WO2020228749A1 - 铁水生产含钠钒渣直接浸出提钒的方法 - Google Patents

铁水生产含钠钒渣直接浸出提钒的方法 Download PDF

Info

Publication number
WO2020228749A1
WO2020228749A1 PCT/CN2020/090080 CN2020090080W WO2020228749A1 WO 2020228749 A1 WO2020228749 A1 WO 2020228749A1 CN 2020090080 W CN2020090080 W CN 2020090080W WO 2020228749 A1 WO2020228749 A1 WO 2020228749A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
blowing
oxygen
sodium
molten iron
Prior art date
Application number
PCT/CN2020/090080
Other languages
English (en)
French (fr)
Inventor
陈炼
杨森祥
刁江
戈文荪
Original Assignee
成都先进金属材料产业技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都先进金属材料产业技术研究院有限公司 filed Critical 成都先进金属材料产业技术研究院有限公司
Publication of WO2020228749A1 publication Critical patent/WO2020228749A1/zh
Priority to ZA2021/10286A priority Critical patent/ZA202110286B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of iron and steel metallurgy and vanadium-titanium chemical industry, and specifically relates to a method for directly leaching vanadium-containing vanadium slag from molten iron production.
  • Vanadium (V) is a transition metal element. Vanadium is chemically stable at room temperature and more active at high temperatures.
  • the valence electron structure of vanadium atom is 3d 3 4s 2 , which is a typical variable valence element. All five valence electrons can participate in bond formation and have valence states of +2, +3, +4 and +5.
  • the stable compounds of vanadium are also different. Lowering the oxygen partial pressure and increasing the temperature is beneficial to the stable existence of trivalent vanadium oxide.
  • vanadium also has a variety of non-stoichiometric oxides, which can be represented by the general formula V n O 2n-1 (3 ⁇ n ⁇ 9).
  • V 2 O 4 and V 2 O 5 , V 3 O 5 , V 3 O 7 , V 4 O 7 , V 4 O 9 , V 5 O 9 , V 6 O 11 , V 6 O 13 are known And other oxides.
  • vanadium oxides are mainly V 2 O 3 , VO 2 and V 2 O 5 , of which V 2 O 5 is particularly important.
  • vanadium is widely used in steel, chemical, aviation and other fields. About 84% of vanadium is used in steel as an alloying element to dissolve into steel to form VC and VN, refine grains, inhibit the development of bainite and pearlite, increase martensite strength, and improve the hardness, strength, toughness and toughness of steel. Wear resistance, its products are mainly made of vanadium iron and VN grains. Vanadium used in non-ferrous alloys is mainly structural materials represented by V-Al alloys, such as excellent high-temperature aerospace structural materials Ti-6Al-4V, Ti-8Al-1V-Mo and Ti-6Al-6V-2Sn alloys.
  • the vanadium products used in the chemical industry mainly include V 2 O 5 , NH 4 VO 3 , V 2 O 3 , VOCl 3 and VCl 4, etc., which are used as catalysts, colorants, and electrode materials for large-capacity batteries. It is worth mentioning that due to the multivalent state of vanadium, vanadium is used as a positive electrode material for lithium batteries or developed into energy storage devices such as supercapacitors. It has the advantages of rapid charging, high specific energy, and low price, which has considerable application prospects. In addition, about 2% of vanadium products are also used in the fields of medicine, protective materials and film materials.
  • vanadium compounds have an insulin-like effect, can promote the synthesis of liver glycogen and muscle glycogen, inhibit the decomposition of liver glycogen into glucose, promote the synthesis of fat and inhibit the decomposition of fat. All in all, vanadium and vanadium products are widely used as additives to improve material properties or accelerate the progress of chemical reactions.
  • Vanadium resources are an important scarce resource in the world. There is no single mineable vanadium mineral. Its distribution in nature is very scattered, mainly associated with sulfovanadium VS 2 or V 2 S 5 , lead vanadium ore (or brown Lead ore) Pb 5 (VO 4 ) 3 C, vanadium marble KV 2 (AlSi 2 O 10 )(OH) 2 , potash uranium vanadate K 2 (UO 2 ) (VO 4 ) 2 ⁇ 3H 2 O and vanadium Titanium magnetite and other minerals.
  • the total global reserves of vanadium are 63 million tons, and the recoverable reserves are 10.2 million tons.
  • vanadium-titanium magnetite 88% of the world's vanadium is obtained from vanadium-titanium magnetite.
  • the remaining vanadium extraction materials include stone coal, waste catalysts, petroleum ash, and carbonaceous shale. Due to the large differences in the types of vanadium raw materials, mineral characteristics, and vanadium content, there are various techniques and methods for extracting vanadium from vanadium-containing materials, mainly including pyrometallurgical smelting, wet leaching and combined pyro-wet extraction.
  • vanadium slag is mainly carried out by fire method worldwide. Pyro smelting usually uses vanadium-titanium magnetite as the main raw material to obtain vanadium-containing molten iron through a blast furnace or other ironmaking process, and then blow oxygen into the converter to oxidize and enrich the vanadium in the metal into the slag. V is obtained using the blowing-containing double converter 2 O 5 8 ⁇ 20% of the vanadium-containing slag and from about 3.6% C steel half using a single V is obtained containing slag blowing converter 2 O 5 2 ⁇ 5% containing Vanadium steel slag and molten steel. The obtained vanadium slag or vanadium-containing steel slag is subjected to subsequent extraction through roasting-leaching or direct leaching.
  • Patent document CN102086487A discloses an energy-saving and emission-reducing vanadium slag treatment method.
  • the high-temperature liquid vanadium slag above 1200°C separated from the molten iron is placed in a slag tank, and then sodium compounds are added to the slag tank, and the water is cooled by supersonic speed.
  • the subsonic oxygen lance supplies oxygen to the slag tank, the V 2 O 5 generated in the vanadium slag reacts with the added sodium compound to form water-soluble sodium vanadate, and finally the obtained slag containing water-soluble sodium vanadate is processed to obtain V 2 O 5 .
  • the use of supersonic or subsonic oxygen lances to supply oxygen to the slag tank is limited by the small volume of the vanadium slag slag tank.
  • the use of high-velocity oxygen lances to supply oxygen will cause the liquid vanadium slag to be blown out of the tank and affect the effectiveness of the vanadium slag.
  • the sodium compound added at the same time will also drift out of the tank during the oxygen blowing process, which affects the utilization rate of sodium compound, and the mixing effect of sodium compound and vanadium slag is extremely poor.
  • this method requires the vanadium slag to be placed in the slag tank. This process will cause heat exchange between the hot vanadium slag and the air and the slag tank, and the heat utilization rate of the hot vanadium slag is low.
  • the technical problem solved by the invention is that the oxidation rate of vanadium in the vanadium slag production process is low and the heat loss is large.
  • the technical solution of the present invention to solve the above problems is to provide a method for directly leaching vanadium from molten iron to produce sodium-containing vanadium slag.
  • the steps include: after the molten iron is added to the converter, the first stage of blowing oxidation is performed, and coolant and soda ash are added during the blowing process.
  • the vanadium is oxidized and separated to form vanadium slag.
  • the semi-steel is poured out, and the sodium-containing vanadium slag is left in the converter for the second-stage conversion and oxidation to produce water-soluble sodium vanadate. After the conversion and oxidation, it is leached in water
  • the vanadium-containing leaching solution is obtained.
  • the mass ratio of Na 2 O/V 2 O 5 in the sodium-containing vanadium slag after the completion of the second-stage conversion and oxidation is controlled within 0.60-0.85.
  • the coolant is added within the first 3 minutes after the first-stage blowing and oxidation starts, and soda ash is added within 2 minutes after the coolant is added.
  • the amount of coolant added is 15-35kg/tFe
  • the amount of soda ash added is 6-8kg/tFe.
  • the first-stage blowing oxidation process uses top and bottom combined blowing, top blowing uses oxygen lance to blow oxygen, and bottom blowing nitrogen.
  • the lance position of the oxygen lance in the first-stage blowing oxidation process is controlled by the "high-low-high" mode, that is, the high gun position is adopted for 0.5 to 1.5 minutes in the early stage of blowing, and the low gun position is adopted in the middle stage, and before the end of blowing 1.0 ⁇ 1.5min adopts high lance position; oxygen blowing flow is controlled at 2.0 ⁇ 3.0m 3 /(min ⁇ tFe), oxygen pressure is 0.7 ⁇ 0.9MPa; top blowing oxygen time is controlled at 5 ⁇ 6.5min.
  • the nitrogen flow rate of the first-stage blowing and oxidation bottom blowing is controlled at 0.1-0.5m 3 /(min ⁇ tFe).
  • the second-stage blowing oxidation adopts top and bottom combined blowing, and the top blowing uses an oxygen lance to blow oxygen, and the bottom blowing gas is switched to oxygen.
  • the oxygen flow rate of the second stage blowing and oxidation bottom blowing is 0.05 ⁇ 0.25m 3 /(min ⁇ tFe); the oxygen lance adopts low lance to blow oxygen to the sodium-containing vanadium slag, and the blowing oxygen flow rate is 1 ⁇ 2m 3 /(min ⁇ tFe), the pressure is 0.3 ⁇ 0.5MPa; the top blowing oxygen time is controlled at 2 ⁇ 3min.
  • the vanadium slag is cooled, crushed, magnetically separated, ball milled, and water leached to obtain a vanadium-containing leaching solution after the completion of the second-stage blowing and oxidation.
  • the present invention adopts two-stage blowing oxidation to produce sodium-containing vanadium slag to extract vanadium, in which soda ash is added in the first stage of blowing and oxidation, and the waste heat is used to carry out the second stage of blowing and oxidation after pouring out half of the steel.
  • the invention can reduce the number of procedures for producing vanadium-containing leaching solution from molten iron, can increase the oxidation rate of vanadium, reduce process energy consumption, is beneficial to resource utilization and vanadium extraction production cost reduction, and saves costs and creates benefits for enterprises.
  • the present invention discloses a method for directly leaching and extracting vanadium from sodium-containing vanadium slag produced from molten iron.
  • the steps include: after the molten iron is added to a converter, a one-stage blowing oxidation is performed, and a coolant and soda are added during the blowing process to oxidize and separate vanadium to form vanadium.
  • the half-steel is poured out, and the sodium-containing vanadium slag is left in the converter for the second-stage blowing and oxidation to produce water-soluble sodium vanadate.
  • the vanadium-containing leaching solution is obtained by water leaching.
  • the process of producing vanadium-containing vanadium slag and extracting vanadium in the present invention is carried out in two stages of blowing oxidation, the first stage is to oxidize and separate vanadium in the molten iron to form vanadium slag, and the second stage is the vanadium oxide in the vanadium oxide slag in the absence of molten iron.
  • the V 2 O 3 in the vanadium slag is oxidized to V 2 O 5 , and V 2 O 5 and Na 2 O are promoted to generate water-soluble sodium vanadate and other compounds.
  • adding soda ash during the vanadium slag smelting process of molten iron can not only make sodium compounds uniformly distributed in the vanadium slag, which is beneficial to the subsequent formation of sodium vanadate, but also sodium oxide can oxidize vanadium in the molten iron to improve The oxidation rate of vanadium, and the viscosity of vanadium slag is reduced after sodium salt is contained in the vanadium slag, the metallic iron in the vanadium slag can settle better, and oxygen will not cause the oxidation effect of vanadium slag to fail to meet the requirements due to iron oxide during oxygen blowing.
  • the purpose of adding soda ash in the first-stage blowing oxidation process of the present invention is to oxidize vanadium in the iron water, adjust the melting point and fluidity of the vanadium slag, promote the separation of slag and iron, and prepare in advance for the subsequent generation of sodium vanadate.
  • the mass ratio of Na 2 O/V 2 O 5 in the sodium-containing vanadium slag after the completion of the second-stage conversion and oxidation is controlled within 0.60-0.85. After soda ash is added, it will decompose into Na 2 O and CO 2 under high temperature conditions. Only Na 2 O will remain in the slag, so Na 2 O is used for control.
  • the Na 2 O/V 2 O 5 mass ratio in the sodium-containing vanadium slag is controlled to be 0.60 ⁇ 0.85, and the proportion of sodium vanadate is the highest, which is most beneficial to vanadium in the vanadium slag. Extraction.
  • the coolant is added within the first 3 minutes after the first-stage blowing and oxidation starts, and soda ash is added within 2 minutes after the coolant is added.
  • the amount of coolant added is 15-35kg/tFe
  • the amount of soda ash added is 6-8kg/tFe.
  • the function of the coolant in the present invention is to control the temperature in the furnace within a reasonable range and at the same time oxidize vanadium in the molten iron.
  • the coolant of the present invention can be selected from one or several mixtures of substances with high iron oxide content such as iron oxide scale, iron red, high-grade iron ore.
  • the first-stage blowing oxidation process uses top and bottom combined blowing, top blowing uses oxygen lance to blow oxygen, and bottom blowing nitrogen.
  • the lance position of the oxygen lance in the first-stage blowing oxidation process is controlled by the "high-low-high” mode, that is, the high gun position is adopted for 0.5 to 1.5 minutes in the early stage of blowing, and the low gun position is adopted in the middle stage, and before the end of blowing Use high gun position for 1.0 ⁇ 1.5min.
  • the oxygen blowing flow rate is controlled to be 2.0-3.0 m 3 /(min ⁇ tFe)
  • the oxygen pressure is 0.7-0.9 MPa
  • the top blowing oxygen time is controlled to be 5-6.5 min.
  • “High-low-high” is one of the existing modes.
  • the high gun position is generally 1.8-2.0m
  • the low gun position is generally 1.6-1.8m.
  • the second-stage blowing oxidation adopts top and bottom combined blowing, and the top blowing uses an oxygen lance to blow oxygen, and the bottom blowing gas is switched to oxygen.
  • the bottom blowing oxygen flow rate is 0.05-0.25m 3 /(min ⁇ tFe)
  • the oxygen lance uses a low lance to blow oxygen to the sodium-containing vanadium slag
  • the blowing oxygen flow rate is 1 to 2m 3 /(min ⁇ tFe)
  • the pressure is 0.3 ⁇ 0.5MPa
  • the top blowing oxygen time is controlled at 2 ⁇ 3min.
  • the combined top and bottom blowing in the present invention refers to blowing at the bottom while blowing oxygen at the top.
  • bottom blowing is always in progress, but nitrogen is switched to oxygen during the second stage blowing process, and the top blowing oxygen is suspended after the first stage blowing, and the top blowing oxygen is continued after the steel is tapped.
  • the vanadium slag is cooled, crushed, magnetically separated, ball milled, and water leached to obtain a vanadium-containing leaching solution after the completion of the second-stage blowing and oxidation.
  • the vanadium slag is poured into the vanadium slag tank and then capped and cooled.
  • the cooling time is controlled within 36-72h.
  • the vanadium slag is crushed, magnetically separated, and ball milled into 120 mesh fine powder.
  • the fine powder and water are mixed according to the weight ratio of 1:3, the mixture is mechanically stirred (stirring paddle speed 300 ⁇ 400r/min) and heated to maintain the temperature at 85 ⁇ 2°C. After 1.5h, vacuum filtration is performed. The resulting filtrate is Leachate containing vanadium.
  • the initial molten iron temperature of the invention is 1190-1360°C, and the temperature in the blowing process does not exceed 1400°C.
  • the oxygen is blown.
  • the lance position is controlled by the "high-low-high" mode, that is, the high lance position is used for 1.5 minutes in the early stage of the blowing, the low lance position is used in the middle stage, and 1 minute before the end of the blowing.
  • the high lance position is adopted, the oxygen supply intensity is controlled at 3.0m 3 /(min ⁇ tFe), the coolant 27kg/tFe is added within the first 3 minutes after the start of blowing, and the bottom blowing nitrogen is used at 0.05m 3 /(min ⁇ tFe) Intensity is controlled, 6kg/tFe of soda ash is added at the 4th minute of blowing, oxygen blowing is finished after 6min;
  • the converter After the molten iron is finished and the semi-steel is produced, the converter returns to the blowing position, and the bottom blowing gas is switched to oxygen.
  • the oxygen flow rate is 0.15m 3 /(min ⁇ tFe).
  • an oxygen lance is used for top blowing oxygen and the oxygen supply intensity is controlled.
  • oxygen pressure 0.3MPa, oxygen blowing time 3min;
  • the vanadium slag After the vanadium slag is blown oxygen, pour the vanadium slag into the vanadium slag tank and cover it for cooling. The cooling time is controlled at 55h. After cooling, the vanadium slag is crushed, magnetically separated, and ball milled into 120 mesh fine powder. The fine powder is pressed with water. After mixing with a weight ratio of 1:3, the mixture in the leaching process is mechanically stirred (stirring paddle speed 300r/min) and heated to maintain a temperature of 85 ⁇ 2°C. After 1.5 hours, vacuum filtration is performed, and the resulting filtrate is the leaching solution.
  • the vanadium yield in the process of vanadium oxidation to vanadium slag in the molten iron is 90.02%
  • the vanadium yield in the process of direct oxidation and leaching of vanadium slag is 94.65%
  • the comprehensive oxidation rate of vanadium in the hot metal reaches 85.21%.
  • the oxygen is blown.
  • the lance position is controlled by the "high-low-high" mode, that is, the high lance position is used for 1.0 min in the early stage of the blowing, the low lance position is used in the middle stage, and 1.5 before the end of the blowing.
  • Min adopts high lance position
  • the oxygen supply intensity is controlled at 2.5m 3 /(min ⁇ tFe)
  • 32kg/tFe of coolant is added in the first 3 minutes after the start of blowing
  • the bottom blowing nitrogen is 0.15m 3 /(min during oxygen blowing and smelting ⁇ TFe) intensity control, add 8kg/tFe of soda ash at the 4th minute of blowing, and end the blowing of oxygen after 5.5min;
  • the converter After the molten iron is finished and the semi-steel is produced, the converter returns to the blowing position, and the bottom blowing gas is switched to oxygen.
  • the oxygen flow rate is 0.10m 3 /(min ⁇ tFe).
  • an oxygen lance is used for top blowing oxygen and the oxygen supply intensity is controlled.
  • oxygen pressure 0.5MPa, oxygen blowing time 2min;
  • the vanadium slag After the vanadium slag is blown oxygen, pour the vanadium slag into the vanadium slag tank and cover it for cooling. The cooling time is controlled at 70h. After cooling, the vanadium slag is crushed, magnetically separated, and ball milled into 120 mesh fine powder. The fine powder is pressed with water. After mixing with a weight ratio of 1:3, the mixture in the leaching process is mechanically stirred (stirring paddle speed 300r/min) and heated to maintain a temperature of 85 ⁇ 2°C. After 1.5 hours, vacuum filtration is performed, and the resulting filtrate is the leaching solution.
  • the vanadium yield in the process of vanadium oxidation to vanadium slag in the molten iron is 89.76%
  • the vanadium yield in the process of direct oxidation and leaching of vanadium slag is 95.10%
  • the comprehensive oxidation rate of vanadium in the molten iron is 85.36%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

一种铁水生产含钠钒渣直接浸出提钒的方法,属于钢铁冶金及钒钛化工领域,步骤包括在铁水兑入转炉后,进行一期吹炼氧化,吹炼过程中加入冷却剂、纯碱,一期吹炼结束后将半钢倒出,含钠钒渣留于转炉内进行二期吹炼氧化,吹炼氧化结束后经水浸得到含钒浸出液。该方法能够减少铁水生产含钒浸出液的工序数量,能提高钒的氧化率、减少过程能量消耗,有利于资源的利用及提钒生产成本降低,为企业节约成本、创造效益。

Description

铁水生产含钠钒渣直接浸出提钒的方法 技术领域
本发明属于钢铁冶金及钒钛化工领域,具体涉及铁水生产含钠钒渣直接浸出提钒的方法。
背景技术
钒(V)是一种过渡族金属元素,金属钒常温下化学性质较稳定,高温下较活泼。钒原子的价电子结构为3d 34s 2,是典型的变价元素,五个价电子都可以参与成键,具有+2、+3、+4和+5价态。在不同的氧分压和温度下,钒的稳定化合物也不同,降低氧分压提高温度有利于三价钒氧化物的稳定存在。除此之外,钒还有多种非化学计量氧化物,可用通式V nO 2n-1(3≤n≤9)表示的同族氧化物。在V 2O 4和V 2O 5之间,已知有V 3O 5、V 3O 7、V 4O 7、V 4O 9、V 5O 9、V 6O 11、V 6O 13等氧化物。工业上钒氧化物主要是V 2O 3、VO 2和V 2O 5,其中V 2O 5尤为重要。
钒因其具有优良的强度、硬度及抗疲劳效应,钒被广泛地应用于钢铁、化工、航空等领域。大约84%的钒用于钢铁作为合金元素溶解到钢中形成VC和VN,细化晶粒,抑制贝氏体和珠光体的发育增加马氏体强度,从而提高钢的硬度、强度、韧性和抗磨损性能,其生产产品以钒铁和VN为主化晶粒。钒用于有色合金主要是以V-Al系合金为代表的结构材料,如优良的高温航空结构材料Ti-6Al-4V、Ti-8Al-1V-Mo和Ti-6Al-6V-2Sn等合金。用于化工领域的钒产品主要有V 2O 5、NH 4VO 3、V 2O 3、VOCl 3及VCl 4等,用作催化剂、着色剂、大容量电池用的电极材料。值得一提的是由于钒的多价态,钒用作锂电池正极材料或开发成超级电容器等储能装置,具有充电迅速、比能量高、价格低廉等优点,颇具应用前景。此外,约2%的钒产品还应用于医药、防护材料及薄膜材料等领域。现有研究表明钒化合物具有类胰岛素的作用,能促进肝糖原和肌糖原的合成,抑制肝糖原分解为葡萄糖,促进脂肪的合成并抑制脂肪的分解。总而言之,钒及钒产品主要作为添加剂广泛地用于提高材料性能或加速化学反应进程。
钒资源作为一种世界上重要的稀缺资源,无单独可采的钒矿物,其在自然界中的分布很分散,主要伴生于硫钒矿VS 2或V 2S 5、铅钒矿(或称褐铅矿)Pb 5(VO 4) 3C、钒云石KV 2(AlSi 2O 10)(OH) 2、钒酸钾铀矿K 2(UO 2)(VO 4) 2·3H 2O以及钒钛磁铁矿等矿物中。全球 钒的总储量为6300万吨,可开采储量为1020万吨。用于提钒的原料种类很多,世界上88%的钒是从钒钛磁铁矿中获得,其余提钒原料有石煤、废催化剂、石油灰渣、碳质页岩等。因钒原料种类、矿物特征及其中钒含量差异较大,从含钒物料中提取钒的工艺和方法也多种多样,主要有火法冶炼、湿法浸出和火法-湿法联合提取工艺。
目前,世界范围内主要是以火法进行钒渣的生产。火法冶炼通常以钒钛磁铁矿为主要原料,通过高炉或其它炼铁流程得到含钒铁水,再在转炉中吹入氧气使金属中的钒氧化富集到渣中。采用双联转炉吹炼时得到含V 2O 58~20%的钒渣和含C约3.6%的半钢,采用单个转炉造渣吹炼时得到含V 2O 52~5%的含钒钢渣和钢水。得到的钒渣或含钒钢渣经过焙烧-浸出或直接浸出的方式进行后续提取。
专利文献CN102086487A公开了一种节能减排的钒渣处理方法,首先将与铁水分离后的1200℃以上的高温液态钒渣置于渣罐中,然后向渣罐中加入钠化合物,用水冷超音速或亚音速氧枪向渣罐中供氧,钒渣中生成的V 2O 5与加入的钠化合物反应生成水溶性钒酸钠,最后把得到的含有水溶性钒酸钠的渣子,处理得到V 2O 5。然而,采用超音速或亚音速氧枪向渣罐中供氧,受限于钒渣渣罐的容积较小,采用高速氧枪供氧会造成液态钒渣被吹出罐外,影响钒渣的有效利用,同时加入的钠化合物在吹氧的过程中也会飘散到罐外,影响钠化物的利用率,且钠化物与钒渣的混匀效果极差。而且,该方法要将钒渣置于渣罐中,这个过程会造成热态钒渣与空气、渣罐间进行热交换,热态钒渣的热利用率低。
发明内容
本发明解决的技术问题是钒渣生产过程钒的氧化率低、热量损失大。
本发明解决上述问题的技术方案是提供铁水生产含钠钒渣直接浸出提钒的方法,步骤包括:在铁水兑入转炉后,进行一期吹炼氧化,吹炼过程中加入冷却剂、纯碱,将钒氧化分离形成钒渣,一期吹炼结束后将半钢倒出,含钠钒渣留于转炉内进行二期吹炼氧化,生成水溶性钒酸钠,吹炼氧化结束后经水浸得到含钒浸出液。
其中,二期吹炼氧化结束后含钠钒渣中Na 2O/V 2O 5质量比控制在0.60~0.85。
其中,一期吹炼氧化开始后的前3min内加入冷却剂,加入冷却剂后2min内加入纯碱。
其中,冷却剂的加入量为15~35kg/tFe,纯碱加入量为6~8kg/tFe。
其中,一期吹炼氧化过程采用顶底复吹,顶吹采用氧枪进行吹氧气,底吹氮气。
其中,一期吹炼氧化过程氧枪吹氧时枪位采用“高-低-高”模式进行控制,即吹炼前期0.5~1.5min采用高枪位,中期采用低枪位,吹炼结束前1.0~1.5min采用高枪位;吹氧流量控制在2.0~3.0m 3/(min·tFe),氧气压力0.7~0.9MPa;顶吹氧气时间控制在5~6.5min。
其中,一期吹炼氧化底吹氮气流量控制在0.1~0.5m 3/(min·tFe)。
其中,二期吹炼氧化采用顶底复吹,顶吹采用氧枪进行吹氧气,将底吹气体切换为氧气。
其中,二期吹炼氧化底吹氧气流量为0.05~0.25m 3/(min·tFe);氧枪采用低枪位向含钠钒渣吹氧,吹氧流量为1~2m 3/(min·tFe),压力0.3~0.5MPa;顶吹氧气时间控制在2~3min。
其中,二期吹炼氧化结束后将钒渣冷却、破碎、磁选、球磨、水浸得到含钒浸出液。
本发明的有益效果如下:
本发明采用两期吹炼氧化生产含钠钒渣提钒,其中一期吹炼氧化加入纯碱,倒出半钢后利用余热进行二期吹炼氧化,相比传统的高温焙烧钠化提钒,本发明能够减少铁水生产含钒浸出液的工序数量,能提高钒的氧化率、减少过程能量消耗,有利于资源的利用及提钒生产成本降低,为企业节约成本、创造效益。
具体实施方式
本发明公开提供铁水生产含钠钒渣直接浸出提钒的方法,步骤包括:在铁水兑入转炉后,进行一期吹炼氧化,吹炼过程中加入冷却剂、纯碱,将钒氧化分离形成钒渣,一期吹炼结束后将半钢倒出,含钠钒渣留于转炉内进行二期吹炼氧化,生成水溶性钒酸钠,吹炼氧化结束后经水浸得到含钒浸出液。
本发明生产含钠钒渣提钒的过程进行两期吹炼氧化,一期是将铁水中的钒氧化分离形成钒渣,二期是在无铁水存在的状态下氧化钒渣中的钒氧化物,将钒渣中的V 2O 3氧化成V 2O 5,并促进V 2O 5与Na 2O生成水溶性的钒酸钠等化合物。
具体的,本发明在铁水吹炼钒渣的过程将纯碱加入,不仅能够使得钠化物在钒渣中均匀分布、有利于后续钒酸钠的形成,而且钠氧化物能够氧化铁水中的钒,提高钒的氧化率,再则钒渣中含有钠盐后粘度降低,钒渣中的金属铁能够更好的沉降,在吹氧时氧气不会因为氧化铁而造成钒渣氧化效果达不到要求。所以,本发明在一期吹炼氧化过程加入纯碱的目的是氧化铁水中的钒,以及调整钒渣熔点和流动性,促进渣铁分离,为后 续生成钒酸钠提前做好准备。
其中,二期吹炼氧化结束后含钠钒渣中Na 2O/V 2O 5质量比控制在0.60~0.85。纯碱加入后在高温条件下会分解成Na 2O和CO 2,只有Na 2O会留在渣中,因此以Na 2O进行控制。我们通过大量实验发现,将二期吹炼氧化结束后含钠钒渣中Na 2O/V 2O 5质量比控制在0.60~0.85,生成钒酸钠的比例最高,最有利于钒渣中钒的提取。
其中,一期吹炼氧化开始后的前3min内加入冷却剂,加入冷却剂后2min内加入纯碱。
其中,冷却剂的加入量为15~35kg/tFe,纯碱加入量为6~8kg/tFe。
本发明中冷却剂的作用是控制炉内温度在合理范围内,同时能够氧化铁水中的钒。作为优选的,本发明冷却剂可选择氧化铁皮、铁红、高品位铁矿等铁氧化物含量较高的物质中的一种或几种混合物。
其中,一期吹炼氧化过程采用顶底复吹,顶吹采用氧枪进行吹氧气,底吹氮气。
其中,一期吹炼氧化过程氧枪吹氧时枪位采用“高-低-高”模式进行控制,即吹炼前期0.5~1.5min采用高枪位,中期采用低枪位,吹炼结束前1.0~1.5min采用高枪位。作为优选的,吹氧流量控制在2.0~3.0m 3/(min·tFe),氧气压力0.7~0.9MPa,顶吹氧气时间控制在5~6.5min。“高-低-高”是现有模式的一种,高枪位一般在1.8~2.0m,低枪位一般在1.6~1.8m。
其中,二期吹炼氧化采用顶底复吹,顶吹采用氧枪进行吹氧气,将底吹气体切换为氧气。作为优选的,底吹氧气流量为0.05~0.25m 3/(min·tFe),氧枪采用低枪位向含钠钒渣吹氧,吹氧流量为1~2m 3/(min·tFe),压力0.3~0.5MPa,顶吹氧气时间控制在2~3min。
其中,本发明顶底复吹指的是在顶吹氧气的同时底部进行吹气。吹炼过程中,底部吹气一直在进行中,只是在二期吹炼过程将氮气切换为氧气,而顶吹氧气在一期吹炼结束后暂停,出钢后再继续顶吹氧气。
其中,二期吹炼氧化结束后将钒渣冷却、破碎、磁选、球磨、水浸得到含钒浸出液。
具体的,钒渣吹氧结束后,将钒渣倒入钒渣罐内后加盖冷却,冷却时间控制在36~72h,冷却结束后将钒渣破碎、磁选、球磨成120目细粉,细粉与水按重量比1:3混合后,浸出过程混合液采用机械搅拌(搅拌桨转速300~400r/min)并加热保持温度85±2℃,1.5h后进行真空抽滤,所得滤液为含钒浸出液。
本发明初始铁水温度在1190~1360℃,吹炼过程温度不超过1400℃。
下面结合具体的实施例,对本发明作进一步的详细说明。
实施例1
在铁水入转炉后开始吹氧,氧枪吹氧时枪位采用“高-低-高”模式进行控制,即吹炼前期1.5min采用高枪位,中期采用低枪位,吹炼结束前1min采用高枪位,供氧强度控制在3.0m 3/(min·tFe),吹炼开始后前3min内加完冷却剂27kg/tFe,吹氧冶炼期间底吹氮采用0.05m 3/(min·tFe)强度进行控制,吹炼第4min时加入纯碱6kg/tFe,吹氧6min后结束吹氧;
铁水吹炼结束出完半钢后转炉回复到吹炼位,将底吹气体切换为氧气,氧气流量为0.15m 3/(min·tFe),同时采用氧枪进行顶吹氧气,供氧强度控制在2.0m 3/(min·tFe)、氧气压力0.3MPa,吹氧时间3min;
钒渣吹氧结束后,将钒渣倒入钒渣罐内后加盖冷却,冷却时间控制在55h,冷却结束后将钒渣破碎、磁选、球磨成120目细粉,细粉与水按重量比1:3混合后,浸出过程混合液采用机械搅拌(搅拌桨转速300r/min)并加热保持温度85±2℃,1.5h后进行真空抽滤,所得滤液为浸出液。
经计算,铁水中钒氧化成钒渣的过程钒收得率为90.02%,钒渣直接氧化浸出过程的钒收得率为94.65%,全流程的铁水钒综合氧化率回收率达到了85.21%。
实施例2
在铁水入转炉后开始吹氧,氧枪吹氧时枪位采用“高-低-高”模式进行控制,即吹炼前期1.0min采用高枪位,中期采用低枪位,吹炼结束前1.5min采用高枪位,供氧强度控制在2.5m 3/(min·tFe),吹炼开始后前3min内加完冷却剂32kg/tFe,吹氧冶炼期间底吹氮采用0.15m 3/(min·tFe)强度进行控制,吹炼第4min时加入纯碱8kg/tFe,吹氧5.5min后结束吹氧;
铁水吹炼结束出完半钢后转炉回复到吹炼位,将底吹气体切换为氧气,氧气流量为0.10m 3/(min·tFe),同时采用氧枪进行顶吹氧气,供氧强度控制在1.5m 3/(min·tFe)、氧气压力0.5MPa,吹氧时间2min;
钒渣吹氧结束后,将钒渣倒入钒渣罐内后加盖冷却,冷却时间控制在70h,冷却结束后将钒渣破碎、磁选、球磨成120目细粉,细粉与水按重量比1:3混合后,浸出过程混合液采用机械搅拌(搅拌桨转速300r/min)并加热保持温度85±2℃,1.5h后进行真空抽滤,所得滤液为浸出液。
经计算,铁水中钒氧化成钒渣的过程钒收得率为89.76%,钒渣直接氧化浸出过程的钒收得率为95.10%,全流程的铁水钒综合氧化率回收率达到了85.36%。

Claims (10)

  1. 铁水生产含钠钒渣直接浸出提钒的方法,其特征在于包括以下步骤:将铁水兑入转炉后进行一期吹炼氧化,吹炼过程中加入冷却剂、纯碱,将钒氧化分离形成钒渣,一期吹炼结束后将半钢倒出,含钠钒渣留于转炉内进行二期吹炼氧化,生成水溶性钒酸钠,吹炼氧化结束后经水浸得到含钒浸出液。
  2. 根据权利要求1所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于,所述二期吹炼氧化结束后含钠钒渣中Na 2O/V 2O 5质量比控制在0.60~0.85。
  3. 根据权利要求1或2所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:所述冷却剂为铁氧化物,优选氧化铁皮、铁红、高品位铁矿中的至少一种。
  4. 根据权利要求1~3任一项所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:所述冷却剂的加入量为15~35kg/tFe,纯碱加入量为6~8kg/tFe。
  5. 根据权利要求1~4任一项所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:一期吹炼氧化开始后的前3min内加入冷却剂,加入冷却剂后2min内加入纯碱。
  6. 根据权利要求1~5任一项所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:所述一期吹炼氧化过程采用顶底复吹,顶吹采用氧枪进行吹氧气,底吹氮气。
  7. 根据权利要求6所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:氧枪吹氧时枪位采用“高-低-高”模式进行控制,即吹炼前期0.5~1.5min采用高枪位,中期采用低枪位,吹炼结束前1.0~1.5min采用高枪位;吹氧流量控制在2.0~3.0m 3/(min·tFe),氧气压力0.7~0.9MPa;底吹氮气流量控制在0.1~0.5m 3/(min·tFe);顶吹氧气时间控制在5~6.5min。
  8. 根据权利要求1~7任一项所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:所述二期吹炼氧化采用顶底复吹,顶吹采用氧枪进行吹氧气,将底吹气体切换为氧气。
  9. 根据权利要求8所述的铁水生产含钠钒渣直接浸出提钒的方法,其特征在于:底吹氧气流量为0.05~0.25m 3/(min·tFe);顶吹氧枪向含钠钒渣吹氧,吹氧流量为1~2m 3/(min·tFe),压力0.3~0.5MPa;顶吹氧气时间控制在2~3min。
  10. 根据权利要求1~9任一项所述的铁水生产含钠钒渣直接浸出提钒的方 法,其特征在于:所述二期吹炼氧化结束后将钒渣冷却、破碎、磁选、球磨、水浸得到含钒浸出液。
PCT/CN2020/090080 2019-05-14 2020-05-13 铁水生产含钠钒渣直接浸出提钒的方法 WO2020228749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/10286A ZA202110286B (en) 2019-05-14 2021-12-10 Method for vanadium extraction by direct leaching of sodium-containing vanadium slag in molten iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910398310.6 2019-05-14
CN201910398310.6A CN110055371A (zh) 2019-05-14 2019-05-14 铁水生产含钠钒渣直接浸出提钒的方法

Publications (1)

Publication Number Publication Date
WO2020228749A1 true WO2020228749A1 (zh) 2020-11-19

Family

ID=67323117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090080 WO2020228749A1 (zh) 2019-05-14 2020-05-13 铁水生产含钠钒渣直接浸出提钒的方法

Country Status (3)

Country Link
CN (1) CN110055371A (zh)
WO (1) WO2020228749A1 (zh)
ZA (1) ZA202110286B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899212A (zh) * 2021-10-29 2022-01-07 石棉鑫汇环保科技有限公司 用于提取五氧化二钒的精炼炉
CN114318013A (zh) * 2021-12-28 2022-04-12 中国科学院过程工程研究所 一种钒渣加压浸出反应釜喷粉进料的方法及其***装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110055371A (zh) * 2019-05-14 2019-07-26 成都先进金属材料产业技术研究院有限公司 铁水生产含钠钒渣直接浸出提钒的方法
CN112458298B (zh) * 2020-10-27 2022-11-01 攀钢集团攀枝花钢铁研究院有限公司 热态钒渣直接钠化提钒的方法
CN115261553A (zh) * 2022-07-08 2022-11-01 攀钢集团攀枝花钢铁研究院有限公司 一种转炉生产含钠钒渣及其粒化、氧化浸出的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111214A (en) * 1980-12-29 1982-07-10 Sumitomo Metal Ind Ltd Recovering method of phosphorus and vanadium
CN101215619A (zh) * 2008-01-03 2008-07-09 攀钢集团攀枝花钢铁研究院 从含钒铁水中提钒脱磷的方法及利用该方法的炼钢工艺
CN102031396A (zh) * 2009-09-27 2011-04-27 攀钢集团钢铁钒钛股份有限公司 一种从铁水中提取钒的方法
CN103757425A (zh) * 2013-11-04 2014-04-30 中国科学院过程工程研究所 一种由高铬钒渣生产钒酸钠及铬酸钠碱性液的清洁工艺方法
CN110055371A (zh) * 2019-05-14 2019-07-26 成都先进金属材料产业技术研究院有限公司 铁水生产含钠钒渣直接浸出提钒的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382927B (zh) * 2010-09-03 2013-07-10 攀钢集团钢铁钒钛股份有限公司 一种铁水冶炼方法及含钒铁水的冶炼方法
CN102086487B (zh) * 2011-02-24 2012-11-21 北京科技大学 一种节能减排的钒渣处理方法
CN102851507B (zh) * 2012-08-21 2014-02-19 攀钢集团研究院有限公司 一种钠化焙烧钒渣的方法
CN105039633A (zh) * 2015-08-18 2015-11-11 攀钢集团攀枝花钢铁研究院有限公司 一种转炉提钒的方法
CN105385861A (zh) * 2015-11-05 2016-03-09 攀钢集团攀枝花钢铁研究院有限公司 一种钒渣氧化、钙化处理方法
CN105925813A (zh) * 2016-06-15 2016-09-07 江苏省冶金设计院有限公司 对钒渣进行综合处理的方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111214A (en) * 1980-12-29 1982-07-10 Sumitomo Metal Ind Ltd Recovering method of phosphorus and vanadium
CN101215619A (zh) * 2008-01-03 2008-07-09 攀钢集团攀枝花钢铁研究院 从含钒铁水中提钒脱磷的方法及利用该方法的炼钢工艺
CN102031396A (zh) * 2009-09-27 2011-04-27 攀钢集团钢铁钒钛股份有限公司 一种从铁水中提取钒的方法
CN103757425A (zh) * 2013-11-04 2014-04-30 中国科学院过程工程研究所 一种由高铬钒渣生产钒酸钠及铬酸钠碱性液的清洁工艺方法
CN110055371A (zh) * 2019-05-14 2019-07-26 成都先进金属材料产业技术研究院有限公司 铁水生产含钠钒渣直接浸出提钒的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899212A (zh) * 2021-10-29 2022-01-07 石棉鑫汇环保科技有限公司 用于提取五氧化二钒的精炼炉
CN114318013A (zh) * 2021-12-28 2022-04-12 中国科学院过程工程研究所 一种钒渣加压浸出反应釜喷粉进料的方法及其***装置

Also Published As

Publication number Publication date
ZA202110286B (en) 2022-04-28
CN110055371A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
WO2020228749A1 (zh) 铁水生产含钠钒渣直接浸出提钒的方法
CN110004352B (zh) 一种利用熔融贫化铜渣还原制备含铜铬耐磨铸铁的方法
CN105039633A (zh) 一种转炉提钒的方法
CN106065435A (zh) 一种处理钒渣的方法与***
CN109971908A (zh) 转炉铁水加纯碱生产含钠钒渣的方法
CN110042190A (zh) 钠系钒渣的转炉生产及其后续浸出提钒的方法
CN112111660B (zh) 一种从锂矿石中富集锂同时制备硅铁合金回收氧化铝的方法
CN104894363A (zh) 利用低品位铌精矿制备铌铁合金与稀土硫酸复盐的方法
CN106521139A (zh) 一种低温还原分离含钛铁矿物制备高钛渣的方法
CN110042193A (zh) 钙系钒渣的转炉生产及其后续浸出提钒方法
CN104928464B (zh) 一种微波加热预处理提取含钒物料中有价金属的方法
CN104862442B (zh) 一种复吹转炉提钒的方法
CN110055373A (zh) 钙系钒渣的转炉生产及其浸出提钒方法
CN109971910A (zh) 采用钙系处理从铁水中提钒的方法
CN110106305A (zh) 钙系处理含钒铁水生产含钙钒渣及直接浸出提钒的方法
CN110106307A (zh) 采用钠盐处理含钒铁水的提钒方法
WO2020228750A1 (zh) 转炉铁水加石灰生产含钙钒渣及其浸出的方法
CN105385861A (zh) 一种钒渣氧化、钙化处理方法
CN105219974A (zh) 一种提高钒渣v2o5含量的方法
CN102268502A (zh) 用还原回转窑冶炼难选铁矿(渣)制取海绵铁的方法
CN110042191A (zh) 转炉生产含钠钒渣及其氧化浸出的方法
CN110042192A (zh) 转炉加纯碱生产含钠钒渣及其氧化浸出的方法
CN110079641A (zh) 钠系钒渣的转炉生产及其氧化浸出提钒的方法
CN110042195A (zh) 铁水加石灰生产含钙钒渣及直接浸出提钒的方法
CN110042194A (zh) 转炉含钙钒渣的生产及其后续浸出提钒方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805203

Country of ref document: EP

Kind code of ref document: A1