WO2020221321A1 - 通信方法以及通信装置 - Google Patents

通信方法以及通信装置 Download PDF

Info

Publication number
WO2020221321A1
WO2020221321A1 PCT/CN2020/087893 CN2020087893W WO2020221321A1 WO 2020221321 A1 WO2020221321 A1 WO 2020221321A1 CN 2020087893 W CN2020087893 W CN 2020087893W WO 2020221321 A1 WO2020221321 A1 WO 2020221321A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
transmission unit
transmission
dmrs
unit
Prior art date
Application number
PCT/CN2020/087893
Other languages
English (en)
French (fr)
Inventor
杭海存
纪刘榴
施弘哲
王潇涵
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2021564658A priority Critical patent/JP7399190B2/ja
Priority to EP20798626.6A priority patent/EP3955677A4/en
Publication of WO2020221321A1 publication Critical patent/WO2020221321A1/zh
Priority to US17/514,268 priority patent/US20220052819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a communication method and a communication device.
  • TDM time division multiplexing
  • SDM space division multiplexing
  • FDM frequency division multiplexing
  • PDSCH physical downlink shared channel
  • DMRS demodulation reference signal
  • the present application provides a communication method and communication device, so that when multiple PDSCHs are transmitted, the DMRS port corresponding to the DMRS used to demodulate each PDSCH can be determined, and the PDSCH can be demodulated correctly.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving downlink control information DCI, the DCI indicating N demodulation reference signal DMRS ports, the N DMRS ports corresponding to M physical downlink shared channels PDSCH, and at least two of the M PDSCHs corresponding to DMRS ports are different, where N and M are integers greater than or equal to 2; based on the DCI, the M PDSCHs are received.
  • the terminal device can determine the DMRS used to demodulate each PDSCH based on the N demodulation reference signal (DMRS) ports (DMRS) indicated by the downlink control information (DCI) The corresponding DMRS port.
  • the N DMRS ports indicated by DCI can be used for M PDSCHs, that is, each PDSCH can correspond to one or more DMRS ports, and at least two of the M PDSCHs correspond to different DMRS ports, so that the terminal device can The DMRS port corresponding to the DMRS used to demodulate each PDSCH is determined, so that the PDSCH can be demodulated correctly and the communication performance can be guaranteed.
  • the N DMRS ports are used to determine the number of DMRS ports, the number of DMRS ports represents the number of DMRS ports corresponding to each PDSCH, and the number of DMRS ports Used to determine the DMRS port corresponding to each PDSCH.
  • the terminal device can determine the DMRS port corresponding to the DMRS used to demodulate the PDSCH according to the number of DMRS ports, and the number of DMRS ports can be determined according to N.
  • the terminal device may determine the DMRS port corresponding to the DMRS used to demodulate the PDSCH according to the number of DMRS ports and the preset sequence.
  • the preset sequence may be the sequence of DMRS port IDs from small to large or the sequence of DMRS port IDs from large to small, or the preset sequence may also be the sequence of DMRS ports in the DMRS port table, etc., which are described in detail in the following embodiments.
  • the terminal device may determine the DMRS port corresponding to the DMRS used to demodulate the PDSCH according to the number of DMRS ports and the corresponding relationship between the DMRS port and the PDSCH.
  • the correspondence is used to determine the DMRS port corresponding to each PDSCH.
  • the terminal device can determine the DMRS port corresponding to the DMRS used to demodulate the PDSCH according to the correspondence between the DMRS port and the PDSCH.
  • the correspondence between the DMRS port and the PDSCH may be a direct correspondence or an indirect correspondence; or, the correspondence between the DMRS port and the PDSCH may be a correspondence in the form of correspondence. It may be a form of association, which is not limited, and will be specifically introduced in the following embodiments.
  • the sequence of the N DMRS ports is used to determine the DMRS port corresponding to each PDSCH.
  • the terminal device can determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH according to the sequence of the DMRS ports.
  • the sequence of DMRS ports may indicate the sequence of DMRS ports in the DMRS port sequence table, or may indicate the sequence of indicated DMRS ports, or may indicate the sequence of IDs of DMRS ports, etc. .
  • instruction information is received, where the instruction information is used to determine the correspondence relationship in combination with a preset rule.
  • the terminal device can determine the correspondence between the DMRS port and the PDSCH according to the indication information and preset rules, and then can determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH.
  • the indication information may be separate signaling or carried in the DCI, and the indication information may be, for example, a value.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating downlink control information DCI, where the DCI indicates N demodulation reference signal DMRS ports, the N DMRS ports correspond to M physical downlink shared channels PDSCH, and at least two of the M PDSCHs correspond to DMRS ports are different, where N and M are integers greater than or equal to 2; the DCI is sent.
  • the network device can indicate N DMRS ports to the terminal device through DCI, and the N DMRS ports can be used for M PDSCHs, that is, each PDSCH can correspond to one or more DMRS ports, and M The DMRS ports corresponding to at least two PDSCHs in each PDSCH are different, so the terminal device can determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH according to the instructions of the DCI, so that the terminal device can demodulate the PDSCH correctly, and can guarantee Communication performance.
  • the N DMRS ports are used to determine the number of DMRS ports, the number of DMRS ports represents the number of DMRS ports corresponding to each PDSCH, and the number of DMRS ports Used to determine the DMRS port corresponding to each PDSCH.
  • the correspondence is used to determine the DMRS port corresponding to each PDSCH.
  • the sequence of the N DMRS ports is used to determine the DMRS port corresponding to each PDSCH.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving downlink control information DCI, the DCI indicating N demodulation reference signal DMRS ports, the N DMRS ports corresponding to each of the M physical downlink shared channels PDSCH, and the N DMRS ports TCI states corresponding to at least two transmission units are not the same, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2; based on the DCI, the M PDSCHs are received.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating downlink control information DCI, the DCI indicating N demodulation reference signal DMRS ports, the N DMRS ports corresponding to each PDSCH of the M physical downlink shared channels PDSCH, and the N DMRS ports TCI states corresponding to at least two transmission units are not the same, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2, and the DCI is sent.
  • the network device can indicate N DMRS ports to the terminal device through DCI, and the terminal device can determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH based on the N DMRS ports indicated by the DCI.
  • the N DMRS ports indicated by the DCI can be used for M PDSCHs, and each PDSCH corresponds to the N DMRS ports indicated by the DCI.
  • the DMRS ports corresponding to the DMRS of the PDSCH can be the same, so that the terminal device can quickly determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH according to the instructions of the DCI, and then the PDSCH can be demodulated correctly and the communication performance can be guaranteed.
  • the TCI states corresponding to at least two transmission units of the N DMRS ports are not the same, that is, for at least two PDSCHs, the TCI states of the DMRS used to demodulate the PDSCH are different, or it can also be understood as DCI
  • the TCI states of the indicated N DMRS ports in different transmission units are not all the same.
  • the transmission unit used to transmit the PDSCH is determined based on the starting position of the transmission unit, the length of the transmission unit, and the interval between adjacent transmission units.
  • the transmission unit used to transmit the PDSCH is determined according to at least one of the following: the starting position of the transmission unit and the length of the transmission unit; and the interval between adjacent transmission units.
  • the interval between the adjacent transmission units includes: in the adjacent transmission units, the difference between the end position of the first transmission unit and the start position of the second transmission unit The symbol length between.
  • the interval between the adjacent transmission units may be, for example, the end position of the first transmission unit and the first transmission unit The symbol length between the start positions of the two transmission units.
  • the DCI indicates multiple transmission configurations to indicate the TCI status
  • the sequence of the multiple TCI statuses is used to determine the TCI status corresponding to the DMRS port in the transmission unit .
  • the transmission unit and the transmission configuration indication TCI state have a corresponding relationship, and the corresponding relationship is used to determine the TCI state of the DMRS port corresponding to the transmission unit.
  • the TCI state includes multiple TCI sub-states
  • the specific corresponding relationship between the transmission unit and the transmission configuration indication TCI state includes: the transmission unit and the The TCI sub-states in the TCI state have a corresponding relationship.
  • the transmission unit includes a time domain unit and/or a frequency domain unit.
  • the time domain unit is a mini-slot.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving instruction information, the instruction information being used to indicate information of a first transmission unit, and the information of the first transmission unit includes the following information: the starting position of the first transmission unit or the first transmission unit; The end position of the transmission unit, the transmission length of the first transmission unit, and the transmission interval, wherein the transmission interval is the interval between the first transmission unit and an adjacent transmission unit, and the first transmission unit is : Any transmission unit in the multiple transmission units, or the first transmission unit in the multiple transmission units; in the multiple transmission units, multiple physical downlink shared channel PDSCHs are received.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating indication information, the indication information being used to indicate information of a first transmission unit, and the information of the first transmission unit includes the following information: the starting position of the first transmission unit or the first transmission unit; The end position of the transmission unit, the transmission length of the first transmission unit, and the transmission interval, wherein the transmission interval is the interval between the first transmission unit and an adjacent transmission unit, and the first transmission unit is : Any transmission unit in the multiple transmission units, or the first transmission unit in the multiple transmission units; sending the instruction information.
  • the network device can indicate the information of a transmission unit to the terminal device, or it can also be understood that the network device can indicate to the terminal device the information used to transmit a PDSCH transmission resource.
  • it can include the transmission unit ( (Or transmission resource) start position or end position, transmission length (or transmission resource length), and transmission interval, so that the terminal device can determine the information of each transmission unit according to the indicated information (or transmit the transmission of each PDSCH) Resource information).
  • the terminal device can be based on the information of a transmission unit, or, it can also be understood that the terminal device can include, for example, the start position of the transmission unit (or transmission resource) or the information of the transmission resource used to transmit a PDSCH.
  • the end position, the transmission length (or the length of the transmission resource), and the transmission interval determine the information of each transmission unit (or the transmission resource information of each PDSCH).
  • the network device may not need to notify the terminal device of the information of each transmission unit of the M transmission units, or the network device may not need to notify the terminal device of the information used to transmit the transmission resources of the M PDSCH, thus not only Communication can be guaranteed and signaling overhead can be saved.
  • the position of the preamble demodulation reference signal DMRS and the position of the additional DMRS in the first transmission unit are based on the transmission length of the first transmission unit and the position of the additional DMRS.
  • the transmission interval is determined; and/or the position of the additional DMRS in the first transmission unit is determined according to the transmission length of the first transmission unit and the transmission interval.
  • the first transmission unit is the first transmission unit in a time slot; the preamble demodulation reference signal DMRS in the n+1th transmission unit
  • the first transmission unit is the first transmission unit in a time slot; the preamble demodulation reference signal DMRS in the n+1th transmission unit
  • the transmission length of, ⁇ is the interval between the first transmission unit and the start position of the adjacent transmission unit, n is an integer greater than 0 or equal to 0, and mod is the remainder function.
  • the first transmission unit is the first transmission unit in a time slot; the position of the additional demodulation reference signal DMRS in the n+1th transmission unit
  • L is the transmission length of the first transmission unit
  • is the interval between the end position of the first transmission unit and the adjacent transmission unit
  • n is greater than 0
  • mod is the remainder function.
  • the first transmission unit is the first transmission unit in a time slot; the position of the additional demodulation reference signal DMRS in the n+1th transmission unit
  • l ad-0 represents the first symbol position of the additional DMRS in the first transmission unit
  • l ad-n represents the additional DMRS in the n+1th transmission unit Is the first symbol position of the first transmission unit
  • L is the transmission length of the first transmission unit
  • is the interval between the first transmission unit and the start position of the adjacent transmission unit
  • n is an integer greater than or equal to 0, mod To find the remainder function.
  • the transmission unit includes a time domain unit and/or a frequency domain unit.
  • the time domain unit is a mini-slot.
  • a communication device configured to execute the method provided in the foregoing first aspect.
  • the communication device may include a module for executing the method provided in the first aspect, the third aspect, or the fifth aspect.
  • a communication device is provided, and the communication device is configured to execute the method provided in the above-mentioned second aspect, fourth aspect, or sixth aspect.
  • the communication device may include a module for executing the method provided in the second aspect, the fourth aspect, or the sixth aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the first aspect, the third aspect, or the fifth aspect, and any one of the possible implementation manners of the first aspect, the third aspect, or the fifth aspect Method in.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the communication device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the above-mentioned second aspect, fourth aspect, or sixth aspect and any possible implementation manner of the second aspect, fourth aspect, or sixth aspect Method in.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the communication device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • An eleventh aspect provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes the first aspect, the third aspect, or the fifth aspect, And the method in any possible implementation manner of the first aspect, the third aspect, or the fifth aspect.
  • a computer-readable storage medium is provided with a computer program stored thereon, and when the computer program is executed by a communication device, the communication device realizes the second aspect, the fourth aspect, or the sixth aspect, And the method in any possible implementation manner of the second aspect, the fourth aspect, or the sixth aspect.
  • a computer program product containing instructions is provided, which when executed by a computer causes a communication device to implement the method provided in the first aspect, the third aspect, or the fifth aspect.
  • a computer program product containing instructions is provided, which when executed by a computer causes a communication device to implement the method provided in the second aspect, the fourth aspect, or the sixth aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • the terminal device may determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH based on the N DMRS ports indicated by the DCI.
  • the N DMRS ports indicated by the DCI can be used for M PDSCHs, that is, each PDSCH can correspond to one or more DMRS ports.
  • the DMRS ports corresponding to at least two PDSCHs in the M PDSCHs are different, or the DMRS ports corresponding to each PDSCH in the M PDSCHs are the same. In either case, the terminal device can determine the DMRS port used to demodulate each PDSCH
  • the DMRS port corresponding to the DMRS can demodulate the PDSCH correctly and ensure communication performance.
  • Fig. 1 is a schematic diagram of a communication system suitable for an embodiment of the present application
  • FIG. 2 is a schematic diagram of the TCI state
  • FIG. 3 is a schematic interaction diagram of a communication method according to an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of a communication method applicable to another embodiment of the present application.
  • 5 to 8 are schematic diagrams of resource allocation applicable to embodiments of the present application.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G Fifth Generation
  • NR New Radio
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one terminal device, such as the terminal device 101 shown in the figure; the communication system 100 may also include at least two network devices, such as the network device #1 102 shown in the figure. And network equipment #2103.
  • Network equipment #1 102 and network equipment #2 103 can be network equipment in the same cell, for example, network equipment #1 102 and network equipment #2 103 can be a transmission and reception point (TRP) in the same cell ), it can also be network equipment in different cells, which is not limited in this application.
  • TRP transmission and reception point
  • the figure is only an example, showing an example in which network device #1 102 and network device #2 103 are located in the same cell. It should also be understood that the various embodiments of the present application can also be applied in a scenario where a multi-antenna panel of a network device is equivalent to multiple TRPs.
  • the network device #1 102 and the network device #2 103 can communicate with each other through a backhaul link, which can be a wired backhaul link (for example, optical fiber, copper cable), or It is a wireless backhaul link (such as microwave).
  • a backhaul link which can be a wired backhaul link (for example, optical fiber, copper cable), or It is a wireless backhaul link (such as microwave).
  • Network device #1 102 and network device #2 103 can cooperate with each other to provide services for terminal device 101. Therefore, the terminal device 101 can communicate with the network device #1 102 and the network device #2 103 respectively through the wireless link.
  • one or more of the network device #1 102 and the network device #2 103 may also use carrier aggregation technology to schedule PDSCH for the terminal device 101 on one or more CCs.
  • network device #1 102 can schedule PDSCH for terminal device 101 on CC#1 and CC#2
  • network device #2 103 can schedule PDSCH for terminal device 101 on CC#1 and CC#3.
  • the CCs scheduled by network equipment #1 102 and network equipment #2 103 may be the same or different, which is not limited in this application.
  • the terminal device in the embodiment of the present application may be a device that provides users with voice/data connectivity, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid) Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), cellular phones, cordless phones, session initiation protocols (session initiation) protocol, SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, In-vehicle equipment, wear
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a Global System of Mobile Communication (GSM) system or Code Division Multiple Access (CDMA)
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • BTS base station
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Base Station Evolution
  • NodeB eNB, or eNodeB
  • it can also be a wireless controller in Cloud Radio Access Network (CRAN) scenarios, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • CRAN Cloud Radio Access Network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the network equipment may include a centralized unit (CU) and a DU.
  • the network device may also include an active antenna unit (AAU for short).
  • CU implements some of the functions of network equipment
  • DU implements some of the functions of network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol, PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the demodulation reference signal may be a demodulation reference signal (DMRS) in the LTE protocol or the NR protocol, or may also be another reference signal defined in a future protocol for implementing the same function.
  • DMRS demodulation reference signal
  • the DMRS can be carried in the physical shared channel and sent together with the data signal, so as to demodulate the data signal carried in the physical shared channel. For example, it is sent together with downlink data in a physical downlink share channel (PDSCH), or sent with uplink data in a physical uplink share channel (PUSCH).
  • the demodulation reference signal may include a downlink demodulation reference signal sent through a physical downlink shared channel.
  • the mapping mode of PDSCH or PUSCH in the time domain may include a first mapping mode and a second mapping mode, where the first mapping mode may be mapping type A (mapping type A) in the NR protocol, and the second mapping mode may be NR Mapping type B (mapping type A) in the protocol.
  • the mapping mode of PDSCH or PUSCH can be indicated by higher layer signaling, for example, radio resource control (RRC) signaling.
  • RRC radio resource control
  • the time domain position of the demodulation reference signal is defined relative to the start position of the slot, and the symbol position l 0 of the first demodulation reference signal in a slot (ie, the preamble demodulation reference
  • the demodulation reference signal may include a preamble demodulation reference signal and an additional demodulation reference signal.
  • the pre-load demodulation reference signal can also be called the first (first) demodulation reference signal, which occupies one symbol or multiple symbols in the time domain. If multiple symbols are occupied, the multiple symbols are continuous in the time domain. .
  • Additional (additional) demodulation reference signal In a time slot, the demodulation reference signal generated using the same sequence after the preamble demodulation reference signal is an additional reference reference signal.
  • the additional demodulation reference signal may be one or more symbols after the symbol occupied by the preamble demodulation reference signal, and the last of the symbols occupied by the preamble demodulation reference signal is the same as the symbol occupied by the additional demodulation reference signal. The first symbol is not consecutive.
  • the additional demodulation reference signal can be configured with high-level signaling, such as RRC signaling, to configure resources.
  • the additional demodulation reference signal is an optional demodulation reference signal.
  • antenna port (antenna port). It can be understood as a transmitting antenna recognized by the receiving end, or a transmitting antenna that can be distinguished in space.
  • One antenna port can be configured for each virtual antenna, and each virtual antenna can be a weighted combination of multiple physical antennas. According to different signals carried, antenna ports can be divided into reference signal ports and data ports.
  • the reference signal port includes, but is not limited to, a DMRS port, a zero-power channel state information reference signal trigger (channel state information reference signal, CSI-RS) port, etc., for example.
  • the antenna port may refer to a DMRS port (DMRS port).
  • DMRS port DMRS port
  • the time-frequency resources occupied by the DMRS of different DMRS ports may be different, or the orthogonal cover codes may be different.
  • the terminal device may receive the DMRS based on the port indicated by the network device, and demodulate the PDCCH or PDSCH based on the received DMRS.
  • the parameters related to the antenna port may be a DMRS port, a DMRS port group (DMRS port group), or a DMRS code division multiplexing (CDM) group (DMRS CDM) group.
  • the terminal device may determine the DMRS port based on the antenna port indicated in the DCI, and then determine the DMRS port group or DMRS code division multiplexing group to which it belongs.
  • the DMRS port group and the DMRS code division multiplexing group can be understood to be obtained by grouping DMRS ports based on different methods.
  • Antenna ports, DMRS ports, DMRS port groups, and DMRS code division multiplexing groups can be distinguished by index, can also be distinguished by identification, or can also be distinguished by other information that can be used to distinguish different ports or different groups. This is not limited.
  • the port and the DMRS port are sometimes used alternately. It should be understood that in the embodiment of the present application, the port means a DMRS port.
  • Time slot In NR, time slot is the smallest scheduling unit of time.
  • a slot format contains 14 OFDM symbols, and the CP of each OFDM symbol is a normal CP (normal CP); a slot format contains 12 OFDM symbols, and the CP of each OFDM symbol is an extended CP ( extended CP);
  • a slot format contains 7 OFDM symbols, and the CP of each OFDM symbol is the normal CP.
  • the OFDM symbols in a time slot can be all used for uplink transmission; all can be used for downlink transmission; or some of them can be used for downlink transmission, some for uplink transmission, and some are reserved for no transmission. It should be understood that the above examples are merely illustrative and should not constitute any limitation to the application. For the sake of system forward compatibility, the slot format is not limited to the above example.
  • Time-frequency resources In the embodiments of the present application, data or information may be carried by time-frequency resources, where the time-frequency resources may include resources in the time domain and resources in the frequency domain. Wherein, in the time domain, the time-frequency resource may include one or more time domain units (or, may also be referred to as a time unit), and in the frequency domain, the time-frequency resource may include frequency domain units.
  • a time domain unit (also called a time unit) can be a symbol or several symbols, or a mini-slot, or a slot, or a subframe, Among them, the duration of a subframe in the time domain can be 1 millisecond (ms), a slot consists of 7 or 14 symbols, and a mini slot can include at least one symbol (for example, 2 symbols or 7 symbols). Symbol or 14 symbols, or any number of symbols less than or equal to 14 symbols).
  • the size of the time domain unit listed above is only for the convenience of understanding the solution of the present application, and should not be understood to limit the present invention. It should be understood that the size of the time domain unit may be other values, which is not limited in this application.
  • a frequency domain unit may be a resource block (resource block, RB), or a resource block group (resource block group, RBG), or a predefined subband (subband).
  • the transmission unit is mentioned multiple times, and the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • the transmission unit mentioned in the embodiment of the present application can be replaced It is a time domain unit, it can also be replaced with a frequency domain unit, or it can be replaced with a time-frequency unit.
  • Quasi-co-location or quasi-co-location.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average departure angle AOD, AOD extension, reception Antenna spatial correlation parameter, transmit antenna spatial correlation parameter, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or antenna ports that have the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or have different Antenna port number The antenna port for information transmission or reception in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: CSI-RS resource identifier, or SRS resource identifier, or SSB resource identifier, or the resource identifier of the preamble sequence transmitted on the Physical Random Access Channel (PRACH), or the resource identifier of DMRS, Used to indicate the beam on the resource.
  • PRACH Physical Random Access Channel
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, and delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D (type D): Space receiving parameters.
  • Transmission configuration indicator (TCI) status it can be used to indicate the QCL relationship between two reference signals.
  • Each TCI state may include a serving cell index (ServeCellIndex), a bandwidth part (BWP) identifier (ID), and a reference signal resource identifier.
  • the reference signal resource identifier may be, for example, at least one of the following: Non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS reference signal resource set identifier (NZP-CSI-RS-ResourceSetId) or SSB Index (SSB-Index).
  • NZP Non-zero power
  • NZP-CSI-RS-ResourceId Non-zero power CSI-RS reference signal resource identifier
  • NZP-CSI-RS-ResourceSetId non-zero power CSI-RS reference signal resource set identifier
  • SSB-Index SSB Index
  • the terminal device can determine the receiving beam based on the TCI state indicated by the network device, and the network device can determine the transmitting beam based on the same TCI state.
  • the TCI state can be globally configured. In the TCI states configured for different cells and different BWPs, if the index of the TCI state is the same, the configuration of the corresponding TCI state is also the same.
  • the network device can configure a TCI state (TCI state) list for the terminal device through high-level signaling (such as an RRC message).
  • TCI state list may include multiple TCI states. For example, according to the existing protocol, up to 128 TCI states can be configured in the PDSCH configuration (PDSCH config).
  • the network device can activate one or more TCI states through MAC CE signaling.
  • the activated TCI state is a subset of the TCI state list configured in the above RRC message.
  • the network device can activate up to 8 TCI states for each BWP in each cell.
  • the network device may also indicate a selected TCI state through a 3-bit field (for example, a TCI field) in a physical layer signaling (downlink control information (DCI)).
  • DCI downlink control information
  • the DCI may be suitable for DCI scheduling physical downlink resources (such as PDSCH), for example.
  • the network device can configure 128 TCI states for the terminal device through RRC signaling, and the network device can also activate 8 TCI states for the terminal device through MAC-CE.
  • the 8 TCI states indicate that the network device is a terminal device.
  • the network device can also indicate a selected TCI state through DCI.
  • Time division multiplexing The same transmission block is transmitted in different time units.
  • the time unit can be, for example, a mini-slot.
  • RV redundancy version
  • burst services such as ultra-reliable and low latency communication (URLLC).
  • URLLC ultra-reliable and low latency communication
  • the data of the URLLC service generally requires a reliability of up to 99.999% within a certain period of time (for example, 1 ms). Therefore, a diversity scheme is usually used for data transmission.
  • TDM space division multiplexing
  • FDM frequency division multiplexing
  • the present application provides a communication method in order to determine the DMRS port corresponding to the DMRS used to demodulate each data.
  • FIG. 3 is a schematic interaction diagram of a communication method 300 provided by an embodiment of the present application, shown from the perspective of device interaction. As shown in the figure, the method 300 may include the following steps.
  • the network device sends DCI to the terminal device, where the DCI indicates N DMRS ports, and the N DMRS ports correspond to M PDSCHs.
  • the terminal device receives the DCI.
  • the DMRS port corresponds to the PDSCH, or the DMRS port corresponding to the PDSCH, and those skilled in the art can understand its meaning. They are all used to indicate the port corresponding to the DMRS used to demodulate the PDSCH. It can be understood that the terminal device receives the DMRS based on the DMRS port corresponding to the PDSCH, and demodulates the PDSCH based on the received DMRS.
  • the following is succinct, and all are represented by PDSCH corresponding to DMRS port or DMRS port corresponding to PDSCH.
  • N DMRS ports correspond to M PDSCHs, which can include two cases.
  • Case A At least two of the M PDSCHs correspond to different DMRS ports, where N and M are integers greater than or equal to 2.
  • the 4 PDSCHs are marked as PDSCH 1, PDSCH 2, PDSCH 3, PDSCH 4, and the 2 DMRS ports are marked as DMRS port 1 and DMRS port 2. .
  • the DMRS port corresponding to the DMRS used to demodulate the PDSCH 1 is different from the DMRS port corresponding to the DMRS used to demodulate the PDSCH 2.
  • the DMRS port corresponding to the DMRS used to demodulate the PDSCH 1 is DMRS port 1
  • the DMRS port corresponding to the DMRS used to demodulate the PDSCH 2 is DMRS port 2. That is, the terminal device uses the DMRS received based on the DMRS port 1. In demodulating the PDSCH 1, the terminal device uses the DMRS received based on the DMRS port 2 to demodulate the PDSCH 2.
  • the DMRS port corresponding to the DMRS used to demodulate the PDSCH 1 is different from the DMRS port corresponding to the DMRS used to demodulate the PDSCH 2.
  • the DMRS ports corresponding to the DMRS used to demodulate the PDSCH 1 are DMRS port 1 and DMRS port 2
  • the DMRS ports corresponding to the DMRS used to demodulate the PDSCH 2 are DMRS port 3 and DMRS port 4, that is, the terminal equipment
  • the DMRS received based on DMRS port 1 and DMRS port 2 is used to demodulate PDSCH 1
  • the DMRS received by terminal equipment based on DMRS port 3 and DMRS port 4 is used to demodulate PDSCH 2.
  • each PDSCH can correspond to more DMRS ports.
  • N DMRS ports correspond to each PDSCH of M PDSCHs, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2.
  • the DMRS port corresponding to the DMRS used to demodulate the PDSCH 1 the DMRS port corresponding to the DMRS used to demodulate the PDSCH 2, and the DMRS port corresponding to the DMRS used to demodulate the PDSCH 3, are used to demodulate the PDSCH 4
  • the DMRS ports corresponding to the DMRS include DMRS port 1 and DMRS port 2. That is, the DMRS received by the terminal device based on DMRS port 1 and DMRS port 2 is used to demodulate PDSCH 1, PDSCH 2, PDSCH 3, and PDSCH 4.
  • the DMRS port indicated in the DCI is applied to all PDSCHs indicated by the DCI, and the same DMRS port is used on all PDSCHs.
  • the terminal device receives M PDSCHs based on DCI.
  • the terminal device receiving M PDSCHs can also be understood as a network device sending one DCI, and the DCI indicates M PDSCHs.
  • multiple TRPs may send M PDSCHs.
  • the terminal device receives the PDSCH in M transmission units.
  • the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • the time domain unit includes mini-slot, symbol, slot, or sub-frame.
  • Frequency domain units include resource blocks, resource block groups, OR, subband, and so on.
  • the terminal device can receive PDSCH on M mini-slots, and the terminal device can receive M PDSCHs.
  • the terminal device may determine M based on any one of the following solutions, that is, the terminal device may determine the number of repeated transmissions M based on any one of the following solutions.
  • Solution 1 Use the high-level parameter pdsch-AggregationFactor to indicate the number of repeated transmissions M.
  • pdsch-AggregationFactor is used to determine the number of repeated transmissions between slots.
  • the embodiment of this application can reuse the pdsch-AggregationFactor, and the pdsch-AggregationFactor is used to represent the number of repeated transmissions M (such as repeated transmission of mini-slots). frequency).
  • Solution 2 An additional parameter pdsch-AggregationFactor is indicated to indicate the number of repeated transmissions M.
  • pdsch-AggregationFactor1 is used to determine the number of repeated transmissions between slots (that is, the existing definition)
  • pdsch-AggregationFactor2 is used to indicate the number of repeated transmissions in a slot.
  • the number of repeated transmissions M can be calculated. For example, if the number of repetitions between slots is determined to be t1 according to pdsch-AggregationFactor1, and the number of repetitions in slots is determined to be t2 according to pdsch-AggregationFactor2, the number of repeated transmissions M is: (t1*t2).
  • Solution 3 Indicate the number of repeated transmissions M through indication information.
  • a field of X bits may be added to the DCI to indicate the number of repeated transmissions M, and X is an integer greater than or equal to 1.
  • this field can indicate the number of repeated transmissions in the slot, and the pdsch-AggregationFactor in the existing protocol can calculate the total number of repeated transmissions; for another example, this field can also directly indicate the number of repeated transmissions.
  • the protocol stipulates that the PDSCH can be repeatedly transmitted up to 4 times in a slot; when the mini-slot transmission duration is 4 symbols, the protocol stipulates in one The PDSCH can be repeatedly transmitted up to 3 times in a slot; when the mini-slot transmission time is 6 or 7 symbols, the protocol stipulates that the PDSCH can be repeatedly transmitted up to 2 times in a slot.
  • the terminal device receives indication information, which indicates the transmission information of any one of the M PDSCHs, and the terminal device may determine the transmission information of the M PDSCHs based on the indication information.
  • the first transmission or the first transmission unit, the second transmission or the second transmission unit is mentioned many times, and those skilled in the art should understand the meaning.
  • the start symbol of the first transmission PDSCH is earlier than the start symbol of the second transmission PDSCH, or the end symbol of the first transmission PDSCH is earlier than the end symbol of the second transmission PDSCH.
  • the starting frequency domain of the first transmission PDSCH is smaller than the starting frequency domain of the second transmission PDSCH.
  • step 310 the network device indicates N DMRS ports to the terminal device through DCI, which includes at least the following two possible implementation manners.
  • the network device can indicate a value to the terminal device through the DCI, such as the value shown in Table 1, and the terminal device can determine the DMRS port indicated by the DCI according to the value.
  • the terminal device can determine that the DMRS ports indicated by DCI include: DMRS port 2, DMRS port 3, DMRS port 6, and DMRS port 7.
  • the terminal device can determine that the DMRS ports indicated by DCI include: DMRS port 2, DMRS port 3, DMRS port 6, and DMRS port 7.
  • Table 1 may be pre-defined, such as pre-defined by a protocol or pre-configured by the network device, and this Table 1 may be pre-stored on the network device side and the terminal device side.
  • the terminal device may determine the DMRS port through any of the foregoing possible implementation manners.
  • Case A At least two of the M PDSCHs correspond to different DMRS ports, where N and M are integers greater than or equal to 2.
  • M may be smaller than N.
  • the DMRS ports indicated by DCI include DMRS port 1, DMRS port 2, DMRS port 3, and DMRS port 4.
  • the second transmission PDSCH uses DMRS port 3 and DMRS port 4.
  • M may be equal to N.
  • M may be greater than N.
  • the third transmission PDSCH uses DMRS port 1, and the fourth transmission PDSCH uses DMRS port 2.
  • the terminal device can determine the DMRS port corresponding to each PDSCH by any of the following methods, that is, determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH.
  • Manner 1 The terminal device determines the DMRS port corresponding to each PDSCH according to the correspondence between the DMRS port and the PDSCH.
  • the correspondence between the DMRS port and the PDSCH can also be understood as the association or correspondence between the DMRS port and the PDSCH, and it can also be understood as the DMRS port corresponding to the DMRS used to demodulate the PDSCH and the PDSCH has a corresponding relationship, and the specific association or corresponding form is not limited.
  • the representation form of the association between the DMRS port and the PDSCH may be in the form of a correspondence relationship, or may also be in the form of a table, etc., which is not limited.
  • the terminal device may obtain the corresponding relationship in any of the following ways.
  • the corresponding relationship may be pre-stored, for example, pre-specified by the protocol or pre-configured by the network device.
  • the terminal device can obtain the pre-stored corresponding relationship.
  • the corresponding relationship may also be indicated by the network device to the terminal device through a separate signaling.
  • the terminal device may obtain the correspondence relationship by receiving the signaling used to indicate the correspondence relationship issued by the network device.
  • the network device indicates the corresponding relationship to the terminal device through high-level signaling (such as RRC signaling), and the terminal device determines the corresponding relationship according to the high-level signaling.
  • high-level signaling such as RRC signaling
  • the corresponding relationship may also be indicated by the network device to the terminal device through the DCI.
  • the network device indicates to the terminal device multiple values in the DMRS table through DCI, namely value1 and value2.
  • DCI Downlink Control Channel
  • the correspondence between the DMRS port and the PDSCH may be a direct correspondence or an indirect correspondence.
  • the following is a specific description of Method 1 in combination with several forms.
  • the DMRS port corresponding to each PDSCH can be determined according to the correspondence between the ID of the TRP and the ID of the DMRS port.
  • the DCI indicates 4 DMRS ports, and the four DMRS ports belong to different DMRS port groups.
  • the 4 DMRS ports are: DMRS port 0, DMRS port 1, DMRS port 2, DMRS port 3, where DMRS port 0 and DMRS port 1 belong to DMRS port group 1, and DMRS port 2 and DMRS port 3 belong to DMRS port group 2.
  • TRP DMRS port group TRP1 DMRS port group 1 TRP2 DMRS port group 2
  • TRP1 and TRP2 send PDSCH and DCI to the terminal device to indicate 4 DMRS ports as an example for illustrative description, and the embodiment of the present application is not limited thereto.
  • Form 1 is only an exemplary description, and the embodiment of the present application is not limited thereto.
  • it may also be a correspondence relationship between a cell ID and a DMRS port.
  • it may be the correspondence between the number of repeated transmissions and the DMRS port.
  • the DMRS ports indicated by the DCI include: DMRS port 1, DMRS port 2, DMRS port 3, and DMRS port 4.
  • the number of repeated transmissions of the PDSCH and the indicated DMRS port may be acquired in any of the foregoing manners.
  • DMRS port ID First transmission DMRS port 1, DMRS port 2 Second transmission DMRS port 3, DMRS port 4 Third transmission DMRS port 1, DMRS port 2 Fourth transmission DMRS port 3, DMRS port 4
  • the terminal device can determine the DMRS port corresponding to the PDSCH according to the PDSCH received for the first time in combination with Table 4.
  • it may be the correspondence between the transmission unit and the DMRS port.
  • DCI indicates DMRS port 1, DMRS port 2, DMRS port 3, and DMRS port 4.
  • DMRS port ID First transmission unit DMRS port 1, DMRS port 2 Second transmission unit DMRS port 3, DMRS port 4 Third transmission unit DMRS port 1, DMRS port 2 Fourth transmission unit DMRS port 3, DMRS port 4
  • the terminal device can determine the DMRS port corresponding to the PDSCH according to the PDSCH received in which transmission unit and in conjunction with Table 4.
  • Form 3 can be the correspondence between the value in the DMRS table indicated by the DCI and the PDSCH.
  • the DMRS port corresponding to value0 is used for the first transmission of PDSCH, and the DMRS port corresponding to value1 is used for the second transmission of PDSCH, and is recycled.
  • the DMRS port corresponding to value0 is used for the third transmission of PDSCH, and the DMRS port corresponding to value1 is used for the fourth transmission of PDSCH....
  • the DMRS port table in this form may be pre-defined, such as pre-defined by a protocol or a network device.
  • Form 4 can be the correspondence between the DMRS port group and the PDSCH.
  • the correspondence between the DMRS and the transmitted PDSCH can be determined by the protocol.
  • a smaller (or larger) DMRS port group is always used for the first transmission of the PDSCH, and the DMRS corresponding to subsequent transmissions are sorted according to the DMRS port group in which they are located.
  • DMRS ports indicated by DCI include: DMRS port 0, DMRS port 1, DMRS port 2, DMRS port 3.
  • DMRS port 0 and DMRS port 1 belong to DMRS port group 1, and port 2 and port 3 belong to DMRS port group 2.
  • the PDSCH is transmitted 4 times.
  • the first transmission PDSCH always uses the smaller DMRS port group 1, and the DMRS ports used for the first transmission PDSCH include DMRS port 0 and DMRS port 1, that is, the DMRS corresponding to the PDSCH received by the terminal device in the first transmission unit
  • the ports include DMRS port 0 and DMRS port 1; the second PDSCH transmission uses DMRS port group 2, then the second transmission PDSCH uses DMRS ports including port 2 and port 3; the third transmission PDSCH uses DMRS port group 1,
  • the DMRS ports used for the third PDSCH transmission include port 0 and port 1; the DMRS port group 2 is used for the fourth PDSCH transmission, and the DMRS port used for the fourth PDSCH transmission includes port 2 and port 3.
  • the DMRS port group where the first DMRS port is located is used for the first transmission, etc., which is not limited in this embodiment of the application.
  • the DMRS port group where the first DMRS port is located is used for the first transmission.
  • the first DMRS port is DMRS port 0, and its port group is DMRS port group 1
  • the port used for the first PDSCH transmission is DMRS
  • the DMRS port in port group 1; the second DMRS port indicated in the DCI is DMRS port 1, and its port group is DMRS port group 1, skip it, that is, ignore DMRS port 1, that is, ignore the indication in DCI
  • the second DMRS port; the third port indicated in DCI is DMRS port 2, and its port group is DMRS port group 2, which means that the DMRS port used for the second PDSCH transmission belongs to DMRS port group 2; the indication in DCI
  • the third port is DMRS port 2, and its port group is DMRS
  • the protocol can also predefine the same DMRS port for PDSCH transmission in the former M/2, and the same DMRS port for PDSCH transmission in the latter M-M/2.
  • the first M/2 transmits the PDSCH (that is, the first two transmission PDSCH)
  • the same DMRS port is used, that is, DMRS port group 1 is used, and the same DMRS port is used for the second two transmission PDSCH, that is, DMRS port group 2 is used.
  • the corresponding relationship in form 5 may exist in the form of a default rule.
  • the protocol or network equipment is pre-defined, and the terminal equipment defaults to the first transmission PDSCH using the first DMRS port, and the second transmission PDSCH using the second There are two DMRS ports, the third DMRS port is used for the third transmission PDSCH, and the fourth DMRS port is used for the fourth transmission PDSCH.... If there is no nth DMRS port for the nth transmission PDSCH, the calculation starts from the beginning, that is, the nth transmission PDSCH uses the first DMRS port.
  • DMRS port 2 and DMRS port 3 The order of DMRS port 2 and DMRS port 3 in the DMRS port table is: DMRS port 2, DMRS port 3. Then the first transmission PDSCH uses DMRS port 2, the second transmission PDSCH uses DMRS port 3, the third transmission PDSCH uses DMRS port 2, and the fourth transmission PDSCH uses DMRS port 3.
  • each PDSCH corresponds to multiple DMRS ports.
  • the terminal device can first determine the number of DMRS ports corresponding to each PDSCH. After determining the number of DMRS ports corresponding to each PDSCH, the terminal device can determine the DMRS port corresponding to each PDSCH according to the order of the DMRS port corresponding to the value indicated by the DCI in the DMRS port table.
  • the first transmission PDSCH uses DMRS port 2 and DMRS port 3
  • the second transmission PDSCH uses DMRS port 6 and DMRS port 7
  • the third transmission PDSCH uses DMRS port 2 and DMRS port 3
  • the fourth transmission PDSCH uses DMRS port 6 and DMRS.
  • the order of the DMRS port in the DMRS port table is related to the repeated transmission of the PDSCH.
  • the DMRS port table and DMRS port sequence in this form may be stipulated by the protocol.
  • DMRS port 0 and DMRS port 2 add a row of DMRS ports, such as DMRS port 0 and DMRS port 2, assuming that DMRS port 0 and DMRS port 2 in the DMRS port table are: DMRS port 0 and DMRS port 2, that is, DMRS port 0 and DMRS port 2.
  • the order in the DMRS port table is: DMRS port 0 and DMRS port 2.
  • the first transmission PDSCH uses DMRS port 0
  • the second transmission PDSCH uses DMRS port 2
  • the third transmission PDSCH uses DMRS port
  • the fourth transmission PDSCH uses DMRS port 2,... analogy.
  • the DMRS ports in the DMRS port table can also be assigned the meaning of order. Taking the value of 29 as an example, the order of 2367 indicates the order of using DMRS ports. For example, assuming that each PDSCH corresponds to two DMRS ports, take a value of 29 as an example.
  • the terminal device can determine that the first transmission PDSCH uses the first two DMRS ports, namely DMRS port 2 and DMRS port 3; the second transmission PDSCH The last two DMRS ports are used, namely DMRS port 6 and DMRS port 7; the third transmission PDSCH uses the next two DMRS ports, namely DMRS port 2 and DMRS port 3; the fourth transmission PDSCH uses the next two, namely DMRS ports 6 and DMRS port 7.
  • Manner 2 The terminal device determines the DMRS port corresponding to each PDSCH according to the number of DMRS ports.
  • the number of DMRS ports is used to indicate the number of DMRS ports corresponding to each PDSCH.
  • PDSCH corresponds to DMRS port 1 and DMRS port 2, which means that the number of DMRS ports is 2.
  • PDSCH corresponds to DMRS port 1, DMRS port 2, and DMRS port 4, which means that the number of DMRS ports is 3.
  • the terminal device may determine the number of DMRS ports through any one of the following possible implementation manners.
  • the network device sends instruction information to the terminal device, and the instruction information is used to indicate the number of DMRS ports.
  • the terminal device can determine the number of DMRS ports according to the instruction information.
  • the indication information may be, for example, a separate signaling, or may also be carried in the DCI used to indicate N DMRS ports, which is not limited.
  • the terminal device may determine the number of DMRS ports according to the number of DMRS ports indicated by the DCI and the number of activated TCI-states.
  • DCI indicates N DMRS ports
  • the number of activated TCI-states is P1
  • the number of DMRS ports can be: N/P1.
  • P1 is an integer greater than or equal to 1.
  • N can be indicated directly; another example is to indicate value, and the terminal device determines N according to the DMRS port table; another example is to indicate N using high-level parameters, and so on.
  • the number of activated TCI-states can represent the number of TRPs.
  • the terminal device may determine the number of DMRS ports according to the number of DMRS ports indicated by the DCI and the number of TRPs.
  • the terminal device determines that P2 TRPs send PDSCH to the terminal device, then
  • DCI indicates N DMRS ports
  • the number of TRPs is P2
  • the number of DMRS ports can be: N/P2.
  • the protocol stipulates that only single-layer transmission is supported in the repeated transmission of mini-slot, and each PDSCH corresponds to a DMRS port.
  • the DCI indicates multiple value values in the DMRS table, and the number of DMRS ports corresponding to each value value is the number of DMRS ports on the PDSCH.
  • the terminal device can determine the number of DMRS ports according to any of the foregoing possible implementation manners.
  • the terminal device After the terminal device determines the number of DMRS ports, it can determine the DMRS port corresponding to each PDSCH based on any one of the following implementation modes and according to the DMRS port indicated by the DCI.
  • Implementation mode 1 can be determined in conjunction with certain rules.
  • the DMRS port can be used in the order in the DMRS port table by default.
  • the terminal device determines that the number of DMRS ports used for each transmission is 1. Then, according to the DMRS port sequence in the DMRS port table, the terminal device determines that the first DMRS port used to transmit PDSCH is DMRS port 4, the second DMRS port used to transmit PDSCH is DMRS port 1, and the third DMRS port used to transmit PDSCH is DMRS port 4, the fourth DMRS port used for PDSCH transmission is DMRS port 1.
  • the terminal device After the terminal device determines the number of DMRS ports, it can determine the DMRS port corresponding to each PDSCH according to any one of the corresponding relationships in Manner 1.
  • the terminal device determines that the number of DMRS ports used for each transmission is 2. Then, according to the DMRS port sequence in the DMRS port table, the terminal device can determine that the first transmission PDSCH uses DMRS port 2 and DMRS port 3, the second transmission PDSCH uses DMRS port 6, DMRS port 7, and the third transmission PDSCH uses DMRS port 2. , DMRS port 3, the fourth transmission PDSCH adopts DMRS port 6, DMRS port 7.
  • DCI indicates x values in the DMRS table, then the DMRS port corresponding to the first value is used for the first transmission, the DMRS port corresponding to the second value is used for the second transmission, and the DMRS corresponding to the first value The port is used for the third transmission, and the DMRS port corresponding to the second value is used for the fourth transmission,...
  • N DMRS ports correspond to each PDSCH of M PDSCHs, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2.
  • the N DMRS ports indicated by DCI are used for each PDSCH, or it can also be understood as the N DMRS ports indicated by DCI are used for each transmission, or it can also be understood as being used for demodulating each PDSCH.
  • the DMRS ports corresponding to the DMRS of each PDSCH are the same, and they are all N DMRS ports indicated by the DCI.
  • the transmission unit As the time domain unit, it is assumed that multiple TRPs send PDSCH to the terminal device.
  • the PDSCH is sent in time sharing, so the multiple TRPs can use the same DMRS port in different time periods, that is, the DMRS port indicated in the DCI can be used to indicate all the ports corresponding to the PDSCH.
  • the transmission unit As the frequency domain unit, it is assumed that multiple TRPs send PDSCH to the terminal device.
  • the PDSCH is transmitted by frequency division, so the multiple TRPs can use the same DMRS port on different frequency bands, that is, the DMRS port indicated in the DCI can be used to indicate all the ports corresponding to the PDSCH.
  • the transmission unit As the time-frequency unit, it is assumed that multiple TRPs send PDSCH to the terminal device. Then the multiple TRPs can use the same DMRS port on different time-frequency resources, that is, the DMRS port indicated in the DCI can be used to indicate all the ports corresponding to the PDSCH.
  • the TCI states corresponding to at least two transmission units of the N DMRS ports are different.
  • the network device can configure one or more TCI-state-pairs (TCI-state-pair) for the terminal device through high-level signaling (such as an RRC message), and each TCI-state-pair includes multiple TCI-states (such as two). If the PDSCH config is configured to include multiple TCI-state-pairs, the network device can activate one or more TCI-state-pairs through MAC CE, where the activated TCI-state-pair belongs to the configured TCI-state-pair.
  • TCI-state-pair TCI-state-pairs
  • the DCI selects one TCI-state-pair from the activated TCI-state-pair, it can also be understood that the DCI selects multiple TCI-states.
  • TCI-state After multiple TCI-states are selected, different transmissions need to be mapped, so the indicated TCI-state can be specified.
  • TCI-state-pair such as the TCI-state-pair configured by RRC signaling, ie, PDSCH config, pay attention to the order.
  • TCI-state-pair indicated by DCI contains ⁇ TCI-state1, TCI-state2 ⁇
  • first transmission PDSCH corresponds to TCI-state1
  • second transmission PDSCH corresponds to TCI-state2
  • the third transmission PDSCH corresponds to TCI-state1
  • fourth transmission PDSCH corresponds to TCI-state2,....
  • the TCI-state corresponding to the first transmission PDSCH is TCI-state1, that is, the TCI-state used to demodulate the DMRS of the first transmission PDSCH is TCI-state1; the TCI-state corresponding to the second transmission PDSCH is TCI-state1;
  • the state is TCI-state2, that is, the TCI-state used to demodulate the DMRS of the second transmission PDSCH is TCI-state2;
  • the TCI-state corresponding to the third transmission PDSCH is TCI-state1, which is used to demodulate the third transmission PDSCH
  • the TCI-state of the DMRS is TCI-state1; the TCI-state corresponding to the fourth transmission PDSCH is TCI-state2, that is, the TCI-state used to demodulate the DMRS of the fourth transmission PDSCH is TCI-state2.
  • TCI-state-pair indicated by DCI contains ⁇ TCI-state1, TCI-state2,..., TCI-stateL ⁇
  • the number of TCI-state is L (L is greater than 2 Or an integer equal to 2)
  • the first M/L transmission PDSCH corresponds to TCI-state1
  • the M/L+1 to 2*M/L transmission PDSCH corresponds to TCI-state2,..., M-(L-1) *M/L to M-th transmission PDSCH corresponds to TCI-stateL.
  • the TCI-state corresponding to the first transmission PDSCH is TCI-state1, that is, the TCI-state used to demodulate the DMRS of the first transmission PDSCH is TCI-state1; the TCI-state corresponding to the second transmission PDSCH is TCI-state1; state is TCI-state1, that is, the TCI-state used to demodulate the DMRS of the second transmission PDSCH is TCI-state1; the TCI-state corresponding to the third transmission PDSCH is TCI-state2, that is, the TCI-state used to demodulate the third transmission PDSCH
  • the TCI-state of the DMRS is TCI-state2; the TCI-state corresponding to the fourth transmission PDSCH is TCI-state2, that is, the TCI-state used to demodulate the DMRS of the fourth transmission PDSCH is TCI-state2.
  • the network device can configure one or more TCI-states for the terminal device through high-level signaling (such as RRC messages), and the network device can maintain a table through MAC CE.
  • MAC CE can correspond to multiple elements, and each element can contain multiple TCI-States.
  • network equipment can activate multiple TCI-states through L2 signaling (such as MAC CE), such as adding MAC to signaling (such as MAC CE) CE can activate multiple elements, one of which contains multiple TCI-states, that is, multiple TCI-states can be activated by activating multiple elements.
  • each element contains multiple TCI-States, such as TCI-state1 and TCI-state2.
  • TCI-state1 and TCI-state2 When the MAC-CE activates the TCI state, it is represented by a bitmap (bitmap), and each bitmap represents the activation of an element.
  • TCI-state1 and TCI-state2 A possible implementation, for example, if multiple TCI-states activated by activation scheme 2 include TCI-state1 and TCI-state2, then it can be assumed that the first transmission PDSCH corresponds to TCI-state1, and the second transmission PDSCH corresponds to TCI-state2 , The third transmission PDSCH corresponds to TCI-state1, the fourth transmission PDSCH corresponds to TCI-state2,....
  • TCI-states activated by activation scheme 2 include L TCI-states
  • the PDSCH before M/L transmission corresponds to TCI-state1 by default, and the M/L+1 th
  • the PDSCH transmitted to the 2nd*M/L corresponds to TCI-state2,...
  • the PDSCH transmitted from the M-(L-1)*M/L to the Mth corresponds to TCI-stateL.
  • Y bits are added to the DCI, and the added Y bits can be used to select multiple activated TCI-states, etc., where Y is an integer greater than 1 or equal to 1, and this application does not limit this solution.
  • TCI-state1 and TCI-state2 A possible implementation, for example, if multiple TCI-states activated through activation scheme 3 include TCI-state1 and TCI-state2, then it can be assumed that the first transmission PDSCH corresponds to TCI-state1, and the second transmission PDSCH corresponds to TCI-state2 , The third transmission PDSCH corresponds to TCI-state1, the fourth transmission PDSCH corresponds to TCI-state2,....
  • the DMRS port used for each PDSCH transmission is the same. From the example shown in Table 5, for example, the TCI-state of the first transmission PDSCH and the second transmission PDSCH are different. In other words, the DMRS port is in the first transmission. The TCI-state of the transmission unit and the second transmission unit are different. In other words, the TCI states corresponding to at least two transmission units of the N DMRS ports are different.
  • time domain characteristics are added to the TCI-state defined in RRC signaling.
  • a TCI-state parameter contains two sub-states, such as TCI sub-state, the first n symbols It is TCI sub-state1, and the last m symbols are TCI sub-state2.
  • TCI sub-state1 or TCI-sub-state2 should be selected. For example, if the first transmission PDSCH is in the first n symbols, the TCI-state of the DMRS corresponding to the first transmission PDSCH is TCI sub-state1. If the first transmission PDSCH is in the last m symbols, the TCI-state of the DMRS corresponding to the first transmission PDSCH is It is TCI sub-state2; analogous to the second transmission PDSCH and so on.
  • frequency domain characteristics can also be added to the TCI-state defined in RRC signaling.
  • it can also be added to the TCI-state defined in RRC signaling.
  • Frequency characteristics, etc. are not strictly limited.
  • the multiple activation schemes described above are only exemplary descriptions, and the embodiments of the present application are not limited thereto. Any variants belonging to the above-mentioned solutions fall into the protection scope of the embodiments of the present application.
  • the PDSCH is taken as an example for description, but this does not limit the application, and the PDSCH can also be replaced with data.
  • the network device can indicate multiple DMRS ports to the terminal device through DCI, the multiple DMRS ports are used for the multiple data, and the DMRS ports corresponding to the multiple data may be all the same or not all the same, for example, in multiple data At least two data correspond to different DMRS ports.
  • DCI indication not only can the terminal device accurately determine the DMRS port, but also can receive the DMRS based on the DMRS port, and then use the received DMRS to demodulate the corresponding data to ensure data transmission performance.
  • FIG. 4 is a schematic interaction diagram of a communication method 400 provided by an embodiment of the present application, shown from the perspective of device interaction. As shown in the figure, the method 400 may include the following steps.
  • the network device determines the information of the first transmission unit.
  • the information of the first transmission unit includes the following information: the start position of the first transmission unit or the end position of the first transmission unit, the transmission length of the first transmission unit, and the transmission interval , Wherein the transmission interval is the interval between the first transmission unit and the adjacent transmission unit, and the first transmission unit is: any transmission unit of the M transmission units, or the first transmission unit of the M transmission units Transmission unit, where M is an integer greater than or equal to 2;
  • the network device sends instruction information, where the instruction information is used to indicate information of the first transmission unit.
  • the terminal device receives the instruction information.
  • the transmission unit may include any one of the following: a time domain unit, a frequency domain unit, or a time-frequency unit.
  • the time domain unit may be, for example, a mini-slot
  • the frequency domain unit may be, for example, a subband.
  • the terminal device can receive PDSCH on M mini-slots, and the terminal device can receive M PDSCHs.
  • the transmission unit is a time domain unit, such as a mini-slot, as an example.
  • the network device may indicate the information of the first transmission unit to the terminal device, and the first transmission unit may be any transmission unit of the M transmission units, that is, the network device may indicate any of the M transmission units to the terminal device
  • the information of the transmission unit or, can also be understood as, the network device indicates to the terminal device the information of the transmission resource of any PDSCH in the M PDSCH; or, the first transmission unit may be the first transmission among the M transmission units Unit; that is, the network device can indicate to the terminal device the information of the first transmission unit of the M transmission units, or, it can also be understood as, the network device indicates to the terminal device the information of the first PDSCH transmitted in the M PDSCH Transmission resource information.
  • the first transmission unit is only named for distinction, and does not limit the protection scope of the embodiments of the present application.
  • the PDSCH transmitted on the first transmission unit is recorded as the first PDSCH.
  • the network device can indicate to the terminal device: S, L, ⁇ .
  • S can be used to indicate the starting position of the first transmission unit, or the starting position of the transmission resource of the first PDSCH in the time domain, such as the symbol starting position (starting from 0);
  • L can be used to indicate the length of the first transmission unit, or the time length of the transmission resource of the first PDSCH in the time domain, for example, the length of the symbol occupied by the transmission;
  • can be used to represent the time interval between two adjacent transmissions, such as the symbol length between two adjacent transmissions, such as the symbol length between the start positions of two adjacent transmissions or the end position of two adjacent transmissions The length of the symbols between etc.
  • a time interval of ⁇ can be reserved between adjacent transmission units.
  • represents the symbol length between the end positions of two adjacent transmissions, and ⁇ represents the first transmission.
  • is used to represent the symbol length between the end positions of two adjacent transmissions, and ⁇ is the symbol length expression between the start positions of two adjacent transmissions.
  • the transmission unit includes a frequency domain unit.
  • S may be used to indicate the starting position of the first transmission unit, or the starting position of the transmission resource of the first PDSCH in the frequency domain, such as the subband starting position
  • L Can be used to indicate the length of the first transmission unit, or the length of the transmission resource of the first PDSCH in the frequency domain, such as the length of the subband occupied by the transmission
  • can be used to indicate the frequency domain interval between two adjacent transmissions, For example, the subband length between two adjacent transmissions, such as the frequency domain interval between the start positions of two adjacent transmissions or the frequency domain interval between the end positions of two adjacent transmissions.
  • the network device may notify the terminal device ⁇ through high-layer signaling (for example, RRC signaling notification), or may also notify the terminal device ⁇ through DCI.
  • may also be pre-defined, such as pre-defined by the protocol or pre-configured by the network device.
  • representing the symbol length between the end positions of two adjacent transmissions as an example, as shown in Table 7 and Table 8.
  • CP it includes normal CP (normal CP) and extended CP (extended CP).
  • a slot format contains 14 OFDM symbols, and the CP of each OFDM symbol is a normal CP; a slot format contains 12 OFDM symbols, and the CP of each OFDM symbol is an extended CP; a slot The format contains 7 OFDM symbols, and the CP of each OFDM symbol is the normal CP.
  • the terminal device can determine the locations of all transmission units based on S, L, and ⁇ , or in other words, determine the locations of all PDSCH transmission resources.
  • the transmission unit is a mini-slot, which will be described in conjunction with Figures 5 to 8.
  • FIGS 5 to 8 show several different mini-slot repeated transmissions.
  • Case 1 As shown in Figure 5, the case of fixed symbol interval allocation.
  • the shaded part is the transmission block. It can be seen from Figure 5 that in each slot (slot), the end position of the TPR1 transmission transmission block differs by the same amount from the start position of the TRP2 transmission transmission block.
  • the squares are 2 squares apart.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH (that is, the second mini-slot) is (S+L+ ⁇ )
  • the transmission length of the transmission resource for the second transmission PDSCH that is, the second mini-slot
  • the end position of the second transmission PDSCH is (S+L+ ⁇ +L-1).
  • FIG. 5 only shows the case where ⁇ represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH is (S+ ⁇ )
  • the transmission length of the transmission resource for the second transmission PDSCH is L
  • the end position of the second transmission PDSCH (that is, the second mini-slot) is (S+ ⁇ +L-1).
  • Case 2 As shown in Figure 6, the slot boundaries are handled differently. In other words, a transmission block cannot be transmitted across slots.
  • the shaded part is the transmission block. It can be seen from Figure 6 that the transmission block is transmitted 4 times in two slots, and the number of repeated transmissions in each slot is 2, that is, in each slot, TRP1 transmits one transmission block, TRP2 transmits one transmission block. In addition, a transmission block will not collapse the slot transmission.
  • the same transmission block should not cross the slot, and the number of repeated transmissions in a slot can be judged. For example, when the start or end position of a certain transmission exceeds the slot boundary, for example, the start or end position of a certain transmission is located at the 14th symbol (if the symbol number of the first symbol is 0, it is numbered 13. After the symbol), it can be judged that the starting position of this transmission is the first symbol position of the next slot.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH (that is, the second mini-slot) is (S+L+ ⁇ )
  • the transmission length of the transmission resource for the second transmission PDSCH that is, the second mini-slot
  • the end position of the second PDSCH transmission is (S+L+ ⁇ +L-1).
  • the start position of the second transmission PDSCH can be calculated based on the end position of the second transmission PDSCH.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH is (S+ ⁇ )
  • the transmission length of the transmission resource for the second transmission PDSCH is L
  • the end position of the second transmission of the PDSCH is (S+ ⁇ +L-1).
  • the start position of the transmission resource of the third transmission PDSCH may be calculated based on the end position of the second transmission PDSCH.
  • the shaded part is the transmission block.
  • the transmission block is transmitted 4 times in two slots.
  • the number of repeated transmissions in each slot is 2, that is, in each slot, TRP1 transmits one transmission block, TRP2 transmits one transmission block.
  • the transmission unit occupied by each transmission is the same.
  • the TPR1 transmission transmission block can occupy the first 2 transmission units (that is, the hatched squares in Figure 7), the start position of the TPR2 transmission transmission block and the end of the TRP1 transmission transmission block The positions differ by one square.
  • the transmission unit occupied by the transmission block is only an exemplary description, and does not limit the protection scope of the embodiment of the present application.
  • only resource allocation in one slot can be considered, and then the number of repeated transmissions in one slot can be judged.
  • the transmission resource for each transmission in a slot can be determined, and then the transmission resource for transmission in each slot can be determined.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH (that is, the second mini-slot) is (S+L+ ⁇ )
  • the transmission length of the transmission resource for the second transmission PDSCH that is, the second mini-slot
  • the end position of the second transmission PDSCH is (S+L+ ⁇ +L-1).
  • the start position of the transmission resource of the third transmission PDSCH may be calculated based on the end position of the second transmission PDSCH. At this time, the end position of the transmitted PDSCH will not exceed the slot boundary, as shown in the time slot boundary in Figure 7, and between the slot and the slot, all resource allocations are the same.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH is (S+ ⁇ )
  • the transmission length of the transmission resource for the second transmission PDSCH is L
  • the end position of the second transmission PDSCH (that is, the second mini-slot) is (S+ ⁇ +L-1).
  • the start position of the transmission resource of the third transmission PDSCH may be calculated based on the end position of the second transmission PDSCH. At this time, the end position of the transmitted PDSCH will not exceed the slot boundary, and between the slot and the slot, all resource allocations are the same.
  • the shaded part is the transmission block. It can be seen from Figure 8 that the time unit occupied by each transmission block is continuous.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the network device instructs the terminal device to transmit S and L of the first PDSCH (that is, the first mini-slot)
  • the end position of the first PDSCH transmission is (S+L-1).
  • the location of the transmission resource for each PDSCH transmission can also be calculated.
  • the start position of the transmission resource for the second transmission PDSCH is (S+L)
  • the transmission length of the transmission resource for the second transmission PDSCH is L
  • the end position of the second transmission PDSCH ie, the second mini-slot
  • the start position of the transmission resource of the third transmission PDSCH may be calculated based on the end position of the second transmission PDSCH.
  • is 0, and in this case, ⁇ may not be indicated.
  • the embodiment of this application is not limited to this. Any method that enables a terminal device to determine the information of all transmission units based on the information of one transmission unit falls within the protection scope of the embodiments of this application. .
  • the terminal device may also determine the positions of all transmission units based on the end position of the first transmission unit and L and ⁇ .
  • the embodiment of the present application also adjusts the time domain position of the DMRS.
  • DMRS can include front-loaded DMRS and additional DMRS.
  • front-loaded DMRS and additional DMRS are explained below.
  • mapping type A of the PDSCH Take the mapping type A of the PDSCH as an example for description.
  • l 0 represents the first symbol position of the front-loaded DMRS corresponding to the first transmission PDSCH in a time slot.
  • the first symbol position of the front-loaded DMRS of the DMRS corresponding to the n+1th transmission PDSCH is l n , where n is an integer greater than or equal to 0.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • the first symbol position of the front-loaded DMRS of the DMRS corresponding to the n+1th transmission PDSCH is l n , where n is an integer greater than or equal to 0.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • the DMRS is not inside the time-frequency resource location allocated for PDSCH.
  • Method 1 Define l 0 as the starting position of the first PDSCH transmission, and the positions of the front-loaded DMRS corresponding to other PDSCHs are similar to the above.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • the processing situation is the same as that of the front-loaded DMRS described above.
  • the following is a brief description. For details, please refer to the above description of determining the location of the front-loaded DMRS.
  • l ad-0 represents the symbol position of the additional DMRS of the DMRS corresponding to the first transmission PDSCH in a time slot.
  • the symbol position of the additional DMRS of the DMRS corresponding to the n+1th transmission PDSCH is l ad-n , where n is an integer greater than or equal to 0.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • l ad-n mod(l ad-0 +n*(L+ ⁇ ),14), where mod is the remainder function.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • l ad-n mod(l ad-0 +n* ⁇ ,14), where mod is the remainder function.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • represents the symbol length between the end positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • represents the symbol length between the start positions of two adjacent transmissions.
  • the n+1 transmissions are all in the first slot, and the position of the DMRS in the other slots is the same as the first slot.
  • the PDSCH is taken as an example for description, but this does not limit the application, and the PDSCH can also be replaced with data.
  • the terminal device can determine the DMRS port corresponding to the DMRS used to demodulate each PDSCH based on the N DMRS ports indicated by the DCI.
  • the N DMRS ports indicated by the DCI can be used for M PDSCHs, that is, each PDSCH can correspond to one or more DMRS ports.
  • the DMRS ports corresponding to at least two PDSCHs in the M PDSCHs are different, or the DMRS ports corresponding to each PDSCH in the M PDSCHs are the same. In either case, the terminal device can determine the demodulation of each PDSCH.
  • the DMRS port corresponding to the DMRS can then demodulate the PDSCH correctly and ensure communication performance.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may include a communication unit 910, and optionally, may also include a processing unit 920.
  • the communication unit 910 can communicate with the outside, and the processing unit 920 is used for data processing.
  • the communication unit 910 may also be referred to as a communication interface or a transceiving unit.
  • the communication device 900 can implement the steps or processes performed by the terminal device corresponding to the above method embodiment.
  • it can be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication device 900 may be referred to as a terminal device.
  • the communication unit 910 is configured to perform the transceiving-related operations on the terminal device side in the above method embodiment
  • the processing unit 920 is configured to perform the processing related operations on the terminal device in the above method embodiment.
  • the communication unit 910 is configured to: receive downlink control information DCI, the DCI indicates N demodulation reference signal DMRS ports, the N DMRS ports correspond to M physical downlink shared channels PDSCH, and at least two of the M PDSCHs The DMRS ports corresponding to the PDSCH are different, where N and M are integers greater than or equal to 2; the communication unit 910 is also used to: receive M PDSCHs based on the DCI.
  • the N DMRS ports are used to determine the number of DMRS ports, the number of DMRS ports indicates the number of DMRS ports corresponding to each PDSCH, and the number of DMRS ports is used to determine the DMRS port corresponding to each PDSCH.
  • the correspondence is used to determine the DMRS port corresponding to each PDSCH.
  • the sequence of the N DMRS ports is used to determine the correspondence between the N DMRS ports and the M PDSCHs.
  • the communication unit 910 is configured to: receive the downlink control information DCI, the DCI indicates N demodulation reference signal DMRS ports, and the N DMRS ports correspond to each of the M physical downlink shared channels PDSCH, N Two DMRS ports have different TCI states corresponding to at least two transmission units, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2.
  • the communication unit 910 is also used to: receive M PDSCHs based on DCI .
  • the transmission unit used to transmit the PDSCH is determined according to the starting position of the transmission unit, the length of the transmission unit, and the interval between adjacent transmission units.
  • the DCI indicates that multiple transmission configurations indicate the TCI state, and the sequence of the multiple TCI states is used to determine the TCI state corresponding to the DMRS port in the transmission unit.
  • the transmission unit and the transmission configuration indication TCI state have a corresponding relationship, and the corresponding relationship is used to determine the TCI state corresponding to the DMRS port in the transmission unit.
  • the TCI state includes multiple TCI sub-states
  • the transmission unit has a corresponding relationship with the transmission configuration indication TCI state, including: the transmission unit has a corresponding relationship with the TCI sub-state in the TCI state.
  • the transmission unit includes a time domain unit and/or a frequency domain unit.
  • the communication device 900 may implement the steps or processes performed by the terminal device in the method 300 and the method 400 according to the embodiments of the present application.
  • the communication device 900 may include methods for executing the method 300 in FIG. 3 and the method in FIG. 4
  • the unit of the method executed by the terminal device in 400 The units in the communication device 900 and other operations and/or functions described above are used to implement the corresponding processes of the method 300 in FIG. 3 and the method 400 in FIG. 4, respectively.
  • the communication unit 910 can be used to perform steps 310 and 320 in the method 300, and the processing unit 920 can be used to perform some steps such as determining the DMRS port in the method 300. .
  • the communication unit 910 can be used to execute step 420 in the method 400, and the processing unit 920 can be used to execute some steps in the method 400 such as determining transmission unit information.
  • the communication unit 910 in the communication device 900 may be implemented by the transceiver 1110 in the terminal device 1100 shown in FIG. 11, and the processing unit 920 in the communication device 900 may be implemented by the terminal device shown in FIG.
  • the processor 1120 in 1100 is implemented.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • the communication unit 910 in the communication device 900 may also be an input/output interface.
  • the communication device 900 may implement the steps or processes performed by the network device corresponding to the above method embodiment.
  • it may be a network device, or a chip or circuit configured in the network device.
  • the communication device 900 may be referred to as a network device.
  • the communication unit 910 is configured to perform the transceiving-related operations on the network device side in the above method embodiment
  • the processing unit 920 is configured to perform the processing related operations on the network device in the above method embodiment.
  • the processing unit 920 is configured to: generate downlink control information DCI, the DCI indicates N demodulation reference signal DMRS ports, the N DMRS ports correspond to M physical downlink shared channels PDSCH, and at least two of the M PDSCHs The DMRS ports corresponding to the PDSCH are different, where N and M are integers greater than or equal to 2; the communication unit 910 is used to send DCI.
  • the N DMRS ports are used to determine the number of DMRS ports, the number of DMRS ports indicates the number of DMRS ports corresponding to each PDSCH, and the number of DMRS ports is used to determine the DMRS port corresponding to each PDSCH.
  • the correspondence is used to determine the DMRS port corresponding to each PDSCH.
  • the sequence of the N DMRS ports is used to determine the correspondence between the N DMRS ports and the M PDSCHs.
  • the processing unit 920 is configured to: generate downlink control information DCI, the DCI indicates N demodulation reference signal DMRS ports, and the N DMRS ports correspond to each PDSCH of the M physical downlink shared channels PDSCH, N Two DMRS ports have different TCI states corresponding to at least two transmission units, where N is an integer greater than or equal to 1, and M is an integer greater than or equal to 2.
  • the communication unit 910 is used to send DCI.
  • the transmission unit used to transmit the PDSCH is determined according to the starting position of the transmission unit, the length of the transmission unit, and the interval between adjacent transmission units.
  • the DCI indicates that multiple transmission configurations indicate the TCI state, and the sequence of the multiple TCI states is used to determine the TCI state corresponding to the DMRS port in the transmission unit.
  • the transmission unit and the transmission configuration indication TCI state have a corresponding relationship, and the corresponding relationship is used to determine the TCI state corresponding to the DMRS port in the transmission unit.
  • the TCI state includes multiple TCI sub-states
  • the transmission unit has a corresponding relationship with the transmission configuration indication TCI state, including: the transmission unit has a corresponding relationship with the TCI sub-state in the TCI state.
  • the transmission unit includes a time domain unit and/or a frequency domain unit.
  • the communication device 900 may implement the steps or processes performed by the network device in the method 300 and the method 400 according to the embodiments of the present application.
  • the communication device 900 may include methods for executing the method 300 in FIG. 3 and the method in FIG. 4
  • the unit of the method performed by the network device in 400 is used to implement the corresponding processes of the method 300 in FIG. 3 and the method 400 in FIG. 4, respectively.
  • the communication unit 910 can be used to execute step 310 in the method 300.
  • the communication unit 910 can be used to execute step 420 in the method 400
  • the processing unit 920 can be used to execute step 410 in the method 400.
  • the communication unit in the communication device 900 can be implemented by the transceiver 1210 in the network device 1200 shown in FIG. 12, and the processing unit 920 in the communication device 900 can be implemented by the network device shown in FIG.
  • the processor 1220 in 1200 is implemented.
  • the communication unit 910 in the communication device 900 may also be an input/output interface.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • FIG. 10 is another schematic block diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 includes a processor 1010, a memory 1020, and a transceiver 1030.
  • the memory 1020 stores a program.
  • the processor 1010 is used to execute the program stored in the memory 1020 and execute the program stored in the memory 1020.
  • the processor 1010 is configured to execute the relevant processing steps in the above method embodiment, and execute the program stored in the memory 1020, so that the processor 1010 controls the transceiver 1030 to execute the transceiving-related steps in the above method embodiment.
  • the communication device 1000 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 1020 enables the processor 1010 to execute the above method embodiment.
  • the processing steps on the terminal device side in the middle execute the program stored in the memory 1020, so that the processor 1010 controls the transceiver 1030 to execute the receiving and sending steps on the terminal device side in the above method embodiment.
  • the communication device 1000 is used to perform the actions performed by the network device in the above method embodiment.
  • the execution of the program stored in the memory 1020 enables the processor 1010 to perform the above method implementation.
  • the processing steps on the network device side execute the programs stored in the memory 1020 so that the processor 1010 controls the transceiver 1030 to perform the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides a communication device 1100, and the communication device 1100 may be a terminal device or a chip.
  • the communication apparatus 1100 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 11 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiver unit 1110 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 1120 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1110 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiver unit 1110 can be regarded as the sending unit, that is, the transceiver unit 1110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 1120 is configured to execute the processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1110 is further configured to perform steps 310 to 320 shown in FIG. 3 and step 420 in FIG. 4, and/or the transceiver unit 1110 is also configured to perform other transceiver steps on the terminal device side.
  • FIG. 11 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 11.
  • the chip When the communication device 1100 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1200, and the communication device 1200 may be a network device or a chip.
  • the communication apparatus 1200 can be used to perform actions performed by a network device in the foregoing method embodiments.
  • FIG. 12 shows a simplified schematic diagram of the base station structure.
  • the base station includes 1210 parts and 1220 parts.
  • the 1210 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1220 part is mainly used for baseband processing and control of base stations.
  • the 1210 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1220 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1210 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1210 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1210 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1220 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, the boards can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 1210 is used to perform the sending operation on the network device side in step 310 to step 320 shown in FIG. 3 and step 420 in FIG. 4, and/or part 1210 of sending and receiving
  • the unit is also used to perform other transceiving steps on the network device side in the embodiment of this application.
  • the processing unit in part 1220 is used to perform the processing operation of step 410 in FIG. 4, and/or the processing unit in part 1220 is also used to perform the processing steps on the network device side in the embodiment of the present application.
  • FIG. 12 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 12.
  • the chip When the communication device 3000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example: including BBU and adaptive radio unit (ARU), or BBU and active antenna unit (AAU); or Customer premises equipment (CPE) may also be in other forms, which is not limited by this application.
  • ARU adaptive radio unit
  • AAU BBU and active antenna unit
  • CPE Customer premises equipment
  • the above-mentioned BBU can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer executes the steps shown in FIGS. 3 to 8 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 3 to 8 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program, and/or computer running on the processor.
  • application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,以期可以在传输多个PDSCH的情况下,可以确定用于解调每个PDSCH的DMRS对应的DMRS端口,进而可以正确地解调PDSCH。该方法可以包括:接收下行控制信息DCI,DCI指示N个解调参考信号DMRS端口,N个DMRS端口对应M个物理下行共享信道PDSCH,M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;基于DCI,接收M个PDSCH。

Description

通信方法以及通信装置
本申请要求于2019年04月30日提交中国专利局、申请号为201910365179.3、申请名称为“通信方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种通信方法以及通信装置。
背景技术
在第五代(5th Generation,5G)通信***中,随着移动通信的快速发展,在***容量、瞬时峰值速率、频谱效率、小区边缘用户吞吐量以及时延等诸多方面有了更高的要求。在通信传输过程中有很多小包突发业务产生,例如,超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)等突发业务。以URLLC业务为例,URLLC业务的数据一般要求在一定的时间(例如1ms)内可靠性高达99.999%,因此通常采用分集的方案来进行数据传输。
为了保证数据传输的可靠性,提出了一些方案,例如,时分复用(time division multiplexing,TDM)、空间分割多路复用(space division multiplexing,SDM)和频分复用(frequency division multiplexing,FDM)等方案。以TDM为例,即可以在不同的时间单元重复发送同一物理下行共享信道(physical downlink shared channel,PDSCH),从而可以提高数据传输的可靠性。
那么,在需要传输多个PDSCH的情况下,如何确定用于解调该多个PDSCH的解调参考信号(demodulation reference signal,DMRS)呢?
发明内容
本申请提供一种通信方法和通信装置,以期可以在传输多个PDSCH的情况下,可以确定用于解调每个PDSCH的DMRS对应的DMRS端口,进而可以正确地解调PDSCH。
第一方面,提供了一种通信方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH,所述M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;基于所述DCI,接收所述M个PDSCH。
基于上述技术方案,终端设备可以基于下行控制信息(downlink control information,DCI)指示的N个解调参考信号(demodulation reference signal,DMRS)端口(DMRS port),确定用于解调每个PDSCH的DMRS对应的DMRS端口。DCI指示的N个DMRS端口可 以用于M个PDSCH,也就是说,每个PDSCH均可以对应一个或多个DMRS端口,且M个PDSCH中至少两个PDSCH对应的DMRS端口不同,从而终端设备可以确定用于解调每个PDSCH的DMRS对应的DMRS端口,进而可以正确地解调PDSCH,并可以保证通信性能。
结合第一方面,在第一方面的某些实现方式中,所述N个DMRS端口用于确定DMRS端口数,所述DMRS端口数表示每个PDSCH对应的DMRS端口的数量,所述DMRS端口数用于确定每个PDSCH对应的DMRS端口。
基于上述技术方案,终端设备可以根据DMRS端口数确定用于解调PDSCH的DMRS所对应的DMRS端口,DMRS端口数可以根据N来确定。
可选地,终端设备可以根据DMRS端口数和预设顺序来确定用于解调PDSCH的DMRS所对应的DMRS端口。预设顺序可以是DMRS端口ID从小到大的顺序或者DMRS端口ID从大到小的顺序,或者预设顺序也可以是DMRS端口表格中各DMRS端口的顺序等等,下文实施例具体介绍。
可选地,终端设备可以根据DMRS端口数和DMRS端口和PDSCH的对应关系来确定用于解调PDSCH的DMRS所对应的DMRS端口。
结合第一方面,在第一方面的某些实现方式中,N个DMRS端口和所述M个PDSCH之间具有对应关系,所述对应关系用于确定每个PDSCH对应的DMRS端口。
基于上述技术方案,终端设备可以根据DMRS端口和PDSCH的对应关系来确定用于解调PDSCH的DMRS所对应的DMRS端口。
可选地,DMRS端口和PDSCH的对应关系,可以是直接的对应关系,也可以是间接的对应关系;或者,DMRS端口和PDSCH的对应关系可以是以对应关系的形式存在的一个对应关系,也可以是关联的一种形式,对此不做限定,下文实施例具体介绍。
结合第一方面,在第一方面的某些实现方式中,所述N个DMRS端口的顺序用于确定每个PDSCH对应的DMRS端口。
基于上述技术方案,终端设备可以根据DMRS端口的顺序,确定用于解调每个PDSCH的DMRS所对应的DMRS端口。
可选地,DMRS端口的顺序,例如,可以表示DMRS端口在DMRS端口的顺序表格中的顺序,或者,也可以表示指示的DMRS端口的顺序,或者,也可以表示DMRS端口的ID的顺序等等。
结合第一方面,在第一方面的某些实现方式中,接收指示信息,所述指示信息用于结合预设规则确定所述对应关系。
基于上述技术方案,终端设备可以根据指示信息和预设规则,确定DMRS端口和PDSCH的对应关系,进而可以确定用于解调每个PDSCH的DMRS所对应的DMRS端口。
可选地,指示信息可以是单独的信令,也可以携带于DCI中,指示信息例如可以为值(value)。
第二方面,提供了一种通信方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:生成下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH,所述M个PDSCH中 至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;发送所述DCI。
基于上述技术方案,网络设备可以通过DCI向终端设备指示N个DMRS端口,该N个DMRS端口可以用于M个PDSCH,也就是说,每个PDSCH均可以对应一个或多个DMRS端口,且M个PDSCH中至少两个PDSCH对应的DMRS端口不同,从而终端设备可以根据DCI的指示,确定用于解调每个PDSCH的DMRS对应的DMRS端口,进而终端设备可以正确地解调PDSCH,并可以保证通信性能。
结合第二方面,在第二方面的某些实现方式中,所述N个DMRS端口用于确定DMRS端口数,所述DMRS端口数表示每个PDSCH对应的DMRS端口的数量,所述DMRS端口数用于确定每个PDSCH对应的DMRS端口。
结合第二方面,在第二方面的某些实现方式中,所述N个DMRS端口和所述M个PDSCH之间具有对应关系,所述对应关系用于确定每个PDSCH对应的DMRS端口。
结合第二方面,在第二方面的某些实现方式中,所述N个DMRS端口的顺序用于确定每个PDSCH对应的DMRS端口。
第三方面,提供了一种通信方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,所述N个DMRS端口在至少两个传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;基于所述DCI,接收所述M个PDSCH。
第四方面,提供了一种通信方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:生成下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,所述N个DMRS端口在至少两个传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;发送所述DCI。
基于上述技术方案,网络设备可以通过DCI向终端设备指示N个DMRS端口,终端设备可以基于DCI指示的N个DMRS端口,确定用于解调每个PDSCH的DMRS对应的DMRS端口。DCI指示的N个DMRS端口可以用于M个PDSCH,且每个PDSCH均对应DCI指示的N个DMRS端口,也就是说,考虑到M个PDSCH在不同的传输单元传输,用于解调每个PDSCH的DMRS对应的DMRS端口可以相同,从而终端设备可以根据DCI的指示快速地确定用于解调每个PDSCH的DMRS对应的DMRS端口,进而可以正确地解调PDSCH,并可以保证通信性能。此外,N个DMRS端口在至少两个传输单元对应的TCI状态不相同,也就是说,对于至少两个PDSCH,用于解调该PDSCH的DMRS的TCI状态不同,或者,也可以理解为,DCI指示的N个DMRS端口在不同的传输单元的TCI状态不全相同。
结合第三方面或第四方面,在某些实现方式中,用于传输PDSCH的传输单元是根据:传输单元的起始位置、传输单元的长度、以及相邻传输单元之间的间隔确定的。
可选地,所述用于传输PDSCH的传输单元是根据以下至少一项确定:传输单元的起 始位置和传输单元的长度;相邻传输单元之间的间隔。
结合第三方面或第四方面,在某些实现方式中,所述相邻传输单元之间的间隔包括:相邻传输单元中,第一传输单元的结束位置与第二传输单元的开始位置之间的符号长度。
也就是说,相邻的第一传输单元和第二传输单元,如第一传输单元位于第二传输单元之前,相邻传输单元之间的间隔例如可以是:第一传输单元的结束位置与第二传输单元的开始位置之间的符号长度。
结合第三方面或第四方面,在某些实现方式中,所述DCI指示多个传输配置指示TCI状态,所述多个TCI状态的顺序用于确定所述DMRS端口在传输单元对应的TCI状态。
结合第三方面或第四方面,在某些实现方式中,传输单元与传输配置指示TCI状态具有对应关系,所述对应关系用于确定所述DMRS端口在传输单元对应的TCI状态。
结合第三方面或第四方面,在某些实现方式中,所述TCI状态包括多个TCI子状态,所述传输单元与传输配置指示TCI状态具体对应关系,包括:所述传输单元与所述TCI状态中的TCI子状态具有对应关系。
结合第三方面或第四方面,在某些实现方式中,所述传输单元包括时域单元和/或频域单元。
结合第三方面或第四方面,在某些实现方式中,所述时域单元为迷你时隙mini-slot。
第五方面,提供了一种通信方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收指示信息,所述指示信息用于指示第一传输单元的信息,所述第一传输单元的信息包括以下信息:所述第一传输单元的起始位置或所述第一传输单元的结束位置、所述第一传输单元的传输长度、以及传输间隔,其中,所述传输间隔为所述第一传输单元与相邻传输单元之间的间隔,所述第一传输单元为:多个传输单元中的任一传输单元,或,所述多个传输单元中的第一个传输单元;在所述多个传输单元,接收多个物理下行共享信道PDSCH。
第六方面,提供了一种通信方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:生成指示信息,所述指示信息用于指示第一传输单元的信息,所述第一传输单元的信息包括以下信息:所述第一传输单元的起始位置或所述第一传输单元的结束位置、所述第一传输单元的传输长度、以及传输间隔,其中,所述传输间隔为所述第一传输单元与相邻传输单元之间的间隔,所述第一传输单元为:多个传输单元中的任一传输单元,或,所述多个传输单元中的第一个传输单元;发送所述指示信息。
基于上述技术方案,网络设备可以向终端设备指示一个传输单元的信息,或者,也可以理解为,网络设备可以向终端设备指示用于传输一个PDSCH的传输资源的信息,例如可以包括,传输单元(或传输资源)的起始位置或结束位置、传输长度(或传输资源的长度)、以及传输间隔,使得终端设备可以根据指示的信息来确定每个传输单元的信息(或者传输每个PDSCH的传输资源的信息)。相应地,终端设备可以根据一个传输单元的信息,或者,也可以理解为,终端设备根据用于传输一个PDSCH的传输资源的信息,例如可以包括,传输单元(或传输资源)的起始位置或结束位置、传输长度(或传输资源的长度)、以及传输间隔,来确定每个传输单元的信息(或者传输每个PDSCH的传输资源的 信息)。也就是说,网络设备可以不需要向终端设备通知M个传输单元中每个传输单元的信息,或者,网络设备可以不需要向终端设备通知用于传输M个PDSCH的传输资源的信息,从而不仅可以保证通信,也可以节省信令开销。
结合第五方面或第六方面,在某些实现方式中,所述第一传输单元内的前载解调参考信号DMRS的位置和附加DMRS的位置是根据所述第一传输单元的传输长度和所述传输间隔确定的;和/或,所述第一传输单元内的附加DMRS的位置是根据、所述第一传输单元的传输长度和所述传输间隔确定的。
结合第五方面或第六方面,在某些实现方式中,所述第一传输单元为一个时隙内的第一个传输单元;第n+1传输单元内的前载解调参考信号DMRS的位置根据以下任意一项得到:l n=mod(l 0+n*(L+Δ),14);或,l n=l 0+n*(L+Δ);或,l n=l 0+n*(L);其中,l 0表示所述第一传输单元内的前载DMRS的首个符号位置,l表示所述第n+1传输单元内的前载DMRS的首个符号位置,L为所述第一传输单元的传输长,Δ为所述第一传输单元与相邻传输单元结束位置之间的间隔,n为大于0或等于0的整数,mod为求余函数。
结合第五方面或第六方面,在某些实现方式中,所述第一传输单元为一个时隙内的第一个传输单元;第n+1传输单元内的前载解调参考信号DMRS的位置根据以下任意一项得到:l n=mod(l 0+n*Δ,14);或,l n=l 0+n*Δ;或,l n=l 0+n*(L);其中,l 0表示所述第一传输单元内的前载DMRS的首个符号位置,l表示所述第n+1传输单元内的前载DMRS的首个符号位置,L为所述第一传输单元的传输长,Δ为所述第一传输单元与相邻传输单元起始位置之间的间隔,n为大于0或等于0的整数,mod为求余函数。
结合第五方面或第六方面,在某些实现方式中,所述第一传输单元为一个时隙内的第一个传输单元;第n+1传输单元内的附加解调参考信号DMRS的位置根据以下任意一项得到:l ad-n=mod(l ad-0+n*(L+Δ),14);或,l ad-n=l ad-0+n*(L+Δ);或,l ad-n=l ad-0+n*(L);其中,l ad-0表示所述第一传输单元内的附加DMRS的首个符号位置,l ad-n表示所述第n+1传输单元内的附加DMRS的首个符号位置,L为所述第一传输单元的传输长,Δ为所述第一传输单元与相邻传输单元结束位置之间的间隔,n为大于0或等于0的整数,mod为求余函数。
结合第五方面或第六方面,在某些实现方式中,所述第一传输单元为一个时隙内的第一个传输单元;第n+1传输单元内的附加解调参考信号DMRS的位置根据以下任意一项得到:l ad-n=mod(l ad-0+n*Δ,14);或,l ad-n=l ad-0+n*Δ;或,l ad-n=l ad-0+n*(L);其中,l ad-0表示所述第一传输单元内的附加DMRS的首个符号位置,l ad-n表示所述第n+1传输单元内的附加DMRS的首个符号位置,L为所述第一传输单元的传输长,Δ为所述第一传输单元与相邻传输单元起始位置之间的间隔,n为大于0或等于0的整数,mod为求余函数。
结合第五方面或第六方面,在某些实现方式中,所述传输单元包括时域单元和/或频域单元。
结合第五方面或第六方面,在某些实现方式中,所述时域单元为迷你时隙mini-slot。
第七方面,提供一种通信装置,所述通信装置用于执行上述第一方面提供的方法。具体地,所述通信装置可以包括用于执行第一方面、第三方面、或第五方面提供的方法的模块。
第八方面,提供一种通信装置,所述通信装置用于执行上述第二方面、第四方面、或第六方面提供的方法。具体地,所述通信装置可以包括用于执行第二方面、第四方面、或 第六方面提供的方法的模块。
第九方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面、第三方面、或第五方面,以及第一方面、第三方面、或第五方面的任一可能的实现方式中的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面、第四方面、或第六方面,以及第二方面、第四方面、或第六方面的任一可能的实现方式中的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面、第三方面、或第五方面提供的方法。
第十四方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面、第四方面、或第六方面提供的方法。
第十五方面,提供了一种通信***,包括前述的网络设备和终端设备。
基于本申请实施例,终端设备可以基于DCI指示的N个DMRS端口,确定用于解调每个PDSCH的DMRS对应的DMRS端口。DCI指示的N个DMRS端口可以用于M个PDSCH,也就是说,每个PDSCH均可以对应一个或多个DMRS端口。此外,M个PDSCH中至少两个PDSCH对应的DMRS端口不同,或者,M个PDSCH中每个PDSCH对应的DMRS端口均相同,不管哪种情况,终端设备均可以确定用于解调每个PDSCH的DMRS 对应的DMRS端口,进而可以正确地解调PDSCH,并可以保证通信性能。
附图说明
图1是适用于本申请实施例的通信***的示意图;
图2是关于TCI状态的一示意图;
图3是本申请实一施例的通信方法的示意***互图;
图4是适用于本申请又一施例的通信方法的示意***互图;
图5至图8是适用于本申请实施例的资源分配的示意图;
图9是本申请实施例提供的通信装置的一示意性框图;
图10是本申请实施例提供的通信装置的又一示意性框图;
图11是本申请实施例提供的终端设备的示意性框图;
图12是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、第五代(5th Generation,5G)***或新无线(New Radio,NR)等。
为便于理解本申请实施例,首先以图1示出的通信***为例详细说明适用于本申请实施例提供的方法的通信***。图1示出了适用于本申请实施例的通信***100的示意图。如图所示,该通信***100可以包括至少一个终端设备,如图中所示的终端设备101;该通信***100还可以包括至少两个网络设备,如图中所示的网络设备#1 102和网络设备#2103。网络设备#1 102和网络设备#2 103可以是同一个小区中的网络设备,例如,网络设备#1 102和网络设备#2 103可以是同一小区中的发送接收点(transmission and reception point,TRP),也可以是不同小区中的网络设备,本申请对此不作限定。图中仅为示例,示出了网络设备#1 102和网络设备#2 103位于同一个小区中的示例。还应理解,本申请各实施例还可以应用在一个网络设备的多天线面板相当于多TRP的场景下。
在通信***100中,网络设备#1 102和网络设备#2 103彼此之间可通过回程(backhaul)链路通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。网络设备#1 102和网络设备#2 103可以进行相互协同,来为终端设备101提供服务。因此,终端设备101可通过无线链路分别与网络设备#1 102和网络设备#2 103通信。
此外,网络设备#1 102和网络设备#2 103中的一个或多个还可以分别采用载波聚合技术,在一个或多个CC上为终端设备101调度PDSCH。例如,网络设备#1 102可以在CC#1 和CC#2上为终端设备101调度PDSCH,网络设备#2 103可以在CC#1和CC#3上为终端设备101调度PDSCH。网络设备#1 102和网络设备#2 103所调度的CC可以是相同的,也可以是不同的,本申请对此不作限定。
应理解,上述应用于本申请实施例的通信***仅是举例说明,适用本申请实施例的通信***并不局限于此。
本申请实施例中的终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)***或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在一些部署中,网络设备可以包括集中式单元(centralized unit,CU)和DU。网络设备还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现网络设备的部分功能,DU实现网络设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、解调参考信号:可用于进行数据解调的参考信号。根据传输方向的不同,可分为上行解调参考信号和下行解调参考信号。解调参考信号可以为LTE协议或NR协议中的解调参考信号(demodulation reference signal,DMRS),或者也可以为未来协议中定义的其他用于实现相同功能的参考信号。在LTE或NR协议中,DMRS可以承载在物理共享信道中与数据信号一起发送,以用于对物理共享信道中承载的数据信号进行解调。如,在物理下行共享信道(physical downlink share channel,PDSCH)中与下行数据一起发送,或者,在物理上行共享信道(physical uplink share channel,PUSCH)中与上行数据一起发送。在本申请实施例中,解调参考信号可包括通过物理下行共享信道发送的下行解调参考信号。
PDSCH或者PUSCH在时域上的映射方式可包括第一映射方式和第二映射方式,其中,第一映射方式可以为NR协议中的映射类型A(mapping type A),第二映射方式可以为NR协议中的映射类型B(mapping type A)。在通常情况下,PDSCH或者PUSCH的映射方式可通过高层信令指示,例如,无线资源控制(radio resource control,RRC)信令。
对于映射类型A,解调参考信号的时域位置是相对于时隙的起始位置定义的,并且一个时隙中的首个解调参考信号的符号位置l 0(即,前载解调参考信号(front-loaded DMRS)的首个符号位置)可以被配置为该时隙中第3个符号或第4个符号,即l 0=2或3。
对于映射类型B,解调参考信号的时域位置是相对于被调度的物理上行共享信道(或物理下行共享信道)的资源的起始位置确定的,并且首个解调参考信号的符号位置l 0(即,前载解调参考信号的首个符号位置)为被调度的物理上行共享信道(或物理下行共享信道)的首个符号,即l 0=0。
解调参考信号可包括前载解调参考信号和附加解调参考信号。
其中,前载解调参考信号又可以称为第一(first)解调参考信号,在时域上占用一个符号或多个符号,若占用多个符号,则该多个符号在时域上连续。
附加(additional)解调参考信号:在一个时隙中,在前载解调参考信号之后采用相同的序列生成的解调参考信号为附加参考参考信号。附加解调参考信号可以是前载解调参考信号所占用的符号之后的一个或多个符号,且前载解调参考信号占用的符号中的末个与附加解调参考信号占用的符号中的首个符号不连续。附加解调参考信号可以通过高层信令,例如RRC信令,配置资源。附加解调参考信号是一种可选的解调参考信号。
2、端口:或者称天线端口(antenna port)。可以理解为被接收端所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合。根据所承载的信号的不同,天线端口可以分为参考信号端口和数据端口。其中,参考信号端口例如包括但不限于,DMRS端口、零功率信道状态信息参考信号触发(channel state information reference signal,CSI-RS)端口等。
在本申请实施例中,该天线端口可以是指DMRS端口(DMRS port)。不同DMRS端口的DMRS占用的时频资源可能不同,或者,正交覆盖码不同。当网络设备向终端设备指示端口时,终端设备可以基于网络设备所指示的端口接收DMRS,并基于接收到的DMRS解调PDCCH或PDSCH。
此外,与该天线端口相关的参数可以是DMRS端口、DMRS端口组(DMRS port group)或DMRS码分复用(code division multiplexing,CDM)组(DMRS CDM group)。终端设备可以基于DCI中指示的天线端口确定DMRS端口,进而确定所属的DMRS端口组或DMRS码分复用组。
需要说明的是,DMRS端口组和DMRS码分复用组可以理解为基于不同的方式对DMRS端口进行分组而得到。天线端口、DMRS端口、DMRS端口组和DMRS码分复用组可以通过索引来区分,也可以通过标识来区分,或者还可通过其他可用于区分不同端口或不同组的信息来区分,本申请对此不作限定。
下文实施例中,端口和DMRS端口有时交替使用,应理解,在本申请实施例中,端口表示DMRS端口。
3、时隙:在NR中,时隙为时间的最小调度单元。一种时隙的格式为包含14个OFDM符号,每个OFDM符号的CP为正常CP(normal CP);一种时隙的格式为包含12个OFDM符号,每个OFDM符号的CP为扩展CP(extended CP);一种时隙的格式为包含7个OFDM符号,每个OFDM符号的CP为正常CP。一个时隙中的OFDM符号可以全用于上行传输;可以全用于下行传输;也可以一部分用于下行传输,一部分用于上行传输,一部分预留不进行传输。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。出于***前向兼容性考虑,时隙格式不限于以上示例。
4、时频资源:在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单元(或者,也可以称为时间单位),在频域上,时频资源可以包括频域单元。
其中,一个时域单元(也可称为时间单元)可以是一个符号或者几个符号,或者一个迷你时隙(mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。列举的上述时域单元大小仅仅是为了方便理解本申请的方案,不应理解对本发明的限定,可以理解的是,上述时域单元大小可以为其它值,本申请不做限定。
一个频域单元可以是一个资源块(resource block,RB),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband)。
在本申请实施例中,多次提及传输单元,传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元,例如,本申请实施例中提及的传输单元可以替换为时域单元,也可以替换为频域单元,也可以替换成时频单元。
5、准共址(quasi-co-location,QCL):或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收 参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或SRS资源标识,或SSB资源标识,或物理随机接入信道(Physical Random Access Channel,PRACH)上传输的前导序列的资源标识,或DMRS的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
6、传输配置指示(transmission configuration indicator,TCI)状态:可用于指示两种参考信号之间的QCL关系。每个TCI状态中可以包括服务小区的索引(ServeCellIndex)、带宽部分(band width part,BWP)标识(identifier,ID)和参考信号资源标识,其中,参考信号资源标识例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功率CSI-RS参考信号资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。
在通信过程中,终端设备可以基于网络设备所指示的TCI状态确定接收波束,网络设备可以基于同一TCI状态确定发射波束。
TCI状态可以是全局配置的。在为不同的小区、不同的BWP配置的TCI状态中,若TCI状态的索引相同,则所对应的TCI状态的配置也相同。
具体地,网络设备可通过高层信令(如RRC消息)为终端设备配置TCI状态(TCI state)列表。该TCI状态列表中可以包括多个TCI状态。例如,按照现有协议,在PDSCH配置(PDSCH config)中最多可以配置128个TCI状态。
此后,网络设备可以通过MAC CE信令激活一个或多个TCI状态。被激活的TCI状态为上述RRC消息所配置的TCI状态列表的一个子集。例如,网络设备可以为每个小区中的每个BWP激活最多8个TCI状态。此后,网络设备还可以通过物理层信令(如下行控制信息(downlink control information,DCI))中的3比特(bit)字段(例如TCI字段)指示一个被选择的TCI状态。该DCI例如可以适用于调度物理下行资源(如PDSCH)的DCI。
如图2所示,网络设备可以通过RRC信令为终端设备配置128个TCI状态,网络设备还可以通过MAC-CE为终端设备激活8个TCI状态,该8个TCI状态为网络设备为终端设备配置的128个TCI状态中的8个TCI状态。网络设备还可以通过DCI指示一个选择的TCI状态。
7、时分复用(time division multiplexing,TDM):同一传输块在不同的时间单元进 行传输,时间单元例如可以是mini-slot。同一传输块在不同时间单元上传输时,可以是携带不同的冗余版本(redundancy version,RV)号,也可以是携带一个RV号的传输块分别放置在不同的时间单元上。
随着移动通信的快速发展,在***容量、瞬时峰值速率、频谱效率、小区边缘用户吞吐量以及时延等诸多方面有了更高的要求。在通信传输过程中有很多小包突发业务产生,例如,超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)等突发业务。以URLLC业务为例,URLLC业务的数据一般要求在一定的时间(例如1ms)内可靠性高达99.999%,因此通常采用分集的方案来进行数据传输。
为了保证数据传输的可靠性,提出了一些方案,例如,TDM、空间分割多路复用(space division multiplexing,SDM)方案和频分复用(frequency division multiplexing,FDM)方案等。
那么,如果需要发送多个数据,如何确定用于解调每个数据的DMRS呢?
有鉴于此,本申请提供一种通信方法,以期可以确定用于解调每个数据的DMRS对应的DMRS端口。
下面将结合附图详细说明本申请提供的各个实施例。
图3是从设备交互的角度示出的本申请实施例提供的通信方法300的示意***互图。如图所示,该方法300可以包括如下步骤。
310,网络设备向终端设备发送DCI,该DCI指示N个DMRS端口,该N个DMRS端口对应M个PDSCH。相应地,终端设备接收该DCI。
在本申请实施例中,多次提及DMRS端口对应PDSCH,或者,PDSCH对应的DMRS端口,本领域技术人员可以理解其含义,其均用于表示用于解调PDSCH的DMRS对应的端口,也可以理解为,终端设备基于PDSCH对应的DMRS端口接收DMRS,并基于接收到的DMRS解调该PDSCH。
下文为简洁,均用PDSCH对应DMRS端口或者DMRS端口对应PDSCH表示。
N个DMRS端口对应M个PDSCH,可以包括两种情况。
情况A:M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数。
例如,以M=4、N=2为例,为区分,将4个PDSCH分别记为PDSCH 1、PDSCH 2、PDSCH 3、PDSCH 4,将2个DMRS端口分别记为DMRS端口1和DMRS端口2。
假设PDSCH 1和PDSCH 2对应的DMRS端口不同,那么表示用于解调PDSCH 1的DMRS对应的DMRS端口,和用于解调PDSCH 2的DMRS对应的DMRS端口不同。例如,用于解调PDSCH 1的DMRS对应的DMRS端口为DMRS端口1,用于解调PDSCH 2的DMRS对应的DMRS端口为DMRS端口2,也就是说,终端设备基于DMRS端口1接收的DMRS用于解调PDSCH 1,终端设备基于DMRS端口2接收的DMRS用于解调PDSCH 2。
又如,以M=2、N=4为例,为区分,将2个PDSCH分别记为PDSCH 1、PDSCH 2,将4个DMRS端口分别记为DMRS端口1、DMRS端口2、DMRS端口3、DMRS端口4。
假设PDSCH 1和PDSCH 2对应的DMRS端口不同,那么表示用于解调PDSCH 1的DMRS对应的DMRS端口,和用于解调PDSCH 2的DMRS对应的DMRS端口不同。例 如,用于解调PDSCH 1的DMRS对应的DMRS端口为DMRS端口1和DMRS端口2,用于解调PDSCH 2的DMRS对应的DMRS端口为DMRS端口3和DMRS端口4,也就是说,终端设备基于DMRS端口1和DMRS端口2接收的DMRS用于解调PDSCH 1,终端设备基于DMRS端口3和DMRS端口4接收的DMRS用于解调PDSCH 2。
应理解,上述仅是示例性说明,本申请并未限定于此。例如,每个PDSCH可以对应更多的DMRS端口。
情况B:N个DMRS端口对应M个PDSCH中的每个PDSCH,其中,N为大于或等于1的整数,M为大于或等于2的整数。
例如,仍以M=4、N=2为例。在情况二中,用于解调PDSCH 1的DMRS对应的DMRS端口、用于解调PDSCH 2的DMRS对应的DMRS端口、用于解调PDSCH 3的DMRS对应的DMRS端口、用于解调PDSCH 4的DMRS对应的DMRS端口,均包括DMRS端口1和DMRS端口2,也就是说,终端设备基于DMRS端口1和DMRS端口2接收的DMRS用于解调PDSCH 1、PDSCH 2、PDSCH 3、PDSCH 4。也就是说,DCI中所指示的DMRS端口应用于该DCI所指示的所有的PDSCH,且所有的PDSCH上采用相同的DMRS端口。
在下文中将详细说明上述两种情况,此处不再赘述。
320,终端设备基于DCI,接收M个PDSCH。
终端设备接收M个PDSCH,也可以理解为,网络设备发送一个DCI,该DCI指示了M个PDSCH。例如,可以是多个TRP发送M个PDSCH。以TRP1和TRP2为例,如TRP 1向终端设备发送M1个PDSCH,TRP 2向终端设备发送M2个PDSCH,其中,M1、M2均为大于1或等于1的整数,且M1+M2=M。
可选地,终端设备在M个传输单元接收PDSCH。
可选地,传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元。例如,时域单元包括mini-slot、符号(symbol)、slot、或子帧等。频域单元包括资源块、资源块组、或、subband等。
为便于理解,下面以mini-slot为例进行示例性说明。
以mini-slot为例,终端设备可以在M个mini-slot上接收PDSCH,终端设备接收M个PDSCH。
可选地,终端设备可以基于以下任意一种方案来确定M,即终端设备可以基于以下任意一种方案来确定重复传输次数M。
方案1:使用高层参数pdsch-AggregationFactor指示重复传输次数M。
在现有协议中,pdsch-AggregationFactor用于确定slot间的重复传输次数,本申请实施例可以重用该pdsch-AggregationFactor,用该pdsch-AggregationFactor用于表示重复传输次数M(如mini-slot的重复传输次数)。
方案2:额外指示一个参数pdsch-AggregationFactor,指示重复传输次数M。
为区分,将现有的pdsch-AggregationFactor记为pdsch-AggregationFactor1,将新增的pdsch-AggregationFactor记为pdsch-AggregationFactor 2。pdsch-AggregationFactor1用于确定slot间的重复传输次数(即现有的定义),pdsch-AggregationFactor2用于表示slot内的重复传输次数。
通过pdsch-AggregationFactor1和pdsch-AggregationFactor2,可以计算出重复传输次数 M。例如,根据pdsch-AggregationFactor1确定slot间的重复次数为t1,根据pdsch-AggregationFactor2确定slot内的重复次数为t2,则重复传输次数M为:(t1*t2)。
应理解,该方案中用于指示重复传输次数的参数的命名(如上述方案中记为pdsch-AggregationFactor 2)仅是示例性说明,并不对本申请实施例的保护范围造成限定。
方案3:通过指示信息来指示重复传输次数M。
例如,可以在DCI中增加X比特的字段表示重复传输次数M,X为大于1或等于1的整数。例如,该字段可以表示slot内的重复传输次数,与现有协议中的pdsch-AggregationFactor可以计算出总的重复传输次数;又如,该字段还可以直接表示重复传输次数。
应理解,上述三种方案仅是示例性说明,本申请实施例并未限定于此。
针对PDSCH映射类型为typeB时,当mini-slot传输时长为2个符号时,协议规定在一个slot内最大可以重复传输4次PDSCH;当mini-slot传输时长为4个符号时,协议规定在一个slot内最大可以重复传输3次PDSCH;当mini-slot传输时长为6个或者7个符号时,协议规定在一个slot内最大可以重复传输2次PDSCH。
可选地,终端设备接收指示信息,该指示信息指示M个PDSCH中任意一个PDSCH的传输信息,终端设备可以基于该指示信息,确定出M个PDSCH的传输信息。
下面详细介绍步骤310中的情况A和情况B。
下文实施例中,多次提及第一传输或第一传输单元、第二传输或第二传输单元,本领域技术人员应理解其含义。对TDM方案而言,第一传输PDSCH的起始符号比第二传输PDSCH的起始符号早,或者,第一传输PDSCH的结束符号比第二传输PDSCH的结束符号早。对FDM方案而言,第一传输PDSCH的起始频域比第二传输PDSCH的起始频域小。应理解,上述以第一传输或第一传输单元为例说明,第Q传输或第Q传输单元类似,此处不再赘述,其中,Q为大于1或等于1的整数。
在步骤310中,网络设备通过DCI向终端设备指示N个DMRS端口,至少包括以下两种可能的实现方式。
一种可能的实现方式,网络设备可以通过DCI向终端设备指示值(value),如表1所示的value,终端设备根据该value,可以确定DCI指示的DMRS端口。
例如,假设DMRS端口表格如表1所示。当选择value=29,即DCI指示29时,终端设备可以确定DCI指示的DMRS端口包括:DMRS端口2、DMRS端口3、DMRS端口6、DMRS端口7;又如,当选择value=27,即DCI指示27时,终端设备可以确定DCI指示的DMRS端口包括:DMRS端口2、DMRS端口3、DMRS端口6。
应理解,表1可以是预先定义的,例如协议预先规定或者网络设备预先配置的,该表1可以预先保存在网络设备侧和终端设备侧。
表1
Figure PCTCN2020087893-appb-000001
Figure PCTCN2020087893-appb-000002
应理解,终端设备可以通过上述任一可能的实现方式确定DMRS端口。
下面详细说明两种情况。
情况A:M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数。
示例性地,在该情况下,M可以小于N。
例如,DCI指示的DMRS端口包括DMRS端口1、DMRS端口2、DMRS端口3、DMRS端口4,M=2,即PDSCH重复传输两次,那么可以是:第一传输PDSCH采用DMRS端口1、DMRS端口2,第二传输PDSCH采用DMRS端口3、DMRS端口4。
示例性地,在该情况下,M可以等于N。
例如,DCI指示的DMRS端口包括DMRS端口1、DMRS端口2,M=2,即PDSCH重复传输两次,那么可以是:第一传输PDSCH采用DMRS端口1,第二传输PDSCH采用DMRS端口2。
示例性地,在该情况下,M可以大于N。
例如,DCI指示的DMRS端口包括DMRS端口1、DMRS端口2,M=4,即PDSCH重复传输四次,那么可以是:第一传输PDSCH采用DMRS端口1,第二传输PDSCH采用DMRS端口2,第三传输PDSCH采用DMRS端口1,第四传输PDSCH采用DMRS端口2。
应理解,在该情况下,M和N没有严格的关系。
在该情况,终端设备可以通过以下任意一种方式,确定每个PDSCH对应的DMRS端口,也就是说,确定用于解调每个PDSCH的DMRS对应的DMRS端口。
方式1:终端设备根据DMRS端口和PDSCH之间的对应关系,确定每个PDSCH对应的DMRS端口。
应理解,在本申请实施例中,DMRS端口和PDSCH之间的对应关系,也可以理解为DMRS端口和PDSCH关联或对应,也可以理解为,用于解调PDSCH的DMRS对应的DMRS端口和该PDSCH具有对应关系,具体的关联或对应形式不做限定。例如,DMRS端口和PDSCH关联的表示形式,可以是对应关系的形式,或者也可以是表格的形式等等,对此不做限定。
为便于理解,下文统一用对应关系表示。
可选地,终端设备可以通过以下任意一种方式,获取该对应关系。
获取方式1,该对应关系可以是预先保存的,例如协议预先规定或者网络设备预先配置。终端设备可以获取该预先保存的对应关系。
获取方式2,该对应关系也可以是网络设备通过一个单独的信令向终端设备指示的。终端设备可以通过接收网络设备下发的用于指示该对应关系的信令,获取该对应关系。
例如,网络设备通过高层信令(如RRC信令)向终端设备指示该对应关系,终端设 备根据该高层信令,确定该对应关系。
获取方式3,该对应关系也可以是网络设备通过DCI向终端设备指示的。
例如,网络设备通过DCI向终端设备指示多个DMRS table中value,即value1、value2.当DCI中指示两个value时,则表示PDSCH上的DMRS是根据这两个value来决定的。
应理解,上述介绍的三种获取方式仅是示例性说明,本申请实施例并不限定于此,任何可以使得终端设备获取到该对应关系的方式都落入本申请实施例的保护范围。
可选地,DMRS端口和PDSCH之间的对应关系,可以是直接的对应关系,也可以是间接的对应关系。下面结合几种形式具体说明方式1。
形式1,TRP与DMRS端口的对应关系。
假设多个TRP向终端设备发送PDSCH,可以根据TRP的ID与DMRS端口的ID之间的对应关系,确定每个PDSCH对应的DMRS端口。
以TRP1、TRP2向终端设备发送PDSCH为例,假设DCI指示4个DMRS端口,且四个DMRS端口属于不同的DMRS端口组(group)。假设该4个DMRS端口分别为:DMRS端口0、DMRS端口1、DMRS端口2、DMRS端口3,其中DMRS端口0和DMRS端口1属于DMRS端口组1,DMRS端口2和DMRS端口3属于DMRS端口组2。
那么形式1的对应关系可以为表2所示的对应关系。
表2
TRP DMRS端口组
TRP1 DMRS端口组1
TRP2 DMRS端口组2
那么,根据该对应关系,可以确定TRP1发送PDSCH时,采用DMRS端口组1中的DMRS端口,TRP2发送PDSCH时,采用DMRS端口组2中的DMRS端口。
应理解,上述仅是为便于理解,以TRP1和TRP2向终端设备发送PDSCH、DCI指示4个DMRS端口为例进行示例性说明,本申请实施例并未限定于此。
还应理解,形式1仅是示例性说明,本申请实施例并未限定于此,例如也可以是小区ID与DMRS端口的对应关系。
形式2,每次传输与DMRS端口的对应关系。
示例性地,可以是重复传输次数与DMRS端口的对应关系。
例如,假设PDSCH重复传输4次,DCI指示的DMRS端口包括:DMRS端口1、DMRS端口2、DMRS端口3、DMRS端口4。
应理解,上述PDSCH重复传输次数、以及指示的DMRS端口可以通过上述任意一种方式获取。
那么形式2的对应关系可以为表3所示的对应关系。
表3
重复传输次数 DMRS端口ID
第一传输 DMRS端口1、DMRS端口2
第二传输 DMRS端口3、DMRS端口4
第三传输 DMRS端口1、DMRS端口2
第四传输 DMRS端口3、DMRS端口4
终端设备可以根据第几次接收到的PDSCH,结合表4确定该PDSCH对应的DMRS端口。
示例性地,可以是传输单元与DMRS端口的对应关系。
例如,假设4个传输单元,DCI指示DMRS端口1、DMRS端口2、DMRS端口3、DMRS端口4。
那么形式2的对应关系可以为表4所示的对应关系。
表4
传输单元 DMRS端口ID
第一传输单元 DMRS端口1、DMRS端口2
第二传输单元 DMRS端口3、DMRS端口4
第三传输单元 DMRS端口1、DMRS端口2
第四传输单元 DMRS端口3、DMRS端口4
终端设备可以根据在哪个传输单元接收到的PDSCH,结合表4确定该PDSCH对应的DMRS端口。
形式3,可以是DCI所指示的DMRS表格中的value与PDSCH的对应关系。
例如,当value个数为2个时,如按顺序是value0和value1,则value0所对应的DMRS端口是用于第一传输PDSCH,value1所对应的DMRS端口用于第二传输PDSCH,循环使用,value0所对应的DMRS端口用于第三传输PDSCH,value1所对应的DMRS端口用于第四传输PDSCH……。
示例性地,在该形式下的DMRS端口表格,可以是预先规定的,例如协议或网络设备预先规定的。
形式4,可以是DMRS端口组与PDSCH之间的对应关系。
在实际调度中可以有多种实现方式,例如可以由协议确定好DMRS与传输PDSCH之间的对应关系。
一种可能的实现方式,第一传输PDSCH始终使用较小(或大)的DMRS端口组,后续的传输对应的DMRS,按照其所在的DMRS端口组的排序。
例如,假设DCI指示的DMRS端口包括:DMRS端口0、DMRS端口1、DMRS端口2、DMRS端口3,DMRS端口0和DMRS端口1属于DMRS端口组1,端口2和端口3属于DMRS端口组2,假设发送4次PDSCH。那么第一传输PDSCH始终使用较小的DMRS端口组1,则第一传输PDSCH采用的DMRS端口包括DMRS端口0和DMRS端口1,即终端设备在第一个传输单元接收到的PDSCH所对应的DMRS端口包括DMRS端口0和DMRS端口1;第二传输PDSCH采用的是DMRS端口组2,则第二传输PDSCH采用的DMRS端口包括端口2和端口3;第三传输PDSCH采用的是DMRS端口组1,则第三传输PDSCH采用的DMRS端口包括端口0和端口1;第四传输PDSCH采用的是DMRS端口组2,则第四传输PDSCH采用的DMRS端口包括端口2和端口3。
又一种可能的实现方式,可以根据DCI中所指示的DMRS端口值,第一个DMRS端口所在DMRS端口组用于第一传输等等,本申请实施例对此不限制。
例如,假设发送4次PDSCH,且根据DCI中所指示的DMRS端口值,第一个DMRS端口所在DMRS端口组用于第一传输。假设DCI中指示DMRS表格的value所对应的 DMRS端口是0~3,则第一个DMRS端口为DMRS端口0,其所在端口组为DMRS端口组1,则第一传输PDSCH采用的端口是属于DMRS端口组1中的DMRS端口;DCI中指示的第二个DMRS端口为DMRS端口1,其所在端口组为DMRS端口组1,则跳过,即忽略DMRS端口1,也就是说,忽略DCI中指示的第二个DMRS端口;DCI中指示的第三个端口为DMRS端口2,其所在端口组为DMRS端口组2,则表示第二传输PDSCH采用的DMRS端口是属于DMRS端口组2;DCI中指示的第三个端口为DMRS端口2,其所在端口组为DMRS端口组2,则跳过,即忽略DMRS端口3,也就是说,忽略DCI中指示的第四个DMRS端口;以此类推,第三传输PDSCH采用的与第一传输PDSCH相同,第四传输PDSCH与第二传输PDSCH相同。
应理解,上述仅是示例性说明,本申请实施例并未限定于此。例如,协议还可以预定义前M/2传输PDSCH用相同的DMRS端口,后M-M/2传输PDSCH用相同的DMRS端口。结合上述DMRS端口组与传输PDSCH之间的对应关系,例如,假设发送4次PDSCH,且第一传输PDSCH始终使用较小的DMRS端口组,则前M/2传输PDSCH(即前二传输PDSCH)用相同的DMRS端口,即采用DMRS端口组1,后二传输PDSCH采用相同的DMRS端口,即采用DMRS端口组2。
形式5,每次传输与DMRS端口顺序的对应关系。
形式5中的对应关系可以是以一种默认的规则的形式存在。
一种可能的实现方式,当重复传输仅考虑单层(single layer)的情况,协议或网络设备预先规定好,终端设备默认第一传输PDSCH采用第一个DMRS端口,第二传输PDSCH采用第二个DMRS端口,第三传输PDSCH采用第三个DMRS端口,第四传输PDSCH采用第四个DMRS端口,……。如果第n传输PDSCH没有第n个DMRS端口时,从开始计算,即第n传输PDSCH采用第一个DMRS端口。
例如,假设M=4,且DCI指示DMRS端口2、DMRS端口3。DMRS端口2和DMRS端口3在DMRS端口表格中的顺序为:DMRS端口2、DMRS端口3。那么第一传输PDSCH采用DMRS端口2,第二传输PDSCH采用DMRS端口3,第三传输PDSCH采用DMRS端口2,第四传输PDSCH采用DMRS端口3。
又一种可能的实现方式,每个PDSCH对应多个DMRS端口。
在该实现方式下,终端设备可以先确定每个PDSCH对应的DMRS端口数。终端设备确定好每个PDSCH对应的DMRS端口数后,可以根据DCI指示的value对应的DMRS端口在DMRS端口表格中的顺序确定每个PDSCH对应的DMRS端口。
例如,假设M=4,且DCI指示DMRS端口2、DMRS端口3、DMRS端口6、DMRS端口7。DMRS端口2、DMRS端口3、DMRS端口6、DMRS端口7在DMRS端口表格中的顺序为:DMRS端口2、DMRS端口3、DMRS端口6、DMRS端口7。那么第一传输PDSCH采用DMRS端口2和DMRS端口3,第二传输PDSCH采用DMRS端口6和DMRS端口7,第三传输PDSCH采用DMRS端口2和DMRS端口3,第四传输PDSCH采用DMRS端口6和DMRS端口7。
由上可知,DMRS端口在DMRS端口表格中的顺序与PDSCH的重复传输相关。
示例性地,该形式下的DMRS端口表格以及DMRS端口顺序,可以是协议规定的。
例如,添加一行DMRS端口,比如DMRS端口0和DMRS端口2,假设DMRS端口 0和DMRS端口2在DMRS端口表格中为:DMRS端口0和DMRS端口2,也就是说,DMRS端口0和DMRS端口2在DMRS端口表格中的顺序为:DMRS端口0和DMRS端口2。假设每个PDSCH对应一个DMRS端口,则第一传输PDSCH采用DMRS端口0,第二传输PDSCH采用DMRS端口2,第三传输PDSCH采用DMRS端口0,第四传输PDSCH采用DMRS端口2,……以此类推。
又如,也可以对DMRS端口表格中DMRS端口赋予顺序的意义。以value为29为例,2367的顺序表示了采用DMRS端口的顺序。如假设每个PDSCH对应两个DMRS端口,以value为29为例。假设M=4,每个PDSCH对应两个DMRS端口,且DCI指示value为29,那么终端设备可以确定第一传输PDSCH采用前两个DMRS端口,即DMRS端口2和DMRS端口3;第二传输PDSCH采用后面两个DMRS端口,即DMRS端口6和DMRS端口7;第三传输PDSCH采用再后面两个DMRS端口,即DMRS端口2和DMRS端口3;第四传输PDSCH采用再后面两个,即DMRS端口6和DMRS端口7。
上述结合多种形式,介绍了DMRS端口和PDSCH之间的对应关系,应理解,本申请实施例并不限定于此。任何可以使得终端设备根据DMRS端口和PDSCH之间的对应关系(直接或间接的关系),确定每个PDSCH对应的DMRS端口的方式都落入本申请实施例的保护范围。
方式2:终端设备根据DMRS端口数,确定每个PDSCH对应的DMRS端口。
在本申请实施例中,DMRS端口数用于表示每个PDSCH对应的DMRS端口的数量。例如,PDSCH对应DMRS端口1和DMRS端口2,则表示DMRS端口数为2;又如,PDSCH对应DMRS端口1、DMRS端口2、以及DMRS端口4,则表示DMRS端口数为3。
可选地,在本申请实施例中,终端设备可以通过以下任意一种可能的实现方式,确定DMRS端口数。
一种可能的实现方式,网络设备通过向终端设备发送指示信息,该指示信息用于指示DMRS端口数。
终端设备根据该指示信息可以确定DMRS端口数。该指示信息例如可以为一个单独信令,或者也可以携带于用于指示N个DMRS端口的DCI中,对此不做限定。
又一种可能的实现方式,终端设备可以根据DCI指示的DMRS端口的数量,以及激活的TCI-state的个数,确定DMRS端口数。
例如,DCI指示N个DMRS端口,激活的TCI-state的个数为P1,那么DMRS端口数可以为:N/P1。其中,P1为大于1或等于1的整数。
其中,DCI指示N个DMRS端口的方式有很多,本申请实施例对此不做限定。例如可以直接指示N;又如,指示value,终端设备根据DMRS端口表格确定N;又如,使用高层参数指示N,等等。
其中,激活的TCI-state的个数可以表示TRP的个数。
又一种可能的实现方式,终端设备可以根据DCI指示的DMRS端口的数量,以及TRP的个数,确定DMRS端口数。
例如,终端设备确定P2个TRP向终端设备发送PDSCH,则
例如,DCI指示N个DMRS端口,TRP的个数为P2,那么DMRS端口数可以为:N/P2。其中,P2为大于1或等于1的整数,一般P2=P1。
又一种可能的实现方式,协议规定在mini-slot的重复传输中仅支持single-layer的传输,则每个PDSCH对应一个DMRS端口。
又一种可能的实现方式,DCI指示DMRS table中的多个value值,每个value值所对应的DMRS端口数即为PDSCH上的DMRS端口数。
终端设备可以根据上述任一可能的实现方式,确定DMRS端口数。
终端设备确定DMRS端口数后,可以基于以下任意一种实现方式,根据DCI指示的DMRS端口,确定每个PDSCH对应的DMRS端口。
实现方式1,可以结合一定的规则确定。
示例性地,可以默认按照DMRS端口在DMRS端口表格中的顺序开始使用。
关于DMRS端口在DMRS端口表格中的顺序上文已介绍,此处不再赘述。
假设DCI指示的DMRS端口表格中的value对应的DMRS端口为{DMRS端口4、DMRS端口1},M=4。终端设备确定每次传输使用的DMRS端口数为1。那么,按照DMRS端口表格中的DMRS端口顺序,终端设备确定第一传输PDSCH使用的DMRS端口为DMRS端口4,第二传输PDSCH使用的DMRS端口为DMRS端口1,第三传输PDSCH使用的DMRS端口为DMRS端口4,第四传输PDSCH使用的DMRS端口为DMRS端口1。
实现方式2,根据DMRS端口数以及对应关系确定。
终端设备确定DMRS端口数后,可以根据方式1中的任意一种对应关系来确定每个PDSCH对应的DMRS端口。
以方式1中的形式5为例。
假设DCI指示的DMRS端口表格中的value对应的DMRS端口为{DMRS端口2、DMRS端口3、DMRS端口6、DMRS端口7},M=4。终端设备确定每次传输使用的DMRS端口数为2。那么,按照DMRS端口表格中的DMRS端口顺序,终端设备可以确定第一传输PDSCH采用DMRS端口2、DMRS端口3,第二传输PDSCH采用DMRS端口6、DMRS端口7,第三传输PDSCH采用DMRS端口2、DMRS端口3,第四传输PDSCH采用DMRS端口6、DMRS端口7。
应理解,上述实现方式2可以与方式1中的任意一种对应关系结合使用,此处不再赘述。
实现方式3,DCI中指示DMRS表格中x个value,则第一个value对应的DMRS端口用于第一传输,第二个value对应的DMRS端口用于第二传输,第一个value对应的DMRS端口用于第三传输,第二个value对应的DMRS端口用于第四传输,……。
上文详细介绍了情况A,下文介绍情况B。
情况B:N个DMRS端口对应M个PDSCH中的每个PDSCH,其中,N为大于或等于1的整数,M为大于或等于2的整数。
在该情况下,DCI指示的N个DMRS端口用于每个PDSCH,或者,也可以理解为,DCI指示的N个DMRS端口用于每次传输,或者,也可以理解为,用于解调每个PDSCH的DMRS对应的DMRS端口相同,且均为DCI指示的N个DMRS端口。
例如,DCI中指示DMRS端口6和DMRS端口7,M=4,那么第一传输PDSCH采用的DMRS端口包括DMRS端口6和DMRS端口7;第二传输PDSCH采用的DMRS端口 包括DMRS端口6和DMRS端口7;第三传输PDSCH采用的DMRS端口包括DMRS端口6和DMRS端口7;第四传输PDSCH采用的DMRS端口包括DMRS端口6和DMRS端口。
以传输单元为时域单元,假设多个TRP向终端设备发送PDSCH。那么在时间上PDSCH是分时发送的,所以该多个TRP在不同时间段上可以采用相同DMRS端口,即DCI中指示DMRS端口可以用于表示所有的PDSCH对应的端口。
以传输单元为频域单元,假设多个TRP向终端设备发送PDSCH。那么在频域上PDSCH是分频发送的,所以该多个TRP在不同频带上可以采用相同DMRS端口,即DCI中指示DMRS端口可以用于表示所有的PDSCH对应的端口。
以传输单元为时频单元,假设多个TRP向终端设备发送PDSCH。那么该多个TRP在不同时频资源上可以采用相同DMRS端口,即DCI中指示DMRS端口可以用于表示所有的PDSCH对应的端口。
在该情况下,N个DMRS端口在至少两个传输单元对应的TCI状态不相同。
为便于理解,结合激活TCI-state的四种方案说明。
激活方案1
网络设备可通过高层信令(如RRC消息)为终端设备配置一个或多个TCI状态对(TCI-state-pair),每个TCI-state-pair包括多个TCI-state(如2个)。如在PDSCH config中配置包含多个TCI-state-pair,网络设备可以通过MAC CE激活一个或多个TCI-state-pair,其中,激活的TCI-state-pair属于配置的TCI-state-pair。
假设DCI从激活的TCI-state-pair中选择一个TCI-state-pair,也可以理解为,DCI选择了多个TCI-state。
在选择了多个TCI-state之后,需要对不同的传输进行映射,因此可以对指示的TCI-state进行规定。
示例性地,配置的TCI-state-pair中,如RRC信令即PDSCH config配置的TCI-state-pair中,注意先后顺序。
一种可能的实现方式,当DCI指示的TCI-state-pair中包含了{TCI-state1,TCI-state2},那么,可以默认第一传输PDSCH对应TCI-state1,第二传输PDSCH对应TCI-state2,第三传输PDSCH对应TCI-state1,第四传输PDSCH对应TCI-state2,……。
假设M=4,可以如表5所示。
表5
Figure PCTCN2020087893-appb-000003
由表可知,示例性地,第一传输PDSCH对应的TCI-state为TCI-state1,即用于解调第一传输PDSCH的DMRS的TCI-state为TCI-state1;第二传输PDSCH对应的TCI-state为TCI-state2,即用于解调第二传输PDSCH的DMRS的TCI-state为TCI-state2;第三传输PDSCH对应的TCI-state为TCI-state1,即用于解调第三传输PDSCH的DMRS的 TCI-state为TCI-state1;第四传输PDSCH对应的TCI-state为TCI-state2,即用于解调第四传输PDSCH的DMRS的TCI-state为TCI-state2。
又一种可能的实现方式,当DCI指示的TCI-state-pair中包含了{TCI-state1,TCI-state2,…,TCI-stateL},当TCI-state的个数为L(L为大于2或等于2的整数)个时,前M/L传输PDSCH对应TCI-state1,第M/L+1到第2*M/L传输PDSCH对应TCI-state2,…,第M-(L-1)*M/L到第M传输PDSCH对应TCI-stateL。
假设M=4,L=2,可以如表6所示。
表6
Figure PCTCN2020087893-appb-000004
由表可知,示例性地,第一传输PDSCH对应的TCI-state为TCI-state1,即用于解调第一传输PDSCH的DMRS的TCI-state为TCI-state1;第二传输PDSCH对应的TCI-state为TCI-state1,即用于解调第二传输PDSCH的DMRS的TCI-state为TCI-state1;第三传输PDSCH对应的TCI-state为TCI-state2,即用于解调第三传输PDSCH的DMRS的TCI-state为TCI-state2;第四传输PDSCH对应的TCI-state为TCI-state2,即用于解调第四传输PDSCH的DMRS的TCI-state为TCI-state2。
激活方案2
网络设备可通过高层信令(如RRC消息)为终端设备配置一个或多个TCI-state,网络设备可以通过MAC CE维护一张表格。例如,可以在MAC CE中对应一张表格,该表格中可对应多个元素,每个元素里可以包含多个TCI-State。也就是说,为达到后续一次传输中包含多个TCI-State的方案,网络设备可以通过L2信令(如MAC CE)激活多个TCI-state,如在信令(如MAC CE)中增加MAC CE可以激活多个元素,其中的一个元素中包含多个TCI-state,即通过激活多个元素,激活多个TCI-state。
假设激活多个元素,每个元素里包含多个TCI-State,例如TCI-state1和TCI-state2。MAC-CE激活TCI状态时用比特位图(bitmap)表示,每个bitmap表示激活一个元素。
示例性地,注意先后顺序。
该方案同上文激活方案1类似。下面简单描述一下,具体的可以参考上述激活方案1中的描述。
一种可能的实现方式,例如,通过激活方案2激活的多个TCI-state包括TCI-state1和TCI-state2,那么,可以默认第一传输PDSCH对应TCI-state1,第二传输PDSCH对应TCI-state2,第三传输PDSCH对应TCI-state1,第四传输PDSCH对应TCI-state2,……。
又一种可能的实现方式,例如,通过激活方案2激活的多个TCI-state包括L个TCI-state时,那么,可以默认前M/L传输PDSCH对应TCI-state1,第M/L+1到第2*M/L传输PDSCH对应TCI-state2,…,第M-(L-1)*M/L到第M传输PDSCH对应TCI-stateL。
激活方案3
在DCI中增加Y比特,增加的Y比特可以用于选择激活的多个TCI-state等等,其中 Y为大于1或等于1的整数,本申请不对这个方案做限制。
示例性地,注意DCI中TCI-state的先后顺序。
该方案同上文激活方案1类似。下面简单描述一下,具体的可以参考上述激活方案1中的描述。
一种可能的实现方式,例如,通过激活方案3激活的多个TCI-state包括TCI-state1和TCI-state2,那么,可以默认第一传输PDSCH对应TCI-state1,第二传输PDSCH对应TCI-state2,第三传输PDSCH对应TCI-state1,第四传输PDSCH对应TCI-state2,……。
又一种可能的实现方式,例如,通过激活方案3激活的多个TCI-state包括L个TCI-state时,那么,可以默认前M/L传输PDSCH对应TCI-state1,第M/L+1到第2*M/L传输PDSCH对应TCI-state2,…,第M-(L-1)*M/L到第M传输PDSCH对应TCI-stateL。
在该情况下,每次传输PDSCH采用的DMRS端口相同,由表5所示的示例可知,例如第一传输PDSCH和第二传输PDSCH的TCI-state不同,换句话说,DMRS端口在第一个传输单元和第二个传输单元的TCI-state不同。也就是说,N个DMRS端口在至少两个传输单元对应的TCI状态不相同。
激活方案4
示例性地,在RRC信令中所定义的TCI-state中增加时域特性,例如一个TCI-state参数中包含两个子状态(sub-state),例如记为TCI sub-state,前n个符号是TCI sub-state1,后m个符号是TCI sub-state2,则在传输PDSCH时,根据PDSCH所在符号确定其对应的DMRS的TCI-state应该选择TCI sub-state1还是TCI-sub-state2。例如第一传输PDSCH处于前n符号,则第一传输PDSCH对应的DMRS的TCI-state是TCI sub-state1,如果第一传输PDSCH处于后m符号,则第一传输PDSCH对应的DMRS的TCI-state是TCI sub-state2;类推第二传输PDSCH等等。
应理解,上述仅是示例性说明,例如,也可以在RRC信令中所定义的TCI-state中增加频域特性,又如,也可以在RRC信令中所定义的TCI-state中增加时频特性,等等,对此不做严格限定。
还应理解,上述多种激活方案仅是示例性说明,本申请实施例并未限定于此。任何属于上述几种方案的变形都落入本申请实施例的保护范围。例如,通过上述激活方案1、激活方案2、或激活方案3任意一种方案激活的TCI state个数大于或等于传输PDSCH个数时,则按顺序确定每个传输采用的TCI-state。如,通过上述激活方案1、激活方案2、或激活方案3任意一种方案激活了{TCI-state1,TCI-state2,…,TCI-stateL}。假设M=2,L=3,则第一传输PDSCH对应TCI-state1,第二传输PDSCH对应TCI-state2。
还应理解,在上述实施例中,以PDSCH为例进行描述,但这并不对本申请造成限定,PDSCH也可以替换为数据。
基于上述技术方案,在一些场景下,例如需要重复发送数据(如PDSCH),即终端设备接收多个数据的场景。网络设备可以通过DCI向终端设备指示多个DMRS端口,该多个DMRS端口用于该多个数据,且该多个数据可以对应的DMRS端口可以全都相同,也可以不全相同,例如多个数据中至少两个数据对应的DMRS端口不同。通过DCI指示,不仅可以使得终端设备准确地确定DMRS端口,而且可以基于该DMRS端口接收DMRS,进而使用接收的DMRS解调其对应的数据,保证数据的传输性能。
下面结合图4至图8详细说明传输各个PDSCH的资源的信息。
图4是从设备交互的角度示出的本申请实施例提供的通信方法400的示意***互图。如图所示,该方法400可以包括如下步骤。
410,网络设备确定第一传输单元的信息,第一传输单元的信息包括以下信息:第一传输单元的起始位置或第一传输单元的结束位置、第一传输单元的传输长度、以及传输间隔,其中,传输间隔为所述第一传输单元与相邻传输单元之间的间隔,第一传输单元为:M个传输单元中的任一传输单元,或,M个传输单元中的第一个传输单元,其中,M为大于或等于2的整数;
420,网络设备发送指示信息,指示信息用于指示第一传输单元的信息。相应地,终端设备接收该指示信息。
可选地,传输单元可以包括以下任意一项:时域单元、频域单元、或时频单元。
其中,时域单元例如可以为mini-slot,频域单元例如可以为subband。以mini-slot为例,终端设备可以在M个mini-slot上接收PDSCH,终端设备接收M个PDSCH。
下文为便于理解,以传输单元为时域单元,例如mini-slot为例进行示例性说明。
网络设备可以向终端设备指示第一传输单元的信息,该第一传输单元可以为M个传输单元中的任一传输单元,也就是说,网络设备可以向终端设备指示M个传输单元中任一传输单元的信息,或者,也可以理解为,网络设备向终端设备指示M个PDSCH中任一PDSCH的传输资源的信息;或者,该第一传输单元可以为M个传输单元中的第一个传输单元;也就是说,网络设备可以向终端设备指示M个传输单元中第一个传输单元的信息,或者,也可以理解为,网络设备向终端设备指示M个PDSCH中第一个传输的PDSCH的传输资源的信息。
应理解,第一传输单元仅是为了区分而做的命名,并不对本申请实施例的保护范围造成限定。下文为不失一般性,用第一传输单元表示,将第一传输单元上传输的PDSCH记为第一PDSCH。
网络设备可以向终端设备指示:S、L、Δ。
其中,
S,可以用于表示第一传输单元的起始位置,或者,第一PDSCH的传输资源在时域上的起始位置,例如符号起始位置(从0开始);
L,可以用于表示第一传输单元的长度,或者,第一PDSCH的传输资源在时域上的时间长度,例如传输所占符号长度;
Δ,可以用于表示相邻两次传输的时间间隔,例如相邻两次之间的符号长度,如相邻两次传输的起始位置之间的符号长度或相邻两次传输的结束位置之间的符号长度等。相邻传输单元中间可以预留一个Δ的时间间隔。
应理解,以相邻两次传输为第一传输和第二传输为例,在本申请实施例中,Δ表示相邻两次传输的结束位置之间的符号长度,指的是Δ表示第一传输的结束位置与第二传输的开始位置之间的符号长度;Δ表示相邻两次传输的起始位置之间的符号长度,指的是Δ表示第一传输的开始位置与第二传输的开始位置之间的符号长度。下文统一用Δ表示相邻两次传输的结束位置之间的符号长度,以及,Δ表示相邻两次传输的起始位置之间的符号长度表达。
通过Δ,可以使得通信变得更加灵活。例如,可以保证在一些场景下,如高频场景,多站之间波束的切换使用等。
应理解,上述以传输单元包括时域单元为例进行了示例性说明,本申请实施例并未限定于此。例如传输单元包括频域单元,此情况下,S可以用于表示第一传输单元的起始位置,或者,第一PDSCH的传输资源在频域上的起始位置,例如subband起始位置;L,可以用于表示第一传输单元的长度,或者,第一PDSCH的传输资源在频域上的长度,例如传输所占subband长度;Δ,可以用于表示相邻两次传输的频域间隔,例如相邻两次之间的subband长度,如相邻两次传输的起始位置之间的频域间隔或相邻两次传输的结束位置之间的频域间隔。
可选地,网络设备可以通过高层信令(例如RRC信令通知)通知终端设备Δ,或者,也可以通过DCI来通知终端设备Δ。对此,本申请实施例不做限定。例如,也可以是预先规定Δ,如协议预先规定或网络设备预先配置的。
可选地,对PDSCH映射类型不同,循环前缀(cyclic prefix,CP)不同,其对应的S、L、Δ组合不同。以Δ表示相邻两次传输的结束位置之间的符号长度为例,如表7和表8所示。
关于CP,包括正常CP(normal CP)和扩展CP(extended CP)。一种时隙的格式为包含14个OFDM符号,每个OFDM符号的CP为正常CP;一种时隙的格式为包含12个OFDM符号,每个OFDM符号的CP为扩展CP;一种时隙的格式为包含7个OFDM符号,每个OFDM符号的CP为正常CP。应理解,以上举例仅为示例性说明,不应对本申请构成任何限定。
表7
Figure PCTCN2020087893-appb-000005
表8
Figure PCTCN2020087893-appb-000006
可选地,终端设备可以根据S、L、Δ,判断出所有传输单元的位置,或者说,判断 出所有PDSCH的传输资源的位置。
下面以传输单元为mini-slot,结合图5至图8来说明。
图5至图8示出了几种不同的mini-slot重复传输的情况。
情况一:如图5所示,固定符号间隔分配的情况。
如图5所示,填充阴影的部分为传输块,从图5可以看出,在每个时隙(slot)内,TPR1传输传输块的结束位置与TRP2传输传输块的起始位置相差一样数量的方格,即均相差2个方格。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+L+Δ),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二传输PDSCH(即第二个mini-slot)的结束位置为(S+L+Δ+L-1)。如图5所示,图5为便于理解,仅示出了Δ表示相邻两次传输的结束位置之间的符号长度的情况。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+Δ),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二传输PDSCH(即第二个mini-slot)的结束位置为(S+Δ+L-1)。
情况二:如图6所示,slot的边界有不同处理的情况。换句话说,一个传输块不能跨slot传输。
如图6所示,填充阴影的部分为传输块,从图6可以看出,在两个slot内传输块一共传输4次,每个slot内的重复传输次数为2,即每个slot内,TRP1传输一个传输块,TRP2传输一个传输块。此外,一个传输块不会垮slot传输。
在该情况下,考虑到该slot的边界问题,同一个传输块不要跨slot,则可以判断一个slot内的重复传输次数。例如,当某一次传输的起始位置或者结束位置超过slot边界,例如某一次传输的起始位置或者结束位置位于第14个符号(若第1个符号的符号编号为0,则是编号为13的符号)的后面时,则可以判断该次传输的起始位置为下一个slot的首个符号位置。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+L+Δ),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二次传输PDSCH(即第二个mini-slot)的结束位置为(S+L+Δ+L-1)。判断第二传输PDSCH的起始位置或者结束位置是否超过slot边界,如果超过,则第二传输PDSCH的起始位置为下一个slot的symbol 0,第二传输PDSCH的结束位置为下一个slot的symbol(L-1)。类似的,第三传输PDSCH的传输资源起始位置可以基于第二传输PDSCH的结 束位置计算。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+Δ),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二次传输PDSCH(即第二个mini-slot)的结束位置为(S+Δ+L-1)。判断第二传输PDSCH的起始位置或者结束位置是否超过slot边界,如果超过,则第二传输PDSCH的起始位置为下一个slot的symbol 0,第二传输PDSCH的结束位置为下一个slot的symbol(L-1)。类似的,第三传输PDSCH的传输资源起始位置可以基于第二传输PDSCH的结束位置计算。
情况三:如图7所示,在不同的slot上的资源分配是一样的。
如图7所示,填充阴影的部分为传输块,从图7可以看出,在两个slot内传输块一共传输4次,每个slot内的重复传输次数为2,即每个slot内,TRP1传输一个传输块,TRP2传输一个传输块。此外,每个slot内,如第一slot和第二slot内,每次传输所占的传输单元是一样的。如图7中,在每个slot内,TPR1传输传输块可以占前2个传输单元(即图7中的填充阴影的方格),TPR2传输传输块的起始位置与TRP1传输传输块的结束位置相差一个方格。应理解,图7中,每个slot内,传输块所占的传输单元仅是示例性说明,并不对本申请实施例的保护范围造成限定。
在该情况下,可以只考虑一个slot内的资源分配,则可以判断一个slot内的重复传输次数。例如,可以确定一个slot内每次传输的传输资源,继而可以确定出在每个slot内传输的传输资源。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+L+Δ),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二传输PDSCH(即第二个mini-slot)的结束位置为(S+L+Δ+L-1)。类似的,第三传输PDSCH的传输资源起始位置可以基于第二传输PDSCH的结束位置计算。此时传输的PDSCH的结束位置都不会超过slot边界,如图7所示的时隙边界,而在slot与slot之间,所有的资源分配是一样的。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+Δ),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二传输PDSCH(即第二个mini-slot)的结束位置为(S+Δ+L-1)。类似的,第三传输PDSCH的传输资源起始位置可以基于第二传输PDSCH的结束位置计算。此时传输的PDSCH的结束位置都不会超过slot边界,而在slot与slot之间,所有的资源分配是一样的。
情况四:如图8所示,连续时间单元分配。
如图8所示,填充阴影的部分为传输块,从图8可以看出,各个传输块所占的时间单元是连续的。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
假设,网络设备向终端设备指示第一传输PDSCH(即第一个mini-slot)的S、L,则可以确定第一传输PDSCH的结束位置为(S+L-1)。那么每次传输PDSCH的传输资源的位置也可以计算出来。例如,第二传输PDSCH(即第二个mini-slot)的传输资源起始位置为(S+L),第二传输PDSCH(即第二个mini-slot)的传输资源的传输长度为L,第二传输PDSCH(即第二个mini-slot)的结束位置为(S+L+L-1)。类似的,第三传输PDSCH的传输资源起始位置可以基于第二传输PDSCH的结束位置计算。
在该情况下,Δ为0,则在该情况下,也可以不指示Δ。
上述示例性地介绍了四种情况,本申请实施例并未限定于此,任何可以使得终端设备根据一个传输单元的信息确定所有传输单元的信息的方式,均落入本申请实施例的保护范围。例如,终端设备也可以根据第一传输单元的结束位置以及L和Δ,判断出所有传输单元的位置。
可选地,考虑到Δ,本申请实施例对DMRS的时域位置也做了调整。
如前所述,DMRS可以包括front-loaded DMRS和additional DMRS。下面分别说明front-loaded DMRS和additional DMRS的位置。
front-loaded DMRS
不同的PDSCH映射类型,对应的front-loaded DMRS是不同的。以PDSCH的映射类型为映射类型A为例进行说明。
示例性地,DMRS-typeA-Position为‘pos2’时。
如前所述,l 0表示一个时隙中的第一传输PDSCH对应的front-loaded DMRS的首个符号位置。
在现有协议中,S={0,1,2},(S+L)={3,……,14},DMRS对应的位置在l 0=2。此时DMRS处于为PDSCH分配的时频资源位置的内部。
假设,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置为l n,其中,n为大于0或等于0的整数。结合上述的情况1至情况4这四种不同的mini-slot重复传输情况,说明每个PDSCH对应的DMRS的front-loaded DMRS的首个符号位置的确定方式。
结合情况1说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=mod(l 0+n*(L+Δ),14),其中,mod为求余函数。n为大于0或者等于0的整数。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=mod(l 0+n*Δ,14),其中,mod为求余函数。n为大于0或者等于0的整数。
结合情况2说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L+Δ)。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N1+m+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l N1+m+1为:l N1+m=l 0+m*(L+Δ),或,l N1+m=l 0-S+m*(L+Δ),其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=1。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*Δ。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N1+m+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l N1+m+1为:l N1+m=l 0+m*Δ,或,l N1+m=l 0-S+m*Δ,其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=1。
结合情况3说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L+Δ)。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*Δ。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
结合情况4说明。
在情况4下,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L)。
示例性地,DMRS-typeA-Position为‘pos3’时,l 0=3。
一种场景,S={0,1,2},(S+L)={4,……,14}。此时DMRS处于为PDSCH分配的时频资源位置的内部。
假设,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置为l n,其中,n为大于0或等于0的整数。结合上述的情况1至情况4这四种不同的mini-slot重复传输情况,说明每个PDSCH对应的DMRS的front-loaded DMRS的首个符号位置的确定方式。
结合情况1说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=mod(l 0+n*(L+Δ),14),其中,mod为求余函数。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=mod(l 0+n*Δ,14),其中,mod为求余函数。
结合情况2说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L+Δ)。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N+m+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l N+m为:l N+m=l 0+m*(L+Δ),或,l N+m=l 0-S+m*(L+Δ),其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=1。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*Δ。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N+m+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l N+m为:l N+m=l 0+m*Δ,或,l N+m=l 0-S+m*Δ,其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=1。
结合情况3说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L+Δ)。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*Δ。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
结合情况4说明。
在情况4下,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L)。
又一种场景,S=4,(S+L)={5,……,14}。此时DMRS不在为PDSCH分配的时频资源位置的内部,此时可以仅仅放置一个front-loaded DMRS,即初始化l 0=2;或者,当Δ大于0时,所有的front-loaded DMRS均放置在PDSCH的前一个符号,即l 0=-1。
当PDSCH的映射类型为typeB时,l 0表示一个时隙中的首个解调参考信号的符号位置相对PDSCH起始符号的位置,现有协议中l 0=0。在对于mini-slot PDSCH多次传输的分配中,两种方法:
方法一:定义l 0为首次传输PDSCH的起始位置,则其他的PDSCH对应的front-loadedDMRS的位置与上述相似。
结合情况1说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=mod(l 0+n*(L+Δ),14),其中,mod为求余函数。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=mod(l 0+n*Δ,14),其中,mod为求余函数。
结合情况2说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L+Δ)。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N+m+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l N+m为:l N+m=l 0+m*(L+Δ),或,l N+m=l 0-S+m*(L+Δ),其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=1。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*Δ。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N+m+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l N+m为:l N+m=l 0+m*Δ,或,l N+m=l 0-S+m*Δ,其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的front-loaded DMRS的首个符号位置时,m=1。
结合情况3说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L+Δ)。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*Δ。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
结合情况4说明。
在情况4下,第n+1传输PDSCH对应的DMRS的front-loaded DMRS的首个符号位置l n为:l n=l 0+n*(L)。
方法二:定义l 0为相对每个PDSCH传输的起始位置,即每个PDSCH对应的front-loaded DMRS的位置相对PDSCH起始位置为l 0,其中l 0=0。
additional DMRS
当additional DMRS处于为PDSCH分配的时频资源位置的内部时,处理情况同上述处理front-loaded DMRS的情况一致。下面简单描述一下,具体的可参考上述确定front-loaded DMRS的位置的说明。
假设,l ad-0表示一个时隙中的第一传输PDSCH对应的DMRS的additional DMRS的符号位置。假设,第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置为l ad-n,其中,n为大于0或等于0的整数。结合上述的情况1至情况4这四种不同的mini-slot重复传输情况,说明每个PDSCH对应的DMRS的additional DMRS的符号位置的确定方式。
结合情况1说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=mod(l ad-0+n*(L+Δ),14),其中,mod为求余函数。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=mod(l ad-0+n*Δ,14),其中,mod为求余函数。
结合情况2说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=l ad-0+n*(L+Δ)。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N+m+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-N+m为:l ad-N+m=l ad-0+m*(L+Δ),或,l ad-N+m=l ad-0-S+m*(L+Δ),其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的additional DMRS的符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的additional DMRS的符号位置时,m=1。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
在第一slot内,第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=l ad-0+n*Δ。在该情况下,当超过slot边界,假设第一slot内共N1个PDSCH传输,则第N+m+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-N+m为:l ad-N+m=l ad-0+m*Δ,或,l ad-N+m=l ad-0-S+m*Δ,其中m是在第二slot内从0开始计算,m为大于0或者等于0的整数。例如,如图6所示,计算第二slot内TRP1传输的PDSCH对应的DMRS的additional DMRS的符号位置时,m=0;计算第二slot内TRP2传输的PDSCH对应的DMRS的additional DMRS的符号位置时,m=1。
结合情况3说明。
示例性地,Δ表示相邻两次传输的结束位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=l ad-0+n*(L+Δ)。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与第一slot一样。
示例性地,Δ表示相邻两次传输的起始位置之间的符号长度。
第一slot内,第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=l ad-0+n*Δ。此时的n+1次传输都是在第一slot内,其他slot中DMRS的位置与 第一slot一样。
结合情况4说明。
在情况4下,第n+1传输PDSCH对应的DMRS的additional DMRS的符号位置l ad-n为:l ad-n=l ad-0+n*(L)。
应理解,在上述实施例中,以PDSCH为例进行描述,但这并不对本申请造成限定,PDSCH也可以替换为数据。
基于上述技术方案,终端设备可以基于DCI指示的N个DMRS端口,确定用于解调每个PDSCH的DMRS对应的DMRS端口。DCI指示的N个DMRS端口可以用于M个PDSCH,也就是说,每个PDSCH均可以对应一个或多个DMRS端口。此外,M个PDSCH中至少两个PDSCH对应的DMRS端口不同,或者,M个PDSCH中每个PDSCH对应的DMRS端口均相同,不管哪种情况,终端设备均可以确定用于解调每个PDSCH的DMRS对应的DMRS端口,进而可以正确地解调PDSCH,并可以保证通信性能。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。例如,图3所述的实施例和图4所述的实施例可以独立使用,也可以结合使用。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图3至图8详细说明了本申请实施例提供的方法。以下,结合图9至图12详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置900可以包括通信单元910,可选地,还可以包括处理单元920。通信单元910可以与外部进行通信,处理单元920用于进行数据处理。通信单元910还可以称为通信接口或收发单元。
在一种可能的设计中,该通信装置900可实现对应于上文方法实施例中的终端设备执 行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。这时,该通信装置900可以称为终端设备。通信单元910用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元920用于执行上文方法实施例中终端设备的处理相关操作。
一种可能的实现方式,通信单元910用于:接收下行控制信息DCI,DCI指示N个解调参考信号DMRS端口,N个DMRS端口对应M个物理下行共享信道PDSCH,M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;通信单元910还用于:基于DCI,接收M个PDSCH。
可选地,N个DMRS端口用于确定DMRS端口数,DMRS端口数表示每个PDSCH对应的DMRS端口的数量,DMRS端口数用于确定每个PDSCH对应的DMRS端口。
可选地,N个DMRS端口和M个PDSCH之间具有对应关系,对应关系用于确定每个PDSCH对应的DMRS端口。
可选地,N个DMRS端口的顺序用于确定N个DMRS端口和M个PDSCH之间的对应关系。
又一种可能的实现方式,通信单元910用于:接收下行控制信息DCI,DCI指示N个解调参考信号DMRS端口,N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,N个DMRS端口在至少两个传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;通信单元910还用于:基于DCI,接收M个PDSCH。
可选地,用于传输PDSCH的传输单元是根据:传输单元的起始位置、传输单元的长度、以及相邻传输单元之间的间隔确定的。
可选地,DCI指示多个传输配置指示TCI状态,多个TCI状态的顺序用于确定DMRS端口在传输单元对应的TCI状态。
可选地,传输单元与传输配置指示TCI状态具有对应关系,对应关系用于确定DMRS端口在传输单元对应的TCI状态。
可选地,TCI状态包括多个TCI子状态,传输单元与传输配置指示TCI状态具有对应关系,包括:传输单元与TCI状态中的TCI子状态具有对应关系。
可选地,传输单元包括时域单元和/或频域单元。
该通信装置900可实现对应于根据本申请实施例的方法300和方法400中的终端设备执行的步骤或者流程,该通信装置900可以包括用于执行图3中的方法300和图4中的方法400中的终端设备执行的方法的单元。并且,该通信装置900中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300和图4中的方法400的相应流程。
其中,当该通信装置900用于执行图3中的方法300时,通信单元910可用于执行方法300中的步骤310和步骤320,处理单元920可用于执行方法300中的确定DMRS端口等一些步骤。
其中,当该通信装置900用于执行图4中的方法400时,通信单元910可用于执行方法400中的步骤420,处理单元920可用于执行方法400中的确定传输单元信息等一些步骤。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置900中的通信单元910可通过图11中示出的终端设备1100中的收发器1110实现,该通信装置900中的处理单元920可通过图11中示出的终端设备1100中的处理器1120实现。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
还应理解,该通信装置900中的通信单元910也可以为输入/输出接口。
在另一种可能的设计中,该通信装置900可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。这时,该通信装置900可以称为网络设备。通信单元910用于执行上文方法实施例中网络设备侧的收发相关操作,处理单元920用于执行上文方法实施例中网络设备的处理相关操作。
一种可能的实现方式,处理单元920用于:生成下行控制信息DCI,DCI指示N个解调参考信号DMRS端口,N个DMRS端口对应M个物理下行共享信道PDSCH,M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;通信单元910用于:发送DCI。
可选地,N个DMRS端口用于确定DMRS端口数,DMRS端口数表示每个PDSCH对应的DMRS端口的数量,DMRS端口数用于确定每个PDSCH对应的DMRS端口。
可选地,N个DMRS端口和M个PDSCH之间具有对应关系,对应关系用于确定每个PDSCH对应的DMRS端口。
可选地,N个DMRS端口的顺序用于确定N个DMRS端口和M个PDSCH之间的对应关系。
又一种可能的实现方式,处理单元920用于:生成下行控制信息DCI,DCI指示N个解调参考信号DMRS端口,N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,N个DMRS端口在至少两个传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;通信单元910用于:发送DCI。
可选地,用于传输PDSCH的传输单元是根据:传输单元的起始位置、传输单元的长度、以及相邻传输单元之间的间隔确定的。
可选地,DCI指示多个传输配置指示TCI状态,多个TCI状态的顺序用于确定DMRS端口在传输单元对应的TCI状态。
可选地,传输单元与传输配置指示TCI状态具有对应关系,对应关系用于确定DMRS端口在传输单元对应的TCI状态。
可选地,TCI状态包括多个TCI子状态,传输单元与传输配置指示TCI状态具有对应关系,包括:传输单元与TCI状态中的TCI子状态具有对应关系。
可选地,传输单元包括时域单元和/或频域单元。
该通信装置900可实现对应于根据本申请实施例的方法300和方法400中的网络设备执行的步骤或者流程,该通信装置900可以包括用于执行图3中的方法300和图4中的方法400中的网络设备执行的方法的单元。并且,该通信装置900中的各单元和上述其他操作和/或功能分别为了实现图3中的方法300和图4中的方法400的相应流程。
其中,当该通信装置900用于执行图3中的方法300时,通信单元910可用于执行方法300中的步骤310。
其中,当该通信装置900用于执行图4中的方法400时,通信单元910可用于执行方法400中的步骤步骤420,处理单元920可用于执行方法400中的步骤410。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置900中的通信单元为可通过图12中示出的网络设备1200中的收发器1210实现,该通信装置900中的处理单元920可通过图12中示出的网络设备1200中的处理器1220实现。
还应理解,该通信装置900中的通信单元910也可以为输入/输出接口。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
图10是本申请实施例提供的通信装置1000的又一示意性框图。如图所示,通信装置1000包括处理器1010、存储器1020和收发器1030,存储器1020中存储有程序,处理器1010用于执行存储器1020中存储的程序,对存储器1020中存储的程序的执行,使得处理器1010用于执行上文方法实施例中的相关处理步骤,对存储器1020中存储的程序的执行,使得处理器1010控制收发器1030执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信装置1000用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器1020中存储的程序的执行,使得处理器1010用于执行上文方法实施例中终端设备侧的处理步骤,对存储器1020中存储的程序的执行,使得处理器1010控制收发器1030执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信装置1000用于执行上文方法实施例中网络设备所执行的动作,这时,对存储器1020中存储的程序的执行,使得处理器1010用于执行上文方法实施例中网络设备侧的处理步骤,对存储器1020中存储的程序的执行,使得处理器1010控制收发器1030执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种通信装置1100,该通信装置1100可以是终端设备也可以是芯片。该通信装置1100可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置1100为终端设备时,图11示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图11中,终端设备以手机作为例子。如图11所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做 限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图11所示,终端设备包括收发单元1110和处理单元1120。收发单元1110也可以称为收发器、收发机、收发装置等。处理单元1120也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元1110中用于实现接收功能的器件视为接收单元,将收发单元1110中用于实现发送功能的器件视为发送单元,即收发单元1110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1120,用于执行本申请实施例中终端设备侧的处理步骤。收发单元1110还用于执行图3中所示的步骤310至步骤320和图4中的步骤步骤420,和/或收发单元1110还用于执行终端设备侧的其他收发步骤。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图11所示的结构。
当该通信设备1100为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1200,该通信装置1200可以是网络设备也可以是芯片。该通信装置1200可以用于执行上述方法实施例中由网络设备所执行的动作。
当该通信装置1200为网络设备时,例如为基站。图12示出了一种简化的基站结构示意图。基站包括1210部分以及1220部分。1210部分主要用于射频信号的收发以及射频信号与基带信号的转换;1220部分主要用于基带处理,对基站进行控制等。1210部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1220部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1210部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将1210部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1210部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1220部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1210部分的收发单元用于执行图3中所示的步骤310至步骤320和图4中的步骤420中网络设备侧的发送操作,和/或1210部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。1220部分的处理单元用于执行图4 中的步骤410的处理操作,和/或1220部分的处理单元还用于执行本申请实施例中网络设备侧的处理步骤。
应理解,图12仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图12所示的结构。
当该通信装置3000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述BBU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种***,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限 于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (80)

  1. 一种通信方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,所述N个DMRS端口在至少两个用于传输PDSCH的传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;
    基于所述DCI,接收所述M个PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述用于传输PDSCH的传输单元是根据以下至少一项确定:
    传输单元的起始位置和传输单元的长度;
    相邻传输单元之间的间隔。
  3. 根据权利要求2所述的方法,其特征在于,所述相邻传输单元之间的间隔包括:相邻传输单元中,第一传输单元的结束位置与第二传输单元的开始位置之间的符号长度。
  4. 根据权利要求2或3所述的方法,其特征在于,所述M个PDSCH包括第一PDSCH,用于传输所述第一PDSCH的传输单元为第一传输单元,
    所述第一传输单元是根据所述第一传输单元的起始位置和所述第一传输单元的长度确定的。
  5. 根据权利要求4所述的方法,其特征在于,所述M个PDSCH还包括第二PDSCH,用于传输所述第二PDSCH的传输单元为第二传输单元,
    所述第二传输单元是根据所述第一传输单元、以及所述第一传输单元和所述第二传输单元之间的间隔确定的。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,用于传输所述M个PDSCH的传输单元中,各传输单元的长度相等。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,
    所述传输单元的起始位置和所述输单元的长度,携带于所述DCI中的时域资源分配域中。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,
    所述相邻传输单元之间的间隔携带于高层信令中;或者,
    在高层信令中不携带所述相邻传输单元之间的间隔的情况下,所述相邻传输单元之间的间隔为0;或者,
    所述相邻传输单元之间的间隔通过协议预定义。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    所述DCI指示多个传输配置指示TCI状态,所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态。
  10. 根据权利要求9所述的方法,其特征在于,所述M个PDSCH包括第一PDSCH和第二PDSCH,
    所述DCI指示的多个TCI状态,包括:第一TCI状态和第二TCI状态,且所述多个 TCI状态的顺序为{第一TCI状态,第二TCI状态};
    所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态,包括:
    所述第一TCI状态为用于传输所述第一PDSCH的传输单元对应的TCI状态,所述第二TCI状态为用于传输所述第二PDSCH的传输单元对应的TCI状态,
    其中,用于传输所述第一PDSCH的传输单元位于用于传输所述第二PDSCH的传输单元之前。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述传输单元包括时域单元和/或频域单元。
  12. 一种通信方法,其特征在于,包括:
    生成下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,所述N个DMRS端口在至少两个用于传输PDSCH的传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;
    发送所述DCI。
  13. 根据权利要求12所述的方法,其特征在于,所述用于传输PDSCH的传输单元是根据以下至少一项确定:
    传输单元的起始位置和传输单元的长度;
    相邻传输单元之间的间隔。
  14. 根据权利要求13所述的方法,其特征在于,所述相邻传输单元之间的间隔包括:相邻传输单元中,第一传输单元的结束位置与第二传输单元的开始位置之间的符号长度。
  15. 根据权利要求13或14所述的方法,其特征在于,所述M个PDSCH包括第一PDSCH,用于传输所述第一PDSCH的传输单元为第一传输单元,
    所述第一传输单元是根据所述第一传输单元的起始位置和所述第一传输单元的长度确定的。
  16. 根据权利要求15所述的方法,其特征在于,所述M个PDSCH还包括第二PDSCH,用于传输所述第二PDSCH的传输单元为第二传输单元,
    所述第二传输单元是根据所述第一传输单元、以及所述第一传输单元和所述第二传输单元之间的间隔确定的。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,用于传输所述M个PDSCH的传输单元中,各传输单元的长度相等。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,
    所述DCI中的时域资源分配域中携带所述传输单元的起始位置和所述输单元的长度的信息。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,
    发送高层信令,所述高层信令中携带所述相邻传输单元之间的间隔的信息;或者,
    在高层信令中不携带所述相邻传输单元之间的间隔的情况下,所述相邻传输单元之间的间隔为0;或者,
    所述相邻传输单元之间的间隔通过协议预定义。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,
    所述DCI指示多个传输配置指示TCI状态,所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态。
  21. 根据权利要求20所述的方法,其特征在于,所述M个PDSCH包括第一PDSCH和第二PDSCH,
    所述DCI指示的多个TCI状态,包括:第一TCI状态和第二TCI状态,且所述多个TCI状态的顺序为{第一TCI状态,第二TCI状态};
    所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态,包括:
    所述第一TCI状态为用于传输所述第一PDSCH的传输单元对应的TCI状态,所述第二TCI状态为用于传输所述第二PDSCH的传输单元对应的TCI状态,
    其中,用于传输所述第一PDSCH的传输单元位于用于传输所述第二PDSCH的传输单元之前。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述传输单元包括时域单元和/或频域单元。
  23. 一种通信方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH,所述M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;
    基于所述DCI,接收所述M个PDSCH。
  24. 根据权利要求23所述的方法,其特征在于,
    所述N个DMRS端口用于确定DMRS端口数,所述DMRS端口数表示每个PDSCH对应的DMRS端口的数量,所述DMRS端口数用于确定每个PDSCH对应的DMRS端口。
  25. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    所述N个DMRS端口和所述M个PDSCH之间具有对应关系,所述对应关系用于确定每个PDSCH对应的DMRS端口。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,
    所述N个DMRS端口的顺序用于确定每个PDSCH对应的DMRS端口。
  27. 一种通信方法,其特征在于,包括:
    生成下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH,所述M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;
    发送所述DCI。
  28. 根据权利要求27所述的方法,其特征在于,
    所述N个DMRS端口用于确定DMRS端口数,所述DMRS端口数表示每个PDSCH对应的DMRS端口的数量,所述DMRS端口数用于确定每个PDSCH对应的DMRS端口。
  29. 根据权利要求27或28所述的方法,其特征在于,所述方法还包括:
    所述N个DMRS端口和所述M个PDSCH之间具有对应关系,所述对应关系用于确定每个PDSCH对应的DMRS端口。
  30. 根据权利要求27至29中任一项所述的方法,其特征在于,
    所述N个DMRS端口的顺序用于确定每个PDSCH对应的DMRS端口。
  31. 一种通信装置,其特征在于,包括:通信单元,
    所述通信单元用于:接收下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,所述N个DMRS端口在至少两个用于传输PDSCH的传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;
    所述通信单元还用于:基于所述DCI,接收所述M个PDSCH。
  32. 根据权利要求31所述的装置,其特征在于,所述用于传输PDSCH的传输单元是根据以下至少一项确定:
    传输单元的起始位置和传输单元的长度;
    相邻传输单元之间的间隔。
  33. 根据权利要求32所述的装置,其特征在于,所述相邻传输单元之间的间隔包括:相邻传输单元中,第一传输单元的结束位置与第二传输单元的开始位置之间的符号长度。
  34. 根据权利要求32或33所述的装置,其特征在于,所述M个PDSCH包括第一PDSCH,用于传输所述第一PDSCH的传输单元为第一传输单元,
    所述第一传输单元是根据所述第一传输单元的起始位置和所述第一传输单元的长度确定的。
  35. 根据权利要求34所述的装置,其特征在于,所述M个PDSCH还包括第二PDSCH,用于传输所述第二PDSCH的传输单元为第二传输单元,
    所述第二传输单元是根据所述第一传输单元、以及所述第一传输单元和所述第二传输单元之间的间隔确定的。
  36. 根据权利要求31至35中任一项所述的装置,其特征在于,用于传输所述M个PDSCH的传输单元中,各传输单元的长度相等。
  37. 根据权利要求32至36中任一项所述的装置,其特征在于,
    所述传输单元的起始位置和所述输单元的长度,携带于所述DCI中的时域资源分配域中。
  38. 根据权利要求32至37中任一项所述的装置,其特征在于,
    所述相邻传输单元之间的间隔携带于高层信令中;或者,
    在高层信令中不携带所述相邻传输单元之间的间隔的情况下,所述相邻传输单元之间的间隔为0;或者,
    所述相邻传输单元之间的间隔通过协议预定义。
  39. 根据权利要求31至38中任一项所述的装置,其特征在于,
    所述DCI指示多个传输配置指示TCI状态,所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态。
  40. 根据权利要求39所述的装置,其特征在于,所述M个PDSCH包括第一PDSCH和第二PDSCH,
    所述DCI指示的多个TCI状态,包括:第一TCI状态和第二TCI状态,且所述多个TCI状态的顺序为{第一TCI状态,第二TCI状态};
    所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态,包括:
    所述第一TCI状态为用于传输所述第一PDSCH的传输单元对应的TCI状态,所述第二TCI状态为用于传输所述第二PDSCH的传输单元对应的TCI状态,
    其中,用于传输所述第一PDSCH的传输单元位于用于传输所述第二PDSCH的传输单元之前。
  41. 根据权利要求31至40中任一项所述的装置,其特征在于,所述传输单元包括时域单元和/或频域单元。
  42. 根据权利要求31至41中任一项所述的装置,其特征在于,
    所述通信单元为收发器,所述处理单元为处理器。
  43. 根据权利要求31至42中任一项所述的装置,其特征在于,
    所述通信装置为以下任一项:终端设备、芯片或芯片***。
  44. 一种通信装置,其特征在于,包括:通信单元和处理单元,
    所述处理单元用于:生成下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH中的每个PDSCH,所述N个DMRS端口在至少两个用于传输PDSCH的传输单元对应的TCI状态不相同,其中,N为大于或等于1的整数,M为大于或等于2的整数;
    所述通信单元用于:发送所述DCI。
  45. 根据权利要求44所述的装置,其特征在于,所述用于传输PDSCH的传输单元是根据以下至少一项确定:
    传输单元的起始位置和传输单元的长度;
    相邻传输单元之间的间隔。
  46. 根据权利要求45所述的装置,其特征在于,所述相邻传输单元之间的间隔包括:相邻传输单元中,第一传输单元的结束位置与第二传输单元的开始位置之间的符号长度。
  47. 根据权利要求45或46所述的装置,其特征在于,所述M个PDSCH包括第一PDSCH,用于传输所述第一PDSCH的传输单元为第一传输单元,
    所述第一传输单元是根据所述第一传输单元的起始位置和所述第一传输单元的长度确定的。
  48. 根据权利要求47所述的装置,其特征在于,所述M个PDSCH还包括第二PDSCH,用于传输所述第二PDSCH的传输单元为第二传输单元,
    所述第二传输单元是根据所述第一传输单元、以及所述第一传输单元和所述第二传输单元之间的间隔确定的。
  49. 根据权利要求44至48中任一项所述的装置,其特征在于,用于传输所述M个PDSCH的传输单元中,各传输单元的长度相等。
  50. 根据权利要求45至49中任一项所述的装置,其特征在于,
    所述DCI中的时域资源分配域中携带所述传输单元的起始位置和所述输单元的长度的信息。
  51. 根据权利要求45至50中任一项所述的装置,其特征在于,
    所述通信单元还用于:发送高层信令,所述高层信令中携带所述相邻传输单元之间的 间隔的信息;或者,
    在高层信令中不携带所述相邻传输单元之间的间隔的情况下,所述相邻传输单元之间的间隔为0;或者,
    所述相邻传输单元之间的间隔通过协议预定义。
  52. 根据权利要求44至51中任一项所述的装置,其特征在于,
    所述DCI指示多个传输配置指示TCI状态,所述多个TCI状态的顺序用于确定所述用于传输PDSCH的传输单元对应的TCI状态。
  53. 根据权利要求52所述的装置,其特征在于,所述M个PDSCH包括第一PDSCH和第二PDSCH,
    所述DCI指示的多个TCI状态,包括:第一TCI状态和第二TCI状态,且所述多个TCI状态的顺序为{第一TCI状态,第二TCI状态};
    所述第一TCI状态为用于传输所述第一PDSCH的传输单元对应的TCI状态,所述第二TCI状态为用于传输所述第二PDSCH的传输单元对应的TCI状态,
    其中,用于传输所述第一PDSCH的传输单元位于用于传输所述第二PDSCH的传输单元之前。
  54. 根据权利要求44至53中任一项所述的装置,其特征在于,所述传输单元包括时域单元和/或频域单元。
  55. 根据权利要求44至54中任一项所述的装置,其特征在于,
    所述通信单元为收发器,所述处理单元为处理器。
  56. 根据权利要求44至55中任一项所述的装置,其特征在于,
    所述通信装置为以下任一项:网络设备、芯片或芯片***。
  57. 一种通信装置,其特征在于,包括:通信单元,
    所述通信单元用于:接收下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH,所述M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;
    所述通信单元还用于:基于所述DCI,接收所述M个PDSCH。
  58. 根据权利要求57所述的装置,其特征在于,
    所述N个DMRS端口用于确定DMRS端口数,所述DMRS端口数表示每个PDSCH对应的DMRS端口的数量,所述DMRS端口数用于确定每个PDSCH对应的DMRS端口。
  59. 根据权利要求57或58所述的装置,其特征在于,
    所述N个DMRS端口和所述M个PDSCH之间具有对应关系,所述对应关系用于确定每个PDSCH对应的DMRS端口。
  60. 根据权利要求57至59中任一项所述的装置,其特征在于,
    所述N个DMRS端口的顺序用于确定每个PDSCH对应的DMRS端口。
  61. 根据权利要求57至60中任一项所述的装置,其特征在于,
    所述通信单元为收发器,所述处理单元为处理器。
  62. 根据权利要求57至61中任一项所述的装置,其特征在于,
    所述通信装置为以下任一项:终端设备、芯片或芯片***。
  63. 一种通信装置,其特征在于,包括:通信单元和处理单元,
    所述处理单元用于:生成下行控制信息DCI,所述DCI指示N个解调参考信号DMRS端口,所述N个DMRS端口对应M个物理下行共享信道PDSCH,所述M个PDSCH中至少两个PDSCH对应的DMRS端口不同,其中,N、M为大于或等于2的整数;
    所述通信单元用于:发送所述DCI。
  64. 根据权利要求63所述的装置,其特征在于,
    所述N个DMRS端口用于确定DMRS端口数,所述DMRS端口数表示每个PDSCH对应的DMRS端口的数量,所述DMRS端口数用于确定每个PDSCH对应的DMRS端口。
  65. 根据权利要求63或64所述的装置,其特征在于,
    所述N个DMRS端口和所述M个PDSCH之间具有对应关系,所述对应关系用于确定每个PDSCH对应的DMRS端口。
  66. 根据权利要求63至65中任一项所述的装置,其特征在于,
    所述N个DMRS端口的顺序用于确定每个PDSCH对应的DMRS端口。
  67. 根据权利要求63至66中任一项所述的装置,其特征在于,
    所述通信单元为收发器,所述处理单元为处理器。
  68. 根据权利要求63至67中任一项所述的装置,其特征在于,
    所述通信装置为以下任一项:网络设备、芯片或芯片***。
  69. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至11中任一项所述的方法,或者,所述至少一个处理器用于执行如权利要求23至26中任一项所述的方法。
  70. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求12至22中任一项所述的方法,或者,所述至少一个处理器用于执行如权利要求27至30中任一项所述的方法。
  71. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至11中任一项所述的方法,或者,以使得所述装置实现如权利要求23至26中任一项所述的方法。
  72. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求12至22中任一项所述的方法,或者,以使得所述装置实现如权利要求27至30中任一项所述的方法。
  73. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至11中任一项所述的方法,或者,以使得所述装置实现如权利要求23至26中任一项所述的方法。
  74. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求12至22中任一项所述的方法,或者,以使得所述装置实现如权利要求27至30中任一项所述的方法。
  75. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利 要求1至11中任一项所述的方法,或者,以使得所述装置实现如权利要求23至26中任一项所述的方法。
  76. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求12至22中任一项所述的方法,或者,以使得所述装置实现如权利要求27至30中任一项所述的方法。
  77. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法,或者,使得所述计算机执行如权利要求23至26中任一项所述的方法。
  78. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求12至22中任一项所述的方法,或者,使得所述计算机执行如权利要求27至30中任一项所述的方法。
  79. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至11中任一项所述的方法,或者,使得计算机执行如权利要求23至26中任一项所述的方法。
  80. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求12至22中任一项所述的方法,或者,使得计算机执行如权利要求27至30中任一项所述的方法。
PCT/CN2020/087893 2019-04-30 2020-04-29 通信方法以及通信装置 WO2020221321A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021564658A JP7399190B2 (ja) 2019-04-30 2020-04-29 通信方法及び通信装置
EP20798626.6A EP3955677A4 (en) 2019-04-30 2020-04-29 COMMUNICATION METHOD AND COMMUNICATION APPARATUS
US17/514,268 US20220052819A1 (en) 2019-04-30 2021-10-29 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365179.3 2019-04-30
CN201910365179.3A CN111867086B (zh) 2019-04-30 2019-04-30 通信方法以及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/514,268 Continuation US20220052819A1 (en) 2019-04-30 2021-10-29 Communication method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020221321A1 true WO2020221321A1 (zh) 2020-11-05

Family

ID=72966011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087893 WO2020221321A1 (zh) 2019-04-30 2020-04-29 通信方法以及通信装置

Country Status (5)

Country Link
US (1) US20220052819A1 (zh)
EP (1) EP3955677A4 (zh)
JP (1) JP7399190B2 (zh)
CN (2) CN111867086B (zh)
WO (1) WO2020221321A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029747A1 (ko) * 2019-08-14 2021-02-18 엘지전자 주식회사 무선 통신 시스템에서 반복 전송되는 데이터를 송수신 하는 방법 및 이에 대한 장치
KR102251731B1 (ko) * 2019-08-14 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 하향링크 데이터를 송수신 하는 방법 및 이에 대한 장치
US11936586B2 (en) * 2020-08-07 2024-03-19 Qualcomm Incorporated Asymmetric message repetition
CN116830702A (zh) * 2021-01-11 2023-09-29 高通股份有限公司 用于物理信道的统一传输配置指示符框架
CN115669158A (zh) * 2022-09-02 2023-01-31 北京小米移动软件有限公司 信息指示方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026241A1 (en) * 2016-08-04 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for coordinating multi-point transmission in advanced wireless systems
CN109391413A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 信息传输的方法和通信装置
CN109392111A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院有限公司 一种pdsch调度方法、用户终端和网络侧设备
CN110535590A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、***及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037511B (zh) * 2011-09-30 2015-12-02 ***通信集团公司 一种增强下行控制信道资源的指示方法、***和设备
KR20150030661A (ko) * 2012-07-09 2015-03-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
CN108809612B (zh) * 2017-07-17 2019-06-11 华为技术有限公司 用于传输dmrs的方法和通信设备
EP3834314A4 (en) * 2018-08-06 2022-04-27 Telefonaktiebolaget Lm Ericsson (Publ) METHOD FOR DETERMINING A DEMODULATION REFERENCE SIGNAL FOR MULTIPLE ACCESS TRANSMISSION
US20230291531A1 (en) * 2019-03-29 2023-09-14 Lg Electronics Inc. Method for transmitting or receiving data in wireless communication system, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026241A1 (en) * 2016-08-04 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for coordinating multi-point transmission in advanced wireless systems
CN109392111A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院有限公司 一种pdsch调度方法、用户终端和网络侧设备
CN109391413A (zh) * 2017-08-10 2019-02-26 华为技术有限公司 信息传输的方法和通信装置
CN110535590A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、***及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Enhancements on Multi-TRP/panel transmission", 3GPP TSG RAN WG1 MEETING #96 R1-1901567, 16 February 2019 (2019-02-16), XP051599264, DOI: 20200619120345X *

Also Published As

Publication number Publication date
JP2022531274A (ja) 2022-07-06
CN111867086A (zh) 2020-10-30
US20220052819A1 (en) 2022-02-17
EP3955677A1 (en) 2022-02-16
CN116321488A (zh) 2023-06-23
EP3955677A4 (en) 2022-06-08
JP7399190B2 (ja) 2023-12-15
CN111867086B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
WO2020221321A1 (zh) 通信方法以及通信装置
WO2019096248A1 (zh) 发送和接收信号的方法、装置和***
US20200068610A1 (en) Resource scheduling method, network device, and communications device
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及***
US20220173851A1 (en) Frequency domain resource allocation method and apparatus
CN111602445B (zh) 通信的方法、网络设备和终端设备
WO2018202163A1 (zh) 一种资源指示方法及装置
AU2017403798B2 (en) Uplink transmission method, apparatus, terminal device, access network device and system
WO2021159467A1 (zh) 一种资源的配置方法及网络设备
US20240030964A1 (en) Communication method and apparatus
CN112020145A (zh) 一种通信方法及装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
US11381288B2 (en) Communication method, network device, and terminal device
WO2020192719A1 (zh) 更新波束的方法与通信装置
US11882429B2 (en) Uplink resource determination apparatus, method and computer program
CN115004828A (zh) 通信方法和通信装置
WO2022252954A1 (zh) 资源配置的方法及装置
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质
WO2022082684A1 (zh) 一种控制信息的传输方法、装置和***
WO2024067617A1 (zh) 资源配置的方法及装置
WO2024017389A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2023011046A1 (zh) 一种数据速率确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798626

Country of ref document: EP

Effective date: 20211109