WO2020224582A1 - 用于网络切片更新的方法和装置 - Google Patents

用于网络切片更新的方法和装置 Download PDF

Info

Publication number
WO2020224582A1
WO2020224582A1 PCT/CN2020/088735 CN2020088735W WO2020224582A1 WO 2020224582 A1 WO2020224582 A1 WO 2020224582A1 CN 2020088735 W CN2020088735 W CN 2020088735W WO 2020224582 A1 WO2020224582 A1 WO 2020224582A1
Authority
WO
WIPO (PCT)
Prior art keywords
network slice
terminal
network
amf
selection result
Prior art date
Application number
PCT/CN2020/088735
Other languages
English (en)
French (fr)
Inventor
陈靖
董剑
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020224582A1 publication Critical patent/WO2020224582A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for network slice update.
  • network slices are introduced, and different services are provided through different network slices, for example, Internet services, voice services, ultra-low latency services, and Internet services. Networking business, etc. Network slices can be identified using single network slice selection assistance information (S-NSSAI).
  • S-NSSAI single network slice selection assistance information
  • the network slice selection function (NSSF) network element can select the network slice selection result for the terminal, and send the result to the terminal through the access and mobility management function (AMF) network element.
  • the selected network slice selection result when the network slice selection result of the terminal changes, the AMF or the terminal cannot learn the change of the network slice selection result, which reduces the communication efficiency.
  • the present application provides a method and device for network slice update, which can improve communication efficiency.
  • a method for network slice update includes: an access and mobility management function AMF receives indication information, the indication information is used to indicate a terminal whose network slice selection result has changed; The terminal sends network slice update information, and the network slice update information is used by the terminal to update the network slice.
  • the AMF receives the indication information used to indicate the terminal whose network slice selection result has changed, so that the AMF can send network slice update information to the terminal, so that the terminal can update the network slice, and the terminal can use the appropriate network slice to communicate, thereby improving communication effectiveness.
  • the AMF receiving instruction information includes: the AMF receives the instruction information from the operation and maintenance OM system; or, the AMF receives the instruction information from the network slice selection function NSSF.
  • the AMF can receive the instruction information from the OM system or the NSSF, thereby realizing a variety of implementation ways to improve communication efficiency.
  • the method before the AMF receives the indication information from the NSSF, the method further includes: the AMF sends the terminal identifier to the NSSF, and the terminal identifier is used by the NSSF to determine the network slice of the terminal Select whether the result has changed.
  • At least one terminal identifier and at least one network slice selection result have a mapping relationship. Since the mapping relationship may change in real time, AMF may send the terminal identifier to NSSF to trigger NSSF to detect the network slice selection of the terminal corresponding to the terminal identifier Whether the result changes, which helps inform the terminal to select a more appropriate network slice in time, which improves communication efficiency.
  • the AMF sending the terminal identifier to the NSSF includes: the AMF sends a subscription message to the NSSF, the subscription message is used to request the NSSF to change the network slice selection result of the terminal Sending the indication information and the subscription message includes the identification of the terminal;
  • the AMF receiving the indication information from the NSSF includes: the AMF receives a response message of the subscription message from the NSSF, and the response message of the subscription message carries the indication information.
  • the terminal identifier sent by the AMF to the NSSF for determining whether the network slice selection result of the terminal has changed according to the terminal identifier and the mapping relationship can be carried in the subscription message, which avoids sending the terminal identifier separately, thereby saving resource overhead.
  • the indication information includes the identification of the terminal.
  • the indication information may indicate the terminal whose network slice selection result has changed through the terminal identifier, that is, the embodiment of the present application provides an implementation manner for indicating the terminal whose network slice selection result has changed.
  • a method for network slice update includes: a first network element determines that a terminal's network slice selection result has changed; and the first network element sends indication information to an access and mobility management function AMF , The indication information is used to indicate the terminal.
  • the first network element sends to the AMF indication information for indicating the terminal whose network slice selection result has changed, so that the AMF can send network slice update information to the terminal, so that the terminal can update the network slice, that is, the terminal can use the appropriate network slice Communicate, thereby improving communication efficiency.
  • the first network element is a network slice selection function NSSF
  • the method further includes: the first network element receives an identifier of the terminal; the first network element determines that the network slice selection result of the terminal has changed , Including: the first network element determines that the network slice selection result of the terminal has changed according to the terminal identifier and the mapping relationship, and the mapping relationship is the mapping relationship between the terminal identifier and the network slice selection result.
  • At least one terminal identifier and at least one network slice selection result have a mapping relationship. Since the mapping relationship may change in real time, NSSF can detect whether the network slice selection result of the terminal corresponding to the terminal identifier changes according to the terminal identifier. This helps to promptly inform the terminal to select a more appropriate network slice, which improves communication efficiency.
  • the first network element receiving the terminal identifier includes: the first network element receives a subscription message from the AMF, the subscription message is used to request the NSSF to change the network slice selection result of the terminal
  • the subscription message carries the identification of the terminal
  • the first network element sending the instruction information to the AMF includes: the first network element sends a subscription response message to the AMF, and the subscription response message carries the instruction information .
  • the terminal identifier sent by the AMF to the NSSF for determining whether the network slice selection result of the terminal has changed according to the terminal identifier and the mapping relationship can be carried in the subscription message, which avoids sending the terminal identifier separately, thereby saving resource overhead.
  • the first network element is an operation and maintenance OM system
  • the first network element determining that the network slice selection result of the terminal has changed includes: when the network slice allowed to be used by the terminal changes, and the changed network slice
  • the first network element determines that the network slice selection result of the terminal has changed.
  • the OM system learns that the network slice currently allowed to be used by the terminal has changed, it determines whether the change affects the network slice that the terminal has selected. If the OM system determines that the network slice currently allowed to be used by the terminal does not include the network slice selected by the terminal, the OM system can determine that the network slice selection result of the terminal has changed. This can avoid the situation where the network slice selection result of the terminal changes but the network slice selection result of the terminal is still considered to be changed when it affects the network slice used by the terminal.
  • the embodiment of the present application can more accurately determine whether the network slice selection result of the terminal has changed. In turn, it can be more accurately judged whether network slice update is required, and the communication efficiency is further improved.
  • the method further includes: the first network element sends a configuration policy modification request to the NSSF, the configuration policy modification request is used to request a configuration policy, and the configuration policy is used to indicate the network slice that the terminal is allowed to use
  • the first network element receives a response message for the configuration policy modification request from the NSSF, and the response message for the configuration policy modification request includes the configuration policy.
  • the OM system can send a configuration policy modification request to NSSF.
  • the configuration policy modification request is used to request a configuration policy.
  • NSSF After NSSF receives the configuration policy modification request, it will update the current configuration policy and modify the updated configuration policy through the configuration policy.
  • the requested response message is sent to the OM system.
  • the OM system determines whether the updated configuration policy has an impact on the network slice currently serving the terminal according to the updated configuration policy. If the restricted network slice indicated by the updated configuration policy includes the network slice currently serving the terminal, the OM system determines that the network slice selection result of the terminal has changed. That is, the OM system in the embodiment of the present application can trigger to determine whether the network slice has changed, which helps to determine whether the network slice selection result has changed when necessary, and can more accurately determine whether the network slice update is required. , Which further improves communication efficiency.
  • the indication information includes the identification of the terminal.
  • the indication information may indicate the terminal whose network slice selection result has changed through the terminal identifier, that is, the embodiment of the present application provides an implementation manner for indicating the terminal whose network slice selection result has changed.
  • a method for network slice update includes: the access and mobility management function AMF receives the area information of the changed network slice selection result; the AMF sends the network slice to the terminal according to the area information Update information.
  • the network slice update information is used by the terminal to update the network slice.
  • the AMF receives the area information where the network slice selection result has changed, and sends network slice update information to the terminal in the area indicated by the area information.
  • the terminal can update the network slice according to the network slice update information, for example, re-register to obtain a new one
  • a suitable network slice can be used for communication, which improves communication efficiency.
  • the area information includes at least one of a public land mobile network identifier, a tracking area range, and an AMF identifier.
  • AMF can accurately determine the corresponding area based on the public land mobile network identifier in the area information, and send network slice update information to the terminals in the area, which can reduce sending network slices to terminals in the area that do not need to perform network slice update detection. Update information, saving signaling overhead.
  • the AMF receiving the area information of the network slice selection result change includes: the AMF receives the area information from the operation and maintenance OM system; or, the AMF receives the area information from the network slice selection function NSSF.
  • AMF can receive the area information from the OM system or NSSF, thereby realizing a variety of ways to improve communication efficiency.
  • the method further includes: the AMF sends a subscription message to the NSSF, the subscription message is used to request the NSSF to send the area information when the network slice selection result changes; the AMF sends the area information from the NSSF Receiving the area information includes: the AMF receives a response message of the subscription message from the NSSF, and the response message of the subscription message carries the area information.
  • the area information sent by the AMF to the NSSF can be carried in the subscription message, which avoids sending the area information separately, thereby saving resource overhead.
  • a method for network slice update includes: a first network element determines area information where a network slice selection result has changed; and the first network element sends the information to the access and mobility management function AMF. Regional information.
  • the first network element determines the area information in which the network slice selection result has changed, and sends the area information to the AMF, so that the AMF sends network slice update information to the terminal in the area indicated by the area information, and the terminal can proceed according to the network slice update information.
  • Network slice update for example, re-registering to obtain a new network slice selection result, so that a suitable network slice can be used for communication, and communication efficiency is improved.
  • the area information includes at least one of a public land mobile network identifier, a tracking area range, and an AMF identifier.
  • the first network element sends the area information to the AMF, so that the AFM can accurately determine the corresponding area based on the public land mobile network identifier in the area information, and send network slice update information to the terminals in the area, which can reduce the need for The terminals in the area detected by the network slice update send network slice update information, which saves signaling overhead.
  • the first network element determines that the information about the area where the network slice selection result has changed includes: when the network slice group allowed to be used by the terminal changes, the first network element changes according to the changed network slice group, Determine the area information where the network slice selection result has changed; or when the network slice allowed for the terminal in the network slice group changes, the first network element determines the network slice according to the network slice allowed for the terminal in the changed network slice group Information about the area where the network slice selection result has changed; or when the network slice forbidden to be used by the terminal in the network slice group changes, the first network element determines the network slice according to the network slice forbidden to use the terminal in the changed network slice group Information about the area where the selection result has changed; or when the AMF forbidden to access the terminal changes, the first network element determines the area information where the selection result of the network slice has changed based on the changed AMF forbidden to access the terminal; or when When the network slice allowed to be used by the terminal changes, the first network element determines the area information in which the network slice selection result has changed according
  • Whether to allow the terminal to use network slices can be divided into network slice groups, slices within a network slice group, or individual network slices.
  • the terminal When the network slice group allowed for the terminal, the network slice allowed by the terminal in the network slice group, the network slice prohibited from the terminal in the network slice group, the network slice allowed by the terminal, and the AMF prohibited from the terminal access change, the terminal’s The slice selection result may be affected.
  • the first network element determines the area information where the network slice selection result has changed, and informs the AMF of the area information, which helps the terminal to detect whether the current network slice selection result needs to be updated, so that the terminal adopts the appropriate network slice selection As a result, communication is performed, and communication efficiency is improved.
  • the first network element is an operation and maintenance OM system.
  • the method further includes: the first network element sends a configuration policy modification request to the NSSF, the configuration policy modification request is used to request a configuration policy, and the configuration policy is used to indicate a network slice that is allowed to be used by the terminal; the first network element receives from the NSSF The response message of the configuration policy modification request, and the response message of the configuration policy modification request includes the configuration policy.
  • the OM system can detect whether the current terminal's network slice selection result may be affected by active triggering. In this way, the OM system can flexibly detect whether the network slice selection result has changed, which improves the flexibility of detecting the network slice selection result.
  • the method further includes: the first network element receives a subscription message from the AMF, and the subscription message is used to request the NSSF to send the area information when the network slice selection result changes;
  • Sending the area information by a network element includes: the first network element sends a response message of the subscription message to the AMF, and the response message of the subscription message carries the area information.
  • the AMF can send a response message of the subscription information to the NSSF, and the response message of the subscription information carries the area information. In this way, the AMF can avoid sending the area information separately, thereby saving resource overhead.
  • a device in a fifth aspect, can be an AMF or a chip in the AMF.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the receiving module and the transmitting module may include radio frequency circuits or antennas.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored by the storage module or instructions derived from other sources, so that the device executes the foregoing first aspect and various possible implementation modes of communication methods.
  • the device can be an access network device.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the device further includes a processing module.
  • the receiving module and the sending module may be inputs on the chip, for example. /Output interface, pin or circuit, etc.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the above-mentioned first aspect and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of the communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for updating network slices may be a first network element or a chip in the first network element.
  • the first network element may be an NSSF or an OM system.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a processing module and a sending module.
  • the device further includes a receiving module.
  • the receiving module and the sending module may be at least one of a transceiver, a receiver, and a transmitter, for example, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other instructions, so that the device executes the second aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the chip further includes a processing module.
  • the receiving module and the sending module may be input/output interfaces, pins or circuits on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions, so that the chip in the terminal executes the second aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the programs of the communication methods of the foregoing aspects.
  • a device in a seventh aspect, can be an AMF or a chip in the AMF.
  • the device has the functions of realizing the above three aspects and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a receiving module, a sending module, and a processing module.
  • the receiving module and the sending module may, for example, be at least one of a transceiver, a receiver, and a transmitter, and the receiving module and the sending module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute the instructions stored in the storage module or from other instructions, so that the device executes the above three aspects and various possible implementation modes of communication methods.
  • the device can be an access network device.
  • the chip when the device is a chip, the chip includes: a receiving module, a sending module, and a processing module.
  • the device also includes a processing module.
  • the receiving module and the sending module may be, for example, the chip.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the above three aspects and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the programs of the communication methods of the foregoing aspects.
  • a device for updating network slices may be a first network element or a chip in the first network element.
  • the device has the function of realizing the above-mentioned fourth aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a processing module and a sending module.
  • the device further includes a receiving module.
  • the receiving module and the sending module may be at least one of a transceiver, a receiver, and a transmitter, for example, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the foregoing fourth aspect or any one of the methods.
  • the chip when the device is a chip, the chip includes a receiving module and a sending module.
  • the chip further includes a processing module.
  • the receiving module and the sending module may be input/output interfaces, pins or circuits on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the fourth aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the programs of the communication methods of the foregoing aspects.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the first aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the third aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the fourth aspect and any possible implementation manners.
  • a computer program product containing instructions which, when running on a computer, causes the computer to execute the method in the first aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the third aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which, when running on a computer, causes the computer to execute the method in the fourth aspect or any possible implementation manner thereof.
  • a communication system in a seventeenth aspect, includes the device described in the fifth aspect and the device described in the sixth aspect.
  • a communication system which includes the device described in the seventh aspect and the device described in the eighth aspect.
  • the AMF receives the indication information used to indicate the terminal whose network slice selection result has changed, so that the AMF can send network slice update information to the terminal, so that the terminal can update the network slice, and the terminal can use the appropriate network slice to perform Communication, thereby improving communication efficiency.
  • FIG. 1 is a schematic diagram of a possible network architecture of an embodiment of the present application
  • FIG. 2 is a schematic diagram of network slicing according to an embodiment of the present application.
  • Figure 3 is a schematic flowchart of a network slicing request in a traditional solution
  • Figure 4 is a schematic diagram of selecting network slice selection in a traditional solution
  • FIG. 5 is a schematic flowchart of a method for network slice update according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for network slice update according to another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for network slice update according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for network slice update according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for network slice update according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for network slice update according to another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of an apparatus for network slice update according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for network slice update according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an apparatus for network slice update according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for network slice update according to another embodiment of the present application.
  • FIG. 15 is a schematic diagram of an apparatus for network slice update according to a specific embodiment of the present application.
  • FIG. 16 is a schematic flowchart of a method for network slice update according to a specific embodiment of the present application.
  • FIG. 17 is a schematic flowchart of a method for network slice update according to another specific embodiment of the present application.
  • FIG. 18 is a schematic flowchart of a method for network slice update according to another specific embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a method for network slice update according to another specific embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal in the embodiment of this application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication Equipment, user agent or user device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in the future 5G network or terminals in the future evolved public land mobile network (PLMN), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN personal digital assistant
  • the access network equipment in the embodiments of the present application may be equipment used to communicate with terminals, and the access network equipment may be a global system for mobile communications (GSM) system or code division multiple access (code division multiple access).
  • GSM global system for mobile communications
  • code division multiple access code division multiple access
  • the base station (transceiver station, BTS) in CDMA) can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, and it can also be an evolved LTE system.
  • a base station can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the access network device can be a relay station, an access point, a vehicle device, Wearable devices and access network equipment in the future 5G network or access network equipment in the future evolved PLMN network, one or a group of (including multiple antenna panels) antenna panels of the base station in the 5G system, or A network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc., is not limited in the embodiment of the present application.
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the access network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make a limit.
  • the terminal or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal or an access network device, or a functional module in the terminal or the access network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 is a schematic diagram of a possible network architecture of an embodiment of the present application.
  • the network architecture includes: terminal 101, (radio access network, (R)AN) 102, user plane function (UPF) network element 103, data network (data network, DN) network element 104, authentication server function (authentication server function, AUSF) network element 105, AMF network element 106, session management function (session management function, SMF) network element 107, network exposure function (network exposure function) , NEF) network element 108, network repository function (NRF) network element 109, policy control function (PCF) network element 110, unified data management (udified data management, UDM) network element 111 And NSSF network element 112.
  • R radio access network
  • UPF user plane function
  • UDM network element 111 and NSSF network element 112 are referred to as UPF103, DN104, AUSF105, AMF106, SMF107, NEF108, NRF109, PCF110, UDM111, NSSF112 for short.
  • the terminal 101 mainly accesses the 5G network through a wireless air interface and obtains services.
  • the terminal interacts with the RAN through the air interface, and interacts with the AMF of the core network through non-access stratum (NAS).
  • the RAN 102 is responsible for air interface resource scheduling and air interface connection management for the terminal to access the network.
  • UPF103 is responsible for forwarding and receiving user data in the terminal.
  • the UPF can receive user data from the data network and transmit it to the terminal through the access network device, and can also receive user data from the terminal through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions in UPF103 that provide services for the terminal are managed and controlled by the SMF network element.
  • AUSF105 belongs to the core network control plane network element, which is mainly responsible for the authentication and authorization of users to ensure that users are legitimate users.
  • AMF106 is a core network element and is mainly responsible for signaling processing, such as access control, mobility management, attachment and detachment, and gateway selection. AMF106 can also provide services for sessions in the terminal. The storage resources of the control plane will be provided for the session to store the session identifier, the SMF network element identifier associated with the session identifier, and so on.
  • SMF107 is responsible for user plane network element selection, user plane network element redirection, Internet Protocol (IP) address allocation, bearer establishment, modification and release, and quality of service (QoS) control.
  • IP Internet Protocol
  • QoS quality of service
  • NEF108 is a core network control plane network element, which is responsible for opening up mobile network capabilities.
  • NRF109 belongs to the core network control plane network element, which is responsible for the dynamic registration of network function service capabilities and network function discovery.
  • PCF110 mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the control layer network functions, and is responsible for obtaining user subscription information related to policy decisions.
  • UDM111 belongs to the control plane network element of the core network and belongs to the user server. It can be used for unified data management and supports 3GPP authentication, user identity operation, authorization granting, registration and mobility management functions.
  • NSSF112 is used to complete the network slice selection function of the terminal.
  • NSSF112 belongs to the core network control plane entity and is responsible for the selection of target NSI.
  • Nausf is the service-based interface displayed by AUSF105
  • Namf is the service-based interface displayed by AMF106
  • Nsmf is the service-based interface displayed by SMF107
  • Nnef is the service-based interface displayed by NEF108
  • Nnrf is displayed by NRF109.
  • Npcf is the service-based interface displayed by PCF110
  • Nudm is the service-based interface displayed by UDM111
  • Nnssf is the service-based interface displayed by NSSF112.
  • N1 is the reference point between UE101 and AMF106
  • N2 is the reference point of (R)AN102 and AMF106, used for non-access stratum (NAS) message transmission, etc.
  • N3 is (R)AN102 and UPF103 The reference point between is used to transmit user plane data, etc.
  • N4 is the reference point between SMF107 and UPF103, used to transmit information such as tunnel identification information of the N3 connection, data buffer indication information, and downlink data notification messages
  • the N6 interface is the reference point between UPF103 and DN104, used to transmit user plane data.
  • Network slicing group identifier (configured NSSAI):
  • the terminal saves a network slice group identifier for each operator's network.
  • the terminal can request the access network device to use the network slice corresponding to the network slice identifier in the network slice group identifier.
  • the network slice identifier included in the network slice group identifier may be configured by the access network device.
  • the network slice identifier may be S-NSSAI.
  • the access network device can send the allowed/rejected NSSAI in the network slice group identifier to the terminal, and the terminal can learn whether the corresponding network slice can be used according to the allowed/rejected NSSAI.
  • NSI Network slice instance
  • Each NF instance represents a set of computing/storage/network resources.
  • Each terminal may correspond to one or more network slice selection results, and the network slice selection results may include at least one of configured NSSAI, allowed/rejected NSSAI and AMF identifiers in the network slice group.
  • Figure 2 shows a schematic diagram of network slicing.
  • network slice A includes NSI 1
  • network slice B includes NSI 1 and NSI 2
  • network slice C includes NSI 3.
  • Different network slices provide different services, for example, Internet services, voice services, ultra-low latency services, or Internet of Things services.
  • Figure 3 shows a schematic flowchart of a network slicing request in a traditional solution.
  • AMF sends a first request message to NSSF.
  • the first request message includes the tracking area identity (TAI) of the area served by the AMF and the S-NSSAI list supported by the tracking area of the area served by the AMF.
  • the first request message may be nssf_NSSelection_get_request.
  • TAI NSSAI S-NSSAI list supported by the tracking area
  • the NSSF sends a response message of the first request message to the AMF.
  • the response message of the first request message is used to indicate that the NSSF has received the first request message.
  • the terminal sends a second request message to the AMF.
  • the second request message is used to request available network slices for the terminal.
  • the second request message may also carry the network slice identifier of the network slice requested by the terminal (for example, requested NSSAI), the network slice identifier of the contracted network slice, the terminal identifier (for example, Home-PLMN-ID of UE), and TAI Wait.
  • the network slice identifier of the network slice requested by the terminal for example, requested NSSAI
  • the network slice identifier of the contracted network slice for example, Home-PLMN-ID of UE
  • TAI Wait for example, Home-PLMN-ID of UE
  • the second request message may be a "registration request message (registration request information)".
  • the AMF sends a third request message to the UDM.
  • the third request message is used to request to obtain a network slice subscribed by the terminal (for example, a subscribed NSSAI).
  • the UDM sends a response message of the third request message to the AMF.
  • the response message of the third request message carries a group of network slices subscribed by the terminal.
  • the AMF sends a fourth request message to the NSSF.
  • the fourth request message is used to request a suitable network slice for the terminal.
  • the fourth request message may carry information in the second request message.
  • the fourth request message may also carry TAI and NSSAI in the first request message.
  • the AMF input information can indicate which TAIs are supported by AMF and which TAIs are supported by each TAI or NSSAI.
  • the NSSF selects a suitable network slice selection result for the terminal according to the fourth request message and in combination with local configuration policy (local configuration) and network slice load level information (load level information).
  • the local configuration policy is used to indicate which TAIs and NSSAIs are supported by the TAI to which the terminal belongs, and the network slice load level information may indicate the load status of each network slice.
  • the NSSF can match the TAI NSSAI carried in the fourth request message and the TAI NSSAI indicated by the local configuration policy. For example, the NSSF can find the TAI NSSAI of the intersection. In addition, the NSSF can finally select the TAI and NSSAI with less load based on the load status of the intersection TAI and NSSAI.
  • the network slice selection result may include at least one of configured NSSAI, allowed/rejected NSSAI and AMF identifiers in the network slice group.
  • the local configuration strategy may be obtained from an operation maintenance (Operation Maintenance, OM) system
  • the load level information may be obtained from a network data analysis function (NWDAF) network element.
  • OM Opera Maintenance
  • NWDAF network data analysis function
  • the OM system may be referred to as "OM" in the following embodiments.
  • the AMF identification in the network slice selection result may be in the form of an AMF identification list.
  • the NSSF sends a response message of the fourth request message to the AMF.
  • the response message of the fourth request message carries the network slice selection result.
  • the AMF determines whether the AMF identifier exists in the AMF identifier list in the response message of the fourth request message, and if it exists, executes step 310. If it does not exist, sends the AMF identifier corresponding to the AMF identifier included in the AMF identifier list. Send the network slice selection result.
  • the AMF sends a response message of the second request message to the terminal.
  • the response message of the second request message carries the network slice selection result.
  • NSSF can determine the network slice selection result for the terminal, and send the network slice selection result to the terminal through AMF.
  • the network slice selection result will also change (for example, the decision algorithm changes or the decision algorithm In the case where the input changes), the AMF or the terminal cannot learn the change of the network slice selection result, which reduces the communication efficiency.
  • Fig. 5 shows a schematic flowchart of a method for network slice update according to an embodiment of the present application.
  • the first network element determines that the network slice selection result of the terminal has changed.
  • each terminal corresponds to one or more network slice selection results.
  • the network slice selection result of the first terminal is the network slice selected for the first terminal.
  • the first network element may be an NSSF or an OM system.
  • the first network element is NSSF
  • the NSSF can receive the terminal's identity from AMF, and determine whether the terminal's network slice selection result has changed according to the terminal's identity and mapping relationship.
  • the mapping relationship is the terminal's The mapping relationship between the identifier and the network slice selection result.
  • the identification of at least one terminal and the selection result of at least one network slice have a mapping relationship. Since the mapping relationship may change in real time, the AMF may send the identification of the terminal to the NSSF to trigger the NSSF to detect the identification of the terminal corresponding to the identification of the terminal. Whether the network slice selection result has changed.
  • the NSSF may determine the current network slice selection result of the terminal according to the detected terminal identification and the mapping relationship. Then determine whether the current network slice selection result of the terminal is consistent with the previous network slice selection result of the terminal. If they are consistent, the network slice selection result of the terminal has not changed; if they are inconsistent, the network slice selection result of the terminal has changed. In this way, the NSSF can detect whether the network slice selection result of the corresponding terminal has changed according to the request of the AMF, which helps to inform the terminal to select a more suitable network slice in time and improve the communication efficiency.
  • the change in the mapping relationship may be caused by a change in the output result of the decision algorithm.
  • the change in the output result of the decision algorithm may be caused by a change in the input of the decision algorithm or a change in the decision algorithm itself, or may also be caused by other reasons, which is not limited in this application.
  • identification of the terminal may be carried in the "Nnssf_NSSelection_Get_Request” message.
  • the identity of the terminal may be an identity (ID) of the terminal.
  • the identification of the terminal may also be a subscription permanent identifier (SUPI), an international mobile subscriber identity (IMSI), or a mobile station international integrated services digital network (mobile station international integrated services digital network). , MSISDN) etc.
  • SUPI subscription permanent identifier
  • IMSI international mobile subscriber identity
  • MSISDN mobile station international integrated services digital network
  • identification information of the terminal may be sent separately or carried in other messages (for example, Nnssf_NSSelection_Get_Request message), which is not limited in this application.
  • the first network element is an OM system.
  • the OM system can It is determined that the network slice selection result of the terminal has changed.
  • the OM system learns that the network slice currently allowed to be used by the terminal has changed, it determines whether the change affects the network slice that the terminal has selected. If the OM system determines that the network slice currently allowed to be used by the terminal does not include the network slice selected by the terminal, the OM system can determine that the network slice selection result of the terminal has changed. This can avoid the situation where the network slice selection result of the terminal changes but the network slice selection result of the terminal is still considered to be changed when it affects the network slice used by the terminal.
  • the embodiment of the present application can more accurately determine whether the network slice selection result of the terminal has changed. In turn, it can be more accurately judged whether network slice update is required, and the communication efficiency is further improved.
  • the OM system can send a configuration policy modification request to the NSSF.
  • the configuration policy modification request is used to request a configuration policy.
  • the NSSF After the NSSF receives the configuration policy modification request, it updates the current configuration policy and changes the updated configuration policy.
  • the response message of the configuration policy modification request is sent to the OM system.
  • the OM system determines whether the updated configuration policy has an impact on the network slice currently serving the terminal according to the updated configuration policy. If the restricted network slice indicated by the updated configuration policy includes the network slice currently serving the terminal, the OM system determines that the network slice selection result of the terminal has changed.
  • the configuration policy may specifically directly indicate the network slices that the terminal can use.
  • the configuration strategy may indicate the network slices that the terminal cannot use, and the OM system can indirectly learn the network slices that the terminal can use.
  • the configuration strategy may be a restriction on the network slicing of all terminals, or may be a restriction on the network slicing of only some terminals, which is not limited in this application.
  • the configuration policy indicates the network slices that can be used or the network slices that cannot be used by a certain type of terminal.
  • the configuration policy can also indicate the AMF that can be used by the user, and specifically it can be the AMF that can only be used by some users.
  • users restricted by the configuration policy of the NSSF may be local network users, roaming users, users in this province, very important person (VIP) users, or emergency call users, etc. This application does not limit this.
  • the NSSF may reallocate a network slice for the terminal.
  • the first network element sends indication information to the AMF.
  • the indication information is used to indicate the terminal whose network slice selection result has changed.
  • the AMF receives the indication information from the first network element.
  • the NSSF determines whether the network slice selection result of the terminal has changed, the NSSF sends the indication information to the AMF. If the OM system determines whether the network slice selection result of the terminal has changed, the OM system sends the indication information to the AMF.
  • the indication information includes the identifier of the terminal whose network slice selection result has changed.
  • indication information may be the information in the "Nnssf_NSSelection_Notify_Request message".
  • the NSSF may receive a subscription message from the AMF, and the subscription message is used to request the NSSF to notify the AMF when the network slice selection result of the terminal changes.
  • the response message of the subscription message carries the indication information.
  • the subscription message may also carry AMF identification information and an address required for sending the response message of the subscription message (for example, a callback uniform resource identifier (URI) address).
  • AMF identification information is used to identify the AMF.
  • the subscription message may be "Nnssf_NSSelection_Subscribe_Request”
  • the response message of the subscription message may be "Nnssf_NSSelection_Subscribe_Response”.
  • the NSSF receives from the AMF the terminal identifier used to determine whether the network slice selection result of the terminal has changed according to the terminal identifier and the mapping relationship.
  • the terminal identifier can be carried in the subscription message, which avoids sending the terminal identifier separately, thereby saving resources Overhead.
  • the NSSF may also send at least one of a network slice group identifier (configured NSSAI), a network slice permitted or prohibited identifier (allowed/rejected NSSAI) and an AMF identifier in the network slice group to the AMF.
  • a network slice group identifier Configured NSSAI
  • a network slice permitted or prohibited identifier allowed/rejected NSSAI
  • an AMF identifier in the network slice group to the AMF.
  • the AMF identifier may exist in the form of an AMF identifier list, and the AMF (for example, referred to as "first AMF”) may determine whether its own identifier exists in the AMF identifier list. If it exists, the first AMF performs step 503; if it does not exist, the instruction information is sent to the AMF corresponding to the AMF identifier included in the AMF identifier list (for example, referred to as "second AMF”), and the second AMF Go to step 503.
  • first AMF the AMF identifier list
  • the AMF that performs step 503 may also send the network slice group identifier and the network slice allowed or forbidden identifier in the network slice group to the terminal, and the terminal may determine that it can be used according to the network slice group identifier and the network slice allowed or forbidden identifier in the network slice group. Which network slices, or which network slices cannot be used, so that the terminal can further select appropriate network slices, that is, further improve communication efficiency.
  • the network slicing group identifier and the network slicing allowed or forbidden identifier in the network slicing group can be carried in the instruction information when sent by the first network element to the AMF, or can be sent separately, which is not limited in this application .
  • the AMF after receiving the indication information, the AMF also feeds back response information of the indication information to the NSSF or OM system, and the response information is used to indicate that the identification of the terminal is received.
  • the response information of the indication information may be a message, for example, "Nnssf_NSSelection_Notify_Response” or "OM_AMF_NSSelection_Notify_Response”.
  • the AMF sends network slice update information to the terminal.
  • the network slice update information may be used to instruct the terminal to perform network slice update, or used for the terminal to perform network slice update.
  • the AMF may send network slice update information to the terminal, so that the terminal can update the network slice, and the terminal can use a suitable network Slices for communication, thereby improving communication efficiency.
  • the NSSF selects a new network slice for the terminal, and sends the network slice selection result to the terminal through the AMF.
  • the network slice selection result may be information of the new network slice, for example, the identifier of the new network slice.
  • the NSSF selects a new network slice for the terminal, and sends information about the new network slice to the AMF, and the AMF sends network slice update information to the terminal.
  • the network slice update information includes the new network slice information.
  • the network slice selection result may be carried in the "Nnssf_NSSelection_Notify_Request message".
  • the network slice selection result can be carried in the "configuration update command message”.
  • Fig. 6 shows a schematic flowchart of a method for network slice update according to another embodiment of the present application.
  • the first network element determines the information of the area where the network slice selection result has changed.
  • the area information includes at least one of a public land mobile network (PLMN) identity, a tracking area identity (tracking area identity, TAI) range, and an AMF identity.
  • PLMN public land mobile network
  • TAI tracking area identity
  • AMF identity an AMF identity
  • the PLMN identifier may indicate the area range corresponding to the PLMN identifier
  • the TAI range may indicate the range of the tracking area corresponding to the TAI identifier
  • the AMF identifier may indicate the range of the AMF service corresponding to the AMF identifier.
  • the first network element may be an NSSF or an OM system.
  • step 601 may be replaced with or include: when the network slice group allowed to be used by the terminal changes, the first network element may determine the area information of the changed network slice selection result according to the changed network slice group.
  • whether to allow the terminal to use the network slices can be divided in the manner of network slice groups. If the network slice group allowed by the terminal changes, the changed network slice group may affect the network slice selection result currently used by the terminal, that is, the first network element can determine the network according to the changed network slice group The area information where the slice selection result has changed, and the area information is notified to AMF, which helps the terminal to detect whether the current network slice selection result needs to be updated, so that the terminal uses the appropriate network slice selection result for communication, which improves communication efficiency .
  • step 601 may be replaced with or include: when the network slice allowed to be used by the terminal in the network slice group changes, the first network element may determine the network according to the network slice allowed to be used by the terminal in the changed network slice group. Information about the area where the slice selection result has changed.
  • whether the terminal is allowed to use the network slice may be a division of network slices in a network slice group. If the network slice allowed by the terminal in the network slice group changes, the network slice allowed by the terminal in the changed network slice group may affect the network slice selection result currently used by the terminal, that is, the first network element can be based on the network slice selection result.
  • the network slices allowed by the terminal in the slice group determine the area information where the network slice selection result has changed, and inform the AMF of the area information, which helps the terminal detect whether the current network slice selection result needs to be updated, so that the terminal adopts the appropriate
  • the network slice selection results are communicated, which improves communication efficiency.
  • step 601 can be replaced with or include: when a network slice that is prohibited from being used by a terminal in the network slice group changes, the first network element according to the changed network slice in the network slice group that is prohibited from being used by the terminal, Determine the area information where the network slice selection result has changed.
  • whether the terminal is allowed to use the network slice may be a division of network slices in a network slice group. If the network slice forbidden by the terminal in the network slice group changes, the network slice forbidden by the terminal in the changed network slice group may affect the result of the network slice selection currently used by the terminal, that is, the first network element can
  • the network slices in the slice group that are forbidden to be used by the terminal determine the area information where the network slice selection result has changed, and inform the AMF of the area information, which helps the terminal detect whether the current network slice selection result needs to be updated, so that the terminal adopts the appropriate
  • the network slice selection results are communicated, which improves communication efficiency.
  • step 601 can be replaced with or include: when the AMF that is forbidden to access the terminal changes, the first network element determines that the network slice selection result occurs according to the changed AMF that is forbidden to access the terminal. Changed area information.
  • the slice selection result of the terminal may be affected, and the affected area information is determined, and the area information is notified to the AMF, which helps the terminal detect the current network Whether the slice selection result needs to be updated, so that the terminal uses a suitable network slice selection result for communication, which improves communication efficiency.
  • step 601 can be replaced with or include: when the network slice allowed to be used by the terminal changes, the first network element determines the area information where the network slice selection result has changed according to the changed network slice allowed to be used by the terminal .
  • the network slices that the terminal is allowed to use may not depend on the network slice group.
  • the network slices that the terminal is allowed to use may be network slices in different network slice groups. If the network slice that the terminal is allowed to use changes, the changed network slice may affect the network slice selection result currently used by the terminal, that is, the first network element can determine the network slice selection result according to the changed network slice The area information that has changed, and the area information is notified to the AMF, which helps the terminal to detect whether the current network slice selection result needs to be updated, so that the terminal uses the appropriate network slice selection result for communication, which improves communication efficiency.
  • the first network element may be NSSF.
  • AMF input information, local configuration policy, or network slice load level information changes, the network slice group that the terminal is allowed to use, the network slice that the terminal is allowed to use in the network slice group, and the network In the slice group, any of the network slices that are forbidden to use by the terminal, the AMF that is forbidden to access the terminal, or the network slices that are allowed to be used by the terminal may change.
  • step 601 may specifically include: the OM system according to the changed network slice group allowed to be used by the terminal, the network slice allowed to be used by the terminal in the changed network slice group, and the changed network slice group In the network slice that is forbidden to use the terminal, the changed AMF that is forbidden to access the terminal, or the changed network slice that the terminal is allowed to use after the change, determine the area information where the network slice selection result changes.
  • AMF input information local configuration policy, and network slice load level information have the same meaning as the same terms in FIG. 3, and to avoid repetition, details are not described here.
  • the first network element is an OM system.
  • the network slice group allowed to be used by the terminal the network slice allowed to be used by the terminal in the network slice group, the network slice that is prohibited from being used by the terminal in the network slice group, Either the AMF that the terminal is forbidden to access or the network slice that the terminal is allowed to use may change.
  • step 601 may specifically include: the OM system according to the changed network slice group allowed to be used by the terminal, the network slice allowed to be used by the terminal in the changed network slice group, and the changed network slice group In the network slice that is forbidden to use the terminal, the changed AMF that is forbidden to access the terminal, or the changed network slice that the terminal is allowed to use after the change, determine the area information where the network slice selection result changes.
  • the configuration policy may include information for indicating the network slices allowed to be used by the terminal.
  • the configuration policy changes, the network slice selection result of some terminals may be affected, that is, the network slice selection result changes.
  • the OM system sends a configuration policy modification request for requesting the configuration policy to the NSSF, and receives a response message of the configuration policy modification request fed back by the NSSF, and the response message of the configuration policy modification request includes the configuration policy.
  • the OM system can detect whether the current terminal's network slice selection result may be affected by active triggering. In this way, the OM system can flexibly detect whether the network slice selection result has changed, which improves the flexibility of detecting the network slice selection result.
  • configuration policy modification request may be "OM_NSSF_Configuration_Modify_Request”
  • response message of the configuration policy may be "OM_NSSF_Configuration_Modify_Response”.
  • the first network element sends the area information to the AMF.
  • the AMF receives the area information from the first network element.
  • the AMF can determine the terminal in the area according to the area information. For example, the AMF combines the context information of the registered terminals to match the terminals in the area indicated by the area information.
  • the area information can be sent separately or carried in other messages (for example, Nnssf_NSSelection_Notify_Request message or OM_AMF_NSSelection_Notify_Request message), which is not limited in this application.
  • the NSSF may receive a subscription message from the AMF, and the subscription message is used to request the NSSF to send area information when the terminal's network slice selection result changes.
  • the response message of the subscription message carries the area information.
  • the subscription message may be "Nnssf_NSSelection_Subscribe_Request”
  • the response message of the subscription message may be "Nnssf_NSSelection_Subscribe_Response”.
  • the AMF may also feed back the area information response information to the NSSF or OM system, and the response information is used to indicate that the area information is received.
  • response information of the area information may be a message, for example, "Nnssf_NSSelection_Notify_Response” or "OM_AMF_NSSelection_Notify_Response”.
  • the AMF sends network slice update information to the terminal.
  • the network slice update information is used for the terminal to update the network slice.
  • the terminal receives the network slice update information.
  • the terminal may be the terminal 1 in FIG. 6.
  • the AMF sends network slice update information to the terminal in the area indicated by the area information, and the terminal can perform network slice update according to the network slice update information, for example, re-register to obtain a new network slice selection result, so that appropriate
  • the network slicing for communication improves communication efficiency.
  • the AMF may send network slice update information to one or more terminals, and the network slice update information sent to each terminal is used for the corresponding terminal to perform network slice update.
  • the AMF may send network slice update information to at least one of terminal 1, terminal 2, and terminal 3.
  • the following embodiments take a terminal as an example for description, but the application is not limited to this.
  • the network slice update information may be a message, for example, may be "configuration update command”.
  • the AMF may select a new network slice selection result for the terminal, and send the new network slice selection result to the corresponding terminal through the AMF.
  • the AMF may carry the new network slice selection result in the network slice update information. In this way, the terminal can use the new network slice selection result to communicate, which saves the time delay in determining the new network slice selection result, thereby further improving communication efficiency.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices.
  • the methods and operations implemented by access network devices are also It can be implemented by components (such as chips or circuits) that can be used for access network equipment.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of using the corresponding functional modules to divide each functional module.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 7 shows a schematic block diagram of an apparatus 700 for network slice update according to an embodiment of the present application.
  • the apparatus 700 may correspond to the AMF in the embodiment shown in FIG. 5, FIG. 16 or FIG. 17, and may have any function of the AMF in the method.
  • the device 700 includes a receiving module 710 and a sending module 720.
  • the receiving module 710 is configured to receive indication information, where the indication information is used to indicate a terminal whose network slice selection result has changed;
  • the sending module 720 is configured to send network slice update information to the terminal, where the network slice update information is used by the terminal to update the network slice.
  • the receiving module 710 is specifically configured to: receive the instruction information from the operation and maintenance OM system; or, receive the instruction information from the network slice selection function NSSF.
  • the receiving module 710 is further configured to send the terminal identifier to the NSSF before the access and mobility management function AMF receives the indication information from the NSSF, and the terminal identifier is used by the NSSF to determine the terminal’s identity Whether the network slice selection result has changed.
  • the sending module 720 is further configured to send a subscription message to the NSSF, where the subscription message is used to request the NSSF to send the indication information when the network slice selection result of the terminal changes, and the subscription message includes The identification of the terminal; the receiving module 710 is specifically configured to: receive a response message of the subscription message from the NSSF, and the response message of the subscription message carries the indication information.
  • the indication information includes the identification of the terminal.
  • FIG. 8 shows an apparatus 800 for updating a network slice provided by an embodiment of the present application.
  • the apparatus 800 may be the AMF described in FIG. 5.
  • the device can adopt the hardware architecture shown in Figure 8.
  • the device may include a processor 810 and a transceiver 830.
  • the device may also include a memory 840.
  • the processor 810, the transceiver 830, and the memory 840 communicate with each other through an internal connection path.
  • the related functions implemented by the sending module 720 and the receiving module 710 in FIG. 7 can be implemented by the processor 810 controlling the transceiver 830.
  • the processor 810 may be a general-purpose central processing unit (central processing unit, CPU), microprocessor, application-specific integrated circuit (ASIC), dedicated processor, or one or more It is an integrated circuit that implements the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control network slice update devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 810 may include one or more processors, such as one or more central processing units (CPU).
  • processors such as one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 830 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 840 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory EPROM
  • a compact disc read-only memory, CD-ROM
  • the memory 840 is used to store related instructions and data.
  • the memory 840 is used to store AMF program codes and data, and may be a separate device or integrated in the processor 810.
  • the processor 810 is configured to control the transceiver to perform information transmission with the AMF.
  • the processor 810 is configured to control the transceiver to perform information transmission with the AMF.
  • the apparatus 800 may further include an output device and an input device.
  • the output device communicates with the processor 810 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 601 and can receive user input in various ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 8 only shows a simplified design of the network slice update device.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all AMFs that can implement this application are within the protection scope of this application within.
  • the device 800 may be a chip, for example, a communication chip that can be used in the AMF to implement related functions of the processor 810 in the AMF.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be an AMF or a circuit.
  • the device can be used to perform the actions performed by the AMF in the foregoing method embodiments.
  • FIG. 9 shows a schematic block diagram of an apparatus 900 for network slice update according to an embodiment of the present application.
  • the apparatus 900 may correspond to the first network element in the embodiment shown in FIG. 5, and the first network element may have any function of the first network element in the method.
  • the first network element may be NSSF or OM.
  • the apparatus 900 may correspond to the NSSF in FIG. 16.
  • the device 900 may correspond to the OM in FIG. 17.
  • the device 900 includes a processing module 910 and a sending module 920.
  • the processing module 910 is configured to determine that the network slice selection result of the terminal has changed
  • the sending module 920 is configured to send instruction information, where the instruction information is used to indicate the terminal.
  • the device 900 further includes: a receiving module 930, configured to receive an identification of the terminal; the processing module is specifically configured to: determine that the network slice selection result of the terminal has changed according to the identification and the mapping relationship of the terminal.
  • the mapping relationship is the mapping relationship between the terminal identifier and the network slice selection result.
  • the receiving module 930 is specifically configured to receive a subscription message from the access and mobility management function AMF, and the subscription message is used to request the network slice selection function NSSF to send the terminal when the network slice selection result of the terminal changes.
  • Indication information the subscription message carries the identification of the terminal; the sending module 920 is specifically configured to send a subscription response message to the AMF, and the subscription response message carries the indication information.
  • the processing module 910 is specifically configured to determine the network slice of the terminal when the network slice allowed to be used by the terminal changes, and the changed network slice allowed to use the terminal does not include the network slice selected by the terminal The selection result changes.
  • the sending module 920 is further configured to send a configuration policy modification request to the NSSF, where the configuration policy modification request is used to request a configuration policy, and the configuration policy is used to indicate the network slices allowed to be used by the terminal; the receiving module 930 uses Since the response message of the configuration policy modification request is received from the NSSF, the response message of the configuration policy modification request includes the configuration policy.
  • the indication information includes the identification of the terminal.
  • FIG. 10 shows an apparatus 1000 for updating a network slice provided by an embodiment of the present application.
  • the apparatus 1000 may be the first network element described in FIG. 5.
  • the device can adopt the hardware architecture shown in FIG. 10.
  • the device may include a processor 1010 and a transceiver 1020.
  • the device may also include a memory 1030.
  • the processor 1010, the transceiver 1020, and the memory 1030 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 910 in FIG. 9 may be implemented by the processor 1010, and the related functions implemented by the sending module 920 and the receiving module 930 may be implemented by the processor 1010 controlling the transceiver 1020.
  • the processor 1010 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control network slice update devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 1010 may include one or more processors, for example, one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 1020 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1030 includes but is not limited to RAM, ROM, EPROM, and CD-ROM.
  • the memory 1030 is used to store related instructions and data.
  • the memory 1030 is used to store the program code and data of the first network element, and may be a separate device or integrated in the processor 1010.
  • the processor 1010 is configured to control the transceiver to perform information transmission with the first network element.
  • the processor 1010 is configured to control the transceiver to perform information transmission with the first network element.
  • the apparatus 1000 may further include an output device and an input device.
  • the output device communicates with the processor 1010 and can display information in a variety of ways.
  • the output device may be an LCD, an LED display device, a CRT display device, or a projector.
  • the input device communicates with the processor 1001 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 10 only shows a simplified design of the network slice update device.
  • the device may also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all the first network elements that can implement this application are included in this application. Within the scope of protection.
  • the device 1000 may be a chip, for example, a communication chip that can be used in the first network element to implement related functions of the processor 1010 in the first network element.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a first network element or a circuit.
  • the device can be used to perform the actions performed by the first network element in the foregoing method embodiments.
  • FIG. 11 shows a schematic block diagram of a network slice update apparatus 1100 according to an embodiment of the present application.
  • the device 1100 may correspond to the AMF in the embodiment shown in FIG. 6, FIG. 18, or FIG. 19, and may have any function of the AMF in the method.
  • the device 1100 includes a receiving module 1110 and a processing module 1120.
  • the receiving module 1110 is configured to receive information about the area where the network slice selection result has changed
  • the processing module 1120 is configured to send network slice update information to the terminal through the sending module according to the area information, and the network slice update information is used for the terminal to perform network slice update.
  • the area information includes at least one of a public land mobile network identifier, a tracking area range, and an access and mobility management function AMF identifier.
  • the receiving module 1110 is specifically configured to: receive the area information from the operation and maintenance OM system; or, receive the area information from the network slice selection function NSSF.
  • the apparatus 1100 further includes a sending module 1130, and the sending module 1130 is configured to send a subscription message to the NSSF, and the subscription message is used to request the NSSF to send the area information when the network slice selection result changes; the The receiving module 1110 is specifically configured to receive a response message of the subscription message from the NSSF, where the response message of the subscription message carries the area information.
  • FIG. 12 shows an apparatus 1200 for updating a network slice provided by an embodiment of the present application.
  • the apparatus 1200 may be the AMF described in FIG. 6.
  • the device can adopt the hardware architecture shown in FIG. 12.
  • the device may include a processor 1210 and a transceiver 1230.
  • the device may also include a memory 1240.
  • the processor 1210, the transceiver 1230, and the memory 1240 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 1120 in FIG. 11 may be implemented by the processor 1210, and the related functions implemented by the transceiver module 1120 may be implemented by the processor 1210 controlling the transceiver 1230.
  • the processor 1210 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control network slice update devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 1210 may include one or more processors, for example, one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 1230 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1240 includes but is not limited to RAM, ROM, EPROM, and CD-ROM.
  • the memory 1240 is used to store related instructions and data.
  • the memory 1240 is used to store AMF program codes and data, and may be a separate device or integrated in the processor 1210.
  • the processor 1210 is used to control the transceiver to perform information transmission with the AMF.
  • the processor 1210 is used to control the transceiver to perform information transmission with the AMF.
  • the apparatus 1200 may further include an output device and an input device.
  • the output device communicates with the processor 1210 and can display information in a variety of ways.
  • the output device may be an LCD, an LED display device, a CRT display device, or a projector.
  • the input device communicates with the processor 601 and can receive user input in various ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 12 only shows a simplified design of the network slice update device.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all AMFs that can implement this application are within the protection scope of this application within.
  • the device 1200 may be a chip, for example, a communication chip that can be used in AMF to implement related functions of the processor 1210 in the AMF.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be an AMF or a circuit.
  • the device can be used to perform the actions performed by the AMF in the foregoing method embodiments.
  • FIG. 13 shows a schematic block diagram of a network slice update apparatus 1300 according to an embodiment of the present application.
  • the apparatus 1300 may correspond to the first network element in the embodiment shown in FIG. 6, and may have any function of the first network element in the method.
  • the first network element may be NSSF or OM.
  • the apparatus 1300 may correspond to the NSSF in FIG. 18.
  • the device 1300 may correspond to the OM in FIG. 19.
  • the device 1300 includes a processing module 1310 and a sending module 1320.
  • the processing module 1310 is used to determine the area information where the network slice selection result has changed
  • the sending module 1320 is used to send the area information to the access and mobility management function AMF.
  • the area information includes at least one of a public land mobile network identifier, a tracking area range, and an AMF identifier.
  • the processing module 1310 is specifically configured to: when the network slice group allowed to be used by the terminal changes, determine the area information in which the network slice selection result has changed according to the changed network slice group; or when the network slice group is When the network slice allowed by the terminal changes, according to the network slice allowed to be used by the terminal in the changed network slice group, determine the information of the area where the network slice selection result has changed; or when the network slice forbidden to use the terminal in the network slice group occurs When it changes, according to the network slice in the changed network slice group that is forbidden to use by the terminal, determine the information about the area where the network slice selection result has changed; or when the AMF to which the terminal is forbidden to access changes, the first network element changes according to the changed network slice.
  • the sending module 1320 is further configured to send a configuration policy modification request to the network slice selection function NSSF before determining the area information of the changed network slice selection result according to the changed network slice allowed for the terminal to use.
  • the policy modification request is used to request a configuration policy, and the configuration policy includes information for indicating the network slices allowed to be used by the terminal;
  • the device further includes a receiving module 1330, which is configured to receive a response to the configuration policy modification request from the NSSF Message, the response message of the configuration policy modification request includes the configuration policy.
  • the receiving module 1330 is further configured to receive a subscription message from the AMF, and the subscription message is used to request the NSSF to send the area information when the network slice selection result changes; the sending module 1320 is specifically configured to: A response message of the subscription message is sent to the AMF, and the response message of the subscription message carries the area information.
  • FIG. 14 shows an apparatus 1400 for network slice update provided by an embodiment of the present application.
  • the apparatus 1400 may be the first network element described in FIG. 6.
  • the device can adopt the hardware architecture shown in FIG. 14.
  • the device may include a processor 1410 and a transceiver 1420.
  • the device may further include a memory 1430.
  • the processor 1410, the transceiver 1420 and the memory 1430 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 1310 in FIG. 13 can be implemented by the processor 1410, and the related functions implemented by the sending module 1320 and the receiving module 1330 can be implemented by the processor 1410 controlling the transceiver 1420.
  • the processor 1410 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control network slice update devices (such as base stations, terminals, or chips), execute software programs, and process software program data .
  • the processor 1410 may include one or more processors, such as one or more CPUs.
  • the processor is a CPU
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the transceiver 1420 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1430 includes but is not limited to RAM, ROM, EPROM, and CD-ROM, and the memory 1430 is used to store related instructions and data.
  • the memory 1430 is used to store the program code and data of the first network element, and may be a separate device or integrated in the processor 1410.
  • the processor 1410 is configured to control the transceiver to perform information transmission with the first network element.
  • the processor 1410 is configured to control the transceiver to perform information transmission with the first network element.
  • the apparatus 1400 may further include an output device and an input device.
  • the output device communicates with the processor 1410 and can display information in a variety of ways.
  • the output device may be an LCD, an LED display device, a CRT display device, or a projector.
  • the input device communicates with the processor 601 and can receive user input in various ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 14 only shows the simplified design of the network slice update device.
  • the device may also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all the first network elements that can implement this application are included in this application. Within the scope of protection.
  • the device 1400 may be a chip, for example, a communication chip that can be used in the first network element to implement related functions of the processor 1410 in the first network element.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a first network element or a circuit.
  • the device can be used to perform the actions performed by the first network element in the foregoing method embodiments.
  • the device shown in FIG. 15 can also be referred to.
  • the device can perform functions similar to the processor in the foregoing embodiment.
  • the device includes a processor 1501, a data sending processor 1503, and a data receiving processor 1505.
  • the processing module in the foregoing embodiment may be the processor 1501 in FIG. 15 and complete corresponding functions.
  • the receiving module and the sending module in the foregoing embodiment may be the sending data processor 1503 and the receiving data processor 1505 in FIG. 15.
  • the channel encoder and the channel decoder are shown in FIG. 15, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • a computer-readable storage medium is provided, and an instruction is stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method in the foregoing method embodiment is executed.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • many forms of RAM are available, such as static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchronous link DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • FIG. 16 shows a schematic flowchart of a method for network slice update according to a specific embodiment of the present application.
  • AMF sends a subscription message to NSSF.
  • the subscription message includes the identification of the terminal.
  • the NSSF determines whether the terminal's network slice selection result has changed according to the terminal's identification and mapping relationship.
  • the NSSF sends a response message of the subscription message to the AMF.
  • the response message of the subscription message includes indication information, and the indication information is used to indicate the terminal whose network slice selection result has changed.
  • the AMF sends network slice update information to the terminal.
  • the network slice update information is used for the terminal to update the network slice.
  • the AMF may send the identification of the terminal to the NSSF to trigger the NSSF to detect whether the network slice selection result of the terminal corresponding to the identification of the terminal has changed.
  • the NSSF sends indication information to the AMF to indicate the terminal whose network slice selection result has changed, so that the terminal can update the network slice so that the terminal can use the appropriate Network slicing for communication, thereby improving communication efficiency.
  • the terminal identifier can be carried in the subscription message, and the indication information is carried in the response message of the subscription message, which avoids separate sending, thereby saving resource overhead.
  • FIG. 17 shows a schematic flowchart of a method for network slice update according to another specific embodiment of the present application.
  • OM sends a configuration policy modification request to NSSF.
  • the configuration policy modification request is used to request a configuration policy
  • the configuration policy is used to indicate a network slice allowed to be used by the terminal.
  • the NSSF sends a response message for the configuration policy modification request to the OM.
  • the response message of the configuration policy modification request includes the configuration policy.
  • the NSSF sends a response message of the subscription message to the AMF when determining that the network slice selection result of the terminal has changed.
  • the response message of the subscription message includes indication information, and the indication information is used to indicate the terminal whose network slice selection result has changed.
  • the NSSF may determine whether the network slice selection result of the terminal has changed according to the network slice that the terminal is allowed to use according to the configuration policy.
  • the AMF sends network slice update information to the terminal.
  • the network slice update information is used for the terminal to update the network slice.
  • the AMF may send the identification of the terminal to the NSSF to trigger the NSSF to detect whether the network slice selection result of the terminal corresponding to the identification of the terminal has changed.
  • the NSSF sends indication information to the AMF to indicate the terminal whose network slice selection result has changed, so that the terminal can update the network slice so that the terminal can use the appropriate Network slicing for communication, thereby improving communication efficiency.
  • the terminal identifier can be carried in the subscription message, and the indication information is carried in the response message of the subscription message, which avoids separate sending, thereby saving resource overhead.
  • FIG. 18 shows a schematic flowchart of a method for network slice update according to another specific embodiment of the present application.
  • OM sends a configuration policy modification request to NSSF.
  • the configuration policy modification request is used to request a configuration policy
  • the configuration policy is used to indicate a network slice allowed to be used by the terminal.
  • NSSF sends a response message to the OM to modify the configuration policy.
  • the response message of the configuration policy modification request includes the configuration policy.
  • the OM determines the area information of the changed network slice selection result according to the changed network slice allowed to be used by the terminal.
  • OM sends the area information to AMF.
  • AMF sends network slice update information to the terminal
  • the network slice update information is used for the terminal to update the network slice.
  • the OM actively triggers the configuration policy modification request, and receives the response message of the configuration policy modification request sent by the NSSF, and then determines the network that the terminal is allowed to use according to the configuration policy included in the configuration policy modification request response message Whether the slice has changed.
  • the OM determines the area information of the changed network slice selection result according to the changed network slice allowed by the terminal, and sends the area information to the AMF, and the AMF indicates the area information
  • the terminal in the area sends network slice update information, and the terminal can update the network slice according to the network slice update information, so that a suitable network slice can be used for communication, which improves communication efficiency.
  • FIG. 19 shows a schematic flowchart of a method for network slice update according to another specific embodiment of the present application.
  • the NSSF determines the area information where the network slice selection result has changed according to the network slice allowed by the terminal in the changed network slice group.
  • step 1901 may be replaced with: when the network slice group allowed to be used by the terminal changes, the NSSF may determine the area information where the network slice selection result has changed according to the changed network slice group.
  • step 1901 can be replaced with: when the network slice forbidden to be used by the terminal in the network slice group changes, NSSF may determine according to the network slice forbidden to use the terminal in the changed network slice group The area information where the network slice selection result has changed.
  • step 1901 can be replaced with: when the AMF to which the terminal is forbidden to access changes, the NSSF can determine that the network slice selection result has changed according to the changed AMF to which the terminal is forbidden to access Regional information.
  • step 1901 can be replaced with: when the network slice allowed to be used by the terminal changes, the NSSF may determine that the network slice selection result has changed according to the changed network slice allowed to be used by the terminal. Regional information.
  • AMF sends a subscription message to NSSF.
  • the subscription message is used to request the NSSF to send the area information when the network slice selection result changes.
  • step 1902 and step 1901 is not limited.
  • the NSSF After determining the area information where the network slice selection result has changed, the NSSF sends a response message of the subscription message to the AMF.
  • the response message of the subscription message carries the area information.
  • the AMF sends network slice update information to the terminal.
  • the network slice update information is used for the terminal to update the network slice.
  • the AMF can subscribe to the NSSF to send the area information when the network slice selection result changes, so that the AMF can receive the response message of the subscription information, and the response message of the subscription information carries the area information, so that the AMF can avoid sending the information separately Regional information, thereby saving resource overhead.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearance of "in one embodiment” or “in an embodiment” in various places throughout the specification does not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that, in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application. The implementation process constitutes any limitation.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a and/or B can mean: A alone exists, and both A and B exist. , There are three cases of B alone. Among them, the presence of A or B alone does not limit the number of A or B. Taking the existence of A alone as an example, it can be understood as having one or more A.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or an access network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于网络切片更新的方法和装置。AMF接收用于指示网络切片选择结果发生变化的终端的指示信息,这样AMF可以向该终端发送网络切片更新信息,使得终端进行网络切片更新,进而终端能够采用合适的网络切片进行通信,从而提高通信效率。

Description

用于网络切片更新的方法和装置
本申请要求于2019年5月7日提交中国专利局、申请号为201910375489.3、申请名称为“用于网络切片更新的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种用于网络切片更新的方法和装置。
背景技术
在第五代(the 5th generation,5G)无线通信***中,引入了网络切片(network clice),通过不同的网络切片提供不同的业务,例如,上网业务、语音业务、超低时延业务和物联网业务等。网络切片可以使用单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)来标识。
传统方案中,网络切片选择功能(network slice selection function,NSSF)网元可以为终端选择网络切片选择结果,并通过接入和移动管理功能(access and mobility management function,AMF)网元向终端发送该选中的网络切片选择结果。然而,在终端的网络切片选择结果发生变化的情况下,AMF或终端并不能获知该网络切片选择结果的变化,使得通信效率降低。
发明内容
本申请提供一种用于网络切片更新的方法和装置,能够提高通信效率。
第一方面,提供了一种用于网络切片更新的方法,该方法包括:接入和移动管理功能AMF接收指示信息,该指示信息用于指示网络切片选择结果发生变化的终端;该AMF向该终端发送网络切片更新信息,该网络切片更新信息用于该终端进行网络切片更新。
AMF接收用于指示网络切片选择结果发生变化的终端的指示信息,这样AMF可以向该终端发送网络切片更新信息,使得终端进行网络切片更新,进而终端能够采用合适的网络切片进行通信,从而提高通信效率。
在一些可能的实现方式中,该AMF接收指示信息包括:该AMF从操作维护OM***接收该指示信息;或者,该AMF从网络切片选择功能NSSF接收该指示信息。
AMF可以从OM***或NSSF接收到该指示信息,从而实现了多种提高通信效率的实现方式。
在一些可能的实现方式中,在该AMF从该NSSF接收该指示信息之前,该方法还包括:该AMF向该NSSF发送该终端的标识,该终端的标识用于该NSSF确定该终端的网络切片选择结果是否发生变化。
至少一个终端的标识和至少一个网络切片选择结果具有映射关系,由于该映射关系可 能是实时变化的,AMF可以向NSSF发送终端的标识,以触发NSSF检测该终端的标识对应的终端的网络切片选择结果是否发生变化,从而有助于及时告知终端选择更加合适的网络切片,提高了通信效率。
在一些可能的实现方式中,该AMF向该NSSF发送该终端的标识包括:该AMF向该NSSF发送订阅消息,该订阅消息用于请求该NSSF在该终端的网络切片选择结果发生变化的情况下发送该指示信息,且该订阅消息包括该终端的标识;该AMF从NSSF接收该指示信息包括:该AMF从该NSSF接收该订阅消息的响应消息,该订阅消息的响应消息携带该指示信息。
AMF向NSSF发送用于根据终端的标识和映射关系确定终端的网络切片选择结果是否发生变化的终端标识可以携带在该订阅消息中,避免了单独发送该终端标识,从而节省了资源开销。
在一些可能的实现方式中,该指示信息包括该终端的标识。
指示信息可以通过终端的标识指示网络切片选择结果发生变化的终端,即本申请实施例提供了一种指示网络切片选择结果发生变化的终端的实现方式。
第二方面,提供了一种用于网络切片更新的方法,该方法包括:第一网元确定终端的网络切片选择结果发生变化;该第一网元向接入和移动管理功能AMF发送指示信息,该指示信息用于指示该终端。
第一网元向AMF发送用于指示网络切片选择结果发生变化的终端的指示信息,使得AMF可以向该终端发送网络切片更新信息,进而使得终端进行网络切片更新,即终端能够采用合适的网络切片进行通信,从而提高通信效率。
在一些可能的实现方式中,该第一网元为网络切片选择功能NSSF,该方法还包括:该第一网元接收该终端的标识;该第一网元确定终端的网络切片选择结果发生变化,包括:该第一网元根据该终端的标识和映射关系,确定该终端的网络切片选择结果发生变化,该映射关系为终端的标识和网络切片选择结果之间的映射关系。
至少一个终端的标识和至少一个网络切片选择结果具有映射关系,由于该映射关系可能是实时变化的,NSSF可以根据终端的标识,检测该终端的标识对应的终端的网络切片选择结果是否发生变化,从而有助于及时告知终端选择更加合适的网络切片,提高了通信效率。
在一些可能的实现方式中,该第一网元接收该终端的标识包括:该第一网元从该AMF接收订阅消息,该订阅消息用于请求该NSSF在该终端的网络切片选择结果发生变化的情况下发送该指示信息,该订阅消息携带该终端的标识;该第一网元向AMF发送指示信息包括:该第一网元向该AMF发送订阅响应消息,该订阅响应消息携带该指示信息。
AMF向NSSF发送用于根据终端的标识和映射关系确定终端的网络切片选择结果是否发生变化的终端标识可以携带在该订阅消息中,避免了单独发送该终端标识,从而节省了资源开销。
在一些可能的实现方式中,该第一网元为操作维护OM***,该第一网元确定终端的网络切片选择结果发生变化包括:当允许该终端使用的网络切片发生变化,且变化后的允许该终端使用的网络切片不包括该终端选择的网络切片时,该第一网元确定该终端的网络切片选择结果发生变化。
OM***在获知当前能够允许终端使用的网络切片发生变化时,判断该变化是否影响终端已经选择的网络切片。若OM***确定出当前允许终端使用的网络切片不包括终端所选择的网络切片,则OM***可以确定该终端的网络切片选择结果发生变化。这样可以避免网络切片选择结果发生变化但并影响终端使用的网络切片时仍然认为终端的网络切片选择结果发生变化的情况,本申请实施例能够更准确的判断终端的网络切片选择结果是否发生变化,进而能够更准确的判断是否需要进行网络切片更新,更近一步提高了通信效率。
在一些可能的实现方式中,该方法还包括:该第一网元向NSSF发送配置策略修改请求,该配置策略修改请求用于请求配置策略,该配置策略用于指示允许该终端使用的网络切片;该第一网元从该NSSF接收该配置策略修改请求的响应消息,该配置策略修改请求的响应消息包括该配置策略。
OM***可以向NSSF发送配置策略修改请求,该配置策略修改请求用于请求配置策略,NSSF接收到该配置策略修改请求后,对当前的配置策略进行更新,将更新后的配置策略通过配置策略修改请求的响应消息发送给OM***。OM***根据更新后的配置策略,确定更新后的配置策略是否对当前服务该终端的网络切片有影响。若更新后的配置策略指示的限制网络切片包括当前服务该终端的网络切片的情况下,OM***确定该终端的网络切片选择结果发生变化。即本申请实施例中OM***能够触发判断网络切片是否发生变化,从而有助于在有需要的情况下进行网络切片选择结果是否发生变化的判断,进而能够更准确的判断是否需要进行网络切片更新,更近一步提高了通信效率。
在一些可能的实现方式中,该指示信息包括该终端的标识。
指示信息可以通过终端的标识指示网络切片选择结果发生变化的终端,即本申请实施例提供了一种指示网络切片选择结果发生变化的终端的实现方式。
第三方面,提供了一种用于网络切片更新的方法,该方法包括:接入和移动管理功能AMF接收网络切片选择结果发生变化的区域信息;该AMF根据该区域信息,向终端发送网络切片更新信息,该网络切片更新信息用于该终端进行网络切片更新。
AMF接收网络切片选择结果发生变化的区域信息,并向该区域信息指示的区域内的终端发送网络切片更新信息,终端可以根据该网络切片更新信息进行网络切片更新,例如,重新进行注册得到新的网络切片选择结果,从而能够采用合适的网络切片进行通信,提高了通信效率。
在一些可能的实现方式中,该区域信息包括公用陆地移动网标识、跟踪区范围和AMF的标识中的至少一项。
AMF根据区域信息中的公用陆地移动网标识可以准确的确定出对应的区域,向该区域内的终端发送网络切片更新信息,可以减少向不需要进行网络切片更新检测的区域内的终端发送网络切片更新信息,节省了信令开销。
在一些可能的实现方式中,该AMF接收网络切片选择结果变化的区域信息包括:该AMF从操作维护OM***接收该区域信息;或者,该AMF从网络切片选择功能NSSF接收该区域信息。
AMF可以从OM***或NSSF接收到该区域信息,从而实现了多种提高通信效率的实现方式。
在一些可能的实现方式中,该方法还包括:该AMF向该NSSF发送订阅消息,该订 阅消息用于请求该NSSF在网络切片选择结果发生变化的情况下发送该区域信息;该AMF从该NSSF接收该区域信息包括:该AMF从该NSSF接收该订阅消息的响应消息,该订阅消息的响应消息携带该区域信息。
AMF向NSSF发送的区域信息可以携带在订阅消息中,避免了单独发送该区域信息,从而节省了资源开销。
第四方面,提供了一种用于网络切片更新的方法,该方法包括:第一网元确定网络切片选择结果发生变化的区域信息;该第一网元向接入和移动管理功能AMF发送该区域信息。
第一网元确定网络切片选择结果发生变化的区域信息,并向AMF发送该区域信息,使得AMF向该区域信息指示的区域内的终端发送网络切片更新信息,终端可以根据该网络切片更新信息进行网络切片更新,例如,重新进行注册得到新的网络切片选择结果,从而能够采用合适的网络切片进行通信,提高了通信效率。
在一些可能的实现方式中,该区域信息包括公用陆地移动网标识、跟踪区范围和AMF的标识中的至少一项。
第一网元向AMF发送区域信息,使得AFM可以根据区域信息中的公用陆地移动网标识可以准确的确定出对应的区域,向该区域内的终端发送网络切片更新信息,可以减少向不需要进行网络切片更新检测的区域内的终端发送网络切片更新信息,节省了信令开销。
在一些可能的实现方式中,该第一网元确定网络切片选择结果发生变化的区域信息包括:当允许终端使用的网络切片组发生变化时,该第一网元根据变化后的网络切片组,确定该网络切片选择结果发生变化的区域信息;或当网络切片组中允许终端使用的网络切片发生变化时,该第一网元根据变化后的网络切片组中允许终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息;或当网络切片组中禁止终端使用的网络切片发生变化时,该第一网元根据变化后的网络切片组中禁止终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息;或当禁止终端接入的AMF发生变化时,该第一网元根据变化后的禁止终端接入的AMF,确定该网络切片选择结果发生变化的区域信息;或当允许终端使用的网络切片发生变化时,该第一网元根据变化后的允许终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息。
是否允许终端使用的网络切片可以以网络切片组、网络切片组内的切片或单独的网络切片的方式进行划分。当允许终端使用的网络切片组、网络切片组内允许终端使用的网络切片、网络切片组中禁止终端使用的网络切片、允许终端使用的网络切片、禁止终端接入的AMF发生变化时,终端的切片选择结果可能会受到影响。这样第一网元确定出网络切片选择结果发生变化的区域信息,并将该区域信息告知AMF,这样有助于终端检测当前的网络切片选择结果是否需要更新,从而使得终端采用合适的网络切片选择结果进行通信,提高了通信效率。
在一些可能的实现方式中,该第一网元为操作维护OM***,在该第一网元根据变化后的允许终端使用的网络切片确定该网络切片选择结果发生变化的区域信息之前,该方法还包括:该第一网元向该NSSF发送配置策略修改请求,该配置策略修改请求用于请求配置策略,该配置策略用于指示允许终端使用的网络切片;该第一网元从该NSSF接收该配 置策略修改请求的响应消息,该配置策略修改请求的响应消息包括该配置策略。
OM***可以通过主动触发的方式,检测当前终端的网络切片选择结果是否可能受到影响。这样,OM***可以灵活的检测网络切片选择结果是否发生变化,提高了检测网络切片选择结果的灵活性。
在一些可能的实现方式中,该方法还包括:该第一网元从该AMF接收订阅消息,该订阅消息用于请求该NSSF在网络切片选择结果发生变化的情况下发送该区域信息;该第一网元发送该区域信息包括:该第一网元向该AMF发送该订阅消息的响应消息,该订阅消息的响应消息携带该区域信息。
AMF可以向NSSF发送订阅信息的响应消息,该订阅信息的响应消息携带区域信息,这样AMF可以避免了单独发送该区域信息,从而节省了资源开销。
第五方面,提供了一种装置,该装置可以是AMF,也可以是AMF内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块和发送模块,可选地,该装置还包括处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该接收模块和发送模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为接入网设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该装置还包括处理模块,接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第一方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第六方面,提供了一种网络切片更新的装置,该装置可以是第一网元,也可以是第一网元内的芯片。该第一网元可以为NSSF,也可以是OM***。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和发送模块。可选地,该装置还包括接收模块。所述接收模块和发送模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该芯片还包括处理模块。接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第七方面,提供了一种装置,该装置可以是AMF,也可以是AMF内的芯片。该装置具有实现上述三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:接收模块、发送模块和处理模块。所述接收模块和发送模块,例如可以是收发器、接收器、发射器中的至少一种,该接收模块和发送模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述三方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为接入网设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块、发送模块和处理模块,可选地,该装置还包括处理模块,接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述三方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第八方面,提供了一种网络切片更新的装置,该装置可以是第一网元,也可以是第一网元内的芯片。该装置具有实现上述第四方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和发送模块。可选地,该装置还包括接收模块。所述接收模块和发送模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第四方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:接收模块和发送模块,可选地,该芯片还包括处理模块。接收模块和发送模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第四方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第十方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第十一方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第三方面,及其任意可能的实现方式中的方法的指令。
第十二方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第四方面,及其任意可能的实现方式中的方法的指令。
第十三方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第十五方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第三方面,或其任意可能的实现方式中的方法。
第十六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第四方面,或其任意可能的实现方式中的方法。
第十七方面,提供了一种通信***,该通信***包括上述第五方面所述的装置和上述第六方面所述的装置。
第十八方面,提供了一种通信***,该通信***包括上述第七方面所述的装置和上述第八方面所述的装置。
基于上述技术方案,AMF接收用于指示网络切片选择结果发生变化的终端的指示信息,这样AMF可以向该终端发送网络切片更新信息,使得终端进行网络切片更新,进而终端能够采用合适的网络切片进行通信,从而提高通信效率。
附图说明
图1是本申请实施例的一种可能的网络架构示意图;
图2是本申请实施例的网络切片的示意图;
图3是传统方案中网络切片请求的示意性流程图;
图4是传统方案中的选择网络切片选择的示意图;
图5是本申请一个实施例的用于网络切片更新的方法的示意性流程图;
图6是本申请另一个实施例的用于网络切片更新的方法的示意性流程图;
图7是本申请一个实施例的用于网络切片更新的装置的示意性框图;
图8是本申请一个实施例的用于网络切片更新的装置的示意性结构图;
图9是本申请另一个实施例的用于网络切片更新的装置的示意性框图;
图10是本申请另一个实施例的用于网络切片更新的装置的示意性结构图;
图11是本申请又一个实施例的用于网络切片更新的装置的示意性框图;
图12是本申请又一个实施例的用于网络切片更新的装置的示意性结构图;
图13是本申请又一个实施例的用于网络切片更新的装置的示意性框图;
图14是本申请又一个实施例的用于网络切片更新的装置的示意性结构图;
图15是本申请一个具体实施例的用于网络切片更新的装置的示意图;
图16是本申请一个具体实施例的用于网络切片更新的方法的示意性流程图;
图17是本申请另一个具体实施例的用于网络切片更新的方法的示意性流程图;
图18是本申请另一个具体实施例的用于网络切片更新的方法的示意性流程图;
图19是本申请另一个具体实施例的用于网络切片更新的方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system for mobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、未来的第五代(5th generation,5G)***或新无线(new radio,NR)等。
本申请实施例中的终端可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的接入网设备可以是用于与终端通信的设备,该接入网设备可以是全球移动通信(global system for mobile communications,GSM)***或码分多址(code division  multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备,5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
在本申请实施例中,终端或接入网设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或接入网设备,或者,是终端或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例的一种可能的网络架构示意图。以5G网络架构为例,该网络架构包括:终端101、(无线)接入网设备(radio access network,(R)AN)102、用户面功 能(user plane function,UPF)网元103、数据网络(data network,DN)网元104、认证服务器功能(authentication server function,AUSF)网元105、AMF网元106、会话管理功能(session management function,SMF)网元107、网络开放功能(network exposure function,NEF)网元108、网络功能库功能(network repository function,NRF)网元109、策略控制功能模块(policy control function,PCF)网元110、统一数据管理(udified data management,UDM)网元111和NSSF网元112。下述将UPF网元103、DN网元104、AUSF网元105、AMF网元106、SMF网元107、NEF网元108、NRF网元109、策略控制功能(policy control function,PCF)网元110、UDM网元111、NSSF网元112简称为UPF103、DN104、AUSF105、AMF106、SMF107、NEF108、NRF109、PCF110、UDM111、NSSF112。
其中,终端101,主要通过无线空口接入5G网络并获得服务,终端通过空口和RAN进行交互,通过非接入层信令(non-access stratum,NAS)和核心网的AMF进行交互。RAN102负责终端接入网络的空口资源调度和空口的连接管理。UPF103负责终端中用户数据的转发和接收。例如,UPF可以从数据网络接收用户数据,并通过接入网设备传输给终端,还可以通过接入网设备从终端接收用户数据,转发到数据网络。UPF103中为终端提供服务的传输资源和调度功能由SMF网元管理控制的。AUSF105属于核心网控制面网元,主要负责对用户的鉴权、授权以保证用户是合法用户。AMF106属于核心网网元,主要负责信令处理部分,例如:接入控制、移动性管理、附着与去附着以及网关选择等功能,且AMF106还可以在为终端中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。SMF107负责用户面网元选择,用户面网元重定向,因特网协议(internet protocol,IP)地址分配,承载的建立、修改和释放以及服务质量(quality of service,QoS)控制。NEF108属于核心网控制面网元,用于负责移动网络能力的对外开放。NRF109属于核心网控制面网元,用于负责网络功能的服务能力的动态注册以及网络功能发现。PCF110主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。UDM111属于核心网控制面网元,归属用户服务器,可以用于统一数据管理,支持3GPP认证、用户身份操作、权限授予、注册和移动性管理等功能。NSSF112用于完成对终端的网络切片选择功能。NSSF112属于核心网控制面实体,用于负责目标NSI的选择。
在该网络架构中,Nausf为AUSF105展现的基于服务的接口,Namf为AMF106展现的基于服务的接口,Nsmf为SMF107展现的基于服务的接口,Nnef为NEF108展现的基于服务的接口,Nnrf为NRF109展现的基于服务的接口,Npcf为PCF110展现的基于服务的接口,Nudm为UDM111展现的基于服务的接口,Nnssf为NSSF112展现的基于服务的接口。N1为UE101和AMF106之间的参考点,N2为(R)AN102和AMF106的参考点,用于非接入层(non-access stratum,NAS)消息的发送等;N3为(R)AN102和UPF103之间的参考点,用于传输用户面的数据等;N4为SMF107和UPF103之间的参考点,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF103和DN104之间的参考点,用于传输用户面的数据等。
下面对本申请涉及到的术语进行介绍。
网络切片组标识(configured NSSAI):
终端为每个运营商网络保存一个网络切片组标识,当终端在该运营商的网络中时,终 端可以向接入网设备请求使用网络切片组标识中的网络切片标识对应的网络切片。网络切片组标识包括的网络切片标识可以是接入网设备配置的。网络切片标识可以是S-NSSAI。
允许(allowed)/禁止(rejected)NSSAI:
接入网设备可以向终端发送网络切片组标识中的allowed/rejected NSSAI,终端可以根据该allowed/rejected NSSAI获知对应的网络切片是否可以使用。
网络切片实例(network slice instance,NSI):
由一组网络功能(network function,NF)实例组成,提供了可部署的网络切片功能,每个NF实例代表了一组计算/存储/网络资源。
网络切片选择结果:
每个终端可以对应一个或多个网络切片选择结果,该网络切片选择结果可以包括configured NSSAI、网络切片组中的allowed/rejected NSSAI和AMF标识中的至少一项。
图2示出了网络切片的示意图。例如,网络切片A包括NSI 1,网络切片B包括NSI1和NSI 2,网络切片C包括NSI 3。不同的网络切片提供不同的业务,例如,上网业务、语音业务、超低时延业务或物联网业务等。
图3示出了传统方案中网络切片请求的示意性流程图。
301,AMF向NSSF发送第一请求消息。
其中,该第一请求消息包括AMF所服务区域的跟踪区标识(tracking area identity,TAI)和AMF所服务区域的跟踪区支持的S-NSSAI列表。第一请求消息可以为nssf_NSSelection_get_request。
应理解,跟踪区支持的S-NSSAI列表也可以称为“TAI NSSAI”。
302,NSSF向AMF发送所述第一请求消息的响应消息。
其中,该第一请求消息的响应消息用于指示NSSF接收到该第一请求消息。
303,终端向AMF发送第二请求消息。
其中,该第二请求消息用于为该终端请求能够使用的网络切片。
此外,该第二请求消息还可以携带终端请求使用的网络切片的网络切片标识(例如,requested NSSAI)、签约网络切片的网络切片标识、终端标识(例如,Home-PLMN-ID of UE)和TAI等。
应理解,该第二请求消息可以是“注册请求消息(registration request information)”。
304,AMF向UDM发送第三请求消息。
其中,该第三请求消息用于请求获取终端签约的网络切片(例如,签约网络切片标识(subscribed NSSAI))。
305,UDM向AMF发送第三请求消息的响应消息。
其中,该第三请求消息的响应消息携带该终端签约的一组网络切片。
306,AMF向NSSF发送第四请求消息。
其中,该第四请求消息用于为终端请求合适的网络切片。
具体地,该第四请求消息可以携带该第二请求消息中的信息。该第四请求消息还可以携带第一请求消息中的TAI NSSAI。
应理解,该第二请求消息中的信息和第一请求消息中的TAI NSSAI可以作为AMF的输入信息(AMF input information)。AMF输入信息可以指示AMF支持哪些TAI,以及 每个TAI支持哪些TAI NSSAI。
307,NSSF根据该第四请求消息,以及结合本地配置策略(local configuration)和网络切片负载等级信息(load level information),为终端选择合适的网络切片选择结果。
示例性地,本地配置策略用于指示终端所属的TAI支持哪些TAI NSSAI,网络切片负载等级信息可以指示每个网络切片的负载状况。这样NSSF可以根据第四请求消息中携带的TAI NSSAI和该本地配置策略指示的TAI NSSAI进行匹配,例如,NSSF可以找到交集的TAI NSSAI。此外,NSSF还可以再根据交集的TAI NSSAI的负载状况最终选择出负载较少的TAI NSSAI。
其中,该网络切片选择结果可以包括configured NSSAI、网络切片组中的allowed/rejected NSSAI和AMF标识中的至少一项。
具体地,该本地配置策略可以是从操作维护(operation maintenance,OM)***中获取的,负载等级信息可以是从网络数据分析功能(network data analytics function,NWDAF)网元获取的。例如,如图4所示。为方便描述,下述实施例中可以将OM***简称为“OM”。
应理解,该网络切片选择结果中的AMF标识可以是以AMF标识列表的形式存在。
308,NSSF向AMF发送该第四请求消息的响应消息。
其中,该第四请求消息的响应消息携带网络切片选择结果。
309,AMF确定该第四请求消息的响应消息中的AMF标识列表中是否存在该AMF的标识,若存在,则执行步骤310,若不存在,则向AMF标识列表中包括的AMF标识对应的AMF发送该网络切片选择结果。
310,AMF向终端发送该第二请求消息的响应消息。
其中,该第二请求消息的响应消息携带该网络切片选择结果。
也就是说,传统方案中,NSSF可以为终端确定网络切片选择结果,并通过AMF向终端发送该网络切片选择结果,然而,网络切片选择结果也会发生变化(例如,决策算法发生变化或决策算法的输入发生变化的情况下),AMF或终端并不能获知该网络切片选择结果的变化,使得通信效率降低。
图5示出了本申请一个实施例的用于网络切片更新的方法的示意性流程图。
501,第一网元确定终端的网络切片选择结果发生变化。
具体地,每个终端对应一个或多个网络切片选择结果,例如,第一终端的网络切片选择结果是为该第一终端选择的网络切片。
可选地,该第一网元可以是NSSF,也可以是OM***。
在一个实施例中,该第一网元为NSSF,该NSSF可以从AMF接收终端的标识,根据该终端的标识和映射关系,确定终端的网络切片选择结果是否发生变化,该映射关系为终端的标识和网络切片选择结果之间的映射关系。
具体地,至少一个终端的标识和至少一个网络切片选择结果具有映射关系,由于该映射关系可能是实时变化的,AMF可以向NSSF发送终端的标识,以触发NSSF检测该终端的标识对应的终端的网络切片选择结果是否发生变化。NSSF可以根据检测到的终端的标识和该映射关系确定出当前该终端的网络切片选择结果。再确定当前该终端的网络切片选择结果与在这之前该终端的网络切片选择结果是否一致。若一致,则该终端的网络切片选择结果没有发生变化;若不一致,则该终端的网络切片选择结果发生变化。这样NSSF可 以根据AMF的请求检测对应的终端的网络切片选择结果是否发生变化,从而有助于及时告知终端选择更加合适的网络切片,提高了通信效率。
需要说明的是,该映射关系的变化可以能是决策算法的输出结果发生变化导致的。其中,决策算法的输出结果发生变化可以是决策算法的输入发生变化或决策算法本身发生变化导致的,或者还可以其他原因导致的,本申请对此不进行限定。
应理解,该终端的标识可以携带在“Nnssf_NSSelection_Get_Request”消息中。
可选地,该终端的标识可以是终端的身份标识(identity,ID)。
可选地,终端的标识还可以是用户永久标识(subscription permanent identifier,SUPI)、国际移动用户识别码(international mobile subscriber identity,IMSI)或移动台国际综合业务数字网(mobile station international Integrated Services Digital Network,MSISDN)等。
需要说明的是,终端的标识信息可以单独发送,也可以是携带在其他消息(例如,Nnssf_NSSelection_Get_Request消息)中发送,本申请对此不进行限定。
在另一个实施例中,该第一网元为OM***,当允许终端使用的网络切片发生变化,且变化后的允许终端使用的网络切片不包括该终端所选择的网络切片时,OM***可以确定该终端的网络切片选择结果发生变化。
具体地,OM***在获知当前能够允许终端使用的网络切片发生变化时,判断该变化是否影响终端已经选择的网络切片。若OM***确定出当前允许终端使用的网络切片不包括终端所选择的网络切片,则OM***可以确定该终端的网络切片选择结果发生变化。这样可以避免网络切片选择结果发生变化但并影响终端使用的网络切片时仍然认为终端的网络切片选择结果发生变化的情况,本申请实施例能够更准确的判断终端的网络切片选择结果是否发生变化,进而能够更准确的判断是否需要进行网络切片更新,更近一步提高了通信效率。
可选地,OM***可以向NSSF发送配置策略修改请求,该配置策略修改请求用于请求配置策略,NSSF接收到该配置策略修改请求后,对当前的配置策略进行更新,将更新后的配置策略通过配置策略修改请求的响应消息发送给OM***。OM***根据更新后的配置策略,确定更新后的配置策略是否对当前服务该终端的网络切片有影响。若更新后的配置策略指示的限制网络切片包括当前服务该终端的网络切片的情况下,OM***确定该终端的网络切片选择结果发生变化。
需要说明的是,配置策略具体可以是直接指示该终端能够使用的网络切片。或者该配置策略可以是指示该终端不能够使用的网络切片,进而OM***可以间接的获知终端能够使用的网络切片。该配置策略可以是针对全部终端的网络切片的限制,也可以是仅针对部分终端的网络切片的限制,本申请对此不进行限定。例如,该配置策略指示某一类终端能够使用的网络切片或者不能使用的网络切片。
还需要说明的是,该配置策略还可以指示用户能够使用的AMF,具体可以是只限定部分用户能够使用的AMF。
应理解,NSSF的配置策略限制的用户可以是本网用户、漫游用户、本省用户、要人(very important person,VIP)用户或者紧急呼叫用户等,本申请对此不进行限定。
还应理解,NSSF在更新配置策略后,若更新后的配置策略指示的限制网络切片包括当前服务该终端的网络切片的情况下,NSSF可以为该终端重新分配一个网络切片。
502,该第一网元向AMF发送指示信息。
其中,该指示信息用于指示网络切片选择结果发生变化的终端。
相应地,该AMF从该第一网元接收该指示信息。
具体地,若NSSF确定终端的网络切片选择结果是否发生变化,则NSSF向AMF发送该指示信息。若OM***确定终端的网络切片选择结果是否发生变化,则OM***向AMF发送该指示信息。
可选地,该指示信息包括网络切片选择结果发生变化的终端的标识。
应理解,该指示信息可以是“Nnssf_NSSelection_Notify_Request消息”中的信息。
可选地,在第一网元为NSSF的情况下,NSSF可以从AMF接收订阅消息,该订阅消息用于请求该NSSF在该终端的网络切片选择结果发生变化的情况下告知该AMF。相应地,AMF从NSSF接收到该订阅消息后,在检测到终端的网络切片选择结果受影响的情况下,通过该订阅消息的响应消息携带该指示信息。
需要说明的是,该订阅消息还可以携带AMF标识信息和发送该订阅消息的响应消息所需的地址(例如,回叫信号(callback)统一资源标识符(uniform resource identifier,URI)地址)。其中,AMF标识信息用于标识该AMF。
应理解,该订阅消息可以是“Nnssf_NSSelection_Subscribe_Request”,该订阅消息的响应消息可以是“Nnssf_NSSelection_Subscribe_Response”。
可选地,NSSF从AMF接收用于根据终端的标识和映射关系确定终端的网络切片选择结果是否发生变化的终端标识可以携带在该订阅消息中,避免了单独发送该终端标识,从而节省了资源开销。
可选地,NSSF还可以向AMF发送网络切片组标识(configured NSSAI)、网络切片组中允许或禁止网络切片的标识(allowed/rejected NSSAI)和AMF标识中的至少一项。
具体地,AMF标识可以是以AMF标识列表的形式存在,AMF(例如,称为“第一AMF”)可以确定自己的标识是否在AMF标识列表中存在。若存在,则由第一AMF进行步骤503;若不存在,则向AMF标识列表中包括的AMF标识对应的AMF(例如,称为“第二AMF”)发送该指示信息,并由第二AMF执行步骤503。执行步骤503的AMF还可以将网络切片组标识和网络切片组中允许或禁止网络切片的标识发送给终端,终端可以根据网络切片组标识和网络切片组中允许或禁止网络切片的标识确定能够使用哪些网络切片,或者不能使用哪些网络切片,这样终端能够更进一步选择合适的网络切片,即更进一步提高通信效率。
应理解,该网络切片组标识、网络切片组中允许或禁止网络切片的标识由第一网元发送到AMF时可以携带在该指示信息中,也可以是单独发送,本申请对此不进行限定。
可选地,AMF在接收到该指示信息后,还向NSSF或OM***反馈该指示信息的响应信息,该响应信息用于指示接收到该终端的标识。
应理解,该指示信息的响应信息可以是一条消息,例如,“Nnssf_NSSelection_Notify_Response”或“OM_AMF_NSSelection_Notify_Response”。
503,AMF向该终端发送网络切片更新信息。
其中,该网络切片更新信息可以用于指示该终端进行网络切片更新,或者用于该终端进行网络切片更新。
示例性地,AMF在接收到用于指示网络切片选择结果发生变化的终端的指示信息之后,可以向该终端发送网络切片更新信息,使得该终端进行网络切片更新,进而该终端能够采用合适的网络切片进行通信,从而提高通信效率。
可选地,NSSF为终端选择新的网络切片,并通过AMF向终端发送网络切片选择结果,该网络切片选择结果可以是新的网络切片的信息,例如,新的网络切片的标识。
具体地,NSSF为终端选择新的网络切片,并向AMF发送该新的网络切片的信息,AMF向终端发送网络切片更新信息,该网络切片更新信息包括该新的网络切片的信息。这样终端可以采用新的网络切片进行通信,节省了确定新的网络切片的时延,从而更进一步提高了通信效率。
应理解,该NSSF向AMF发送该网络切片选择结果时,该网络切片选择结果可以携带在“Nnssf_NSSelection_Notify_Request消息”中。AMF向终端发送该网络切片选择结果时,该网络切片选择结果可以携带在“configuration update command消息”中。
图6示出了本申请另一个实施例的用于网络切片更新的方法的示意性流程图。
需要说明的是,在不作特别说明的情况下,本申请实施例中与图5所示的实施例中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
601,第一网元确定网络切片选择结果发生变化的区域信息。
可选地,区域信息包括公用陆地移动网(public land mobile network,PLMN)标识、跟踪区标识(tracking area identity,TAI)范围和AMF的标识中的至少一项。
具体地,该PLMN标识可以指示该PLMN标识对应的区域范围,TAI范围可以指示该TAI标识对应的跟踪区的范围,AMF的标识可以指示该AMF标识对应的AMF服务的范围。
可选地,该第一网元可以是NSSF,也可以是OM***。
在一个示例中,步骤601可以替换为或者包括:当允许终端使用的网络切片组发生变化时,第一网元可以根据变化后的网络切片组确定网络切片选择结果发生变化的区域信息。
具体地,是否允许终端使用的网络切片可以以网络切片组的方式进行划分。若允许终端使用的网络切片组发生变化时,则变化后的网络切片组可能会对该终端当前使用的网络切片选择结果产生影响,即第一网元可以根据变化后的网络切片组确定出网络切片选择结果发生变化的区域信息,并将该区域信息告知AMF,这样有助于终端检测当前的网络切片选择结果是否需要更新,从而使得终端采用合适的网络切片选择结果进行通信,提高了通信效率。
在另一个示例中,步骤601可以替换为或者包括:当网络切片组中允许终端使用的网络切片发生变化时,第一网元可以根据变化后的网络切片组中允许终端使用的网络切片确定网络切片选择结果发生变化的区域信息。
具体地,是否允许终端使用的网络切片可以是对一个网络切片组中的网络切片的划分。若网络切片组中允许终端使用的网络切片发生变化,则变化的网络切片组中允许终端使用的网络切片可能会对该终端当前使用的网络切片选择结果产生影响,即第一网元可以根据网络切片组中允许终端使用的网络切片确定出网络切片选择结果发生变化的区域信息,并将该区域信息告知AMF,这样有助于终端检测当前的网络切片选择结果是否需要 更新,从而使得终端采用合适的网络切片选择结果进行通信,提高了通信效率。
在另一个示例中,步骤601可以替换为或者包括:当网络切片组中禁止终端使用的网络切片发生变化时,所述第一网元根据变化后的网络切片组中禁止终端使用的网络切片,确定所述网络切片选择结果发生变化的区域信息。
具体地,是否允许终端使用的网络切片可以是对一个网络切片组中的网络切片的划分。若网络切片组中禁止终端使用的网络切片发生变化,则变化的网络切片组中禁止终端使用的网络切片可能会对该终端当前使用的网络切片选择结果产生影响,即第一网元可以根据网络切片组中禁止终端使用的网络切片确定出网络切片选择结果发生变化的区域信息,并将该区域信息告知AMF,这样有助于终端检测当前的网络切片选择结果是否需要更新,从而使得终端采用合适的网络切片选择结果进行通信,提高了通信效率。
在另一个示例中,步骤601可以替换为或者包括:当禁止终端接入的AMF发生变化时,所述第一网元根据变化后的禁止终端接入的AMF,确定所述网络切片选择结果发生变化的区域信息。
具体地,当禁止终端接入的AMF发生变化时,终端的切片选择结果可能会受到影响,进而确定出受影响的区域信息,并将该区域信息告知AMF,这样有助于终端检测当前的网络切片选择结果是否需要更新,从而使得终端采用合适的网络切片选择结果进行通信,提高了通信效率。
在另一个示例中,步骤601可以替换为或者包括:当允许终端使用的网络切片发生变化时,该第一网元根据变化的允许终端使用的网络切片,确定网络切片选择结果发生变化的区域信息。
具体地,允许终端使用的网络切片可以不依赖于网络切片组,例如,允许终端使用的网络切片使用的网络切片可以是不同网络切片组中的网络切片。若允许终端使用的网络切片发生变化时,则变化后的网络切片可能会对该终端当前使用的网络切片选择结果产生影响,即第一网元可以根据变化后的网络切片确定出网络切片选择结果发生变化的区域信息,并将该区域信息告知AMF,这样有助于终端检测当前的网络切片选择结果是否需要更新,从而使得终端采用合适的网络切片选择结果进行通信,提高了通信效率。
可选地,第一网元可以为NSSF,当AMF输入信息、本地配置策略或网络切片负载等级信息发生变化时,允许终端使用的网络切片组、网络切片组中允许终端使用的网络切片、网络切片组中禁止终端使用的网络切片、禁止终端接入的AMF或允许终端使用的网络切片中的任一项可能会发生变化。这样在上述至少一项发生变化后,步骤601具体可以包括:OM***根据变化后的允许终端使用的网络切片组、变化后的网络切片组中允许终端使用的网络切片、变化后的网络切片组中禁止终端使用的网络切片、变化后的禁止终端接入的AMF、或变化后的允许终端使用的网络切片,确定网络切片选择结果发生变化的区域信息。
应理解,AMF输入信息、本地配置策略和网络切片负载等级信息与图3中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
可选地,该第一网元为OM***,当配置策略发生变化时,允许终端使用的网络切片组、网络切片组中允许终端使用的网络切片、网络切片组中禁止终端使用的网络切片、禁止终端接入的AMF或允许终端使用的网络切片中的任一项可能会发生变化。这样在上述 至少一项发生变化后,步骤601具体可以包括:OM***根据变化后的允许终端使用的网络切片组、变化后的网络切片组中允许终端使用的网络切片、变化后的网络切片组中禁止终端使用的网络切片、变化后的禁止终端接入的AMF、或变化后的允许终端使用的网络切片,确定网络切片选择结果发生变化的区域信息。
具体地,配置策略可以包括用于指示允许终端使用的网络切片的信息,当配置策略发生变化时,一些终端的网络切片选择结果可能受到影响,即网络切片选择结果发生变化。
进一步可选地,OM***向NSSF发送用于请求配置策略的配置策略修改请求,并接收到该NSSF反馈的配置策略修改请求的响应消息,该配置策略修改请求的响应消息包括该配置策略。也就是说,OM***可以通过主动触发的方式,检测当前终端的网络切片选择结果是否可能受到影响。这样,OM***可以灵活的检测网络切片选择结果是否发生变化,提高了检测网络切片选择结果的灵活性。
应理解,该配置策略修改请求可以是“OM_NSSF_Configuration_Modify_Request”,该配置策略的响应消息可以是“OM_NSSF_Configuration_Modify_Response”。
602,该第一网元向AMF发送该区域信息。
相应地,AMF从该第一网元接收该区域信息。
具体地,AMF根据该区域信息可以确定该区域内的终端。例如,AMF结合已经注册的终端的上下文信息,可以匹配出区域信息指示的区域内的终端。
需要说明的是,该区域信息可以单独发送,也可以是携带在其他消息(例如,Nnssf_NSSelection_Notify_Request消息或OM_AMF_NSSelection_Notify_Request消息)中,本申请对此不进行限定。
可选地,在第一网元为NSSF的情况下,NSSF可以从AMF接收订阅消息,该订阅消息用于请求该NSSF在该终端的网络切片选择结果发生变化的情况下发送区域信息。相应地,AMF从NSSF接收到该订阅消息后,在检测到终端的网络切片选择结果受影响的情况下,通过该订阅消息的响应消息携带该区域信息。
应理解,该订阅消息可以是“Nnssf_NSSelection_Subscribe_Request”,该订阅消息的响应消息可以是“Nnssf_NSSelection_Subscribe_Response”。
可选地,AMF在接收到该区域信息后,还可以向NSSF或OM***反馈该区域信息的响应信息,该响应信息用于指示接收到该区域信息。
应理解,该区域信息的响应信息可以是一条消息,例如,“Nnssf_NSSelection_Notify_Response”或“OM_AMF_NSSelection_Notify_Response”。
603,AMF向终端发送网络切片更新信息。
其中,该网络切片更新信息用于该终端进行网络切片更新。
相应地,该终端接收该网络切片更新信息。例如,该终端可以是图6中的终端1。
具体地,AMF向该区域信息指示的区域内的终端发送网络切片更新信息,终端可以根据该网络切片更新信息进行网络切片更新,例如,重新进行注册得到新的网络切片选择结果,从而能够采用合适的网络切片进行通信,提高了通信效率。
需要说明的是,AMF可以向一个或多个终端发送网络切片更新信息,向每个终端发送的网络切片更新信息用于对应的终端进行网络切片更新。例如,AMF可以向终端1、终端2和终端3中的至少一个发送网络切片更新信息。为方便描述,下述实施例以一个终端 为例进行说明,但本申请并不限于此。
应理解,该网络切片更新信息可以是一条消息,例如,可以是“configuration update command”。
可选地,AMF可以为该终端选择新的网络切片选择结果,并通过AMF向对应终端发送新的网络切片选择结果。其中,AMF可以将新的网络切片选择结果携带在该网络切片更新信息中。这样终端可以采用新的网络切片选择结果进行通信,节省了确定新的网络切片选择结果的时延,从而更进一步提高了通信效率。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由接入网设备实现的方法和操作,也可以由可用于接入网设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图5至图6,以及图15-图19详细说明了本申请实施例提供的方法。以下,结合图7至图18详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图7示出了本申请实施例的用于网络切片更新的装置700的示意性框图。
应理解,该装置700可以对应于图5、图16或图17所示的实施例中的AMF,可以具有方法中的AMF的任意功能。该装置700,包括接收模块710和发送模块720。
该接收模块710,用于接收指示信息,该指示信息用于指示网络切片选择结果发生变化的终端;
该发送模块720,用于向该终端发送网络切片更新信息,该网络切片更新信息用于该终端进行网络切片更新。
可选地,该接收模块710具体用于:从操作维护OM***接收该指示信息;或者,从网络切片选择功能NSSF接收该指示信息。
可选地,该接收模块710,还用于在接入和移动管理功能AMF从该NSSF接收该指示信息之前,向该NSSF发送该终端的标识,该终端的标识用于该NSSF确定该终端的网络切片选择结果是否发生变化。
可选地,该发送模块720,还用于向该NSSF发送订阅消息,该订阅消息用于请求该NSSF在该终端的网络切片选择结果发生变化的情况下发送该指示信息,且该订阅消息包括该终端的标识;该接收模块710具体用于:从该NSSF接收该订阅消息的响应消息,该订阅消息的响应消息携带该指示信息。
可选地,该指示信息包括该终端的标识。
图8示出了本申请实施例提供的网络切片更新的装置800,该装置800可以为图5中所述的AMF。该装置可以采用如图8所示的硬件架构。该装置可以包括处理器810和收发器830,可选地,该装置还可以包括存储器840,该处理器810、收发器830和存储器840通过内部连接通路互相通信。图7中发送模块720和接收模块710所实现的相关功能可以由处理器810控制收发器830来实现。
可选地,处理器810可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对网络切片更新的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器810可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器830用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器840包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器840用于存储相关指令及数据。
存储器840用于存储AMF的程序代码和数据,可以为单独的器件或集成在处理器810中。
具体地,所述处理器810用于控制收发器与AMF进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置800还可以包括输出设备和输入设备。输出设备和处理器810通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器 (liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图8仅仅示出了网络切片更新的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的AMF都在本申请的保护范围之内。
在一种可能的设计中,该装置800可以是芯片,例如可以为可用于AMF中的通信芯片,用于实现AMF中处理器810的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是AMF也可以是电路。该装置可以用于执行上述方法实施例中由AMF所执行的动作。
图9示出了本申请实施例的用于网络切片更新的装置900的示意性框图。
应理解,该装置900可以对应于图5所示的实施例中的第一网元,该第一网元可以具有方法中的第一网元的任意功能。该第一网元可以为NSSF或OM。具体地,在第一网元为NSSF时,该装置900可以对应于图16中的NSSF。在第一网元为OM时,该装置900可以对应于图17中的OM。该装置900,包括处理模块910和发送模块920。
处理模块910,用于确定终端的网络切片选择结果发生变化;
发送模块920,用于发送指示信息,该指示信息用于指示该终端。
可选地,该装置900还包括:接收模块930,用于接收该终端的标识;该处理模块具体用于:根据该终端的标识和映射关系,确定该终端的网络切片选择结果发生变化,该映射关系为终端的标识和网络切片选择结果之间的映射关系。
可选地,该接收模块930具体用于:从接入和移动管理功能AMF接收订阅消息,该订阅消息用于请求网络切片选择功能NSSF在该终端的网络切片选择结果发生变化的情况下发送该指示信息,该订阅消息携带该终端的标识;该发送模块920具体用于:向该AMF发送订阅响应消息,该订阅响应消息携带该指示信息。
可选地,该处理模块910具体用于:当允许该终端使用的网络切片发生变化,且变化后的允许该终端使用的网络切片不包括该终端选择的网络切片时,确定该终端的网络切片选择结果发生变化。
可选地,该发送模块920,还用于向NSSF发送配置策略修改请求,该配置策略修改请求用于请求配置策略,该配置策略用于指示允许该终端使用的网络切片;接收模块930,用于从该NSSF接收该配置策略修改请求的响应消息,该配置策略修改请求的响应消息包括该配置策略。
可选地,该指示信息包括该终端的标识。
图10示出了本申请实施例提供的网络切片更新的装置1000,该装置1000可以为图5中所述的第一网元。该装置可以采用如图10所示的硬件架构。该装置可以包括处理器1010和收发器1020,可选地,该装置还可以包括存储器1030,该处理器1010、收发器1020 和存储器1030通过内部连接通路互相通信。图9中的处理模块910所实现的相关功能可以由处理器1010来实现,发送模块920和接收模块930所实现的相关功能可以由处理器1010控制收发器1020来实现。
可选地,处理器1010可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对网络切片更新的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1010可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1020用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1030包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1030用于存储相关指令及数据。
存储器1030用于存储第一网元的程序代码和数据,可以为单独的器件或集成在处理器1010中。
具体地,所述处理器1010用于控制收发器与第一网元进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1000还可以包括输出设备和输入设备。输出设备和处理器1010通信,可以以多种方式来显示信息。例如,输出设备可以是LCD,LED显示设备,CRT显示设备,或投影仪(projector)等。输入设备和处理器1001通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图10仅仅示出了网络切片更新的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的第一网元都在本申请的保护范围之内。
在一种可能的设计中,该装置1000可以是芯片,例如可以为可用于第一网元中的通信芯片,用于实现第一网元中处理器1010的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是第一网元也可以是电路。该装置可以用于执行上述方法实施例中由第一网元所执行的动作。
图11示出了本申请实施例的网络切片更新的装置1100的示意性框图。
应理解,该装置1100可以对应于图6、图18或图19所示的实施例中的AMF,可以具有方法中的AMF的任意功能。该装置1100,包括接收模块1110和处理模块1120。
该接收模块1110,用于接收网络切片选择结果发生变化的区域信息;
该处理模块1120,用于根据该区域信息,通过发送模块向终端发送网络切片更新信 息,该网络切片更新信息用于该终端进行网络切片更新。
可选地,该区域信息包括公用陆地移动网标识、跟踪区范围和接入和移动管理功能AMF的标识中的至少一项。
可选地,该接收模块1110具体用于:从操作维护OM***接收该区域信息;或者,从网络切片选择功能NSSF接收该区域信息。
可选地,该装置1100还包括发送模块1130,该发送模块1130用于向该NSSF发送订阅消息,该订阅消息用于请求该NSSF在网络切片选择结果发生变化的情况下发送该区域信息;该接收模块1110具体用于:从该NSSF接收该订阅消息的响应消息,该订阅消息的响应消息携带该区域信息。
图12示出了本申请实施例提供的网络切片更新的装置1200,该装置1200可以为图6中所述的AMF。该装置可以采用如图12所示的硬件架构。该装置可以包括处理器1210和收发器1230,可选地,该装置还可以包括存储器1240,该处理器1210、收发器1230和存储器1240通过内部连接通路互相通信。图11中的处理模块1120所实现的相关功能可以由处理器1210来实现,收发模块1120所实现的相关功能可以由处理器1210控制收发器1230来实现。
可选地,处理器1210可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对网络切片更新的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1210可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1230用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1240包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1240用于存储相关指令及数据。
存储器1240用于存储AMF的程序代码和数据,可以为单独的器件或集成在处理器1210中。
具体地,所述处理器1210用于控制收发器与AMF进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1200还可以包括输出设备和输入设备。输出设备和处理器1210通信,可以以多种方式来显示信息。例如,输出设备可以是LCD,LED显示设备,CRT显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图12仅仅示出了网络切片更新的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的AMF都在本申请的保护范围之内。
在一种可能的设计中,该装置1200可以是芯片,例如可以为可用于AMF中的通信芯片,用于实现AMF中处理器1210的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是AMF也可以是电路。该装置可以用于执行上述方法实施例中由AMF所执行的动作。
图13示出了本申请实施例的网络切片更新的装置1300的示意性框图。
应理解,该装置1300可以对应于图6所示的实施例中的第一网元,可以具有方法中的第一网元的任意功能。该第一网元可以为NSSF或OM。具体地,在第一网元为NSSF时,该装置1300可以对应于图18中的NSSF。在第一网元为OM时,该装置1300可以对应于图19中的OM。该装置1300,包括处理模块1310和发送模块1320。
处理模块1310,用于确定网络切片选择结果发生变化的区域信息;
发送模块1320,用于向接入和移动管理功能AMF发送该区域信息。
可选地,该区域信息包括公用陆地移动网标识、跟踪区范围和AMF的标识中的至少一项。
可选地,该处理模块1310具体用于:当允许终端使用的网络切片组发生变化时,根据变化后的网络切片组,确定该网络切片选择结果发生变化的区域信息;或当网络切片组中允许终端使用的网络切片发生变化时,根据变化后的网络切片组中允许终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息;或当网络切片组中禁止终端使用的网络切片发生变化时,根据变化后的网络切片组中禁止终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息;或当禁止终端接入的AMF发生变化时,该第一网元根据变化后的禁止终端接入的AMF,确定该网络切片选择结果发生变化的区域信息;或当允许终端使用的网络切片发生变化时,根据变化后的允许终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息。
可选地,该发送模块1320,还用于在根据变化后的允许终端使用的网络切片确定该网络切片选择结果发生变化的区域信息之前,向网络切片选择功能NSSF发送配置策略修改请求,该配置策略修改请求用于请求配置策略,该配置策略包括用于指示允许终端使用的网络切片的信息;该装置还包括接收模块1330,该接收模块1330用于从该NSSF接收该配置策略修改请求的响应消息,该配置策略修改请求的响应消息包括该配置策略。
可选地,该接收模块1330,还用于从该AMF接收订阅消息,该订阅消息用于请求该NSSF在网络切片选择结果发生变化的情况下发送该区域信息;该发送模块1320具体用于:向该AMF发送该订阅消息的响应消息,该订阅消息的响应消息携带该区域信息。
图14示出了本申请实施例提供的网络切片更新的装置1400,该装置1400可以为图6中所述的第一网元。该装置可以采用如图14所示的硬件架构。该装置可以包括处理器1410和收发器1420,可选地,该装置还可以包括存储器1430,该处理器1410、收发器1420和存储器1430通过内部连接通路互相通信。图13中的处理模块1310所实现的相关功能可以由处理器1410来实现,发送模块1320和接收模块1330所实现的相关功能可以由处理器1410控制收发器1420来实现。
可选地,处理器1410可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对网络切片更新的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1410可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1420用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1430包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1430用于存储相关指令及数据。
存储器1430用于存储第一网元的程序代码和数据,可以为单独的器件或集成在处理器1410中。
具体地,所述处理器1410用于控制收发器与第一网元进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1400还可以包括输出设备和输入设备。输出设备和处理器1410通信,可以以多种方式来显示信息。例如,输出设备可以是LCD,LED显示设备,CRT显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图14仅仅示出了网络切片更新的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的第一网元都在本申请的保护范围之内。
在一种可能的设计中,该装置1400可以是芯片,例如可以为可用于第一网元中的通信芯片,用于实现第一网元中处理器1410的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,***芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是第一网元也可以是电路。该装置可以用于执行上述方法实施例中由第一网元所执行的动作。
可选地,该装置为AMF或第一网元时,还可以参照图15所示的设备。作为一个例子,该设备可以完成类似于前述实施例中处理器的功能。在图15中,该设备包括处理器1501,发送数据处理器1503,接收数据处理器1505。上述实施例中的处理模块可以是图15中的该处理器1501,并完成相应的功能。上述实施例中的接收模块和发送模块可以是图15中的发送数据处理器1503和接收数据处理器1505。虽然图15中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
图16示出了本申请一个具体实施例的用于网络切片更新的方法的示意性流程图。
需要说明的是,在不作特别说明的情况下,本申请实施例中与图5所示的实施例中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
1601,AMF向NSSF发送订阅消息。
其中,该订阅消息包括终端的标识。
1602,NSSF根据该终端的标识和映射关系,确定该终端的网络切片选择结果是否发生变化。
1603,NSSF在确定该终端的网络切片选择结果发生变化的情况下,向AMF发送该订阅消息的响应消息。
其中,该订阅消息的响应消息包括指示信息,该指示信息用于指示网络切片选择结果发生变化的终端。
1604,AMF向终端发送网络切片更新信息。
其中,该网络切片更新信息用于该终端进行网络切片更新。
也就是说,AMF可以向NSSF发送终端的标识,以触发NSSF检测该终端的标识对应的终端的网络切片选择结果是否发生变化。在检测到该终端的标识对应的终端的网络切片选择结果发生变化的情况下,NSSF向AMF发送指示信息指示网络切片选择结果发生变化的终端,使得终端进行网络切片更新,进而终端能够采用合适的网络切片进行通信,从而提高通信效率。此外,终端标识可以携带在该订阅消息中,指示信息携带在订阅消息的响应消息中,避免了单独发送,从而节省了资源开销。
图17示出了本申请另一个具体实施例的用于网络切片更新的方法的示意性流程图。
需要说明的是,在不作特别说明的情况下,本申请实施例中与图5所示的实施例中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
1701,OM向NSSF发送配置策略修改请求。
其中,该配置策略修改请求用于请求配置策略,该配置策略用于指示允许该终端使用的网络切片。
1702,NSSF向OM发送配置策略修改请求的响应消息。
其中,该配置策略修改请求的响应消息包括该配置策略。
1703,NSSF在确定该终端的网络切片选择结果发生变化的情况下,向AMF发送该订阅消息的响应消息。
其中,该订阅消息的响应消息包括指示信息,该指示信息用于指示网络切片选择结果发生变化的终端。
具体地,NSSF可以根据配置策略指示允许终端使用的网络切片确定该终端的网络切片选择结果是否发生变化。
1704,AMF向终端发送网络切片更新信息。
其中,该网络切片更新信息用于该终端进行网络切片更新。
也就是说,AMF可以向NSSF发送终端的标识,以触发NSSF检测该终端的标识对应的终端的网络切片选择结果是否发生变化。在检测到该终端的标识对应的终端的网络切片选择结果发生变化的情况下,NSSF向AMF发送指示信息指示网络切片选择结果发生变化的终端,使得终端进行网络切片更新,进而终端能够采用合适的网络切片进行通信,从而提高通信效率。此外,终端标识可以携带在该订阅消息中,指示信息携带在订阅消息的响应消息中,避免了单独发送,从而节省了资源开销。
图18示出了本申请另一个具体实施例的用于网络切片更新的方法的示意性流程图。
需要说明的是,在不作特别说明的情况下,本申请实施例中与图6所示的实施例中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
1801,OM向NSSF发送配置策略修改请求。
其中,该配置策略修改请求用于请求配置策略,该配置策略用于指示允许该终端使用的网络切片。
1802,NSSF向OM发送配置策略修改请求的响应消息。
其中,该配置策略修改请求的响应消息包括该配置策略。
1803,当允许终端使用的网络切片发生变化时,该OM根据变化后的允许终端使用的网络切片确定网络切片选择结果发生变化的区域信息。
1804,OM向AMF发送该区域信息。
1805,AMF向终端发送网络切片更新信息
其中,该网络切片更新信息用于该终端进行网络切片更新。
因此,本申请实施例中,OM主动触发配置策略修改请求,并接收NSSF发送的配置策略修改请求的响应消息,进而根据该配置策略修改请求的响应消息中包括的配置策略确定允许终端使用的网络切片是否发生变化。当允许终端使用的网络切片发生变化时,该OM根据变化后的允许终端使用的网络切片确定网络切片选择结果发生变化的区域信息,并将该区域信息发送给AMF,AMF向该区域信息指示的区域内的终端发送网络切片更新信息,终端可以根据该网络切片更新信息进行网络切片更新,从而能够采用合适的网络切片进行通信,提高了通信效率。
图19示出了本申请另一个具体实施例的用于网络切片更新的方法的示意性流程图。
需要说明的是,在不作特别说明的情况下,本申请实施例中与图6所示的实施例中的相同术语表示的含义相同,为避免重复,在此不进行赘述。
1901,当网络切片组中允许终端使用的网络切片发生变化时,NSSF根据变化后的网络切片组中允许终端使用的网络切片,确定网络切片选择结果发生变化的区域信息。
可选地,在一个实施例中,步骤1901可以替换为:当允许终端使用的网络切片组发生变化时,NSSF可以根据变化后的网络切片组,确定该网络切片选择结果发生变化的区域信息。
可选地,在另一个实施例中,步骤1901可以替换为:当网络切片组中禁止终端使用的网络切片发生变化时,NSSF可以根据变化后的网络切片组中禁止终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息。
可选地,在另一个实施例中,步骤1901可以替换为:当禁止终端接入的AMF发生变化时,NSSF可以根据变化后的禁止终端接入的AMF,确定该网络切片选择结果发生变化的区域信息。
可选地,在另一个实施例中,步骤1901可以替换为:当允许终端使用的网络切片发生变化时,NSSF可以根据变化后的允许终端使用的网络切片,确定该网络切片选择结果发生变化的区域信息。
1902,AMF向NSSF发送订阅消息。
其中,该订阅消息用于请求该NSSF在网络切片选择结果发生变化的情况下发送该区域信息。
应理解,步骤1902与步骤1901的先后顺序不进行限定。
1903,NSSF在确定所述网络切片选择结果发生变化的区域信息之后,向AMF发送 订阅消息的响应消息。
其中,该订阅消息的响应消息携带该区域信息。
1904,AMF向终端发送网络切片更新信息。
其中,该网络切片更新信息用于该终端进行网络切片更新。
因此,AMF可以订阅该NSSF在网络切片选择结果发生变化的情况下发送该区域信息,这样AMF可以接收订阅信息的响应消息,该订阅信息的响应消息携带区域信息,这样AMF可以避免了单独发送该区域信息,从而节省了资源开销。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种用于网络切片更新的方法,其特征在于,包括:
    接入和移动管理功能AMF接收指示信息,所述指示信息用于指示网络切片选择结果发生变化的终端;
    所述AMF向所述终端发送网络切片更新信息,所述网络切片更新信息用于所述终端进行网络切片更新。
  2. 根据权利要求1所述的方法,其特征在于,所述AMF接收指示信息包括:
    所述AMF从操作维护OM***接收所述指示信息;或者,
    所述AMF从网络切片选择功能NSSF接收所述指示信息。
  3. 根据权利要求2所述的方法,其特征在于,在所述AMF从所述NSSF接收所述指示信息之前,所述方法还包括:
    所述AMF向所述NSSF发送所述终端的标识,所述终端的标识用于所述NSSF确定所述终端的网络切片选择结果是否发生变化。
  4. 根据权利要求3所述的方法,其特征在于,所述AMF向所述NSSF发送所述终端的标识包括:
    所述AMF向所述NSSF发送订阅消息,所述订阅消息用于请求所述NSSF在所述终端的网络切片选择结果发生变化的情况下发送所述指示信息,且所述订阅消息包括所述终端的标识;
    所述AMF从NSSF接收所述指示信息包括:
    所述AMF从所述NSSF接收所述订阅消息的响应消息,所述订阅消息的响应消息携带所述指示信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述指示信息包括所述终端的标识。
  6. 一种用于网络切片更新的方法,其特征在于,包括:
    第一网元确定终端的网络切片选择结果发生变化;
    所述第一网元向接入和移动管理功能AMF发送指示信息,所述指示信息用于指示所述终端。
  7. 根据权利要求6所述的方法,其特征在于,所述第一网元为网络切片选择功能NSSF,所述方法还包括:
    所述第一网元接收所述终端的标识;
    所述第一网元确定终端的网络切片选择结果发生变化,包括:
    所述第一网元根据所述终端的标识和映射关系,确定所述终端的网络切片选择结果发生变化,所述映射关系为终端的标识和网络切片选择结果之间的映射关系。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网元接收所述终端的标识包括:
    所述第一网元从所述AMF接收订阅消息,所述订阅消息用于请求所述NSSF在所述终端的网络切片选择结果发生变化的情况下发送所述指示信息,所述订阅消息携带所述终 端的标识;
    所述第一网元向AMF发送指示信息包括:
    所述第一网元向所述AMF发送订阅响应消息,所述订阅响应消息携带所述指示信息。
  9. 根据权利要求6所述的方法,其特征在于,所述第一网元为操作维护OM***,所述第一网元确定终端的网络切片选择结果发生变化包括:
    当允许所述终端使用的网络切片发生变化,且变化后的允许所述终端使用的网络切片不包括所述终端选择的网络切片时,所述第一网元确定所述终端的网络切片选择结果发生变化。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第一网元向NSSF发送配置策略修改请求,所述配置策略修改请求用于请求配置策略,所述配置策略用于指示允许所述终端使用的网络切片;
    所述第一网元从所述NSSF接收所述配置策略修改请求的响应消息,所述配置策略修改请求的响应消息包括所述配置策略。
  11. 根据权利要求6至10中任一项所述的方法,其特征在于,所述指示信息包括所述终端的标识。
  12. 一种用于网络切片更新的方法,其特征在于,包括:
    接入和移动管理功能AMF接收网络切片选择结果发生变化的区域信息;
    所述AMF根据所述区域信息,向终端发送网络切片更新信息,所述网络切片更新信息用于所述终端进行网络切片更新。
  13. 根据权利要求12所述的方法,其特征在于,所述区域信息包括公用陆地移动网标识、跟踪区范围和AMF的标识中的至少一项。
  14. 根据权利要求12或13所述的方法,其特征在于,所述AMF接收网络切片选择结果变化的区域信息包括:
    所述AMF从操作维护OM***接收所述区域信息;或者,
    所述AMF从网络切片选择功能NSSF接收所述区域信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述AMF向所述NSSF发送订阅消息,所述订阅消息用于请求所述NSSF在网络切片选择结果发生变化的情况下发送所述区域信息;
    所述AMF从所述NSSF接收所述区域信息包括:
    所述AMF从所述NSSF接收所述订阅消息的响应消息,所述订阅消息的响应消息携带所述区域信息。
  16. 一种用于网络切片更新的方法,其特征在于,包括:
    第一网元确定网络切片选择结果发生变化的区域信息;
    所述第一网元向接入和移动管理功能AMF发送所述区域信息。
  17. 根据权利要求16所述的方法,其特征在于,所述区域信息包括公用陆地移动网标识、跟踪区范围和AMF的标识中的至少一项。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一网元确定网络切片选择结果发生变化的区域信息包括:
    当允许终端使用的网络切片组发生变化时,所述第一网元根据变化后的网络切片组, 确定所述网络切片选择结果发生变化的区域信息;或
    当网络切片组中允许终端使用的网络切片发生变化时,所述第一网元根据变化后的网络切片组中允许终端使用的网络切片,确定所述网络切片选择结果发生变化的区域信息;或
    当网络切片组中禁止终端使用的网络切片发生变化时,所述第一网元根据变化后的网络切片组中禁止终端使用的网络切片,确定所述网络切片选择结果发生变化的区域信息;或
    当禁止终端接入的AMF发生变化时,所述第一网元根据变化后的禁止终端接入的AMF,确定所述网络切片选择结果发生变化的区域信息;或
    当允许终端使用的网络切片发生变化时,所述第一网元根据变化后的允许终端使用的网络切片,确定所述网络切片选择结果发生变化的区域信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第一网元为操作维护OM***,在所述第一网元根据变化后的允许终端使用的网络切片确定所述网络切片选择结果发生变化的区域信息之前,所述方法还包括:
    所述第一网元向所述NSSF发送配置策略修改请求,所述配置策略修改请求用于请求配置策略,所述配置策略用于指示允许终端使用的网络切片;
    所述第一网元从所述NSSF接收所述配置策略修改请求的响应消息,所述配置策略修改请求的响应消息包括所述配置策略。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元从所述AMF接收订阅消息,所述订阅消息用于请求所述NSSF在网络切片选择结果发生变化的情况下发送所述区域信息;
    所述第一网元发送所述区域信息包括:
    所述第一网元向所述AMF发送所述订阅消息的响应消息,所述订阅消息的响应消息携带所述区域信息。
  21. 一种用于网络切片更新的装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至5中任一项所述的方法或12至15中任一项所述的方法。
  22. 一种用于网络切片更新的装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求6至11中任一项所述的方法或16至20中任一项所述的方法。
  23. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至5中任一项所述的方法或12至15中任一项所述的方法。
  24. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求6至11中任一项所述的方法或16至20中任一项所述的方法。
  25. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行如权利要求1至5中任一项所述的方法或12至15中任一项所述的方法。
  26. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行如权利要求6至11中任一项所述的方法或16至20中任一项所述的方法。
PCT/CN2020/088735 2019-05-07 2020-05-06 用于网络切片更新的方法和装置 WO2020224582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910375489.3 2019-05-07
CN201910375489.3A CN111918302B (zh) 2019-05-07 2019-05-07 用于网络切片更新的方法和装置

Publications (1)

Publication Number Publication Date
WO2020224582A1 true WO2020224582A1 (zh) 2020-11-12

Family

ID=73050930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088735 WO2020224582A1 (zh) 2019-05-07 2020-05-06 用于网络切片更新的方法和装置

Country Status (2)

Country Link
CN (1) CN111918302B (zh)
WO (1) WO2020224582A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928590A (zh) * 2021-01-30 2022-08-19 华为技术有限公司 一种IPv6地址的配置方法及路由设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303259A1 (en) * 2016-04-18 2017-10-19 Electronics And Telecommunications Research Institute Communication method and apparatus using network slicing
WO2018145727A1 (en) * 2017-02-07 2018-08-16 Nokia Technologies Oy Control of user equipment initiated change of network slices in a mobile system using network slicing
CN109155909A (zh) * 2017-01-16 2019-01-04 Lg 电子株式会社 无线通信***中用于更新ue配置的方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303259A1 (en) * 2016-04-18 2017-10-19 Electronics And Telecommunications Research Institute Communication method and apparatus using network slicing
CN109155909A (zh) * 2017-01-16 2019-01-04 Lg 电子株式会社 无线通信***中用于更新ue配置的方法及其装置
WO2018145727A1 (en) * 2017-02-07 2018-08-16 Nokia Technologies Oy Control of user equipment initiated change of network slices in a mobile system using network slicing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ORACLE ET AL.: "OI#8a: Notification Service Provided by NSSF (23.502)", SA WG2 MEETING #124 S2-178347, 1 December 2017 (2017-12-01), XP051365565 *
TELECOM ITALIA ET AL.: "OI#2, OI#3, OI#4: Services Provided by NSSF (23.502)", SA WG2 MEETING #123 S2-177086, 27 October 2017 (2017-10-27), XP051359775 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928590A (zh) * 2021-01-30 2022-08-19 华为技术有限公司 一种IPv6地址的配置方法及路由设备
CN114928590B (zh) * 2021-01-30 2023-11-10 华为技术有限公司 一种IPv6地址的配置方法及路由设备

Also Published As

Publication number Publication date
CN111918302A (zh) 2020-11-10
CN111918302B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11528770B2 (en) Session management method, apparatus, and system
US20200214065A1 (en) User equipment category signaling in an lte-5g configuration
KR20180134685A (ko) 통신 시스템에서 PDU(Protocol Data Unit) 세션을 설립하는 방법
WO2021057692A1 (zh) 非接入层消息传输的方法、装置和***
US11770692B2 (en) Enhancements for radio access capability signaling (RACS)
US20230029714A1 (en) Authorization method, policy control function device, and access and mobility management function device
US11310658B2 (en) Method and apparatus for determining status of terminal device, and device
WO2022089349A1 (zh) Pdcp重复的配置、激活或去激活方法和终端
EP3771285A1 (en) Communication method and apparatus
US20220264378A1 (en) Communication Method, Device, and System
US11259362B2 (en) Method for repeatedly transmitting data and device
US20220272577A1 (en) Communication method and communication apparatus
US20230269794A1 (en) Local network accessing method and apparatus
US20220141664A1 (en) Data transmission method and apparatus in network slice architecture
WO2022007484A1 (zh) 重定向方法、网络设备、终端设备及可读存储介质
US20230388908A1 (en) Network slice-based communication method and apparatus
WO2020224582A1 (zh) 用于网络切片更新的方法和装置
WO2023087965A1 (zh) 一种通信方法及装置
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2022170798A1 (zh) 确定策略的方法和通信装置
WO2021233063A1 (zh) 用于策略控制的方法和装置
KR20240060670A (ko) 통신 방법 및 장치
WO2020200297A1 (zh) 选择会话管理网元的方法和装置
WO2022032646A1 (zh) 信息传输方法、装置及通信设备
CN114071649A (zh) 访问本地网络的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802701

Country of ref document: EP

Kind code of ref document: A1