WO2020227899A1 - 移动设备及控制方法 - Google Patents

移动设备及控制方法 Download PDF

Info

Publication number
WO2020227899A1
WO2020227899A1 PCT/CN2019/086688 CN2019086688W WO2020227899A1 WO 2020227899 A1 WO2020227899 A1 WO 2020227899A1 CN 2019086688 W CN2019086688 W CN 2019086688W WO 2020227899 A1 WO2020227899 A1 WO 2020227899A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile device
module
processor
control
interface
Prior art date
Application number
PCT/CN2019/086688
Other languages
English (en)
French (fr)
Inventor
郭厚锦
吴易霖
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/086688 priority Critical patent/WO2020227899A1/zh
Priority to CN201980005506.2A priority patent/CN111316184A/zh
Publication of WO2020227899A1 publication Critical patent/WO2020227899A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar

Definitions

  • This application relates to the technical field of mobile platforms, and in particular to a mobile device and a control method.
  • Mobile devices such as unmanned aerial vehicles, robots, mobile vehicles, mobile ships, or underwater mobile devices, are very important in many fields such as industry, agriculture, civilian use, film and television, search and rescue, police, and military due to their flexible mobility. It can be applied to complex environments. With the development of technology, the complexity of algorithms is getting higher and higher, and the amount of data processed by calculations is getting larger and larger. Therefore, mobile devices require more and more processor computing power, and the requirements for processing power are getting higher and higher. .
  • This application provides an improved mobile device and control method.
  • a mobile device including: a body; a detection device, which is provided in the body, and is used to generate a detection signal; a local area network unit, which is provided in the body, and includes multiple processing And a network device connected to a plurality of the processors, the local area network unit is connected to the detection device, and is used to receive and process the detection signal to generate a local area network signal; and the main control module is arranged in the body, It is in communication connection with the local area network unit, and is used to receive the local area network signal and generate a control signal according to the local area network signal.
  • a control method for controlling a mobile device includes: generating a detection signal through a detection device provided on the body Processing the detection signal and generating a local area network signal through a local area network unit provided in the body, the local area network unit including a plurality of processors and a network device connected to a plurality of the processors; and by being provided in the The main control module of the fuselage and communicatively connected with the local area network unit generates a control signal according to the local area network signal.
  • the mobile device in the embodiment of the present application includes a local area network unit.
  • the local area network unit includes multiple processors connected through the network device.
  • the local area network unit can process the detection signal generated by the detection device.
  • the multiple processors of the local area network unit can meet the processing tasks with a large amount of data.
  • the computing power is high, which can improve the data processing capacity and speed of the mobile device, and make the mobile device more sensitive.
  • Fig. 1 is a three-dimensional schematic diagram of an embodiment of a mobile device of this application.
  • Fig. 2 is a block diagram of a module of an embodiment of a mobile device of this application.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of an embodiment of a local area network unit of a mobile device of this application.
  • FIG. 4 is a three-dimensional schematic diagram of an embodiment of the network device of the local area network unit shown in FIG. 3.
  • FIG. 5 is a three-dimensional schematic diagram of an embodiment of the processor of the local area network unit shown in FIG. 3.
  • FIG. 6 is a three-dimensional schematic diagram of the processor shown in FIG. 5 from another angle.
  • FIG. 7 is a three-dimensional schematic diagram of another embodiment of a mobile device of this application.
  • Fig. 8 shows a flowchart of an embodiment of the control method of the present application.
  • the mobile device in the embodiment of the application includes a body, a detection device, a local area network unit, and a main control module.
  • the detection device is arranged on the fuselage and is used to generate detection signals.
  • the local area network unit is arranged in the body and includes multiple processors and network equipment connected to the multiple processors.
  • the local area network unit is connected with the detection device and is used to receive and process the detection signal to generate the local area network signal.
  • the main control module is arranged in the body, and is connected to the local area network unit to receive local area network signals and generate control signals according to the local area network signals.
  • the mobile device of some embodiments of the present application includes a local area network unit, the local area network unit includes multiple processors connected through a network device, the local area network unit can process the detection signal generated by the detection device, and the multiple processors of the local area network unit can meet the requirements of large data volume Processing work, high computing power, which can improve the data processing capacity and speed of the mobile device, and make the mobile device sensitive.
  • a large amount of calculation processing is performed by building a computer workstation, and the mobile device communicates with the computer workstation.
  • Computer workstations are bulky and fixed, but mobile devices are mobile and wired to the computer workstations affect flexible mobility. Some mobile devices communicate with computer workstations wirelessly, and send the data that needs to be processed to the computer workstation. The computer workstation processes the data and then sends it to the mobile device. This way back and forth communication consumes a certain amount of time, and the computer workstation communicates with multiple mobile devices. Device communication also requires high communication bandwidth, and it is difficult to guarantee the real-time and reliability of mobile device control.
  • the local area network unit of the mobile device in some embodiments of the present application is set in the body, and moves along with the movement of the mobile device, which can avoid the restriction on the flexible movement of the mobile device, and can quickly communicate with the main control module of the mobile device.
  • the control has strong real-time performance and high reliability, so the mobile device responds quickly. Therefore, the mobile device of some embodiments of the present application not only has a relatively strong and fast processing capability, but also maintains a fast response state, and has high control real-time and reliability.
  • the control method in the embodiment of the present application is used to control a mobile device, and the mobile device includes a body.
  • the control method includes: generating a detection signal through a detection device provided in the fuselage; processing the detection signal through a local area network unit provided in the fuselage, and generating a local area network signal.
  • the local area network unit includes multiple processors and a network connected to the multiple processors Equipment; and through the main control module set in the fuselage and communicatively connected with the local area network unit to generate control signals according to the local area network signal.
  • the control method has strong ability to process the detection signal, and the control is real-time and reliable, so that the mobile device can react quickly.
  • FIG. 1 is a three-dimensional schematic diagram of an embodiment of a mobile device 100.
  • the mobile device 100 shown in Fig. 1 is an unmanned aerial vehicle.
  • the mobile device 100 includes a body 101.
  • FIG. 2 is a module block diagram of an embodiment of the mobile device 100 shown in FIG. 1. 1 and 2, the mobile device 100 further includes a detection device 102, a local area network unit 103, and a main control module 104.
  • the detection device 102 is provided on the body 101 for generating detection signals.
  • the local area network unit 103 is set in the body 101 and includes multiple processors 131-134 and a network device 135 connected to the multiple processors 131-134.
  • the local area network unit 103 is connected to the detection device 102 and is used to receive and process detection signals to generate a local area network signal.
  • the main control module 104 is provided in the body 101 and is connected to the LAN unit 103 in communication, and is used for receiving LAN signals and generating control signals according to the LAN signals.
  • the local area network unit 103 can process the detection signals generated by the detection device 102, and the multiple processors 131-134 of the local area network unit can meet the processing tasks with a large amount of data and have high computing power, thereby improving the data processing capability and speed of the mobile device 100 , Make the mobile device responsive.
  • the local area network unit 103 is provided in the body 101 and moves along with the movement of the mobile device 100, which can avoid the restrictions on the flexible movement of the mobile device 100, and can quickly communicate with the main control module 104 of the mobile device 100.
  • the control has strong real-time performance and high reliability, so the mobile device responds quickly. Therefore, the mobile device 100 not only has a relatively strong and fast processing capability, but also maintains a fast response state, and the control is highly real-time and reliable.
  • the detection device 102 includes a sensor, and the generated detection signal may represent information sensed by the detection device 102.
  • the detection device 102 includes at least one of a camera, a radar, a GPS (Global Positioning System, global positioning system), an altimeter, an inertial measurement unit (IMU), and a pressure gauge.
  • the camera can be used to take images and so on. Radar can be used for detecting obstacles, ranging, positioning, etc. GPS can be used for positioning.
  • the altimeter can be used to sense the flying height of mobile devices such as unmanned aerial vehicles.
  • the pressure gauge can determine the flight altitude by sensing the pressure of the air.
  • the inertial measurement unit can be used to sense the posture of the mobile device 100.
  • the detection device 102 may include other sensors and the like. For different mobile devices, different detection devices 102 can be provided.
  • the local area network unit 103 is provided in the body 101.
  • the local area network unit 103 may be provided on the top of the body 101.
  • the local area network unit 103 shown in FIG. 1 is provided on the top of the UAV.
  • the local area network unit 103 may be located at the bottom of the body 101 of the mobile device 100 or other locations.
  • the processors 131-134 of the local area network unit 103 and the network device 135 may be assembled in the body 101 as a whole.
  • the processors 131-134 of the local area network unit 103 and the network device 135 can be separated and located in different positions of the body 101, so that the space of the body 101 is reasonably used to ensure the balance and stability of the mobile device 101 .
  • the network device 135 may include an interactive machine, a hub, etc., to implement communication between multiple processors 131-134.
  • the local area network unit 103 may include two or more processors. For illustrative purposes only, four processors 131-134 are shown in the figure, but not limited to this, the number of processors can be set according to actual applications.
  • the processors 131-134 include at least one of a CPU (Central Processing Unit, central processing unit) and a GPU (Graphics Processing Unit, graphics processor), which improves computing power and has low power consumption.
  • a suitable processor can be selected according to the actual processing required and the type of the detection device 102 to ensure computing power.
  • the multiple processors 131-134 include multiple CPUs. In another embodiment, the multiple processors 131-134 include multiple GPUs. In another embodiment, the multiple processors 131-134 include one CPU and one or more GPUs. In one embodiment, the multiple processors 131-134 include multiple CPUs and one or more GPUs. In some other embodiments, the processor may include other types of processors, such as FPGA. In some embodiments, multiple processors 131-134 can form a homogeneous or heterogeneous computer cluster through the network device 135 to perform distributed computing, which greatly shortens the processing time and improves the response agility of the system.
  • At least one processor 131-134 is connected to the detection device 102, and processes detection signals generated by the detection device 102.
  • one processor 131-134 may be connected to one or more detection devices 102.
  • One processor 131-134 can process the detection signals generated by one or more detection devices 102.
  • the detection signal generated by a detection device 102 has a large amount of data and a complex processing algorithm.
  • a processor 131-134 can be connected to the detection device 102 to process the detection signal of the detection device 102 to ensure fast processing speed.
  • And can select processors 131-134 that are good at processing the detection signal for processing.
  • the image data generated by the camera can be processed by the GPU.
  • the data volume of the detection signals generated by multiple detection devices 102 is not very large, and the detection signals of multiple detection devices 102 can be provided to the same processor 131-134 for processing. In this way, the processor resources are reasonably used, while ensuring computing power Therefore, as few processors are set as possible, so that the volume of the local area network unit 103 is as small as possible, and the volume and weight of the mobile device 100 will not increase too much, ensuring flexibility and portability.
  • one detection device 102 may be connected to one processor 131-134. In other embodiments, one detection device 102 may be connected to multiple processors 131-134, and multiple processors 131-134 may perform different processing on the detection signal of one detection device 102, respectively.
  • the local area network signal includes a control decision
  • the processors 131-134 are configured to determine the control decision according to the processed detection signal and provide the control decision to the main control module 104.
  • the main control module 104 is used for generating control signals according to control decisions.
  • the local area network unit 103 can process the detection signal and generate corresponding control decisions, so according to the information sensed by the detection device 102, generate corresponding control decisions, and then instruct the main control module 104 to generate corresponding control signals to control the movement and behavior of the mobile device 100 Wait.
  • the local area network unit 103 has strong processing capability and fast processing speed, so that it can realize rapid and timely control.
  • the multiple processors 131-134 include a first processor, which is connected to the detection device 102 and is used to process the detection signal.
  • the first processor may be one or more of the processors 131-134 in the figure, and quickly process the detection signal.
  • the first processor is the processor 131 as an example.
  • the multiple processors 131-134 include a second processor that is communicatively connected to the first processor 131 through a network device, and the second processor is connected to the main control module 104 for sending local area network signals to the main control. Module 104.
  • the second processor is used as the processor 134 for description.
  • the second processor 134 may be responsible for communicating with the main control module 104.
  • the second processor 134 may receive the signal processed by the first processor 131 through the network device 135, and send the signal to the main control module 104.
  • the first processor 131 generates a control decision after processing the detection signal, and the second processor 134 sends the control decision to the main control module 104.
  • the second processor 134 may further process the signal processed by the first processor 131, and then send it to the main control module 104.
  • the second processor 134 is configured to receive the detection signal processed by the first processor 131, determine a control decision according to the processed detection signal, and send the control decision to the main control module 104. In this way, labor can be divided and cooperated to improve efficiency and processing speed.
  • the multiple processors 131-134 include multiple first processors.
  • the processors 131-133 in the figure are the first processors.
  • the first processors 131-133 process the detection signals.
  • the multiple first processors 131-133 can process detection signals independently, can process different detection signals separately, or process the same detection signal differently.
  • a plurality of first processors 131-133 may process the detection signal in cooperation.
  • the first processor 131 may perform processing such as noise removal, enhancement, restoration, segmentation, and/or feature extraction on the image data.
  • the other first processor 132 compresses and/or stores the processed image data.
  • the specialties of the first processor 131 and the first processor 132 can be different, and the specialties of the processors can be fully utilized to process the detection signal faster and better. Multiple first processors 131-133 work together to increase processing speed.
  • the second processor 134 communicates with the plurality of first processors 131-133 through the network device 135, and is configured to receive the processed detection signals of the plurality of first processors 131-133, and according to the A processed detection signal determines the control decision. After the multiple first processors 131-133 process different detection signals or perform different processes on the same detection signal, the processed detection signals are provided to the second processor 134, and the second processor 134 according to different Process the results and determine the control decision, so that a better control decision can be determined. In one embodiment, the second processor 134 comprehensively considers the processed different detection signals to determine the control decision. For example, according to the detection signals of the camera and radar, a control decision for planning the movement path of the mobile device 100 is determined. In another embodiment, the second processor 134 determines the control decision based on the differently processed data of the same detection signal and comprehensive considerations.
  • At least one processor 131-134 is used to process the detection signal using an artificial neural network. Input the detection signal or the preprocessed detection signal into the artificial neural network for processing to obtain the processing result. Deep learning, artificial intelligence, fast processing speed, especially in processing big data, the speed is significantly improved.
  • the local area network unit 103 provides a hardware foundation for the operation of the artificial neural network algorithm, so that the intelligent control of the mobile device 100 can be realized, and the mobile device 100 can be more intelligent.
  • the detection device 102 includes a camera.
  • the camera is used to capture images and generate corresponding image data.
  • the processors 131 to 134 are used to process the image data and determine control decisions based on the processed image data.
  • the amount of image data is relatively large, and the processing algorithm is relatively complex.
  • Using the local area network unit 103 for processing can quickly perform processing and reduce the workload of the main control module 104.
  • artificial neural networks may be used to process image data.
  • the processors 131-134 are used to identify the photographed object and/or determine the relative position of the photographed object and the mobile device 100 according to the image data, and determine corresponding control decisions.
  • the camera can photograph the photographed object, and the image data includes the image data of the photographed object.
  • the image data is processed to identify the photographed object and/or determine the relative position.
  • the control decision includes at least one of the following decisions: a decision to control the mobile device 100 to approach the object being photographed, a decision to control the mobile device to move away from the object being photographed, a decision to control the mobile device to track the object being photographed, and a decision to control the mobile device to strike Decision of the object being photographed.
  • the main control module 104 correspondingly controls the mobile device 100 according to the control decision, such as controlling the mobile device to move to a position close to the photographed object, move to a position far away from the photographed object, track the photographed object, or strike the photographed object. In this way, timely and fast control is achieved.
  • the detection device 102 includes a radar, and the processors 131-134 are used to process radar data and determine the relative position information of the obstacle and the mobile device 100.
  • the distance and orientation of the obstacle from the mobile device 100 can be determined by radar.
  • the radar data volume is large and the processing algorithm is complex.
  • the local area network unit 103 can be used to realize rapid processing and reduce the workload of the main control module 104.
  • an artificial neural network may be used to process radar data.
  • the processors 131-134 are configured to determine corresponding control decisions based on relative position information, and the control decisions include at least one of the following decisions: a decision to plan a moving path of the mobile device, and a decision to control the operating state of the mobile device.
  • the path can be re-planned to effectively avoid the obstacle. Controlling the operating state of the mobile device can control the mobile device to stop moving, control the posture of the mobile device, and/or control the moving speed of the mobile device.
  • the local area network unit 103 includes a wireless communication module 136 connected to at least one processor 131-134.
  • the local area network unit 103 of the mobile device 100 can communicate with the local area network unit 103 of other mobile devices 100 through the wireless communication module 136, and multiple mobile devices 100 can work together.
  • the local area network unit 103 of the mobile device 100 may communicate with external devices (for example, a computer, a mobile phone, etc.) through a wireless communication module 136.
  • the external device can debug the processors 131-134.
  • the external devices may include user equipment, and the user may send information and/or instructions to the local area network unit 103 through the user equipment.
  • the local area network unit 103 of the mobile device 100 may also communicate wirelessly with other devices having wireless communication modules through the wireless communication module 136, for example, wirelessly communicate with a server.
  • the wireless communication module 136 includes an antenna.
  • the antenna includes a WiFi antenna, which can realize wireless communication with external devices such as computers, mobile phones, and servers.
  • the wireless communication module 136 may be omitted.
  • the mobile device 100 includes a power module 107 connected to the main control module 104, and the main control module 104 is used to generate a control signal to control the power module 107.
  • the main control module 104 can control the power module 107 according to the control decision.
  • the power module 107 includes a motor 110 and a propeller 111 connected to the motor 110.
  • the main control module 104 can control the motor 110 to drive the propeller 111.
  • Other types of mobile equipment 100 may include other power modules 107, such as walking devices such as wheels, boat paddles, and the like.
  • the mobile device 100 includes a behavior module 108 connected to the main control module 104, and the main control module 104 is configured to generate control signals and control the behavior module 108.
  • the behavior module 108 may be used for image transmission and aerial photography, rescue missions, and/or strike confrontation missions, etc., to implement some tasks of the mobile device 100.
  • the main control module 104 may control the behavior module 108 according to the control decision.
  • the mobile device 100 includes a power supply module 105 provided in the body 101.
  • the power supply module 105 is connected to the local area network unit 103 and the main control module 104 to supply power to the local area network unit 103 and the main control module 104 to ensure that the local area network unit 103 and main control module 104 normal working power.
  • the power module 105 includes a battery, which may be a rechargeable battery, such as a lithium battery.
  • the power module 105 can supply power to the processors 131-134 and the network device 135.
  • the mobile device 100 includes a sensing module 106 connected to the main control module 104, the sensing module 106 is used to generate a sensing signal to the main control module 104, and the main control module 104 is used to process the sensing signal.
  • the main control module 104 can process the sensing signals and generate control signals, which can control the power module 107 and/or the behavior module 108.
  • the sensing module 106 may include a sensor. The sensor of the sensing module 106 may be different from the sensor of the detection device 102, and the data amount of the sensing signal may be smaller than the data amount of the detection signal of the detection device 102.
  • the main control module 104 It can be processed quickly to achieve timely and rapid control of the mobile device 100.
  • the perception module 106 includes at least one of a binocular vision module and a carrier-free communication positioning module.
  • the binocular vision module can be used for altitude positioning, distance measurement, etc., and can be used on unmanned aerial vehicles.
  • the carrier-free communication positioning module can be used for indoor precise positioning and can be used on mobile vehicles.
  • FIG. 3 is a schematic diagram of a three-dimensional structure of an embodiment of the local area network unit 103. Only two processors 131 and 132 are shown in the figure, but not limited to two. In one embodiment, the processors 131 and 132 and the network device 135 may be stacked and fixed together. The multiple processors 131 and 132 can be separately placed on the upper and lower sides of the network device 135 to facilitate the connection between the processors 131 and 132 and the network device 135.
  • the mobile device 100 includes a power adapter board 112.
  • the power adapter board 112 is connected to a power module 105 (as shown in FIG. 2) and a plurality of processors 131, 132, and provides power from the power module 105 to multiple processors.
  • Two processors 131, 132 realize power supply to multiple processors 131, 132.
  • the processor 131 includes a first power interface 1311 and a second power interface 1312, the power module 105 is connected through the first power interface 1311, and a power adapter is connected through the second power interface 1312.
  • the power adapter can be connected to an external power supply, such as a commercial power supply, to supply power to the processor 131.
  • the power adapter can be unplugged from the second power interface 1312, so that the mobile device 100 can move flexibly.
  • a power adapter can be inserted into the second power interface 1312 to supply power to the processor 131, which can save the power of the power module 105.
  • Other processors may also be similar to the processor 131, including a first power interface and a second power interface.
  • the power adapter board 112 includes a first adapter board 1121 and a second adapter board 1122, the first adapter board 1121 is connected to the power module 105 and the multiple processors 131, 132, and the second adapter board 1122 connects the power adapter and multiple processors 131 and 132.
  • FIG. 4 shows a three-dimensional schematic diagram of an embodiment of the network device 135.
  • the network device 135 includes a network device power interface 1351, which can be connected to the power module 105 (as shown in FIG. 2).
  • the network device 135 may include a first network device power interface connected to the power supply module 105 and a second network device power interface connected to a power adapter.
  • the first network device power interface can be connected to the power module 105 through the first adapter board 1121
  • the second network device power interface can be connected to a power adapter through the second adapter board 1122.
  • the network device 135 includes multiple network interfaces 1352, which can be connected to multiple processors.
  • FIG. 5 shows a three-dimensional schematic diagram of an embodiment of the processor 131.
  • Fig. 6 is a perspective view of the processor 131 from another angle.
  • the processor 131 includes a wired network interface 1313, and is connected to the network device 135 through the wired network interface 1313.
  • the wired network interface 1313 of the processor 131 is wiredly connected to the network interface 1352 of the network device 135, so that data transmission is faster and more reliable.
  • the interface at least one processor 131 includes a detection signal interface, and is connected to the detection device 102 (as shown in FIG. 2) through the detection signal interface.
  • the detection device 102 and the processor 131 are wiredly connected to transmit data quickly and reliably.
  • the probe signal interface includes at least one of a UART interface, a CAN interface, a USB interface, an SPI interface, and an I2C interface.
  • the interfaces 1314 and 1315 are USB3.0 interfaces.
  • the interface 1316 is an HDMI interface.
  • the interface 1317 is a USB3.0 MicroB interface.
  • the interfaces 1318 and 1319 are UART interfaces.
  • the interfaces 1320 and 1321 are CAN interfaces.
  • the interface 1322 is an IO interface of I2C and SPI.
  • the detection signal interface may be at least one of the interfaces 1314, 1315, 1317, 1318, 1319, 1320, 1321, 1322.
  • At least one processor 131 includes a main control interface, and is connected to the main control module 104 (as shown in FIG. 2) through the main control interface.
  • the host interface includes at least one of a UART interface, a CAN interface, and a USB interface.
  • the main control interface may be at least one of the interfaces 1314, 1315, 1317, 1318, 1319, 1320, and 1321.
  • the processor 131 and the main control module 104 are wiredly connected through an interface, which can ensure timely and effective data transmission.
  • the wireless communication module 136 includes an antenna
  • the at least one processor 131 includes antenna interfaces 1323 and 1324 connected to the antenna.
  • the antenna can be inserted into the antenna interface 1323, 1324.
  • the processor 131 includes an interactive interface for connecting to an interactive device (not shown).
  • the processor 131 can be debugged and the data in the processor 131 can be viewed through the interactive device.
  • the interactive interface may include at least one of an HDMI interface and a USB interface.
  • the interactive interface may be at least one of the interfaces 1314, 1315, 1316, and 1317.
  • the interactive device includes at least one of a display, a mouse, and a keyboard, which can input instructions, load programs, view data, and so on.
  • processors of the local area network unit may have the same or different interfaces as the processor 131.
  • the interface can be set according to the actual application.
  • FIG. 7 shows a schematic diagram of another embodiment of the mobile device 200.
  • the mobile device 200 shown in FIG. 7 is a mobile trolley.
  • the local area network unit 203 is provided on the body 201 and may be provided on the top of the body 201. In another embodiment, the local area network unit 203 can be located at the bottom of the body 201 or on the chassis.
  • the processor and network equipment of the local area network unit 203 can be separated and arranged in different positions of the body 201.
  • the power module 207 of the mobile device 200 includes wheels and is driven by a motor.
  • the wheels may be universal wheels, such as mecanum wheels.
  • the mobile device 200 is similar to the mobile device 100, and the local area network unit 203 is similar to the local area network 103 of the mobile device 100.
  • the local area network unit 203 is similar to the local area network 103 of the mobile device 100.
  • FIG. 8 shows a flowchart of an embodiment of a control method 300 of this application.
  • the control method 300 is used to control a mobile device, and the mobile device includes a body.
  • the mobile device may be the mobile device 100 or 200 described above.
  • the control method 300 includes steps.
  • a detection signal is generated by a detection device provided on the fuselage.
  • the detection signal is processed and the local area network signal is generated by the local area network unit provided in the fuselage.
  • the local area network unit includes multiple processors and a network device connected to the multiple processors.
  • step 303 a control signal is generated according to the local area network signal through the main control module provided in the body and communicatively connected with the local area network unit.
  • the control method 300 has a strong ability to process detection signals, and has high control real-time and high reliability, so that the mobile device responds quickly.
  • the local area network signal includes a control decision; the processor determines the control decision according to the processed detection signal; and the control signal is generated according to the control decision.
  • the plurality of processors includes a first processor, which is connected to the detection device; the detection signal is processed by the first processor.
  • the multiple processors include a second processor communicatively connected to the first processor through a network device, and the second processor is connected to the main control module; the control method 300 includes: sending a local area network signal through the second processor To the main control module.
  • the second processor receives the detection signal processed by the first processor, and determines the control decision based on the processed detection signal.
  • the plurality of processors includes a plurality of first processors, and the second processor is in communication connection with the plurality of first processors through a network device; the control is determined according to the detection signals processed by the plurality of first processors decision making.
  • the detection device includes a camera. Take images through the camera and generate corresponding image data. The image data is processed by the processor; and the control decision is determined according to the processed image data.
  • the processor is used to identify the photographed object and/or determine the relative position of the photographed object and the mobile device according to the image data, and determine the corresponding control decision.
  • control decision includes at least one of the following decisions: a decision to control the mobile device to approach the photographed object, a decision to control the mobile device to move away from the photographed object, and a decision to control the mobile device to track the object. The decision of the photographed object and the decision of controlling the mobile device to strike the photographed object.
  • the detection device includes radar.
  • the radar data is processed to determine the relative position information of the obstacle and the mobile device.
  • the processor determines the corresponding control decision based on the relative position information.
  • the control decision includes at least one of the following decisions: a decision to plan the movement path of the mobile device, and a decision to control the operating state of the mobile device.
  • At least one processor uses an artificial neural network to process the detection signal.
  • the multiple processors include a wired network interface, and are wired to the network device through the wired network interface, and the control method includes: the multiple processors and the network device have wired communication.
  • the mobile device includes a sensing module connected to the main control module, and the control method includes: generating a sensing signal to the main control module through the sensing module, and processing the sensing signal through the main control module.
  • the mobile device includes a power module connected to the main control module, and the control method includes: generating a control signal through the main control module to control the power module.
  • the mobile device includes a behavior module connected to the main control module, and the control method includes: generating a control signal through the main control module to control the behavior module.
  • the relevant part can refer to the part of the description of the device embodiment.
  • the method embodiment and the device embodiment are complementary to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种移动设备和控制方法。移动设备包括机身、探测装置、局域网单元和主控模块。探测装置设于机身,用于产生探测信号。局域网单元设于机身,包括多个处理器和连接多个处理器的网络设备,局域网单元与探测装置连接,用于接收并处理探测信号,产生局域网信号。主控模块设于机身,与局域网单元通信连接,用于接收局域网信号,并根据局域网信号产生控制信号。

Description

移动设备及控制方法 技术领域
本申请涉及移动平台技术领域,尤其涉及一种移动设备及控制方法。
背景技术
移动设备,例如无人飞行器、机器人、移动小车、移动船或水下的移动设备等,因灵活移动等优点,在工业、农业、民用、影视、搜救、警用、军事等很多领域发挥很重要的作用,可适用复杂环境。随着技术的发展,算法的复杂度越来越高,计算处理的数据量越来越大,因此移动设备对处理器算力的需求也越来越大,对处理能力的要求越来越高。
发明内容
本申请提供改进的移动设备和控制方法。
根据本申请实施例的一个方面,提供一种移动设备,包括:机身;探测装置,设于所述机身,用于产生探测信号;局域网单元,设于所述机身,包括多个处理器和连接多个所述处理器的网络设备,所述局域网单元与所述探测装置连接,用于接收并处理所述探测信号,产生局域网信号;及主控模块,设于所述机身,与所述局域网单元通信连接,用于接收所述局域网信号,并根据所述局域网信号产生控制信号。
根据本申请实施例的另一个方面,提供一种控制方法,用于控制移动设备,所述移动设备包括机身,所述控制方法包括:通过设于所述机身的探测装置,产生探测信号;通过设于所述机身的局域网单元,处理所述 探测信号,并产生局域网信号,所述局域网单元包括多个处理器和连接多个所述处理器的网络设备;及通过设于所述机身且与所述局域网单元通信连接的主控模块,根据所述局域网信号产生控制信号。
本申请实施例移动设备包括局域网单元,局域网单元包括通过网络设备连接的多个处理器,局域网单元可以处理探测装置产生的探测信号,局域网单元的多个处理器可以满足数据量较大的处理工作,算力较高,从而可以提高移动设备的数据处理能力和速度,使移动设备的反应灵敏。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1所示为本申请移动设备的一个实施例的立体示意图。
图2所示为本申请移动设备的一个实施例的模块框图。
图3所示为本申请移动设备的局域网单元的一个实施例的立体结构示意图。
图4所示为图3所示的局域网单元的网络设备的一个实施例的立体示意图。
图5所示为图3所示的局域网单元的处理器的一个实施例的立体示意图。
图6所示为图5所示的处理器从另一个角度所示的立体示意图。
图7所示为本申请移动设备的另一个实施例的立体示意图。
图8所示为本申请控制方法的一个实施例的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多个”或者“若干”等类似词语表示至少两个。
本申请实施例的移动设备包括机身、探测装置、局域网单元和主控模块。探测装置设于机身,用于产生探测信号。局域网单元设于机身,包括多个处理器和连接多个处理器的网络设备,局域网单元与探测装置连接,用于接收并处理探测信号,产生局域网信号。主控模块设于机身,与局域 网单元通信连接,用于接收局域网信号,并根据局域网信号产生控制信号。
本申请一些实施例的移动设备包括局域网单元,局域网单元包括通过网络设备连接的多个处理器,局域网单元可以处理探测装置产生的探测信号,局域网单元的多个处理器可以满足数据量较大的处理工作,算力较高,从而可以提高移动设备的数据处理能力和速度,使移动设备的反应灵敏。
一些对处理器算力要求比较高的场景下,通过搭建计算机工作站来进行大量的计算处理,移动设备与计算机工作站进行通信。计算机工作站体积庞大并且位置固定,然而移动设备是移动的,有线连接到计算机工作站,影响灵活移动。一些移动设备通过无线方式与计算机工作站通信,将需要处理的数据发送给计算机工作站,计算机工作站对数据进行处理后再发送给移动设备,如此来回通信会消耗一定的时间,并且计算机工作站与多个移动设备通信,对通信带宽要求也很高,移动设备的控制的实时性和可靠性很难保证。本申请一些实施例的移动设备的局域网单元设于机身,随着移动设备的移动一起移动,可以避免对移动设备灵活移动的限制,且可以与移动设备的主控模块快速通信,对移动设备的控制实时性强,且可靠性高,从而移动设备反应快捷。因此本申请一些实施例的移动设备既具有较强较快的处理能力,又保持反应快捷的状态,控制的实时性和可靠性高。
本申请实施例的控制方法用于控制移动设备,移动设备包括机身。控制方法包括:通过设于机身的探测装置,产生探测信号;通过设于机身的局域网单元,处理探测信号,并产生局域网信号,局域网单元包括多个处理器和连接多个处理器的网络设备;及通过设于机身且与局域网单元通信连接的主控模块,根据局域网信号产生控制信号。控制方法的对探测信号的处理能力强,且控制实时性和可靠性高,使移动设备反应快捷。
图1所述为移动设备100的一个实施例的立体示意图。图1所示的 移动设备100为无人飞行器。移动设备100包括机身101。图2所示为图1所示的移动设备100的一个实施例的模块框图。参考图1和2,移动设备100还包括探测装置102、局域网单元103和主控模块104。探测装置102设于机身101,用于产生探测信号。局域网单元103设于机身101,包括多个处理器131-134和连接多个处理器131-134的网络设备135,局域网单元103与探测装置102连接,用于接收并处理探测信号,产生局域网信号。主控模块104设于机身101,与局域网单元103通信连接,用于接收局域网信号,并根据局域网信号产生控制信号。
局域网单元103可以处理探测装置102产生的探测信号,局域网单元的多个处理器131-134可以满足数据量较大的处理工作,算力较高,从而可以提高移动设备100的数据处理能力和速度,使移动设备的反应灵敏。另外,局域网单元103设于机身101,随着移动设备100的移动一起移动,可以避免对移动设备100灵活移动的限制,且可以与移动设备100的主控模块104快速通信,对移动设备100的控制实时性强,且可靠性高,从而移动设备反应快捷。因此移动设备100既具有较强较快的处理能力,又保持反应快捷的状态,控制的实时性和可靠性高。
探测装置102包括传感器,产生的探测信号可以表示探测装置102感知的信息。在一些实施例中,探测装置102包括摄像头、雷达、GPS(Global Positioning System,全球定位***)、高度计、惯性测量单元(Inertial measurement unit,IMU)和压力计中的至少一种。摄像头可以用于拍摄图像等。雷达可以用于探测障碍物、测距、定位等。GPS可以用于定位。高度计可以用于感知无人飞行器等移动设备的飞行高度。压力计可以通过感知空气的压力来确定飞行高度。惯性测量单元可以用于感知移动设备100的姿态。在其他一些实施例中,探测装置102可以包括其他传感器等。对于不同的移动设备,可设置不同的探测装置102。
局域网单元103设于机身101。在一个实施例中,局域网单元103 可以设于机身101的顶部。例如图1所示的局域网单元103设于无人飞行器的顶部。在其他一些实施例中,局域网单元103可以设于移动设备100的机身101的底部,或其他位置。在一些实施例中,局域网单元103的处理器131-134和网络设备135可以作为一个整体组装于机身101。在另一些实施例中,局域网单元103的处理器131-134和网络设备135可以分开,设于机身101的不同位置,合理利用机身101的空间,保证移动设备101的平衡性和稳定性。
网络设备135可以包括交互机、集线器等,实现多个处理器131-134之间的通信。局域网单元103可以包括两个或更多个处理器。仅为了图示说明的目的,图中示出四个处理器131-134,但不限于此,可以根据实际应用设置处理器的数量。在一些实施例中,处理器131-134包括CPU(Central Processing Unit,中央处理器)和GPU(Graphics Processing Unit,图形处理器)中的至少一种,提高算力,且功耗低。可以根据实际需要进行的处理和探测装置102的类型等,选择合适的处理器,保证算力。
在一些实施例中,多个处理器131-134包括多个CPU。在另一个实施例中,多个处理器131-134包括多个GPU。在另一个实施例中,多个处理器131-134包括一个CPU和一个或多个GPU。在一个实施例中,多个处理器131-134包括多个CPU和一个或多个GPU。在其他一些实施例中,处理器可以包括其他类型的处理器,例如FPGA。在一些实施例中,多个处理器131-134可以通过网络设备135形成同构或异构的计算机集群,进行分布式计算,大大缩短处理时间,提高***的反应敏捷度。
至少一个处理器131-134与探测装置102连接,处理探测装置102产生的探测信号。在一些实施例中,一个处理器131-134可以连接一个或多个探测装置102。一个处理器131-134可以处理一个或多个探测装置102产生的探测信号。例如,一个探测装置102产生的探测信号的数据量大,且处理算法复杂,一个处理器131-134可以与该探测装置102连接,主要 对该探测装置102的探测信号进行处理,保证处理速度快,且可以选择擅长处理该探测信号的处理器131-134进行处理。例如摄像头产生的图像数据可以通过GPU进行处理。多个探测装置102产生的探测信号的数据量不是很大,多个探测装置102的探测信号可以提供给同一个处理器131-134进行处理,如此合理利用处理器资源,在保证算力的同时,尽可能设置较少的处理器,从而使得局域网单元103的体积尽可能小,移动设备100的体积和重量不会增加太多,保证灵活性和便携性。
在一些实施例中,一个探测装置102可以与一个处理器131-134连接。在另一些实施例中,一个探测装置102可以与多个处理器131-134连接,多个处理器131-134可以分别对一个探测装置102的探测信号进行不同的处理。
在一些实施例中,局域网信号包括控制决策,处理器131-134用于根据处理后的探测信号确定控制决策,并提供给主控模块104。主控模块104用于根据控制决策产生控制信号。局域网单元103可以处理探测信号,并产生相应的控制决策,如此根据探测装置102感知的信息,产生相应的控制决策,进而指示主控模块104产生相应的控制信号,控制移动设备100的移动、行为等。局域网单元103的处理能力强,处理速度快,从而可以实现快速地、及时地控制。
在一些实施例中,多个处理器131-134包括第一处理器,第一处理器与探测装置102连接,用于对探测信号进行处理。第一处理器可以是图中处理器131-134中的一个或多个,对探测信号进行快速地处理。下文以第一处理器为处理器131为例进行说明。
在一些实施例中,多个处理器131-134包括通过网络设备与第一处理器131通信连接的第二处理器,第二处理器与主控模块104连接,用于发送局域网信号给主控模块104。下文以第二处理器为处理器134进行说明。第二处理器134可以负责与主控模块104通信。在一个实施例中,第 二处理器134可以通过网络设备135接收第一处理器131处理后的信号,并发送给主控模块104。例如,第一处理器131处理探测信号后产生控制决策,第二处理器134将控制决策发送给主控模块104。在另一个实施例中,第二处理器134可以对第一处理器131处理后的信号进行进一步处理,再发送给主控模块104。在一个实施例中,第二处理器134用于接收第一处理器131处理后的探测信号,并根据处理后的探测信号确定控制决策,并将控制决策发送给主控模块104。如此可以分工协作,提高效率和处理速度。
在一些实施例中,多个处理器131-134包括多个第一处理器,例如图中处理器131-133为第一处理器。第一处理器131-133处理探测信号。在一个实施例中,多个第一处理器131-133可以分别独立地处理探测信号,可以分别处理不同的探测信号,或对同一探测信号进行不同的处理。在另一个实施例中,多个第一处理器131-133可以协同处理探测信号。一个第一处理器131对探测信号进行处理后,可以再由另一处理器132进行进一步地处理。例如,第一处理器131可以对图像数据进行去除噪声、增强、复原、分割和/或提取特征等处理。另一第一处理器132对处理后的图像数据进行压缩和/或存储等。第一处理器131和第一处理器132的特长可以不同,可以充分利用处理器的特长,对探测信号进行更快更好地处理。多个第一处理器131-133协同工作,可以提高处理速度。
在一个实施例中,第二处理器134通过网络设备135与多个第一处理器131-133通信连接,用于接收多个第一处理器131-133的处理后的探测信号,并根据多个处理后的探测信号确定控制决策。多个第一处理器131-133对不同的探测信号进行处理后或对同一探测信号进行不同的处理后,将处理后的探测信号提供给第二处理器134,第二处理器134根据不同的处理结果,确定控制决策,从而可以确定较优的控制决策。在一个实施例中,第二处理器134根据处理后的不同探测信号,综合考量,确定控 制决策。例如,根据摄像头和雷达的探测信号,确定规划移动设备100的移动路径的控制决策。在另一个实施例中,第二处理器134根据同一探测信号经过不同处理后的数据,综合考量,确定控制决策。
至少一个处理器131-134用于利用人工神经网络对探测信号进行处理。将探测信号或预处理后的探测信号输入人工神经网络中,进行处理,获得处理结果。可以深度学习,实现人工智能,处理速度快,尤其在处理大数据方面,速度明显提高。局域网单元103给人工神经网络算法的运行提供硬件基础,从而可以实现移动设备100的智能控制等,使移动设备100更智能。
在一个实施例中,探测装置102包括摄像头,摄像头用于拍摄图像并产生相应的图像数据,处理器131-134用于处理图像数据,并根据处理后的图像数据确定控制决策。图像数据量比较大,处理算法比较复杂,利用局域网单元103进行处理,可以快速地进行处理,减轻主控模块104的工作负担。在一些实施例中,可以利用人工神经网络对图像数据进行处理。
在一些实施例中,处理器131-134用于根据图像数据识别被拍摄物体和/或确定被拍摄物体和移动设备100的相对位置,并确定相应的控制决策。摄像头可以拍摄被拍摄物体,图像数据包括被拍摄物体的图像数据,对图像数据进行处理,识别被拍摄物体和/或确定相对位置。在一些实施例中,控制决策包括以下至少一种决策:控制移动设备100靠近被拍摄物体的决策、控制移动设备远离被拍摄物体的决策、控制移动设备跟踪被拍摄物体的决策、控制移动设备打击被拍摄物体的决策。主控模块104根据控制决策,相应地控制移动设备100,例如控制移动设备向靠近被拍摄物体的位置移动,向远离被拍摄物体的位置移动,跟踪被拍摄物体,或打击被拍摄物体。如此实现及时、快速地控制。
在一些实施例中,探测装置102包括雷达,处理器131-134用于处理雷达数据,确定障碍物和移动设备100的相对位置信息。可以通过雷达 确定障碍物相距移动设备100的距离和方位。雷达数据量大,处理算法复杂,利用局域网单元103可以实现快速处理,减轻主控模块104的工作负担。在一些实施例中,可以利用人工神经网络对雷达数据进行处理。
在一些实施例中,处理器131-134用于根据相对位置信息确定相应的控制决策,控制决策包括以下至少一种决策:规划移动设备的移动路径的决策、控制移动设备运行状态的决策。在移动设备100和障碍物之间的距离较近时,可以重新规划路径,有效避障。控制移动设备运行状态可以控制移动设备停止前进、控制移动设备的姿态和/或控制移动设备的移动速度等。
在一些实施例中,局域网单元103包括无线通信模块136,与至少一个处理器131-134连接。在一些实施例中,移动设备100的局域网单元103可以通过无线通信模块136与其他移动设备100的局域网单元103通信,可以实现多个移动设备100协同工作等。在一些实施例中,移动设备100的局域网单元103可以通过无线通信模块136与外部设备(例如电脑、手机等)通信。外部设备可以对处理器131-134进行调试等。外部设备可以包括用户设备,用户可以通过用户设备发送信息和/或指令等给局域网单元103。在其他一些实施例中,移动设备100的局域网单元103可以通过无线通信模块136还可以与其他具有无线通信模块的设备无线通信,例如与服务器无线通信。如此设置无线通信模块,可以实现更多的功能,提升用户体验。在一些实施例中,无线通信模块136包括天线。在一些实施例中,天线包括WiFi天线,可以实现与电脑、手机、服务器等外部设备的无线通信。在其他一些实施例中,无线通信模块136可以省略。
在一些实施例中,移动设备100包括与主控模块104连接的动力模块107,主控模块104用于产生控制信号,控制动力模块107。主控模块104可以根据控制决策控制动力模块107。在图1所示的无人飞行器的实施例中,动力模块107包括电机110和与电机110连接的螺旋桨111。主控 模块104可以控制电机110驱动螺旋桨111。其他类型的移动设备100可以包括其他动力模块107,例如车轮等行走装置、船桨等。
继续参考图2,在一些实施例中,移动设备100包括与主控模块104连接的行为模块108,主控模块104用于产生控制信号,控制行为模块108。在一些实施例中,行为模块108可以用于图传航拍、救援任务和/或打击对抗任务等,实现移动设备100的一些任务。主控模块104可以根据控制决策控制行为模块108。
在一些实施例中,移动设备100包括设于机身101的电源模块105,电源模块105与局域网单元103和主控模块104连接,用于给局域网单元103和主控模块104供电,保证局域网单元103和主控模块104的正常工作电能。电源模块105包括电池,可以为充电电池,例如锂电池。电源模块105可以给处理器131-134和网络设备135供电。
在一些实施例中,移动设备100包括与主控模块104连接的感知模块106,感知模块106用于产生感知信号给主控模块104,主控模块104用于对感知信号进行处理。主控模块104可以对感知信号进行处理,并产生控制信号,可以控制动力模块107和/或行为模块108。在一些实施例中,感知模块106可以包括传感器,感知模块106的传感器可以与探测装置102的传感器不同,感知信号的数据量可以比探测装置102的探测信号的数据量小,通过主控模块104可以快速处理,实现及时快速地控制移动设备100。在一些实施例中,感知模块106包括双目视觉模块和无载波通信定位模块中的至少一种。双目视觉模块可以用于高度定位、测量距离等,可以用于无人飞行器上。无载波通信定位模块可以用于室内精确定位,可以用于移动小车上。
图3所示为局域网单元103的一个实施例的立体结构示意图。图中仅示出两个处理器131和132,但不限于两个。在一个实施例中,处理器131、132和网络设备135可以堆叠放置,可以固定在一起。多个处理器131、 132可以分开放置于网络设备135的上下两侧,方便处理器131、132和网络设备135连接。
在一个实施例中,移动设备100包括电源转接板112,电源转接板112连接电源模块105(如图2所示)和多个处理器131、132,将电源模块105的电能提供给多个处理器131、132,实现对多个处理器131、132的供电。
在一个实施例中,处理器131包括第一电源接口1311和第二电源接口1312,通过第一电源接口1311连接电源模块105,通过第二电源接口1312连接电源适配器。电源适配器可以连接至外部供电电源,例如市电电源,给处理器131供电。在移动设备100移动中,可以将电源适配器从第二电源接口1312拔出,使移动设备100灵活移动。在移动设备100停止移动,对局域网单元103进行调试等时,可以将电源适配器***第二电源接口1312,给处理器131供电,如此可以节省电源模块105的电量。其他处理器也可类似于处理器131,包括第一电源接口和第二电源接口。
在一个实施例中,电源转接板112包括第一转接板1121和第二转接板1122,第一转接板1121连接电源模块105和多个处理器131、132,第二转接板1122连接电源适配器和多个处理器131、132。
图4所示为网络设备135的一个实施例的立体示意图。参考图3和4,网络设备135包括网络设备电源接口1351,可以连接电源模块105(如图2所示)。在一个实施例中,网络设备135可以包括与电源模块105连接的第一网络设备电源接口和与电源适配器连接的第二网络设备电源接口。第一网络设备电源接口可以通过第一转接板1121连接电源模块105,第二网络设备电源接口可以通过第二转接板1122连接电源适配器。网络设备135包括多个网络接口1352,可以与多个处理器连接。
图5所示为处理器131的一个实施例的立体示意图。图6所示为处 理器131从另一个角度所示的立体示意图。参考图4-6,处理器131包括有线网络接口1313,通过有线网络接口1313与网络设备135有线连接。处理器131的有线网络接口1313与网络设备135的网络接口1352有线连接,如此数据传输更快速可靠。
继续参考图5和6,接口至少一个处理器131包括探测信号接口,通过探测信号接口与探测装置102(如图2所示)连接。探测装置102和处理器131有线连接,传输数据快速可靠。在一些实施例中,探测信号接口包括UART接口、CAN接口、USB接口、SPI接口和I2C接口中的至少一个。
在图5和6所示实施例中,接口1314、1315为USB3.0接口。接口1316为HDMI接口。接口1317为USB3.0 MicroB接口。接口1318、1319为UART接口。接口1320、1321为CAN接口。接口1322为I2C和SPI的IO接口。探测信号接口可以为接口1314、1315、1317、1318、1319、1320、1321、1322中的至少一个接口。
至少一个处理器131包括主控接口,通过主控接口与主控模块104(如图2所示)连接。在一些实施例中,主控接口包括UART接口、CAN接口和USB接口中的至少一个。主控接口可以为接口1314、1315、1317、1318、1319、1320、1321中的至少一个接口。处理器131和主控模块104通过接口有线连接,可以保证及时有效的数据传输。
在一些实施例中,无线通信模块136包括天线,至少一个处理器131包括与天线连接的天线接口1323、1324。天线可以***天线接口1323、1324中。
在一些实施例中,处理器131包括交互接口,用于连接交互装置(未图示)。可以通过交互装置对处理器131进行调试、查看处理器131中的数据等。交互接口可以包括HDMI接口、USB接口中的至少一个。交互接 口可以为接口1314、1315、1316、1317中的至少一个接口。在一些实施例中,交互装置包括显示器、鼠标和键盘中的至少一种,可以输入指令、载入程序、查看数据等。
局域网单元的其他处理器可以与处理器131的接口相同,或不同。可以根据实际应用设置接口。
图7所示为移动设备200的另一个实施例的示意图。图7所示的移动设备200为移动小车。局域网单元203设于机身201,可以设于机身201的顶部。在另一个实施例中,局域网单元203可以设于机身201的底部,可以设于底盘。局域网单元203的处理器和网络设备可以拆分开,设于机身201的不同位置。移动设备200的动力模块207包括车轮,由电机驱动。车轮可以为万向轮,例如麦克纳姆轮。
移动设备200类似于移动设备100,局域网单元203类似于移动设备100的局域网103,相关之处参见上文所述,在此不再赘述。
图8所示为本申请控制方法300的一个实施例的流程图。控制方法300用于控制移动设备,移动设备包括机身。移动设备可以为上文所述的移动设备100或200。控制方法300包括步骤。
在步骤301中,通过设于机身的探测装置,产生探测信号。
在步骤302中,通过设于机身的局域网单元,处理探测信号,并产生局域网信号,局域网单元包括多个处理器和连接多个处理器的网络设备。
在步骤303中,通过设于机身且与局域网单元通信连接的主控模块,根据局域网信号产生控制信号。
控制方法300的对探测信号的处理能力强,且控制实时性和可靠性高,使移动设备反应快捷。
在一些实施例中,局域网信号包括控制决策;通过处理器,根据处理后的探测信号确定控制决策;根据控制决策产生控制信号。在一些实施 例中,多个处理器包括第一处理器,第一处理器与探测装置连接;通过第一处理器对探测信号进行处理。
在一些实施例中,多个处理器包括通过网络设备与第一处理器通信连接的第二处理器,第二处理器与主控模块连接;控制方法300包括:通过第二处理器发送局域网信号给主控模块。在一些实施例中,通过第二处理器,接收第一处理器处理后的探测信号,并根据处理后的探测信号确定控制决策。
在一些实施例中,多个处理器包括多个第一处理器,第二处理器通过网络设备与多个第一处理器通信连接;根据多个第一处理器处理后的探测信号,确定控制决策。在一些实施例中,探测装置包括摄像头。通过摄像头拍摄图像并产生相应的图像数据。通过处理器处理图像数据;并根据处理后的图像数据确定控制决策。在一些实施例中,通过处理器,根据图像数据识别被拍摄物体和/或确定被拍摄物体和移动设备的相对位置,并确定相应的控制决策。在一些实施例中,控制决策包括以下至少一种决策:控制所述移动设备靠近所述被拍摄物体的决策、控制所述移动设备远离所述被拍摄物体的决策、控制所述移动设备跟踪所述被拍摄物体的决策、控制所述移动设备打击所述被拍摄物体的决策。
在一些实施例中,探测装置包括雷达。通过处理器,处理雷达数据,确定障碍物和移动设备的相对位置信息。在一些实施例中,通过处理器,根据相对位置信息确定相应的控制决策。控制决策包括以下至少一种决策:规划移动设备的移动路径的决策、控制移动设备运行状态的决策。
在一些实施例中,通过至少一个处理器,利用人工神经网络对探测信号进行处理。
在一些实施例中,多个处理器包括有线网络接口,通过有线网络接口与网络设备有线连接,控制方法包括:多个处理器和网络设备有线通信。
在一些实施例中,移动设备包括与主控模块连接的感知模块,控制方法包括:通过感知模块,产生感知信号给主控模块,且通过主控模块,对感知信号进行处理。
在一些实施例中,移动设备包括与主控模块连接的动力模块,控制方法包括:通过主控模块,产生控制信号,控制动力模块。在一些实施例中,移动设备包括与主控模块连接的行为模块,控制方法包括:通过主控模块产生控制信号,控制行为模块。
对于方法实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。方法实施例和装置实施例互为补充。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中 所存在的该专利文件或者该专利披露。

Claims (62)

  1. 一种移动设备,其特征在于,包括:
    机身;
    探测装置,设于所述机身,用于产生探测信号;
    局域网单元,设于所述机身,包括多个处理器和连接多个所述处理器的网络设备,所述局域网单元与所述探测装置连接,用于接收并处理所述探测信号,产生局域网信号;及
    主控模块,设于所述机身,与所述局域网单元通信连接,用于接收所述局域网信号,并根据所述局域网信号产生控制信号。
  2. 根据权利要求1所述的移动设备,其特征在于,所述探测装置包括摄像头、雷达、GPS、高度计、惯性测量单元和压力计中的至少一种。
  3. 根据权利要求1所述的移动设备,其特征在于,所述处理器包括CPU和GPU中的至少一种。
  4. 根据权利要求1所述的移动设备,其特征在于,所述局域网信号包括控制决策,所述处理器用于根据处理后的所述探测信号确定控制决策,并提供给所述主控模块,所述主控模块用于根据所述控制决策产生所述控制信号。
  5. 根据权利要求4所述的移动设备,其特征在于,多个所述处理器包括第一处理器,所述第一处理器与所述探测装置连接,用于对所述探测信号进行处理。
  6. 根据权利要求5所述的移动设备,其特征在于,多个所述处理器包括通过所述网络设备与所述第一处理器通信连接的第二处理器,所述第二处理器与所述主控模块连接,用于发送所述局域网信号给所述主控模块。
  7. 根据权利要求6所述的移动设备,其特征在于,所述第二处理器用于接收所述第一处理器处理后的所述探测信号,并根据处理后的所述探测信号确定控制决策。
  8. 根据权利要求7所述的移动设备,其特征在于,多个所述处理器包括多个所述第一处理器,所述第二处理器通过所述网络设备与多个所述第一处理器通信连接,用于接收多个所述第一处理器的处理后的所述探测信号,并根据多个处理后的所述探测信号确定控制决策。
  9. 根据权利要求4所述的移动设备,其特征在于,所述探测装置包括摄像头,所述摄像头用于拍摄图像并产生相应的图像数据,所述处理器用于处理所述图像数据,并根据处理后的所述图像数据确定所述控制决策。
  10. 根据权利要求9所述的移动设备,其特征在于,所述处理器用于根据所述图像数据识别被拍摄物体和/或确定被拍摄物体和所述移动设备的相对位置,并确定相应的控制决策。
  11. 根据权利要求10所述的移动设备,其特征在于,所述控制决策包括以下至少一种决策:控制所述移动设备靠近所述被拍摄物体的决策、控制所述移动设备远离所述被拍摄物体的决策、控制所述移动设备跟踪所述被拍摄物体的决策、控制所述移动设备打击所述被拍摄物体的决策。
  12. 根据权利要求4所述的移动设备,其特征在于,所述探测装置包括雷达,所述处理器用于处理所述雷达数据,确定障碍物和所述移动设备的相对位置信息。
  13. 根据权利要求12所述的移动设备,其特征在于,所述处理器用于根据所述相对位置信息确定相应的控制决策,所述控制决策包括以下至少一种决策:规划所述移动设备的移动路径的决策、控制所述移动设备运行状态的决策。
  14. 根据权利要求1所述的移动设备,其特征在于,至少一个所述处理器用于利用人工神经网络对所述探测信号进行处理。
  15. 根据权利要求1所述的移动设备,其特征在于,至少一个所述处理器包括探测信号接口,通过所述探测信号接口与所述探测装置连接。
  16. 根据权利要求15所述的移动设备,其特征在于,所述探测信号接口包括UART接口、CAN接口、USB接口、SPI接口和I2C接口中的至 少一个。
  17. 根据权利要求1所述的移动设备,其特征在于,至少一个所述处理器包括主控接口,通过所述主控接口与所述主控模块连接。
  18. 根据权利要求17所述的移动设备,其特征在于,所述主控接口包括UART接口、CAN接口和USB接口中的至少一个。
  19. 根据权利要求1所述的移动设备,其特征在于,多个所述处理器包括有线网络接口,通过所述有线网络接口与所述网络设备有线连接。
  20. 根据权利要求1所述的移动设备,其特征在于,所述移动设备包括设于所述机身的电源模块,所述电源模块与所述局域网单元和所述主控模块连接,用于给所述局域网单元和所述主控模块供电。
  21. 根据权利要求20所述的移动设备,其特征在于,所述处理器包括第一电源接口和第二电源接口,通过所述第一电源接口连接所述电源模块,通过所述第二电源接口连接电源适配器。
  22. 根据权利要求20所述的移动设备,其特征在于,所述移动设备包括电源转接板,所述电源转接板连接所述电源模块和多个所述处理器。
  23. 根据权利要求1所述的移动设备,其特征在于,所述处理器包括交互接口,用于连接交互装置。
  24. 根据权利要求23所述的移动设备,其特征在于,所述交互装置包括显示器、鼠标和键盘中的至少一种。
  25. 根据权利要求1所述的移动设备,其特征在于,所述局域网单元包括无线通信模块,与至少一个所述处理器连接。
  26. 根据权利要求25所述的移动设备,其特征在于,所述无线通信模块包括天线,至少一个所述处理器包括与所述天线连接的天线接口。
  27. 根据权利要求26所述的移动设备,其特征在于,所述天线包括WiFi天线。
  28. 根据权利要求1所述的移动设备,其特征在于,所述移动设备包括与所述主控模块连接的感知模块,所述感知模块用于产生感知信号给所 述主控模块,所述主控模块用于对所述感知信号进行处理。
  29. 根据权利要求28所述的移动设备,其特征在于,所述感知模块包括双目视觉模块和无载波通信定位模块中的至少一种。
  30. 根据权利要求1所述的移动设备,其特征在于,所述移动设备包括与所述主控模块连接的动力模块,所述主控模块用于产生所述控制信号,控制所述动力模块。
  31. 根据权利要求1所述的移动设备,其特征在于,所述移动设备包括与所述主控模块连接的行为模块,所述主控模块用于产生所述控制信号,控制所述行为模块。
  32. 一种控制方法,用于控制移动设备,所述移动设备包括机身,其特征在于,所述控制方法包括:
    通过设于所述机身的探测装置,产生探测信号;
    通过设于所述机身的局域网单元,处理所述探测信号,并产生局域网信号,所述局域网单元包括多个处理器和连接多个所述处理器的网络设备;及
    通过设于所述机身且与所述局域网单元通信连接的主控模块,根据所述局域网信号产生控制信号。
  33. 根据权利要求32所述的控制方法,其特征在于,所述探测装置包括摄像头、雷达、GPS、高度计、惯性测量单元和压力计中的至少一种。
  34. 根据权利要求32所述的控制方法,其特征在于,所述处理器包括CPU和GPU中的至少一种。
  35. 根据权利要求32所述的控制方法,其特征在于,所述局域网信号包括控制决策;所述处理所述探测信号,并产生局域网信号,包括:通过所述处理器,根据处理后的所述探测信号确定控制决策;
    所述根据所述局域网信号产生控制信号,包括:根据所述控制决策产生所述控制信号。
  36. 根据权利要求35所述的控制方法,其特征在于,多个所述处理器包括第一处理器,所述第一处理器与所述探测装置连接;所述处理所述 探测信号,并产生局域网信号,包括:通过所述第一处理器对所述探测信号进行处理。
  37. 根据权利要求36所述的控制方法,其特征在于,多个所述处理器包括通过所述网络设备与所述第一处理器通信连接的第二处理器,所述第二处理器与所述主控模块连接;所述控制方法包括:通过所述第二处理器发送所述局域网信号给所述主控模块。
  38. 根据权利要求37所述的控制方法,其特征在于,所述通过所述处理器,根据处理后的所述探测信号确定控制决策,包括:
    通过所述第二处理器,接收所述第一处理器处理后的所述探测信号,并根据处理后的所述探测信号确定控制决策。
  39. 根据权利要求38所述的控制方法,其特征在于,多个所述处理器包括多个所述第一处理器,所述第二处理器通过所述网络设备与多个所述第一处理器通信连接;所述通过所述第二处理器,接收所述第一处理器处理后的所述探测信号,并根据处理后的所述探测信号确定控制决策,包括:
    根据多个所述第一处理器处理后的所述探测信号,确定所述控制决策。
  40. 根据权利要求35所述的控制方法,其特征在于,所述探测装置包括摄像头;所述通过设于所述机身的探测装置,产生探测信号,包括:通过所述摄像头拍摄图像并产生相应的图像数据;
    所述根据处理后的所述探测信号确定控制决策,包括:
    通过所述处理器处理所述图像数据;及
    根据处理后的所述图像数据确定所述控制决策。
  41. 根据权利要求40所述的控制方法,其特征在于,所述根据处理后的所述图像数据确定所述控制决策,包括:
    通过所述处理器,根据所述图像数据识别被拍摄物体和/或确定被拍摄物体和所述移动设备的相对位置,并确定相应的控制决策。
  42. 根据权利要求41所述的控制方法,其特征在于,所述控制决策包括以下至少一种决策:控制所述移动设备靠近所述被拍摄物体的决策、控制所述移动设备远离所述被拍摄物体的决策、控制所述移动设备跟踪所述被拍摄物体的决策、控制所述移动设备打击所述被拍摄物体的决策。
  43. 根据权利要求35所述的控制方法,其特征在于,所述探测装置包括雷达;所述处理所述探测信号,包括:通过所述处理器,处理所述雷达数据,确定障碍物和所述移动设备的相对位置信息。
  44. 根据权利要求43所述的控制方法,其特征在于,所述根据处理后的所述探测信号确定控制决策,包括:通过所述处理器,根据所述相对位置信息确定相应的控制决策;
    所述控制决策包括以下至少一种决策:规划所述移动设备的移动路径的决策、控制所述移动设备运行状态的决策。
  45. 根据权利要求32所述的控制方法,其特征在于,所述处理所述探测信号,包括:通过至少一个所述处理器,利用人工神经网络对所述探测信号进行处理。
  46. 根据权利要求32所述的控制方法,其特征在于,至少一个所述处理器包括探测信号接口,通过所述探测信号接口与所述探测装置连接。
  47. 根据权利要求46所述的控制方法,其特征在于,所述探测信号接口包括UART接口、CAN接口、USB接口、SPI接口和I2C接口中的至少一个。
  48. 根据权利要求32所述的控制方法,其特征在于,至少一个所述处理器包括主控接口,通过所述主控接口与所述主控模块连接。
  49. 根据权利要求48所述的控制方法,其特征在于,所述主控接口包括UART接口、CAN接口和USB接口中的至少一个。
  50. 根据权利要求32所述的控制方法,其特征在于,多个所述处理器包括有线网络接口,通过所述有线网络接口与所述网络设备有线连接,所述控制方法包括:多个所述处理器和所述网络设备有线通信。
  51. 根据权利要求32所述的控制方法,其特征在于,所述移动设备包括设于所述机身的电源模块,所述电源模块与所述局域网单元和所述主控模块连接,用于给所述局域网单元和所述主控模块供电。
  52. 根据权利要求51所述的控制方法,其特征在于,所述处理器包括第一电源接口和第二电源接口,通过所述第一电源接口连接所述电源模块,通过所述第二电源接口连接电源适配器。
  53. 根据权利要求51所述的控制方法,其特征在于,所述移动设备包括电源转接板,所述电源转接板连接所述电源模块和多个所述处理器。
  54. 根据权利要求32所述的控制方法,其特征在于,所述处理器包括交互接口,用于连接交互装置。
  55. 根据权利要求54所述的控制方法,其特征在于,所述交互装置包括显示器、鼠标和键盘中的至少一种。
  56. 根据权利要求32所述的控制方法,其特征在于,所述局域网单元包括无线通信模块,与至少一个所述处理器连接。
  57. 根据权利要求56所述的控制方法,其特征在于,所述无线通信模块包括天线,至少一个所述处理器包括与所述天线连接的天线接口。
  58. 根据权利要求57所述的控制方法,其特征在于,所述天线包括WiFi天线。
  59. 根据权利要求32所述的控制方法,其特征在于,所述移动设备包括与所述主控模块连接的感知模块,所述控制方法包括:通过所述感知模块,产生感知信号给所述主控模块,且通过所述主控模块,对所述感知信号进行处理。
  60. 根据权利要求59所述的控制方法,其特征在于,所述感知模块包括双目视觉模块和无载波通信定位模块中的至少一种。
  61. 根据权利要求32所述的控制方法,其特征在于,所述移动设备包括与所述主控模块连接的动力模块,所述控制方法包括:通过所述主控模块,产生所述控制信号,控制所述动力模块。
  62. 根据权利要求32所述的控制方法,其特征在于,所述移动设备包括与所述主控模块连接的行为模块,所述控制方法包括:通过所述主控模块产生所述控制信号,控制所述行为模块。
PCT/CN2019/086688 2019-05-13 2019-05-13 移动设备及控制方法 WO2020227899A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/086688 WO2020227899A1 (zh) 2019-05-13 2019-05-13 移动设备及控制方法
CN201980005506.2A CN111316184A (zh) 2019-05-13 2019-05-13 移动设备及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086688 WO2020227899A1 (zh) 2019-05-13 2019-05-13 移动设备及控制方法

Publications (1)

Publication Number Publication Date
WO2020227899A1 true WO2020227899A1 (zh) 2020-11-19

Family

ID=71148357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086688 WO2020227899A1 (zh) 2019-05-13 2019-05-13 移动设备及控制方法

Country Status (2)

Country Link
CN (1) CN111316184A (zh)
WO (1) WO2020227899A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203946284U (zh) * 2014-07-21 2014-11-19 深圳市大疆创新科技有限公司 一种飞行***、飞行器以及处理器
US20180143633A1 (en) * 2016-06-28 2018-05-24 Faraday&Future Inc. Multi-processor soc system
CN108762152A (zh) * 2018-06-04 2018-11-06 上海哲奥实业有限公司 一种开放式智能网联域控制器硬件平台
CN108891409A (zh) * 2018-08-29 2018-11-27 固安海高汽车技术有限公司 一种智能驾驶***和中央域控制器及其方法
CN208752538U (zh) * 2018-10-29 2019-04-16 深圳市大疆创新科技有限公司 可移动平台及其主机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203946284U (zh) * 2014-07-21 2014-11-19 深圳市大疆创新科技有限公司 一种飞行***、飞行器以及处理器
US20180143633A1 (en) * 2016-06-28 2018-05-24 Faraday&Future Inc. Multi-processor soc system
CN108762152A (zh) * 2018-06-04 2018-11-06 上海哲奥实业有限公司 一种开放式智能网联域控制器硬件平台
CN108891409A (zh) * 2018-08-29 2018-11-27 固安海高汽车技术有限公司 一种智能驾驶***和中央域控制器及其方法
CN208752538U (zh) * 2018-10-29 2019-04-16 深圳市大疆创新科技有限公司 可移动平台及其主机

Also Published As

Publication number Publication date
CN111316184A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
JP6618577B2 (ja) 外部客体との距離に基づいて移動する電子装置
US10901437B2 (en) Unmanned aerial vehicle including an omnidirectional depth sensing and obstacle avoidance aerial system and method of operating same
CN113534828A (zh) 质心位置确定方法、装置、足式机器人及存储介质
WO2022021027A1 (zh) 目标跟踪方法、装置、无人机、***及可读存储介质
CN107450556A (zh) 一种基于ros的自主导航智能轮椅
US20190324448A1 (en) Remote steering of an unmanned aerial vehicle
CN110187720A (zh) 无人机导引方法、装置、***、介质及电子设备
CN115933718A (zh) 一种融合全景slam与目标识别的无人机自主飞行技术方法
Labrado et al. Proposed testbed for the modeling and control of a system of autonomous vehicles
WO2022126598A1 (en) Systems and structures of unmanned aerial vehicles
Farooq et al. A lightweight controller for autonomous following of a target platform for drones
US20210181769A1 (en) Movable platform control method, movable platform, terminal device, and system
WO2020227899A1 (zh) 移动设备及控制方法
CN115237158A (zh) 多旋翼无人机自主跟踪与着陆控制***及控制方法
WO2022021028A1 (zh) 目标检测方法、装置、无人机及计算机可读存储介质
Bhat et al. Real-time gesture control UAV with a low resource framework
Kohlbrecher et al. RoboCup Rescue 2016 team description paper hector Darmstadt
CN115922731B (zh) 一种机器人的控制方法以及机器人
Al-Khalil et al. Unmanned Ground Vehicle with Virtual Reality Vision
WO2022113482A1 (ja) 情報処理装置、方法およびプログラム
Kumar et al. Autonomous Drone Navigation using Monocular Camera and Light Weight Embedded System
KR20190053018A (ko) 카메라를 포함하는 무인 비행 장치를 조종하는 방법 및 전자장치
Singh et al. Development of a low-cost Collision Avoidance System based on Coulomb’s inverse-square law for Multi-rotor Drones (UAVs)
EP4207100A1 (en) Method and system for providing user interface for map target creation
Olou et al. Autonomous Navigation of Unmanned Aerial Vehicle: Investigating Architectures and Techniques for a Flexible Platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928373

Country of ref document: EP

Kind code of ref document: A1