WO2020220983A1 - 通信方法、距离确定方法及装置 - Google Patents

通信方法、距离确定方法及装置 Download PDF

Info

Publication number
WO2020220983A1
WO2020220983A1 PCT/CN2020/084457 CN2020084457W WO2020220983A1 WO 2020220983 A1 WO2020220983 A1 WO 2020220983A1 CN 2020084457 W CN2020084457 W CN 2020084457W WO 2020220983 A1 WO2020220983 A1 WO 2020220983A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
feedback
distance
signal strength
equal
Prior art date
Application number
PCT/CN2020/084457
Other languages
English (en)
French (fr)
Inventor
张兴炜
王俊伟
黎超
黄海宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20798443.6A priority Critical patent/EP3955598A4/en
Publication of WO2020220983A1 publication Critical patent/WO2020220983A1/zh
Priority to US17/452,544 priority patent/US20220053286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds

Definitions

  • This application relates to the field of wireless communication, and in particular to a communication method, a distance determination method and a device.
  • the transmitting terminal device is based on the feedback information of the receiving terminal device in the circular area centered on the transmitting terminal device, such as the response information of the hybrid automatic repeat request (HARQ), and the channel state of the side link Information (channel state infomation, CSI), etc., adjust the communication strategy between the transmitting terminal device and the receiving terminal device, such as resource scheduling strategy, data transmission strategy, etc.
  • 5G fifth generation
  • NR new radio
  • SL sidelink
  • the transmitting terminal device is based on the feedback information of the receiving terminal device in the circular area centered on the transmitting terminal device, such as the response information of the hybrid automatic repeat request (HARQ), and the channel state of the side link Information (channel state infomation, CSI), etc., adjust the communication strategy between the transmitting terminal device and
  • the present application provides a communication method, a distance determination method and a device, which can reduce the number of feedback information and the number of feedback resources occupied by the feedback information, and can improve resource utilization and communication efficiency.
  • a communication method is provided.
  • the communication method is applied to the first terminal device.
  • the communication method includes: the first terminal device sends a first signal. Then, the first terminal device receives feedback information from at least one second terminal device in the designated area.
  • the designated area is an area where the distance from the first terminal device is greater than or equal to the lower limit of the distance and/or less than or equal to the upper limit of the distance; or, the designated area is the area where the strength of the signal received from the first terminal device is greater than or equal to the signal The lower limit of intensity and/or the area less than or equal to the upper limit of signal intensity.
  • the first terminal device after sending the first signal, the first terminal device only receives the feedback information from the designated area determined by the upper and lower limits of the distance or the upper and lower limits of the signal strength, such as the feedback information sent by the second terminal device in the ring area, but does not
  • the feedback information sent by the terminal device that communicates with the first terminal device outside the designated area can solve the problem that the feedback information sent by the terminal device that is too close to the first terminal device has no reference meaning but occupies a lot of feedback resources, thereby reducing feedback
  • the amount of information and the amount of feedback resources occupied by feedback information can improve resource utilization and communication efficiency.
  • the upper distance limit is positively correlated with the quality of service or business priority or the number of feedback resources, and/or the lower distance limit is negatively correlated with the quality of service or business priority or the number of feedback resources.
  • the feedback information may include negative feedback NACK, and/or channel state information CSI.
  • the upper limit of the distance is negatively related to the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period, and/or the distance
  • the lower limit is positively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period.
  • the feedback information may include an acknowledgement ACK, and/or channel state information CSI.
  • the upper distance limit is positively correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold
  • the lower distance limit is correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold Positive correlation.
  • the upper limit of signal strength is positively correlated with the quality of service or service priority or the quantity of feedback resources, and/or the lower limit of signal strength is negatively correlated with the quality of service or service priority or the quantity of feedback resources.
  • the feedback information may include negative feedback NACK, and/or channel state information CSI.
  • the upper limit of signal strength is negatively related to the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period, and/or, The signal strength lower limit is positively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period.
  • the first specified time period may be multiple time slots, one or more wireless frames, or a specified time period, such as 50ms, 100ms, etc.
  • the number of negative feedback NACKs may be: the number of time slots in which the first terminal device receives negative feedback NACKs within the first designated time period.
  • the number of negative feedback NACKs may be: the number of time slots for which the first terminal device receives a negative acknowledgement NACK within the first designated time period.
  • the multiple time slots may be multiple consecutive time slots, or a time window (time window) including multiple consecutive time slots, such as 10 ms, 50 ms, etc., which is not limited in the embodiment of the present application.
  • the feedback information may include an acknowledgement ACK, and/or channel state information CSI.
  • the upper limit of signal strength is negatively related to the number of ACKs or the number of CSI information greater than or equal to the second threshold
  • the lower limit of signal strength is to the number of ACKs or CSI information greater than or equal to the second threshold The number is negatively correlated.
  • the feedback strategy may include: sending a negative response NACK and not sending a positive response ACK indication; or sending a positive response ACK or sending a negative response NACK indication; or not sending a positive response ACK and not sending a negative response NACK indication; or, sending Channel state information CSI less than the first threshold and channel state information CSI greater than or equal to the first threshold is not sent; or, channel state information CSI is sent; or, channel state information CSI is not sent.
  • the communication method described in the first aspect may further include: the first terminal device sending one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength of the designated area.
  • the first terminal device may send one of the upper limit of distance, lower limit of distance, upper limit of signal strength, and lower limit of signal strength through radio resource control signaling, media access control signaling, master information block, system information block, or physical control information. Multiple.
  • the communication method described in the first aspect may further include: the first terminal device adjusts the data transmission strategy according to the feedback information.
  • the above-mentioned first terminal device adjusting the data transmission strategy according to the feedback information may include: if the feedback information includes a negative acknowledgement NACK, the first terminal device resends the data. Or, if the first terminal device does not receive any feedback information within the second specified time period, the first terminal device resends the data.
  • a communication method is provided.
  • the communication method is applied to the second terminal device.
  • the communication method includes: the second terminal device receives the first signal from the first terminal device. Then, the second terminal device determines that the second terminal device is located in the designated area.
  • the designated area is an area where the distance from the first terminal device is greater than or equal to the lower limit of the distance and/or less than or equal to the upper limit of the distance; or, the designated area is the area where the strength of the signal received from the first terminal device is greater than or equal to the signal The lower limit of intensity and/or the area less than or equal to the upper limit of signal intensity.
  • the second terminal device sends feedback information to the first terminal device.
  • the second terminal device after receiving the first signal from the first terminal device, the second terminal device will determine that it is located in a designated area, such as a ring area, based on the upper and lower limits of the distance or the upper and lower limits of the signal strength.
  • the area sends feedback information, which can solve the problem that the feedback information sent by the terminal device that is too close to the first terminal device has no reference meaning, but occupies a lot of feedback resources, thereby reducing the amount of feedback information and the amount of feedback resources occupied by the feedback information. Can improve resource utilization and communication efficiency.
  • the upper distance limit is positively correlated with the quality of service or business priority or the number of feedback resources, and/or the lower distance limit is negatively correlated with the quality of service or business priority or the number of feedback resources.
  • the upper limit of signal strength is positively correlated with the quality of service or service priority or the quantity of feedback resources, and/or the lower limit of signal strength is negatively correlated with the quality of service or service priority or the quantity of feedback resources.
  • the feedback strategy may include: sending a negative response NACK and not sending a positive response ACK indication; or sending a positive response ACK or sending a negative response NACK indication; or not sending a positive response ACK and not sending a negative response NACK indication; or, sending Channel state information CSI less than the first threshold and channel state information CSI greater than or equal to the first threshold is not sent; or, channel state information CSI is sent; or, channel state information CSI is not sent.
  • the communication method described in the second aspect may further include: the second terminal device receives the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength from the first terminal device or the designated area of the base station. One or more of.
  • a distance determination method is provided.
  • the distance determination method is applied to the first terminal device.
  • the distance determination method includes: the first terminal device sends out its own location information.
  • the location information of the first terminal device may be location information determined based on information provided by the global navigation satellite system (GNSS), and the location information may be the absolute coordinates of the location of the first terminal device, such as latitude and longitude. It may be the identifier of a certain preset area where the first terminal device is located and the position offset (also referred to as relative coordinates) of the first terminal device relative to the reference point in the preset area.
  • GNSS global navigation satellite system
  • the distance determination method described in the third aspect may further include: the radio resource control signaling, media access control signaling, master information block, system information block, or physical control of the first terminal device
  • the information carries the longitude and/or latitude information of the first terminal device.
  • the distance determination method described in the third aspect may further include: the radio resource control signaling, media access control signaling, master information block, system information block, or physical control of the first terminal device
  • the information carries the index of the area where the first terminal device is located.
  • the distance determination method described in the third aspect may further include: the radio resource control signaling, media access control signaling, master information block, system information block, or physical control of the first terminal device
  • the information carries the longitude offset and/or latitude offset of the first terminal device in a preset area.
  • a method for determining distance is provided.
  • the distance determination method is applied to the second terminal device.
  • the distance determining method includes: the second terminal device receives the location information of the first terminal device, and the second terminal device determines its own location information. Then, the second terminal device determines the distance between the second terminal device and the first terminal device according to the location information of the first terminal device and its own location information. For the location information of the second terminal device, reference may be made to the location information and determination method of the first terminal device in the third aspect, which will not be repeated here.
  • the distance determination method described in the fourth aspect may further include: the second terminal device receives radio resource control signaling, medium access control signaling, master information block, The longitude and/or latitude information of the first terminal device carried in the system information block or physical control information.
  • the distance determination method described in the fourth aspect may further include: the second terminal device receives radio resource control signaling, medium access control signaling, master information block, The index of the area where the first terminal device is located in the system information block or the physical control information.
  • the distance determination method described in the fourth aspect may further include: the second terminal device receives radio resource control signaling, medium access control signaling, master information block, The longitude offset and/or latitude offset of the first terminal device in a preset area carried in the system information block or the physical control information.
  • the second terminal device may also send its own location information, so that other terminal devices can determine the distance between the other terminal device and the second terminal device according to the location information of the second terminal device.
  • a communication device is provided.
  • the communication device is applied to the first terminal device.
  • the communication device includes: a sending module and a receiving module.
  • the sending module is used to send the first signal.
  • the receiving module is configured to receive feedback information from at least one second terminal device in the designated area.
  • the designated area is an area where the distance from the first terminal device is greater than or equal to the lower limit of the distance and/or less than or equal to the upper limit of the distance; or, the designated area is the area where the strength of the signal received from the first terminal device is greater than or equal to the signal The lower limit of intensity and/or the area less than or equal to the upper limit of signal intensity.
  • the upper distance limit is positively correlated with the quality of service or business priority or the number of feedback resources, and/or the lower distance limit is negatively correlated with the quality of service or business priority or the number of feedback resources.
  • the feedback information may include negative feedback NACK, and/or channel state information CSI.
  • the upper limit of the distance is negatively related to the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period, and/or the distance
  • the lower limit is positively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period.
  • the feedback information may include an acknowledgement ACK, and/or channel state information CSI.
  • the upper distance limit is positively correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold
  • the lower distance limit is correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold Positive correlation.
  • the upper limit of signal strength is positively correlated with the quality of service or business priority or the number of feedback resources, and/or the lower limit of signal strength is negatively correlated with the quality of service or business priority or the number of feedback resources.
  • the feedback information may include negative feedback NACK, and/or channel state information CSI.
  • the upper limit of signal strength is negatively related to the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period, and/or, The signal strength lower limit is positively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period.
  • the number of negative feedback NACKs may be: the number of time slots in which the first terminal device receives negative feedback NACKs within the first designated time period.
  • the number of negative feedback NACKs may be: the number of time slots for which the first terminal device receives a negative acknowledgement NACK within the first designated time period.
  • the multiple time slots may be multiple consecutive time slots, or a time window (time window) including multiple consecutive time slots, such as 10 ms, 50 ms, etc., which is not limited in the embodiment of the present application.
  • the feedback information may include an acknowledgement ACK, and/or channel state information CSI.
  • the upper limit of signal strength is negatively related to the number of ACKs or the number of CSI information greater than or equal to the second threshold
  • the lower limit of signal strength is to the number of ACKs or CSI information greater than or equal to the second threshold The number is negatively correlated.
  • the feedback strategy may include: sending a negative response NACK and not sending a positive response ACK indication; or sending a positive response ACK or sending a negative response NACK indication; or not sending a positive response ACK and not sending a negative response NACK indication; or, sending Channel state information CSI less than the first threshold and channel state information CSI greater than or equal to the first threshold is not sent; or, channel state information CSI is sent; or, channel state information CSI is not sent.
  • the sending module is also used to send one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength of the designated area.
  • the communication device described in the fifth aspect may further include a processing module.
  • the processing module is used to adjust the data sending strategy according to the feedback information.
  • the processing module is further configured to control the sending module to resend the data if the feedback information includes NACK.
  • the processing module is further configured to control the sending module to resend the data if the receiving module does not receive any feedback information within the second specified time period.
  • the communication device described in the fifth aspect may be a terminal device, or may be a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the communication device described in the fifth aspect may also include other modules, such as a storage module, which is not limited in this application.
  • a communication device is provided.
  • the communication device is applied to a second terminal device.
  • the communication device includes: a receiving module, a sending module, and a processing module.
  • the receiving module is used to receive the first signal from the first terminal device.
  • the processing module is used to determine that the communication device is located in a designated area.
  • the designated area is an area where the distance from the first terminal device is greater than or equal to the lower limit of the distance and/or less than or equal to the upper limit of the distance; or, the designated area is an area where the strength of the signal received from the first terminal device is greater than or equal to the signal The lower limit of intensity and/or the area less than or equal to the upper limit of signal intensity.
  • the sending module is used to send feedback information to the first terminal device.
  • the upper distance limit is positively correlated with the quality of service or business priority or the number of feedback resources, and/or the lower distance limit is negatively correlated with the quality of service or business priority or the number of feedback resources.
  • the upper limit of signal strength is positively correlated with the quality of service or business priority or the number of feedback resources, and/or the lower limit of signal strength is negatively correlated with the quality of service or business priority or the number of feedback resources.
  • the feedback strategy may include: sending a negative response NACK and not sending a positive response ACK indication; or sending a positive response ACK or sending a negative response NACK indication; or not sending a positive response ACK and not sending a negative response NACK indication; or, sending Channel state information CSI less than the first threshold and channel state information CSI greater than or equal to the first threshold is not sent; or, channel state information CSI is sent; or, channel state information CSI is not sent.
  • the receiving module is also used to receive one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength from the first terminal device or the designated area of the base station.
  • the communication device described in the sixth aspect may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the communication device described in the sixth aspect may further include other modules, such as a storage module, which is not limited in this application.
  • a communication device is provided.
  • the communication device is applied to the first terminal device.
  • the communication device includes: a sending module and a processing module.
  • the sending module is used to send out the location information of the communication device.
  • the location information of the communication device may be the location information determined by the processing module according to the information provided by the GNSS, the location information may be the absolute coordinates of the location of the communication device, such as latitude and longitude, or it may be a certain location where the communication device is located.
  • the sending module is also used to carry the longitude and/or latitude of the communication device in radio resource control signaling, media access control signaling, main information block, system information block, or physical control information information.
  • the sending module is also used to carry the index of the area where the communication device is located in radio resource control signaling, medium access control signaling, main information block, system information block, or physical control information.
  • the sending module is also used to carry the communication device in a preset area in radio resource control signaling, media access control signaling, main information block, system information block, or physical control information. Offset in longitude and/or latitude.
  • the communication device described in the seventh aspect may further include a receiving module.
  • the receiving module is used to receive location information of other terminal equipment, so that the communication device can determine the distance between the communication device and other terminal equipment according to the location information of other terminal equipment.
  • the communication device described in the seventh aspect may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the communication device described in the seventh aspect may further include other modules, such as a storage module, which is not limited in this application.
  • a communication device is provided.
  • the communication device is applied to a second terminal device.
  • the communication device includes: a receiving module and a processing module.
  • the receiving module is used to receive the location information of the first terminal device.
  • the processing module is used to determine the location information of the communication device.
  • the processing module is further configured to determine the distance between the communication device and the first terminal device according to the location information of the first terminal device and the own location information of the communication device.
  • For the location information of the communication device reference may be made to the location information and determination method of the first terminal device in the third aspect, which will not be repeated here.
  • the receiving module is also used to receive radio resource control signaling, media access control signaling, master information block, system information block, or first terminal carried in the physical control information sent by the first terminal device. Longitude and/or latitude information of the terminal device.
  • the receiving module is also used to receive radio resource control signaling, media access control signaling, master information block, system information block, or first terminal carried in the physical control information sent by the first terminal device. Index of the region where the terminal device is located.
  • the receiving module is also used to receive radio resource control signaling, media access control signaling, master information block, system information block, or first terminal carried in the physical control information sent by the first terminal device.
  • the longitude offset and/or latitude offset of the terminal device in a preset area is also used to receive radio resource control signaling, media access control signaling, master information block, system information block, or first terminal carried in the physical control information sent by the first terminal device.
  • the communication device may further include a sending module.
  • the sending module is used to send out the position information of the communication device itself, so that other terminal equipment can determine the distance between the other terminal equipment and the communication device according to the position information of the communication device.
  • the communication device described in the eighth aspect may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the communication device described in the eighth aspect may further include other modules, such as a storage module, which is not limited in this application.
  • a communication device in a ninth aspect, includes a processor coupled with a memory.
  • the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the communication device executes the communication method described in any one of the first and second aspects, or executes The distance determination method described in any one of the third aspect and the fourth aspect may be implemented.
  • the communication device described in the ninth aspect may be the above-mentioned first terminal device, or may be a chip or a chip system provided inside the above-mentioned first terminal device.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the possible implementation manners of the first aspect and the second aspect The communication method, or execute the distance determination method described in any one of the possible implementation manners of the third aspect and the fourth aspect.
  • a readable storage medium which stores a program or instruction.
  • the program or instruction runs on a computer, the computer executes as described in any one of the first aspect and the second aspect. Or implement the distance determination method described in any one of the possible implementation manners of the third aspect and the fourth aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the application.
  • FIG. 2 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram 1 of a scenario to which the communication method provided in an embodiment of the application is applicable;
  • FIG. 5 is a second schematic diagram of a scenario to which the communication method provided in an embodiment of the application is applicable;
  • FIG. 6 is a second structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a third structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a fourth structural diagram of a communication device provided by an embodiment of this application.
  • the technical solutions of the embodiments of the application can be applied to various communication systems, such as D2D communication systems, V2X communication systems, machine type communications (MTC) systems, machine to machine (M2M) communication systems, and Internet of Vehicles Communication system, etc.
  • D2D communication systems such as D2D communication systems, V2X communication systems, machine type communications (MTC) systems, machine to machine (M2M) communication systems, and Internet of Vehicles Communication system, etc.
  • the subscript sometimes as W 1 may form a clerical error at non-target as W1, while not emphasize the difference, to express their meaning is the same.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the communication system includes multiple terminal devices, or optionally, one or more network devices.
  • the above-mentioned terminal device may be a vehicle-mounted terminal device, such as a first terminal device and a second terminal device, a roadside unit (RSU) with terminal device function, or a mobile phone used by passengers or pedestrians. , Pad and other terminal equipment.
  • the foregoing network equipment may be a base station, such as an evolved Node B (eNB) in a long term evolution (LTE) system, and a g node (g Node B, gNB) in a new radio (NR) system. ), it can also be an RSU with base station function.
  • eNB evolved Node B
  • LTE long term evolution
  • g Node B, gNB g node
  • NR new radio
  • the embodiments of the present application do not limit the type of terminal equipment and the type of network equipment.
  • the above-mentioned devices can communicate with each other, and the spectrum of the cellular link can be used for communication, or the intelligent traffic spectrum near 5.9 gigahertz (gigaherts, GHz) can be used.
  • the above-mentioned mutual communication between the devices may be based on LTE technology or NR technology communication, or based on inter-device (device-to-device, D2D) communication technology, such as V2X technology.
  • each terminal device can communicate directly on a sidelink (SL) or indirectly through a network device.
  • each terminal device may also communicate with a network device on the uplink and downlink (UL&DL).
  • the above network devices are optional. For example, if there is a base station, it is regarded as a scene with network coverage; if there is no base station, it is regarded as a scene without network coverage.
  • direct communication between multiple terminal devices on the side link can be performed based on resources dynamically configured by the network device through downlink signaling.
  • direct communication between multiple terminal devices on the side link can be based on a pre-configured resource pool.
  • the above-mentioned network device is a device that is located on the network side of the above-mentioned communication system and has a wireless transceiving function, or a chip or chip system that can be installed in the device.
  • the network equipment includes but not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • WIFI wireless fidelity
  • AP wireless relay node
  • wireless backhaul node transmission point (transmission and reception point, TRP or transmission point, TP)
  • 5G such as new radio (new radio , NR) gNB in the
  • the above-mentioned terminal device is a terminal device that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or chip system that can be installed in the terminal device.
  • the terminal equipment can also be referred to as vehicle terminal equipment, user equipment, access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, user terminal equipment, terminal equipment, wireless communication Equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in unmanned driving (self-driving), wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid (smart grid) , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices, and/or other terminal devices, which are not shown in FIG. 1.
  • the communication method provided by the embodiments of the present application may be applied to the communication device shown in FIG. 2.
  • the communication device may be a terminal device, or a chip, a chip system or other components with terminal device functions applied to a terminal device.
  • the communication device 200 may include at least one processor 201, a memory 202, and a transceiver 203.
  • the processor 201 is the control center of the communication device, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • microprocessors digital signal processors, DSP
  • FPGA field programmable gate arrays
  • the processor 201 can execute various functions of the communication device by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device may include multiple processors, such as the processor 201 and the processor 205 shown in FIG. 2.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication equipment can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compact disc, laser disc, optical disc, digital universal disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 202 may exist independently, or may be integrated with the processor 201.
  • the memory 202 is used to store a software program for executing the solution of the present application, and the processor 201 controls the execution.
  • the transceiver 203 is used for communication with other communication devices.
  • the transceiver 203 can also be used to communicate with communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and so on.
  • the transceiver 203 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the aforementioned memory 202 may store software programs or instructions.
  • the processor 201 can read and execute the software programs or instructions stored in the memory 202, so that the communication device 200 can execute the communication method shown in FIG. 3 below.
  • FIG. 3 For specific implementations, refer to the following The method embodiment will not be repeated here.
  • the structure of the communication device shown in FIG. 2 should not be regarded as a limitation on the communication device, that is, the communication device may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the aforementioned communication device 200 may sometimes be referred to as a terminal device device, a terminal device or a communication device, and it may be a general-purpose device or a special-purpose device.
  • the communication device 200 may be a vehicle-mounted terminal device, an RSU, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 2.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • FIG. 3 is a schematic flowchart of the communication method provided by an embodiment of the application. It can be applied to any terminal device in FIG. 1, such as the first terminal device in FIG. 1, or the communication device 200 shown in FIG. A terminal device, such as the direct communication of the second terminal device on the side link in Figure 1. As shown in Figure 3, the communication method includes the following steps:
  • the first terminal device sends a first signal to the second terminal device.
  • the second terminal device receives the first signal from the first terminal device.
  • the first signal includes one or more of data, control signal, and reference signal.
  • the first terminal device may send data to at least one and/or at least one type of second terminal device on the side link.
  • the at least one second terminal device may include at least one type of second terminal device as follows: there is a point-to-point service between at least one of the first terminal devices, such as a second terminal device of a unicast service, and at least one There is a single point-to-multipoint service with the first terminal device, such as a second terminal device for broadcast, multicast, or multicast services.
  • the embodiment of the present application does not limit the type and number of services of the first terminal device, and the type and number of second terminals that have the foregoing services with the first terminal device.
  • the first terminal device may send a control signal to at least one and/or at least one type of second terminal device on the side link.
  • the first terminal device may send a reference signal to at least one and/or at least one type of second terminal device on the side link.
  • the first terminal device may broadcast its own location information.
  • the location information of the first terminal device may be location information determined based on information provided by the global navigation satellite system (GNSS), and the location information may be the absolute coordinates of the location of the first terminal device, such as latitude and longitude. It may be the identifier of a certain preset area where the first terminal device is located and the position offset (also referred to as relative coordinates) of the first terminal device relative to the reference point in the preset area.
  • the preset area may be a rectangular area with a length (length) and a width (width) being L and W, respectively, and the area identifier of the preset area corresponds to the absolute coordinate of a reference point of the preset area.
  • the area identifier may be a physical cell identifier or a base station identifier or a service area identifier that the first terminal device accesses
  • the reference point may be a geometric center or vertex of the preset area.
  • the reference point of the above-mentioned rectangular area may be the intersection of the diagonals of the rectangular area, any vertex or the midpoint of any side, etc.
  • the area identification and relative coordinates of the preset area have a one-to-one correspondence with the absolute coordinates of the preset area, and the absolute coordinates of the preset area can be calculated based on the area identification and relative coordinates of the preset area.
  • the first terminal device carries the longitude and/or latitude of the first terminal device in radio resource control signaling, media access control signaling, main information block, system information block, or physical control information. information.
  • the first terminal device carries the index of the area where the first terminal device is located in radio resource control signaling, medium access control signaling, main information block, system information block, or physical control information.
  • the first terminal device carries the first terminal device in a preset area in radio resource control signaling, media access control signaling, main information block, system information block, or physical control information. Offset in longitude and/or latitude.
  • the first terminal device may also report its above-mentioned location information to a network device, such as a base station, and broadcast it by the network device.
  • a network device such as a base station
  • the second terminal device may receive the location information of the first terminal device from the first terminal device or the network device on the side link or the uplink and downlink respectively.
  • the second terminal device receives the radio resource control signaling, media access control signaling, master information block, system information block, or physical control information sent by the first terminal device or network device. Longitude and/or latitude information of the first terminal device.
  • the second terminal device receives the radio resource control signaling, media access control signaling, master information block, system information block, or physical control information sent by the first terminal device or network device. Index of the area where the first terminal device is located.
  • the second terminal device receives the radio resource control signaling, media access control signaling, master information block, system information block, or physical control information sent by the first terminal device or network device.
  • the first terminal device and/or network device may need to update the location information of the first terminal device in time.
  • a shorter update cycle such as 5 ms, 10 ms, and 20 ms, may be used to periodically broadcast the location information of the first terminal device.
  • the first terminal device learns that the distance between it and the second terminal device may change drastically such as the first terminal device is accelerating, or the direction of movement of the first terminal device drastically changes.
  • the broadcast action of the location information of the first terminal device can be triggered in real time.
  • the second terminal device determines that the second terminal device is in a designated area.
  • the above-mentioned designated area may be determined according to the distance between the second terminal device and the first terminal device, and the lower limit and/or upper limit of the distance. Among them, the upper limit of the distance is greater than the lower limit of the distance.
  • the second terminal device may calculate the distance between it and the first terminal device according to its own location information and the location information of the first terminal device, and according to the comparison result of the distance and the above-mentioned upper limit and/or lower limit of the distance, Determine which designated area you are in.
  • the location information of the first terminal device may be received from the first terminal device or network device.
  • the content and method of obtaining the location information of the second terminal device by itself can refer to the content and method of obtaining the location information of the first terminal device, which will not be repeated here.
  • the second terminal device can calculate its relationship with the second terminal device according to the following formula The distance between D(distance):
  • the latitude and longitude (X 1 , Y 1 ) of the first terminal device may occupy more signaling and resource overhead.
  • the geographic area may be divided into multiple rectangular zones with a length (length) and a width (width) of L and W, respectively.
  • the first terminal device may broadcast the rectangular area identifier (ZID) where it is located and the offset in the rectangular area, such as relative coordinates (x 1 , y 1 ).
  • the value range of the modulus value (x 1 , y 1 ) in the area is much smaller, which can reduce the signaling overhead of the first terminal device sending position information.
  • the second terminal device receives the coordinate information (x 1 , y 1 ) of the first terminal device and the rectangular area identifier ZID1, and the relative coordinates (x 2 , y 2 ) of the rectangular area 2 where it is located and the rectangular area identifier ZID2, Calculate the above distance D:
  • the reference point of the first rectangular area may also be obtained according to the area identifier of the first rectangular area where the first terminal device is located and the area identifier of the second rectangular area where the second terminal device is located. Then, calculating the distance between the second terminal device and the first terminal device is simplified to calculating the distance between the two reference points.
  • the first terminal device only needs to broadcast or report the area identifier of the rectangular area where the first terminal device is currently located when the rectangular area where it is located is changed, thereby greatly reducing signaling overhead and resource overhead.
  • the rectangular area can also be replaced with a regular hexagon area, and the reference point can be the geometric center of the regular hexagon area.
  • the second terminal device and the first terminal device are in the same rectangular area, it can be directly based on the relative coordinates (x 1 , y 1 ) of the first terminal device in the rectangular area, and the location of the second terminal device
  • the relative coordinates (x 2 ,y 2 ) in the rectangular area are calculated to obtain the above distance, namely
  • the second terminal device can also send its own location information, so that other terminal devices, such as the above-mentioned first terminal device, can determine the distance between the other terminal device and the second terminal device based on the location information of the second terminal device. The distance is not repeated here.
  • Fig. 4 is a schematic diagram of a communication scenario provided by an embodiment of the application.
  • the scene includes three designated areas in total: an inner circle area, an annular area, and an outer circle area.
  • the 3 designated areas are divided by the lower limit of the distance and the upper limit of the distance.
  • the lower limit of the distance is used to determine the inner circle radius
  • the inner circle radius is used to determine the inner circle circumference
  • the inner circle circle is used to divide the inner circle area and the annular area
  • the upper distance limit is used to determine the outer circle radius.
  • the outer circumference is used to divide the annular area and the outer area.
  • the second terminal device can determine that it is located in the aforementioned inner circle area, such as the second terminal device A in FIG. 4.
  • the second terminal device can determine that it is located in the aforementioned outer circle area, such as the second terminal device B in FIG. 4.
  • the second terminal device can determine that it is located in the above-mentioned annular area, as shown in Figure 4 Terminal equipment C.
  • the aforementioned designated area may also be determined according to the signal strength received by the second terminal device from the first terminal device, and the lower limit of signal strength and/or the upper limit of signal strength.
  • the upper limit of signal strength is greater than the lower limit of signal strength.
  • the signal strength can be the reference signal received power (RSRP) or the received signal strength indicator (RSSI) or the reference signal received quality (RSRQ) received by the second terminal device. ) May also be other technical indicators used to indicate the strength of the received signal, which is not limited in the embodiment of the present application.
  • the second terminal device may determine in which designated area it is located according to the comparison result of the signal strength received by the second terminal device from the first terminal device with the lower limit of signal strength and/or the upper limit of signal strength.
  • the three areas in the communication scenario shown in FIG. 4 may also be divided by the lower limit of signal strength and/or less than or equal to the upper limit of signal strength.
  • the signal strength upper limit is used to determine the inner circle radius
  • the inner circle radius is used to determine the inner circle circumference
  • the inner circle circumference is used to divide the inner circle area and the annular area
  • the signal strength lower limit is used to determine the outer circle radius
  • the outer circle radius is used to determine the outer circle circumference, which is used to divide the annular area and the outer circle area.
  • the second terminal device can determine that it is located in the aforementioned inner circle area, such as the second terminal device A in FIG. 4.
  • the second terminal device can determine that it is located in the outer circle area, as shown in the second terminal device B in Figure 4 .
  • the second terminal device can determine that it is located in the aforementioned ring area, as shown in Figure 4 The second terminal device C.
  • the designated area in the communication scene shown in FIG. 4 is illustrated by taking the concentric circle area as an example.
  • the designated area can also be defined by other geometric shapes.
  • Other geometric shapes can be elliptical regions, fan-shaped regions, rectangular regions, and so on.
  • an elliptical area with the first terminal device as the center and the long axis consistent with the forward and backward extension direction of the highway is adopted (for example, realized by front and rear beamforming).
  • the inner ellipse and the outer ellipse are divided into three designated areas from the inside to the outside: the inner ellipse area, the ring ellipse area and the outer ellipse area.
  • the boundary line of the designated area determined by the upper limit of signal strength and/or the lower limit of signal strength is probably not circular or elliptical.
  • the communication scenarios shown in Figs. 4 and 5 only involve 3 designated areas divided by up to 2 thresholds (distance upper and lower limits or signal strength upper and lower limits). In practical applications, the number of thresholds and the number of designated areas can be more, and will not be repeated here.
  • the above-mentioned upper and lower distance limits and signal strength upper and lower limits can also be used in combination, for example, the lower distance limit and the signal strength upper limit are used together, or the distance upper limit and the signal strength lower limit are used together.
  • the embodiment of the present application does not limit the usage of the threshold, as long as different designated areas can be distinguished.
  • the upper and lower limits of the distance and the upper and lower limits of the signal strength may be determined and broadcasted by the first terminal device, or determined and reported to the base station by the first terminal device, and then broadcasted by the base station.
  • the second terminal device can receive the upper and lower limits of the distance and the upper and lower limits of the signal strength broadcast by the first terminal device and/or the base station.
  • the upper and lower limits of the distance and the upper and lower limits of signal strength may also be determined by each terminal device according to a preset threshold determination rule. The embodiment of the present application does not limit the determination subject of the upper and lower limits of the distance and the upper and lower limits of the signal strength.
  • the following takes the ring area in the communication scenario shown in FIG. 4 as an example to describe in detail the method for determining the upper and lower limits of the distance and the method for determining the upper and lower limits of signal strength.
  • the upper limit of the distance can be determined according to the quality of service or business priority to ensure a certain quality of service and the transmission of high-priority services;
  • the lower limit of the distance can be determined according to the feedback resources or the number of feedbacks to ensure that the first terminal can obtain a certain amount of feedback. And the feedback overhead will not be too large, so that the feedback resources can be reasonably used.
  • the lower limit of the distance corresponds to the inner radius of the annular area, and the upper limit of the distance corresponds to the outer radius of the annular area.
  • the determination method can be stored in various forms such as application programs, executable scripts, configuration files, electronic forms, etc., in various terminal devices or base stations in a manner of determining the distance threshold.
  • the following rule can be used to determine the upper and lower distance limits:
  • Rule 1 The upper limit of distance is positively correlated with quality of service (QoS) or priority of service (POS) or the number of feedback resources, and/or the lower limit of distance is correlated with quality of service (QoS) or service priority or feedback The number of resources is negatively correlated.
  • the quality of service may include one or more of the following: lowest bit error rate, highest delay, lowest data rate, and so on. It is easy to understand that for services with high reliability requirements, a minimum bit error rate can be set with a small value, such as 1/10,000. For services with high data transmission delay requirements, such as online games and autonomous driving services, a small maximum delay can be set, such as 1 millisecond (milisecond, ms), 2ms. For services with higher data rate requirements, such as online video playback, a minimum data rate with a larger value can be set, such as 10 megabits per second (Mbps), 100Mbps.
  • a minimum bit error rate can be set with a small value, such as 1/10,000.
  • a small maximum delay can be set, such as 1 millisecond (milisecond, ms), 2ms.
  • a minimum data rate with a larger value can be set, such as 10 megabits per second (Mbps), 100Mbps.
  • the service priority may be a priority (ProSe per packet priority, PPPP) defined for proximity services (proximity-based services, ProSe) on a side link, and currently there are 8 priorities.
  • the feedback resource refers to radio resources that can be used to carry feedback information on the side link.
  • the wireless resource may include at least one of time domain resources, frequency domain resources, code domain resources, space domain resources, and power domain resources.
  • the frequency domain resources such as the index of the resource block RB, the number of RBs, the subchannel index, and the identification of the RB in the subchannel.
  • Time domain resources such as symbol location (including start symbol or end symbol), number of symbols, slot location (including start slot or end slot), number of slots, etc.
  • Code domain resources such as root sequence, mask, scrambling code, cyclic shift, comb tooth, etc.
  • Spatial resources such as codewords, streams, layers, number of antennas, number of antenna ports, number of antenna ports, etc.
  • Power domain resources such as power value, power range, power offset, power threshold, etc.
  • the above-mentioned wireless resource may be one or more sets of resources dynamically configured by the network device or pre-configured in the terminal device, or one or more resource pools, which is not limited in the embodiment of the present application.
  • Table 1 to Table 3 respectively show the corresponding relationship between the quality of service QoS (QoSx), the service priority PPPP (PPPPx), or the number of feedback resources (resource of feedback infomation) (FIBRx) and the distance upper limit.
  • QoSx quality of service QoS
  • PPPPx service priority PPPP
  • FIBRx resource of feedback infomation
  • the range of the annular area can be expanded outward, as shown in Table 1 and Table 2, and the upper limit of the distance is increased from R2 to R3 to achieve the purpose of expanding the annular area.
  • the lower the service quality or business priority, the lower the required communication reliability, and the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the annular area can be reduced inward, as shown in Table 1 and Table 2, the upper limit value of the distance is reduced from R3 to R2 to achieve the purpose of reducing the annular area.
  • the range of the ring area can be expanded.
  • the range of the annular area can be expanded outward, as shown in Table 3, the upper limit of the distance is increased from R2 to R3 to achieve the purpose of expanding the annular area.
  • the fewer the feedback resources the need to reduce the amount of feedback information.
  • the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the annular area can be reduced inward. As shown in Table 3, the value of the upper limit of the distance is reduced from R3 to R2 to achieve the purpose of reducing the annular area.
  • Table 4 to Table 6 respectively show the corresponding relationship between quality of service QoS (QoSx), service priority PPPP (PPPPx) or the number of feedback resources (FIBRx) and the lower limit of distance.
  • QoSx quality of service QoS
  • PPPPx service priority PPPP
  • FIBRx number of feedback resources
  • the range of the annular area can be expanded inward, as shown in Tables 4 and 5, the value of the lower limit of the distance is reduced from R6 to R5 to achieve the purpose of expanding the annular area.
  • the lower the service quality or business priority, the lower the required communication reliability, and the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the annular area can be reduced outwards, as shown in Table 4 and Table 5, the lower limit of the distance is increased from R4 to R5 to achieve the purpose of reducing the annular area.
  • the range of the ring area can be expanded.
  • the range of the annular area can be expanded inward, as shown in Table 6, the value of the lower limit of the distance is reduced from R5 to R4 to achieve the purpose of expanding the annular area.
  • the fewer the feedback resources the need to reduce the amount of feedback information.
  • the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the annular area can be reduced outwards. As shown in Table 6, the lower limit of the distance is increased from R4 to R5 to achieve the purpose of reducing the annular area.
  • the above-mentioned service quality QoS may be represented by different technical indicators, such as bit error rate, delay, data rate, etc., and the value of different technical indicators is related to the level of service quality. It may be different. For example, for bit error rate and delay, the smaller the value, the higher the quality of service, and for the data rate, the larger the value, the higher the quality of service.
  • the above business priority may also be expressed in different forms.
  • the correspondence between the magnitude of the level and the level of service quality may also be different.
  • the upper limit of the distance and/or the lower limit of the distance may also be determined according to feedback information, which will be described in detail below.
  • the feedback information may include positive feedback ACK or negative feedback NACK, and/or channel state information CSI.
  • CSI includes at least one of the following information: channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), reference signal received power (reference signal received) power, RSRP), reference signal received quality (RSRQ), path loss Pathloss, listening reference signal SRS resource indicator (sounding reference signal resource indicator, SRI), channel state information reference signal CSI-RS resource indicator ( channel state information-reference signal resource indicator (CRI), received signal strength indicator (RSSI), precoding type indicator (PTI), vehicle moving direction, interference conditions, etc.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank indicator
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • path loss Pathloss path loss Pathloss
  • listening reference signal SRS resource indicator sounding reference signal resource indicator, SRI
  • channel state information reference signal CSI-RS resource indicator channel state information-reference signal resource indicator (CRI), received signal strength indicator (RSSI), precoding type indicator (PTI), vehicle moving direction, interference conditions, etc.
  • the CSI may include at least one of the foregoing broadband CSI and/or subband CSI.
  • the CSI may include at least one of the foregoing periodic CSI, semi-persistent CSI, or aperiodic CSI.
  • the CSI may include at least one of the foregoing layer one CSI and/or layer three CSI.
  • the upper limit of distance is negatively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold, and/or the lower limit of distance is negatively correlated with the number of negative feedback NACKs or the channel state less than or equal to the first threshold
  • the number of information CSI is positively correlated.
  • the number of negative feedback NACKs may be: the number of time slots in which the first terminal device receives negative feedback NACKs within the first specified time period.
  • the first designated time period is a plurality of time slots
  • the number of negative feedback NACKs may be: the number of time slots for which the first terminal device receives a negative acknowledgement NACK within the first designated time period.
  • the multiple time slots may be multiple consecutive time slots, or a time window (time window) including multiple consecutive time slots, such as 10 ms, 50 ms, etc., which is not limited in the embodiment of the present application.
  • the first threshold may be pre-configured, or the base station or the first terminal device may use radio resource control signaling, media access control signaling, master information block, system information block, or physical Control information for configuration.
  • the time slot in which the negative feedback NACK is received above refers to the time slot in which at least one negative feedback NACK is received. That is to say, as long as the negative feedback NACK is received in this time slot, the time slot can be regarded as the time slot in which the negative feedback NACK is received. Only when the HARQ responses received in a time slot are all positive feedback ACKs, the time slot party can be regarded as a time slot that receives positive feedback ACKs.
  • Table 7 and Table 8 respectively show the corresponding relationship between the number of negative feedback NACKs (NACKx) or the number of channel state information CSI (CSIx) less than or equal to the first threshold and the distance upper limit. Among them, the greater the value of "x", the greater the number.
  • the more negative feedback NACK or channel state indication CSI less than or equal to the first threshold the greater the number of second terminal devices that actually send feedback information, and the greater the distance upper limit value.
  • the first terminal device even if the first terminal device only receives a negative feedback NACK, it needs to retransmit the data. In other words, more than one negative feedback NACK can be regarded as waste. Therefore, in order to reduce the amount of feedback information and reduce signaling consumption and resource consumption, it is necessary to reduce the scope of the ring area.
  • the range of the annular area can be reduced inward, as shown in Tables 7 and 8, the upper limit value of the distance is reduced from R3 to R2 to achieve the purpose of reducing the annular area.
  • Table 9 and Table 10 respectively show the correspondence between the number of negative feedback NACKs (NACKx) or the number of channel state information CSI (CSIx) less than or equal to the first threshold and the distance lower limit. Among them, the greater the value of "x", the greater the number.
  • the more negative feedback NACK or channel state information CSI less than or equal to the first threshold the greater the number of second terminal devices that actually send feedback information, and the lower the distance lower limit value.
  • the first terminal device even if the first terminal device only receives a negative feedback NACK, it needs to retransmit the data. In other words, more than one negative feedback NACK can be regarded as waste. Therefore, in order to reduce the amount of feedback information and reduce signaling consumption and resource consumption, the scope of the ring area needs to be reduced.
  • the range of the annular area can be reduced outwards, as shown in Table 9 and Table 10, the value of the lower limit of the distance is increased from R4 to R5 to achieve the purpose of reducing the annular area.
  • CSI less than or equal to the first threshold (from less to more) Lower limit of distance CSI1 R4 CSI2(CSI2>CSI1) R5(R5 ⁇ R4) CSI3(CSI3>CSI2) R6(R6 ⁇ R5) ... ...
  • rule three can be used to determine the upper and lower distance limits:
  • Rule 3 The upper limit of the distance is positively correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold, and/or the lower limit of distance is related to the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold.
  • Positive correlation may be: the number of positive feedback ACKs may be: the HARQ responses received by the first terminal device within the second designated time period are all the number of time slots for positive feedback ACKs.
  • the second specified time period may generally include multiple time slots, such as multiple consecutive time slots or a time window containing multiple consecutive time slots, such as 10 ms, 50 ms, etc., which is not limited in the embodiment of the present application .
  • the second threshold is greater than the foregoing first threshold.
  • the second threshold may be pre-configured, or the base station or the first terminal device may use radio resource control signaling, media access control signaling, master information block, system information block, or physical Control information for configuration.
  • Table 11-Table 12, and Table 13-Table 14 respectively show the correspondence between the number of positive feedback ACKs (ACKx) or the number of channel state information CSI (CSIx) that are greater than or equal to the second threshold and the distance upper limit relationship. Among them, the greater the value of "x", the greater the number.
  • the more positive feedback ACK or the channel state indication CSI greater than or equal to the second threshold the better the channel condition in the ring area and the better the quality of the corresponding data transmission, such as no error.
  • the setting of the ring-shaped area may be unreasonable.
  • the distance between the ring-shaped area and the first terminal device is too close, and the feedback information sent by the second terminal device in the ring-shaped area has no reference value.
  • the annular area can be moved outward as a whole, that is, both the lower limit and the upper limit of the distance can be increased, as shown in Table 11 and Table 12, and the upper limit of the distance can be increased from R1 to R2, and/or as shown in Table 13 and Table 14. Show, increase the lower limit of distance from R5 to R6, in order to improve the reliability of direct communication between terminal devices.
  • CSI greater than or equal to the second threshold (from less to more) Lower limit of distance CSI1 R4 CSI2(CSI2>CSI1) R5(R5>R4) CSI3(CSI3>CSI2) R6(R6>R5) ... ...
  • the following takes the ring area in the communication scene shown in FIG. 4 as an example to describe in detail the method for determining the upper and lower limits of signal strength.
  • the upper limit of signal strength can be determined according to the feedback resource or the number of feedbacks to ensure that the first terminal can obtain a certain amount of feedback, and the feedback overhead will not be too large, so that the feedback resources can be reasonably used;
  • the lower limit of signal strength can be based on service quality or business Priority determination is used to ensure certain service quality and transmission of high-priority services.
  • the upper limit of signal strength corresponds to the inner radius of the annular area
  • the lower limit of signal strength corresponds to the outer radius of the annular area.
  • the determination method can be stored in various terminal devices or base stations in various forms such as application programs, executable scripts, configuration files, electronic tables, etc., in a manner of determining a signal strength threshold.
  • the following rule four can be used to determine the upper limit of signal strength and the lower limit of signal strength:
  • Rule 4 The upper limit of signal strength is positively correlated with the number of quality of service QoS or business priority POS or feedback resources, and/or the lower limit of signal strength is negatively correlated with the number of quality of service QoS or business priority or feedback resources.
  • Table 15 to Table 17 respectively show the corresponding relationship between quality of service QoS (QoSx), service priority PPPP (PPPPx) or the number of feedback resources (FIBRx) and the upper limit of signal strength.
  • QoSx quality of service QoS
  • PPPPx service priority PPPP
  • FIBRx number of feedback resources
  • the range of the ring area can be expanded inward, as shown in Table 15 and Table 16, and the upper limit of the signal strength is increased from RSRP2 to RSRP3 to achieve the purpose of expanding the ring area.
  • the lower the service quality or business priority the lower the required communication reliability, and the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the ring area can be reduced outwards, as shown in Table 15 and Table 16, the upper limit value of the signal strength is reduced from RSRP3 to RSRP2 to achieve the purpose of reducing the ring area.
  • the range of the ring area can be expanded.
  • the range of the ring-shaped area can be expanded inward, as shown in Table 17, the upper limit of signal strength is increased from RSRP2 to RSRP3 to achieve the purpose of expanding the ring-shaped area.
  • the fewer the feedback resources the need to reduce the amount of feedback information.
  • the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the ring-shaped area can be reduced outwards. As shown in Table 17, the value of the upper limit of signal strength is reduced from RSRP3 to RSRP2 to achieve the purpose of reducing the ring-shaped area.
  • Table 18-20 respectively show the corresponding relationship between quality of service QoS (QoSx), service priority PPPP (PPPPx) or the number of feedback resources (FIBRx) and the lower limit of signal strength.
  • QoSx quality of service QoS
  • PPPPx service priority PPPP
  • FIBRx number of feedback resources
  • the range of the annular area can be expanded outward, as shown in Table 18 and Table 19, the upper limit of the signal strength value is reduced from RSRP5 to RSRP6 to achieve the purpose of expanding the annular area.
  • the lower the service quality or business priority the lower the required communication reliability, and the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the ring area can be reduced inward, as shown in Table 18 and Table 19, and the lower limit of signal strength is increased from RSRP5 to RSRP4 to achieve the purpose of reducing the ring area.
  • the range of the ring area can be expanded.
  • the range of the annular area can be expanded outwards, as shown in Table 20, the value of the lower limit of signal strength is reduced from RSRP4 to RSRP5 to achieve the purpose of expanding the annular area.
  • the fewer the feedback resources the need to reduce the amount of feedback information.
  • the number of second terminal devices that can send feedback information can be appropriately reduced to save the resource consumption of feedback information.
  • the range of the ring area can be reduced inward, as shown in Table 20, the lower limit of signal strength is increased from RSRP6 to RSRP5 to achieve the purpose of reducing the ring area.
  • the above-mentioned service quality QoS may be represented by different technical indicators, such as bit error rate, delay, data rate, etc., and the value of different technical indicators is related to the level of service quality. It may be different. For example, for bit error rate and delay, the smaller the value, the higher the quality of service, and for the data rate, the larger the value, the higher the quality of service.
  • the above business priority may also be expressed in different forms.
  • the correspondence between the magnitude of the level and the level of service quality may also be different.
  • the upper limit of signal strength and/or the lower limit of signal strength may also be determined according to feedback information, which will be described in detail below.
  • the feedback information may include positive feedback ACK or negative feedback NACK, and/or channel state information CSI.
  • rule five can be used to determine the upper limit of signal strength and the lower limit of signal strength:
  • the signal strength upper limit is negatively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold, and/or the signal strength lower limit and the number of negative feedback NACKs are less than or equal to the first threshold
  • the number of channel state information CSI is positively correlated.
  • the number of negative feedback NACKs may be: the number of time slots in which the first terminal device receives negative feedback NACKs within the first designated time period.
  • the first designated time period may generally include multiple time slots, such as multiple consecutive time slots, or a time window including multiple consecutive time slots, such as 10 ms, 50 ms, etc., in the embodiment of the present application There is no restriction on this.
  • the time slot in which the negative feedback NACK is received above refers to the time slot in which at least one negative feedback NACK is received. That is to say, as long as the negative feedback NACK is received in this time slot, the time slot can be regarded as the time slot in which the negative feedback NACK is received. Only when the HARQ responses received in a time slot are all positive feedback ACKs, the time slot party can be regarded as a time slot that receives positive feedback ACKs.
  • Table 21 and Table 22 respectively show the correspondence between the number of negative feedback NACKs (NACKx) or the number of channel state information CSI (CSIx) less than or equal to the first threshold and the upper limit of signal strength. Among them, the greater the value of "x", the greater the number.
  • CSI less than or equal to the first threshold from less to more
  • the more negative feedback NACK or channel state indication CSI less than or equal to the first threshold the greater the number of second terminal devices that actually send feedback information, and the greater the upper limit of signal strength.
  • the first terminal device even if the first terminal device only receives a negative feedback NACK, it needs to retransmit the data. In other words, more than one negative feedback NACK can be regarded as waste. Therefore, in order to reduce the amount of feedback information and reduce signaling consumption and resource consumption, the scope of the ring area needs to be reduced.
  • the range of the ring area can be reduced outwards, as shown in Table 21 and Table 22, the upper limit value of the signal strength is reduced from RSRP3 to RSRP2 to achieve the purpose of reducing the ring area.
  • Table 23 and Table 24 respectively show the corresponding relationship between the number of negative feedback NACKs (NACKx) or the number of channel state information CSI (CSIx) less than or equal to the first threshold and the lower limit of signal strength. Among them, the greater the value of "x", the greater the number.
  • the more negative feedback NACK or the more channel state information CSI less than or equal to the first threshold the greater the number of second terminal devices that actually send feedback information, and the lower the signal strength lower limit value.
  • the first terminal device even if the first terminal device only receives a negative feedback NACK, it needs to retransmit the data. In other words, more than one negative feedback NACK can be regarded as waste. Therefore, in order to reduce the amount of feedback information and reduce signaling consumption and resource consumption, the scope of the ring area needs to be reduced.
  • the range of the ring-shaped area can be reduced inward, as shown in Table 23 and Table 24, and the value of the signal strength lower limit is increased from RSRP4 to RSRP5 to achieve the purpose of reducing the ring-shaped area.
  • NACK1 RSRP4 NACK2(NACK2>NACK1) RSRP5 (RSRP5>RSRP4) NACK3(NACK3>NACK2) RSRP6(RSRP6>RSRP5) ... ...
  • CSI less than or equal to the first threshold from less to more
  • the following rule 6 can be used to determine the upper limit of signal strength and the lower limit of signal strength:
  • the upper limit of signal strength is positively correlated with the number of acknowledgement ACKs or the number of CSI information greater than or equal to the second threshold, and/or the lower limit of signal strength is positively correlated with the number of acknowledgement ACKs or the CSI information greater than or equal to the second threshold
  • the number is positively correlated.
  • the number of positive feedback ACKs may be: the HARQ responses received by the first terminal device within the second designated time period are all the number of time slots for positive feedback ACKs.
  • the second specified time period may generally include multiple time slots, such as multiple consecutive time slots or a time window containing multiple consecutive time slots, such as 10 ms, 50 ms, etc., which is not limited in the embodiment of the present application .
  • the second threshold is greater than the foregoing first threshold.
  • Table 25-Table 26, and Table 27-Table 28 respectively show the number of positive feedback ACKs (ACKx) or the number of channel state information CSI (CSIx) greater than or equal to the second threshold and the upper limit of signal strength. Correspondence. Among them, the greater the value of "x", the greater the number.
  • the more positive feedback ACK or the channel state indication CSI greater than or equal to the second threshold the better the channel conditions in the ring area and the better the quality of the corresponding data transmission, such as no error. That is, the setting of the annular area may be unreasonable, for example, the distance between the annular area and the first terminal device is too close, and the feedback information sent by the second terminal device in the annular area has no reference value.
  • the second terminal device in the outer ring area is not allowed to send feedback information, and the second terminal device in the outer ring area fails to receive data, the first terminal device will not retransmit the data, which will eventually lead to The second terminal device in the ring area has no chance to receive data again, resulting in a decrease in the reliability of direct communication between terminal devices.
  • the ring area can be moved outward as a whole, that is, the lower limit of signal strength and the upper limit of signal strength can be reduced at the same time, as shown in Table 11 and Table 12, the upper limit of signal strength can be reduced from RSRP2 to RSRP3, and/or as shown in Table As shown in Table 28, the lower limit of signal strength is reduced from RSRP4 to RSRP5 to improve the reliability of direct communication between terminal devices.
  • CSI greater than or equal to the second threshold (from less to more) Maximum signal strength CSI1 RSRP1 CSI2(CSI2>CSI1) RSRP2(RSRP2 ⁇ RSRP1) CSI3(CSI3>CSI2) RSRP3(RSRP3 ⁇ RSRP2) ... ...
  • CSI greater than or equal to the second threshold (from less to more) Lower limit of signal strength CSI1 RSRP4 CSI2(CSI2>CSI1) RSRP5 (RSRP5 ⁇ RSRP4) CSI3(CSI3>CSI2) RSRP6(RSRP6 ⁇ RSRP5) ... ...
  • the second terminal device sends feedback information to the first terminal device.
  • the first terminal device receives feedback information from at least one second terminal device.
  • the feedback information sent by the second terminal device to the first terminal device is HARQ information. If the HARQ information fed back by the second terminal device is NACK information, the first terminal device retransmits the data, otherwise the data is not retransmitted.
  • the first terminal device receives HARQ information fed back by multiple second terminal devices, as long as at least one second terminal device feeds back NACK in the ring area, the first terminal device needs to retransmit the data.
  • the feedback information sent by the second terminal device to the first terminal device is channel state information CSI.
  • This control signal is used to trigger aperiodic CSI.
  • the first terminal device determines the modulation and coding scheme (MCS) of the data according to the CSI.
  • MCS modulation and coding scheme
  • the feedback information sent by the second terminal device to the first terminal device is channel state information CSI.
  • the second terminal obtains the channel state information CSI by measuring the reference signal.
  • the first terminal device determines the MCS of the data according to the CSI.
  • the first terminal device may determine the MCS of the data according to the worst CSI.
  • the feedback strategy may include one or more of the following: sending a negative acknowledgement NACK and not sending a positive acknowledgement ACK indication; alternatively, sending a positive acknowledgement ACK or sending a negative acknowledgement NACK indication; or, not sending a positive acknowledgement ACK and not sending a negative acknowledgement NACK indication; or, send channel state information CSI less than the first threshold and not send channel state information CSI greater than or equal to the first threshold; or send channel state information CSI; or, do not send channel state information CSI.
  • the feedback strategy can also be different feedback modes, such as periodic feedback, aperiodic feedback, semi-continuous feedback, etc.
  • the feedback strategy can be a different feedback format, such as using a long feedback channel or a short feedback channel, or using a large-bit feedback channel or a small-bit feedback channel.
  • the following describes the feedback strategy in detail by taking the inner circle area, the ring area and the outer circle area in FIG. 4 as examples.
  • the second terminal in the inner circle area has a higher success rate in receiving the signal sent by the first terminal. high. Therefore, the second terminal in the inner circle area has a higher probability of feeding back an acknowledgement (ACK) and/or good channel state information (CSI), which is of little reference value for the first terminal device to adjust the data transmission strategy .
  • ACK acknowledgement
  • CSI channel state information
  • the second terminal equipment in the inner circle area can be prohibited from feeding back positive acknowledgement ACK and channel state information CSI greater than or equal to the second threshold, that is, only the second terminal equipment in the inner circle area is allowed to feedback negative acknowledgement NACK and less than or equal to the first
  • a threshold channel state information CSI can effectively reduce the amount of feedback information sent by the second terminal device in the inner circle area, and reduce the resource consumption and signaling consumption of transmission feedback information.
  • the second terminal in the outer circle area has a higher success rate in receiving the signal sent by the first terminal. low. Therefore, the second terminal in the outer circle area has a higher probability of feeding back a negative acknowledgement (NACK) and/or bad channel state information (CSI).
  • NACK negative acknowledgement
  • CSI bad channel state information
  • the reference value is the same Not big.
  • the second terminal device in the outer circle area can be prohibited from sending feedback information, so that the amount of feedback information sent by the second terminal device in the outer circle area can be effectively reduced, and the resource consumption and signaling consumption of transmitting feedback information can be reduced.
  • the distance and/or signal strength between the ring area and the first terminal device is between the inner circle area and the outer circle area
  • the second The success rate of the two terminals receiving the signal sent by the first terminal is also between the inner circle area and the outer circle area, and the ring area is more sensitive to changes in wireless channel conditions.
  • the second terminal device in the ring area can be allowed to send multiple types of feedback information, such as the above-mentioned positive acknowledgement ACK or negative acknowledgement NACK, and various values of channel state information CSI.
  • the first terminal device and/or the network device may adjust one or more of the upper limit of the distance, the lower limit of the distance, the upper limit of signal strength, and the lower limit of signal strength of the designated area in real time according to Rule 1 to Rule 6 in S302. Specifically, it can include:
  • the above-mentioned communication method may further include the following steps: the first terminal device sends to at least one second terminal device one of the upper limit of the distance, the lower limit of the distance, the upper limit of signal strength, and the lower limit of signal strength, or Multiple.
  • the second terminal device receives one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength from the designated area of the first terminal device.
  • the first terminal device may send one of the upper limit of distance, lower limit of distance, upper limit of signal strength, and lower limit of signal strength through radio resource control signaling, media access control signaling, master information block, system information block, or physical control information. Multiple.
  • the above-mentioned communication method may further include the following step: the first terminal device reports one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength of the designated area to the network device. Then, the network device broadcasts the above-mentioned various thresholds.
  • the second terminal device may receive one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength from the designated area of the network device.
  • the above-mentioned communication method may further include the following step: the first terminal device reports to the network device a statistical result of the feedback information received by the first terminal device from the at least one second terminal device. Then, the network device determines one or more of the upper limit of the distance, the lower limit of the distance, the upper limit of the signal strength, and the lower limit of the signal strength of the designated area according to the statistical result of the aforementioned feedback information, and broadcasts the aforementioned various thresholds.
  • the first terminal device and the second terminal device can receive one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength from the designated area of the network device.
  • the first terminal device receives the feedback information, and the first terminal device may also adjust the data transmission strategy according to the feedback information, such as retransmission, adjustment of transmission power, resources, etc. Therefore, in a possible design method, the aforementioned communication method may further include the following step: the first terminal device adjusts the data transmission strategy according to the feedback information.
  • the above-mentioned first terminal device adjusts the data transmission strategy according to the feedback information, which may include the following steps: if the feedback information includes a negative acknowledgement NACK, the first terminal device resends the data. Or, if the first terminal device does not receive any feedback information within the second specified time period, the first terminal device resends the data.
  • the above-mentioned first terminal device adjusts the data transmission strategy according to the feedback information, and may also include the following steps: the first terminal device adjusts the new data transmission strategy according to the feedback information, such as increasing or decreasing the transmission power, such as increasing, Reduce and change data transmission resources, increase/decrease code rate, etc.
  • the first terminal device is the sender and at least one second terminal device is the receiver as an example.
  • the above-mentioned roles of the sender and receiver can be dynamically changed.
  • the first terminal device may directly communicate with at least two second terminal devices, such as the second terminal device A, the second terminal device B, and the second terminal device C in FIG. 4 and FIG. 5, but for different first terminal devices.
  • the role of the first terminal device can be different.
  • the first terminal device is the sender
  • the first terminal device C is the first terminal device is the receiver .
  • the embodiment of this application does not limit the sending/receiving role of a certain terminal device in the communication between different terminal devices.
  • the first terminal device after the first terminal device sends the first signal, it only receives the feedback information sent by the second terminal device in the designated area determined by the upper and lower limits of the distance or the upper and lower limits of the signal strength, such as a ring-shaped area.
  • the feedback information sent by the terminal device that communicates with the first terminal device outside the designated area can solve the problem that the feedback information sent by the terminal device that is too close to the first terminal device has no reference meaning but occupies a lot of feedback resources, thereby reducing feedback
  • the amount of information and the amount of feedback resources occupied by feedback information can improve resource utilization and communication efficiency.
  • the communication method of the embodiment of the present application is described in detail above with reference to FIGS. 3 to 5 and Table 1 to Table 28.
  • the communication device capable of executing the communication method described in the method embodiment of the present application will be described in detail below with reference to FIGS. 6-8.
  • Fig. 6 is a schematic structural diagram of another communication device provided by an embodiment of the application, which is used to perform the functions performed by the first terminal device in the foregoing method embodiment.
  • the communication device 600 includes: a sending module 601 and a receiving module 602.
  • the sending module 601 is used to send the first signal.
  • the sending module 601 is also used to send out the location information of the communication device 600, so that other terminal devices, such as a second terminal device, can determine the communication between the other terminal device and the communication device 600 according to the location information of the communication device 600. distance.
  • other terminal devices such as a second terminal device
  • the sending module 601 is also used to send out the location information of the communication device 600, so that other terminal devices, such as a second terminal device, can determine the communication between the other terminal device and the communication device 600 according to the location information of the communication device 600. distance.
  • the receiving module 602 is configured to receive feedback information from at least one second terminal device in the designated area.
  • the designated area is the area where the distance from the first terminal device is greater than or equal to the lower limit of the distance and/or less than or equal to the upper limit of the distance; or, the designated area is the area where the strength of the signal received from the first terminal device is greater than or The area equal to the lower limit of signal strength and/or less than or equal to the upper limit of signal strength.
  • the upper distance limit is positively correlated with the quality of service QoS or service priority or the number of feedback resources, and/or the lower distance limit is negatively correlated with the quality of service QoS or service priority or the number of feedback resources.
  • the feedback information may include negative feedback NACK, and/or channel state information CSI.
  • the upper limit of the distance is negatively related to the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period, and/or the distance
  • the lower limit is positively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period.
  • the feedback information may include an acknowledgement ACK, and/or channel state information CSI.
  • the upper distance limit is positively correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold
  • the lower distance limit is correlated with the number of acknowledgement ACKs or the quantity of CSI information greater than or equal to the second threshold Positive correlation.
  • the upper limit of signal strength is positively correlated with the quality of service QoS or service priority or the number of feedback resources, and/or the lower limit of signal strength is negatively correlated with the quality of service QoS or service priority or the number of feedback resources.
  • the feedback information may include negative feedback NACK, and/or channel state information CSI.
  • the upper limit of signal strength is negatively related to the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period, and/or, The signal strength lower limit is positively correlated with the number of negative feedback NACKs or the number of channel state information CSI less than or equal to the first threshold or the number of time slots in which negative feedback NACKs are received in the first specified time period.
  • the number of negative feedback NACKs may be: the number of time slots in which the first terminal device receives negative feedback NACKs within the first designated time period.
  • the number of negative feedback NACKs may be: the number of time slots for which the first terminal device receives a negative acknowledgement NACK within the first designated time period.
  • the multiple time slots may be multiple consecutive time slots, or a time window (time window) including multiple consecutive time slots, such as 10 ms, 50 ms, etc., which is not limited in the embodiment of the present application.
  • the feedback information may include an acknowledgement ACK, and/or channel state information CSI.
  • the upper limit of signal strength is negatively related to the number of ACKs or the number of CSI information greater than or equal to the second threshold
  • the lower limit of signal strength is to the number of ACKs or CSI information greater than or equal to the second threshold The number is negatively correlated.
  • the feedback strategy may include: sending a negative response NACK and not sending a positive response ACK indication; or sending a positive response ACK or sending a negative response NACK indication; or not sending a positive response ACK and not sending a negative response NACK indication; or, sending Channel state information CSI less than the first threshold and channel state information CSI greater than or equal to the first threshold is not sent; or, channel state information CSI is sent; or, channel state information CSI is not sent.
  • the sending module 601 is also used to send one or more of the upper limit of the distance, the lower limit of the distance, the upper limit of the signal strength, and the lower limit of the signal strength of the designated area.
  • the communication device 600 may further include: a processing module 603. Among them, the processing module 603 is configured to adjust the data sending strategy according to the feedback information.
  • the processing module 603 is further configured to control the sending module 601 to resend the data if the feedback information includes NACK. Or, optionally, the processing module 603 is further configured to control the sending module 601 to resend the data if the receiving module 602 does not receive any feedback information within the second specified time period.
  • the communication device 600 may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the aforementioned communication device 600 may further include a storage module (not shown in FIGS. 6 and 7).
  • the storage module is used to store instructions
  • the processing module 603 is used to execute instructions stored in the storage module, so that the processing module 603 executes the communication method described in the foregoing method embodiment.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the application, which is used to perform the functions performed by the second terminal device in the foregoing method embodiment.
  • the communication device 800 includes: a receiving module 801, a sending module 802, and a processing module 803.
  • the receiving module 801 is configured to receive the first signal from the first terminal device.
  • the receiving module 801 is further configured to receive the location information of the first terminal device from the first terminal device or the network device.
  • the processing module 803 is further configured to determine the distance between the first terminal device and the communication device 800 according to the location information of the communication device 800 itself and the location information of the first terminal device.
  • the content of the location information, the receiving mode, and the distance determining method can refer to the foregoing method embodiment, which will not be repeated here.
  • the processing module 803 is used to determine that the communication device is located in a designated area.
  • the designated area is an area where the distance from the first terminal device is greater than or equal to the lower limit of the distance and/or less than or equal to the upper limit of the distance; or, the designated area is an area where the strength of the signal received from the first terminal device is greater than or equal to the signal The lower limit of intensity and/or the area less than or equal to the upper limit of signal intensity.
  • the sending module 802 is configured to send feedback information to the first terminal device.
  • the upper distance limit is positively correlated with the quality of service QoS or service priority or the number of feedback resources, and/or the lower distance limit is negatively correlated with the quality of service QoS or service priority or the number of feedback resources.
  • the upper limit of signal strength is positively correlated with the quality of service QoS or service priority or the number of feedback resources, and/or the lower limit of signal strength is negatively correlated with the quality of service QoS or service priority or the number of feedback resources.
  • the feedback strategy may include: sending a negative response NACK and not sending a positive response ACK indication; or sending a positive response ACK or sending a negative response NACK indication; or not sending a positive response ACK and not sending a negative response NACK indication; or, sending Channel state information CSI less than the first threshold and channel state information CSI greater than or equal to the first threshold is not sent; or, channel state information CSI is sent; or, channel state information CSI is not sent.
  • the receiving module 801 is further configured to receive one or more of the upper limit of distance, the lower limit of distance, the upper limit of signal strength, and the lower limit of signal strength from the first terminal device or the designated area of the base station.
  • the communication device 800 may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • the aforementioned communication device 800 may further include a storage module (not shown in FIG. 8).
  • the storage module is used to store instructions
  • the processing module 803 is used to execute instructions stored in the storage module, so that the processing module 803 executes the communication method or the distance determination method described in the foregoing method embodiment.
  • An embodiment of the present application provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the communication method or the distance determination method described in the foregoing method embodiment.
  • the embodiment of the present application provides a readable storage medium that stores a program or instruction, and when the program or instruction runs on a computer, the computer executes the communication method or the distance determination method described in the foregoing method embodiment.
  • the processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integrated Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish different objects, or used to distinguish different processing of the same object, instead of describing a specific order of objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、距离确定方法及装置,能够减少反馈信息的数量和反馈信息占用的反馈资源数量,能够提高资源利用率和通信效率。该方法包括:第一终端设备发送第一信号,第二终端设备确定自身位置是否为指定区域,若是,则发送反馈信息,否则不发送反馈信息或少发送反馈信息。其中,指定区域为与第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。可以适用于终端设备间在侧行链路上的通信,如V2X通信、D2D通信等。

Description

通信方法、距离确定方法及装置
本申请要求于2019年04月28日提交国家知识产权局、申请号为201910351476.2、申请名称为“通信方法、距离确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法、距离确定方法及装置。
背景技术
目前,基于第五代(5th generation,5G)移动通信技术的设备间(device to device,D2D)通信,如基于新空口(new radio,NR)技术的车到任意物体(vehicle to everything,V2X)通信,引入侧行链路(sidelink,SL)的反馈机制。例如,发送终端设备根据以发送终端设备为圆心的圆形区域内的接收终端设备的反馈信息,如混合自动重传请求(hybrid automatic repeat request,HARQ)的应答信息、侧行链路的信道状态信息(channel state infomation,CSI)等,调整发送终端设备与接收终端设备之间的通信策略,如资源调度策略、数据发送策略等。
当上述以发送终端设备为圆心的圆形区域内的接收终端设备的数量较大时,需要传输大量的反馈信息,且为了确保传输反馈信息的可靠性,通常还需要为不同的接收终端设备配置不同的反馈资源。然而,信道条件良好和/或距离发送终端设备较近的接收终端设备的反馈信息,以及信道条件恶劣和/或距离发送终端设备较远的接收终端设备的反馈信息通常没有参考价值。并且,对于信道条件类似的多个接收终端设备,反馈信息的内容大同小异,只需要一部分反馈信息即可调整通信策略,即此时的大部分反馈信息可以视为冗余信息。上述没有参考价值的反馈信息和冗余反馈信息通常会占用大量的反馈资源,导致可用于传输数据的资源变少,从而对发送终端设备与接收终端设备之间的设备间通信造成不良影响。
发明内容
本申请提供一种通信方法、距离确定方法及装置,能够减少反馈信息的数量和反馈信息占用的反馈资源数量,能够提高资源利用率和通信效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该通信方法应用于第一终端设备。该通信方法包括:第一终端设备发送第一信号。然后,第一终端设备接收来自指定区域内的至少一个第二终端设备的反馈信息。其中,指定区域为与第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。
本申请提供的通信方法,第一终端设备在发送第一信号后,只接收由距离上下限或信号强度上下限确定的指定区域,如环形区域的第二终端设备发送的反馈信息,而 不接收指定区域之外与第一终端设备通信的终端设备发送的反馈信息,可以解决与第一终端设备距离太近的终端设备发送的反馈信息没有参考意义,但占用大量反馈资源的问题,从而减少反馈信息的数量和反馈信息占用的反馈资源数量,能够提高资源利用率和通信效率。
在一种可能的设计方法中,距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,距离下限与服务质量或业务优先级或反馈资源的数量负相关。
可选地,反馈信息可以包括否定反馈NACK,和/或信道状态信息CSI。相应地,距离上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量负相关,和/或,距离下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量正相关。
可选地,反馈信息可以包括肯定应答ACK,和/或信道状态信息CSI。相应地,距离上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关,和/或,距离下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关。
在一种可能的设计方法中,信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
可选地,反馈信息可以包括否定反馈NACK,和/或信道状态信息CSI。相应地,信号强度上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量负相关,和/或,信号强度下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量正相关。其中,第一指定时间段可以为多个时隙、一个或多个无线帧、或者一段指定时间,如50ms、100ms等。
进一步地,第一指定时间段为一个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定反馈NACK的时隙的数量。或者,第一指定时间段为多个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定应答NACK的时隙的数量。其中,所述多个时隙可以为多个连续时隙,或包含有多个连续时隙的时间窗(time window),如10ms、50ms等,本申请实施例对此不做限定。
可选地,反馈信息可以包括肯定应答ACK,和/或信道状态信息CSI。相应地,信号强度上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量负相关,和/或,信号强度下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量负相关。
在一种可能的设计方法中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态 信息CSI;或者,不发送信道状态信息CSI。
在一种可能的设计方法中,第一方面所述的通信方法还可以包括:第一终端设备发送指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。第一终端设备可以通过无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息发送所述距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
在一种可能的设计方法中,第一方面所述的通信方法还可以包括:第一终端设备根据反馈信息,调整数据发送策略。
可选地,上述第一终端设备根据反馈信息,调整数据发送策略,可以包括:若反馈信息包括否定应答NACK,则第一终端设备重发数据。或者,若第一终端设备在第二指定时间段内未接收到任何反馈信息,则第一终端设备重发数据。
第二方面,提供一种通信方法。该通信方法应用于第二终端设备。该通信方法包括:第二终端设备接收来自第一终端设备的第一信号。然后,第二终端设备确定第二终端设备位于指定区域。其中,指定区域为与第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。之后,第二终端设备向第一终端设备发送反馈信息。
本申请提供的通信方法,第二终端设备能够在接收来自第一终端设备的第一信号后,会根据距离上下限或信号强度上下限确定自己位于指定区域,如环形区域,若确定自己位于指定区域则发送反馈信息,可以解决与第一终端设备距离太近的终端设备发送的反馈信息没有参考意义,但占用大量反馈资源的问题,从而减少反馈信息的数量和反馈信息占用的反馈资源数量,能够提高资源利用率和通信效率。
在一种可能的设计方法中,距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,距离下限与服务质量或业务优先级或反馈资源的数量负相关。
在一种可能的设计方法中,信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
在一种可能的设计方法中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态信息CSI;或者,不发送信道状态信息CSI。
在一种可能的设计方法中,第二方面所述的通信方法还可以包括:第二终端设备接收来自第一终端设备或基站的指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
第三方面,提供一种距离确定方法。该距离确定方法应用于第一终端设备。该距离确定方法包括:第一终端设备将自身的位置信息发送出去。其中,第一终端设备的位置信息可以根据全球卫星导航***(global navigation satellite system,GNSS)提供 的信息确定的位置信息,该位置信息可以为第一终端设备所在位置的绝对坐标,如经纬度,也可以为第一终端设备所在某一预设区域的标识和第一终端设备在该预设区域内相对于参考点的位置偏移量(也可以称之为相对坐标)。
在一种可能的设计方法中,第三方面所述的距离确定方法还可以包括:第一终端设备在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带第一终端设备的经度和/或纬度信息。
在一种可能的设计方法中,第三方面所述的距离确定方法还可以包括:第一终端设备在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带第一终端设备所在的区域索引。
在一种可能的设计方法中,第三方面所述的距离确定方法还可以包括:第一终端设备在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带第一终端设备在一个预设区域内的经度偏移和/或纬度偏移。
第四方面,提供一种距离确定方法。该距离确定方法应用于第二终端设备。该距离确定方法包括:第二终端设备接收第一终端设备的位置信息,以及第二终端设备确定自身位置信息。然后,第二终端设备根据第一终端设备的位置信息和自身位置信息,确定第二终端设备与第一终端设备之间的距离。其中,第二终端设备的位置信息可以参考第三方面中第一终端设备的位置信息和确定方法,此处不再赘述。
在一种可能的设计方法中,第四方面所述的距离确定方法还可以包括:第二终端设备接收第一终端设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备的经度和/或纬度信息。
在一种可能的设计方法中,第四方面所述的距离确定方法还可以包括:第二终端设备接收第一终端设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备所在的区域索引。
在一种可能的设计方法中,第四方面所述的距离确定方法还可以包括:第二终端设备接收第一终端设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备在一个预设区域内的经度偏移和/或纬度偏移。
容易理解,第二终端设备也可以将自身的位置信息发送出去,以便其他终端设备根据第二终端设备的位置信息,确定该其他终端设备与第二终端设备之间的距离。
第五方面,提供一种通信装置。该通信装置应用于第一终端设备。该通信装置包括:发送模块和接收模块。其中,发送模块,用于发送第一信号。接收模块,用于接收来自指定区域内的至少一个第二终端设备的反馈信息。其中,指定区域为与第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。
在一种可能的设计中,距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,距离下限与服务质量或业务优先级或反馈资源的数量负相关。
可选地,反馈信息可以包括否定反馈NACK,和/或信道状态信息CSI。相应地,距离上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量 或第一指定时间段内接收到否定反馈NACK的时隙的数量负相关,和/或,距离下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量正相关。
可选地,反馈信息可以包括肯定应答ACK,和/或信道状态信息CSI。相应地,距离上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关,和/或,距离下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关。
在一种可能的设计中,信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
可选地,反馈信息可以包括否定反馈NACK,和/或信道状态信息CSI。相应地,信号强度上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量负相关,和/或,信号强度下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量正相关。
进一步地,第一指定时间段为一个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定反馈NACK的时隙的数量。或者,第一指定时间段为多个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定应答NACK的时隙的数量。其中,所述多个时隙可以为多个连续时隙,或包含有多个连续时隙的时间窗(time window),如10ms、50ms等,本申请实施例对此不做限定。
可选地,反馈信息可以包括肯定应答ACK,和/或信道状态信息CSI。相应地,信号强度上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量负相关,和/或,信号强度下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量负相关。
在一种可能的设计中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态信息CSI;或者,不发送信道状态信息CSI。
在一种可能的设计中,发送模块,还用于发送指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
在一种可能的设计中,第五方面所述的通信装置还可以包括:处理模块。其中,处理模块,用于根据反馈信息,调整数据发送策略。
可选地,处理模块,还用于若反馈信息包括否定应答NACK,则控制发送模块重发数据。或者,可选地,处理模块,还用于若接收模块在第二指定时间段内未接收到任何反馈信息,则控制发送模块重发数据。
需要说明的是,第五方面所述的通信装置可以为终端设备,也可以为设置于终端 设备中的芯片或芯片***,本申请对此不作限定。
此外,第五方面所述的通信装置还可以包括其他模块,如存储模块,本申请对此不作限定。
第六方面,提供一种通信装置。该通信装置应用于第二终端设备。该通信装置包括:接收模块、发送模块和处理模块。其中,接收模块,用于接收来自第一终端设备的第一信号。处理模块,用于确定所述通信装置位于指定区域。其中,指定区域为与第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。发送模块,用于向第一终端设备发送反馈信息。
在一种可能的设计中,距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,距离下限与服务质量或业务优先级或反馈资源的数量负相关。
在一种可能的设计中,信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
在一种可能的设计中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态信息CSI;或者,不发送信道状态信息CSI。
在一种可能的设计中,接收模块,还用于接收来自第一终端设备或基站的指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
第六方面所述的通信装置可以为终端设备,也可以为设置于终端设备中的芯片或芯片***,本申请对此不作限定。
此外,第六方面所述的通信装置还可以包括其他模块,如存储模块,本申请对此不作限定。
第七方面,提供一种通信装置。该通信装置应用于第一终端设备。该通信装置包括:发送模块和处理模块。其中,发送模块,用于将该通信装置的位置信息发送出去。其中,所述通信装置的位置信息可以为处理模块根据GNSS提供的信息确定的位置信息,该位置信息可以为所述通信装置所在位置的绝对坐标,如经纬度,也可以为所述通信装置所在某一预设区域的标识和所述通信装置在该预设区域内相对于参考点的位置偏移量(也可以称之为相对坐标)。
在一种可能的设计中,发送模块,还用于在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带该通信装置的经度和/或纬度信息。
在一种可能的设计中,发送模块,还用于在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带该通信装置所在的区域索引。
在一种可能的设计中,发送模块,还用于在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带该通信装置在一个预设区域内的经度偏移和/或纬度偏移。
在一种可能的设计中,第七方面所述的通信装置还可以包括接收模块。其中,接收模块,用于接收其他终端设备的位置信息,以便该通信装置根据其他终端设备的位置信息,确定该通信装置与其他终端设备之间的距离。
第七方面所述的通信装置可以为终端设备,也可以为设置于终端设备中的芯片或芯片***,本申请对此不作限定。
此外,第七方面所述的通信装置还可以包括其他模块,如存储模块,本申请对此不作限定。
第八方面,提供一种通信装置。该通信装置应用于第二终端设备。该通信装置包括:接收模块和处理模块。其中,接收模块,用于接收第一终端设备的位置信息。处理模块,用于确定该通信装置的自身位置信息。处理模块,还用于根据第一终端设备的位置信息和该通信装置的自身位置信息,确定该通信装置与第一终端设备之间的距离。其中,该通信装置的位置信息可以参考第三方面中第一终端设备的位置信息和确定方法,此处不再赘述。
在一种可能的设计中,接收模块,还用于接收第一终端设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备的经度和/或纬度信息。
在一种可能的设计中,接收模块,还用于接收第一终端设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备所在的区域索引。
在一种可能的设计中,接收模块,还用于接收第一终端设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备在一个预设区域内的经度偏移和/或纬度偏移。
在一种可能的设计中,该通信装置还可以包括发送模块。其中,发送模块,用于将该通信装置自身的位置信息发送出去,以便其他终端设备根据该通信装置的位置信息,确定该其他终端设备与该通信装置之间的距离。
第八方面所述的通信装置可以为终端设备,也可以为设置于终端设备中的芯片或芯片***,本申请对此不作限定。
此外,第八方面所述的通信装置还可以包括其他模块,如存储模块,本申请对此不作限定。
第九方面,提供了一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合。其中,存储器用于存储计算机程序;处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行如第一方面和第二方面中任一种可能实现方式所述的通信方法,或者执行如第三方面和第四方面中任一种可能实现方式所述的距离确定方法。
需要说明的是,第九方面所述的通信装置可以为上述第一终端设备,也可以为设置于上述第一终端设备内部的芯片或芯片***。
第十方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得该计算机执行如第一方面和第二方面中任一种可能实现方式所述的通信方法,或者执行如第三方面和第四方面中任一种可能实现方式所述的距离确定方法。
第十一方面,提供了一种可读存储介质,存储有程序或指令,当程序或指令在计算机上运行时,使得该计算机执行如第一方面和第二方面中任一种可能实现方式所述的通信方法,或者执行如第三方面和第四方面中任一种可能实现方式所述的距离确定方法。
附图说明
图1为本申请实施例的提供的通信***的示意图;
图2为本申请实施例提供的通信装置的结构示意图一;
图3为本申请实施例提供的通信方法的流程示意图;
图4为本申请实施例提供的通信方法所适用的场景示意图一;
图5为本申请实施例提供的通信方法所适用的场景示意图二;
图6为本申请实施例提供的通信装置的结构示意图二;
图7为本申请实施例提供的通信装置的结构示意图三;
图8为本申请实施例提供的通信装置的结构示意图四。
具体实施方式
下面结合附图对本申请实施例提供的通信方法、距离确定方法及装置进行详细地描述。
本申请实施例的技术方案可以应用于各种通信***,例如D2D通信***、V2X通信***、机器类通信(machine type communications,MTC)***、机器间(machine to machine,M2M)通信***、车联网通信***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以图1所示的通信***中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信***中,相应的名称也可 以用其他移动通信***中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。
如图1所示,该通信***包括多个终端设备,或者可选地,一个或多个网络设备。
其中,上述终端设备可以为车载终端设备,例如第一终端设备和第二终端设备,也可以为具有终端设备功能的路边单元(road side unit,RSU),还可以是乘员或行人使用的手机、Pad等终端设备。上述网络设备可以为基站,如长期演进(long term evolution,LTE)***中的演进型节点(evolved Node B,eNB)、新空口(new radio,NR)***中的g节点(g Node B,gNB),也可以为具有基站功能的RSU。本申请实施例对于终端设备的类型和网络设备的类型不作限定。
上述各个设备之间都可以相互通信,通信时可以使用蜂窝链路的频谱,也可以使用5.9吉赫兹(giga herts,GHz)附近的智能交通频谱。上述各设备之间的相互通信可以基于LTE技术或NR技术通信,也可以基于设备间(device-to-device,D2D)通信技术,如V2X技术进行通信。例如,各终端设备之间可以在侧行链路(sidelink,SL)上直接通信,也可以通过网络设备间接通信。又例如,各终端设备还可以与网络设备在上下行链路(uplink&downlink,UL&DL)上通信。
需要说明的是,上述网络设备为可选项。例如,如果存在基站,则视为有网络覆盖的场景;如果没有基站,则视为无网络覆盖的场景。当有网络覆盖时,多个终端设备在侧行链路上的直接通信可以基于网络设备通过下行信令动态配置的资源进行。当没有网络覆盖时,多个终端设备在侧行链路上的直接通信可以基于预配置的资源池进行。
在本申请实施例中,上述网络设备为位于上述通信***的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片***。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
上述终端设备为接入上述通信***,且具有无线收发功能的终端设备或可设置于该终端设备的芯片或芯片***。该终端设备也可以称为车载终端设备、用户装置、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving) 中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等。
应理解,图1仅为便于理解而示例的简化示意图,该通信***中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
本申请实施例提供的通信方法可应用于是图2所示的通信装置,该通信装置可以是终端设备,也可以是应用于终端设备中的芯片、芯片***或者其他具有终端设备功能的部件。如图2所示,通信装置200可以包括至少一个处理器201,存储器202、收发器203。
下面结合图2对该通信装置的各个构成部件进行具体的介绍:
处理器201是通信装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行通信装置的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图2中所示的处理器201和处理器205。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以独立存在,也可以和处理器201集成在一起。
其中,所述存储器202用于存储执行本申请方案的软件程序,并由处理器201来控制执行。
收发器203,用于与其他通信装置之间的通信。当然,收发器203还可以用于与通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。收发器203可以包括接收单元实现接收功能,以及发送单元实现发送功能。
在本申请实施例中,上述存储器202可以存储有软件程序或指令。当通信装置200上电后,处理器201可以读取并执行存储器202中存储的软件程序或指令,以使得通信装置200可以执行下述图3所示的通信方法,具体实现方式可以参考下述方法实施例,此处不再赘述。
图2中示出的通信装置结构不得视为对通信装置的限定,即通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
上述的通信装置200有时也可以称为终端设备装置、终端设备或通信设备,其可以是一个通用设备或者是一个专用设备。例如通信装置200可以是车载终端设备、RSU、掌上电脑(personal digital assistant,PDA)、手机、平板电脑、无线终端设备、嵌入式设备、或具有图2中类似结构的设备。本申请实施例不限定通信装置200的类型。
下面将结合图3-图5对本申请实施例提供的通信方法进行具体阐述。
图3为本申请实施例提供的通信方法的流程示意图,可以应用于图1中的任一终端设备,如图1中的第一终端设备,或者图2所示的通信装置200,完成与另一终端设备,如图1中的第二终端设备在侧行链路上的直接通信。如图3所示,该通信方法包括如下步骤:
S301,第一终端设备向第二终端设备发送第一信号。相应地,第二终端设备接收来自第一终端设备的第一信号。
可选地,第一信号包括数据、控制信号、参考信号中的一个或多个。
示例性地,第一终端设备可以在侧行链路上,向至少一个和/或至少一种类型的第二终端设备发送数据。其中,至少一个第二终端设备可以包括如下至少一种类型的第二终端设备:至少一个与第一终端设备之间存在单点对单点业务,如单播业务的第二终端设备、至少一个与第一终端设备之间存在单点对多点业务,如广播、多播或组播业务的第二终端设备。本申请实施例对于第一终端设备的业务的类型和数量,以及与第一终端设备存在上述业务的第二终端的类型和数量,不作限定。
示例性地,第一终端设备可以在侧行链路上,向至少一个和/或至少一种类型的第二终端设备发送控制信号。
示例性地,第一终端设备可以在侧行链路上,向至少一个和/或至少一种类型的第二终端设备发送参考信号。
可选地,第一终端设备可以将自身的位置信息广播出去。其中,第一终端设备的位置信息可以根据全球卫星导航***(global navigation satellite system,GNSS)提供的信息确定的位置信息,该位置信息可以为第一终端设备所在位置的绝对坐标,如经纬度,也可以为第一终端设备所在某一预设区域的标识和第一终端设备在该预设区域内相对于参考点的位置偏移量(也可以称之为相对坐标)。其中,所述预设区域可以为长度(length)和宽度(width)分别为L和W的矩形区域,该预设区域的区域标识与该预设区域某一个参考点的绝对坐标对应。该区域标识可以为第一终端设备接入的物理小区标识或基站标识或服务区标识等,该参考点可以为该预设区域的几何中心或顶点等。例如,上述矩形区域的参考点可以为矩形区域的对角线交点、任意一个顶点或任意一条边的中点等。
需要说明的是,预设区域的区域标识和相对坐标,与预设区域的绝对坐标存在一 一对应关系,可以根据预设区域的区域标识和相对坐标,计算预设区域的绝对坐标。
在一种可能的设计方法中,第一终端设备在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带第一终端设备的经度和/或纬度信息。
在一种可能的设计方法中,第一终端设备在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带第一终端设备所在的区域索引。
在一种可能的设计方法中,第一终端设备在无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带第一终端设备在一个预设区域内的经度偏移和/或纬度偏移。
可选地,在有网络覆盖的情况下,第一终端设备也可以将其上述位置信息上报给网络设备,如基站,并由该网络设备广播出去。
相应地,第二终端设备可以分别在侧行链路或上下行链路上,接收来自第一终端设备或网络设备的第一终端设备的位置信息。
在一种可能的设计方法中,第二终端设备接收第一终端设备或网络设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备的经度和/或纬度信息。
在一种可能的设计方法中,第二终端设备接收第一终端设备或网络设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备所在的区域索引。
在一种可能的设计方法中,第二终端设备接收第一终端设备或网络设备发送的无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息中携带的第一终端设备在一个预设区域内的经度偏移和/或纬度偏移。
需要说明的是,在终端设备的位置更新速度较快的应用场景下,如V2X通信、高铁通信,第一终端设备和/或网络设备可能需要及时更新第一终端设备的位置信息。例如,可以一个较短的更新周期,如5ms,10ms,20ms,周期性地广播第一终端设备的位置信息。又例如,可以在第一终端设备获知其与第二终端设备之间的距离有可能发生剧烈变化的情况下,如第一终端设备正在加速移动,或第一终端设备的移动方向发生剧烈变化,可以实时触发第一终端设备的位置信息的广播动作。
S302,第二终端设备确定第二终端设备处于指定区域。
在一种可能的设计方法中,上述指定区域可以根据第二终端设备与第一终端设备之间的距离,以及距离下限和/或距离上限确定。其中,距离上限大于距离下限。
具体地,第二终端设备可以根据本身的位置信息和第一终端设备的位置信息计算其与第一终端设备之间的距离,并根据该距离与上述距离上限和/或距离下限的比较结果,确定自己位于哪个指定区域内。其中,第一终端设备的位置信息,可以从第一终端设备或网络设备处接收。第二终端设备可自行获取自身的位置信息的内容和获取方式可以参考第一终端设备的位置信息的内容和获取方式,此处不再赘述。
可选地,假定第一终端的经纬度为(X 1,Y 1),第二终端设备的经纬度为(X 2,Y 2),则第二终端设备可以按照如下公式计算其与第二终端设备之间的距离D(distance):
Figure PCTCN2020084457-appb-000001
需要说明的是,若计算精度要求较高,则第一终端设备的经纬度(X 1,Y 1)可能会占 用较多的信令和资源开销。为了降低信令和资源开销,可以将地理区域划分为多个长度(length)和宽度(width)分别为L和W的矩形区域(zone)。第一终端设备可以将自己所在的矩形区域标识(zone identifier,ZID)以及矩形区域内的偏移量,如相对坐标(x 1,y 1)广播出去。其中,(x 1,y 1)为第一终端设备的经纬度在矩形区域内的模值,即x 1=(X 1)mod(L),y 1=(Y 1)mod(W)。相对于(X 1,Y 1),区域内的模值(x 1,y 1)取值范围小很多,可以减少第一终端设备发送位置信息的信令开销。
第二终端设备根据接收到的第一终端设备的坐标信息(x 1,y 1)和矩形区域标识ZID1、以及自己所在矩形区域2的相对坐标(x 2,y 2)和矩形区域标识ZID2,计算上述距离D:
Figure PCTCN2020084457-appb-000002
其中G为一个矩形区域的大小,例如可以用对角线长度表示:
Figure PCTCN2020084457-appb-000003
当矩形区域较大时,可以忽略第一项。当第二终端设备与第一终端设备的矩形区域标识相同时,即ZID2=ZID1,则上述距离计算公式中的后一项为零。
可选地,当上述矩形区域的面积较小时,也可以根据第一终端设备所在第一矩形区域的区域标识和第二终端设备所在第二矩形区域的区域标识,获取第一矩形区域的参考点的绝对坐标和第二矩形区域的参考点的绝对坐标,然后将计算第二终端设备与第一终端设备之间的距离简化为计算两个参考点之间的距离。此时,第一终端设备只需要在其所在矩形区域发生变化时,广播或上报第一终端设备当前所在矩形区域的区域标识即可,从而可以大幅降低信令开销和资源开销。此时,矩形区域也可以替换为正六边形区域,参考点可以为该正六边形区域的几何中心。
容易理解,如果第二终端设备与第一终端设备在同一个矩形区域,则可以直接根据第一终端设备在该矩形区域内的相对坐标(x 1,y 1),以及第二终端设备在该矩形区域内的相对坐标(x 2,y 2),计算得到上述距离,即
Figure PCTCN2020084457-appb-000004
容易理解,第二终端设备也可以将自身的位置信息发送出去,以便其他终端设备,如上述第一终端设备,根据第二终端设备的位置信息,确定该其他终端设备与第二终端设备之间的距离,此处不再赘述。
图4为本申请实施例提供的一种通信场景的示意图。如图4所示,该场景共计包括3个指定区域:内圆区域、环形区域和外圆区域。该3个指定区域由距离下限和距离上限划分。其中,距离下限用于确定内圆半径,该内圆半径用于确定内圆圆周,该内圆圆周用于划分内圆区域和环形区域,距离上限用于确定外圆半径,该外圆半径用于确定外圆圆周,该外圆圆周用于划分环形区域和外圆区域。
例如,当第二终端设备与第一终端设备之间的距离小于或等于距离下限时,第二终端设备即可确定其位于上述内圆区域,如图4中的第二终端设备A。又例如,当第二终端设备与第一终端设备之间的距离大于或等于距离上限时,第二终端设备即可确定其位于上述外圆区域,如图4中的第二终端设备B。再例如,当第二终端设备与第一终端设备之间的距离大于或等于距离下限且小于或等于距离上限时,第二终端设备即可确定其位于上述环形区域,如图4中的第二终端设备C。
在另一种可能的设计方法中,上述指定区域也可以根据第二终端设备从第一终端设备接收到的信号强度,以及信号强度下限和/或信号强度上限确定。其中,信号强度上限大于信号强度下限。其中,信号强度可以为第二终端设备接收到的参考信号接收 功率(reference signal received power,RSRP)或接收信号强度指示(received signal strength indicator,RSSI)或参考信号接收质量(reference signal received quality,RSRQ),也可以为其他用于表示接收信号的强度的技术指标,本申请实施例对此不作限定。
具体地,第二终端设备可以根据第二终端设备从第一终端设备接收到的信号强度,与信号强度下限和/或信号强度上限的比较结果,确定自己位于哪个指定区域内。
图4所示通信场景中的3个区域也可以由信号强度下限和/或小于或等于信号强度上限划分。如图4所示,信号强度上限用于确定内圆半径,该内圆半径用于确定内圆圆周,该内圆圆周用于划分内圆区域和环形区域,信号强度下限用于确定外圆半径,该外圆半径用于确定外圆圆周,该外圆圆周用于划分环形区域和外圆区域。
例如,当第二终端设备从第一终端设备接收到的信号强度大于或等于信号强度上限时,第二终端设备即可确定其位于上述内圆区域,如图4中的第二终端设备A。又例如,当第二终端设备从第一终端设备接收到的信号强度小于或等于信号强度下限时,第二终端设备即可确定其位于上述外圆区域,如图4中的第二终端设备B。再例如,当第二终端设备从第一终端设备接收到的信号强度大于或等于信号强度下限且小于或等于信号强度上限时,第二终端设备即可确定其位于上述环形区域,如图4中的第二终端设备C。
需要说明的是,图4所示通信场景中的指定区域是以同心圆区域为例来说明的。事实上,指定区域也可以采用其他几何形状的区域来定义。其他几何形状可以是椭圆形区域、扇形区域、矩形区域等。例如,在如图5所示的高速公路场景中,采用以第一终端设备为中心,且长轴与高速公路的前后延伸方向保持一致的椭圆区域(如通过前后波束赋形实现)。其中,内椭圆周和外椭圆周从内到外依次划分为3个指定区域:内椭圆区、环形椭圆区和外椭圆区。本领域的技术人员还应理解,鉴于无线信号在各个方向上的信道条件和传播方式可能不同,如有无障碍物、信号衰减速度不同,以及直射、绕射、散射、透射、多径等,以及采用波束赋形技术等,采用信号强度上限和/或信号强度下限确定的指定区域的分界线很可能本就不是圆形或椭圆形的。
此外,图4和图5所示的通信场景只涉及到使用最多2个门限(距离上下限或信号强度上下限)划分的3个指定区域。实际应用中,门限个数和指定区域个数还可以更多,此处不再赘述。
还有,上述距离上下限和信号强度上下限也可以组合使用,例如将距离下限和信号强度上限一起使用,或者将距离上限和信号强度下限一起使用。本申请实施例对于门限的使用方式不作限定,只要能够区分不同的指定区域即可。
在本申请实施例中,上述距离上下限和信号强度上下限可以是由第一终端设备确定并广播出去的,或者由第一终端设备确定和上报给基站,然后由基站广播出去的。相应地,第二终端设备可以接收第一终端设备和/或基站广播的距离上下限和信号强度上下限。或者,上述距离上下限和信号强度上下限还可以由各终端设备根据预设的门限确定规则自行确定。对于上述距离上下限和信号强度上下限的确定主体,本申请实施例不作限定。
下面以图4所示的通信场景中的环形区域为例,详细说明距离上下限的确定方法,以及信号强度上下限的确定方法。距离上限可以根据服务质量或业务优先级确定,用 于保证一定的服务质量以及高优先业务的传输;距离下限可以根据反馈资源或反馈数量确定,用于保证第一终端能够获得一定的反馈量,且反馈开销不会太大,使得反馈资源得到合理的利用。其中,距离下限对应环形区域的内圆半径,距离上限对应环形区域的外圆半径。该确定方法可以距离门限确定规则的方式,如应用程序、可执行脚本、配置文件、电子表格等各种形式存储在各终端设备或基站中以备用。
在一种可能的设计方法中,可以采用下述规则一确定距离上限和距离下限:
规则一,距离上限与服务质量(quality of service,QoS)或业务优先级(priority of service,POS)或反馈资源的数量正相关,和/或,距离下限与服务质量QoS或业务优先级或反馈资源的数量负相关。
示例性地,服务质量可以包括如下一项或多项:最低误码率、最高时延、最低数据速率等。容易理解,对于可靠性要求较高的业务,可以设置一个数值较小最低误码率,如万分之一。对于数据传输时延要求较高的业务,如在线游戏、自动驾驶业务,可以设置一个数值较小的最高时延,如1毫秒(milisecond,ms)、2ms。对于数据速率要求较高的业务,如在线视频播放,可以设置一个数值较大的最低数据速率,如10兆比特每秒(mega bits per second,Mbps)、100Mbps。
示例性地,业务优先级可以是为侧行链路上的邻近业务(proximity-based services,ProSe)定义的优先级(ProSe per packet priority,PPPP),目前为8个优先级。
示例性地,反馈资源是指侧行链路上可用于承载反馈信息的无线资源。其中,无线资源可以包括时域资源、频域资源、码域资源、空域资源、功率域资源中的至少一项。其中,频域资源,如资源块RB的索引、RB的数量、子信道索引、子信道中的RB的标识。时域资源,如符号位置(包括起始符号或终止符号)、符号数量、时隙位置(包括起始时隙或终止时隙)、时隙数量等。码域资源,如根序列、掩码、扰码、循环移位、梳齿等。空域资源,如码字、流、层、天线数、天线端口编号、天线端口数等。功率域资源,如功率值、功率范围、功率偏移、功率门限等。
在本申请实施例中,上述无线资源可以为网络设备动态配置的、或者预配置在终端设备中的一组或多组资源,或者一个或多个资源池,本申请实施例对此不作限定。
示例性地,表1-表3分别示出了服务质量QoS(QoSx)、业务优先级PPPP(PPPPx)或反馈资源(resource of feedback infomation)的数量(FIBRx)与距离上限的对应关系。其中,“x”的数值越大,表示服务质量或业务优先级越高,或反馈资源的数量越多。
参考表1和表2,服务质量或业务优先级越高,要求的通信可靠性越高,也就需要更多的第二终端设备发送反馈信息,以供第一终端设备参考。相应地,也就需要拓展环形区域的范围。可选地,可以向外拓展环形区域的范围,如表1和表2所示,将距离上限从R2增加为R3,以实现拓展环形区域的目的。反之,服务质量或业务优先级越低,要求的通信可靠性越低,可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向内缩小环形区域的范围,如表1和表2所示,将距离上限的数值从R3减小为R2,以实现缩小环形区域的目的。
参考表3可知,反馈资源越多,可以允许更多的第二终端设备发送反馈信息,以供第一终端设备参考,从而提高通信可靠性。相应地,也就可以拓展环形区域的范围。可选地,可以向外拓展环形区域的范围,如表3所示,将距离上限从R2增加为R3, 以实现拓展环形区域的目的。反之,反馈资源越少,则需要减少反馈信息的数量,如可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向内缩小环形区域的范围,如表3所示,将距离上限的数值从R3减小为R2,以实现缩小环形区域的目的。
表1
服务质量(由低到高) 距离上限
QoS1 R1
QoS2(QoS2>QoS1) R2(R2>R1)
QoS3(QoS3>QoS2) R3(R3>R2)
表2
业务优先级(由低到高) 距离上限
PPPP1 R1
PPPP2(PPPP2>PPPP1) R2(R2>R1)
PPPP3(PPPP3>PPPP2) R3(R3>R2)
表3
反馈资源(由少到多) 距离上限
FBIR1 R1
FBIR2(FBIR2>FBIR1) R2(R2>R1)
FBIR3(FBIR3>FBIR2) R3(R3>R2)
示例性地,表4-表6分别示出了服务质量QoS(QoSx)、业务优先级PPPP(PPPPx)或反馈资源的数量(FIBRx)与距离下限的对应关系。其中,“x”的数值越大,表示服务质量或业务优先级越高,或反馈资源的数量越多。
表4
服务质量(由低到高) 距离下限
QoS1 R4
QoS2(QoS2>QoS1) R5(R5<R4)
QoS3(QoS3>QoS2) R6(R6<R5)
表5
业务优先级(由低到高) 距离下限
PPPP1 R4
PPPP2(PPPP2>PPPP1) R5(R5<R4)
PPPP3(PPPP3>PPPP2) R6(R6<R5)
参考表4和表5,服务质量或业务优先级越高,要求的通信可靠性越高,也就需 要更多的第二终端设备发送反馈信息,以供第一终端设备参考。相应地,也就需要拓展环形区域的范围。可选地,可以向内拓展环形区域的范围,如表4和表5所示,将距离下限的数值从R6减小为R5,以实现拓展环形区域的目的。反之,服务质量或业务优先级越低,要求的通信可靠性越低,可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向外缩小环形区域的范围,如表4和表5所示,将距离下限从R4增加为R5,以实现缩小环形区域的目的。
参考表6可知,反馈资源越多,可以允许更多的第二终端设备发送反馈信息,以供第一终端设备参考,从而提高通信可靠性。相应地,也就可以拓展环形区域的范围。可选地,可以向内拓展环形区域的范围,如表6所示,将距离下限的数值从R5减小为R4,以实现拓展环形区域的目的。反之,反馈资源越少,则需要减少反馈信息的数量,如可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向外缩小环形区域的范围,如表6所示,将距离下限从R4增加为R5,以实现缩小环形区域的目的。
表6
反馈资源(由少到多) 距离下限
FBIR1 R4
FBIR2(FBIR2>FBIR1) R5(R5<R4)
FBIR3(FBIR3>FBIR2) R6(R6<R5)
需要说明的是,上述服务质量QoS可能采用不同的技术指标来表示,如误码率、延时、数据速率等,而不同的技术指标的取值大小,与服务质量的高低之间的对应关系可能是不一样的。例如,对于误码率和延时,数值越小服务质量QoS越高,而对于数据速率,则是数值越大服务质量越高。
同理,上述业务优先级也可能采用不同的表示形式,如业务优先级的数值越大表示优先级越高,或者业务优先级的数值越小表示优先级越高,而不同表示形式的业务优先级的数值大小与服务质量的高低之间的对应关系也可能是不一样的。
在本申请实施例中,距离上限和/或距离下限也可以根据反馈信息确定,下面详细说明。其中,反馈信息可以包括肯定反馈ACK或否定反馈NACK,和/或,信道状态信息CSI。
CSI包括下列信息中的至少一项:信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indicator,RI)、参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、路径损耗Pathloss、侦听参考信号SRS资源指示(sounding reference signal resource indicator,SRI)、信道状态信息参考信号CSI-RS资源指示(channel state information-reference signal resource indicator,CRI)、接收信号强度指示(received signal strength indicator,RSSI)、预编码类型指示(precoding type indicator,PTI)、车辆移动方向、干扰条件等。
可选地,CSI可以包括上述至少一项的宽带CSI和/或子带CSI。
可选地,CSI可以包括上述至少一项的周期CSI、半持续CSI、或非周期CSI。
可选地,CSI可以包括上述至少一项的层一CSI和/或层三CSI。
在另一种可能的设计方法中,可以采用下述规则二确定距离上限和距离下限:
规则二,距离上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量负相关,和/或,距离下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量正相关。其中,第一指定时间段为一个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定反馈NACK的时隙的数量。或者,第一指定时间段为多个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定应答NACK的时隙的数量。其中,所述多个时隙可以为多个连续时隙,或包含有多个连续时隙的时间窗(time window),如10ms、50ms等,本申请实施例对此不做限定。
在另一种可能的设计方法中,第一门限可以是预配置的,或者由基站或第一终端设备通过无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息进行配置。
需要说明的是,上述接收到否定反馈NACK的时隙是指,接收到至少一个否定反馈NACK的时隙。也就是说,只要该时隙上接收到否定反馈NACK,该时隙即可视为接收到否定反馈NACK的时隙。只有在一个时隙上接收到的HARQ应答均为肯定反馈ACK时,该时隙方可视为接收到肯定反馈ACK的时隙。
示例性地,表7和表8分别示出了否定反馈NACK的数量(NACKx)或小于或等于第一门限的信道状态信息CSI的数量(CSIx)与距离上限的对应关系。其中,“x”的数值越大,表示数量越多。
表7
NACK数量(由少到多) 距离上限
NACK1 R1
NACK2(NACK2>NACK1) R2(R2>R1)
NACK3(NACK3>NACK2) R3(R3>R2)
表8
小于或等于第一门限的CSI(由少到多) 距离上限
CSI1 R1
CSI2(CSI2>CSI1) R2(R2>R1)
CSI3(CSI3>CSI2) R3(R3>R2)
参考表7和表8,否定反馈NACK或小于或等于第一门限的信道状态指示CSI越多,实际发送反馈信息的第二终端设备的数量可能越多,距离上限的数值可能越大。但是,实际应用中,第一终端设备即使只接收到一个否定反馈NACK,也需要重传数据。也就是说,多于一个的否定反馈NACK可以视为浪费。因此,为减少反馈信息的数量,降低信令消耗和资源消耗,需要缩小环形区域的范围。可选地,可以向内缩小环形区域的范围,如表7和表8所示,将距离上限的数值从R3减小为R2,以实现缩小环形区域的目的。
示例性地,表9和表10分别示出了否定反馈NACK的数量(NACKx)或小于或等于第一门限的信道状态信息CSI的数量(CSIx)与距离下限的对应关系。其中,“x”的数值越大,表示数量越多。
参考表9和表10可,否定反馈NACK或小于或等于第一门限的信道状态信息CSI越多,实际发送反馈信息的第二终端设备的数量可能越多,距离下限的数值可能越小。但是,实际应用中,第一终端设备即使只接收到一个否定反馈NACK,也需要重传数据。也就是说,多于一个的否定反馈NACK可以视为浪费。因此,为减少反馈信息的数量,降低信令消耗和资源消耗,需要缩小环形区域的范围。可选地,可以向外缩小环形区域的范围,如表9和表10所示,将距离下限的数值从R4增加为R5,以实现缩小环形区域的目的。
表9
NACK数量(由少到多) 距离下限
NACK1 R4
NACK2(NACK2>NACK1) R5(R5<R4)
NACK3(NACK3>NACK2) R6(R6<R5)
表10
小于或等于第一门限的CSI(由少到多) 距离下限
CSI1 R4
CSI2(CSI2>CSI1) R5(R5<R4)
CSI3(CSI3>CSI2) R6(R6<R5)
在又一种可能的设计方法中,可以采用下述规则三确定距离上限和距离下限:
规则三,距离上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关,和/或,距离下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关。其中,可选地,肯定反馈ACK的数量可以为:第一终端设备在第二指定时间段内接收到的HARQ应答全部为肯定反馈ACK的时隙的数量。其中,第二指定时间段通常可以包括多个时隙,如可以为多个连续时隙或包含有多个连续时隙的时间窗,如10ms、50ms等,本申请实施例对此不做限定。其中,第二门限大于上述第一门限。
在另一种可能的设计方法中,第二门限可以是预配置的,或者由基站或第一终端设备通过无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息进行配置。
示例性地,表11-表12,以及表13-表14分别示出了肯定反馈ACK的数量(ACKx)或大于或等于第二门限的信道状态信息CSI的数量(CSIx)与距离上限的对应关系。其中,“x”的数值越大,表示数量越多。
参考表11-表14,肯定反馈ACK或大于或等于第二门限的信道状态指示CSI越多,表示环形区域的信道条件越好,对应的数据传输的质量越好,如没有误码。也就是说,环形区域的设置可能不合理,例如环形区域与第一终端设备之间的距离太近了,该环 形区域内的第二终端设备发送的反馈信息没有参考价值。与此同时,还可能存在另外一种风险:参考图4,假定第一终端设备只根据环形区域的第二终端设备发送的否定反馈NACK或小于或等于第一门限的信道状态信息CSI重发数据,则在外环区域内的第二终端设备不允许发送反馈信息,且外环区域内的第二终端设备接收数据失败的情况下,第一终端设备是不会重发数据的,最终导致外环区域的第二终端设备没有机会再次接收数据,导致终端设备之间的直接通信的可靠性下降。针对上述问题,可以将环形区域整体外移,即同时增加距离下限和距离上限,如表11和表12所示,将距离上限从R1增加为R2,和/或,如表13和表14所示,将距离下限从R5增加为R6,以将以提高终端设备间直接通信的可靠性。
表11
ACK数量(由少到多) 距离上限
ACK1 R1
ACK2(ACK2>ACK1) R2(R2>R1)
ACK3(ACK3>ACK2) R3(R3>R2)
表12
大于或等于第二门限的CSI(由少到多) 距离上限
CSI1 R1
CSI2(CSI2>CSI1) R2(R2>R1)
CSI3(CSI3>CSI2) R3(R3>R2)
表13
ACK数量(由少到多) 距离下限
ACK1 R4
ACK2(ACK2>ACK1) R5(R5>R4)
ACK3(ACK3>ACK2) R6(R6>R5)
表14
大于或等于第二门限的CSI(由少到多) 距离下限
CSI1 R4
CSI2(CSI2>CSI1) R5(R5>R4)
CSI3(CSI3>CSI2) R6(R6>R5)
下面以图4所示的通信场景中的环形区域为例,详细说明信号强度上下限的确定方法。信号强度上限可以根据反馈资源或反馈数量确定,用于保证第一终端能够获得一定的反馈量,且反馈开销不会太大,使得反馈资源得到合理的利用;信号强度下限可以根据服务质量或业务优先级确定,用于保证一定的服务质量以及高优先业务的传输。其中,信号强度上限对应环形区域的内圆半径,信号强度下限对应环形区域的外圆半径。该确定方法可以信号强度门限确定规则的方式,如应用程序、可执行脚本、 配置文件、电子表格等各种形式存储在各终端设备或基站中以备用。
在一种可能的设计方法中,可以采用下述规则四确定信号强度上限和信号强度下限:
规则四,信号强度上限与服务质量QoS或业务优先级POS或反馈资源的数量正相关,和/或,信号强度下限与服务质量QoS或业务优先级或反馈资源的数量负相关。
示例性地,表15-表17分别示出了服务质量QoS(QoSx)、业务优先级PPPP(PPPPx)或反馈资源的数量(FIBRx)与信号强度上限的对应关系。其中,“x”的数值越大,表示服务质量或业务优先级越高,或反馈资源越多。
参考表15和表16,服务质量或业务优先级越高,要求的通信可靠性越高,也就需要更多的第二终端设备发送反馈信息,以供第一终端设备参考。相应地,也就需要拓展环形区域的范围。可选地,可以向内拓展环形区域的范围,如表15和表16所示,将信号强度上限从RSRP2增加为RSRP3,以实现拓展环形区域的目的。反之,服务质量或业务优先级越低,要求的通信可靠性越低,可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向外缩小环形区域的范围,如表15和表16所示,将信号强度上限的数值从RSRP3减小为RSRP2,以实现缩小环形区域的目的。
表15
服务质量(由低到高) 信号强度上限
QoS1 RSRP1
QoS2(QoS2>QoS1) RSRP2(RSRP2>RSRP1)
QoS3(QoS3>QoS2) RSRP3(RSRP3>RSRP2)
表16
业务优先级(由低到高) 信号强度上限
PPPP1 RSRP1
PPPP2(PPPP2>PPPP1) RSRP2(RSRP2>RSRP1)
PPPP3(PPPP3>PPPP2) RSRP3(RSRP3>RSRP2)
表17
反馈资源(由少到多) 信号强度上限
FBIR1 RSRP1
FBIR2(FBIR2>FBIR1) RSRP2(RSRP2>RSRP1)
FBIR3(FBIR3>FBIR2) RSRP3(RSRP3>RSRP2)
参考表17可知,反馈资源越多,可以允许更多的第二终端设备发送反馈信息,以供第一终端设备参考,从而提高通信可靠性。相应地,也就可以拓展环形区域的范围。可选地,可以向内拓展环形区域的范围,如表17所示,将信号强度上限从RSRP2增加为RSRP3,以实现拓展环形区域的目的。反之,反馈资源越少,则需要减少反馈信息的数量,如可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息 的资源消耗。可选地,可以向外缩小环形区域的范围,如表17所示,将信号强度上限的数值从RSRP3减小为RSRP2,以实现缩小环形区域的目的。
示例性地,表18-表20分别示出了服务质量QoS(QoSx)、业务优先级PPPP(PPPPx)或反馈资源的数量(FIBRx)与信号强度下限的对应关系。其中,“x”的数值越大,表示服务质量或业务优先级越高,或反馈资源的数量越多。
参考表18和表19,服务质量或业务优先级越高,要求的通信可靠性越高,也就需要更多的第二终端设备发送反馈信息,以供第一终端设备参考。相应地,也就需要拓展环形区域的范围。可选地,可以向外拓展环形区域的范围,如表18和表19所示,将信号强度上限的数值从RSRP5减小为RSRP6,以实现拓展环形区域的目的。反之,服务质量或业务优先级越低,要求的通信可靠性越低,可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向内缩小环形区域的范围,如表18和表19所示,将信号强度下限从RSRP5增加为RSRP4,以实现缩小环形区域的目的。
表18
服务质量(由低到高) 信号强度下限
QoS1 RSRP4
QoS2(QoS2>QoS1) RSRP5(RSRP5<RSRP4)
QoS3(QoS3>QoS2) RSRP6(RSRP6<RSRP5)
表19
业务优先级(由低到高) 信号强度下限
PPPP1 RSRP4
PPPP2(PPPP2>PPPP1) RSRP5(RSRP5<RSRP4)
PPPP3(PPPP3>PPPP2) RSRP6(RSRP6<RSRP5)
表20
反馈资源(由少到多) 信号强度下限
FBIR1 RSRP4
FBIR2(FBIR2>FBIR1) RSRP5(RSRP5<RSRP4)
FBIR3(FBIR3>FBIR2) RSRP6(RSRP6<RSRP5)
参考表20可知,反馈资源越多,可以允许更多的第二终端设备发送反馈信息,以供第一终端设备参考,从而提高通信可靠性。相应地,也就可以拓展环形区域的范围。可选地,可以向外拓展环形区域的范围,如表20所示,将信号强度下限的数值从RSRP4减小为RSRP5,以实现拓展环形区域的目的。反之,反馈资源越少,则需要减少反馈信息的数量,如可以适当减少可发送反馈信息的第二终端设备的数量,以节省反馈信息的资源消耗。可选地,可以向内缩小环形区域的范围,如表20所示,将信号强度下限从RSRP6增加为RSRP5,以实现缩小环形区域的目的。
需要说明的是,上述服务质量QoS可能采用不同的技术指标来表示,如误码率、 延时、数据速率等,而不同的技术指标的取值大小,与服务质量的高低之间的对应关系可能是不一样的。例如,对于误码率和延时,数值越小服务质量QoS越高,而对于数据速率,则是数值越大服务质量越高。
同理,上述业务优先级也可能采用不同的表示形式,如业务优先级的数值越大表示优先级越高,或者业务优先级的数值越小表示优先级越高,而不同表示形式的业务优先级的数值大小与服务质量的高低之间的对应关系也可能是不一样的。
在本申请实施例中,信号强度上限和/或信号强度下限也可以根据反馈信息确定,下面详细说明。其中,反馈信息可以包括肯定反馈ACK或否定反馈NACK,和/或,信道状态信息CSI。
在另一种可能的设计方法中,可以采用下述规则五确定信号强度上限和信号强度下限:
规则五,信号强度上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量负相关,和/或,信号强度下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量正相关。其中,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定反馈NACK的时隙的数量。其中,第一指定时间段通常可以包括多个时隙,如可以为多个连续时隙,或包含有多个连续时隙的时间窗(time window),如10ms、50ms等,本申请实施例对此不做限定。
需要说明的是,上述接收到否定反馈NACK的时隙是指,接收到至少一个否定反馈NACK的时隙。也就是说,只要该时隙上接收到否定反馈NACK,该时隙即可视为接收到否定反馈NACK的时隙。只有在一个时隙上接收到的HARQ应答均为肯定反馈ACK时,该时隙方可视为接收到肯定反馈ACK的时隙。
示例性地,表21和表22分别示出了否定反馈NACK的数量(NACKx)或小于或等于第一门限的信道状态信息CSI的数量(CSIx)与信号强度上限的对应关系。其中,“x”的数值越大,表示数量越多。
表21
NACK数量(由少到多) 信号强度上限
NACK1 RSRP1
NACK2(NACK2>NACK1) RSRP2(RSRP2<RSRP1)
NACK3(NACK3>NACK2) RSRP3(RSRP3<RSRP2)
表22
小于或等于第一门限的CSI(由少到多) 信号强度上限
CSI1 RSRP1
CSI2(CSI2>CSI1) RSRP2(RSRP2<RSRP1)
CSI3(CSI3>CSI2) RSRP3(RSRP3<RSRP2)
参考表21和表22,否定反馈NACK或小于或等于第一门限的信道状态指示CSI越多,实际发送反馈信息的第二终端设备的数量可能越多,信号强度上限的数值可能越大。但是,实际应用中,第一终端设备即使只接收到一个否定反馈NACK,也需要 重传数据。也就是说,多于一个的否定反馈NACK可以视为浪费。因此,为减少反馈信息的数量,降低信令消耗和资源消耗,需要缩小环形区域的范围。可选地,可以向外缩小环形区域的范围,如表21和表22所示,将信号强度上限的数值从RSRP3减小为RSRP2,以实现缩小环形区域的目的。
示例性地,表23和表24分别示出了否定反馈NACK的数量(NACKx)或小于或等于第一门限的信道状态信息CSI的数量(CSIx)与信号强度下限的对应关系。其中,“x”的数值越大,表示数量越多。
参考表23和表24可,否定反馈NACK或小于或等于第一门限的信道状态信息CSI越多,实际发送反馈信息的第二终端设备的数量可能越多,信号强度下限的数值可能越小。但是,实际应用中,第一终端设备即使只接收到一个否定反馈NACK,也需要重传数据。也就是说,多于一个的否定反馈NACK可以视为浪费。因此,为减少反馈信息的数量,降低信令消耗和资源消耗,需要缩小环形区域的范围。可选地,可以向内缩小环形区域的范围,如表23和表24所示,将信号强度下限的数值从RSRP4增加为RSRP5,以实现缩小环形区域的目的。
表23
NACK数量(由少到多) 信号强度下限
NACK1 RSRP4
NACK2(NACK2>NACK1) RSRP5(RSRP5>RSRP4)
NACK3(NACK3>NACK2) RSRP6(RSRP6>RSRP5)
表24
小于或等于第一门限的CSI(由少到多) 信号强度下限
CSI1 RSRP4
CSI2(CSI2>CSI1) RSRP5(RSRP5>RSRP4)
CSI3(CSI3>CSI2) RSRP6(RSRP6>RSRP5)
在又一种可能的设计方法中,可以采用下述规则六确定信号强度上限和信号强度下限:
规则六,信号强度上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关,和/或,信号强度下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关。其中,可选地,肯定反馈ACK的数量可以为:第一终端设备在第二指定时间段内接收到的HARQ应答全部为肯定反馈ACK的时隙的数量。其中,第二指定时间段通常可以包括多个时隙,如可以为多个连续时隙或包含有多个连续时隙的时间窗,如10ms、50ms等,本申请实施例对此不做限定。其中,第二门限大于上述第一门限。
示例性地,表25-表26,以及表27-表28分别示出了肯定反馈ACK的数量(ACKx)或大于或等于第二门限的信道状态信息CSI的数量(CSIx)与信号强度上限的对应关系。其中,“x”的数值越大,表示数量越多。
参考表25-表26,肯定反馈ACK或大于或等于第二门限的信道状态指示CSI越多, 表示环形区域的信道条件越好,对应的数据传输的质量越好,如没有误码。也就是说,环形区域的设置可能不合理,例如环形区域与第一终端设备之间的距离太近了,该环形区域内的第二终端设备发送的反馈信息没有参考价值。与此同时,还可能存在另外一种风险:参考图4,假定第一终端设备只根据环形区域的第二终端设备发送的否定反馈NACK或小于或等于第一门限的信道状态信息CSI重发数据,则在外环区域内的第二终端设备不允许发送反馈信息,且外环区域内的第二终端设备接收数据失败的情况下,第一终端设备是不会重发数据的,最终导致外环区域的第二终端设备没有机会再次接收数据,导致终端设备之间的直接通信的可靠性下降。针对上述问题,可以将环形区域整体外移,即同时减小信号强度下限和信号强度上限,如表11和表12所示,将信号强度上限从RSRP2减小为RSRP3,和/或,如表27-表28所示,将信号强度下限从RSRP4减小为RSRP5,以将以提高终端设备间直接通信的可靠性。
表25
ACK数量(由少到多) 信号强度上限
ACK1 RSRP1
ACK2(ACK2>ACK1) RSRP2(RSRP2<RSRP1)
ACK3(ACK3>ACK2) RSRP3(RSRP3<RSRP2)
表26
大于或等于第二门限的CSI(由少到多) 信号强度上限
CSI1 RSRP1
CSI2(CSI2>CSI1) RSRP2(RSRP2<RSRP1)
CSI3(CSI3>CSI2) RSRP3(RSRP3<RSRP2)
表27
ACK数量(由少到多) 信号强度下限
ACK1 RSRP4
ACK2(ACK2>ACK1) RSRP5(RSRP5<RSRP4)
ACK3(ACK3>ACK2) RSRP6(RSRP6<RSRP5)
表28
大于或等于第二门限的CSI(由少到多) 信号强度下限
CSI1 RSRP4
CSI2(CSI2>CSI1) RSRP5(RSRP5<RSRP4)
CSI3(CSI3>CSI2) RSRP6(RSRP6<RSRP5)
S303,第二终端设备向第一终端设备发送反馈信息。相应地,第一终端设备接收来自至少一个第二终端设备的反馈信息。
可选地,若第一信号包括数据,则第二终端设备向第一终端设备发送的反馈信息为HARQ信息。如果第二终端设备反馈的HARQ信息为NACK信息,则第一终端设 备重传数据,否则不重传数据。可选地,若第一终端设备收到多个第二终端设备反馈的HARQ信息,只要环状区域有至少一个第二终端设备反馈NACK,则第一终端设备需要重传数据。
可选地,若第一信号包括控制信号,则第二终端设备向第一终端设备发送的反馈信息为信道状态信息CSI。该控制信号用于触发非周期CSI。第一终端设备根据该CSI确定数据的调制编码方案(modulation and coding scheme,MCS)。
可选地,若第一信号包括参考信号,则第二终端设备向第一终端设备发送的反馈信息为信道状态信息CSI。第二终端通过测量该参考信号得到信道状态信息CSI。第一终端设备根据该CSI确定数据的MCS。
可选地,若第一终端设备收到多个第二终端设备反馈的CSI,则第一终端设备可以根据最差的CSI确定数据的MCS。
在一种可能的设计方法中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括如下一项或多项:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态信息CSI;或者,不发送信道状态信息CSI。反馈策略还可以是不同的反馈模式,如周期性反馈,非周期性反馈,半持续反馈等。或者,反馈策略可以是不同的反馈格式,如使用长反馈信道或短反馈信道,或者使用大比特反馈信道或小比特反馈信道等。
下面分别以图4中的内圆区域、环形区域和外圆区域为例详细说明反馈策略。
示例性地,参见图4,鉴于内圆区域与第一终端设备之间的距离较近和/或信号较强,可以认为内圆区域的第二终端接收第一终端发送的信号的成功率较高。因此,内圆区域的第二终端反馈肯定应答(acknowledgement,ACK)和/或良好信道状态信息(channel state information,CSI)的概率较高,对于第一终端设备调整数据发送策略的参考价值不大。相应地,可以禁止内圆区域的第二终端设备反馈肯定应答ACK和大于或等于第二门限的信道状态信息CSI,即只允许内圆区域的第二终端设备反馈否定应答NACK和小于或等于第一门限的信道状态信息CSI,从而可以有效减少内圆区域的第二终端设备发送的反馈信息的数量,降低传输反馈信息资源消耗和信令消耗。
示例性地,参见图4,鉴于外圆区域与第一终端设备之间的距离较远和/或信号较差,可以认为外圆区域的第二终端接收第一终端发送的信号的成功率较低。因此,外圆区域的第二终端反馈否定应答(negative acknowledgement,NACK)和/或恶劣信道状态信息(channel state information,CSI)的概率较高,对于第一终端设备调整数据发送策略,参考价值同样不大。相应地,可以禁止外圆区域的第二终端设备发送反馈信息,从而可以有效减少外圆区域的第二终端设备发送的反馈信息的数量,降低传输反馈信息资源消耗和信令消耗。
示例性地,参见图4,与内圆区域和外圆区域不同,环形区域与第一终端设备之间的距离和/或信号强度介于内圆区域和外圆区域之间,环形区域的第二终端接收第一 终端发送的信号的成功率也介于内圆区域和外圆区域之间,且环形区域受无线信道条件的变化的影响更为敏感,对于第一终端设备调整数据发送策略,最有参考价值。因此,可以允许环形区域的第二终端设备发送多种类型的反馈信息,如上述肯定应答ACK或否定应答NACK,以及各种取值的信道状态信息CSI等。
第一终端设备和/或网络设备可以根据S302中的规则一至规则六,实时调整指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。具体地,可以包括:
在一种可能的设计方法中,上述通信方法还可以包括如下步骤:第一终端设备向至少一个第二终端设备发送指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。相应地,第二终端设备接收来自第一终端设备的指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。第一终端设备可以通过无线资源控制信令、媒体接入控制信令、主信息块、***信息块或物理控制信息发送所述距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
在另一种可能的设计方法中,上述通信方法还可以包括如下步骤:第一终端设备向网络设备上报指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。然后,网络设备广播上述各种门限。相应地,第二终端设备可以接收来自网络设备的指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
在又一种可能的设计方法中,上述通信方法还可以包括如下步骤:第一终端设备向网络设备上报第一终端设备从至少一个第二终端设备接收的反馈信息的统计结果。然后,网络设备根据上述反馈信息的统计结果确定指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个,并广播上述各种门限。相应地,第一终端设备和第二终端设备可以接收来自网络设备的指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
第一终端设备接收到反馈信息,第一终端设备还可以根据反馈信息,调整数据发送策略,如重传、调整发送功率、资源等。因此,在一种可能的设计方法中,上述通信方法还可以包括如下步骤:第一终端设备根据反馈信息,调整数据发送策略。
可选地,上述第一终端设备根据反馈信息,调整数据发送策略,可以包括如下步骤:若反馈信息包括否定应答NACK,则第一终端设备重发数据。或者,若第一终端设备在第二指定时间段内未接收到任何反馈信息,则第一终端设备重发数据。
可选地,上述第一终端设备根据反馈信息,调整数据发送策略,还可以包括如下步骤:第一终端设备根据反馈信息,调整新数据的发送策略,如增加、减小发射功率,如增加、减少、改变数据发送资源,提高/降低码率等等。
需要说明的是,上述方法实施例中,是以第一终端设备为发送方,至少一个第二终端设备为接收方为例说明的。实际应用中,上述发送方和接收方的角色是可以动态改变的。此外,第一终端设备可能分别与至少两个第二终端设备,如图4和图5中的第二终端设备A、第二终端设备B和第二终端设备C直接通信,但是对于不同的第二终端设备,第一终端设备的角色可以不同,如对于第二终端设备A和第二终端设备B,第一终端设备为发送方,而对于第二终端设备C,第一终端设备为接收方。对于某一 个终端设备在不同的终端设备间通信中的发送/接收角色,本申请实施例不作限定。
本申请提供的通信方法,在第一终端设备发送第一信号后,只接收由距离上下限或信号强度上下限确定的指定区域,如环形区域的第二终端设备发送的反馈信息,而不接收指定区域之外与第一终端设备通信的终端设备发送的反馈信息,可以解决与第一终端设备距离太近的终端设备发送的反馈信息没有参考意义,但占用大量反馈资源的问题,从而减少反馈信息的数量和反馈信息占用的反馈资源数量,能够提高资源利用率和通信效率。
以上结合图3-图5,以及表1-表28详细说明了本申请实施例的通信方法。以下结合图6-图8详细说明能够执行本申请方法实施例所述的通信方法的通信装置。
图6为本申请实施例提供的另一种通信装置的结构示意图,用于执行上述方法实施例中第一终端设备所执行的功能。如图6所示,通信装置600包括:发送模块601和接收模块602。
其中,发送模块601,用于发送第一信号。
可选地,发送模块601,还用于将通信装置600的位置信息发送出去,以便其他终端设备,如第二终端设备根据通信装置600的位置信息确定该其他终端设备与通信装置600之间的距离。其中,位置信息的内容、确定方法和发送方式可以参考上述方法实施例,此处不再赘述。
接收模块602,用于接收来自指定区域内的至少一个第二终端设备的反馈信息。其中,指定区域为与第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从所述第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。
在一种可能的设计中,距离上限与服务质量QoS或业务优先级或反馈资源的数量正相关,和/或,距离下限与服务质量QoS或业务优先级或反馈资源的数量负相关。
可选地,反馈信息可以包括否定反馈NACK,和/或信道状态信息CSI。相应地,距离上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量负相关,和/或,距离下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量正相关。
可选地,反馈信息可以包括肯定应答ACK,和/或信道状态信息CSI。相应地,距离上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关,和/或,距离下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量正相关。
在一种可能的设计中,信号强度上限与服务质量QoS或业务优先级或反馈资源的数量正相关,和/或,信号强度下限与服务质量QoS或业务优先级或反馈资源的数量负相关。
可选地,反馈信息可以包括否定反馈NACK,和/或信道状态信息CSI。相应地,信号强度上限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或第一指定时间段内接收到否定反馈NACK的时隙的数量负相关,和/或,信号强度下限与否定反馈NACK的数量或小于或等于第一门限的信道状态信息CSI的数量或 第一指定时间段内接收到否定反馈NACK的时隙的数量正相关。
进一步地,第一指定时间段为一个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定反馈NACK的时隙的数量。或者,第一指定时间段为多个时隙时,否定反馈NACK的数量可以为:第一终端设备在第一指定时间段内接收到否定应答NACK的时隙的数量。其中,所述多个时隙可以为多个连续时隙,或包含有多个连续时隙的时间窗(time window),如10ms、50ms等,本申请实施例对此不做限定。
可选地,反馈信息可以包括肯定应答ACK,和/或信道状态信息CSI。相应地,信号强度上限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量负相关,和/或,信号强度下限与肯定应答ACK的数量或大于或等于第二门限的CSI信息的数量负相关。
在一种可能的设计中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态信息CSI;或者,不发送信道状态信息CSI。
在一种可能的设计中,发送模块601,还用于发送指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
在一种可能的设计中,如图7所示,通信装置600还可以包括:处理模块603。其中,处理模块603,用于根据反馈信息,调整数据发送策略。
可选地,处理模块603,还用于若反馈信息包括否定应答NACK,则控制发送模块601重发数据。或者,可选地,处理模块603,还用于若接收模块602在第二指定时间段内未接收到任何反馈信息,则控制发送模块601重发数据。
需要说明的是,通信装置600可以为终端设备,也可以为设置于终端设备中的芯片或芯片***,本申请对此不作限定。
在一种可能的设计中,上述通信装置600还可以包括存储模块(图6和图7中未示出)。其中,存储模块用于存储指令,处理模块603用于执行存储模块中存储的指令,以使得处理模块603执行上述方法实施例所述的通信方法。
图8为本申请实施例提供的又一种通信装置的结构示意图,用于执行上述方法实施例中第二终端设备所执行的功能。如图8所示,通信装置800包括:接收模块801、发送模块802和处理模块803。
其中,接收模块801,用于接收来自第一终端设备的第一信号。
可选地,接收模块801,还用于从第一终端设备或网络设备接收第一终端设备的位置信息。相应地,处理模块803,还用于根据通信装置800自身的位置信息和第一终端设备的位置信息,确定第一终端设备与通信装置800之间的距离。其中,位置信息的内容、接收方式和距离确定方法可以参考上述方法实施例,此处不再赘述。
处理模块803,用于确定通信装置位于指定区域。其中,指定区域为与第一终端 设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,指定区域为从第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。
发送模块802,用于向第一终端设备发送反馈信息。
在一种可能的设计中,距离上限与服务质量QoS或业务优先级或反馈资源的数量正相关,和/或,距离下限与服务质量QoS或业务优先级或反馈资源的数量负相关。
在一种可能的设计中,信号强度上限与服务质量QoS或业务优先级或反馈资源的数量正相关,和/或,信号强度下限与服务质量QoS或业务优先级或反馈资源的数量负相关。
在一种可能的设计中,指定区域可以为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。其中,反馈策略可以包括:发送否定应答NACK且不发送肯定应答ACK指示;或者,发送肯定应答ACK或发送否定应答NACK指示;或者,不发送肯定应答ACK且不发送否定应答NACK指示;或者,发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,发送信道状态信息CSI;或者,不发送信道状态信息CSI。
在一种可能的设计中,接收模块801,还用于接收来自第一终端设备或基站的指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
通信装置800可以为终端设备,也可以为设置于终端设备中的芯片或芯片***,本申请对此不作限定。
在一种可能的设计中,上述通信装置800还可以包括存储模块(图8中未示出)。其中,存储模块用于存储指令,处理模块803用于执行存储模块中存储的指令,以使得处理模块803执行上述方法实施例所述的通信方法或距离确定方法。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例所述的通信方法或距离确定方法。
本申请实施例提供一种可读存储介质,存储有程序或指令,当程序或指令在计算机上运行时,使得该计算机执行上述方法实施例所述的通信方法或距离确定方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器 (random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本申请实施例中术语“和/或”,仅仅用于描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。
本申请实施例中,“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是在一些实施例中还包括其他没有列出的步骤或单元,或在一些实施例中还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺 序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (42)

  1. 一种通信方法,其特征在于,应用于第一终端设备,所述通信方法包括:
    所述第一终端设备发送第一信号;
    所述第一终端设备接收来自指定区域内的至少一个第二终端设备的反馈信息;其中,所述指定区域为与所述第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,所述指定区域为从所述第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。
  2. 根据权利要求1所述的通信方法,其特征在于,所述距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述距离下限与服务质量或业务优先级或反馈资源的数量负相关。
  3. 根据权利要求1所述的通信方法,其特征在于,所述反馈信息包括否定反馈NACK,和/或信道状态信息CSI;所述距离上限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量负相关,和/或,所述距离下限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量正相关。
  4. 根据权利要求1所述的通信方法,其特征在于,所述反馈信息包括肯定应答ACK,和/或信道状态信息CSI;所述距离上限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量正相关,和/或,所述距离下限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量正相关。
  5. 根据权利要求1所述的通信方法,其特征在于,所述信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
  6. 根据权利要求1所述的通信方法,其特征在于,所述反馈信息包括否定反馈NACK,和/或信道状态信息CSI;所述信号强度上限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量负相关,和/或,所述信号强度下限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量正相关。
  7. 根据权利要求3或6所述的通信方法,其特征在于,所述否定反馈NACK的数量为:所述第一终端设备在第一指定时间段内接收到的否定反馈NACK的数量;或者,
    所述否定反馈NACK的数量为:所述第一终端设备在第一指定时间段内接收到否定应答NACK的时隙的数量。
  8. 根据权利要求1所述的通信方法,其特征在于,所述反馈信息包括肯定应答ACK,和/或信道状态信息CSI;所述信号强度上限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量负相关,和/或,所述信号强度下限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量负相关。
  9. 根据权利要求1-8中任一项所述的通信方法,其特征在于,所述指定区域为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。
  10. 根据权利要求9所述的通信方法,其特征在于,所述反馈策略包括:
    发送否定应答NACK且不发送肯定应答ACK指示;或者,
    发送肯定应答ACK或发送否定应答NACK指示;或者,
    不发送肯定应答ACK且不发送否定应答NACK指示;或者,
    发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,
    发送信道状态信息CSI;或者,
    不发送信道状态信息CSI。
  11. 根据权利要求1-10中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述第一终端设备发送所述指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
  12. 根据权利要求1-11中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述第一终端设备根据所述反馈信息,调整数据发送策略。
  13. 根据权利要求12所述的通信方法,其特征在于,所述第一终端设备根据所述反馈信息,调整数据发送策略,包括:
    若所述反馈信息包括否定应答NACK,则所述第一终端设备重发数据;
    或者,若所述第一终端设备在第二指定时间段内未接收到任何反馈信息,则所述第一终端设备重发数据。
  14. 一种通信方法,其特征在于,应用于第二终端设备,所述通信方法包括:
    所述第二终端设备接收来自第一终端设备的第一信号;
    所述第二终端设备确定所述第二终端设备位于指定区域;其中,所述指定区域为与所述第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,所述指定区域为从所述第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域;
    所述第二终端设备向所述第一终端设备发送反馈信息。
  15. 根据权利要求14所述的通信方法,其特征在于,所述距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述距离下限与服务质量或业务优先级或反馈资源的数量负相关。
  16. 根据权利要求14所述的通信方法,其特征在于,所述信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
  17. 根据权利要求14-16中任一项所述的通信方法,其特征在于,所述指定区域为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。
  18. 根据权利要求17所述的通信方法,其特征在于,所述反馈策略包括:
    发送否定应答NACK且不发送肯定应答ACK指示;或者,
    发送肯定应答ACK或发送否定应答NACK指示;或者,
    不发送肯定应答ACK且不发送否定应答NACK指示;或者,
    发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,
    发送信道状态信息CSI;或者,
    不发送信道状态信息CSI。
  19. 根据权利要求14-18中任一项所述的通信方法,其特征在于,所述通信方法还包括:
    所述第二终端设备接收来自所述第一终端设备或基站的所述指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
  20. 一种通信装置,其特征在于,应用于第一终端设备,所述通信装置包括:发送模块和接收模块;其中,
    所述发送模块,用于发送第一信号;
    所述接收模块,用于接收来自指定区域内的至少一个第二终端设备的反馈信息;其中,所述指定区域为与所述第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,所述指定区域为从所述第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域。
  21. 根据权利要求20所述的通信装置,其特征在于,所述距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述距离下限与服务质量或业务优先级或反馈资源的数量负相关。
  22. 根据权利要求20所述的通信装置,其特征在于,所述反馈信息包括否定反馈NACK,和/或信道状态信息CSI;所述距离上限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量负相关,和/或,所述距离下限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量正相关。
  23. 根据权利要求20所述的通信装置,其特征在于,所述反馈信息包括肯定应答ACK,和/或信道状态信息CSI;所述距离上限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量正相关,和/或,所述距离下限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量正相关。
  24. 根据权利要求20所述的通信装置,其特征在于,所述信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述信号强度下限与服务质量或业务优先级或反馈资源的数量负相关。
  25. 根据权利要求20所述的通信装置,其特征在于,所述反馈信息包括否定反馈NACK,和/或信道状态信息CSI;所述信号强度上限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量负相关,和/或,所述信号强度下限与所述否定反馈NACK的数量或所述小于或等于第一门限的信道状态信息CSI的数量正相关。
  26. 根据权利要求22或25所述的通信装置,其特征在于,所述否定反馈NACK的数量为:所述第一终端设备在第一指定时间段内接收到的否定反馈NACK的数量;或者,
    所述否定反馈NACK的数量为:所述第一终端设备在第一指定时间段内接收到否定反馈NACK的时隙的数量。
  27. 根据权利要求20所述的通信装置,其特征在于,所述反馈信息包括肯定应答ACK,和/或信道状态信息CSI;所述信号强度上限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量负相关,和/或,所述信号强度下限与所述肯定应答ACK的数量或所述大于或等于第二门限的CSI信息的数量负相关。
  28. 根据权利要求20-27中任一项所述的通信装置,其特征在于,所述指定区域为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。
  29. 根据权利要求28所述的通信装置,其特征在于,所述反馈策略包括:
    发送否定应答NACK且不发送肯定应答ACK指示;或者,
    发送肯定应答ACK或发送否定应答NACK指示;或者,
    不发送肯定应答ACK且不发送否定应答NACK指示;或者,
    发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,
    发送信道状态信息CSI;或者,
    不发送信道状态信息CSI。
  30. 根据权利要求20-29中任一项所述的通信装置,其特征在于,
    所述发送模块,还用于发送所述指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
  31. 根据权利要求20-30中任一项所述的通信装置,其特征在于,所述通信装置还包括:处理模块;其中,
    所述处理模块,用于根据所述反馈信息,调整数据发送策略。
  32. 根据权利要求31所述的通信装置,其特征在于,
    所述处理模块,还用于若所述反馈信息包括否定应答NACK,则控制所述发送模块重发数据;
    所述处理模块,还用于若所述接收模块在第二指定时间段内未接收到任何反馈信息,则控制所述发送模块重发数据。
  33. 一种通信装置,其特征在于,应用于第二终端设备,所述通信装置包括:接收模块、发送模块和处理模块;其中,
    所述接收模块,用于接收来自第一终端设备的第一信号;
    所述处理模块,用于确定所述通信装置位于指定区域;其中,所述指定区域为与所述第一终端设备之间的距离大于或等于距离下限和/或小于或等于距离上限的区域;或者,所述指定区域为从所述第一终端设备接收到的信号的强度大于或等于信号强度下限和/或小于或等于信号强度上限的区域;
    所述发送模块,用于向所述第一终端设备发送反馈信息。
  34. 根据权利要求33所述的通信装置,其特征在于,所述距离上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述距离下限与服务质量或业务优先级或反馈资源的数量负相关。
  35. 根据权利要求33所述的通信装置,其特征在于,所述信号强度上限与服务质量或业务优先级或反馈资源的数量正相关,和/或,所述信号强度下限与服务质量或业 务优先级或反馈资源的数量负相关。
  36. 根据权利要求33-35中任一项所述的通信装置,其特征在于,所述指定区域为多个,多个指定区域中的任意一个指定区域的反馈策略可独立确定;和/或,多个指定区域中的任意一个指定区域的反馈资源可独立确定。
  37. 根据权利要求36所述的通信装置,其特征在于,所述反馈策略包括:
    发送否定应答NACK且不发送肯定应答ACK指示;或者,
    发送肯定应答ACK或发送否定应答NACK指示;或者,
    不发送肯定应答ACK且不发送否定应答NACK指示;或者,
    发送小于第一门限的信道状态信息CSI且不发送大于或等于所述第一门限的信道状态信息CSI;或者,
    发送信道状态信息CSI;或者,
    不发送信道状态信息CSI。
  38. 根据权利要求33-37中任一项所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述第一终端设备或基站的所述指定区域的距离上限、距离下限、信号强度上限、信号强度下限中的一个或多个。
  39. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在至少一个计算机上运行时,所述至少一个计算机执行权利要求1-13中任一项所述的通信方法。
  40. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在至少一个计算机上运行时,所述至少一个计算机执行权利要求14-19中任一项所述的通信方法。
  41. 一种第一终端设备,包括:至少一个处理器,至少一个存储器以及通信接口,其特征在于,
    所述通信接口、所述至少一个存储器与所述至少一个处理器耦合;所述第一终端设备通过所述通信接口与其他设备通信,所述至少一个存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求1-13中任一项所述的通信方法。
  42. 一种第二终端设备,包括:至少一个处理器,至少一个存储器以及通信接口,其特征在于,
    所述通信接口、所述至少一个存储器与所述至少一个处理器耦合;所述第二终端设备通过所述通信接口与其他设备通信,所述至少一个存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求14-19中任一项所述的通信方法。
PCT/CN2020/084457 2019-04-28 2020-04-13 通信方法、距离确定方法及装置 WO2020220983A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20798443.6A EP3955598A4 (en) 2019-04-28 2020-04-13 COMMUNICATION METHOD AND DEVICE, AND DISTANCE DETERMINATION METHOD AND DEVICE
US17/452,544 US20220053286A1 (en) 2019-04-28 2021-10-27 Communication method, and distance determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910351476.2 2019-04-28
CN201910351476.2A CN111866719B (zh) 2019-04-28 2019-04-28 通信方法、距离确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/452,544 Continuation US20220053286A1 (en) 2019-04-28 2021-10-27 Communication method, and distance determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2020220983A1 true WO2020220983A1 (zh) 2020-11-05

Family

ID=72966295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084457 WO2020220983A1 (zh) 2019-04-28 2020-04-13 通信方法、距离确定方法及装置

Country Status (4)

Country Link
US (1) US20220053286A1 (zh)
EP (1) EP3955598A4 (zh)
CN (1) CN111866719B (zh)
WO (1) WO2020220983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689308A (zh) * 2020-12-17 2021-04-20 深圳创维数字技术有限公司 多用户无线数据传输方法、***、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11425531B2 (en) * 2019-11-06 2022-08-23 Huawei Technologies Co., Ltd. Connectivity-based positioning determination in wireless communication networks
CN115602041B (zh) * 2021-07-09 2024-04-09 华为技术有限公司 信息生成方法和装置、信息使用方法和装置
WO2023220915A1 (en) * 2022-05-17 2023-11-23 Qualcomm Incorporated Techniques for signal strength monitoring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167521A (zh) * 2011-12-16 2013-06-19 北京为邦远航无线技术有限公司 适合超大范围覆盖的混合自动重传请求harq方法及***
WO2019004688A1 (ko) * 2017-06-26 2019-01-03 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 동작 방법 및 상기 방법을 이용하는 단말

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102272241B1 (ko) * 2014-08-21 2021-07-05 인텔 코포레이션 Lte 비허가 대역 동작을 위해 송신 전력 제어 및 스케줄링을 사용하는 디바이스들 및 방법
US11025374B2 (en) * 2017-08-04 2021-06-01 Samsung Electronics Co., Ltd. Methods and apparatus for resource allocation and feedback in vehicle to vehicle communication
US11824665B2 (en) * 2019-01-11 2023-11-21 Lg Electronics Inc. Sidelink HARQ feedback of NR V2X

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167521A (zh) * 2011-12-16 2013-06-19 北京为邦远航无线技术有限公司 适合超大范围覆盖的混合自动重传请求harq方法及***
WO2019004688A1 (ko) * 2017-06-26 2019-01-03 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 동작 방법 및 상기 방법을 이용하는 단말

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955598A4
SONY: "Discussion on HARQ feedback for NR V2X communication", 3GPP TSG RAN WG1 #96BIS R1-1904257, 2 April 2019 (2019-04-02), XP051707169 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689308A (zh) * 2020-12-17 2021-04-20 深圳创维数字技术有限公司 多用户无线数据传输方法、***、设备及存储介质
CN112689308B (zh) * 2020-12-17 2023-01-06 深圳创维数字技术有限公司 多用户无线数据传输方法、***、设备及存储介质

Also Published As

Publication number Publication date
US20220053286A1 (en) 2022-02-17
CN111866719B (zh) 2022-04-22
EP3955598A4 (en) 2022-06-01
EP3955598A1 (en) 2022-02-16
CN111866719A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2020220983A1 (zh) 通信方法、距离确定方法及装置
US9935741B2 (en) Providing acknowledgement information by a wireless device
WO2020114129A1 (zh) 确定传输资源的方法和装置
WO2020087531A1 (zh) 边链路信息的发送和接收方法以及装置
TWI725160B (zh) 用於設備間通信的方法和裝置
WO2020135273A1 (zh) 一种功率控制方法及装置
WO2020248258A1 (zh) 无线通信方法、收端设备和发端设备
WO2021237702A1 (zh) Harq-ack码本的反馈方法和终端设备
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
TW202017402A (zh) 用於側行鏈路的通信方法和設備
US20220394738A1 (en) Feedback resource determining method and apparatus
WO2022082687A1 (zh) 数据传输方法、装置、可读存储介质和***
WO2021027804A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022006914A1 (zh) 混合自动重传请求应答harq-ack的反馈方法和终端设备
TW202017401A (zh) 一種通訊方法、終端設備和網路設備
WO2020156098A1 (zh) 发送、接收控制信息的方法及装置
WO2022021007A1 (zh) 无线通信方法、终端设备和网络设备
WO2021212372A1 (zh) 资源分配方法和终端
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
WO2020220793A1 (zh) 一种通信方法和装置
WO2021134659A1 (zh) 一种中继传输的方法和设备
WO2021062855A1 (zh) 一种通信方法及装置
US20230076835A1 (en) Harq feedback method and apparatus, terminal, and network device
US20210376968A1 (en) Feedback method and apparatus
WO2022151391A1 (zh) 一种发送频率调整方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798443

Country of ref document: EP

Effective date: 20211108