WO2020223915A1 - Joint polar coding and modulation - Google Patents

Joint polar coding and modulation Download PDF

Info

Publication number
WO2020223915A1
WO2020223915A1 PCT/CN2019/085936 CN2019085936W WO2020223915A1 WO 2020223915 A1 WO2020223915 A1 WO 2020223915A1 CN 2019085936 W CN2019085936 W CN 2019085936W WO 2020223915 A1 WO2020223915 A1 WO 2020223915A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
bit stream
uncoded
polar
demodulated
Prior art date
Application number
PCT/CN2019/085936
Other languages
French (fr)
Inventor
Jian Li
Changlong Xu
Liangming WU
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/085936 priority Critical patent/WO2020223915A1/en
Publication of WO2020223915A1 publication Critical patent/WO2020223915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for joint polar coding and modulation.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a transmitter device for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to polar encode a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream; and modulate the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
  • an apparatus for wireless communication may include means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream; and means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
  • an apparatus for wireless communication may include means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits; means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits; means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
  • Fig. 4 is a diagram illustrating an example process performed, for example, by a transmitter device, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example process performed, for example, by a receiver device, in accordance with various aspects of the present disclosure.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with joint polar coding and modulation, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream, means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream, and/or the like.
  • UE 120 may include means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits, means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits, means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits, means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2.
  • base station 110 may include means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream, means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream, and/or the like.
  • base station 110 may include means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits, means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits, means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits, means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a transmitter device may communicate with a receiver device.
  • the transmitter device may generate an information bit stream, may convert the information bit stream into one or more symbols, and may transmit the one or more symbols to the receiver device.
  • the one or more symbols may include one or more communications, such as a physical downlink control channel (PDCCH) communication, a physical uplink control channel (PUCCH) communication, a physical downlink shared channel (PDSCH) communication, a physical uplink shared channel (PUSCH) communication, a physical sidelink control channel (PSCCH) , a physical sidelink shared channel (PSSCH) communication, and/or the like.
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the transmitter device may encode the information bit stream for purposes of forward error correction, and the encoded information bit stream may be modulated to generate the one or more symbols.
  • the receiver device may receive the one or more symbols, may demodulate the one or more symbols, and may decode the encoded information bit stream to reconstruct the information bit stream.
  • the transmitter device may use various types of error correction codes to encode an information bit stream.
  • An example error correction code is a polar code.
  • Polar coding may refer to polarization of a channel into a plurality of virtual channels for each bit of a bit stream to be transmitted over the channel.
  • Channel polarization may be generated with a recursive algorithm that defines polar codes. That is, a polar code may polarize the reliability of the bits observed on the channel such that, from the perspective of the bits, the channel is polarized into high-reliability channels and low-reliability channels.
  • the high-reliability channels may be used to transmit bits that include information or data
  • the low-reliability channels may be used to transmit frozen bits, which may be bits that do not necessarily include information or data.
  • decoding a polar encoded bit stream may involve the use of complex and time-consuming list decoding techniques, which increases the complexity, power consumption, processing resource consumption, and memory resource consumption of the decoder of the receiver device.
  • a transmitter device may polar encode a subset of bits included in an information bit stream as opposed to the entire information bit stream. For example, the transmitter device may polar encode a first subset of bits of an information bit stream to form a coded bit stream. The transmitter device may jointly modulate the coded bit stream and an uncoded bit stream that includes a second subset of bits of the information bit stream. The jointly modulated coded bit stream and uncoded bit stream may form one or more symbols, which the transmitter device may transmit to a receiver device.
  • the receiver device needs to decode only a subset of bits of an information bit stream, which decreases the complexity, power consumption, processing resource consumption, and memory resource consumption of the decoder of the receiver device.
  • the transmitter device may select the quantity of the subset of bits such that the forward error correction performance for the information bit stream is the same or near the same performance as polar encoding the entire information bit stream.
  • Figs. 3A-3C are diagrams illustrating one or more examples 300 of joint polar encoding and modulation, in accordance with various aspects of the present disclosure.
  • examples 300 may include a transmitter device and a receiver device.
  • the transmitter device may include a base station (e.g., BS 110) or a UE (e.g., UE 120) .
  • the receiver device may include a base station (e.g., BS 110) or a UE (e.g., UE 120) .
  • the transmitter device and receiver device may be included in a wireless network and may communicate via a wireless communication link.
  • the transmitter device may generate an information bit stream that includes a plurality of information bits (e.g., b 0 b 1 ... b i ) , may convert the information bit stream into one or more symbols, and may transmit the one or more symbols to the receiver device.
  • a plurality of information bits e.g., b 0 b 1 ... b i
  • the transmitter device may split the information bit stream into a first subset of bits and a second subset of bits.
  • a serial-to-parallel component of the transmitter device e.g., a serial-to-parallel processor, a serial-to-parallel circuit, and/or the like
  • another component may split the information bit stream from a serial bit stream into two or more parallel bit streams.
  • the respective bit streams, of two or more parallel bit streams may include the first subset of bits and the second subset of bits.
  • the first subset of bits may comprise a first uncoded bit stream (e.g., a 0 a 1 ... a j ) and the second subset of bits may comprise a second uncoded bit stream (e.g., u 0 u 1 ... u i ) .
  • the serial-to-parallel component may split the information bit stream based at least in part on various ratios, such that quantities of bits included in the first uncoded bit stream and the second coded bit stream are 1: 1, 2: 1, 3: 1, and/or the like.
  • the serial-to-parallel component may provide the first uncoded bit stream to a polar encoder component, and may provide the second uncoded bit stream to a modulation component.
  • the transmitter device may polar encode the first subset of bits included in the first uncoded bit stream.
  • the transmitter device may use the polar encoder component (e.g., a polar encoder processor, a polar encoder circuit, and/or the like) to receive the first uncoded bit stream from the serial-to-parallel component and encode the first uncoded bit stream using a polar code.
  • the output of the polar encoding process may be a coded bit stream (e.g., c 0 c 1 ... c k ) that is generated from the first uncoded bit stream.
  • the polar encoder component may provide the coded bit stream to the modulation component.
  • the polar encoder component may use various polar encoding algorithms to polar encode the first uncoded bit stream.
  • the polar encoder may determine reliability metrics for a plurality of virtual channels of the polar encoder and may assign bits, included in the first uncoded bit stream, to respective virtual channels based on the reliability metrics.
  • the reliability metrics may be based at least in part on a density evolution or a Gaussian approximation. Some virtual channels may be assigned other bit types, such as parity bits or frozen bits.
  • the polar encoder may assign the bits, included in the first uncoded bit stream, to virtual channels with the highest reliability metrics (e.g., the virtual channels having a corresponding reliability metric that satisfies a reliability metric threshold, a particular quantity of virtual channels with the highest reliability metrics, and/or the like) , and may assign frozen bits (or parity bits) to other virtual channels.
  • the highest reliability metrics e.g., the virtual channels having a corresponding reliability metric that satisfies a reliability metric threshold, a particular quantity of virtual channels with the highest reliability metrics, and/or the like
  • frozen bits or parity bits
  • the polar encoder may perform a plurality of exclusive-OR (XOR) operations on the first uncoded bit stream.
  • the XOR operations polarize the physical channel on which the information bit stream is to be transmitted, causing some virtual channels to be weaker effective channels (e.g., virtual channels that have relatively lower reliability metrics) compared to other virtual channels.
  • the polar encoder may use other types of bitwise logical operations to polarize the physical channel, such as real addition and/or the like.
  • the transmitter device may jointly modulate the second uncoded bit stream and the coded bit stream.
  • the transmitter device may use the modulation component to receive the second uncoded bit stream and the coded bit stream, and to jointly modulate the second uncoded bit stream and the coded bit stream.
  • the output of the modulation process may include one or more symbols to which the second uncoded bit stream and the coded bit stream are mapped.
  • the modulation component may use various modulation techniques to map the second uncoded bit stream and the coded bit stream to the one or more symbols.
  • the modulation component may use a quadrature amplitude modulation (QAM) technique.
  • QAM quadrature amplitude modulation
  • the modulation component may modulate the second uncoded bit stream and the coded bit stream based at least in part on 2 m -QAM, where m bits are mapped to each symbol of the one or more symbols.
  • the m bits may include p uncoded bits from the second uncoded bit stream and t coded bits from the coded bit stream.
  • the quantity of coded bits that is mapped to a particular symbol may be greater relative to the quantity of uncoded bits mapped to the symbol.
  • the quantity of bits that is added to the first uncoded bit stream during polar encoding may be based at least in part on a configured coding gain for the polar encoder component.
  • the coding gain may be configured such that the forward error correction for the information bit stream may be the same, similar, and/or comparable to the forward error correction for the information bit stream if the information bit stream were fully polar encoded.
  • the transmitter device may transmit the one or more symbols to the receiver device.
  • the transmitter device may transmit the one or more symbols based at least in part on modulating the second uncoded bit stream and the coded bit stream to generate the one or more symbols.
  • the one or more symbols may be transmitted in one or more communications on a channel, such as a PDCCH, a PUCCH, a PDSCH, a PUSCH, a PSCCH, a PSSCH, and/or the like.
  • Fig. 3B illustrates a constellation diagram of an example mapping of the second uncoded bit stream and the coded bit stream to the one or more symbols.
  • the mapping illustrated in Fig. 3B is an example only, and other mappings and/or modulation techniques may be used.
  • the example mapping may include an example of modulation using a 64-QAM configuration, which may result in the second uncoded bit stream and the coded bit stream being mapped to 64 symbols.
  • Each symbol may include 6 bits: 2 uncoded bits of the second uncoded bit stream (e.g., u 1 u 0 ) and 4 coded bits of the coded bit stream (e.g., c 3 c 2 c 1 c 0 ) .
  • the concatenation of the uncoded bits and the coded bits for a particular symbol may include u 1 u 0 c 3 c 2 c 1 c 0 .
  • the receiver device may receive the one or more symbols from the transmitter device.
  • the receiver device may provide the coded bits of the one or more symbols to a first demodulation component (e.g., a first demodulation processor, a first demodulation circuit, and/or the like) , and may provide the uncoded bits of the one or more symbols to a second demodulation component (e.g., a second demodulation processor, a second demodulation circuit, and/or the like) .
  • the first demodulation component and the second demodulation component may be the same demodulation component.
  • the first demodulation component and the second demodulation component may be different demodulation components.
  • the receiver device may demodulate the coded bits, in the one or more symbols, to form demodulated coded bits.
  • the first demodulation component of the receiver device may receive the coded bits and may perform a first demodulation process on the coded bits.
  • the first demodulation component may perform a “soft” demodulation of the coded bits.
  • the soft demodulation may include determining bit-level soft information, for the coded bits, as a demodulation output.
  • the soft information may include log-likelihood ratios (LLR) for the coded bits.
  • An LLR value for a coded bit may be an indication of the probability of the coded bit value being a 0-value or a 1-value.
  • the first demodulation component may provide the demodulated coded bits and corresponding LLR values to a polar decoder component (e.g., a polar decoder processor, a polar decoder circuit, and/or the like) .
  • the receiver device may polar decode the demodulated coded bits to form demodulated decoded bits.
  • the receiver device may use the polar decoder component to perform one or more decoding techniques, based at least in part on the LLR values, to determine the demodulated decoded bits.
  • the polar decoder component may provide the demodulated decoded bits to the second demodulation component and a parallel-to-serial component (e.g., a parallel-to-serial processor, a parallel-to-serial circuit, and/or the like) .
  • a parallel-to-serial component e.g., a parallel-to-serial processor, a parallel-to-serial circuit, and/or the like
  • the decoding techniques may include various forward error correction algorithms, such as a successive cancellation list (SCL) decoding algorithm, a cyclic redundancy check (CRC) aided SCL (CA-SCL) decoding, and/or the like.
  • the polar decoder component may determine L decoding paths (where L>1) for the demodulated coded bits based at least in part on the corresponding LLRs.
  • the polar decoder component may discard the least probable or worst decoding paths and keeps only the L most probable or best decoding paths.
  • the polar decoding process may result in a list of L candidates for the demodulated decoded bits, out of which the polar decoder component may select the most likely candidate.
  • the receiver device may perform a second demodulation process to demodulate the uncoded bits included in the one or more symbols.
  • the second demodulation component of the receiver device may receive the one or more symbols and the demodulated decoded bits, and may perform the second demodulation process.
  • the second demodulation component may demodulate the uncoded bits based at least in part on the demodulated decoded bits. For example, the second demodulation component may demodulate the uncoded bits based at least in part on the result of the polar decoding process. If the polar decoder component detected and/or corrected any errors in the demodulated coded bits as part of the decoding process, the polar decoder component may provide an indication of the errors to the second demodulation component, and the second demodulation component may demodulate the uncoded bits based at least in part on the errors that were detects as part of the decoding process. The output of the second demodulation process may include demodulated uncoded bits that are formed from the uncoded bits.
  • the second demodulation component may provide the demodulated uncoded bits to the parallel-to-serial component.
  • the receiver device may combine the demodulated decoded bits and the demodulated uncoded bits to form the information bit stream.
  • the parallel-to-serial component of the receiver device and/or another component may combine the demodulated decoded bits and the demodulated uncoded bits by serializing the demodulated decoded bits and the demodulated uncoded bits into a single bit stream (e.g., the information bit stream) .
  • the transmitter device may polar encode a subset of bits included in an information bit stream as opposed to the entire information bit stream. For example, the transmitter device may polar encode a first subset of bits of an information bit stream to form a coded bit stream.
  • the transmitter device may jointly modulate the coded bit stream and an uncoded bit stream that includes a second subset of bits of the information bit stream.
  • the jointly modulated coded bit stream and uncoded bit stream may form one or more symbols, which the transmitter device may transmit to a receiver device.
  • the receiver device needs to decode only a subset of bits of an information bit stream, which decreases the complexity, power consumption, processing resource consumption, and memory resource consumption of the decoder of the receiver device.
  • the transmitter device may select the quantity of the subset of bits such that the forward error correction performance for the information bit stream is the same or near the same performance as polar encoding the entire information bit stream.
  • Figs. 3A-3C are provided as examples. Other examples may differ from what is described with respect to Figs. 3A-3C.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a transmitter device, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where a transmitter device (e.g., BS 110, UE 120, and/or the like) performs operations associated with joint polar coding and modulation.
  • a transmitter device e.g., BS 110, UE 120, and/or the like
  • process 400 may include polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits of the information bit stream comprises an uncoded bit stream (block 410) .
  • the transmitter device e.g., using transmit processor 220, controller/processor 240, memory 242, transmit processor 264, controller processor 280, memory 282, and/or the like
  • a second subset of bits of the information bit stream comprises an uncoded bit stream.
  • process 400 may include modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream (block 420) .
  • the transmitter device e.g., using transmit processor 220, modulator 232, controller/processor 240, memory 242, modulator 254, transmit processor 264, controller processor 280, memory 282, and/or the like
  • each symbol, of the plurality of symbols is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 400 further comprises splitting the information bit stream into the first subset of bits and the second subset of bits, providing the first subset of bits to a polar encoder, and providing the second subset of bits to a modulator.
  • modulating the plurality of symbols comprises modulating the plurality of symbols using QAM.
  • a quantity of the one or more first bits is greater relative to a quantity of the one or more second bits.
  • the information bit stream comprises a control channel information bit stream.
  • the control channel information bit stream comprises a PUCCH) information bit stream or a PDCCH information bit stream.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a receiver device, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where a receiver device (e.g., BS 110, UE 120, and/or the like) performs operations associated with joint polar coding and modulation.
  • a receiver device e.g., BS 110, UE 120, and/or the like
  • process 500 may include demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits (block 510) .
  • the receiver device e.g., using demodulator 232, receive processor 238, controller/processor 240, memory 242, demodulator 254, receive processor 258, controller processor 280, memory 282, and/or the like
  • process 500 may include polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits (block 520) .
  • the receiver device e.g., using receive processor 238, controller/processor 240, memory 242, receive processor 258, controller processor 280, memory 282, and/or the like
  • process 500 may include demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits (block 530) .
  • the receiver device e.g., using demodulator 232, receive processor 238, controller/processor 240, memory 242, demodulator 254, receive processor 258, controller processor 280, memory 282, and/or the like
  • process 500 may include combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols (block 540) .
  • the receiver device e.g., using receive processor 238, controller/processor 240, memory 242, receive processor 258, controller processor 280, memory 282, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the information bit stream comprises a control channel information bit stream.
  • the control channel information bit stream comprises a PUCCH information bit stream or a PDCCH information bit stream.
  • a quantity of the one or more polar coded bits is greater relative to a quantity of the one or more uncoded bits.
  • demodulating the one or more polar coded bits comprises generating LLRs for the one or more polar coded bits, and polar decoding the one or more demodulated polar coded bits comprises polar decoding the one or more demodulated polar coded bits based at least in part on the LLRs.
  • demodulating the one or more uncoded bits comprises demodulating the one or more uncoded bits based at least in part on the one or more demodulated decoded bits.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects relate to wireless communication. In some aspects, a transmitter device may polar encode a first subset of bits, of an information bit stream, to form a coded bit stream. The transmitter device may modulate the coded bit stream and the uncoded bit stream to generate a plurality of symbols. Numerous other aspects are provided.

Description

JOINT POLAR CODING AND MODULATION
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for joint polar coding and modulation.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving  spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a transmitter device, may include polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream; and modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
In some aspects, a transmitter device for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to polar encode a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream; and modulate the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a transmitter device, may cause the one or more processors to polar encode a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream; and modulate the coded bit stream and the uncoded  bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
In some aspects, an apparatus for wireless communication may include means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream; and means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
In some aspects, a method of wireless communication, performed by a receiver device, may include demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits; polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits; demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
In some aspects, a receiver device for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to demodulate one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits; polar decode the one or more demodulated polar coded bits to form one or more demodulated decoded bits; demodulate one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and combine the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a receiver device, may cause the one or more processors to demodulate one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits; polar decode the one or more demodulated polar coded bits to form one or more demodulated decoded bits; demodulate one or more uncoded bits, included in the one or more symbols, to form one  or more demodulated uncoded bits; and combine the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
In some aspects, an apparatus for wireless communication may include means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits; means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits; means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the  description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Figs. 3A-3C are diagrams illustrating one or more examples of joint polar coding and modulation, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example process performed, for example, by a transmitter device, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process performed, for example, by a receiver device, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes,  algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects,  the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a  global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base  station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information  and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with joint polar coding and modulation, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream, means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or  more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream, and/or the like. In some aspects, UE 120 may include means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits, means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits, means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits, means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2.
In some aspects, base station 110 may include means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits, of the information bit stream, comprises an uncoded bit stream, means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream, and/or the like. In some aspects, base station 110 may include means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits, means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits, means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits, means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
In a wireless network, a transmitter device may communicate with a receiver device. To communicate with the receiver device, the transmitter device may generate an information bit stream, may convert the information bit stream into one or more symbols, and may transmit the one or more symbols to the receiver device. The one or more symbols may include one or more communications, such as a physical downlink  control channel (PDCCH) communication, a physical uplink control channel (PUCCH) communication, a physical downlink shared channel (PDSCH) communication, a physical uplink shared channel (PUSCH) communication, a physical sidelink control channel (PSCCH) , a physical sidelink shared channel (PSSCH) communication, and/or the like.
To convert the information bit stream into the one or more symbols, the transmitter device may encode the information bit stream for purposes of forward error correction, and the encoded information bit stream may be modulated to generate the one or more symbols. The receiver device may receive the one or more symbols, may demodulate the one or more symbols, and may decode the encoded information bit stream to reconstruct the information bit stream.
The transmitter device may use various types of error correction codes to encode an information bit stream. An example error correction code is a polar code. Polar coding may refer to polarization of a channel into a plurality of virtual channels for each bit of a bit stream to be transmitted over the channel. Channel polarization may be generated with a recursive algorithm that defines polar codes. That is, a polar code may polarize the reliability of the bits observed on the channel such that, from the perspective of the bits, the channel is polarized into high-reliability channels and low-reliability channels. The high-reliability channels may be used to transmit bits that include information or data, and the low-reliability channels may be used to transmit frozen bits, which may be bits that do not necessarily include information or data. However, decoding a polar encoded bit stream may involve the use of complex and time-consuming list decoding techniques, which increases the complexity, power consumption, processing resource consumption, and memory resource consumption of the decoder of the receiver device.
Some aspects, described herein, provide techniques and apparatuses for joint polar coding and modulation. In some aspects, a transmitter device may polar encode a subset of bits included in an information bit stream as opposed to the entire information bit stream. For example, the transmitter device may polar encode a first subset of bits of an information bit stream to form a coded bit stream. The transmitter device may jointly modulate the coded bit stream and an uncoded bit stream that includes a second subset of bits of the information bit stream. The jointly modulated coded bit stream and uncoded bit stream may form one or more symbols, which the transmitter device may transmit to a receiver device.
In this way, the receiver device needs to decode only a subset of bits of an information bit stream, which decreases the complexity, power consumption, processing resource consumption, and memory resource consumption of the decoder of the receiver device. The transmitter device may select the quantity of the subset of bits such that the forward error correction performance for the information bit stream is the same or near the same performance as polar encoding the entire information bit stream.
Figs. 3A-3C are diagrams illustrating one or more examples 300 of joint polar encoding and modulation, in accordance with various aspects of the present disclosure. As shown in Figs. 3A-3C, examples 300 may include a transmitter device and a receiver device. The transmitter device may include a base station (e.g., BS 110) or a UE (e.g., UE 120) . The receiver device may include a base station (e.g., BS 110) or a UE (e.g., UE 120) . The transmitter device and receiver device may be included in a wireless network and may communicate via a wireless communication link. To communicate with the receiver device, the transmitter device may generate an information bit stream that includes a plurality of information bits (e.g., b 0b 1... b i) , may convert the information bit stream into one or more symbols, and may transmit the one or more symbols to the receiver device.
As shown by Fig. 3A, and by reference number 302, to convert the information bit stream into the one or more symbols, the transmitter device may split the information bit stream into a first subset of bits and a second subset of bits. For example, a serial-to-parallel component of the transmitter device (e.g., a serial-to-parallel processor, a serial-to-parallel circuit, and/or the like) and/or another component may split the information bit stream from a serial bit stream into two or more parallel bit streams. The respective bit streams, of two or more parallel bit streams, may include the first subset of bits and the second subset of bits.
The first subset of bits may comprise a first uncoded bit stream (e.g., a 0a 1... a j) and the second subset of bits may comprise a second uncoded bit stream (e.g., u 0u 1... u i) . The serial-to-parallel component may split the information bit stream based at least in part on various ratios, such that quantities of bits included in the first uncoded bit stream and the second coded bit stream are 1: 1, 2: 1, 3: 1, and/or the like. The serial-to-parallel component may provide the first uncoded bit stream to a polar encoder component, and may provide the second uncoded bit stream to a modulation component.
As further shown in Fig. 3A, and by reference number 304, the transmitter device may polar encode the first subset of bits included in the first uncoded bit stream. For example, the transmitter device may use the polar encoder component (e.g., a polar encoder processor, a polar encoder circuit, and/or the like) to receive the first uncoded bit stream from the serial-to-parallel component and encode the first uncoded bit stream using a polar code. The output of the polar encoding process may be a coded bit stream (e.g., c 0c 1... c k) that is generated from the first uncoded bit stream. The polar encoder component may provide the coded bit stream to the modulation component.
In some aspects, the polar encoder component may use various polar encoding algorithms to polar encode the first uncoded bit stream. The polar encoder may determine reliability metrics for a plurality of virtual channels of the polar encoder and may assign bits, included in the first uncoded bit stream, to respective virtual channels based on the reliability metrics. The reliability metrics may be based at least in part on a density evolution or a Gaussian approximation. Some virtual channels may be assigned other bit types, such as parity bits or frozen bits. For example, the polar encoder may assign the bits, included in the first uncoded bit stream, to virtual channels with the highest reliability metrics (e.g., the virtual channels having a corresponding reliability metric that satisfies a reliability metric threshold, a particular quantity of virtual channels with the highest reliability metrics, and/or the like) , and may assign frozen bits (or parity bits) to other virtual channels.
To determine the reliability metrics of the virtual channels, the polar encoder may perform a plurality of exclusive-OR (XOR) operations on the first uncoded bit stream. The XOR operations polarize the physical channel on which the information bit stream is to be transmitted, causing some virtual channels to be weaker effective channels (e.g., virtual channels that have relatively lower reliability metrics) compared to other virtual channels. Additionally and/or alternatively, the polar encoder may use other types of bitwise logical operations to polarize the physical channel, such as real addition and/or the like.
As further shown in Fig. 3A, and by reference number 306, the transmitter device may jointly modulate the second uncoded bit stream and the coded bit stream. For example, the transmitter device may use the modulation component to receive the second uncoded bit stream and the coded bit stream, and to jointly modulate the second uncoded bit stream and the coded bit stream. The output of the modulation process may  include one or more symbols to which the second uncoded bit stream and the coded bit stream are mapped.
The modulation component may use various modulation techniques to map the second uncoded bit stream and the coded bit stream to the one or more symbols. As an example, the modulation component may use a quadrature amplitude modulation (QAM) technique. In this case, the modulation component may modulate the second uncoded bit stream and the coded bit stream based at least in part on 2 m-QAM, where m bits are mapped to each symbol of the one or more symbols. The m bits may include p uncoded bits from the second uncoded bit stream and t coded bits from the coded bit stream.
Since polar encoding adds bits to the first uncoded bit stream, the quantity of coded bits that is mapped to a particular symbol may be greater relative to the quantity of uncoded bits mapped to the symbol. In some aspects, the quantity of bits that is added to the first uncoded bit stream during polar encoding may be based at least in part on a configured coding gain for the polar encoder component. For example, the coding gain may be configured such that the forward error correction for the information bit stream may be the same, similar, and/or comparable to the forward error correction for the information bit stream if the information bit stream were fully polar encoded.
As further shown in Fig. 3A, and by reference number 308, the transmitter device may transmit the one or more symbols to the receiver device. In some aspects, the transmitter device may transmit the one or more symbols based at least in part on modulating the second uncoded bit stream and the coded bit stream to generate the one or more symbols. The one or more symbols may be transmitted in one or more communications on a channel, such as a PDCCH, a PUCCH, a PDSCH, a PUSCH, a PSCCH, a PSSCH, and/or the like.
Fig. 3B illustrates a constellation diagram of an example mapping of the second uncoded bit stream and the coded bit stream to the one or more symbols. The mapping illustrated in Fig. 3B is an example only, and other mappings and/or modulation techniques may be used. As shown in Fig. 3B, the example mapping may include an example of modulation using a 64-QAM configuration, which may result in the second uncoded bit stream and the coded bit stream being mapped to 64 symbols. Each symbol may include 6 bits: 2 uncoded bits of the second uncoded bit stream (e.g., u 1u 0) and 4 coded bits of the coded bit stream (e.g., c 3c 2c 1c 0) . The concatenation of the uncoded bits and the coded bits for a particular symbol may include u 1u 0c 3c 2c 1c 0.
As shown in Fig. 3C, the receiver device may receive the one or more symbols from the transmitter device. To demodulate and decode the one or more symbols to reconstruct the information bit stream, the receiver device may provide the coded bits of the one or more symbols to a first demodulation component (e.g., a first demodulation processor, a first demodulation circuit, and/or the like) , and may provide the uncoded bits of the one or more symbols to a second demodulation component (e.g., a second demodulation processor, a second demodulation circuit, and/or the like) . In some aspects, the first demodulation component and the second demodulation component may be the same demodulation component. In some aspects, the first demodulation component and the second demodulation component may be different demodulation components.
As further shown in Fig. 3C, and by reference number 310, the receiver device may demodulate the coded bits, in the one or more symbols, to form demodulated coded bits. For example, the first demodulation component of the receiver device may receive the coded bits and may perform a first demodulation process on the coded bits. In some aspects, the first demodulation component may perform a “soft” demodulation of the coded bits. The soft demodulation may include determining bit-level soft information, for the coded bits, as a demodulation output. The soft information may include log-likelihood ratios (LLR) for the coded bits. An LLR value for a coded bit may be an indication of the probability of the coded bit value being a 0-value or a 1-value. The first demodulation component may provide the demodulated coded bits and corresponding LLR values to a polar decoder component (e.g., a polar decoder processor, a polar decoder circuit, and/or the like) .
As further shown in Fig. 3C, and by reference number 312, the receiver device may polar decode the demodulated coded bits to form demodulated decoded bits. For example, the receiver device may use the polar decoder component to perform one or more decoding techniques, based at least in part on the LLR values, to determine the demodulated decoded bits. The polar decoder component may provide the demodulated decoded bits to the second demodulation component and a parallel-to-serial component (e.g., a parallel-to-serial processor, a parallel-to-serial circuit, and/or the like) .
The decoding techniques may include various forward error correction algorithms, such as a successive cancellation list (SCL) decoding algorithm, a cyclic redundancy check (CRC) aided SCL (CA-SCL) decoding, and/or the like. For example, the polar decoder component may determine L decoding paths (where L>1) for the  demodulated coded bits based at least in part on the corresponding LLRs. At each decoding stage, the polar decoder component may discard the least probable or worst decoding paths and keeps only the L most probable or best decoding paths. The polar decoding process may result in a list of L candidates for the demodulated decoded bits, out of which the polar decoder component may select the most likely candidate.
As further shown in Fig. 3C, and by reference number 314, the receiver device may perform a second demodulation process to demodulate the uncoded bits included in the one or more symbols. For example, the second demodulation component of the receiver device may receive the one or more symbols and the demodulated decoded bits, and may perform the second demodulation process.
In some aspects, the second demodulation component may demodulate the uncoded bits based at least in part on the demodulated decoded bits. For example, the second demodulation component may demodulate the uncoded bits based at least in part on the result of the polar decoding process. If the polar decoder component detected and/or corrected any errors in the demodulated coded bits as part of the decoding process, the polar decoder component may provide an indication of the errors to the second demodulation component, and the second demodulation component may demodulate the uncoded bits based at least in part on the errors that were detects as part of the decoding process. The output of the second demodulation process may include demodulated uncoded bits that are formed from the uncoded bits.
The second demodulation component may provide the demodulated uncoded bits to the parallel-to-serial component. As further shown by Fig. 3C, and by reference number 316, the receiver device may combine the demodulated decoded bits and the demodulated uncoded bits to form the information bit stream. For example, the parallel-to-serial component of the receiver device and/or another component may combine the demodulated decoded bits and the demodulated uncoded bits by serializing the demodulated decoded bits and the demodulated uncoded bits into a single bit stream (e.g., the information bit stream) .
In this way, the transmitter device may polar encode a subset of bits included in an information bit stream as opposed to the entire information bit stream. For example, the transmitter device may polar encode a first subset of bits of an information bit stream to form a coded bit stream. The transmitter device may jointly modulate the coded bit stream and an uncoded bit stream that includes a second subset of bits of the information bit stream. The jointly modulated coded bit stream and uncoded bit stream  may form one or more symbols, which the transmitter device may transmit to a receiver device. In this way, the receiver device needs to decode only a subset of bits of an information bit stream, which decreases the complexity, power consumption, processing resource consumption, and memory resource consumption of the decoder of the receiver device. The transmitter device may select the quantity of the subset of bits such that the forward error correction performance for the information bit stream is the same or near the same performance as polar encoding the entire information bit stream.
As indicated above, Figs. 3A-3C are provided as examples. Other examples may differ from what is described with respect to Figs. 3A-3C.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a transmitter device, in accordance with various aspects of the present disclosure. Example process 400 is an example where a transmitter device (e.g., BS 110, UE 120, and/or the like) performs operations associated with joint polar coding and modulation.
As shown in Fig. 4, in some aspects, process 400 may include polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream, wherein a second subset of bits of the information bit stream comprises an uncoded bit stream (block 410) . For example, the transmitter device (e.g., using transmit processor 220, controller/processor 240, memory 242, transmit processor 264, controller processor 280, memory 282, and/or the like) may polar encode a first subset of bits, of an information bit stream, to form a coded bit stream, as described above. In some aspects, a second subset of bits of the information bit stream comprises an uncoded bit stream.
As further shown in Fig. 4, in some aspects, process 400 may include modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols, wherein each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream (block 420) . For example, the transmitter device (e.g., using transmit processor 220, modulator 232, controller/processor 240, memory 242, modulator 254, transmit processor 264, controller processor 280, memory 282, and/or the like) may modulate the coded bit stream and the uncoded bit stream to generate a plurality of symbols, as described above. In some aspects, each symbol, of the plurality of symbols, is represented by one or more first bits included in the coded bit stream and one or more second bits included in the uncoded bit stream.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 400 further comprises splitting the information bit stream into the first subset of bits and the second subset of bits, providing the first subset of bits to a polar encoder, and providing the second subset of bits to a modulator. n a second aspect, alone or in combination with the first aspect, modulating the plurality of symbols comprises modulating the plurality of symbols using QAM. In a third aspect, alone or in combination with one or more of the first and second aspects, a quantity of the one or more first bits is greater relative to a quantity of the one or more second bits.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the information bit stream comprises a control channel information bit stream. In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the control channel information bit stream comprises a PUCCH) information bit stream or a PDCCH information bit stream.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a receiver device, in accordance with various aspects of the present disclosure. Example process 500 is an example where a receiver device (e.g., BS 110, UE 120, and/or the like) performs operations associated with joint polar coding and modulation.
As shown in Fig. 5, in some aspects, process 500 may include demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits (block 510) . For example, the receiver device (e.g., using demodulator 232, receive processor 238, controller/processor 240, memory 242, demodulator 254, receive processor 258, controller processor 280, memory 282, and/or the like) may demodulate one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include polar decoding the one or more demodulated polar coded bits to form one or more  demodulated decoded bits (block 520) . For example, the receiver device (e.g., using receive processor 238, controller/processor 240, memory 242, receive processor 258, controller processor 280, memory 282, and/or the like) may polar decode the one or more demodulated polar coded bits to form one or more demodulated decoded bits, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits (block 530) . For example, the receiver device (e.g., using demodulator 232, receive processor 238, controller/processor 240, memory 242, demodulator 254, receive processor 258, controller processor 280, memory 282, and/or the like) may demodulate one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols (block 540) . For example, the receiver device (e.g., using receive processor 238, controller/processor 240, memory 242, receive processor 258, controller processor 280, memory 282, and/or the like) may combine the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols, as described above.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the information bit stream comprises a control channel information bit stream. In a second aspect, alone or in combination with the first aspect, the control channel information bit stream comprises a PUCCH information bit stream or a PDCCH information bit stream. In a third aspect, alone or in combination with one or more of the first and second aspects, a quantity of the one or more polar coded bits is greater relative to a quantity of the one or more uncoded bits.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, demodulating the one or more polar coded bits comprises generating LLRs for the one or more polar coded bits, and polar decoding the one or more demodulated polar coded bits comprises polar decoding the one or more demodulated polar coded bits based at least in part on the LLRs. In a fifth aspect, alone  or in combination with one or more of the first through fourth aspects, demodulating the one or more uncoded bits comprises demodulating the one or more uncoded bits based at least in part on the one or more demodulated decoded bits.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers  to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (18)

  1. A method of wireless communication performed by a transmitter device, comprising:
    polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream,
    wherein a second subset of bits, of the information bit stream, comprises:
    an uncoded bit stream; and
    modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols,
    wherein each symbol, of the plurality of symbols, is represented by:
    one or more first bits included in the coded bit stream, and
    one or more second bits included in the uncoded bit stream.
  2. The method of claim 1, further comprising:
    splitting the information bit stream into the first subset of bits and the second subset of bits;
    providing the first subset of bits to a polar encoder; and
    providing the second subset of bits to a modulator.
  3. The method of claim 1, wherein modulating the plurality of symbols comprises:
    modulating the plurality of symbols using quadrature amplitude modulation (QAM) .
  4. The method of claim 1, wherein a quantity of the one or more first bits is greater relative to a quantity of the one or more second bits.
  5. The method of claim 1, wherein the information bit stream comprises:
    a control channel information bit stream.
  6. The method of claim 5, wherein the control channel information bit stream comprises:
    a physical uplink control channel (PUCCH) information bit stream, or
    a physical downlink control channel (PDCCH) information bit stream.
  7. A method of wireless communication performed by a receiver device, comprising:
    demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits;
    polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits;
    demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and
    combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
  8. The method of claim 7, wherein the information bit stream comprises:
    a control channel information bit stream.
  9. The method of claim 8, wherein the control channel information bit stream comprises:
    a physical uplink control channel (PUCCH) information bit stream, or
    a physical downlink control channel (PDCCH) information bit stream.
  10. The method of claim 7, wherein a quantity of the one or more polar coded bits is greater relative to a quantity of the one or more uncoded bits.
  11. The method of claim 7, wherein demodulating the one or more polar coded bits comprises:
    generating log-likelihood ratios (LLRs) for the one or more polar coded bits; and
    wherein polar decoding the one or more demodulated polar coded bits comprises:
    polar decoding the one or more demodulated polar coded bits based at least in part on the LLRs.
  12. The method of claim 7, wherein demodulating the one or more uncoded bits comprises:
    demodulating the one or more uncoded bits based at least in part on the one or more demodulated decoded bits.
  13. A transmitter device for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    polar encode a first subset of bits, of an information bit stream, to form a coded bit stream,
    wherein a second subset of bits, of the information bit stream, comprises:
    an uncoded bit stream; and
    modulate the coded bit stream and the uncoded bit stream to generate a plurality of symbols,
    wherein each symbol, of the plurality of symbols, is represented by:
    one or more first bits included in the coded bit stream, and
    one or more second bits included in the uncoded bit stream.
  14. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a transmitter device, cause the one or more processors to:
    polar encode a first subset of bits, of an information bit stream, to form a coded bit stream,
    wherein a second subset of bits, of the information bit stream, comprises:
    an uncoded bit stream; and
    modulate the coded bit stream and the uncoded bit stream to generate a plurality of symbols,
    wherein each symbol, of the plurality of symbols, is represented by:
    one or more first bits included in the coded bit stream, and
    one or more second bits included in the uncoded bit stream.
  15. An apparatus for wireless communication, comprising:
    means for polar encoding a first subset of bits, of an information bit stream, to form a coded bit stream,
    wherein a second subset of bits, of the information bit stream, comprises:
    an uncoded bit stream; and
    means for modulating the coded bit stream and the uncoded bit stream to generate a plurality of symbols,
    wherein each symbol, of the plurality of symbols, is represented by:
    one or more first bits included in the coded bit stream, and
    one or more second bits included in the uncoded bit stream.
  16. A receiver device for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    demodulate one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits;
    polar decode the one or more demodulated polar coded bits to form one or more demodulated decoded bits;
    demodulate one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and
    combine the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
  17. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a receiver device, cause the one or more processors to:
    demodulate one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits;
    polar decode the one or more demodulated polar coded bits to form one or more demodulated decoded bits;
    demodulate one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and
    combine the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
  18. An apparatus for wireless communication, comprising:
    means for demodulating one or more polar coded bits, included in one or more symbols, to form one or more demodulated polar coded bits;
    means for polar decoding the one or more demodulated polar coded bits to form one or more demodulated decoded bits;
    means for demodulating one or more uncoded bits, included in the one or more symbols, to form one or more demodulated uncoded bits; and
    means for combining the one or more demodulated decoded bits and the one or more demodulated uncoded bits to form an information bit stream associated with the one or more symbols.
PCT/CN2019/085936 2019-05-08 2019-05-08 Joint polar coding and modulation WO2020223915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085936 WO2020223915A1 (en) 2019-05-08 2019-05-08 Joint polar coding and modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085936 WO2020223915A1 (en) 2019-05-08 2019-05-08 Joint polar coding and modulation

Publications (1)

Publication Number Publication Date
WO2020223915A1 true WO2020223915A1 (en) 2020-11-12

Family

ID=73051252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085936 WO2020223915A1 (en) 2019-05-08 2019-05-08 Joint polar coding and modulation

Country Status (1)

Country Link
WO (1) WO2020223915A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235192A1 (en) * 2004-04-14 2005-10-20 Pierre Bernadac Method and apparatus for preventing a false pass of a cyclic redundancy check at a receiver during weak receiving conditions in a wireless communications system
US20060156169A1 (en) * 2005-01-10 2006-07-13 Ba-Zhong Shen LDPC (Low Density Parity Check) coding and interleaving implemented in MIMO communication systems
US20170207884A1 (en) * 2016-01-18 2017-07-20 Qualcomm Incorporated Harq llr buffer and reordering buffer management
WO2018127204A1 (en) * 2017-01-09 2018-07-12 Mediatek Inc. Techniques of csi feedback with unequal error protection messages
WO2019029539A1 (en) * 2017-08-07 2019-02-14 Mediatek Inc. Channel bit interleaver design for polar coding chain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235192A1 (en) * 2004-04-14 2005-10-20 Pierre Bernadac Method and apparatus for preventing a false pass of a cyclic redundancy check at a receiver during weak receiving conditions in a wireless communications system
US20060156169A1 (en) * 2005-01-10 2006-07-13 Ba-Zhong Shen LDPC (Low Density Parity Check) coding and interleaving implemented in MIMO communication systems
US20170207884A1 (en) * 2016-01-18 2017-07-20 Qualcomm Incorporated Harq llr buffer and reordering buffer management
WO2018127204A1 (en) * 2017-01-09 2018-07-12 Mediatek Inc. Techniques of csi feedback with unequal error protection messages
WO2019029539A1 (en) * 2017-08-07 2019-02-14 Mediatek Inc. Channel bit interleaver design for polar coding chain

Similar Documents

Publication Publication Date Title
US20190393986A1 (en) Hybrid polar code design for ultra-reliable low latency communications (urllc)
US20230085874A1 (en) Association of phase tracking reference signal ports and demodulation reference signal ports for multi-beam uplink repetitions
WO2021184296A1 (en) Configuration and indication for enabling uplink transmission with multiple codewords
TWI750424B (en) Techniques and apparatuses for control information determination for payloads with leading zeroes
US20230027316A1 (en) Demodulation reference signal time domain bundling
CN114788202B (en) Incoherent wireless communication using modified reed-muller codes
US11387932B2 (en) Systematic bit priority mapping interleaving for layers with different modulation orders
US11469854B2 (en) Multi-level channel coding for wireless communications
US11743000B2 (en) Feedback-based retransmission of broadcast network coding encoded packets
US11984978B2 (en) Non-coherent communications associated with polar coding
US11411796B1 (en) Bit interleaving for bitwise autoencoder based communications
WO2021248343A1 (en) Selecting a network coding scheme
WO2020223915A1 (en) Joint polar coding and modulation
US11146296B2 (en) Codeword bit selection for rate-compatible polar coding
US12052731B2 (en) Feedback-based broadcast network coded packet transmission
US12052698B2 (en) Channel based tone reservation
US11690124B2 (en) Beam failure recovery request transmission for repetitious communication
US20230388159A1 (en) Communications using a neural network based at least in part on an indicated input size and/or input structure
WO2021007830A1 (en) Hybrid automatic repeat request design with unequal error protection
US20230180326A1 (en) Techniques for mitigating redundant beam failure recovery medium access signaling
US20220408439A1 (en) Channel based tone reservation
US20240259147A1 (en) Code block operation for physical uplink shared channel repetitions with transport block scaling and frequency hopping
WO2020113592A1 (en) Control channel decoding indication for multi-trp communication
WO2019200605A1 (en) Techniques and apparatuses for signaling regarding rate splitting using first layers and second layers
WO2019095362A1 (en) Techniques and apparatuses for hybrid automatic repeat request design of polar codes for ultra-reliable low latency communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927818

Country of ref document: EP

Kind code of ref document: A1