WO2020220827A1 - 实现投影画面叠加的方法、装置及投影*** - Google Patents

实现投影画面叠加的方法、装置及投影*** Download PDF

Info

Publication number
WO2020220827A1
WO2020220827A1 PCT/CN2020/078186 CN2020078186W WO2020220827A1 WO 2020220827 A1 WO2020220827 A1 WO 2020220827A1 CN 2020078186 W CN2020078186 W CN 2020078186W WO 2020220827 A1 WO2020220827 A1 WO 2020220827A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image
small
area
devices
Prior art date
Application number
PCT/CN2020/078186
Other languages
English (en)
French (fr)
Inventor
钟波
肖适
王鑫
张立造
Original Assignee
成都极米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都极米科技股份有限公司 filed Critical 成都极米科技股份有限公司
Publication of WO2020220827A1 publication Critical patent/WO2020220827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects

Definitions

  • the invention relates to the technical field of projection superimposition, and specifically discloses a method, a device and a projection system for realizing projection image superposition.
  • the present application provides a method, a device and a projection system for superimposing projection images.
  • a plurality of projection devices respectively project a small-scale feature map to a projection surface.
  • the camera captures the projection surface image to filter out the projection device as the background. Calculate the superimposition adjustment parameters of the superimposed projection device to quickly realize the superposition of the projection images of multiple projection devices.
  • the technical solution provided by the present invention is a method for realizing projection screen superposition, which is applied to a projection system, the projection system includes an image acquisition device and at least two projection devices, and the method includes:
  • S11 Send an image projection command to each projection device, so that each of the projection devices respectively project their small-scale feature maps on the projection surface, and the small-scale feature images on the projection surface do not overlap;
  • S12 Send an image acquisition command to the image acquisition device, so that the image acquisition device acquires a projection surface image, where the projection surface image is an overall image including all small-scale feature images on the projection surface;
  • the method of step 13 includes:
  • S134 Filter out the projection device with the largest overlap area between its actual projection area and the actual projection area of other projection devices as the projection device as the background, and the other projection devices as the overlay projection device;
  • S135 Use the actual projection area of the projection device as the background as the expected projection area of each of the superimposed projection devices, and calculate each projected area according to the expected projection area and the actual projection area of each of the superimposed projection devices. Described as the superposition adjustment parameter of the superimposed projection device.
  • the method of step S131 includes:
  • Identify the feature pattern in each small-scale feature image in the projection surface image obtain the number information of the projection device corresponding to each small-scale feature image, and identify the small-scale feature corresponding to each small-scale feature image in the projection surface image Image area
  • a correspondence relationship between the number information of each of the projection devices and the small-scale characteristic image area is established.
  • step S132 includes:
  • the small-scale feature map and the original feature map preset by each of the projection devices are acquired, and the feature pattern reduction ratio of the small-scale feature map of each projection device to the original feature map is calculated.
  • step S133 includes:
  • the present invention also provides a device for superimposing projection images, which is applied to a projection system, and the projection system includes an image acquisition device and at least two projection devices, and the device includes:
  • An image projection module configured to send an image projection command to each projection device, so that each projection device respectively projects a small-scale feature map on a projection surface, and each small-scale feature image on the projection surface does not overlap;
  • An image acquisition module configured to send an image acquisition command to an image acquisition device, so that the image acquisition device acquires a projection surface image, the projection surface image being an overall image including all small-scale feature images on the projection surface;
  • the parameter calculation module is used to select the projection device as the background, and the other projection devices are used as the superimposed projection devices, and calculate the superimposition adjustment parameters of each superimposed projection device;
  • the parameter sending module is configured to send the superposition adjustment parameters of each superimposed projection device to the corresponding projection device, so that each superimposed projection device adjusts the projected image according to the corresponding superposition adjustment parameter.
  • the parameter calculation module includes:
  • a projection area acquiring unit configured to acquire a small-scale characteristic image area corresponding to each of the projection devices in the projection surface image
  • a reduction ratio obtaining unit configured to obtain a feature pattern reduction ratio of a small-scale feature map of each of the projection devices
  • the actual area calculation unit is configured to calculate each projection device according to the small-scale feature image area corresponding to each of the projection devices in the projection surface image and the feature pattern reduction ratio of the small-scale feature map of each projection device The actual projection area in the projection surface image;
  • the background device screening unit is used to filter out the one projection device with the largest overlap area between its actual projection area and the actual projection area of other projection devices as the projection device as the background, and the other projection devices as the superposition projection device;
  • the adjustment parameter calculation unit is configured to use the actual projection area of the projection device as the background as the expected projection area of each of the superimposed projection devices, according to the expected projection area and the actual projection area of each of the superimposed projection devices The projection area calculates the superimposition adjustment parameters of each of the superimposed projection devices.
  • the projection area acquiring unit includes:
  • the image information acquisition component is used to identify the feature pattern in each small-scale feature image in the projection surface image, obtain the number information of the projection device corresponding to the small-scale feature image, and at the same time identify each small-scale feature image on the projection surface The corresponding small-scale feature image area in the image;
  • the correspondence relationship establishment component is used to establish the correspondence relationship between the number information of each of the projection devices and the small-scale characteristic image area.
  • the method of the reduction ratio obtaining unit includes:
  • the small-scale feature map and the original feature map preset by each of the projection devices are acquired, and the feature pattern reduction ratio of the small-scale feature map of each projection device to the original feature map is calculated.
  • the actual area calculation unit includes:
  • the coordinate relationship acquisition component is used to acquire the four corner pixel coordinate transformation relationships of the small-scale feature map of each of the projection devices to the original feature map;
  • a corner point coordinate acquisition component configured to acquire four corner point pixel coordinates of a small-scale characteristic image area corresponding to each of the projection devices in the projection surface image;
  • the actual coordinate calculation component is used to transform the four corner pixel coordinate transformation relationships of the small-scale feature map of each projection device into the original feature map and the corresponding small-scale feature of each projection device in the projection surface image
  • the four corner pixel coordinates of the image area are calculated, and the four corner pixel coordinates of the actual projection area of each projection device in the projection surface image are calculated.
  • the present application also provides a device for realizing projection screen overlay, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor realizes the foregoing when the computer program is executed.
  • a device for realizing projection screen overlay including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor realizes the foregoing when the computer program is executed.
  • the method of realizing the projection screen superimposition including a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor realizes the foregoing when the computer program is executed.
  • the application also provides a projection system, which includes an image acquisition device and at least two projection devices, and also includes the above device for superimposing projection images.
  • the present application uses multiple projection devices to project small-scale feature maps to the projection surface, avoiding the overlap of the projection images, and shoots the projection surface through the image acquisition device.
  • Image filter the projection device as the background and use its actual projection area as the desired projection area, and then transform the actual projection area of the superimposed projection device to the desired projection area, realizing the rapid superposition of the projection screen pixels of multiple projection devices, The difficulty of superimposing the projection screen is reduced and the cost is low.
  • FIG. 1 is a schematic flowchart of a method for superimposing projection images provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the architecture of three projection devices provided by an embodiment of the present invention to realize superimposition of projection images
  • FIG. 3 is a schematic flowchart of a method for selecting a projection device as a background and calculating a superimposition adjustment parameter of each superimposed projection device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for realizing superimposition of projection images provided by an embodiment of the present invention.
  • Fig. 5 is an architectural diagram of a projection system provided by an embodiment of the present invention.
  • the embodiment of the present invention provides a method for realizing projection screen superimposition, which is applied to a projection system.
  • the projection system includes an image acquisition device and at least two projection devices, each of which has its own original feature Map and small-scale feature map, or each projection device has its own small-scale feature map and feature pattern reduction ratio, where the original feature map includes the feature pattern, and the feature pattern in the original feature map is a full-screen feature pattern map ,
  • the small-scale feature map is a feature pattern that is not full screen after the feature pattern in the original feature map is reduced according to the feature pattern reduction ratio under the original pixel ratio.
  • the feature pattern in the small-scale feature map is in the center of the image and the surrounding is transparent
  • the characteristic pattern contains the identification mark of the projection device.
  • the specific method includes:
  • S11 Send an image projection command to each projection device, so that each projection device respectively projects a small-scale feature map on the projection surface, and the small-scale feature images on the projection surface do not overlap;
  • S12 Send an image acquisition command to the image acquisition device, so that the image acquisition device acquires an image of the projection surface, and the projection surface image is an overall image including all small-scale feature images on the projection surface;
  • each projection device can be provided with an original feature map.
  • the projection device projects the original feature map to the projection surface, the actual projection area of the projection device can be seen, but if each projection device projects the original feature map to the projection surface
  • the feature map will cause the original feature images on the projection surface to overlap, which brings great difficulty to image processing and calculation when the projection images are superimposed. Therefore, the feature patterns in the original feature map are reduced to a certain ratio under the original pixel ratio. (1>Reduction ratio>0) Shrink, that is, reduce and project according to the reduction ratio of the characteristic pattern to avoid the superimposition of the images of multiple projection devices and cause mutual interference.
  • the feature pattern reduction ratio can be set according to the actual needs of customers.
  • the original feature map is reduced by a certain feature pattern reduction ratio to obtain a small-scale feature map.
  • the essence of the small-scale feature map is to reduce the feature pattern and place it in the middle of the small-scale feature map.
  • the small-scale feature image and the original feature image have the same pattern content, but the size of the pattern area is different.
  • the original feature map can be a map with a border, a map with a corner mark or a plane geometric figure.
  • it can be a map with only a border (the image area is determined by identifying the corners of the border), or it can be a Identification mark two-dimensional code map (identify the image area by identifying the position of the two-dimensional code map, the identification mark two-dimensional code map also contains corners and borders), it can also be a map containing regular geometric patterns (circles, rectangles, etc.), identification After the pattern is calculated, the positions of the four corner points of the entire projection screen are calculated.
  • These are pictures with obvious boundary features (lines, corner points, etc.), which are the original feature maps referred to in this application.
  • the original feature map and the small-scale feature map of each projection device include the identification mark of the corresponding projection device, because in image recognition, it is necessary to determine which projection device corresponds to which projection area on the projection surface to calculate the actual projection area and overlay Adjust the parameters, the small-scale feature map can include the identification mark of the projection device, or the identification mark of the projection device can be directly used as the small-scale feature map, or an identification mark can be placed in the center of the small-scale feature map. As shown in Figure 2, taking the Aruco code as an example, it can also be other easily recognizable signs such as QRcode. For higher image accuracy, a small-scale feature map can also be specially designed.
  • step S11 an image projection command is sent to each projection device, so that each projection device projects its small-scale feature map to the projection surface, but the small-scale feature images on the projection surface cannot be separated from each other. Overlap, otherwise it will affect the result of image recognition.
  • the small-scale feature maps projected by each projection device will not overlap on the projection surface.
  • the image acquisition device refers to a device with an image shooting function, which may be a camera, a smart phone, a tablet computer, a notebook computer, and the like.
  • the shooting position of the image acquisition device is not limited. It is only required that all small-scale feature images on the projection surface can be taken as a whole for subsequent calculations. Of course, the definition also needs to meet the requirements of conventional pixels.
  • step S13 includes:
  • S133 Calculate the actual projection area of each projection device in the projection surface image according to the small-scale feature image area corresponding to each projection device in the projection surface image and the feature pattern reduction ratio of the small-scale feature map of each projection device;
  • S134 Filter out the projection device with the largest overlap area between its actual projection area and the actual projection area of other projection devices as the projection device as the background, and the other projection devices as the overlay projection device;
  • S135 Use the actual projection area of the projection device as the background as the desired projection area of each superimposed projection device, and calculate the superimposition adjustment parameters of each superimposed projection device according to the desired projection area and the actual projection area of each superimposed projection device .
  • step S131 includes:
  • S1311 Identify the feature pattern in each small-scale feature image in the projection surface image, obtain the number information of the projection device corresponding to each small-scale feature image, and identify the small-scale feature image area corresponding to each small-scale feature image in the projection surface image ;
  • S1312 Establish a correspondence relationship between the number information of the projection device and the small-scale feature image area.
  • the method of step S132 includes: obtaining the feature pattern reduction ratio of the small-scale feature map preset by each projection device; or obtaining the small-scale feature map and the original feature map preset by each projection device, and calculating the small-scale feature map of each projection device.
  • the ratio of the proportional feature map to the feature pattern of the original feature map is reduced.
  • the feature pattern reduction ratio of the small-scale feature map of each projection device can be stored in the projection device, can also be stored in a device that realizes projection screen superimposition, or can be stored on a server.
  • step S133 includes:
  • S1333 Calculate according to the four corner pixel coordinate transformation relationships of the small-scale feature map of each projection device to the original feature map and the four corner pixel coordinates of the small-scale feature image area corresponding to each projection device in the projection surface image The four corner pixel coordinates of the actual projection area of each projection device in the projection surface image.
  • the identification mark of the projection device is a small-scale feature map of the projection device
  • existing mature algorithms can be used to identify the identification mark, and the size and position of the identification mark can be obtained, as well as the projection device number information corresponding to the identification mark. Since the number information of each projection device is unique, the number information of the identified projection device can be associated with the position of the identified identification area to obtain the correspondence between the number information of each projection device and the projection area. After the devices use the same method to obtain the correspondence between the number information and the projection area, subsequent calculations can be performed.
  • the original feature map and the small-scale feature map of the projection device may be stored in the projection device, or it may be Stored in the device that realizes the superposition of the projection screen, or may be stored on the remote server.
  • the map information calculates the feature pattern reduction ratio.
  • the projection system shown in FIG. 2 includes three projection devices, namely projection device C1, projection device C2, and projection device C3.
  • the small-scale feature images of the projection surface are used to calculate the actual projection area positions of the three projection devices. That is, the actual projection area ABCD of the projection device C1 in the figure, the actual projection area EFGH of the projection device C2, and the actual projection area of the projection device C3 is IJKL.
  • the specific calculation method includes: Since the small-scale feature map of C1 and the original feature map are known Therefore, the pixel coordinates of the small-scale feature map in the original feature map are known.
  • the homography transformation matrix H1 that is, H1 represents the coordinate transformation relationship from the small-scale feature map of C1 to the original feature map.
  • the specific search method here can be corner search or image template matching. There are no specific requirements and no restrictions here.
  • (u1, v1), (u2, v2) are the pixel coordinates of the corresponding points of the original feature map and the small-scale feature map, and S is a constant scale factor. Therefore, the positions of the four corner points of the original feature image can be calculated from the positions of the four corner points of the C1 small-scale feature image on the projection surface, that is, ABCD is obtained from the H1 transformation by abcd.
  • H2 represents the C2 small-scale feature image
  • efgh obtains EFGH according to the H2 transformation.
  • H3 represents the coordinate transformation relationship between the small-scale feature map of C3 and the original feature map
  • ijkl obtains IJKL according to H3 transformation to find the integrity of C1, C2, and C3 Projection area/actual projection area.
  • the method of step S134 includes separately calculating and summing the intersection of the actual projection area of each projection device and the actual projection areas of other projection devices, and selecting the projection device with the largest intersection as the projection device as the background.
  • the specific method includes: after obtaining the actual projection areas of C1, C2, and C3, for C1, calculate the intersections and additions of the actual projection areas of C2 and C3, respectively, and calculate the actual projection areas of C1 and C3 for C2.
  • the intersection of C3 and the actual projection area of C1 and C2 are calculated and added, and the maximum value is selected. That is, the projection device C2 is selected as the projection device as the background.
  • the actual projection area position EFGH of device C2 changes the actual projection area of C1 into the EFGH area through the homography transformation matrix, that is, it completely overlaps the projection area of C2, that is, the superposition process of C1C2 is completed, and the actual projection area of C3 is passed through the single
  • the transformation matrix becomes the EFGH area, that is, it completely overlaps with the projection area of C2, that is, the superposition process of C2C3 is completed.
  • the specific calculation method includes: using the least square method to calculate the homography transformation matrix N1 (superimposition adjustment parameter) from ABCD to EFGH.
  • the calculation method of homography change matrix includes least square method or DLT method.
  • any two or more projection devices can use the same method to superimpose the projection images, so that the projection images of multiple projection devices can be superimposed.
  • the technical solution of the present application performs projection area positioning of multiple projection devices by projecting a small-scale feature map, and superimposes the projection images of multiple projection devices by using an external/external image acquisition device to take pictures and homography transformation methods.
  • the operation is simple, and The calculation difficulty is small, and it is very suitable for wide promotion.
  • the following describes the device for realizing projection screen superimposition provided by the embodiment of the present invention. It should be noted that the description of the device for realizing projection screen superimposition can refer to the above method for realizing projection screen superimposition, which will not be repeated hereafter.
  • an embodiment of the present invention provides a device for superimposing projection images, which is applied to a projection system.
  • the projection system includes an image acquisition device and at least two projection devices.
  • the device includes:
  • the image projection module 21 is configured to send an image projection command to each projection device, so that each projection device respectively projects a small-scale feature map on a projection surface, and the small-scale feature images on the projection surface do not overlap;
  • the image acquisition module 22 is configured to send an image acquisition command to the image acquisition device, so that the image acquisition device acquires a projection surface image, and the projection surface image is an overall image including all small-scale feature images on the projection surface;
  • the parameter calculation module 23 is used to select the projection device as the background, and the remaining projection devices are used as superimposed projection devices, and calculate the superimposition adjustment parameters of each superimposed projection device;
  • the parameter sending module 24 is configured to send the superimposition adjustment parameters of each superimposed projection device to the corresponding projection device, so that each superimposed projection device adjusts the projected image according to the corresponding superimposition adjustment parameter.
  • parameter calculation module 23 includes:
  • a projection area acquiring unit configured to acquire a small-scale characteristic image area corresponding to each of the projection devices in the projection surface image
  • a reduction ratio obtaining unit configured to obtain a feature pattern reduction ratio of a small-scale feature map of each of the projection devices
  • the actual area calculation unit is configured to calculate each projection device according to the small-scale feature image area corresponding to each of the projection devices in the projection surface image and the feature pattern reduction ratio of the small-scale feature map of each projection device The actual projection area in the projection surface image;
  • the background device screening unit is used to filter out the one projection device with the largest overlap area between its actual projection area and the actual projection area of other projection devices as the projection device as the background, and the other projection devices as the superposition projection device;
  • the adjustment parameter calculation unit is configured to use the actual projection area of the projection device as the background as the expected projection area of each of the superimposed projection devices, according to the expected projection area and the actual projection area of each of the superimposed projection devices The projection area calculates the superimposition adjustment parameters of each of the superimposed projection devices.
  • the projection area acquisition unit includes:
  • the image information acquisition component is used to identify the feature pattern in each small-scale feature image in the projection surface image, obtain the number information of the projection device corresponding to the small-scale feature image, and at the same time identify each small-scale feature image on the projection surface The corresponding small-scale feature image area in the image;
  • the correspondence relationship establishment component is used to establish the correspondence relationship between the number information of each of the projection devices and the small-scale characteristic image area.
  • the method of the reduction ratio acquiring unit includes: acquiring the feature pattern reduction ratio of the small-scale feature map preset by each of the projection devices; or acquiring the small-scale feature map and the original feature map preset by each of the projection devices Calculate the reduction ratio of the feature pattern of the small-scale feature map of each of the projection devices relative to the feature pattern of the original feature map.
  • the actual area calculation unit includes:
  • the coordinate relationship acquisition component is used to acquire the four corner pixel coordinate transformation relationships of the small-scale feature map of each of the projection devices to the original feature map;
  • a corner point coordinate acquisition component configured to acquire four corner point pixel coordinates of a small-scale characteristic image area corresponding to each of the projection devices in the projection surface image;
  • the actual coordinate calculation component is used to transform the four corner pixel coordinate transformation relationships of the small-scale feature map of each projection device into the original feature map and the corresponding small-scale feature of each projection device in the projection surface image
  • the four corner pixel coordinates of the image area are calculated, and the four corner pixel coordinates of the actual projection area of each projection device in the projection surface image are calculated.
  • the calculation method of the adjustment parameter calculation unit includes calculating and summing the intersection of the actual projection area of each projection device and the actual projection area of other projection devices, and selecting the projection device with the largest intersection as the background Projection device.
  • the embodiment of the present invention also provides a device for realizing projection screen superimposition, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor. method.
  • an embodiment of the present invention also provides a projection system, including an image acquisition device, at least two projection devices, and the above-mentioned device for realizing projection screen superimposition.
  • the projection device establishes communication.
  • the projection device may be preset with a small-scale feature map and an original feature map, and in response to an image projection command sent by the device for implementing projection screen superimposition, the small-scale feature map is projected to the projection surface.
  • the projection device may also be preset with the original feature map and the feature pattern reduction ratio, and in response to the image projection command sent by the device that realizes the projection screen overlay, the feature pattern in the original feature map is reduced by the feature pattern at the original pixel ratio. Reduce to generate a small-scale feature map, and project the small-scale feature map to the projection surface.
  • the projection device may also be preset with a feature pattern reduction ratio and a feature pattern reduction ratio, and in response to an image projection command sent by the device for implementing projection screen superimposition, a small-scale feature map is projected to the projection surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本发明涉及投影叠加技术领域,实施例具体公开一种实现投影画面叠加的方法、装置及投影***。本申请采用多个投影装置分别向投影面投射小比例特征图的方式,避免了投影画面的重叠,通过图像采集装置拍摄投影面图像,获取各个投影装置的小比例投影区域,筛选出作为背景的投影装置并将其实际投影区域作为期望投影区域,再将各个作为叠加的投影装置的实际投影区域变换到期望投影区域,实现了多个投影装置的投影画面像素的快速叠加,降低了实现多个投影装置的投影画面叠加的难度且成本低。

Description

实现投影画面叠加的方法、装置及投影*** 技术领域
本发明涉及投影叠加技术领域,具体公开一种实现投影画面叠加的方法、装置及投影***。
背景技术
在一些投影场景中,为了提高投影画面的显示亮度和实现三维显示效果,需要将多个投射画面叠加,以达到一个更好的展示效果。因此,如何方便快速的实现多个投影装置的投影画面叠加是目前亟需解决的问题。
发明内容
有鉴于此,本申请提供一种实现投影画面叠加的方法、装置及投影***,通过多个投影装置分别向投影面投射小比例特征图,摄像头拍摄投影面图像,筛选出作为背景的投影装置,计算作为叠加的投影装置的叠加调整参数,快速实现多个投影装置的投影画面叠加。
为解决以上技术问题,本发明提供的技术方案是一种实现投影画面叠加的方法,应用于投影***,所述投影***包括图像采集装置和至少2个投影装置,所述方法包括:
S11:向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
S12:向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
S13:选定作为背景的投影装置,其余投影装置作为作为叠加的投影装置,计算各个作为叠加的投影装置的叠加调整参数;
S14:将各个作为叠加的投影装置的叠加调整参数发送给对应的投影装置,以 使各个所述作为叠加的投影装置按对应的叠加调整参数调整投射图像。
优选的,所述步骤13的方法,包括:
S131:获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
S132:获取各个所述投影装置的小比例特征图的特征图案缩小比值;
S133:根据各个所述投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
S134:筛选出自身的实际投影区域与其他投影装置的实际投影区域的重叠区域最多的一个投影装置作为作为背景的投影装置,其他投影装置作为作为叠加的投影装置;
S135:将所述作为背景的投影装置的实际投影区域作为各个所述作为叠加的投影装置的期望投影区域,根据所述期望投影区域和各个所述作为叠加的投影装置的实际投影区域计算各个所述作为叠加的投影装置的叠加调整参数。
优选的,所述步骤S131的方法,包括:
识别所述投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
建立各个所述投影装置的编号信息与小比例特征图像区域的对应关系。
优选的,所述步骤S132的方法,包括:
获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者
获取各个所述投影装置预设的小比例特征图和原始特征图,计算各个所述投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。
优选的,所述步骤S133的方法,包括:
获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
本发明还提供一种实现投影画面叠加的装置,应用于投影***,所述投影***包括图像采集装置和至少2个投影装置,所述装置包括:
图像投射模块,用于向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
图像采集模块,用于向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
参数计算模块,用于选定作为背景的投影装置,其余投影装置是作为叠加的投影装置,计算各个作为叠加的投影装置的叠加调整参数;
参数发送模块,用于将各个作为叠加的投影装置的叠加调整参数发送给对应的投影装置,以使各个所述作为叠加的投影装置按对应的叠加调整参数调整投射图像。
优选的,所述参数计算模块包括:
投影区域获取单元,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
缩小比值获取单元,用于获取各个所述投影装置的小比例特征图的特征图案缩 小比值;
实际区域计算单元,用于根据各个所述投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
背景装置筛选单元,用于筛选出自身的实际投影区域与其他投影装置的实际投影区域的重叠区域最多的一个投影装置作为作为背景的投影装置,其他投影装置作为作为叠加的投影装置;
调整参数计算单元,用于将所述作为背景的投影装置的实际投影区域作为各个所述作为叠加的投影装置的期望投影区域,根据所述期望投影区域和各个所述作为叠加的投影装置的实际投影区域计算各个所述作为叠加的投影装置的叠加调整参数。
优选的,所述投影区域获取单元包括:
图像信息获取组件,用于识别所述投影面图像中各个小比例特征图像中的特征图案,获得该小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
对应关系建立组件,用于建立各个所述投影装置的编号信息与小比例特征图像区域的对应关系。
优选的,所述缩小比值获取单元的方法包括:
获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者
获取各个所述投影装置预设的小比例特征图和原始特征图,计算各个所述投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。
优选的,所述实际区域计算单元包括:
坐标关系获取组件,用于获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
角点坐标获取组件,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
实际坐标计算组件,用于根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
本申请还提供一种实现投影画面叠加的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的实现投影画面叠加的方法。
本申请还提供一种投影***,包括图像采集装置和至少2个投影装置,还包括上的实现投影画面叠加的装置。
本申请与现有技术相比,其有益效果详细说明如下:本申请通过采用多个投影装置分别向投影面投射小比例特征图的方式,避免了投影画面的重叠,通过图像采集装置拍摄投影面图像,筛选作为背景的投影装置并将其实际投影区域作为期望投影区域,再将作为叠加的投影装置的实际投影区域变换到期望投影区域,实现了多个投影装置的投影画面像素的快速叠加,降低了投影画面叠加难度且成本低。
附图说明
图1为本发明实施例提供的一种实现投影画面叠加的方法的流程示意图;
图2为本发明实施例提供的3个投影装置实现投影画面叠加的架构示意图;
图3为本发明实施例提供的选定作为背景的投影装置和计算各个作为叠加的投影装置的叠加调整参数的方法的流程示意图;
图4为本发明实施例提供的实现投影画面叠加的装置的结构示意图;
图5为本发明实施例提供的投影***架构图。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
如图1所示,本发明实施例提供了一种实现投影画面叠加的方法,应用于投影***,该投影***包括图像采集装置和至少2个投影装置,每个投影装置设有各自的原始特征图和小比例特征图,或者每个投影装置设有各自的小比例特征图和特征图案缩小比值,其中,原始特征图中包括特征图案,原始特征图中的特征图案为满屏的特征图案图,小比例特征图是将原始特征图中的特征图案在原始像素比例下按特征图案缩小比值缩小后得到的非满屏的特征图案图,小比例特征图中特征图案在图中心,周围为透明的图,特征图案中包含投影装置的识别标识,具体的方法包括:
S11:向各个投影装置发送图像投射命令,以使各个投影装置分别向投影面投射各自的小比例特征图,投影面上的各个小比例特征图像未重叠;
S12:向图像采集装置发送图像采集命令,以使图像采集装置采集投影面图像,投影面图像是包含投影面上所有小比例特征图像的整体图像;
S13:选定作为背景的投影装置,其余投影装置作为作为叠加的投影装置,计算各个作为叠加的投影装置的叠加调整参数;
S14:将各个作为叠加的投影装置的叠加调整参数发送给对应的投影装置,以使各个作为叠加的投影装置按对应的叠加调整参数调整投射图像。
需要说明的是,每个投影装置可设置有原始特征图,当投影装置向投影面投射原始特征图时可以看到该投影装置的实际投影区域,但是如果每个投影装置都向投影面投射原始特征图,会造成投影面上的原始特征图像重叠,在投影画面叠加时给图像处理和计算带来很大的难度,因此将原始特征图中的特征图案在原始像素比例下按一定的缩小比例(1>缩小比例>0)缩小,即按特征图案缩小比值缩小再投射,避免多个投影装置的画面叠加而造成相互干扰。特征图案缩小比值可以根据客户实际需求设定,将原始特征图按一定特征图案缩小比值缩小后得到小比例特征图,小 比例特征图的实质是将特征图案缩小后置于小比例特征图中部,而周围为透明图像的图,小比例特征图与原始特征图中的图案内容是一致的,只是图案区域的大小不一样。其中,原始特征图可以是设有边框的图、设有角点标识的图或者平面几何图形图,例如可以是一个只有边框的图(通过识别边框的角点确定图像区域),也可以是一个识别标志二维码图(通过识别二维码图的位置确定图像区域,识别标志二维码图也包含角点和边框),还可以是包含规则几何图案(圆,矩形等)的图,识别图案后再推算整个投影画面的四个角点位置,这些都是边界特征比较明显(线条,角点等)的图,即是本申请所指的原始特征图。
每个投影装置的原始特征图和小比例特征图均包含对应投影装置的识别标识,因为在图像识别时,需要确定哪个投影装置对应投影面上的哪块投影区域才能计算出实际投影区域及叠加调整参数,小比例特征图中可以包含投影装置的识别标识,或者将投影装置的识别标识直接作为小比例特征图,也可以在小比例特征图中心放置一个识别标识。如图2中所示以Aruco码为例,也可以是其他易于识别的标志如QRcode。为了更高的图像精度,也可以特别设计小比例特征图。
需要说明的是,在步骤S11中,向各个投影装置发送图像投射命令,以使各个投影装置分别向投影面投射各自的小比例特征图,但是在投影面上的各个小比例特征图像之间不能重叠,否则会影响图像识别的结果。一般情况下,将需要叠加投影画面的投影装置依次正常摆放后,各个投影装置投射的小比例特征图在投影面不会重叠。
需要说明的是,在步骤S12中,图像采集装置是指具备图像拍摄功能的装置,可以是摄像头,智能手机,平板电脑,笔记本电脑等。图像采集装置的拍摄位置并未限定,只要求能够整体拍摄投影面上的所有小比例特征图像用于后续的计算,当然清晰度也需要满足常规像素要求。
如图3所示,步骤S13的方法包括:
S131:获取各个投影装置在投影面图像中对应的小比例特征图像区域;
S132:获取各个投影装置的小比例特征图的特征图案缩小比值;
S133:根据各个投影装置在投影面图像中对应的小比例特征图像区域和各个投影装置的小比例特征图的特征图案缩小比值,计算各个投影装置在投影面图像中的实际投影区域;
S134:筛选出自身的实际投影区域与其他投影装置的实际投影区域的重叠区域最多的一个投影装置作为作为背景的投影装置,其他投影装置作为作为叠加的投影装置;
S135:将作为背景的投影装置的实际投影区域作为各个作为叠加的投影装置的期望投影区域,根据期望投影区域和各个作为叠加的投影装置的实际投影区域计算各个作为叠加的投影装置的叠加调整参数。
具体的,步骤S131的方法,包括:
S1311:识别投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在投影面图像中对应的小比例特征图像区域;
S1312:建立投影装置的编号信息与小比例特征图像区域的对应关系。
具体的,步骤S132的方法,包括:获取各个投影装置预设的小比例特征图的特征图案缩小比值;或者获取各个投影装置预设的小比例特征图和原始特征图,计算各个投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。各个投影装置的小比例特征图的特征图案缩小比值可以存储在投影装置内,也可以存储在实现投影画面叠加的装置内,也可以存储在服务器上。
具体的,步骤S133的方法,包括:
S1331:获取各个投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
S1332:获取各个投影装置在投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
S1333:根据各个投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个投影装置在投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个投影装置在投影面图像中的实际投影区域的4个角点像素坐标。
需要说明的是,当投影装置的识别标识为投影装置的小比例特征图时,可以采用现有成熟算法去识别识别标识,可以得到识别标识的大小位置,以及识别标识对应的投影装置编号信息,由于每个投影装置的编号信息是唯一的,因此可以把识别到的投影装置编号信息和识别到的识别标识区域位置对应起来,获得各个投影装置的编号信息与投影区域的对应关系,每个投影装置都采用相同的方法获得编号信息和投影区域的对应关系后,可以进行后续的计算。
接下来,要通过投影装置的编号信息获得投影装置的原始特征图和小比例特征图,或者获取特征图案缩小比值,投影装置的原始特征图和小比例特征图可能存储在投影装置内,也可能存储在实现投影画面叠加的装置内,也可能存储在远程服务器上,在进行计算前,需要根据投影装置的编号信息获取各个投影装置的特征图案缩小比值,或者通过获取原始特征图和小比例特征图信息计算特征图案缩小比值。
举例说明,如图2所示的投影***包括3个投影装置,即投影装置C1、投影装置C2和投影装置C3,利用投影面的小比例特征图像计算3个投影装置的实际投影区域的位置,即图中投影装置C1的实际投影区域ABCD,投影装置C2的实际投影区域EFGH,投影装置C3的实际投影区域为IJKL,具体计算方法包括:由于C1的小比例特征图与原始特征图是已知的,因此小比例特征图在原始特征图中的像素坐标是已知的。根据小比例特征图的4个角点像素坐标和原始特征图的4个角点像素坐标,即根据八个角点的对应关系,利用直接线性变换法(Direct Linear Transform) 或者最小二乘法计算出单应变换矩阵H1,即H1表征了C1的小比例特征图到原始特征图的坐标变换关系。根据图像采集装置拍摄的包含C1,C2和C3投射的小比例特征图的投影面图像,在投影面图像中找到C1小比例特征图像区域abcd,找到C2小比例特征图像区域efgh,找到C3小比例特征图像区域ijkl,这里具体查找办法可以用角点查找,或者用图像模板匹配等方法,没有具体要求,这里不做限制。利用单应矩阵对应关系
Figure PCTCN2020078186-appb-000001
其中(u1,v1),(u2,v2)分别为原始特征图和小比例特征图对应点的像素坐标,S为一个常数比例因子。因此可以由投影面上的C1小比例特征图像四个角点的位置计算出原始特征图像4个角点的位置,即由abcd根据H1变换得到ABCD,类似的,假设H2表征C2小比例特征图和原始特征图的坐标变换关系,efgh根据H2变换得到EFGH,假设H3表征了C3小比例特征图和原始特征图的坐标变换关系,ijkl根据H3变换得IJKL,从而找到C1、C2和C3的完整投影区域/实际投影区域。
需要说明的是,步骤S134的方法,包括分别计算每一个投影装置的实际投影区域与其他投影装置的实际投影区域的交集并求和,筛选出交集最大的投影装置作为作为背景的投影装置。具体方法包括:获得C1、C2和C3的实际投影区域之后,针对C1,分别计算其与C2和C3的实际投影区域的交集并相加,针对C2,分别计算其与C1和C3的实际投影区域的交集并相加,针对C3,分别计算其与C1和C2的实际投影区域的交集并相加,选取其中的最大值,即筛选出投影装置C2作为作为背景的投影装置,根据已经得到的投影装置C2的实际投影区域位置EFGH,将C1的实际投影区域通过单应变换矩阵变成EFGH区域,即和C2的投影区域完全重合,即完成了C1C2的叠加过程,将C3的实际投影区域通过单应变换矩阵变成EFGH 区域,即和C2的投影区域完全重合,即完成了C2C3的叠加过程。具体计算方法包括:用最小二乘法计算从ABCD到EFGH的单应变换矩阵N1(叠加调整参数),N1作用于投影装置C1的投射图像,则可以得到期望的投影画面区域ABCD,即完成叠加过程,以此类推,单应变化矩阵计算方法包括最小二乘法或者DLT方法。以此类推,任意的两个或者两个以上投影装置都可以采用相同的方法进行投影画面叠加,因此可以实现多个投影装置的投影画面叠加。
本申请的技术方案通过投射小比例特征图进行多个投影装置的投影区域定位,通过外接/外部图像采集装置拍照和单应性变换方法进行多个投影装置的投影画面的叠加,操作简单,且计算难度小,非常适于广泛推广。
下面对本发明实施例提供的实现投影画面叠加的装置进行介绍,需要说明的是,有关实现投影画面叠加的装置的说明可参见上文的实现投影画面叠加的方法,以下并不做赘述。
如图4所示,本发明实施例提供一种实现投影画面叠加的装置,应用于投影***,该投影***包括图像采集装置和至少2个投影装置,装置包括:
图像投射模块21,用于向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
图像采集模块22,用于向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
参数计算模块23,用于选定作为背景的投影装置,其余投影装置是作为叠加的投影装置,计算各个作为叠加的投影装置的叠加调整参数;
参数发送模块24,用于将各个作为叠加的投影装置的叠加调整参数发送给对应的投影装置,以使各个所述作为叠加的投影装置按对应的叠加调整参数调整投射图 像。
需要说明的是,参数计算模块23包括:
投影区域获取单元,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
缩小比值获取单元,用于获取各个所述投影装置的小比例特征图的特征图案缩小比值;
实际区域计算单元,用于根据各个所述投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
背景装置筛选单元,用于筛选出自身的实际投影区域与其他投影装置的实际投影区域的重叠区域最多的一个投影装置作为作为背景的投影装置,其他投影装置作为作为叠加的投影装置;
调整参数计算单元,用于将所述作为背景的投影装置的实际投影区域作为各个所述作为叠加的投影装置的期望投影区域,根据所述期望投影区域和各个所述作为叠加的投影装置的实际投影区域计算各个所述作为叠加的投影装置的叠加调整参数。
需要说明的是,投影区域获取单元包括:
图像信息获取组件,用于识别所述投影面图像中各个小比例特征图像中的特征图案,获得该小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
对应关系建立组件,用于建立各个所述投影装置的编号信息与小比例特征图像区域的对应关系。
需要说明的是,缩小比值获取单元的方法包括:获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者获取各个所述投影装置预设的小比例特征 图和原始特征图,计算各个所述投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。
需要说明的是,实际区域计算单元包括:
坐标关系获取组件,用于获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
角点坐标获取组件,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
实际坐标计算组件,用于根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
需要说明的是,调整参数计算单元的计算方法,包括,分别计算每个投影装置的实际投影区域与其他投影装置的实际投影区域的交集并求和,筛选出交集最大的投影装置作为作为背景的投影装置。
本发明实施例还提供一种实现投影画面叠加的装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的实现投影画面叠加的方法。
如图5所示,本发明实施例还提供一种投影***,包括图像采集装置、至少2个投影装置和上述的实现投影画面叠加的装置,实现投影画面叠加的装置分别与图像采集装置和各个投影装置建立通信。
其中,投影装置可以预设有小比例特征图和原始特征图,响应于实现投影画面叠加的装置发送的图像投射命令,向投影面投射小比例特征图。其中,投影装置也可以预设有原始特征图和特征图案缩小比值,响应于实现投影画面叠加的装置发送的图像投射命令,将原始特征图中的特征图案在原始像素比例下按特征图案缩小比 值缩小生成小比例特征图,向投影面投射小比例特征图。其中,投影装置也可以预设有特征图案缩小比值和特征图案缩小比值,响应于实现投影画面叠加的装置发送的图像投射命令,向投影面投射小比例特征图。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种实现投影画面叠加的方法,其特征在于,应用于投影***,所述投影***包括图像采集装置和至少2个投影装置,所述方法包括:
    S11:向各个投影装置发送图像投射命令,以使各个所述投影装置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
    S12:向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
    S13:选定作为背景的投影装置,其余投影装置作为作为叠加的投影装置,计算各个作为叠加的投影装置的叠加调整参数;
    S14:将各个作为叠加的投影装置的叠加调整参数发送给对应的投影装置,以使各个所述作为叠加的投影装置按对应的叠加调整参数调整投射图像。
  2. 根据权利要求1所述的实现投影画面叠加的方法,其特征在于,所述步骤13的方法,包括:
    S131:获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
    S132:获取各个所述投影装置的小比例特征图的特征图案缩小比值;
    S133:根据各个所述投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
    S134:筛选出自身的实际投影区域与其他投影装置的实际投影区域的重叠区域最多的一个投影装置作为作为背景的投影装置,其他投影装置作为作为叠加的投影装置;
    S135:将所述作为背景的投影装置的实际投影区域作为各个所述作为叠加的投影装置的期望投影区域,根据所述期望投影区域和各个所述作为叠加的投影装置的实际投影区域计算各个所述作为叠加的投影装置的叠加调整参数。
  3. 根据权利要求1所述的实现投影画面叠加的方法,其特征在于,所述步骤S131的方法,包括:
    识别所述投影面图像中各个小比例特征图像中的特征图案,获得各个小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
    建立各个所述投影装置的编号信息与小比例特征图像区域的对应关系。
  4. 根据权利要求2所述的实现投影画面叠加的方法,其特征在于,所述步骤S132的方法,包括:
    获取各个所述投影装置预设的小比例特征图的特征图案缩小比值;或者
    获取各个所述投影装置预设的小比例特征图和原始特征图,计算各个所述投影装置的小比例特征图相对于原始特征图的特征图案缩小比值。
  5. 根据权利要求2所述的实现投影画面叠加的方法,其特征在于,所述步骤S133的方法,包括:
    获取各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系;
    获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标;
    根据各个所述投影装置的小比例特征图变换到原始特征图的4个角点像素坐标变换关系和各个所述投影装置在所述投影面图像中对应的小比例特征图像区域的4个角点像素坐标,计算各个所述投影装置在所述投影面图像中的实际投影区域的4个角点像素坐标。
  6. 一种实现投影画面叠加的装置,其特征在于,应用于投影***,所述投影***包括图像采集装置和至少2个投影装置,所述装置包括:
    图像投射模块,用于向各个投影装置发送图像投射命令,以使各个所述投影装 置分别向投影面投射各自的小比例特征图,所述投影面上的各个小比例特征图像未重叠;
    图像采集模块,用于向图像采集装置发送图像采集命令,以使所述图像采集装置采集投影面图像,所述投影面图像是包含投影面上所有小比例特征图像的整体图像;
    参数计算模块,用于选定作为背景的投影装置,其余投影装置是作为叠加的投影装置,计算各个作为叠加的投影装置的叠加调整参数;
    参数发送模块,用于将各个作为叠加的投影装置的叠加调整参数发送给对应的投影装置,以使各个所述作为叠加的投影装置按对应的叠加调整参数调整投射图像。
  7. 根据权利要求6所述的实现投影画面叠加的装置,其特征在于,所述参数计算模块包括:
    投影区域获取单元,用于获取各个所述投影装置在所述投影面图像中对应的小比例特征图像区域;
    缩小比值获取单元,用于获取各个所述投影装置的小比例特征图的特征图案缩小比值;
    实际区域计算单元,用于根据各个所述投影装置在所述投影面图像中对应的小比例特征图像区域和各个所述投影装置的小比例特征图的特征图案缩小比值,计算各个所述投影装置在所述投影面图像中的实际投影区域;
    背景装置筛选单元,用于筛选出自身的实际投影区域与其他投影装置的实际投影区域的重叠区域最多的一个投影装置作为作为叠加的投影装置;
    调整参数计算单元,用于将所述作为背景的投影装置的实际投影区域作为各个所述作为叠加的投影装置的期望投影区域,根据所述期望投影区域和各个所述作为叠加的投影装置的实际投影区域计算各个所述作为叠加的投影装置的叠加调整参数。
  8. 根据权利要求6所述的实现投影画面叠加的装置,其特征在于,所述投影区域获取单元包括:
    图像信息获取组件,用于识别所述投影面图像中各个小比例特征图像中的特征图案,获得该小比例特征图像对应的投影装置的编号信息,同时识别各个小比例特征图像在所述投影面图像中对应的小比例特征图像区域;
    对应关系建立组件,用于建立各个所述投影装置的编号信息与小比例特征图像区域的对应关系。
  9. 一种实现投影画面叠加的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-5中任一项所述的实现投影画面叠加的方法。
  10. 一种投影***,其特征在于,包括图像采集装置和至少2个投影装置,还包括如权利要求6-8中任一项所述的实现投影画面叠加的装置。
PCT/CN2020/078186 2019-04-30 2020-03-06 实现投影画面叠加的方法、装置及投影*** WO2020220827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910363809.3A CN111314680B (zh) 2019-04-30 2019-04-30 实现投影画面叠加的方法、装置及投影***
CN201910363809.3 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220827A1 true WO2020220827A1 (zh) 2020-11-05

Family

ID=71146569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078186 WO2020220827A1 (zh) 2019-04-30 2020-03-06 实现投影画面叠加的方法、装置及投影***

Country Status (2)

Country Link
CN (1) CN111314680B (zh)
WO (1) WO2020220827A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225182A (ja) * 2013-05-17 2014-12-04 株式会社リコー 画像投影システム、画像処理装置およびプログラム
CN106773478A (zh) * 2017-04-07 2017-05-31 成都市极米科技有限公司 多投影屏幕调整方法及装置
CN107038982A (zh) * 2015-12-03 2017-08-11 佳能株式会社 投影设备及其控制方法
CN107959836A (zh) * 2017-11-15 2018-04-24 苏州佳世达光电有限公司 一种投影方法及投影***
CN110769228A (zh) * 2019-04-30 2020-02-07 成都极米科技股份有限公司 实现投影画面拼接的方法、装置及投影***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142597A (ja) * 2010-01-09 2011-07-21 Seiko Epson Corp プロジェクター及びその制御方法
JP2017191307A (ja) * 2016-04-11 2017-10-19 セイコーエプソン株式会社 投写システム、プロジェクター及びプロジェクターの制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225182A (ja) * 2013-05-17 2014-12-04 株式会社リコー 画像投影システム、画像処理装置およびプログラム
CN107038982A (zh) * 2015-12-03 2017-08-11 佳能株式会社 投影设备及其控制方法
CN106773478A (zh) * 2017-04-07 2017-05-31 成都市极米科技有限公司 多投影屏幕调整方法及装置
CN107959836A (zh) * 2017-11-15 2018-04-24 苏州佳世达光电有限公司 一种投影方法及投影***
CN110769228A (zh) * 2019-04-30 2020-02-07 成都极米科技股份有限公司 实现投影画面拼接的方法、装置及投影***

Also Published As

Publication number Publication date
CN111314680A (zh) 2020-06-19
CN111314680B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
JP7231306B2 (ja) イメージ内のターゲットオブジェクトに自動的にアノテーションするための方法、装置およびシステム
WO2020220832A1 (zh) 实现投影画面拼接的方法、装置及投影***
US8818101B1 (en) Apparatus and method for feature matching in distorted images
US8228378B2 (en) Real-time composite image comparator
WO2020206903A1 (zh) 影像匹配方法、装置及计算机可读存储介质
CN111750820B (zh) 影像定位方法及其***
CN100477745C (zh) 图像合成装置和图象合成方法
US20160371855A1 (en) Image based measurement system
WO2020134528A1 (zh) 目标检测方法及相关产品
US20190295216A1 (en) Image processing apparatus, image processing system, image capturing system, image processing method
JP6096634B2 (ja) 仮想現実を用いた3次元地図表示システム
CN111401266A (zh) 绘本角点定位的方法、设备、计算机设备和可读存储介质
JP2010287174A (ja) 家具シミュレーション方法、装置、プログラム、記録媒体
CN114615480B (zh) 投影画面调整方法、装置、设备、存储介质和程序产品
WO2015100723A1 (zh) 实现自助合影的方法和照相设备
JP6686547B2 (ja) 画像処理システム、プログラム、画像処理方法
CN107886101A (zh) 一种基于rgb‑d的场景三维特征点高效提取方法
WO2023151271A1 (zh) 模型展示方法、装置、电子设备及存储介质
WO2020220827A1 (zh) 实现投影画面叠加的方法、装置及投影***
WO2020220831A1 (zh) 实现投影画面叠加的方法、装置及投影***
CN115086625A (zh) 投影画面的校正方法、装置、***、校正设备和投影设备
CN107633498B (zh) 图像暗态增强方法、装置及电子设备
US10013736B1 (en) Image perspective transformation system
Au et al. Ztitch: A mobile phone application for immersive panorama creation, navigation, and social sharing
Yan et al. Fast and low complexity image stitching method on mobile phones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798531

Country of ref document: EP

Kind code of ref document: A1