WO2020223899A1 - System and method for indicating an uplink bler target - Google Patents

System and method for indicating an uplink bler target Download PDF

Info

Publication number
WO2020223899A1
WO2020223899A1 PCT/CN2019/085852 CN2019085852W WO2020223899A1 WO 2020223899 A1 WO2020223899 A1 WO 2020223899A1 CN 2019085852 W CN2019085852 W CN 2019085852W WO 2020223899 A1 WO2020223899 A1 WO 2020223899A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packets
information associated
target bler
base station
bler
Prior art date
Application number
PCT/CN2019/085852
Other languages
French (fr)
Inventor
Min Huang
Chao Wei
Ruiming Zheng
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/085852 priority Critical patent/WO2020223899A1/en
Publication of WO2020223899A1 publication Critical patent/WO2020223899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present disclosure relates generally to communications systems, and more particularly, to a user equipment configured to request a block error rate for a set of data packets.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra reliable low latency communications
  • 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • RATs radio access technologies
  • NR 5G New Radio
  • RATs may support a variety of services.
  • examples of such services include mobile broadband (MBB) , Internet-of-Things (IoT) services, and virtual reality (VR) /augmented reality (AR) .
  • MBB mobile broadband
  • IoT Internet-of-Things
  • VR virtual reality
  • AR augmented reality
  • the communication of data packets may follow various metrics, such as metrics associated with throughput, latency, and the like.
  • these various metrics may include quality of service (QoS) , buffer status at a UE, and channel status (e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station) .
  • QoS quality of service
  • buffer status at a UE buffer status at a UE
  • channel status e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station
  • a UE may first obtain an uplink grant.
  • the base station may provide the uplink grant to the UE in order to indicate a radio resource allocation (e.g., a set of time and/or frequency resources) on which the UE may transmit the set of data packets to the base station.
  • a radio resource allocation e.g., a set of time and/or frequency resources
  • the base station may allocate a set of radio resources to a UE based on one or more metrics, including the aforementioned QoS, buffer status, and/or channel status.
  • data may be time sensitive and/or low-latency constrained. Therefore, data packets transmitted by the UE to the base station may meet one or more latency conditions, and failure to do so may render those data packets unusable. However, QoS, buffer status, and/or channel status may be insufficient to indicate the latency conditions associated with transmission of data packets. Therefore, a need exists to provide the base station with information associated with the latency conditions associated data packets and, further, to provide the UE with uplink grants enabling the UE to transmit data packets to the base station while meeting the latency conditions associated with those data packets.
  • the apparatus may be a UE.
  • the apparatus may determine a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station.
  • the apparatus may transmit, to the base station, information associated with a first target block error rate (BLER) based on the first latency status.
  • BLER target block error rate
  • the apparatus may receive, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER.
  • the apparatus may transmit, to the base station, the first set of data packets based on the first uplink grant.
  • BLER block error rate
  • the other apparatus may be a base station.
  • the other apparatus may receive, from a first UE, information associated with a first target BLER requested for a first set of data packets to be transmitted by the first UE.
  • the other apparatus may determine, for the first UE, a first resource allocation and transport format based on the information associated with the first target BLER.
  • the other apparatus may transmit, to the first UE, a first uplink grant based on the first resource allocation and transport format.
  • the apparatus may receive, from the first UE, the first set of data packets based on the first uplink grant.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a call flow diagram illustrating an example of packet transmission in a wireless communications system.
  • FIGs. 5A and 5B are diagrams illustrating media access control (MAC) control elements (CEs) associated with packet transmission in a wireless communications environment.
  • MAC media access control
  • CEs control elements
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a flowchart of a method of wireless communication.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through backhaul links 184.
  • NG-RAN Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over backhaul links 134 (e.g., X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102' , employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW millimeter wave
  • mmW base station Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters.
  • Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave.
  • Communications using the mmW /near mmW radio frequency band (e.g., 3 GHz –300 GHz) has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182' .
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” .
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides quality-of-service (QoS) flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile communications
  • the UE 104 may be configured to determine a first latency status associated with a first set of data packets buffered by the UE 104 for transmission to the base station 102/180.
  • the UE 104 may transmit, to the base station 102/180, block error rate (BLER) information associated with the first set of data packets based on the first latency status determined by the UE 104 (198) .
  • BLER block error rate
  • the base station 102/180 may receive the BLER information associated with the first set of data packets (198) . Based on BLER information associated with the first set of data packets (198) , the base station 102/180 may determine, for the UE 104, a first resource allocation. The base station 102/180 may transmit a first uplink grant to the UE 104, and the first uplink grant may be based on the first resource allocation.
  • the UE 104 may receive the first uplink from the base station 102/180 based on the BLER information associated with the first set of data packets (198) . Based on the first uplink grant, the UE 104 may transmit the first set of data packets buffered at the UE 104 to the base station 102/180. For example, the UE 104 may transmit each of the set of data packets on a respective set of time/frequency radio resources allocated to the UE 104 according to the first uplink grant.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe.
  • the 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and X is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) .
  • slot formats 0, 1 are all DL, UL, respectively.
  • Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 5.
  • is the numerology 0 to 5.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 ⁇ s.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block.
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX.
  • Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354RX receives a signal through its respective antenna 352.
  • Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • Various RATs such as 5G NR, may support a variety of services. Examples of such services include mobile broadband (MBB) , IoT services, virtual reality (VR) /augmented reality (AR) , vehicle-to-everything (V2X) , remote control, remote medicine, and other low-latency and/or high-priority services.
  • MBB mobile broadband
  • IoT virtual reality
  • AR augmented reality
  • V2X vehicle-to-everything
  • these various metrics may include QoS, buffer status at a UE, and channel status (e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station) .
  • QoS Quality of Service
  • buffer status at a UE e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station
  • channel status e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station.
  • some metrics may be described in more detail in one or more 3GPP standards.
  • the UE may be configured with a QoS profile for one or more services.
  • the QoS profile configured for a UE may be associated with a QoS flow containing a set of QoS parameters.
  • the QoS parameters may include an allocation and retention priority (ARP) , a guaranteed flow bit rate (GFBR) , a maximum flow bit rate (MFBR) , a maximum packet loss rate, a delay critical resource type for a guaranteed bit rate (GBR) QoS flow, and/or an aggregate maximum bit rate (AMBR) for a non-GBR QoS flow.
  • ARP allocation and retention priority
  • GFBR guaranteed flow bit rate
  • MFBR maximum flow bit rate
  • GRR guaranteed bit rate
  • AMBR aggregate maximum bit rate
  • the UE may transmit a BSR to the base station.
  • the BSR may indicate a total amount of data that is in a buffer of the UE to be transmitted to the base station.
  • the BSR may be indicated in a MAC control element (CE) .
  • a BSR MAC CE may include a buffer size field that identifies the total amount of data available across all logical channels of a logical channel group after the UE has generated a MAC protocol data unit (PDU) including the BSR MAC CE.
  • PDU MAC protocol data unit
  • the UE may indicate a recommended bit rate for transmission of uplink data to be scheduled in the same or another MAC PDU, for example, in another MAC CE associated with a recommended bit rate.
  • the base station may transmit reference signals to the UE on the wireless channel to be used for uplink communication from the UE to the base station.
  • the reference signals include SRS, DM-RS, and the like.
  • the UE may receive the reference signals and measure at least one value indicative of channel quality, such as a signal-to-noise ratio (SNR) , signal-to-noise-plus-interference (SNIR) , a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , and the like.
  • SNR signal-to-noise ratio
  • SNIR signal-to-noise-plus-interference
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the UE may report information indicating the at least one measured value to the base station, and the base station may allocate radio resources associated with the uplink grant based on the reported information.
  • data may be time sensitive and/or low-latency constrained. Therefore, data packets transmitted by the UE to the base station may meet one or more latency conditions, and failure to do so may render those data packets unusable.
  • latency conditions may be contingent upon whole packet transfer latency.
  • the whole packet transfer latency may be the interval between a time at which a packet arrives at a TX buffer of the UE and a time at which the packet is successfully received by the receiver (e.g., the receiver may be a base station, a small cell, etc. ) .
  • the latency in communication of a packet includes the transmission time periods of the initial packet transmission and every packet retransmission until the packet is successfully transmitted.
  • Successful transmission (or retransmission) may be established when HARQ feedback associated with the data packet indicates an acknowledgment (ACK) .
  • the metric of BLER is used to represent the transfer error rate of code block in a data packet.
  • MCS modulation and code scheme
  • Target BLER may refer to the code block error rate that is targeted for a current and/or one-time initial transmission or retransmission of a set of packets.
  • the transfer of a data packet may not be regarded as successful until the initial transmission and all the corresponding HARQ retransmission (s) are completed. Therefore, the selection of target BLER may impact the actual data transfer efficiency, data rate, and/or transfer latency.
  • the UE may first obtain an uplink grant, which may be triggered by a BSR transmitted by the UE to the base station.
  • the base station may provide the uplink grant to the UE in order to indicate a radio resource allocation (e.g., a set of time and/or frequency resources) on which the UE may transmit the set of data packets to the base station.
  • the base station may allocate a set of radio resources to a UE based on one or more metrics, including the aforementioned QoS, buffer status, and/or channel status.
  • a data bearer may be established to the UE, and data may be transferred along the established bearer.
  • the bearer may be configured with QoS parameters according to the service communicated along the bearer.
  • the network e.g., the base station or a gateway, depending upon the bearer
  • the network may configure the QoS parameters, and signal the configured QoS parameters to the UE (e.g., via RRC signaling) .
  • the configured parameters may be used until the established bearer is terminated (e.g., until the UE no longer uses the service) .
  • the base station may allocate a set of radio resources and determine a transport format for a set of data packets buffered by the UE (e.g., as indicated in the BSR) .
  • the base station may allocate the set of radio resources and determine the transport format for the set of data packets further based on the QoS parameters.
  • the QoS parameters may be configured at a higher layer (e.g., RRC layer) than the buffer storing the set of data packets and, therefore, the QoS parameters may not reconfigurable when scheduling transmission of the buffered data packets.
  • those remaining data packets should not be delayed in the buffer for another time period (e.g., another 80 ms) while the BSR is sent to elicit an uplink grant according to which the remaining data packets may be transmitted.
  • a BSR e.g., a time period relative to the latency condition for those data packets, such as 80 ms
  • data packets remaining in the buffer of the UE for a relatively long time period may be due to insufficient radio resources available for allocation, an improper transfer format (e.g., improper MCS) , a transmission failure (e.g., of the BSR and/or the uplink grant) , a beam failure, data traffic bursting, network congestion and/or interference, and other similar reasons.
  • improper MCS improper transfer format
  • transmission failure e.g., of the BSR and/or the uplink grant
  • beam failure e.g., data traffic bursting, network congestion and/or interference, and other similar reasons.
  • the base station may generate an uplink grant that indicates the radio resource allocation, and send the uplink grant to the UE so that the UE may send the set of data packets to the base station.
  • the base station may further send a transport format to the UE associated with the transmission of the set of data packets –e.g., the transport format may include a modulation and coding scheme (MCS) .
  • MCS modulation and coding scheme
  • a BSR may include the amount of data buffered at the UE, but may not include any latency information, such as information indicating a low-latency condition and/or other time urgency information.
  • buffered data segments associated with a plurality of uplink logical channels or even the same logical channel may be associated with different latency conditions.
  • a data segment may be a set of data packets. For example, one buffered data segment may be associated with a higher priority and/or may be more urgent than another buffered data segment of the same of a different logical channel. Because the BSR does not indicate latency information, such as low-latency conditions, the BSR does not identify whether some data segments should be prioritized over other data segments due to varying levels of priority or urgency. In one example, when a video packet (e.g., I-frame, P-frame in an H. 264 video stream, etc.
  • a video packet e.g., I-frame, P-frame in an H. 264 video stream, etc.
  • the video packet as a whole may be transferred within 80 ms before the video packet becomes obsolete. Therefore, the first code block may be associated with an 80 ms delay budget, but along with the time elapsing, when the last code block is transmitted, there may be only a 20 ms belay budget.
  • This change-of-time urgency information and corresponding transfer parameter may not be reported through a BSR. Absent such information indicating the latency conditions of some data segments relative to other data segments, the base station may be unable to prioritize data segments associated with a higher urgency relative to another data segment. Without the ability to prioritize some data segments, the base station may be unable to efficiently schedule relatively higher-urgency data packets, e.g., in a multiuser scheduling environment, which may reduce the quality of experience (QoE) of the network as a whole.
  • QoE quality of experience
  • the UE may send information that indicates information associated with the latency conditions that are to be observed for data packets associated with a low-latency service.
  • a target value for a BLER may be determined that enables the UE to adhere to the low-latency conditions associated with a set of data packets, e.g., including high-urgency and/or high-priority data packets, data packets associated with certain services that are considered time-sensitive, and the like.
  • the target value for the BLER may be lower than the packet loss rate configured according to the QoS parameters for the bearer –e.g., a target value for a BLER of 10 -3 may be configured when the packet loss rate is configured as 10 -5 , which may reduce transmission occasions.
  • an uplink packet transfer for a low-latency service may adhere to a delay budget of 80 ms (e.g., the whole packet transfer latency may occur within 80 ms) with a 10 -5 packet loss rate, e.g., to guarantee a relatively high responsive speed in packet transmission.
  • the delay budget and packet loss rate may be configured by the network for the service as QoS parameters during bearer establishment.
  • the base station may allocate a set of radio resources and determine a transport format (e.g., including an MCS) consistent with the allowed transfer latency of 80 ms.
  • the base station may determine a transfer format corresponding to a target value of 10 -1 BLER and rely on a maximum of 7 retransmissions of a packet to guarantee a 10 -5 packet loss rate.
  • a call flow diagram illustrates a wireless communications system.
  • the UE 404 may communicate according to a service with the base station 402, such as VR/AR, V2X, remote control services, remote medical services, or another similar service associated with low-latency conditions and/or a high guaranteed data rate.
  • the UE may be configured with a bearer 410 established through the base station 402.
  • a set of QoS parameters may be configured for uplink packet transmission from the UE 404 to the base station 402.
  • the QoS parameters may be configured in association with a QoS profile of a QoS flow along the bearer 410.
  • the UE 404 may be configured by the base station 402 via RRC signaling with the set of QoS parameters.
  • one QoS parameter may include a delay budget, which may be a duration on the order of ms (e.g., 80 ms) .
  • Another QoS parameter may include a packet loss rate (e.g., 10 -5 ) .
  • Other examples of QoS parameters may include a packet throughput value, an ARP, a GFBR, a MFBR, a maximum packet loss rate, a delay critical resource type for a GBR QoS flow, and/or an AMBR for a non-GBR QoS flow.
  • the UE 404 may generate a first set of data packets 434a.
  • the first set of data packets 434a may be associated with the set of QoS parameters configured for the established bearer 410.
  • the first set of data packets 434a may include one or more data packets, which may be associated with a first uplink logical channel. In some aspects, the first set of data packets 434a may be a first data segment. The first set of data packets 434a may be buffered by the UE 404, e.g., in a TX buffer of the UE 404 for uplink transmission to the base station 402 along the bearer 410.
  • the UE 404 may determine 422 a first latency status associated with the first set of data packets 434a, e.g., based on the QoS parameters configured for the established bearer 410 associated with the service. In one aspect, the UE 404 may determine 422 the first latency status associated with the first set of data packets 434a based on a remaining delay budget associated with the first set of packets 434a.
  • the remaining delay budget may be a duration before the first set of packets 434a becomes useless and/or must be dropped –e.g., the remaining delay budget may be equal to the difference between the delay budget associated with the first set of packets 434a and the duration since the first set of packets 434a was queued in the TX buffer.
  • the delay budget may begin running when the first set of packets 434a is queued in the TX buffer for transmission.
  • the UE 404 may determine 422 the first latency status associated with the first set of data packets 434a based on value indicating a priority or urgency associated with the first set of packets 434a.
  • the first set of packets 434a may be configured with the value indicating the priority or urgency by a higher layer (e.g., application layer or other layer) , for example, in association with the service or type of data included in the first set of data packets 434a.
  • the value indicating the priority or urgency may be relative to another value indicating another (e.g., lower) priority or urgency, which may be associated with at least one second set of data packets 434b.
  • the UE 404 may generate and transmit, to the base station 402, first target BLER information 424a.
  • the UE 404 may include the first target BLER information 424a in a uplink MAC-layer message (e.g., one MAC CE) .
  • the UE 404 may include the first target BLER information 424a in one MAC CE that also includes a BSR (e.g., the amount of data currently queued in the TX buffer of the UE 404 or the amount of data corresponding to the first set of data packets 434a) .
  • the UE 404 may include the first target BLER information 424 in an uplink MAC-layer message (e.g., MAC CE) that is different from the MAC CE that includes the BSR.
  • the UE 404 may generate the first target BLER information 424a in order to indicate, to the base station 402, that the base station 402 is to determine (e.g., calculate) an acceptable target BLER value for the transmission of the first set of data packets 434a.
  • the UE 404 may generate the first target BLER information 424a to indicate the remaining delay budget –that is, the first BLER information 424a may indicate the remaining time before the first set of data packets 424a becomes useless/stale and should be dropped.
  • the UE 404 may generate the first target BLER information 424a to indicate an urgency or priority level associated with the first set of data packets 434a.
  • the urgency or priority level may be a value or indication that may be relative to one or more other urgency or priority levels –e.g., “low” urgency, “medium” urgency, “high” urgency, etc.
  • the UE 404 determine a target BLER value based on the first latency status and recommended to base station 402, which can be used by base station 402 to determine the uplink radio resource allocation and transport format.
  • the UE 404 may determine the target BLER value to be less than some calculation result of a packet loss rate (e.g., a maximum packet loss rate) associated with the QoS parameters configured for the bearer 410.
  • a packet loss rate e.g., a maximum packet loss rate
  • the target BLER value should not exceed
  • the exponent of the target BLER value may be calculated as the ceiling of the quotient of the current exponent of the packet loss rate divided by the number of full RTT available in the remaining delay budget (e.g., the remaining delay budget divided by the RTT for packet transmission and acknowledgement) .
  • the calculation of the target BLER value may be different depending upon various implementations by various UEs.
  • the first target BLER information 424a may indicate the target BLER value –e.g., if the packet loss rate associated with the QoS parameters configured for the bearer 410 is 10 -5 , then the first BLER information 424a may indicate the recommended target BLER value of 10 -3 . In another aspect, the first BLER information 424a may indicate an adjustment to the target BLER that is currently recommended for uplink transmissions from the UE 404 to the base station 402.
  • the UE 404 may include an indication in the first target BLER information 424a to increase or decrease the current recommended target BLER by an interval or step (e.g., from 10 - 5 to 10 -3 ) .
  • the target BLER value indicated in the first BLER information 424a may be associated with all uplink logical channels, a subset of uplink logical channels, one uplink logical channel (e.g., one logical channel associated with the first set of data packets 434a) , or a part of buffered data in one uplink logical channel.
  • the UE 404 may then transmit the first target BLER information 424a to the base station 402.
  • the UE 404 may periodically transmit the first target BLER information 424a to the base station 402, e.g., according to a predetermined or configured duration.
  • the UE 404 may begin a timer, and the UE 404 may transmit the first target BLER information 424a to the base station 402 at expiration of the timer.
  • the duration of the timer may be preconfigured in the UE 404 or configured by the base station 402 for the UE 404.
  • the UE 404 may transmit the first target BLER information 424a to the base station 402 based on one or more defined events. For example, the UE 404 may transmit the first target BLER information 424a to the base station 402 when the UE 404 calculates a target BLER value that differs from a current target BLER value used for communication by the UE 404 and the base station 402.
  • the UE 404 may transmit the first target BLER information 424a to the base station 402 based on the urgency level associated with the first set of packets 434a. For example, the UE 404 may queue the first set of packets 434a in the TX buffer when the first set of packets 434a is received from a higher layer of the UE 404. When the UE 404 queues the first set of packets 434a, the UE 404 may identify an urgency level associated with the first set of packets 434a (e.g., as indicated by the higher layer) , and if the urgency level satisfies a minimum urgency level, then the UE 404 may transmit the first target BLER information 424a to the base station 402. In another aspect, the UE 404 may determine that an urgency level associated with the first set of packets 434a has changed and, in response to the changed urgency level, the UE 404 may transmit the first target BLER information 424a to the base station 402.
  • the UE 404 may transmit the first target BLER information 424a to the base station 402 based on the remaining delay budget.
  • the UE 404 may compare the remaining delay budget associated with the first set of packets 434a to a threshold. If the remaining delay budget satisfies (e.g., meets or is lower than) the threshold, then the UE 404 may transmit the first target BLER information 424a to the base station 402.
  • the UE 404 may transmit the first target BLER information 424a to the base station 402 based on an uplink grant. For example, the UE 404 may receive an uplink grant that allocates more resources than the UE 404 needs for an uplink transmission. In response, the UE 404 may include the first target BLER information 424a in a MAC PDU transmitted on at least one granted uplink resource, such as by padding the first target BLER information 424a in the MAC PDU.
  • the base station 402 may receive the first target BLER information 424a from the UE 404.
  • the first target BLER information 424a may indicate that the base station 402 is to determine (e.g., calculate) an acceptable target BLER value for the transmission of the first set of data packets 434a.
  • the first target BLER information 424a may indicate the remaining delay budget or may indicate an urgency or priority level associated with the first set of data packets 434a.
  • the base station 402 may determine 426 a target BLER value.
  • the base station 402 may determine 426 the target BLER value to be less than some calculation result of a packet loss rate (e.g., a maximum packet loss rate) associated with the QoS parameters configured for the bearer 410.
  • a packet loss rate e.g., a maximum packet loss rate
  • the target BLER value should not exceed and the base station 402 may determine 426 the target BLER value to be 10 -3 .
  • the base station 402 may determine 426 the target BLER value to be 10 -5 .
  • the calculation of the target BLER value may be different depending upon various implementations by various base stations.
  • the base station 402 may determine 428 a first resource allocation 430a associated with the first set of packets 434a.
  • the base station 402 may determine 428 the first resource allocation 430a further based on the BSR sent by the UE 404, indicating the amount of data corresponding to the first set of packets 434a.
  • the base station 402 may determine 428 the first resource allocation 430a in order to complete the uplink transmission (and, potentially, the acknowledgement) of the first set of packets 434a within the remaining delay budget associated with the first set of packets 434a.
  • the base station 402 may determine 428 a first transport format 432a, which may include an MCS associated with transmission of the first set of packets 434a. Like the determination of the first resource allocation 430a, the base station 402 may determine 428 the first transport format 432a in order to complete the uplink transmission (and, potentially, the acknowledgement) of the first set of packets 434a within the remaining delay budget associated with the first set of packets 434a.
  • the base station 402 may transmit, to the UE 404, a first uplink grant that indicates the first resource allocation 430a. Additionally, the base station 402 may transmit the first transport format 432a to the UE 404. The UE 404 may receive the first uplink grant indicating the first resource allocation 430a and the first transport format 432a. Based on the first uplink grant indicating the first resource allocation 430a and the first transport format 432a, the UE 404 may transmit the first set of data packets 434a to the base station 402. The UE may transmit the first set of data packets 434a to the base station 402 on a set of radio resources indicated by the first resource allocation 430a using a transport format (e.g., MCS) corresponding to the first transport format 432a.
  • a transport format e.g., MCS
  • data packets buffered by the UE 404 may be divided into segments –e.g., a segment may include a set of data packets and, therefore, the UE 404 may buffer a first segment that includes the first set of data packets 434a and at least one other segment that includes at least the second set of data packets 434b.
  • Each data segment may be associated with a respective amount of data and a respective urgency level and/or delay budget.
  • Each of the first segment and the at least one other segment may be associated with the same logical channel or may be associated with different logical channels.
  • the UE 404 may determine 422 at least one second latency status associated with the at least one second set of data packets 434b.
  • the UE 404 may transmit at least one second target BLER information 424b to the base station 402 based on the at least one second latency status.
  • the at least one second target BLER information 424b may indicate an amount of the at least one second set of data packets 434b; similarly, the first target BLER information 424amay indicate an amount of the first set of data packets 434a.
  • the base station 402 may determine 426 at least one second target BLER value associated with the at least one second set of data packets 434b.
  • the at least one second BLER information 424b may indicate at least one second recommended target BLER value associated with the second set of data packets 434b or may indicate an adjustment to a current target BLER value.
  • the base station 402 may determine 428 at least one second resource allocation 430b associated with the at least one second set of data packets 434b based on the at least one second target BLER information 424b (e.g., based on at least one second target BLER value as determined by the base station 402 based on the at least one second target BLER information 424b or as indicated in the at least one second BLER information 424b) .
  • the base station 402 may further determine 428 at least one second transport format 432b based on the at least one second target BLER information 424b (e.g., based on at least one second target BLER value as determined by the base station 402 based on the at least one second target BLER information 424b or as indicated in the at least one second target BLER information 424b) .
  • the base station 402 may determine 428 radio resource allocations and/or transport formats for respective data segments, which may be beneficial in multi-UE scheduling scenarios and/or to prioritize some data segments from the UE 404. For example, when the base station 402 receives the amount and packet urgency information for a first data segment associated with the first set of data packets 434a and receives the amount and packet urgency information for at least one second data segment associated with the at least one second set of data packets 434b, the base station 402 may determine a respective delay budget associated with each data segment, and may determine 426 a suitable target BLER value for each data segment. Accordingly, the base station 402 may prioritize data transfer of high-urgency and/or low remaining delay budget data segments, e.g., of different UEs in multi-UE scheduling.
  • the base station 402 may transmit, to the UE 404, the at least one second resource allocation 430b in at least one second uplink grant.
  • the base station 402 may transmit the at least one second transport format 432b to the UE 404.
  • the UE 404 may transmit the at least one second set of data packets 434b to the base station 402.
  • the UE may transmit the at least one second set of data packets 434b to the base station 402 on a set of radio resources indicated by the at least one second resource allocation 430b using a transport format (e.g., MCS) corresponding to the at least one second transport format 432b.
  • a transport format e.g., MCS
  • FIGs 5A and 5B illustrate MAC CEs 500, 520 associated with indicating target BLER information.
  • the MAC CE 500 may be transmitted by the UE 404 in association with the first set of packets 434a and the at least one second set of packets 434b.
  • Each UE in a multi-UE scenario may transmit a similar MAC CE 500 to the base station 402, e.g., so that the base station 402 may prioritize data segments from different UEs and schedule resource allocations accordingly in order to adhere to the latency conditions for different data segments from different UEs.
  • the MAC CE 500 may include a first amount field 510a that indicates the first amount of the first set of data packets 434a.
  • the MAC CE 500 may additionally include a first target BLER field 512a that indicates a first target BLER value associated with the first set of data packets 434a.
  • the MAC CE 500 may include a second amount field 510b that indicates the second amount of the second set of data packets 434b.
  • the MAC CE 500 may additionally include a second target BLER field 512b that indicates a second target BLER value associated with the second set of data packets 434b.
  • the MAC CE 500 may include an additional amount field 510n and additional target BLER field 512n to accommodate all the data segments that sets of data packets 434a, 434b are divided into when buffered at the UE 404.
  • the MAC CE 520 may include a first amount field 514a that indicates the first amount of the first set of data packets 434a.
  • the MAC CE 520 may additionally include a first urgency level field 516a that indicates a first urgency level associated with the first set of data packets 434a.
  • the MAC CE 520 may include a second amount field 514b that indicates the second amount of the second set of data packets 434b.
  • the MAC CE 520 may additionally include a second urgency level field 516b that indicates a second urgency level associated with the second set of data packets 434b.
  • the MAC CE 520 may include an additional amount field 514n and additional urgency level field 516n that indicates an additional urgency level to accommodate all the data segments that sets of data packets 434a, 434b are divided into when buffered at the UE 404.
  • FIG. 6 is a flowchart of a method 600 of wireless communication.
  • the method may be performed by a UE (e.g., the UE 104, 404, which may include the memory 360 and which may be the entire UE 104, 404 or a component of the UE 104, 404, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
  • a UE e.g., the UE 104, 404, which may include the memory 360 and which may be the entire UE 104, 404 or a component of the UE 104, 404, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359 .
  • the UE may determine a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station. In some aspects, the UE may further determine at least one second latency status associated with at least one second set of data packets buffered by the UE for transmission to the base station.
  • the UE 404 may determine 422 a first latency status associated with the first set of data packets 434a buffered by the UE 404 for transmission to the base station 402. In some aspects, the UE 404 may further determine 422 at least one second latency status associated with at least one second set of data packets 434b buffered by the UE 404 for transmission to the base station 402.
  • the UE may determine information associated with a target BLER based on the first latency status associated with the first set of data packets. In some aspects, the UE may further determine information associated with at least one second target BLER based on the at least one second latency status associated with the at least one second set of data packets.
  • the UE 404 may determine the first target BLER information 424a based on the first latency status associated with the first set of data packets 434a. In some aspects, the UE 404 may further determine the at least one second target BLER information 424b based on the at least one second latency status associated with the second set of data packets 434b.
  • the UE may transmit, to the base station, information associated with a first target BLER based on the first latency status.
  • the UE may further transmit, to the base station, information associated with at least one second target BLER based on the at least one second latency status.
  • the UE 404 may transmit, to the base station 402, the first target BLER information 424a based on the first latency status. In some aspects, the UE 404 may further transmit, to the base station 402, the at least one second target BLER information 424b based on the at least one second latency status.
  • the UE may receive, from the base station, information indicating a first resource allocation for the UE based on the information associated with the first target BLER. In some aspects, the UE may receive, from the base station, information indicating at least one second resource allocation for the UE based on the information associated with the at least one second target BLER.
  • the UE 404 may receive, from the base station 402, the first resource allocation 430a based on the first target BLER information 424a. In some aspects, the UE 404 may receive, from the base station 402, the at least one second resource allocation 430b based on the at least one second target BLER information 424b.
  • the UE may receive, from the base station, information indicating a first transport format associated with the first set of data packets. In some aspects, the UE may further receive, from the base station, information indicating at least one second transport format associated with at least one second set of data packets.
  • the UE 404 may receive, form the base station 402, the first transport format 432a associated with the first set of data packets 434a. In some aspects, the UE 404 may further receive, from the base station 402, the at least one second transport format 432b associated with the at least one second set of data packets 434b.
  • the UE may transmit, to the base station, the first set of data packets based on the first resource allocation and based on the first transport format. In some aspects, the UE may further transmit, to the base station, the at least one second set of data packets based on the at least one second resource allocation and based on the at least one second transport format.
  • the UE 404 may transmit, to the base station 402, the first set of data packets 434a based on the first resource allocation 430a and based on the first transport format 432a. In some aspects, the UE 404 may further transmit, to the base station 402, the at least one second set of data packets 434b based on the at least one second resource allocation 430b and based on the at least one second transport format 432b.
  • FIG. 7 is a flowchart of a method 700 of wireless communication.
  • the method 700 may be performed by a base station (e.g., the base station 102/180, 402, which may include the memory 376 and which may be the entire base station 102/180, 402 or a component of the base station 102/180, 402, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
  • a base station e.g., the base station 102/180, 402, which may include the memory 376 and which may be the entire base station 102/180, 402 or a component of the base station 102/180, 402, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375.
  • the base station may receive, from a first UE, information associated with a first target BLER recommended for a first set of data packets to be transmitted by the first UE. In some aspects, the base station may further receive, from the first UE, information associated with at least one second target BLER recommended for at least one second set of data packets.
  • the base station 402 may receive, from the UE 404, the first target BLER information 424a. In some aspects, the base station 402 may further receive, from the UE 404, the at least one second target BLER information 424b.
  • the base station may determine a target BLER value based on the information associated with the first target BLER. In some aspects, the base station may further determine at least one second target BLER value based on the information associated with the at least one second target BLER.
  • the base station 402 may determine 426 a first target BLER value based on the first target BLER information 424a. In some aspects, the base station 402 may further determine 426 at least one second target BLER value based on the at least one second target BLER information 424b.
  • the base station may determine to prioritize the first set of data packets over another set of data packets based on the information associated with the first target BLER and based on other information associated with another target BLER for the other set of data packets. For example, the base station may prioritize the first set of data packets associated with the first target BLER information over at least one second set of data packets associated with the at least one second target BLER information.
  • the base station 402 may determine to prioritize the first set of data packets 434a over the at least one second set of data packets 434b based on the first target BLER information 424a and further based on the at least one second target BLER information 424b.
  • the base station may determine, for the first UE, a first resource allocation based on the information associated with the first target BLER. In some aspects, the base station may further determine at least one second resource allocation based on the information associated with the at least one second BLER. The base station may determine the first resource allocation and/or the at least one second resource allocation based on the prioritization of the first set of data packets over the second set of data packets.
  • the base station 402 may determine 428 the first resource allocation 430a based on the first target BLER information 424a. In some aspects, the base station may further determine 428 the at least one second resource allocation 430b based on the at least one second target BLER information 424b.
  • the base station may determine, for the first UE, a transport format based on the information associated with the first BLER. In some aspects, the base station may further determine at least one second transport format based on the information associated with the at least one second target BLER.
  • the base station 402 may determine 428 the first transport format 432a based on the first target BLER information 424a. In some aspects, the base station may further determine 428 the at least one second transport format 432b based on the at least one second target BLER information 424b.
  • the base station may transmit, to the first UE, the first resource allocation.
  • the base station may transmit at least one second resource allocation.
  • the base station 402 may transmit, to the UE 404, the first resource allocation 430a. In some aspects, the base station 402 may further transmit, to the UE 404, the at least one second resource allocation 430b.
  • the base station may transmit, to the first UE, the first transport format.
  • the base station 402 may transmit, to the UE 404, the first transport format 432a.
  • the base station 402 may further transmit, to the UE 404, the at least one second transport format 432b.
  • the base station may receive, from the first UE, the first set of data packets based on the first resource allocation and based on the first transport format. In some aspects, the base station may further receive, from the first UE, the at least one second set of data packets based on the at least one second resource allocation and based on the at least one second transport format.
  • the base station 402 may receive, from the UE 404, the first set of data packets 434a based on the first resource allocation 430a and based on the first transport format 432a. In some aspects, the base station 402 may receive, from the UE 404, the at least one second set of data packets 434b based on the at least one second resource allocation 430b and based on the at least one second transport format 432b.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.
  • the new generation (5G) of wireless network aims to not only support MBB services, but also support various IoT services.
  • the important metrics of data packet transfer includes not only the transfer throughput but also the transfer latency.
  • the whole packet transfer Iatency may be defined as the interval between the time instance when the packet arrives at the transmitter buffer and the time instance when the packet is correctly received by the receiver.
  • the transfer latency includes the transmission time periods of initial transmission and all the retransmissions.
  • the radio resource of uplink transmission for a UE is granted by gNB based on the quality of service (QoS) , buffer status and channel status.
  • QoS quality of service
  • the QoS profile of a QoS flow contains QoS parameters: Allocation and Retention Priority (ARP) , Guaranteed Flow Bit Rate (GFBR) , Maximum Flow Bit Rate (MFBR) , Maximum Packet Loss Rate, Delay Critical Resource Type for GBR QoS flow, and Aggregate Maximum Bit Rate (AMBR) for non-GBR QoS flows.
  • ARP Allocation and Retention Priority
  • GFBR Guaranteed Flow Bit Rate
  • MFBR Maximum Flow Bit Rate
  • AMBR Aggregate Maximum Bit Rate
  • the Buffer Size field identifies the total amount of data available across all Iogical channels of a Iogical channel group after the MAC PDU has been built.
  • UE can indicate gNB the recommended bit rate for the uplink scheduling.
  • Uplink channel status can be obtained by base station from the channel estimation based on SRS or DMRS.
  • a data bearer When a data bearer is setup, e.g. a bearer to transfer AR uplink data, its QoS parameters are regulated by the network and indicated to UE. These parameters would be used until the termination of this bearer. With these QoS parameters in high-layer (e.g. RRC layer) and the uplink buffer information from BSR in MAC layer reported by UE, base station schedules the radio resource and determine transfer format to eachUE whose uplink data buffer is not empty.
  • high-layer e.g. RRC layer
  • the UE may indicate, to the base station, when there is critical data stored in UE′s buffer.
  • the present disclosure may describe various techniques and approaches to such indications, e.g., of critical data in the UE buffer.
  • an uplink packet transfer (e.g. for remote medicine) is required to be completed within 80 milliseconds with 10 -5 packet loss rate (these parameters can be configured in QoS parameters when bearer is set up) .
  • the base station After receiving the reported data amount in BSR, the base station would allocate radio resource and determine transfer format for this UE assuming the allowed transfer latency is 80ms.
  • the round-trip time (RTT) of HARQ process e.g. 10ms, base station would determine a transfer format corresponding to 10 -1 BLER target and rely on at most 7 times of retransmission to guarantee the 10 -5 packet loss rate.
  • the QoS information in high-layer signaling is static and not real-time adapted with buffer status; at the same time, the information in BSR doesn′t contain the data urgency status and data queueing time information. Only by knowing information on both the data amount and data urgency, the base station can generate proper scheduling result to complete all the data transfer within the requested time latency.
  • the multiple uplink logical channels or the multiple packets in one uplink logical channel buffer may have different transmission urgency levels.
  • Some BSRs may only contain the information of remaining data amount for any logical channel, but do not identify the different urgency levels among data packets.
  • the UE send the recommended uplink BLER target information of the uplink data buffer in MAC control element to the base station.
  • the recommended uplink BLER target information can be implemented in alternative forms:
  • Alternation 1 the recommended uplink BLER target information and the uplink buffer amount information are in one uplink MAC-layer message (e.g. MAC control element) .
  • Alternation 2 the recommended uplink BLER target and the uplink buffer amount information are in two separate uplink MAC-layer messages (e.g. MAC control elements) .
  • the recommended uplink BLER target information can be for all the uplink logical channels on a whole, or for each uplink logical channel independently.
  • ⁇ Alternation 2 triggered upon some pre-defined events, e.g. when the recommended uplink BLER target changes
  • the UE sends “packet urgency information” of the uplink data buffer to the base station.
  • the uplink packet urgency information can be implemented in the following forms:
  • Alternation 1 The delay budget of data packet in uplink buffer, i.e. the remaining time duration before the data packet becomes useless or must be dropped, like 10ms, 20ms, ...
  • ⁇ Alternation 2 triggered upon some pre-defined events, e.g. when the delay budget is lower than a threshold or the urgency level changes
  • This method can have benefit for either single-UE or multi-UE scheduling scenario.
  • base station When base station receives the “packet urgency” information of the uplink data buffer from a UE, it can calculate the suitable BLER target. Then base station can determine the suitable radio resource allocation and transport format (e,g, MCS) for this UE, which aims to complete the transfer before deadline.
  • suitable radio resource allocation and transport format e,g, MCS
  • the specific determination method can be like this:
  • the proper BLER target can be calculated based on the remaining transfer time duration. E.g., the RTT is 10ms and the required packet loss rate is 10 - 5 , then if the remaining transfer time duration is 20ms, the BLER target should be not higher than 10 -3 ; if the remaining transfer time duration is 10ms, the BLER target should be not higher than 10 -5 .
  • the MCS and radio resource allocation can be calculated based on the calculated BLER target and the reported buffer amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An apparatus may determine a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station. The apparatus may transmit, to the base station, information associated with a first target block error rate (BLER) based on the first latency status. The apparatus may receive, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER. The apparatus may transmit, to the base station, the first set of data packets based on the first uplink grant.

Description

SYSTEM AND METHOD FOR INDICATING AN UPLINK BLER TARGET BACKGROUND Technical Field
The present disclosure relates generally to communications systems, and more particularly, to a user equipment configured to request a block error rate for a set of data packets.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
Various radio access technologies (RATs) , such as 5G New Radio (NR) , may support a variety of services. Examples of such services include mobile broadband (MBB) , Internet-of-Things (IoT) services, and virtual reality (VR) /augmented reality (AR) . For some services, such as IoT, the communication of data packets may follow various metrics, such as metrics associated with throughput, latency, and the like. Illustratively, these various metrics may include quality of service (QoS) , buffer status at a UE, and channel status (e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station) .
In order to transmit a set of data packets to a base station, a UE may first obtain an uplink grant. The base station may provide the uplink grant to the UE in order to indicate a radio resource allocation (e.g., a set of time and/or frequency resources) on which the UE may transmit the set of data packets to the base station. According to some configurations, the base station may allocate a set of radio resources to a UE based on one or more metrics, including the aforementioned QoS, buffer status, and/or channel status.
For some services, data may be time sensitive and/or low-latency constrained. Therefore, data packets transmitted by the UE to the base station may meet one or more latency conditions, and failure to do so may render those data packets unusable. However, QoS, buffer status, and/or channel status may be insufficient to indicate the latency conditions associated with transmission of data packets. Therefore, a need exists to provide the base station with information associated with the latency conditions associated data packets and, further, to provide the UE with uplink grants enabling the UE to transmit data packets to the base station while meeting the latency conditions associated with those data packets.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The apparatus may determine a  first latency status associated with a first set of data packets buffered by the UE for transmission to a base station. The apparatus may transmit, to the base station, information associated with a first target block error rate (BLER) based on the first latency status. The apparatus may receive, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER. The apparatus may transmit, to the base station, the first set of data packets based on the first uplink grant.
In another aspect of the disclosure, another method, another computer-readable medium, and another apparatus are provided. The other apparatus may be a base station. The other apparatus may receive, from a first UE, information associated with a first target BLER requested for a first set of data packets to be transmitted by the first UE. The other apparatus may determine, for the first UE, a first resource allocation and transport format based on the information associated with the first target BLER. The other apparatus may transmit, to the first UE, a first uplink grant based on the first resource allocation and transport format. The apparatus may receive, from the first UE, the first set of data packets based on the first uplink grant.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIGs. 2A, 2B, 2C, and 2D are diagrams illustrating examples of a first 5G/NR frame, DL channels within a 5G/NR subframe, a second 5G/NR frame, and UL channels within a 5G/NR subframe, respectively.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a call flow diagram illustrating an example of packet transmission in a wireless communications system.
FIGs. 5A and 5B are diagrams illustrating media access control (MAC) control elements (CEs) associated with packet transmission in a wireless communications environment.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a flowchart of a method of wireless communication.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunications systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware  configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of  user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over backhaul links 134 (e.g., X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102' , employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW /near mmW radio frequency band (e.g., 3 GHz –300 GHz) has extremely high path loss  and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182' . The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182” . The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides quality-of-service (QoS) flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Although the present disclosure and accompanying drawings may be focused on 5G New Radio (NR) , the concepts described herein may be applicable to other similar areas, such as LTE, LTE-Advanced (LTE-A) , Code Division Multiple  Access (CDMA) , Global System for Mobile communications (GSM) , and/or other wireless/radio access technologies.
Referring again to FIG. 1, in certain aspects, the UE 104 may be configured to determine a first latency status associated with a first set of data packets buffered by the UE 104 for transmission to the base station 102/180. The UE 104 may transmit, to the base station 102/180, block error rate (BLER) information associated with the first set of data packets based on the first latency status determined by the UE 104 (198) .
The base station 102/180 may receive the BLER information associated with the first set of data packets (198) . Based on BLER information associated with the first set of data packets (198) , the base station 102/180 may determine, for the UE 104, a first resource allocation. The base station 102/180 may transmit a first uplink grant to the UE 104, and the first uplink grant may be based on the first resource allocation.
The UE 104 may receive the first uplink from the base station 102/180 based on the BLER information associated with the first set of data packets (198) . Based on the first uplink grant, the UE 104 may transmit the first set of data packets buffered at the UE 104 to the base station 102/180. For example, the UE 104 may transmit each of the set of data packets on a respective set of time/frequency radio resources allocated to the UE 104 according to the first uplink grant.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G/NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G/NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G/NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G/NR subframe. The 5G/NR frame structure may be FDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be TDD in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G/NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and X is flexible for use between DL/UL, and subframe 3 being configured with slot format 34 (with mostly UL) . While  subframes  3, 4 are shown with slot formats 34, 28, respectively, any particular  subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G/NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ 0 to 5 allow for 1, 2, 4, 8, 16, and 32 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 5. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=5 has a subcarrier spacing of 480 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=0 with 1 slot per subframe. The subcarrier spacing is 15 kHz and symbol duration is approximately 66.7 μs.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple  resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE. The RS may include demodulation RS (DM-RS) (indicated as R x for one particular configuration, where 100x is the port number, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) , each CCE including nine RE groups (REGs) , each REG including four consecutive REs in an OFDM symbol. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block. The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used. Although not shown, the UE may transmit  sounding reference signals (SRS) . The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and HARQ ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels,  interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are  then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Referring to FIGs. 4 through 7, aspects of indicating information associated with a BLER to a base station by a UE may be described. Various RATs, such as 5G NR, may support a variety of services. Examples of such services include mobile broadband (MBB) , IoT services, virtual reality (VR) /augmented reality (AR) , vehicle-to-everything (V2X) , remote control, remote medicine, and other low-latency and/or high-priority services. For some services, the communication of data packets may follow various metrics, such as metrics associated with throughput, latency, and the like. Illustratively, these various metrics may include QoS, buffer status at a UE, and channel status (e.g., as measured based on signal quality and/or signal power on a wireless channel between a UE and a base station) . In the context of a 5G NR RAT, some metrics may be described in more detail in one or more 3GPP standards.
Referring to the QoS upon which a radio resource allocation may be based, the UE may be configured with a QoS profile for one or more services. The QoS profile configured for a UE may be associated with a QoS flow containing a set of QoS parameters. For example, the QoS parameters may include an allocation and retention priority (ARP) , a guaranteed flow bit rate (GFBR) , a maximum flow bit rate (MFBR) , a maximum packet loss rate, a delay critical resource type for a guaranteed bit rate (GBR) QoS flow, and/or an aggregate maximum bit rate (AMBR) for a non-GBR QoS flow.
Referring to the buffer status upon which a radio resource allocation may be based, the UE may transmit a BSR to the base station. The BSR may indicate a total amount of data that is in a buffer of the UE to be transmitted to the base station. The BSR may be indicated in a MAC control element (CE) . A BSR MAC CE may include a buffer size field that identifies the total amount of data available across all logical channels of a logical channel group after the UE has generated a MAC  protocol data unit (PDU) including the BSR MAC CE. In one configuration, the UE may indicate a recommended bit rate for transmission of uplink data to be scheduled in the same or another MAC PDU, for example, in another MAC CE associated with a recommended bit rate.
Referring to the channel status upon which a radio resource allocation may be based, the base station may transmit reference signals to the UE on the wireless channel to be used for uplink communication from the UE to the base station. Examples of the reference signals include SRS, DM-RS, and the like. The UE may receive the reference signals and measure at least one value indicative of channel quality, such as a signal-to-noise ratio (SNR) , signal-to-noise-plus-interference (SNIR) , a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , and the like. The UE may report information indicating the at least one measured value to the base station, and the base station may allocate radio resources associated with the uplink grant based on the reported information.
For some services, data may be time sensitive and/or low-latency constrained. Therefore, data packets transmitted by the UE to the base station may meet one or more latency conditions, and failure to do so may render those data packets unusable. In some aspects, latency conditions may be contingent upon whole packet transfer latency. In packet communication by a UE, the whole packet transfer latency may be the interval between a time at which a packet arrives at a TX buffer of the UE and a time at which the packet is successfully received by the receiver (e.g., the receiver may be a base station, a small cell, etc. ) . When hybrid automatic repeat request (HARQ) feedback is enabled for such packet communication, the latency in communication of a packet includes the transmission time periods of the initial packet transmission and every packet retransmission until the packet is successfully transmitted. Successful transmission (or retransmission) may be established when HARQ feedback associated with the data packet indicates an acknowledgment (ACK) . The metric of BLER is used to represent the transfer error rate of code block in a data packet. When the base station determines the modulation and code scheme (MCS) for one time of data transfer, the base station may rely on a parameter called as “target BLER. ” Target BLER may refer to the code block error rate that is targeted for a current and/or one-time initial transmission or retransmission of a set of packets. Given a channel status, the higher the target BLER is set, on one hand, the smaller possibility of a successful data transfer of a  set of packets, and on the other hand, the higher spectrum efficiency the data transfer has if the data transfer is successful. The transfer of a data packet may not be regarded as successful until the initial transmission and all the corresponding HARQ retransmission (s) are completed. Therefore, the selection of target BLER may impact the actual data transfer efficiency, data rate, and/or transfer latency.
However, in order to first transmit a set of data packets to the base station, the UE may first obtain an uplink grant, which may be triggered by a BSR transmitted by the UE to the base station. The base station may provide the uplink grant to the UE in order to indicate a radio resource allocation (e.g., a set of time and/or frequency resources) on which the UE may transmit the set of data packets to the base station. According to some configurations, the base station may allocate a set of radio resources to a UE based on one or more metrics, including the aforementioned QoS, buffer status, and/or channel status.
When the UE is to communicate according to a service (e.g., AR/VR, remote medical services, other low-latency services) , a data bearer may be established to the UE, and data may be transferred along the established bearer. The bearer may be configured with QoS parameters according to the service communicated along the bearer. The network (e.g., the base station or a gateway, depending upon the bearer) may configure the QoS parameters, and signal the configured QoS parameters to the UE (e.g., via RRC signaling) . The configured parameters may be used until the established bearer is terminated (e.g., until the UE no longer uses the service) .
When the UE sends a BSR to the base station, the base station may allocate a set of radio resources and determine a transport format for a set of data packets buffered by the UE (e.g., as indicated in the BSR) . The base station may allocate the set of radio resources and determine the transport format for the set of data packets further based on the QoS parameters. The QoS parameters may be configured at a higher layer (e.g., RRC layer) than the buffer storing the set of data packets and, therefore, the QoS parameters may not reconfigurable when scheduling transmission of the buffered data packets.
When data packets remain in the buffer of the UE for a relatively long time period before the UE receives an uplink grant responsive to a BSR (e.g., a time period relative to the latency condition for those data packets, such as 80 ms) , those remaining data packets should not be delayed in the buffer for another time period (e.g., another 80 ms) while the BSR is sent to elicit an uplink grant according to  which the remaining data packets may be transmitted. For example, data packets remaining in the buffer of the UE for a relatively long time period may be due to insufficient radio resources available for allocation, an improper transfer format (e.g., improper MCS) , a transmission failure (e.g., of the BSR and/or the uplink grant) , a beam failure, data traffic bursting, network congestion and/or interference, and other similar reasons.
The base station may generate an uplink grant that indicates the radio resource allocation, and send the uplink grant to the UE so that the UE may send the set of data packets to the base station. The base station may further send a transport format to the UE associated with the transmission of the set of data packets –e.g., the transport format may include a modulation and coding scheme (MCS) .
When the UE is communicating according to a low-latency and/or high-priority service, the whole packet transfer latency associated with data packets for that service may occur within a delay budget, which may be on the order of milliseconds (ms) . However, the QoS parameter (s) , BSR, and channel status may be insufficient to guarantee the data rate and/or latency conditions commensurate with that low-latency service. For example, a BSR may include the amount of data buffered at the UE, but may not include any latency information, such as information indicating a low-latency condition and/or other time urgency information.
Moreover, buffered data segments associated with a plurality of uplink logical channels or even the same logical channel may be associated with different latency conditions. A data segment may be a set of data packets. For example, one buffered data segment may be associated with a higher priority and/or may be more urgent than another buffered data segment of the same of a different logical channel. Because the BSR does not indicate latency information, such as low-latency conditions, the BSR does not identify whether some data segments should be prioritized over other data segments due to varying levels of priority or urgency. In one example, when a video packet (e.g., I-frame, P-frame in an H. 264 video stream, etc. ) , which may include tens of channel coding code blocks, arrives at the buffer of the UE, the video packet as a whole may be transferred within 80 ms before the video packet becomes obsolete. Therefore, the first code block may be associated with an 80 ms delay budget, but along with the time elapsing, when the last code block is transmitted, there may be only a 20 ms belay budget. This change-of-time urgency information and corresponding transfer parameter may not be reported  through a BSR. Absent such information indicating the latency conditions of some data segments relative to other data segments, the base station may be unable to prioritize data segments associated with a higher urgency relative to another data segment. Without the ability to prioritize some data segments, the base station may be unable to efficiently schedule relatively higher-urgency data packets, e.g., in a multiuser scheduling environment, which may reduce the quality of experience (QoE) of the network as a whole.
In view of the foregoing, a need exists to provide the base station with information associated with latency conditions associated data packets and, further, to provide the UE with uplink grants enabling the UE to transmit data packets to the base station while meeting the latency conditions associated with those data packets. As described with respect to FIGs. 4 through 7, the UE may send information that indicates information associated with the latency conditions that are to be observed for data packets associated with a low-latency service.
In connection with low-latency conditions, a target value for a BLER may be determined that enables the UE to adhere to the low-latency conditions associated with a set of data packets, e.g., including high-urgency and/or high-priority data packets, data packets associated with certain services that are considered time-sensitive, and the like. For example, the target value for the BLER may be lower than the packet loss rate configured according to the QoS parameters for the bearer –e.g., a target value for a BLER of 10 -3 may be configured when the packet loss rate is configured as 10 -5, which may reduce transmission occasions.
In an illustrative scenario, an uplink packet transfer for a low-latency service may adhere to a delay budget of 80 ms (e.g., the whole packet transfer latency may occur within 80 ms) with a 10 -5 packet loss rate, e.g., to guarantee a relatively high responsive speed in packet transmission. The delay budget and packet loss rate may be configured by the network for the service as QoS parameters during bearer establishment. In some aspects, when the base station receives a set of packets from the UE corresponding to the amount of data reported in the BSR, the base station may allocate a set of radio resources and determine a transport format (e.g., including an MCS) consistent with the allowed transfer latency of 80 ms. Considering the RTT of a HARQ process (e.g., initial packet transmission by UE to reception of ACK for the packet by UE, which may be 10 ms) , the base station may  determine a transfer format corresponding to a target value of 10 -1 BLER and rely on a maximum of 7 retransmissions of a packet to guarantee a 10 -5 packet loss rate.
Referring to FIG. 4, a call flow diagram illustrates a wireless communications system. The UE 404 may communicate according to a service with the base station 402, such as VR/AR, V2X, remote control services, remote medical services, or another similar service associated with low-latency conditions and/or a high guaranteed data rate. When the UE is to communicate according to the service, the UE may be configured with a bearer 410 established through the base station 402.
When the bearer 410 is established, a set of QoS parameters may be configured for uplink packet transmission from the UE 404 to the base station 402. The QoS parameters may be configured in association with a QoS profile of a QoS flow along the bearer 410.
The UE 404 may be configured by the base station 402 via RRC signaling with the set of QoS parameters. For example, one QoS parameter may include a delay budget, which may be a duration on the order of ms (e.g., 80 ms) . Another QoS parameter may include a packet loss rate (e.g., 10 -5) . Other examples of QoS parameters may include a packet throughput value, an ARP, a GFBR, a MFBR, a maximum packet loss rate, a delay critical resource type for a GBR QoS flow, and/or an AMBR for a non-GBR QoS flow.
According to the service on the bearer 410, the UE 404 may generate a first set of data packets 434a. In connection with the service, the first set of data packets 434a may be associated with the set of QoS parameters configured for the established bearer 410.
The first set of data packets 434a may include one or more data packets, which may be associated with a first uplink logical channel. In some aspects, the first set of data packets 434a may be a first data segment. The first set of data packets 434a may be buffered by the UE 404, e.g., in a TX buffer of the UE 404 for uplink transmission to the base station 402 along the bearer 410.
The UE 404 may determine 422 a first latency status associated with the first set of data packets 434a, e.g., based on the QoS parameters configured for the established bearer 410 associated with the service. In one aspect, the UE 404 may determine 422 the first latency status associated with the first set of data packets 434a based on a remaining delay budget associated with the first set of packets 434a. The remaining delay budget may be a duration before the first set of packets 434a  becomes useless and/or must be dropped –e.g., the remaining delay budget may be equal to the difference between the delay budget associated with the first set of packets 434a and the duration since the first set of packets 434a was queued in the TX buffer. The delay budget may begin running when the first set of packets 434a is queued in the TX buffer for transmission.
In another aspect, the UE 404 may determine 422 the first latency status associated with the first set of data packets 434a based on value indicating a priority or urgency associated with the first set of packets 434a. The first set of packets 434a may be configured with the value indicating the priority or urgency by a higher layer (e.g., application layer or other layer) , for example, in association with the service or type of data included in the first set of data packets 434a. The value indicating the priority or urgency may be relative to another value indicating another (e.g., lower) priority or urgency, which may be associated with at least one second set of data packets 434b.
Based on the first latency status, the UE 404 may generate and transmit, to the base station 402, first target BLER information 424a. According to one aspect, the UE 404 may include the first target BLER information 424a in a uplink MAC-layer message (e.g., one MAC CE) . For example, the UE 404 may include the first target BLER information 424a in one MAC CE that also includes a BSR (e.g., the amount of data currently queued in the TX buffer of the UE 404 or the amount of data corresponding to the first set of data packets 434a) . In another example, the UE 404 may include the first target BLER information 424 in an uplink MAC-layer message (e.g., MAC CE) that is different from the MAC CE that includes the BSR.
According to some aspects, the UE 404 may generate the first target BLER information 424a in order to indicate, to the base station 402, that the base station 402 is to determine (e.g., calculate) an acceptable target BLER value for the transmission of the first set of data packets 434a. For example, the UE 404 may generate the first target BLER information 424a to indicate the remaining delay budget –that is, the first BLER information 424a may indicate the remaining time before the first set of data packets 424a becomes useless/stale and should be dropped.
In another example, the UE 404 may generate the first target BLER information 424a to indicate an urgency or priority level associated with the first set of data packets 434a. The urgency or priority level may be a value or indication that may be  relative to one or more other urgency or priority levels –e.g., “low” urgency, “medium” urgency, “high” urgency, etc.
According to some aspects, the UE 404 determine a target BLER value based on the first latency status and recommended to base station 402, which can be used by base station 402 to determine the uplink radio resource allocation and transport format. The UE 404 may determine the target BLER value to be less than some calculation result of a packet loss rate (e.g., a maximum packet loss rate) associated with the QoS parameters configured for the bearer 410. For example, if the remaining delay budget associated with the first set of data packets 434a is 20 ms, the RTT in order to have one transmission of the first set of data packets 434a to be acknowledged by the base station is 10 ms (i.e., at most 2 times the RTT is available in the remaining delay budget) and the packet loss rate for the bearer 410 is configured as 10 -5, then the target BLER value should not exceed 
Figure PCTCN2019085852-appb-000001
In other words, the exponent of the target BLER value may be calculated as the ceiling of the quotient of the current exponent of the packet loss rate divided by the number of full RTT available in the remaining delay budget (e.g., the remaining delay budget divided by the RTT for packet transmission and acknowledgement) . The calculation of the target BLER value may be different depending upon various implementations by various UEs.
According to one aspect, the first target BLER information 424a may indicate the target BLER value –e.g., if the packet loss rate associated with the QoS parameters configured for the bearer 410 is 10 -5, then the first BLER information 424a may indicate the recommended target BLER value of 10 -3. In another aspect, the first BLER information 424a may indicate an adjustment to the target BLER that is currently recommended for uplink transmissions from the UE 404 to the base station 402. For example, if the UE 404 and the base station 402 have a recommended target BLER currently configured at 10 -5, then the UE 404 may include an indication in the first target BLER information 424a to increase or decrease the current recommended target BLER by an interval or step (e.g., from 10 - 5 to 10 -3) . The target BLER value indicated in the first BLER information 424a may be associated with all uplink logical channels, a subset of uplink logical channels, one uplink logical channel (e.g., one logical channel associated with the first set of data packets 434a) , or a part of buffered data in one uplink logical channel.
The UE 404 may then transmit the first target BLER information 424a to the base station 402. In one aspect, the UE 404 may periodically transmit the first target BLER information 424a to the base station 402, e.g., according to a predetermined or configured duration. For example, the UE 404 may begin a timer, and the UE 404 may transmit the first target BLER information 424a to the base station 402 at expiration of the timer. The duration of the timer may be preconfigured in the UE 404 or configured by the base station 402 for the UE 404.
In another aspect, the UE 404 may transmit the first target BLER information 424a to the base station 402 based on one or more defined events. For example, the UE 404 may transmit the first target BLER information 424a to the base station 402 when the UE 404 calculates a target BLER value that differs from a current target BLER value used for communication by the UE 404 and the base station 402.
In another example, the UE 404 may transmit the first target BLER information 424a to the base station 402 based on the urgency level associated with the first set of packets 434a. For example, the UE 404 may queue the first set of packets 434a in the TX buffer when the first set of packets 434a is received from a higher layer of the UE 404. When the UE 404 queues the first set of packets 434a, the UE 404 may identify an urgency level associated with the first set of packets 434a (e.g., as indicated by the higher layer) , and if the urgency level satisfies a minimum urgency level, then the UE 404 may transmit the first target BLER information 424a to the base station 402. In another aspect, the UE 404 may determine that an urgency level associated with the first set of packets 434a has changed and, in response to the changed urgency level, the UE 404 may transmit the first target BLER information 424a to the base station 402.
In a further example, the UE 404 may transmit the first target BLER information 424a to the base station 402 based on the remaining delay budget. The UE 404 may compare the remaining delay budget associated with the first set of packets 434a to a threshold. If the remaining delay budget satisfies (e.g., meets or is lower than) the threshold, then the UE 404 may transmit the first target BLER information 424a to the base station 402.
In another aspect, the UE 404 may transmit the first target BLER information 424a to the base station 402 based on an uplink grant. For example, the UE 404 may receive an uplink grant that allocates more resources than the UE 404 needs for an uplink transmission. In response, the UE 404 may include the first target BLER  information 424a in a MAC PDU transmitted on at least one granted uplink resource, such as by padding the first target BLER information 424a in the MAC PDU.
The base station 402 may receive the first target BLER information 424a from the UE 404. As described, supra, the first target BLER information 424a may indicate that the base station 402 is to determine (e.g., calculate) an acceptable target BLER value for the transmission of the first set of data packets 434a. For example, the first target BLER information 424a may indicate the remaining delay budget or may indicate an urgency or priority level associated with the first set of data packets 434a.
When the first target BLER information 424a indicates that the base station 402 is to determine the acceptable target BLER value, then the base station 402 may determine 426 a target BLER value. The base station 402 may determine 426 the target BLER value to be less than some calculation result of a packet loss rate (e.g., a maximum packet loss rate) associated with the QoS parameters configured for the bearer 410. For example, if the remaining delay budget indicated in the first BLER information 424a is 20 ms, the RTT in order to have the first set of data packets 434a to be acknowledged is 10 ms (i.e., at most 2 times the RTT is available in the remaining delay budget) and the packet loss rate for the bearer 410 is configured as 10 -5, then the target BLER value should not exceed
Figure PCTCN2019085852-appb-000002
and the base station 402 may determine 426 the target BLER value to be 10 -3. Similarly, if the remaining delay budget indicated in the first target BLER information 424a is 10 ms, then the base station 402 may determine 426 the target BLER value to be 10 -5. The calculation of the target BLER value may be different depending upon various implementations by various base stations.
Based on the target BLER value (as determined 426 by the base station 402 or as indicated in the first target BLER information 424a) , the base station 402 may determine 428 a first resource allocation 430a associated with the first set of packets 434a. The base station 402 may determine 428 the first resource allocation 430a further based on the BSR sent by the UE 404, indicating the amount of data corresponding to the first set of packets 434a. In one aspect, the base station 402 may determine 428 the first resource allocation 430a in order to complete the uplink transmission (and, potentially, the acknowledgement) of the first set of packets 434a within the remaining delay budget associated with the first set of packets 434a.
Further based on the target BLER value (as determined 426 by the base station 402 or as indicated in the first target BLER information 424a) and the BSR, the base station 402 may determine 428 a first transport format 432a, which may include an MCS associated with transmission of the first set of packets 434a. Like the determination of the first resource allocation 430a, the base station 402 may determine 428 the first transport format 432a in order to complete the uplink transmission (and, potentially, the acknowledgement) of the first set of packets 434a within the remaining delay budget associated with the first set of packets 434a.
The base station 402 may transmit, to the UE 404, a first uplink grant that indicates the first resource allocation 430a. Additionally, the base station 402 may transmit the first transport format 432a to the UE 404. The UE 404 may receive the first uplink grant indicating the first resource allocation 430a and the first transport format 432a. Based on the first uplink grant indicating the first resource allocation 430a and the first transport format 432a, the UE 404 may transmit the first set of data packets 434a to the base station 402. The UE may transmit the first set of data packets 434a to the base station 402 on a set of radio resources indicated by the first resource allocation 430a using a transport format (e.g., MCS) corresponding to the first transport format 432a.
In further aspects of the present disclosure, data packets buffered by the UE 404 may be divided into segments –e.g., a segment may include a set of data packets and, therefore, the UE 404 may buffer a first segment that includes the first set of data packets 434a and at least one other segment that includes at least the second set of data packets 434b. Each data segment may be associated with a respective amount of data and a respective urgency level and/or delay budget. Each of the first segment and the at least one other segment may be associated with the same logical channel or may be associated with different logical channels.
As with the first set of data packets 434a, the UE 404 may determine 422 at least one second latency status associated with the at least one second set of data packets 434b. The UE 404 may transmit at least one second target BLER information 424b to the base station 402 based on the at least one second latency status. In some aspects, the at least one second target BLER information 424b may indicate an amount of the at least one second set of data packets 434b; similarly, the first target BLER information 424amay indicate an amount of the first set of data packets 434a.
If the at least one second target BLER information 424b indicates that the base station 402 is to determine the target BLER value for the at least one second set of data packets 434b, then the base station 402 may determine 426 at least one second target BLER value associated with the at least one second set of data packets 434b. Alternatively, the at least one second BLER information 424b may indicate at least one second recommended target BLER value associated with the second set of data packets 434b or may indicate an adjustment to a current target BLER value.
The base station 402 may determine 428 at least one second resource allocation 430b associated with the at least one second set of data packets 434b based on the at least one second target BLER information 424b (e.g., based on at least one second target BLER value as determined by the base station 402 based on the at least one second target BLER information 424b or as indicated in the at least one second BLER information 424b) . The base station 402 may further determine 428 at least one second transport format 432b based on the at least one second target BLER information 424b (e.g., based on at least one second target BLER value as determined by the base station 402 based on the at least one second target BLER information 424b or as indicated in the at least one second target BLER information 424b) .
With  data packets  434a, 434b divided into different segments that may be respectively associated with a target BLER value, delay budget, and/or urgency level, the base station 402 may determine 428 radio resource allocations and/or transport formats for respective data segments, which may be beneficial in multi-UE scheduling scenarios and/or to prioritize some data segments from the UE 404. For example, when the base station 402 receives the amount and packet urgency information for a first data segment associated with the first set of data packets 434a and receives the amount and packet urgency information for at least one second data segment associated with the at least one second set of data packets 434b, the base station 402 may determine a respective delay budget associated with each data segment, and may determine 426 a suitable target BLER value for each data segment. Accordingly, the base station 402 may prioritize data transfer of high-urgency and/or low remaining delay budget data segments, e.g., of different UEs in multi-UE scheduling.
The base station 402 may transmit, to the UE 404, the at least one second resource allocation 430b in at least one second uplink grant. In addition, the base  station 402 may transmit the at least one second transport format 432b to the UE 404. Based on the at least one second uplink grant indicating the at least one second resource allocation 430b and the at least one second transport format 432b, the UE 404 may transmit the at least one second set of data packets 434b to the base station 402. The UE may transmit the at least one second set of data packets 434b to the base station 402 on a set of radio resources indicated by the at least one second resource allocation 430b using a transport format (e.g., MCS) corresponding to the at least one second transport format 432b.
FIGs 5A and 5B illustrate  MAC CEs  500, 520 associated with indicating target BLER information. For example, the MAC CE 500 may be transmitted by the UE 404 in association with the first set of packets 434a and the at least one second set of packets 434b. Each UE in a multi-UE scenario may transmit a similar MAC CE 500 to the base station 402, e.g., so that the base station 402 may prioritize data segments from different UEs and schedule resource allocations accordingly in order to adhere to the latency conditions for different data segments from different UEs.
Referring to FIG. 5A, the MAC CE 500 may include a first amount field 510a that indicates the first amount of the first set of data packets 434a. The MAC CE 500 may additionally include a first target BLER field 512a that indicates a first target BLER value associated with the first set of data packets 434a. The MAC CE 500 may include a second amount field 510b that indicates the second amount of the second set of data packets 434b. The MAC CE 500 may additionally include a second target BLER field 512b that indicates a second target BLER value associated with the second set of data packets 434b. The MAC CE 500 may include an additional amount field 510n and additional target BLER field 512n to accommodate all the data segments that sets of  data packets  434a, 434b are divided into when buffered at the UE 404.
Referring to FIG. 5B, the MAC CE 520 may include a first amount field 514a that indicates the first amount of the first set of data packets 434a. The MAC CE 520 may additionally include a first urgency level field 516a that indicates a first urgency level associated with the first set of data packets 434a. The MAC CE 520 may include a second amount field 514b that indicates the second amount of the second set of data packets 434b. The MAC CE 520 may additionally include a second urgency level field 516b that indicates a second urgency level associated with the second set of data packets 434b. The MAC CE 520 may include an  additional amount field 514n and additional urgency level field 516n that indicates an additional urgency level to accommodate all the data segments that sets of  data packets  434a, 434b are divided into when buffered at the UE 404.
FIG. 6 is a flowchart of a method 600 of wireless communication. The method may be performed by a UE (e.g., the  UE  104, 404, which may include the memory 360 and which may be the  entire UE  104, 404 or a component of the  UE  104, 404, such as the TX processor 368, the RX processor 356, and/or the controller/processor 359) .
At 602, the UE may determine a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station. In some aspects, the UE may further determine at least one second latency status associated with at least one second set of data packets buffered by the UE for transmission to the base station.
In the context of FIG. 4, the UE 404 may determine 422 a first latency status associated with the first set of data packets 434a buffered by the UE 404 for transmission to the base station 402. In some aspects, the UE 404 may further determine 422 at least one second latency status associated with at least one second set of data packets 434b buffered by the UE 404 for transmission to the base station 402.
At 604, the UE may determine information associated with a target BLER based on the first latency status associated with the first set of data packets. In some aspects, the UE may further determine information associated with at least one second target BLER based on the at least one second latency status associated with the at least one second set of data packets.
In the context of FIG. 4, the UE 404 may determine the first target BLER information 424a based on the first latency status associated with the first set of data packets 434a. In some aspects, the UE 404 may further determine the at least one second target BLER information 424b based on the at least one second latency status associated with the second set of data packets 434b.
At 606, the UE may transmit, to the base station, information associated with a first target BLER based on the first latency status. In some aspects, the UE may further transmit, to the base station, information associated with at least one second target BLER based on the at least one second latency status.
In the context of FIG. 4, the UE 404 may transmit, to the base station 402, the first target BLER information 424a based on the first latency status. In some aspects, the UE 404 may further transmit, to the base station 402, the at least one second target BLER information 424b based on the at least one second latency status.
At 608, the UE may receive, from the base station, information indicating a first resource allocation for the UE based on the information associated with the first target BLER. In some aspects, the UE may receive, from the base station, information indicating at least one second resource allocation for the UE based on the information associated with the at least one second target BLER.
In the context of FIG. 4, the UE 404 may receive, from the base station 402, the first resource allocation 430a based on the first target BLER information 424a. In some aspects, the UE 404 may receive, from the base station 402, the at least one second resource allocation 430b based on the at least one second target BLER information 424b.
At 610, the UE may receive, from the base station, information indicating a first transport format associated with the first set of data packets. In some aspects, the UE may further receive, from the base station, information indicating at least one second transport format associated with at least one second set of data packets.
In the context of FIG. 4, the UE 404 may receive, form the base station 402, the first transport format 432a associated with the first set of data packets 434a. In some aspects, the UE 404 may further receive, from the base station 402, the at least one second transport format 432b associated with the at least one second set of data packets 434b.
At 612, the UE may transmit, to the base station, the first set of data packets based on the first resource allocation and based on the first transport format. In some aspects, the UE may further transmit, to the base station, the at least one second set of data packets based on the at least one second resource allocation and based on the at least one second transport format.
In the context of FIG. 4, the UE 404 may transmit, to the base station 402, the first set of data packets 434a based on the first resource allocation 430a and based on the first transport format 432a. In some aspects, the UE 404 may further transmit, to the base station 402, the at least one second set of data packets 434b based on the  at least one second resource allocation 430b and based on the at least one second transport format 432b.
FIG. 7 is a flowchart of a method 700 of wireless communication. The method 700 may be performed by a base station (e.g., the base station 102/180, 402, which may include the memory 376 and which may be the entire base station 102/180, 402 or a component of the base station 102/180, 402, such as the TX processor 316, the RX processor 370, and/or the controller/processor 375) .
At 702, the base station may receive, from a first UE, information associated with a first target BLER recommended for a first set of data packets to be transmitted by the first UE. In some aspects, the base station may further receive, from the first UE, information associated with at least one second target BLER recommended for at least one second set of data packets.
In the context of FIG. 4, the base station 402 may receive, from the UE 404, the first target BLER information 424a. In some aspects, the base station 402 may further receive, from the UE 404, the at least one second target BLER information 424b.
At 704, the base station may determine a target BLER value based on the information associated with the first target BLER. In some aspects, the base station may further determine at least one second target BLER value based on the information associated with the at least one second target BLER.
In the context of FIG. 4, the base station 402 may determine 426 a first target BLER value based on the first target BLER information 424a. In some aspects, the base station 402 may further determine 426 at least one second target BLER value based on the at least one second target BLER information 424b.
At 706, the base station may determine to prioritize the first set of data packets over another set of data packets based on the information associated with the first target BLER and based on other information associated with another target BLER for the other set of data packets. For example, the base station may prioritize the first set of data packets associated with the first target BLER information over at least one second set of data packets associated with the at least one second target BLER information.
In the context of FIG. 4, the base station 402 may determine to prioritize the first set of data packets 434a over the at least one second set of data packets 434b based  on the first target BLER information 424a and further based on the at least one second target BLER information 424b.
At 708, the base station may determine, for the first UE, a first resource allocation based on the information associated with the first target BLER. In some aspects, the base station may further determine at least one second resource allocation based on the information associated with the at least one second BLER. The base station may determine the first resource allocation and/or the at least one second resource allocation based on the prioritization of the first set of data packets over the second set of data packets.
In the context of FIG. 4, the base station 402 may determine 428 the first resource allocation 430a based on the first target BLER information 424a. In some aspects, the base station may further determine 428 the at least one second resource allocation 430b based on the at least one second target BLER information 424b.
At 710, the base station may determine, for the first UE, a transport format based on the information associated with the first BLER. In some aspects, the base station may further determine at least one second transport format based on the information associated with the at least one second target BLER.
In the context of FIG. 4, the base station 402 may determine 428 the first transport format 432a based on the first target BLER information 424a. In some aspects, the base station may further determine 428 the at least one second transport format 432b based on the at least one second target BLER information 424b.
At 712, the base station may transmit, to the first UE, the first resource allocation. In some aspects, the base station may transmit at least one second resource allocation.
In the context of FIG. 4, the base station 402 may transmit, to the UE 404, the first resource allocation 430a. In some aspects, the base station 402 may further transmit, to the UE 404, the at least one second resource allocation 430b.
At 714, the base station may transmit, to the first UE, the first transport format. In the context of FIG. 4, the base station 402 may transmit, to the UE 404, the first transport format 432a. In some aspects, the base station 402 may further transmit, to the UE 404, the at least one second transport format 432b.
At 716, the base station may receive, from the first UE, the first set of data packets based on the first resource allocation and based on the first transport format. In some aspects, the base station may further receive, from the first UE, the at least  one second set of data packets based on the at least one second resource allocation and based on the at least one second transport format.
In the context of FIG. 4, the base station 402 may receive, from the UE 404, the first set of data packets 434a based on the first resource allocation 430a and based on the first transport format 432a. In some aspects, the base station 402 may receive, from the UE 404, the at least one second set of data packets 434b based on the at least one second resource allocation 430b and based on the at least one second transport format 432b.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such  combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Sending Recommended Uplink BLER Target in MAC CE
5G NR Services, QoS, and BSR
· The new generation (5G) of wireless network aims to not only support MBB services, but also support various IoT services. For IoT services, the important metrics of data packet transfer includes not only the transfer throughput but also the transfer latency.
· The whole packet transfer Iatency may be defined as the interval between the time instance when the packet arrives at the transmitter buffer and the time instance when the packet is correctly received by the receiver. When HARQ is enabled, the transfer latency includes the transmission time periods of initial transmission and all the retransmissions.
· The radio resource of uplink transmission for a UE is granted by gNB based on the quality of service (QoS) , buffer status and channel status.
· The QoS profile of a QoS flow contains QoS parameters: Allocation and Retention Priority (ARP) , Guaranteed Flow Bit Rate (GFBR) , Maximum Flow Bit Rate (MFBR) , Maximum Packet Loss Rate, Delay Critical Resource Type for GBR QoS flow, and Aggregate Maximum Bit Rate (AMBR) for non-GBR QoS flows.
· In Buffer Status Report (BSR) MAC CE, the Buffer Size field identifies the total amount of data available across all Iogical channels of a Iogical channel group after the MAC PDU has been built.
· Through Recommended Bit Rate MAC CE, UE can indicate gNB the recommended bit rate for the uplink scheduling.
· Uplink channel status can be obtained by base station from the channel estimation based on SRS or DMRS.
5G NR Services, QoS, and BSR (continued)
· In case of new-type communication services, like VR/AR, V2X, remote control, remote medicine, the transfer of uplink packets requires not only a certain guaranteed data rate, but also a certain transfer latency, i.e. the data packet should be transferred within a short delay budget.
· When a data bearer is setup, e.g. a bearer to transfer AR uplink data, its QoS parameters are regulated by the network and indicated to UE. These parameters would be used until the termination of this bearer. With these QoS parameters in high-layer (e.g. RRC layer) and the uplink buffer information from BSR in MAC layer reported by UE, base station schedules the radio resource and determine transfer format to eachUE whose uplink data buffer is not empty.
· However, the above-mentioned QoS parameters and existing BSR information are insufficient to guarantee the uplink data transfer performance regarding both the data rate and transfer latency. Therefore, the UE may indicate, to the base station, when there is critical data stored in UE′s buffer. The present disclosure may describe various techniques and approaches to such indications, e.g., of critical data in the UE buffer.
Example Use Case 1: Unknown current urgency of uplink data
· For example, to guarantee high responsive speed, an uplink packet transfer (e.g. for remote medicine) is required to be completed within 80 milliseconds with 10 -5 packet loss rate (these parameters can be configured in QoS parameters when bearer is set up) . Considering this latency condition, after receiving the reported data amount in BSR, the base station would allocate radio resource and determine transfer format for this UE assuming the allowed transfer latency is 80ms. Considering the round-trip time (RTT) of HARQ process, e.g. 10ms, base station would determine a transfer format corresponding to 10 -1 BLER target and rely on at most 7 times of retransmission to guarantee the 10 -5 packet loss rate.
· In the some BSRs, only the amount of buffer data is reported, without time urgency information.
· But actually even in the data buffer of one logical channel, the urgency of each data packet in a queue are different, some of these packets may have stayed in buffer for a certain long time before BSR is sent, which may be caused by insufficient radio resource, improper transfer format, transfer failure, beam failure, data traffic bursting, network congestion or other reasons. Therefore, these data packets cannot wait for additional 80ms after BSR is sent.
· One possible solution for network is to determine the radio resource and transfer format corresponding to a lower BLER target (like 10 -3) to reduce retransmission occasions. However, this situation cannot be known by the base station from some BSR mechanisms. 
· In summary, the QoS information in high-layer signaling is static and not real-time adapted with buffer status; at the same time, the information in BSR doesn′t contain the data urgency status and data queueing time information. Only by knowing information on both the data amount and data urgency, the base station can generate proper scheduling result to complete all the data transfer within the requested time latency.
Example Use Case 2: Multiple urgency levels of U E data
· For a UE, the multiple uplink logical channels or the multiple packets in one uplink logical channel buffer may have different transmission urgency levels.
· The segments of data packets with different urgency levels have independent amounts.
· Some BSRs may only contain the information of remaining data amount for any logical channel, but do not identify the different urgency levels among data packets.
· Lacking such information disables the base station to prioritize higher-urgency data packets from all the UEs in the multiuser scheduling, and thus impair the QoE for the whole network.
Figure PCTCN2019085852-appb-000003
Solution
Proposed method 1-1
· It is proposed that the UE send the recommended uplink BLER target information of the uplink data buffer in MAC control element to the base station.
· The recommended uplink BLER target information can be implemented in alternative forms:
· Alternation 1: The BLER target value, like 10 -1, 10 -3, 10 -5, ...
· Alternation 2: the indication of increasing or decreasing BLER target to next level
· Considering the current NR standard, the way of sending such information can rely on a new or modified MAC control element.
· Alternation 1: the recommended uplink BLER target information and the uplink buffer amount information are in one uplink MAC-layer message (e.g. MAC control element) .
· Alternation 2: the recommended uplink BLER target and the uplink buffer amount information are in two separate uplink MAC-layer messages (e.g. MAC control elements) .
· For each alternation, the recommended uplink BLER target information can be for all the uplink logical channels on a whole, or for each uplink logical channel independently.
· The occasions of sending such information can be implemented in alternative forms:
· Alternation 1: periodical sending with a configured period
· Alternation 2: triggered upon some pre-defined events, e.g. when the recommended uplink BLER target changes
· Alternation 3: When the granted uplink resource is more than the actual needed, this information can be padded in MAC PDU
Figure PCTCN2019085852-appb-000004
Figure PCTCN2019085852-appb-000005
Solution
Proposed method 2-1
· It is proposed that the UE sends “packet urgency information” of the uplink data buffer to the base station.
· The uplink packet urgency information can be implemented in the following forms:
· Alternation 1: The delay budget of data packet in uplink buffer, i.e. the remaining time duration before the data packet becomes useless or must be dropped, like 10ms, 20ms, ...
· Alternation 2: The urgency level of the data packet in uplink buffer, like low urgency, medium urgency, high urgency, ...
· The occasions of sending such information can be implemented in alternative forms:
· Alternation 1: periodical sending with a configured period
· Alternation 2: triggered upon some pre-defined events, e.g. when the delay budget is lower than a threshold or the urgency level changes
· Alternation 3: When the granted uplink resource is more than the actual needed, this information can be padded in MAC PDU
· This method can have benefit for either single-UE or multi-UE scheduling scenario.
· When base station receives the “packet urgency” information of the uplink data buffer from a UE, it can calculate the suitable BLER target. Then base station can determine the suitable radio resource allocation and transport format (e,g, MCS) for this UE, which aims to complete the transfer before deadline.
· In an exemplary case, the specific determination method can be like this:
· The proper BLER target can be calculated based on the remaining transfer time duration. E.g., the RTT is 10ms and the required packet loss rate is 10 - 5, then if the remaining transfer time duration is 20ms, the BLER target should be not higher than 10 -3; if the remaining transfer time duration is 10ms, the BLER target should be not higher than 10 -5.
· Then, the MCS and radio resource allocation can be calculated based on the calculated BLER target and the reported buffer amount.
Figure PCTCN2019085852-appb-000006

Claims (59)

  1. A method of wireless communication by a user equipment (UE) , the method comprising:
    determining a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station;
    transmitting, to the base station, information associated with a first target block error rate (BLER) based on the first latency status;
    receiving, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER; and
    transmitting, to the base station, the first set of data packets based on the first uplink grant.
  2. The method of claim 1, further comprising:
    determining at least one second latency status associated with at least one second set of data packets buffered by the UE for transmission to a base station;
    transmitting, to the base station, information associated with at least one second target BLER expectation based on the at least one second latency status;
    receiving, from the base station, information indicating at least one second uplink grant for the UE based on the information associated with the at least one second target BLER; and
    transmitting, to the base station, the at least one second set of data packets based on the at least one second uplink grant.
  3. The method of claim 2, wherein the information associated with the first BLER indicates a first data amount associated with the first set of data packets, and wherein the information associated with the at least one second BLER indicates at least one second data amount associated with the at least one second set of data packets.
  4. The method of claim 1, further comprising:
    determining information associated with a first target BLER based on the first latency status associated with the first set of data packets buffered by the UE,
    wherein the information associated with the first target BLER indicates one of a value indicating the target BLER or an adjustment to a current target BLER based on the target BLER.
  5. The method of claim 1, wherein the information associated with the first target BLER indicates one of a remaining time period associated with transmission of the first set of data packets or a first urgency level associated with the first set of data packets.
  6. The method of claim 1, further comprising:
    receiving information indicating a transport format associated with transmission of the first set of data packets based on the first uplink grant, wherein the transport format comprises at least a modulation and coding scheme (MCS) , and
    wherein the transmission of the first set of data packets is based on the transport
    format.
  7. The method of claim 1, wherein the information associated with the first target BLER is transmitted in at least one uplink media access control (MAC) control element (CE) .
  8. The method of claim 1, wherein the transmission of the information associated with the first target BLER is based on a preconfigured periodicity.
  9. The method of claim 1, wherein the transmission of the information associated with the first target BLER is based on at least one of comparison of the first latency status to a first threshold or a first urgency level associated with the first set of data packets when the first set of data packets is buffered.
  10. The method of claim 1, wherein the transmission of the information associated with the first target BLER is based on a size of a previous uplink grant.
  11. A method of wireless communication by a base station, the method comprising:
    receiving, from a first user equipment (UE) , information associated with a first target block error rate (BLER) requested for a first set of data packets to be transmitted by the first UE;
    determining, for the first UE, a first resource allocation based on the information associated with the first target BLER;
    transmitting, to the first UE, a first uplink grant based on the first resource allocation; and
    receiving, from the first UE, the first set of data packets based on the first uplink grant.
  12. The method of claim 11, further comprising:
    receiving, from one of the first UE or at least one second UE, information associated with at least one second target BLER requested for at least one second set of data packets to be transmitted by the one of the first UE or the at least one second UE;
    determining, for the one of the first UE or the at least one second UE, at least one second resource allocation based on the information associated with the at least one second target BLER;
    transmitting, to the one of the first UE or the at least one second UE, at least one second uplink grant based on the at least one second resource allocation; and
    receiving, from the one of the first UE or the at least one second UE, the at least one second set of data packets based on the at least one second uplink grant.
  13. The method of claim 12, wherein the information associated with the first target BLER indicates a first data amount associated with the first set of data packets, and wherein the information associated with the at least one second target BLER indicates at least one second data amount associated with the at least one second set of data packets.
  14. The method of claim 11, wherein the information associated with the first target BLER indicates one of a target BLER or an adjustment to a current target BLER.
  15. The method of claim 11, further comprising:
    determining a target BLER based on the information associated with the first BLER, wherein the information associated with the first target BLER indicates one of a remaining time period associated with reception of the first set of data packets or a first urgency level associated with the first set of data packets, and
    wherein the determination of the first resource allocation is based on the target BLER.
  16. The method of claim 11, further comprising:
    determining, for the first UE, a transport format associated with transmission of the first set of data packets based on the information associated with the first target BLER, wherein the transport format comprises at least a modulation and coding scheme (MCS) ; and
    transmitting, to the first UE, information indicating the transport format.
  17. The method of claim 11, wherein the information associated with the first target BLER is received in at least one uplink media access control (MAC) control element (CE) .
  18. The method of claim 11, wherein the information associated with the first target BLER is received based on a preconfigured periodicity.
  19. The method of claim 11, further comprising:
    determining to prioritize the first set of data packets over another set of data packets based on the information associated with the first target BLER and based on information associated with another target BLER requested for the other set of data packets,
    wherein the determination of the first resource allocation is based on the determination to prioritize the first set of data packets over the other set of data packets.
  20. A user equipment (UE) comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    determine a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station;
    transmit, to the base station, information associated with a first target block error rate (BLER) based on the first latency status;
    receive, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER; and
    transmit, to the base station, the first set of data packets based on the first uplink grant.
  21. The apparatus of claim 20, wherein the at least one processor is further configured to:
    determine at least one second latency status associated with at least one second set of data packets buffered by the UE for transmission to a base station;
    transmit, to the base station, information associated with at least one second target BLER expectation based on the at least one second latency status;
    receive, from the base station, information indicating at least one second uplink grant for the UE based on the information associated with the at least one second target BLER; and
    transmit, to the base station, the at least one second set of data packets based on the at least one second uplink grant.
  22. The apparatus of claim 21, wherein the information associated with the first BLER indicates a first data amount associated with the first set of data packets, and wherein the information associated with the at least one second BLER indicates at least one second data amount associated with the at least one second set of data packets.
  23. The apparatus of claim 20, wherein the at least one processor is further configured to:
    determine information associated with a first target BLER based on the first latency status associated with the first set of data packets buffered by the UE,
    wherein the information associated with the first target BLER indicates one of a value indicating the target BLER or an adjustment to a current target BLER based on the target BLER.
  24. The apparatus of claim 20, wherein the information associated with the first target BLER indicates one of a remaining time period associated with transmission of the first set of data packets or a first urgency level associated with the first set of data packets.
  25. The apparatus of claim 20, wherein the at least one processor is further configured to:
    receive information indicating a transport format associated with transmission of the first set of data packets based on the first uplink grant, wherein the transport format comprises at least a modulation and coding scheme (MCS) , and
    wherein the transmission of the first set of data packets is based on the transport format.
  26. The apparatus of claim 20, wherein the information associated with the first target BLER is transmitted in at least one uplink media access control (MAC) control element (CE) .
  27. The apparatus of claim 20, wherein the transmission of the information associated with the first target BLER is based on a preconfigured periodicity.
  28. The apparatus of claim 20, wherein the transmission of the information associated with the first target BLER is based on at least one of comparison of the first latency status to a first threshold or a first urgency level associated with the first set of data packets when the first set of data packets is buffered.
  29. The apparatus of claim 20, wherein the transmission of the information associated with the first target BLER is based on a size of a previous uplink grant.
  30. A base station comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive, from a first user equipment (UE) , information associated with a first target block error rate (BLER) requested for a first set of data packets to be transmitted by the first UE;
    determine, for the first UE, a first resource allocation based on the information associated with the first target BLER;
    transmit, to the first UE, a first uplink grant based on the first resource allocation; and
    receive, from the first UE, the first set of data packets based on the first uplink grant.
  31. The apparatus of claim 30, wherein the at least one processor is further configured to:
    receive, from one of the first UE or at least one second UE, information associated with at least one second target BLER requested for at least one second set of data packets to be transmitted by the one of the first UE or the at least one second UE;
    determine, for the one of the first UE or the at least one second UE, at least one second resource allocation based on the information associated with the at least one second target BLER;
    transmit, to the one of the first UE or the at least one second UE, at least one second uplink grant based on the at least one second resource allocation; and
    receive, from the one of the first UE or the at least one second UE, the at least one second set of data packets based on the at least one second uplink grant.
  32. The apparatus of claim 31, wherein the information associated with the first target BLER indicates a first data amount associated with the first set of data packets, and wherein the information associated with the at least one second target BLER indicates at least one second data amount associated with the at least one second set of data packets.
  33. The apparatus of claim 30, wherein the information associated with the first target BLER indicates one of a target BLER or an adjustment to a current target BLER.
  34. The apparatus of claim 30, wherein the at least one processor is further configured to:
    determine a target BLER based on the information associated with the first BLER,
    wherein the information associated with the first target BLER indicates one of a remaining time period associated with reception of the first set of data packets or a first urgency level associated with the first set of data packets, and
    wherein the determination of the first resource allocation is based on the target BLER.
  35. The apparatus of claim 30, wherein the at least one processor is further configured to:
    determine, for the first UE, a transport format associated with transmission of the first set of data packets based on the information associated with the first target BLER, wherein the transport format comprises at least a modulation and coding scheme (MCS) ; and
    transmit, to the first UE, information indicating the transport format.
  36. The apparatus of claim 30, wherein the information associated with the first target BLER is received in at least one uplink media access control (MAC) control element (CE) .
  37. The apparatus of claim 30, wherein the information associated with the first target BLER is received based on a preconfigured periodicity.
  38. The apparatus of claim 30, wherein the at least one processor is further configured to:
    determine to prioritize the first set of data packets over another set of data packets based on the information associated with the first target BLER and based on information associated with another target BLER requested for the other set of data packets,
    wherein the determination of the first resource allocation is based on the determination to prioritize the first set of data packets over the other set of data packets.
  39. A user equipment (UE) comprising:
    means for determining a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station;
    means for transmitting, to the base station, information associated with a first target block error rate (BLER) based on the first latency status;
    means for receiving, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER; and
    means for transmitting, to the base station, the first set of data packets based on the first uplink grant.
  40. The UE of claim 39, further comprising:
    means for determining at least one second latency status associated with at least one second set of data packets buffered by the UE for transmission to a base station;
    means for transmitting, to the base station, information associated with at least one second target BLER expectation based on the at least one second latency status;
    means for receiving, from the base station, information indicating at least one second uplink grant for the UE based on the information associated with the at least one second target BLER; and
    means for transmitting, to the base station, the at least one second set of data packets based on the at least one second uplink grant.
  41. The UE of claim 40, wherein the information associated with the first BLER indicates a first data amount associated with the first set of data packets, and wherein the information associated with the at least one second BLER indicates at least one second data amount associated with the at least one second set of data packets.
  42. The UE of claim 39, further comprising:
    means for determining information associated with a first target BLER based on the first latency status associated with the first set of data packets buffered by the UE,
    wherein the information associated with the first target BLER indicates one of a value indicating the target BLER or an adjustment to a current target BLER based on the target BLER.
  43. The UE of claim 39, wherein the information associated with the first target BLER indicates one of a remaining time period associated with transmission of the first set of data packets or a first urgency level associated with the first set of data packets.
  44. The UE of claim 39, further comprising:
    means for receiving information indicating a transport format associated with transmission of the first set of data packets based on the first uplink grant, wherein the transport format comprises at least a modulation and coding scheme (MCS) , and
    wherein the transmission of the first set of data packets is based on the transport format.
  45. The UE of claim 39, wherein the information associated with the first target BLER is transmitted in at least one uplink media access control (MAC) control element (CE) .
  46. The UE of claim 39, wherein the transmission of the information associated with the first target BLER is based on a preconfigured periodicity.
  47. The UE of claim 39, wherein the transmission of the information associated with the first target BLER is based on at least one of comparison of the first latency status to a first threshold or a first urgency level associated with the first set of data packets when the first set of data packets is buffered.
  48. The UE of claim 39, wherein the transmission of the information associated with the first target BLER is based on the size of a previous uplink grant.
  49. A base station comprising:
    means for receiving, from a first user equipment (UE) , information associated with a first target block error rate (BLER) requested for a first set of data packets to be transmitted by the first UE;
    means for determining, for the first UE, a first resource allocation based on the information associated with the first target BLER;
    means for transmitting, to the first UE, a first uplink grant based on the first resource allocation; and
    means for receiving, from the first UE, the first set of data packets based on the first uplink grant.
  50. The base station of claim 49, further comprising:
    means for receiving, from one of the first UE or at least one second UE, information associated with at least one second target BLER requested for at least one second set of data packets to be transmitted by the one of the first UE or the at least one second UE;
    means for determining, for the one of the first UE or the at least one second UE, at least one second resource allocation based on the information associated with the at least one second target BLER;
    means for transmitting, to the one of the first UE or the at least one second UE, at least one second uplink grant based on the at least one second resource allocation; and
    means for receiving, from the one of the first UE or the at least one second UE, the at least one second set of data packets based on the at least one second uplink grant.
  51. The base station of claim 50, wherein the information associated with the first target BLER indicates a first data amount associated with the first set of data packets, and wherein the information associated with the at least one second target BLER indicates at least one second data amount associated with the at least one second set of data packets.
  52. The base station of claim 49, wherein the information associated with the first target BLER indicates one of a target BLER or an adjustment to a current target BLER.
  53. The base station of claim 49, further comprising:
    means for determining a target BLER based on the information associated with the first BLER,
    wherein the information associated with the first target BLER indicates one of a remaining time period associated with reception of the first set of data packets or a first urgency level associated with the first set of data packets, and
    wherein the determination of the first resource allocation is based on the target BLER.
  54. The base station of claim 49, further comprising:
    means for determining, for the first UE, a transport format associated with transmission of the first set of data packets based on the information associated with the first target BLER, wherein the transport format comprises at least a modulation and coding scheme (MCS) ; and
    transmitting, to the first UE, information indicating the transport format.
  55. The base station of claim 49, wherein the information associated with the first target BLER is received in at least one uplink media access control (MAC) control element (CE) .
  56. The base station of claim 49, wherein the information associated with the first target BLER is received based on a preconfigured periodicity.
  57. The base station of claim 49, further comprising:
    means for determining to prioritize the first set of data packets over another set of data packets based on the information associated with the first target BLER and based on information associated with another target BLER requested for the other set of data packets,
    wherein the determination of the first resource allocation is based on the determination to prioritize the first set of data packets over the other set of data packets.
  58. A computer-readable medium storing computer-executable code for wireless communication by a user equipment (UE) , comprising code to:
    determine a first latency status associated with a first set of data packets buffered by the UE for transmission to a base station;
    transmit, to the base station, information associated with a first target block error rate (BLER) based on the first latency status;
    receive, from the base station, information indicating a first uplink grant for the UE based on the information associated with the first target BLER; and
    transmit, to the base station, the first set of data packets based on the first uplink grant.
  59. A computer-readable medium storing computer-executable code for wireless communication by a base station, comprising code to:
    receive, from a first user equipment (UE) , information associated with a first target block error rate (BLER) requested for a first set of data packets to be transmitted by the first UE;
    determine, for the first UE, a first resource allocation based on the information associated with the first target BLER;
    transmit, to the first UE, a first uplink grant based on the first resource allocation; and
    receive, from the first UE, the first set of data packets based on the first uplink grant.
PCT/CN2019/085852 2019-05-07 2019-05-07 System and method for indicating an uplink bler target WO2020223899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085852 WO2020223899A1 (en) 2019-05-07 2019-05-07 System and method for indicating an uplink bler target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/085852 WO2020223899A1 (en) 2019-05-07 2019-05-07 System and method for indicating an uplink bler target

Publications (1)

Publication Number Publication Date
WO2020223899A1 true WO2020223899A1 (en) 2020-11-12

Family

ID=73050978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085852 WO2020223899A1 (en) 2019-05-07 2019-05-07 System and method for indicating an uplink bler target

Country Status (1)

Country Link
WO (1) WO2020223899A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416993A1 (en) * 2021-06-23 2022-12-29 Qualcomm Incorporated Demodulator configuration based on user equipment signaling
WO2023209541A1 (en) * 2022-04-26 2023-11-02 Lenovo (Singapore) Pte Limited Apparatus and method for efficient uplink communications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310431A1 (en) * 2016-04-20 2017-10-26 Convida Wireless, Llc Physical Channels In New Radio
WO2018017802A1 (en) * 2016-07-21 2018-01-25 Sharp Laboratories Of America, Inc. User equipment and base stations that transceive ultra reliable low latency messages amidst delay tolerant transceptions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310431A1 (en) * 2016-04-20 2017-10-26 Convida Wireless, Llc Physical Channels In New Radio
WO2018017802A1 (en) * 2016-07-21 2018-01-25 Sharp Laboratories Of America, Inc. User equipment and base stations that transceive ultra reliable low latency messages amidst delay tolerant transceptions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Discussion on activation and release mechanism for beamformed CSI-RS", R1-1609971, 3GPP TSG-RAN WG1 #86BIS, 14 October 2016 (2016-10-14), XP051149996, DOI: 20200117192228A *
QUALCOMM INCORPORATED: "Procedures Related to NOMA", R1-1804825, 3GPP TSG RAN WG1 MEETING #92BIS, 20 April 2018 (2018-04-20), XP051427091, DOI: 20200117192447A *
QUALCOMM INCORPORATED: "UL inter UE Tx prioritization-multiplexing", R1-1811273, 3GPP TSG-RAN WG1 #94B, 12 October 2018 (2018-10-12), pages 3 - 7, XP051518676, DOI: 20200117191952A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220416993A1 (en) * 2021-06-23 2022-12-29 Qualcomm Incorporated Demodulator configuration based on user equipment signaling
US11997185B2 (en) * 2021-06-23 2024-05-28 Qualcomm Incorporated Demodulator configuration based on user equipment signaling
WO2023209541A1 (en) * 2022-04-26 2023-11-02 Lenovo (Singapore) Pte Limited Apparatus and method for efficient uplink communications

Similar Documents

Publication Publication Date Title
US20230071931A1 (en) Methods and apparatus to facilitate csi feedback in multiple-trp communication
US20220217560A1 (en) Handling of nr qoe measurements and qoe reporting in rrc modes
US20200145881A1 (en) System and method for flow control and buffer status report
WO2021142755A1 (en) DAI AND CODEBOOK UPDATING FOR DCI SCHEDULING MULTIPLE CCs
US11844078B2 (en) Dynamic selection of LCP parameters
US11101965B2 (en) Handling null A-CSI report overlap with other uplink transmissions
EP4367805A1 (en) Early beam failure detection
US11792680B2 (en) Systems and methods for managing transmission control protocol (TCP) acknowledgement (ACK) transmissions
US20230269719A1 (en) Techniques to facilitate ue indication of sps pucch harq feedback location
WO2020223899A1 (en) System and method for indicating an uplink bler target
US11812462B2 (en) CSI enhancement for NR SL and UU
EP4059165B1 (en) Bundling of uplink dm-rs in case of interrupted transmissions
US20210282150A1 (en) Building transport blocks in wireless networks
WO2021212450A1 (en) Buffer status report reporting optimization
WO2022032509A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
US20230224904A1 (en) Measuring uplink latency
WO2022032511A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
WO2022032519A1 (en) Harq-process specific user equipment configuration for reduced capability complexity reduction
US20200404541A1 (en) System and method for flow control and acknowledgement transmission
US20230269803A1 (en) Techniques to facilitate prioritizing packet data convergence protocol (pdcp) protocol data units in dual connectivity
WO2022188062A1 (en) Transmission of grant requests for discontinuous reception (drx) cycles
US20230199547A1 (en) Target bler change request
US20230106678A1 (en) Partial beam failure report
WO2022056848A1 (en) Methods and apparatus for rx-tx time difference reporting
KR20240049558A (en) Conflict rule considerations between PRS and other downlink channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928179

Country of ref document: EP

Kind code of ref document: A1