WO2020224231A1 - 一种磁流变馈能悬架减振与发电半主动协调控制方法 - Google Patents

一种磁流变馈能悬架减振与发电半主动协调控制方法 Download PDF

Info

Publication number
WO2020224231A1
WO2020224231A1 PCT/CN2019/119656 CN2019119656W WO2020224231A1 WO 2020224231 A1 WO2020224231 A1 WO 2020224231A1 CN 2019119656 W CN2019119656 W CN 2019119656W WO 2020224231 A1 WO2020224231 A1 WO 2020224231A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
energy
magnetorheological
vibration reduction
suspension
Prior art date
Application number
PCT/CN2019/119656
Other languages
English (en)
French (fr)
Inventor
张海龙
张晗
王恩荣
王颢文
朱叶
王姝
颜伟
Original Assignee
南京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京师范大学 filed Critical 南京师范大学
Publication of WO2020224231A1 publication Critical patent/WO2020224231A1/zh
Priority to ZA2021/09310A priority Critical patent/ZA202109310B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/14Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/10Auxiliary drives directly from oscillating movements due to vehicle running motion, e.g. suspension movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/10Auxiliary drives directly from oscillating movements due to vehicle running motion, e.g. suspension movement
    • B60K2025/103Auxiliary drives directly from oscillating movements due to vehicle running motion, e.g. suspension movement by electric means

Definitions

  • the invention belongs to the field of vehicle engineering, and particularly relates to a rheological energy-feeding suspension control method.
  • the vibration potential energy of the suspension system generated by the uneven road surface and the change of the body attitude when the vehicle is running is mainly used by the suspension damper.
  • the heat energy is dissipated into the air, and the wasted energy accounts for about 14%-26% of the power output, which has considerable recycling value.
  • the magnetorheological semi-active suspension system has become a research hotspot in the field of international vehicle engineering since the 1990s and is expected to be popularized and applied in smart vehicles in the future.
  • the research of magnetorheological energy-feeding suspension that combines energy-feeding power generation device and magnetorheological damper has attracted the attention of scholars at home and abroad, and the research on self-supplied electromagnetic rheological suspension is mainly carried out.
  • magnetorheological energy-feeding suspensions mainly use energy-feeding power generation for self-powering of magnetorheological dampers, failing to give full play to the vibration power generation efficiency of the suspension.
  • energy-feeding suspension control mainly uses energy-feeding power generation device output characteristics adjustment
  • the semi-active control of magnetorheological damper there is no semi-active coordinated control strategy for damping and power generation of magnetorheological energy fed suspension.
  • the present invention proposes a semi-active coordinated control method for vibration reduction and power generation of a magnetorheological energy fed suspension.
  • the technical solution of the present invention is:
  • a semi-active coordinated control method for vibration reduction and power generation of a magnetorheological energy-feeding suspension The magnetorheological damper and the energy-feeding power generation device are installed in parallel between the sprung mass and the unsprung mass.
  • the vehicle running state signal and the power generation state signal of the energy-feeding power generation device calculate the driving current required by the magnetorheological damper, so as to realize the optimized vibration reduction and power generation coordinated control of the suspension; among them, the magnetorheological damper driving current is calculated.
  • step (1) Among them, ⁇ as is the root mean square value of the sprung mass acceleration of the vehicle, which is an index that characterizes the ride comfort; ⁇ Ft is the root mean square value of the tire dynamic load, which is an index characterizes the handling stability; ⁇ is the ride comfort.
  • step (2) the rms value of the on-load output power of the energy-feeding power generation device is used as the energy-feeding power generation performance evaluation index ⁇ P ,
  • T is a complete sampling period, ⁇ [0,1], and dt represents the differentiation of time.
  • a single-input single-output fuzzy controller is designed with the deviation of the moving stroke speed as the input and the energy distribution rate ⁇ as the output to realize the adaptive adjustment of ⁇ .
  • step (3) the drive current is solved by the following formula:
  • i d is the driving current
  • F d is the target damping force
  • F h is the hysteresis operator related to the excitation properties, expressing the relationship between the target damping force and the damping force stroke speed
  • f i -1 ( ) Represents the inverse model operator.
  • the current magnetorheological energy-feeding suspension mainly uses the energy-feeding power generation for the self-powered magnetorheological damper, which fails to give full play to the vibration power generation efficiency of the suspension.
  • the present invention is based on an adaptive energy distribution rate and combined with magnetorheological
  • the inverse model of the damper is used to design a semi-active coordinated controller for the vibration reduction and power generation of the magnetorheological energy fed suspension.
  • the magnetorheological damper is controlled by adjusting the drive current to achieve the system's optimal vibration reduction and power generation integrated suspension performance, which is suitable for various Energy-feeding suspension system with adjustable damping.
  • FIG. 1 is a hardware structure diagram of the present invention
  • FIG. 2 is a flowchart of the present invention
  • Figure 3 is a block diagram of fuzzy control in the present invention.
  • Figure 4 is a control block diagram of the present invention.
  • the present invention installs the magnetorheological damper and the energy-feeding power generation device in parallel between the sprung mass and the unsprung mass.
  • the controller collects real-time vehicle operating state signals and the power generation of the energy-feeding power generation device.
  • the state signal calculates the drive current required by the magnetorheological damper, so as to realize the optimal coordinated control of suspension and power generation.
  • the steps to calculate the drive current of the magnetorheological damper are as follows:
  • Step 1 Establish the suspension vibration reduction optimization control target J 1 , which is used to characterize the driving comfort and handling stability index;
  • Step 2 Set the energy-feeding power generation evaluation index ⁇ P and the energy distribution ratio ⁇ between the magnetorheological damper and the energy-feeding power generation device power generation, and establish the vibration reduction of the magnetorheological energy-feeding suspension according to J 1 , ⁇ P and ⁇ And the optimal control rate of power generation J;
  • Step 3 Adaptively adjust the energy distribution rate ⁇ , obtain the target damping force required to coordinate the vibration reduction performance and power generation performance according to the optimal control rate J and the energy distribution rate ⁇ , and use the magnetorheological damper based on the target damping force
  • the inverse model solves the drive current.
  • step 1 is implemented using the following preferred scheme:
  • as is the root mean square value of the sprung mass acceleration of the vehicle, which is an index that characterizes the ride comfort
  • ⁇ Ft is the root mean square value of the tire dynamic load, which is an index characterizes the handling stability
  • is the ride comfort.
  • step 2 is implemented using the following preferred scheme:
  • the established optimal control rate is as follows:
  • T is a complete sampling period
  • ⁇ [0,1] and dt represents the differentiation of time.
  • step 3 is implemented using the following preferred solution:
  • the target damping force F d required to coordinate the vibration reduction performance and power generation performance is obtained, and then the magnetorheological damper inverse model is used to solve the magnetorheological damping Drive current i d :
  • F h is the hysteresis operator related to the excitation properties, which expresses the relationship between the target damping force and the damping force stroke speed; f i -1 () represents the inverse model operator. As shown in Figure 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种磁流变馈能悬架减振与发电半主动协调控制方法,将磁流变阻尼器和馈能发电装置并联安装在簧载质量和非簧载质量之间,控制器根据实时采集的车辆运行状态信号和馈能发电装置的发电状态信号计算出磁流变阻尼器所需的驱动电流,从而实现悬架最优化的减振与发电协调控制。该方法基于自适应能量分配率的减振与发电最优控制律,结合磁流变阻尼器逆模型设计磁流变馈能悬架减振和发电半主动协调控制策略,能够通过控制磁流变阻尼器实现***最优化的减振与发电综合悬架性能,通用性强、易于实施。

Description

一种磁流变馈能悬架减振与发电半主动协调控制方法 技术领域
本发明属于车辆工程领域,特别涉及了一种流变馈能悬架控制方法。
背景技术
随着全球范围内能源问题日益突出,国内外车辆工程领域愈加关注节能与再利用技术,车辆行驶时由路面不平整、车身姿态变化产生的悬架***振动势能,主要是通过悬架阻尼器以热能形式耗散到空气中,浪费的这部分能量约占动力输出的14%-26%,具有可观的回收利用价值。同时,磁流变半主动悬架***,自上世纪九十年代已成为国际车辆工程领域的研究热点,有望在未来智能车辆中得到普及推广应用。将馈能发电装置和磁流变阻尼器结合的磁流变馈能悬架研究已得到国内外学者的关注,主要开展自供电磁流变悬架研究。
然而,增设馈能发电装置后,如何实现磁流变悬架减振和发电的优化协调控制,对此国内外学者尚未高度重视。目前磁流变馈能悬架主要是将馈能发电用于磁流变阻尼器自供电,未能充分发挥悬架振动发电效能,此外,馈能悬架控制主要采用馈能发电装置输出特性调节和磁流变阻尼器半主动控制两种方式,未见磁流变馈能悬架最优化的减振与发电半主动协调控制策略。
发明内容
为了解决上述背景技术提到的技术问题,本发明提出了一种磁流变馈能悬架减振与发电半主动协调控制方法。
为了实现上述技术目的,本发明的技术方案为:
一种磁流变馈能悬架减振与发电半主动协调控制方法,将磁流变阻尼器和馈能发电装置并联安装在簧载质量和非簧载质量之间,控制器根据实时采集的车辆运行状态信号和馈能发电装置的发电状态信号计算出磁流变阻尼器所需的驱动电流,从而实现悬架最优化的减振与发电协调控制;其中,计算磁流变阻尼器驱动电流的步骤如下:
(1)建立悬架减振优化控制目标J 1,用于表征驾乘平顺性和操控稳定性指标;
(2)设定馈能发电评价指标σ P和磁流变阻尼器与馈能发电装置发电之间的能量分配率β,根据J 1、σ P和β建立磁流变馈能悬架减振与发电最优控制率J;
(3)自适应调整能量分配率β,根据最优控制率J和能量分配率β得到协调减振性能和发电性能所需的目标阻尼力,并基于该目标阻尼力,利用磁流变阻尼器逆模型求解出驱动电流。
进一步地,在步骤(1)中,
Figure PCTCN2019119656-appb-000001
其中,σ as为车辆簧载质量加速度的均方根值,是表征驾乘平顺性的指标;σ Ft为轮胎动载荷的均方根值,是表征操控稳定性的指标;α为驾乘平顺性和操控稳定性权重系数,α∈[0,1]。
进一步地,在步骤(2)中,采用馈能发电装置带载输出功率均方根值作为馈能发电 性能评价指标σ P
Figure PCTCN2019119656-appb-000002
其中,T为一个完整的取样周期,β∈[0,1],dt表示对时间的微分。
进一步地,在步骤(3)中,以动行程速度的偏差量作为输入、能量分配率β作为输出,设计单输入单输出的模糊控制器,以实现β的自适应调整。
进一步地,在步骤(3)中,通过下式求解驱动电流:
Figure PCTCN2019119656-appb-000003
上式中,i d为驱动电流;F d为目标阻尼力;F h为与激励性质有关的滞环算子,表述了目标阻尼力与阻尼力行程速度之间的关系;f i -1()表示逆模型算子。
采用上述技术方案带来的有益效果:
目前的磁流变馈能悬架主要是将馈能发电用于磁流变阻尼器自供电,未能充分发挥悬架振动发电效能,而本发明基于自适应能量分配率,并结合磁流变阻尼器逆模型设计磁流变馈能悬架减振和发电半主动协调控制器,通过调节驱动电流控制磁流变阻尼器实现***最优化的减振与发电综合悬架性能,适用于各种阻尼可调的馈能悬架***。
附图说明
图1是本发明硬件结构图;
图2是本发明流程图;
图3是本发明中模糊控制框图;
图4是本发明控制框图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
如图1所示,本发明将磁流变阻尼器和馈能发电装置并联安装在簧载质量和非簧载质量之间,控制器根据实时采集的车辆运行状态信号和馈能发电装置的发电状态信号计算出磁流变阻尼器所需的驱动电流,从而实现悬架最优化的减振与发电协调控制。如图2所示,计算磁流变阻尼器驱动电流的步骤如下:
步骤1:建立悬架减振优化控制目标J 1,用于表征驾乘平顺性和操控稳定性指标;
步骤2:设定馈能发电评价指标σ P和磁流变阻尼器与馈能发电装置发电之间的能量分配率β,根据J 1、σ P和β建立磁流变馈能悬架减振与发电最优控制率J;
步骤3:自适应调整能量分配率β,根据最优控制率J和能量分配率β得到协调减振性能和发电性能所需的目标阻尼力,并基于该目标阻尼力,利用磁流变阻尼器逆模型求解出驱动电流。
在本实施例中,步骤1采用如下优选方案实现:
Figure PCTCN2019119656-appb-000004
其中,σ as为车辆簧载质量加速度的均方根值,是表征驾乘平顺性的指标;σ Ft为轮胎动载荷的均方根值,是表征操控稳定性的指标;α为驾乘平顺性和操控稳定性权重系数,α∈[0,1]。
在本实施例中,步骤2采用如下优选方案实现:
采用馈能发电装置带载输出功率均方根值作为馈能发电性能评价指标σ P,建立的最优控制率如下:
Figure PCTCN2019119656-appb-000005
其中,T为一个完整的取样周期,β∈[0,1],dt表示对时间的微分。
在本实施例中,步骤3采用如下优选方案实现:
实现β的自适应调整,以动行程速度的偏差量作为输入、能量分配率β为输出,设计单输入单输出的模糊控制器,根据***状态偏离参考点的程度自适应调整β值,完成减振性能最优和发电性能最优之间的协调,模糊控制流程如图3所示。
基于上述过程得到的最优控制律J和模糊自适应能量分配率β,得到协调减振性能和发电性能所需的目标阻尼力F d,再应用磁流变阻尼器逆模型求解磁流变阻尼器驱动电流i d
Figure PCTCN2019119656-appb-000006
其中,F h为与激励性质有关的滞环算子,表述了目标阻尼力与阻尼力行程速度之间的关系;f i -1()表示逆模型算子。如图4所示。
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

  1. 一种磁流变馈能悬架减振与发电半主动协调控制方法,其特征在于:将磁流变阻尼器和馈能发电装置并联安装在簧载质量和非簧载质量之间,控制器根据实时采集的车辆运行状态信号和馈能发电装置的发电状态信号计算出磁流变阻尼器所需的驱动电流,从而实现悬架最优化的减振与发电协调控制;其中,计算磁流变阻尼器驱动电流的步骤如下:
    (1)建立悬架减振优化控制目标J 1,用于表征驾乘平顺性和操控稳定性指标;
    (2)设定馈能发电评价指标σ P和磁流变阻尼器与馈能发电装置发电之间的能量分配率β,根据J 1、σ P和β建立磁流变馈能悬架减振与发电最优控制率J;
    (3)自适应调整能量分配率β,根据最优控制率J和能量分配率β得到协调减振性能和发电性能所需的目标阻尼力,并基于该目标阻尼力,利用磁流变阻尼器逆模型求解出驱动电流。
  2. 根据权利要求1所述磁流变馈能悬架减振与发电半主动协调控制方法,其特征在于:在步骤(1)中,
    Figure PCTCN2019119656-appb-100001
    其中,σ as为车辆簧载质量加速度的均方根值,是表征驾乘平顺性的指标;σ Ft为轮胎动载荷的均方根值,是表征操控稳定性的指标;α为驾乘平顺性和操控稳定性权重系数,α∈[0,1]。
  3. 根据权利要求1所述磁流变馈能悬架减振与发电半主动协调控制方法,其特征在于:在步骤(2)中,采用馈能发电装置带载输出功率均方根值作为馈能发电性能评价指标σ P
    Figure PCTCN2019119656-appb-100002
    其中,T为一个完整的取样周期,β∈[0,1],dt表示对时间的微分。
  4. 根据权利要求1所述磁流变馈能悬架减振与发电半主动协调控制方法,其特征在于:在步骤(3)中,以动行程速度的偏差量作为输入、能量分配率β作为输出,设计单输入单输出的模糊控制器,以实现β的自适应调整。
  5. 根据权利要求1所述磁流变馈能悬架减振与发电半主动协调控制方法,其特征在于:在步骤(3)中,通过下式求解驱动电流:
    Figure PCTCN2019119656-appb-100003
    上式中,i d为驱动电流;F d为目标阻尼力;F h为与激励性质有关的滞环算子,表述了目标阻尼力与阻尼力行程速度之间的关系;f i -1()表示逆模型算子。
PCT/CN2019/119656 2019-05-05 2019-11-20 一种磁流变馈能悬架减振与发电半主动协调控制方法 WO2020224231A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/09310A ZA202109310B (en) 2019-05-05 2021-11-19 Semi-active coordination control method for vibration reduction and power generation of magnetorheological energy-regenerative suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910367046.X 2019-05-05
CN201910367046.XA CN110171261B (zh) 2019-05-05 2019-05-05 一种磁流变馈能悬架减振与发电半主动协调控制方法

Publications (1)

Publication Number Publication Date
WO2020224231A1 true WO2020224231A1 (zh) 2020-11-12

Family

ID=67690430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119656 WO2020224231A1 (zh) 2019-05-05 2019-11-20 一种磁流变馈能悬架减振与发电半主动协调控制方法

Country Status (3)

Country Link
CN (1) CN110171261B (zh)
WO (1) WO2020224231A1 (zh)
ZA (1) ZA202109310B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114278695A (zh) * 2021-12-24 2022-04-05 西北工业大学 一种基于磁流变阻尼器的薄壁件加工振动半主动控制方法
CN114619824A (zh) * 2022-03-25 2022-06-14 东南大学 车身控制方法、控制装置、电子设备及存储介质
CN115742650A (zh) * 2022-12-08 2023-03-07 湘潭大学 一种两级集成式主动馈能悬架***及其控制方法
CN116550759A (zh) * 2023-07-11 2023-08-08 太原理工大学 一种基于减振装置的轧机辊系振动抑制方法和***
CN116787987A (zh) * 2023-06-25 2023-09-22 中国第一汽车股份有限公司 阻尼器迟滞补偿方法、装置、车辆、电子设备及介质
CN117215206A (zh) * 2023-11-09 2023-12-12 中国电建集团昆明勘测设计研究院有限公司 一种水电站厂房的振动控制方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110171261B (zh) * 2019-05-05 2021-09-28 南京师范大学 一种磁流变馈能悬架减振与发电半主动协调控制方法
CN111186275A (zh) * 2020-02-05 2020-05-22 哈尔滨工业大学 保证阻尼力约束的汽车磁流变悬架静态输出反馈控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087909A1 (de) * 2001-04-25 2002-11-07 Robert Bosch Gmbh Aktive federung mit elektrischem aktuator und dämpfer
CN102700378A (zh) * 2012-03-05 2012-10-03 江苏大学 电磁馈能型半主动悬架馈能阻尼实时控制装置及方法
CN203902200U (zh) * 2014-06-18 2014-10-29 吉林大学 一种可变刚度与阻尼的汽车馈能主动悬架***
CN207406687U (zh) * 2017-09-28 2018-05-25 西安科技大学 旁路式馈能型车辆半主动悬架作动器
CN108569093A (zh) * 2018-05-07 2018-09-25 中国人民解放军陆军装甲兵学院 一种并联复合式电磁悬挂***及车辆
CN109130757A (zh) * 2018-07-16 2019-01-04 西安交通大学 一种馈能式半主动悬架变阻尼***与控制方法
CN110171261A (zh) * 2019-05-05 2019-08-27 南京师范大学 一种磁流变馈能悬架减振与发电半主动协调控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087909A1 (de) * 2001-04-25 2002-11-07 Robert Bosch Gmbh Aktive federung mit elektrischem aktuator und dämpfer
CN102700378A (zh) * 2012-03-05 2012-10-03 江苏大学 电磁馈能型半主动悬架馈能阻尼实时控制装置及方法
CN203902200U (zh) * 2014-06-18 2014-10-29 吉林大学 一种可变刚度与阻尼的汽车馈能主动悬架***
CN207406687U (zh) * 2017-09-28 2018-05-25 西安科技大学 旁路式馈能型车辆半主动悬架作动器
CN108569093A (zh) * 2018-05-07 2018-09-25 中国人民解放军陆军装甲兵学院 一种并联复合式电磁悬挂***及车辆
CN109130757A (zh) * 2018-07-16 2019-01-04 西安交通大学 一种馈能式半主动悬架变阻尼***与控制方法
CN110171261A (zh) * 2019-05-05 2019-08-27 南京师范大学 一种磁流变馈能悬架减振与发电半主动协调控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114278695A (zh) * 2021-12-24 2022-04-05 西北工业大学 一种基于磁流变阻尼器的薄壁件加工振动半主动控制方法
CN114278695B (zh) * 2021-12-24 2023-06-27 西北工业大学 一种基于磁流变阻尼器的薄壁件加工振动半主动控制方法
CN114619824A (zh) * 2022-03-25 2022-06-14 东南大学 车身控制方法、控制装置、电子设备及存储介质
CN115742650A (zh) * 2022-12-08 2023-03-07 湘潭大学 一种两级集成式主动馈能悬架***及其控制方法
CN116787987A (zh) * 2023-06-25 2023-09-22 中国第一汽车股份有限公司 阻尼器迟滞补偿方法、装置、车辆、电子设备及介质
CN116787987B (zh) * 2023-06-25 2024-05-03 中国第一汽车股份有限公司 阻尼器迟滞补偿方法、装置、车辆、电子设备及介质
CN116550759A (zh) * 2023-07-11 2023-08-08 太原理工大学 一种基于减振装置的轧机辊系振动抑制方法和***
CN116550759B (zh) * 2023-07-11 2023-09-15 太原理工大学 一种基于减振装置的轧机辊系振动抑制方法和***
CN117215206A (zh) * 2023-11-09 2023-12-12 中国电建集团昆明勘测设计研究院有限公司 一种水电站厂房的振动控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110171261B (zh) 2021-09-28
CN110171261A (zh) 2019-08-27
ZA202109310B (en) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2020224231A1 (zh) 一种磁流变馈能悬架减振与发电半主动协调控制方法
CN107825930B (zh) 一种用于车辆悬架***的智能模糊混合棚半主动控制方法
CN109080399B (zh) 一种可实现自供能的混合电磁悬架及其控制方法
CN203902200U (zh) 一种可变刚度与阻尼的汽车馈能主动悬架***
CN105082920A (zh) 阻尼与车身高度可调互联空气悬架协同控制***及方法
CN102729760A (zh) 汽车半主动悬架***实时最佳阻尼控制算法
WO2013111505A1 (ja) 車両の制御装置及び車両の制御方法
CN108454343B (zh) 基于姿态补偿的混合电磁悬架节能型半主动控制方法
JPWO2013111504A1 (ja) 車両の制御装置
CN106114111B (zh) 一种含有驾驶行为预测模型的可调阻尼馈能悬架***及其控制方法
CN103754081A (zh) 车辆非线性悬架***的最优模糊复合控制方法
CN102582389A (zh) 一种基于虚拟阻尼的车辆悬架控制方法
WO2023174327A1 (zh) 一种协同控制模块、自适应巡航***及其控制方法、交通工具
CN110696581A (zh) 一种空气悬架控制***及其内模控制方法
CN108357318B (zh) 一种用于应急救援车辆悬挂的智能预瞄控制方法
WO2019217084A1 (en) Suspension system and method for controlling suspension system
CN114619824A (zh) 车身控制方法、控制装置、电子设备及存储介质
CN110901326A (zh) 一种具有状态约束与死区输入的主动悬架***的控制方法
CN112906133B (zh) 一种地棚控制动惯性悬架的垂向振动负效应抑制方法
CN111016566B (zh) 惯容与阻尼双天棚悬架***及其控制方法
JP6468438B2 (ja) 車両のばね上制振制御装置
CN110103653B (zh) 一种双横臂悬架的主动调节装置
CN113815369A (zh) 一种基于多智能体的互联空气悬架协同控制***及控制方法
CN115195376A (zh) 一种主动悬架控制优化方法
CN109505914B (zh) 可变刚度可变阻尼半主动悬架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927951

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927951

Country of ref document: EP

Kind code of ref document: A1