOF蛍光体と呼ぶ。
In addition, a phosphor represented by the following general formula (8) and a phosphor represented by the following general formula (9) can also be mentioned.
(La 1-x-y Eu x Ln y) 2 O 2 S (8)
(In the general formula (8), x and y represent numbers satisfying 0.02 ≦ x ≦ 0.50 and 0 ≦ y ≦ 0.50, respectively, and Ln is of Y, Gd, Lu, Sc, Sm and Er. Represents at least one trivalent rare earth element.)
The lanthanum acid sulfide phosphor represented by the general formula (8) is called a LOS phosphor.
(Kx) MgO · xAF 2 · GeO 2 : yMn 4+ (9)
(In the general formula (9), k, x, and y represent numbers satisfying 2.8 ≦ k ≦ 5, 0.1 ≦ x ≦ 0.7, and 0.005 ≦ y ≦ 0.015, respectively. A is calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), or a mixture thereof.)
The germanate phosphor represented by the general formula (9) is called an MGOF phosphor.
 また、その他、SrSiAl13:Eu2+蛍光体や、CaS:Eu2+蛍光体を含んでもよい。 In addition, SrSi 7 Al 3 O 2 N 13 : Eu 2+ phosphor and CaS: Eu 2+ phosphor may be contained.
 赤色蛍光体は、1種類の赤色蛍光体のみを用いてよく、2種以上を組み合わせて用いてもよい。 As the red fluorescent material, only one type of red fluorescent material may be used, or two or more types may be used in combination.
 本実施形態の半導体発光装置では、上記緑色蛍光体及び赤色蛍光体に加え、その他の蛍光体を含んでもよい。その他の蛍光体としては、青色蛍光体、黄色蛍光体、橙色蛍光体、などが挙げられる。 The semiconductor light emitting device of the present embodiment may include other phosphors in addition to the above green phosphor and red phosphor. Examples of other phosphors include a blue phosphor, a yellow fluorescent substance, an orange fluorescent substance, and the like.
 本実施形態の半導体発光装置が出射する光のスペクトルは、-0.050≦Duv≦-0.030を満たし得る。Duvが-0.050を下回ると、植物が赤色に見えたり、黒ずんで見えたりする場合がある。一方で、-0.030を上回ると、光合成に寄与しない波長域の光強度が高くなり、植物を効率良く育成することが困難となる場合がある。 The spectrum of light emitted by the semiconductor light emitting device of the present embodiment can satisfy −0.050 ≦ Duv ≦ −0.030. When Duv is below -0.050, the plant may appear red or dark. On the other hand, if it exceeds −0.030, the light intensity in the wavelength range that does not contribute to photosynthesis becomes high, and it may be difficult to grow plants efficiently.
 本実施形態の半導体発光装置は上記要件(i)及び/又は(ii)を充足し得る。
 上記要件(i)は、青色領域と緑色領域との間に、発光スペクトルのボトムピーク(発光極小値:IBG)が存在し、ボトムピークの発光強度が、赤色領域のピーク強度(発光極大値:I)に対して、10%以上30%以下であることを意味する。12.5%以上であってよく、15%以上であってよい。また、27.5%以下であってよく、25%以下であってよい。(i)を満たすことで、緑色領域にある程度のスペクトル強度を有するため、植物が赤色に見えること及び黒ずんで見えることがなく、植物の生育を確認することができる。
The semiconductor light emitting device of the present embodiment can satisfy the above requirements (i) and / or (ii).
In the above requirement (i), the bottom peak (minimum emission value: IBG ) of the emission spectrum exists between the blue region and the green region, and the emission intensity of the bottom peak is the peak intensity (maximum emission value) in the red region. : It means that it is 10% or more and 30% or less with respect to IR ). It may be 12.5% or more, and may be 15% or more. Further, it may be 27.5% or less, and may be 25% or less. By satisfying (i), since the green region has a certain degree of spectral intensity, the growth of the plant can be confirmed without the plant appearing red or dark.
 上記要件(ii)は、上記青色領域と緑色領域との間のボトムピーク波長から、555nmの波長までのスペクトルの変化がなだらかであることを意味する。すなわち、縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす。傾きaの上限値は、0.0038以下であってよく、0.0036以下であってよく、0.0034以下であってよく、0.0032以下であってよく、0.003以下であってよい。
 このように緑色領域、特に視感度が最大となる555nmまでの領域のスペクトルに急な変化がないことで、Duvの値が特定の範囲となりやすく、また植物が赤色に見えること及び黒ずんで見えること、を防止することができる。
The requirement (ii) means that the change in the spectrum from the bottom peak wavelength between the blue region and the green region to the wavelength of 555 nm is gentle. That is, the vertical axis (Y), the graph of the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), transverse axis (X) and the wavelength (nm), and the I BG, at a wavelength of 555nm The slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 satisfies 0 <a ≦ 0.004. The upper limit of the slope a may be 0.0038 or less, 0.0036 or less, 0.0034 or less, 0.0032 or less, 0.003 or less. Good.
Since there is no sudden change in the spectrum of the green region, especially the region up to 555 nm where the luminosity factor is maximized, the Duv value tends to be in a specific range, and the plant looks red and dark. , Can be prevented.
 本実施形態の半導体発光装置は、更に、以下の(iii)を満たすことが好ましい。
(iii)波長400nm以上500nm以下の領域に発光極大値Iを有し、0.8≦I/I≦1.3を満たす
 上記要件(iii)は、半導体発光装置から出射する光のスペクトルにおいて、青色領域の発光ピーク強度(発光極大値I)と赤色領域の発光ピーク強度(発光極大値:I)が略同一であることを示す。このようなスペクトルであると、光合成を行う葉緑体の光受容体クロロフィルaとクロロフィルbとの光の吸収バランスがよく、光合成を効率よく行うことができる。
 なお、上記I/Iは0.8以上1.2以下であることが好ましく、また1.0以下、即ち発光極大値Iがスペクトル全域における発光最大値となることが好ましい。
The semiconductor light emitting device of the present embodiment further preferably satisfies the following (iii).
(Iii) Wavelength 400nm or 500nm in the following areas have an emission maximum value I B, 0.8 ≦ I B / I above requirements satisfying R ≦ 1.3 (iii) is, of the light emitted from the semiconductor light emitting device in the spectrum, the emission peak intensity of the blue region (emission maximum value I B) and the emission peak intensity of the red region (emission maximum values: I R) indicate that are substantially the same. With such a spectrum, the light absorption balance between the photoreceptors chlorophyll a and chlorophyll b of the chloroplast that performs photosynthesis is good, and photosynthesis can be efficiently performed.
The above it is preferred that the I B / I R is 0.8 to 1.2, also 1.0, i.e., emission maxima I R is preferably made as emission maxima in the entire spectrum.
 本実施形態の半導体発光装置は、更に、以下の(iv)を満たすことが好ましい。
(iv)波長650nm以上の領域に発光極大値Iを有する
 上記要件(iv)は、半導体発光装置から出射するスペクトルが、650nm以上の長波長領域に発光極大値Iを有することを意味する。光合成に寄与する光の波長は400nm~700nmと考えられているが、700nmを超える長波長領域の光についても、光合成に寄与することを本発明者らは確認した。そのため、700nm以上の領域においても発光強度を有するスペクトルとするため、650nm以上の長波長領域に発光極大値Iを有することが好ましい。
The semiconductor light emitting device of the present embodiment further preferably satisfies the following (iv).
(Iv) the requirement that has an emission maximum value I R of the wavelength 650nm or more regions (iv) the spectrum emitted from the semiconductor light emitting device, means having an emission maximum value I R in 650nm or longer wavelength region .. The wavelength of light that contributes to photosynthesis is considered to be 400 nm to 700 nm, but the present inventors have confirmed that light in a long wavelength region exceeding 700 nm also contributes to photosynthesis. Therefore, for a spectrum having an emission intensity in the above region 700 nm, preferably has an emission maximum value I R in 650nm or longer wavelength region.
 本実施形態の半導体発光装置は、更に、以下の(v)を満たすことが好ましい。
(v)発光極小値IBGの波長λIBGnmから波長555nmの範囲において、波長555nmにおける発光強度I555が発光強度の最大値である
 上記要件(v)は、半導体発光装置から出射するスペクトルが、発光極小値IBGの波長λIBGnmから波長555nmの範囲において、長波長になるに従って強度が低下することなく、当該領域中にトップピークを有さないことを意味する。上記領域にトップピークがある場合、励起光のエネルギーの多くが緑色蛍光体に吸収発光されてしまうことで、青色光及び赤色光のエネルギー、強度が相対的に低くなってしまい、光合成に必要な光のエネルギーが相対的に減少して、光合成の効率が向上しない傾向にある。
The semiconductor light emitting device of the present embodiment further preferably satisfies the following (v).
(V) In the range from the wavelength λI BG nm of the emission minimum value I BG to the wavelength 555 nm, the emission intensity I 555 at the wavelength 555 nm is the maximum value of the emission intensity. The above requirement (v) is that the spectrum emitted from the semiconductor light emitting device is In the range from the wavelength λI BG nm of the emission minimum value I BG to the wavelength 555 nm, the intensity does not decrease as the wavelength becomes longer, which means that there is no top peak in the region. When there is a top peak in the above region, most of the energy of the excitation light is absorbed and emitted by the green phosphor, so that the energy and intensity of the blue light and the red light become relatively low, which is necessary for photosynthesis. The energy of light is relatively reduced, and the efficiency of photosynthesis tends not to improve.
 上記Duvの条件、並びに(i)乃至(v)の条件を充足するスペクトルを出射する半導体発光装置とするためには、広帯域の緑色蛍光体と広帯域の赤色蛍光体とを含むことが好ましく、広帯域の緑色蛍光体としてLuAGを用いることがより好ましい。広帯域の緑色蛍光体を用いることで、500nm~600nmの中波長領域である程度の発光強度を有するスペクトルを形成しやすく、また中波長領域に広くある程度の発光強度を有することで、色の見えの再現性への寄与が大きい。
 また、広帯域の赤色蛍光体として窒化物蛍光体であるSCASN蛍光体またはCASN蛍光体を用いると、600nm以上の長波長領域(赤色領域)に大きな発光強度を有するスペクトルを形成しやすく、また光合成に必要な赤色領域のエネルギー量が、赤色半導体発光素子を赤色領域の発光源として用いた場合と比較して大きくなり、植物の育成により好ましい。
In order to obtain a semiconductor light emitting device that emits a spectrum that satisfies the above Duv conditions and the conditions (i) to (v), it is preferable to include a broadband green phosphor and a broadband red phosphor, and a broadband It is more preferable to use LuAG as the green phosphor of. By using a wideband green phosphor, it is easy to form a spectrum having a certain degree of emission intensity in the medium wavelength region of 500 nm to 600 nm, and by having a wide range of emission intensity in the medium wavelength region, color appearance can be reproduced. Great contribution to sex.
Further, when a SCASN phosphor or a CASN phosphor, which is a nitride phosphor, is used as the broadband red phosphor, it is easy to form a spectrum having a large emission intensity in a long wavelength region (red region) of 600 nm or more, and for photosynthesis. The amount of energy required in the red region is larger than that in the case where the red semiconductor light emitting element is used as the light emitting source in the red region, which is preferable for growing plants.
 上記説明した半導体発光装置の構成は特段限定されず、通常、基板上に半導体発光素子を実装し、各種蛍光体を混合した封止樹脂(以下に説明する、波長変換層の一形態である)で半導体発光素子を封止した構成を有する。なお、封止樹脂は、以下に説明する波長変換層の一形態である。
 基板は、典型的にはセラミック基板やアルミ基板が用いられ、アルミ基板とガラスエポキシ基板とを積層した積層基板であってもよく、特段限定されない。
 基板の形状も特段限定されず、典型的には正方形や長方形などの矩形であり、このような基板上に矩形、円形、楕円形などの発光領域(波長変換領域、または封止領域)を有する。
The configuration of the semiconductor light emitting device described above is not particularly limited, and usually, a sealing resin in which a semiconductor light emitting element is mounted on a substrate and various phosphors are mixed (a form of a wavelength conversion layer described below). It has a structure in which a semiconductor light emitting element is sealed with. The sealing resin is a form of the wavelength conversion layer described below.
The substrate is typically a ceramic substrate or an aluminum substrate, and may be a laminated substrate in which an aluminum substrate and a glass epoxy substrate are laminated, and is not particularly limited.
The shape of the substrate is also not particularly limited, and is typically a rectangle such as a square or a rectangle, and has a light emitting region (wavelength conversion region or sealing region) such as a rectangle, a circle, or an ellipse on such a substrate. ..
 半導体発光装置の形態は、砲弾型のLEDであってよく、SMD(表面実装デバイス)であってよく、COB(チップオンボード)であってよい。
 植物工場やグリーンハウスに植物照射用として設置する際に、多くの光を照射するためにSMDを複数個並べて配置する場合には、駆動回路が煩雑になる傾向にある。そのため、単一回路で複数の半導体発光装置を駆動可能であり、また同様の出力とする場合により軽量となるCOB構成とすることが好ましい。
The form of the semiconductor light emitting device may be a bullet-shaped LED, an SMD (surface mount device), or a COB (chip on board).
When a plurality of SMDs are arranged side by side in order to irradiate a large amount of light when installed in a plant factory or a green house for plant irradiation, the drive circuit tends to be complicated. Therefore, it is preferable to have a COB configuration in which a plurality of semiconductor light emitting devices can be driven by a single circuit and the output is the same and the weight is lighter.
 一方で、SMD構成はその配光特性から、植物との距離が近い環境においては植物照射用としてより好ましい。半導体発光装置と植物との距離が近い場合には、高出力であるCOB構成とすると、発光領域の中心に近い部分の光強度が強くなり、植物に対して照射光が不均一になる場合がある。そのため、半導体発光装置と植物との距離が、凡そ10cm~60cm程度の場合には、半導体発光装置を発光面の小さいSMD構成として照明することが好ましい。
 他方、上記のとおり、COB構成は高出力であることから、半導体発光装置と植物との距離が60cm~2m程度の場合には、半導体発光装置をCOB構成として照明することが好ましい。
On the other hand, the SMD configuration is more preferable for plant irradiation in an environment where the distance from the plant is short because of its light distribution characteristics. When the distance between the semiconductor light emitting device and the plant is short, if the COB configuration has a high output, the light intensity of the portion near the center of the light emitting region becomes strong, and the irradiation light may become non-uniform with respect to the plant. is there. Therefore, when the distance between the semiconductor light emitting device and the plant is about 10 cm to 60 cm, it is preferable to illuminate the semiconductor light emitting device as an SMD configuration having a small light emitting surface.
On the other hand, as described above, since the COB configuration has a high output, it is preferable to illuminate the semiconductor light emitting device as the COB configuration when the distance between the semiconductor light emitting device and the plant is about 60 cm to 2 m.
 また、広範囲の植物に対して光を照射するために、長手方向に長尺である矩形の基板に、半導体発光素子を並べて配置した長尺COB構成とすることも好ましい。一例としては、長手方向に半導体発光素子を5個以上、10個以上、15個以上、20個以上、規則的に、又はアトランダムに配置してよく、所望の照明範囲により適宜設定することができる。
 更には、SMD構成であっても、COB構成であっても、半導体発光素子の実装面上に銀などの反射膜を備えることが、半導体発光装置の光放射光率を向上させるため、好ましい。
Further, in order to irradiate a wide range of plants with light, it is also preferable to have a long COB configuration in which semiconductor light emitting elements are arranged side by side on a rectangular substrate that is long in the longitudinal direction. As an example, five or more, 10 or more, 15 or more, 20 or more semiconductor light emitting elements may be arranged in the longitudinal direction regularly or at random, and may be appropriately set according to a desired illumination range. it can.
Further, regardless of whether it has an SMD configuration or a COB configuration, it is preferable to provide a reflective film such as silver on the mounting surface of the semiconductor light emitting device because the light synchrotron radiation coefficient of the semiconductor light emitting device is improved.
 本実施形態の半導体発光装置は、植物照射用の半導体発光装置として好ましく用いられ、外光をシャットアウトした閉鎖型植物工場で使用してもよく、太陽光と半導体発光装置を併用するグリーンハウスで使用してもよい。
 本実施形態の半導体発光装置は、光合成植物全般の発育に有効であり、例えば野菜、果物、葉物、芝生、育苗を含む。また、温暖化などの環境変化に対応するための新種苗の育成(穀物の育苗)への適用も可能である。
The semiconductor light emitting device of the present embodiment is preferably used as a semiconductor light emitting device for plant irradiation, may be used in a closed plant factory in which external light is shut out, or in a green house in which sunlight and a semiconductor light emitting device are used in combination. You may use it.
The semiconductor light emitting device of the present embodiment is effective for the growth of photosynthetic plants in general, and includes, for example, vegetables, fruits, leaves, lawns, and seedlings. It can also be applied to the cultivation of new seedlings (grain seedlings) to respond to environmental changes such as warming.
 また、本発明の別の形態は、少なくとも、青色半導体発光素子と、緑色蛍光体及び赤色蛍光体を含む波長変換層と、を備えた植物育成用半導体発光装置から出射する光のスペクトルを設計する方法であって、
 前記半導体発光装置から出射する光が、-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが上記(i)及び(ii)を満たすように、好ましくは上記(iii)乃至(v)のうち少なくとも1つを更に満たすように、前記波長変換層を調製するステップ、を含む、設計方法である。
In addition, another embodiment of the present invention designs a spectrum of light emitted from a semiconductor light emitting device for plant growth, which includes at least a blue semiconductor light emitting device and a wavelength conversion layer containing a green phosphor and a red phosphor. It ’s a method,
Preferably, the above (iii) to (v) so that the light emitted from the semiconductor light emitting device satisfies −0.050 ≦ Duv ≦ −0.030 and the spectrum thereof satisfies the above (i) and (ii). ) Is a design method including a step of preparing the wavelength conversion layer so as to further satisfy at least one of the above.
 波長変換層の調製は、例えば蛍光体を分散するマトリクスと蛍光体とを混合することで行うことができる。マトリクスは樹脂マトリクスであってよく、ガラスマトリクスであってよく、セラミックマトリクスであってよい。この際に、上記(i)及び(ii)を満たすように、好ましくは上記(iii)乃至(v)のうち少なくとも1つを更に満たすように、緑色蛍光体及び赤色蛍光体を含む蛍光体を選択し、波長変換層中の蛍光体の種類及び含有量を適宜調整する。一例としては、波長変換層中の蛍光体全量に対し、緑色蛍光体を75重量%以上90重量%以下とし、赤色蛍光体を10重量%以上25重量%以下とすることがあげられるが、当業者であれば、用いる蛍光体の特徴、特性に基づいて、波長変換層中の蛍光体の種類及び含有量を適宜調整できる。 The wavelength conversion layer can be prepared, for example, by mixing a matrix for dispersing the phosphor and the phosphor. The matrix may be a resin matrix, a glass matrix, or a ceramic matrix. At this time, a phosphor containing a green phosphor and a red phosphor is provided so as to satisfy the above (i) and (ii), preferably further satisfying at least one of the above (iii) to (v). Select and appropriately adjust the type and content of the phosphor in the wavelength conversion layer. As an example, the green phosphor is 75% by weight or more and 90% by weight or less, and the red phosphor is 10% by weight or more and 25% by weight or less with respect to the total amount of phosphors in the wavelength conversion layer. A trader can appropriately adjust the type and content of the phosphor in the wavelength conversion layer based on the characteristics and characteristics of the phosphor used.
 以下、本発明者らが行った実験結果を示す。
<半導体発光装置1~6及び7~8の製造>
 青色発光ダイオード(ピーク波長457nm)、緑色蛍光体(LuAG、ピーク波長515~520nm、半値幅110nm)、赤色蛍光体(半導体発光装置1、4、5はSCASN、ピーク波長620~640nm、半値幅84nm、半導体発光装置2、3、6はCASN、ピーク波長650~655nm、半値幅90~95nm)を用いて、半導体発光装置1乃至半導体発光装置6を製造した。
The results of the experiments conducted by the present inventors are shown below.
<Manufacturing of semiconductor light emitting devices 1 to 6 and 7 to 8>
Blue light emitting diode (peak wavelength 457 nm), green phosphor (LuAG, peak wavelength 515 to 520 nm, half price width 110 nm), red phosphor (semiconductor light emitting devices 1, 4 and 5 are SCASN, peak wavelength 620 to 640 nm, half price width 84 nm) , Semiconductor light emitting devices 2, 3 and 6 have CASN, peak wavelength 650 to 655 nm, half price width 90 to 95 nm), and semiconductor light emitting devices 1 to semiconductor light emitting devices 6 have been manufactured.
 半導体発光装置7として、青色発光ダイオード(ピーク波長451nm)と赤色蛍光体(SCASN、ピーク波長629nm、半値幅84nm)とを用いて、半導体発光装置7を製造した。
 半導体発光装置8として、Ra80でCCT4000Kの半導体発光装置8を準備した。
 半導体発光装置1、2、7及び8の出射光のスペクトルを図1に示し、出射光のスペクトルに関する特性パラメータを表1に示す。また、表2に、各半導体発光装置の出射光の演色性評価数を示す。
As the semiconductor light emitting device 7, the semiconductor light emitting device 7 was manufactured by using a blue light emitting diode (peak wavelength 451 nm) and a red phosphor (SCASN, peak wavelength 629 nm, half width 84 nm).
As the semiconductor light emitting device 8, a semiconductor light emitting device 8 having a CCT 4000K was prepared with Ra80.
The spectra of the emitted light of the semiconductor light emitting devices 1, 2, 7 and 8 are shown in FIG. 1, and the characteristic parameters relating to the spectra of the emitted light are shown in Table 1. Table 2 shows the color rendering index evaluation numbers of the emitted light of each semiconductor light emitting device.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<色の見え評価>
 半導体発光装置1及び7を用いて、発育途中のミニトマト(赤色の果実及び緑色の果実を含む)を照射した際の、色の見えを評価した。
 半導体発光装置1は、ミニトマトの赤色の果実及び緑色の果実をクリアに認識することができた。一方で、緑色領域のスペクトルが無い半導体発光装置7では、緑色の果実は赤く、更に赤い果実は黒ずんで見えた。
<Evaluation of color appearance>
The appearance of color when irradiating developing cherry tomatoes (including red fruits and green fruits) with semiconductor light emitting devices 1 and 7 was evaluated.
The semiconductor light emitting device 1 was able to clearly recognize the red fruits and the green fruits of the cherry tomatoes. On the other hand, in the semiconductor light emitting device 7 having no spectrum in the green region, the green fruits appeared red and the red fruits appeared dark.
 また、表2の演色性評価数から、植物の葉や茎、若い果実など主に緑色の箇所の見えに影響する演色性評価数R3、R4、R11、R14;トマト、パプリカ等の果実など主に赤色の箇所の見えに影響する演色性評価数R9;花房になど主に黄色の箇所の見えに影響する演色性評価数R10、に関し、半導体発光装置1~6及び8は、半導体発光装置7に対して高い演色性評価数であった。
 これらより、半導体発光装置1~6及び8は、半導体発光装置7に比べて、植物の成長度合いの把握に必要な色の忠実度がより高いスペクトルの光を出射するといえる。なお、半導体発光装置1から出射する光で照射した発育途中のミニトマトと、半導体発光装置7から出射する光で照射した発育途中のミニトマトの写真を図2に示す。
In addition, from the color rendering index in Table 2, the color rendering index R3, R4, R11, R14, which mainly affects the appearance of green parts such as leaves, stems, and young fruits of plants; mainly fruits such as tomato and paprika. Regarding the color rendering index R9 that affects the appearance of the red part, and the color rendering index R10 that mainly affects the appearance of the yellow part such as in the flower cluster, the semiconductor light emitting devices 1 to 6 and 8 are the semiconductor light emitting device 7. It was a high color rendering index.
From these, it can be said that the semiconductor light emitting devices 1 to 6 and 8 emit light having a spectrum having higher color fidelity required for grasping the degree of plant growth as compared with the semiconductor light emitting device 7. A photograph of a developing cherry tomato irradiated with light emitted from the semiconductor light emitting device 1 and a developing cherry tomato irradiated with light emitted from the semiconductor light emitting device 7 is shown in FIG.
<発育評価I>
 培養液を供給してリーフレタスを栽培する太陽光併用型植物工場において、高圧ナトリウムランプ(HPS)、半導体発光装置1及び7を用いてリーフレタスを照射し、その発育の評価を行った。栽培環境は、室温22℃、湿度50~70%、培養液のpH5.5~6.0、培養液の電導率 EC1.5~2.0mS/cm、PPFD(光合成有効光量子束密度) 230μmol/sec・m、ライトタイミング ON/OFF12時間で、35日間栽培した。結果を図3に示す。
 図3より、葉の重量、葉の大きさともに、半導体発光装置1及び7から出射する光を照射したリーフレタスは、従来から屋内植物栽培に広く使用されているHPS光源から出射する光を照射したリーフレタスと比較して高い発育を示した。
 上記色の見え評価において、色再現性に大きな違いがあった半導体発光装置1と7との間に、植物の発育では大きな違いはないことが理解できる。
<Growth evaluation I>
In a solar-combined plant factory for cultivating leaf lettuce by supplying a culture solution, leaf lettuce was irradiated using a high-pressure sodium lamp (HPS) and semiconductor light emitting devices 1 and 7, and their growth was evaluated. The cultivation environment is room temperature 22 ° C., humidity 50-70%, culture solution pH 5.5-6.0, culture solution conductivity EC1.5-2.0 mS / cm, PPFD (photosynthetic effective photon bundle density) 230 μmol / It was cultivated for 35 days at sec · m 2 and light timing ON / OFF 12 hours. The results are shown in FIG.
From FIG. 3, both the leaf weight and the leaf size, the leaf lettuce irradiated with the light emitted from the semiconductor light emitting devices 1 and 7 irradiates the light emitted from the HPS light source widely used for indoor plant cultivation. It showed high growth compared to the leaf lettuce.
In the color appearance evaluation, it can be understood that there is no significant difference in plant development between the semiconductor light emitting devices 1 and 7, which have a large difference in color reproducibility.
<発育評価II>
 半導体発光装置2及び8を用いて、上記発育評価Iの方法と同様に、リーフレタスを照射し、その発育の評価を行った。その結果、半導体発光装置2から出射する光を照射したリーフレタスは、半導体発光装置8から出射する光を照射したリーフレタスと比較して、葉の重量で約27%、葉の大きさで約33%高い発育を示した。
 上記色の見え評価において、色再現性に大きな違いがなかった半導体発光装置2と8との間に、植物の発育では大きな違いがあることが理解できる。
 これは、半導体発光装置8は、緑色領域の出力が大きすぎることで赤色蛍光体の変換効率が減少し赤色領域の光出力が小さくなっているため光合成ロスが発生し、乾燥重量、葉体面積が共に減少したと考えられる。
 また、通常700nmより長波長領域の光は光合成光量子束密度の算出には考慮されないが、700nmよりも長波長領域に、より光出力を多く有する半導体発光装置2においても、半導体発光装置7と同等の発育結果を得た。
<Growth Evaluation II>
Using the semiconductor light emitting devices 2 and 8, the leaf lettuce was irradiated and the growth was evaluated in the same manner as in the method of the growth evaluation I described above. As a result, the leaf lettuce irradiated with the light emitted from the semiconductor light emitting device 2 has a leaf weight of about 27% and a leaf size of about 27% as compared with the leaf lettuce irradiated with the light emitted from the semiconductor light emitting device 8. It showed 33% higher growth.
It can be understood that there is a large difference in plant development between the semiconductor light emitting devices 2 and 8 in which the color reproducibility was not significantly different in the color appearance evaluation.
This is because the semiconductor light emitting device 8 has a too large output in the green region, so that the conversion efficiency of the red phosphor is reduced and the light output in the red region is small, so that photosynthetic loss occurs, and the dry weight and frond area are reduced. Is considered to have decreased together.
Further, although light in a wavelength region longer than 700 nm is usually not considered in the calculation of the photosynthetic photon flux density, the semiconductor light emitting device 2 having more light output in the wavelength region longer than 700 nm is equivalent to the semiconductor light emitting device 7. I got the growth result of.

Claims (10)

  1.  少なくとも、青色半導体発光素子と、緑色蛍光体と、赤色蛍光体と、を含む植物育成用半導体発光装置であって、
     前記半導体発光装置から出射する光は、-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)を満たす、植物育成用半導体発光装置。
    (i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
    A semiconductor light emitting device for plant growth, which comprises at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
    A semiconductor light emitting device for plant growth, wherein the light emitted from the semiconductor light emitting device satisfies −0.050 ≦ Duv ≦ −0.030 and its spectrum satisfies the following (i).
    (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. Satisfy 3 or less
  2.  少なくとも、青色半導体発光素子と、緑色蛍光体と、赤色蛍光体と、を含む植物育成用半導体発光装置であって、
     前記半導体発光装置から出射する光のスペクトルが以下の(ii)を満たす、植物育成用半導体発光装置。
    (ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
    A semiconductor light emitting device for plant growth, which comprises at least a blue semiconductor light emitting device, a green phosphor, and a red phosphor.
    A semiconductor light emitting device for plant growth, wherein the spectrum of light emitted from the semiconductor light emitting device satisfies the following (ii).
    (Ii) the vertical axis (Y), the emission peak intensity of the spectrum is 100% and the relative emission intensity (%), horizontal axis (X) in the graph the wavelength (nm), and the I BG, wavelength 555nm The slope a of the straight line connecting the emission intensity I 555 and the emission intensity I 555 in the above satisfies 0 <a ≦ 0.004.
  3.  前記半導体発光装置から出射する光のスペクトルは、更に、以下の(iii)を満たす、請求項1又は2に記載の植物育成用半導体発光装置。
    (iii)波長400nm以上500nm以下の領域に発光極大値Iを有し、0.8≦I/I≦1.3を満たす
    The semiconductor light emitting device for plant growth according to claim 1 or 2, wherein the spectrum of light emitted from the semiconductor light emitting device further satisfies the following (iii).
    (Iii) has an emission maximum value I B to 500nm following areas than the wavelength 400 nm, satisfy 0.8 ≦ I B / I R ≦ 1.3
  4.  前記半導体発光装置から出射する光のスペクトルは、更に、以下の(iv)を満たす、請求項1又は2に記載の植物育成用半導体発光装置。
    (iv)波長650nm以上の領域に発光極大値Iを有する
    The semiconductor light emitting device for plant growth according to claim 1 or 2, wherein the spectrum of light emitted from the semiconductor light emitting device further satisfies the following (iv).
    (Iv) the wavelength 650nm or more regions has an emission maximum value I R
  5.  前記半導体発光装置から出射する光のスペクトルは、更に、以下の(v)を満たす、請求項1又は2に記載の植物育成用半導体発光装置。
    (v)発光極小値IBGの波長λIBGnmから波長555nmの範囲において、波長555nmにおける発光強度I555が発光強度の最大値である
    The semiconductor light emitting device for plant growth according to claim 1 or 2, wherein the spectrum of light emitted from the semiconductor light emitting device further satisfies the following (v).
    (V) In the range from the wavelength λI BG nm of the emission minimum value I BG to the wavelength 555 nm, the emission intensity I 555 at the wavelength 555 nm is the maximum value of the emission intensity.
  6.  前記赤色蛍光体は、窒化物蛍光体を含む、請求項1から5のいずれか1項に記載の植物育成用半導体発光装置。 The semiconductor light emitting device for plant growth according to any one of claims 1 to 5, wherein the red phosphor contains a nitride phosphor.
  7.  前記赤色蛍光体は、半値幅が75nm以上である赤色蛍光体を含む、請求項1から6のいずれか1項に記載の植物育成用半導体発光装置。 The semiconductor light emitting device for plant growth according to any one of claims 1 to 6, wherein the red fluorescent substance contains a red fluorescent substance having a half width of 75 nm or more.
  8.  前記緑色蛍光体は、ピーク波長が510nm以上540nm以下であり、且つ半値幅が100nm以上120nm以下である緑色蛍光体を含む、請求項1から7のいずれか1項に記載の植物育成用半導体発光装置。 The semiconductor light emitting for plant growth according to any one of claims 1 to 7, wherein the green fluorescent substance contains a green fluorescent substance having a peak wavelength of 510 nm or more and 540 nm or less and a half width of 100 nm or more and 120 nm or less. apparatus.
  9.  少なくとも青色半導体発光素子と蛍光体と含む半導体発光装置から出射する光により植物を照射する照明工程、を含む照明方法であって、
     前記照明工程において、前記半導体発光装置から出射する光が植物を照明した際に、前記植物の位置で測定した光が-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)及び(ii)を満たす、照明方法。
    (i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
    (ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
    A lighting method including at least a lighting step of illuminating a plant with light emitted from a semiconductor light emitting device including a blue semiconductor light emitting element and a phosphor.
    In the lighting step, when the light emitted from the semiconductor light emitting device illuminates the plant, the light measured at the position of the plant satisfies −0.050 ≦ Duv ≦ −0.030, and the spectrum thereof is as follows. A lighting method that satisfies (i) and (ii).
    (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. In a graph in which the vertical axis (Y) satisfying 3 or less is the relative emission intensity (%) with the emission peak intensity of the spectrum as 100%, and the horizontal axis (X) is the wavelength (nm), the IBG And the slope a of the straight line connecting the emission intensity I 555 at the wavelength of 555 nm satisfies 0 <a≤0.004.
  10.  少なくとも、青色半導体発光素子と、緑色蛍光体及び赤色蛍光体を含む波長変換層と、を備えた植物育成用半導体発光装置から出射する光のスペクトルを設計する方法であって、
     前記半導体発光装置から出射する光が、-0.050≦Duv≦-0.030を満たし、且つそのスペクトルが以下の(i)及び(ii)を満たすように、前記波長変換層を調製するステップ、を含む、設計方法。
    (i)波長600nm以上の領域に発光極大値Iを有し、波長450nm以上500nm以下の領域に発光極小値IBGを有し、且つIBG/Iの値が0.1以上0.3以下を満たす
    (ii)縦軸(Y)を、スペクトルの発光ピーク強度を100%とした相対発光強度(%)とし、横軸(X)を波長(nm)としたグラフにおいて、前記IBGと、波長555nmにおける発光強度I555と、を結ぶ直線の傾きaが0<a≦0.004を満たす
    It is a method of designing a spectrum of light emitted from a semiconductor light emitting device for plant growth, which includes at least a blue semiconductor light emitting device and a wavelength conversion layer containing a green phosphor and a red phosphor.
    The step of preparing the wavelength conversion layer so that the light emitted from the semiconductor light emitting device satisfies −0.050 ≦ Duv ≦ −0.030 and the spectrum satisfies the following (i) and (ii). , Including, design method.
    (I) has an emission maximum value I R of the wavelength 600nm or more regions, has an emission minimum value I BG to 500nm following areas than the wavelength 450 nm, and the value of I BG / I R is 0.1 or higher 0. In a graph in which the vertical axis (Y) satisfying 3 or less is the relative emission intensity (%) with the emission peak intensity of the spectrum as 100%, and the horizontal axis (X) is the wavelength (nm), the IBG And the slope a of the straight line connecting the emission intensity I 555 at the wavelength of 555 nm satisfies 0 <a≤0.004.
PCT/JP2020/018736 2019-05-13 2020-05-08 Semiconductor light-emitting device for plant growth, lighting method, and design method WO2020230742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021519416A JP7145328B2 (en) 2019-05-13 2020-05-08 Semiconductor light-emitting device for growing plants, lighting method and design method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019090603 2019-05-13
JP2019-090603 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230742A1 true WO2020230742A1 (en) 2020-11-19

Family

ID=73289100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018736 WO2020230742A1 (en) 2019-05-13 2020-05-08 Semiconductor light-emitting device for plant growth, lighting method, and design method

Country Status (2)

Country Link
JP (1) JP7145328B2 (en)
WO (1) WO2020230742A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163053A (en) * 2014-02-28 2015-09-10 シャープ株式会社 plant lighting system
JP2016111190A (en) * 2014-12-05 2016-06-20 日亜化学工業株式会社 Light emitting device
JP2016202072A (en) * 2015-04-22 2016-12-08 ツジコー株式会社 Luminescent device and tomato-seedlings cultivation apparatus
WO2017126681A1 (en) * 2016-01-21 2017-07-27 株式会社 東芝 Lighting device and cultivation equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163053A (en) * 2014-02-28 2015-09-10 シャープ株式会社 plant lighting system
JP2016111190A (en) * 2014-12-05 2016-06-20 日亜化学工業株式会社 Light emitting device
JP2016202072A (en) * 2015-04-22 2016-12-08 ツジコー株式会社 Luminescent device and tomato-seedlings cultivation apparatus
WO2017126681A1 (en) * 2016-01-21 2017-07-27 株式会社 東芝 Lighting device and cultivation equipment

Also Published As

Publication number Publication date
JPWO2020230742A1 (en) 2020-11-19
JP7145328B2 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JP6027190B2 (en) Borophosphate phosphor and light source
RU2459855C2 (en) Red emitting luminescent materials
CN110997868A (en) Phosphor and composition
LT5688B (en) Phosphor conversion light - emitting diode for meeting photomorphogenetic needs pf plants
KR101072576B1 (en) Red phosphor and its forming method for use in solid state lighting
KR20210003720A (en) Near-infrared light emitting phosphor, phosphor mixture, light emitting element, and light emitting device
KR101862242B1 (en) Phosphor, manufacturing method of phosphor and light emitting device comprising the same
CN113366084A (en) Method for controlling the state of plants
KR20190013976A (en) Lutetium nitride-based fluorescent powder and light emitting element having the same
US7816663B2 (en) Orange-yellow silicate phosphor and warm white semiconductor using same
US10340426B2 (en) Phosphor and illumination device utilizing the same
KR101389929B1 (en) Led lamp for plant
CN109860375B (en) Light emitting device, lighting device and plant cultivation method
NL2008815C2 (en) Light emitting diode for plant growth.
WO2020230742A1 (en) Semiconductor light-emitting device for plant growth, lighting method, and design method
CN114752380B (en) Plant illumination blue light emitting device, illumination device and application
JP2019102806A (en) Light emitting device, illumination device and plant cultivation method
KR101072572B1 (en) Red phosphor and its forming method for use in solid state lighting
US11477945B2 (en) Horticulture lighting device
KR101756275B1 (en) luminophore and light source containing such a luminophore
KR102619002B1 (en) White led lighting for antibacterial plant growth
KR102616929B1 (en) White led lighting for antibacterial plant growth
CN114574205B (en) Antimony aluminate fluorescent powder and preparation method and application thereof
KR101451169B1 (en) Rare earth doped oxide phosphor and white light emitting diodes including oxide phosphor for solid-state lighting applications
AU2021103790A4 (en) Synthesis of Green Exciting Eu2+Activated Far Red Color Emitting CaMg2(SO4)3Phosphor for Plant Cultivation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805817

Country of ref document: EP

Kind code of ref document: A1