WO2020220175A1 - 封装天线及雷达组件封装体 - Google Patents

封装天线及雷达组件封装体 Download PDF

Info

Publication number
WO2020220175A1
WO2020220175A1 PCT/CN2019/084863 CN2019084863W WO2020220175A1 WO 2020220175 A1 WO2020220175 A1 WO 2020220175A1 CN 2019084863 W CN2019084863 W CN 2019084863W WO 2020220175 A1 WO2020220175 A1 WO 2020220175A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sub
package
slot
layer
Prior art date
Application number
PCT/CN2019/084863
Other languages
English (en)
French (fr)
Inventor
王典
李珊
Original Assignee
加特兰微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加特兰微电子科技(上海)有限公司 filed Critical 加特兰微电子科技(上海)有限公司
Priority to JP2021557694A priority Critical patent/JP7320869B2/ja
Priority to US17/606,989 priority patent/US20220209392A1/en
Priority to KR1020217029496A priority patent/KR102661906B1/ko
Priority to CN201980095775.2A priority patent/CN113795978A/zh
Priority to EP19927007.5A priority patent/EP3965227A4/en
Priority to PCT/CN2019/084863 priority patent/WO2020220175A1/zh
Publication of WO2020220175A1 publication Critical patent/WO2020220175A1/zh
Priority to JP2023025860A priority patent/JP2023062161A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • This application belongs to antenna technology, and more specifically relates to packaged antennas and radar component packages.
  • the packaged antennas Due to the small size and high integration of RF front-ends in high-frequency bands such as millimeter waves, the packaged antennas that can be realized are widely used in many fields such as wireless communications, radar detection, ranging and imaging.
  • a metal layer as a ground plane (that is, a reflective surface) to ensure the directionality of electromagnetic waves radiated by the packaged antenna.
  • This metal layer will not only limit the reduction in antenna size, but also increase the complexity and manufacturing of the antenna. Difficulty, but also brings reliability issues.
  • a packaged antenna including:
  • the first sub-antenna The first sub-antenna;
  • the first sub-antenna and the second sub-antenna cancel each other's radiation field in the preset area so that the package antenna realizes directional radiation.
  • a packaged antenna including:
  • a dipole antenna disposed above the antenna emitting surface of the slot antenna
  • a dielectric layer arranged between the slot antenna and the dipole antenna
  • the slot antenna is used as a reflection surface of the dipole antenna to make the package antenna directional radiation.
  • a radar component package including:
  • the bare radar chip is arranged on the wiring layer;
  • the packaged antenna as described in any embodiment of the present application is electrically connected to the radar chip die through the wiring layer.
  • Fig. 1 is a schematic diagram of the structure of the packaged antenna in an alternative embodiment.
  • Figure 2 is an exploded view of the packaged antenna in an alternative embodiment.
  • Fig. 3 is an exploded view of the packaged antenna in another alternative embodiment.
  • Fig. 4 is a perspective view of the metal layer of the package antenna in an alternative embodiment.
  • Fig. 5 is a top view of the structure shown in Fig. 4.
  • Figures 6-7 are top views of the metal layer in the packaged antenna with other optional types of dipole antennas.
  • Fig. 8 is a schematic diagram of a redundant structure in an alternative embodiment.
  • Fig. 9 is a schematic diagram of a redundant structure in another alternative embodiment.
  • Fig. 10 is a top view of a slot antenna in an alternative embodiment.
  • Fig. 11 is a top view of a slot antenna in another alternative embodiment.
  • Fig. 12 is an exploded view of an optional embodiment of a package antenna with a strip-shaped slot antenna.
  • Fig. 13 is a top view of an optional embodiment of a package antenna with a strip-shaped slot antenna.
  • Fig. 14 is a schematic cross-sectional view of an optional embodiment of a radar component package.
  • Fig. 15 is a schematic cross-sectional view of a radar component package according to another alternative embodiment.
  • Fig. 16 is a schematic cross-sectional view of a radar component package with an AOP package antenna in an alternative embodiment.
  • Figure 17 is a schematic cross-sectional view of a radar component package with an AIP package antenna in an alternative embodiment.
  • FIG. 18 is a schematic cross-sectional view of a DE radar component package with an AIP package antenna in another alternative embodiment.
  • 19 is a schematic cross-sectional view of a radar component package with an AOP package antenna in another alternative embodiment.
  • Fig. 20 is a frequency response curve diagram of the packaged antenna of an alternative embodiment.
  • Fig. 21 is a gain pattern of the packaged antenna of an alternative embodiment.
  • an embodiment of the present application creatively proposes a packaged antenna.
  • the at least two sub-antennas can achieve radiation fields in a preset area.
  • the antenna structure formed by the at least two sub-antennas can realize the function of directional radiation of electromagnetic waves.
  • it not only makes the size of the formed package antenna It can be further reduced, and the manufacturing difficulty and reliability problems of the antenna are also reduced.
  • Fig. 1 is a schematic diagram of the structure of the packaged antenna in an alternative embodiment.
  • the packaged antenna 110 may include components such as a first sub-antenna 111 and a second sub-antenna 112.
  • the package antenna 110 can be a composite antenna structure formed based on the first sub-antenna 111, that is, the above-mentioned second sub-antenna 112 can be fixedly arranged near the position of the first sub-antenna 111, so that the second sub-antenna 112 can Cancel a part of the electromagnetic waves radiated by the first sub-antenna 111, so that the first sub-antenna 111 realizes directional radiation in a predetermined direction.
  • the second sub-antenna can further reduce the size of the packaged antenna 110 formed in FIG. 1, which also effectively reduces the difficulty in manufacturing the antenna, and improves the reliability and integration of the antenna.
  • the above-mentioned second sub-antenna 112 and the first sub-antenna 111 can cancel each other's radiation field in a predetermined area, and at the same time, the second sub-antenna 112 Part of the emitted electromagnetic waves can also be radiated to the target area, that is, the electromagnetic waves emitted by the first sub-antenna 111 and the second sub-antenna 112 can be radiated into the target area at the same time, so as to enhance the energy radiated in the target area, thereby enhancing
  • the formed package antenna 110 has the energy of electromagnetic waves emitted in the directional radiation direction (that is, the predetermined direction), and at the same time, it can also make the electromagnetic waves emitted by the second sub-antenna 112 and the first sub-antenna 111 cancel each other in the preset area. This enables the packaged antenna 110 to achieve directional radiation toward the target area.
  • the predetermined area in the embodiment of the present application may include the area A shown in FIG. 1, that is, the area between the second sub-antenna 112 and the first sub-antenna 111, and the predetermined area may also include the second sub-antenna 112 is away from the area on the side of the first sub-antenna 111 (that is, the area below the second sub-antenna 112 shown in FIG. 1), and in an alternative embodiment, the predetermined area may also be the second sub-antenna 112 located The area on the side of the first sub-antenna 111 (that is, the area below the first sub-antenna 111 shown in FIG. 1).
  • the target area may be the area on the side of the first sub-antenna 111 away from the second sub-antenna 112, that is, the area B shown in FIG. 1, so that the package antenna 110 performs directional radiation in the direction indicated by the arrow C.
  • the direction indicated by arrow C may be perpendicular to the antenna transmitting surface of the first sub-antenna 111 away from the second sub-antenna 112.
  • the direction indicated by the arrow C can be defined as upward.
  • the antenna emitting surface may include the surface from which the sub-antenna emits electromagnetic waves, and the direction of directional radiation may be the main electromagnetic wave radiation direction of the antenna (for example, a single sub-antenna or a combined antenna), such as the main lobe and/ Or the radiation direction of the side lobe.
  • the projection of the second sub-antenna 112 is at least partially projected on the first sub-antenna Above 111, that is, in the directional radiation direction of the package antenna 110, the second sub-antenna 112 and the first sub-antenna 111 are overlapped to improve the directional radiation performance of the package antenna 110.
  • the package antenna 110 is directed upward (that is, the direction shown by arrow C) for directional radiation, and the second sub-antenna 112 may be correspondingly disposed on the first sub-antenna 111 Directly below, in order to effectively increase the radiation energy of the packaged antenna 110 towards the direct upwards.
  • the extension directions of the antenna emitting surfaces of the first sub-antenna 111 and the second sub-antenna 112 may be parallel to each other, and the extension directions of the antenna emitting surfaces of the first sub-antenna 111 and the second sub-antenna 112 may also be perpendicular to each other.
  • the direction of the directional radiation of the packaged antenna 110 can further increase the radiation energy of the packaged antenna 110 toward the upper side.
  • the distance between the first sub-antenna 111 and the second sub-antenna 112 is greater than zero, and in order to further improve the directional radiation of the package antenna 110
  • the radiation performance can make the distance d between the first sub-antenna 111 and the second sub-antenna 112 in the directional radiation direction approximately 0.25 ⁇ *n, which can also be expressed as:
  • d is the distance between the first sub-antenna 111 and the second sub-antenna 112 in the directional radiation direction
  • n is an odd number
  • m is a natural number
  • is the wavelength of the electromagnetic wave radiated by the package antenna 110.
  • the distance d between the first sub-antenna 111 and the second sub-antenna 112 in the directional radiation direction can be set In the preset interval range, for example, d ⁇ (0,0.75 ⁇ ], that is, the d can take the value of 0.1 ⁇ , 0.2 ⁇ , 0.25 ⁇ , 0.3 ⁇ , 0.4 ⁇ , 0.45 ⁇ , 0.55 ⁇ , 0.65 ⁇ or 0.75 ⁇
  • the value of d is made as close as possible to (2m+1)*0.25 ⁇ to improve the directional radiation performance of the package antenna 110 as much as possible.
  • the first sub-antenna 111 and the second sub-antenna 112 can also share a feeder line, that is, the first sub-antenna 111 and the second sub-antenna 112 are directly electrically connected through the connecting line 113.
  • the first sub-antenna 111 is fed while also feeding the second sub-antenna 112 through the connecting line 113, or the second sub-antenna 112 is fed while also feeding the second sub-antenna through the connecting line 113
  • One sub-antenna 111 is fed, that is, the second sub-antenna 112 can be fed through the first sub-antenna 111, and the first sub-antenna 111 can also be fed through the second sub-antenna 112, so as to minimize the increase of the
  • the size of the feed line brought by the two sub-antennas 112 can also improve the consistency of electromagnetic waves radiated by the first sub-antenna 111 and the second sub-antenna 112.
  • Figure 2 is an exploded view of the packaged antenna in an alternative embodiment.
  • a distance adjustment layer (not shown in the figure) is provided between the first sub-antenna 111 and the second sub-antenna 112, and the distance adjustment layer can insulate the first sub-antenna 111 and the second sub-antenna 112, based on actual needs.
  • the distance adjustment layer is set to have a corresponding thickness, so that the distance between the first sub-antenna 111 and the second sub-antenna 112 meets the design requirements.
  • the distance adjustment layer may be a composite layer structure or a single layer structure, which can be specifically set according to actual requirements.
  • the distance adjustment layer may include a stacked first dielectric layer 116 and a second dielectric layer 117; wherein, the first dielectric layer 116 may be an insulating layer for isolation, and the second dielectric layer 117 It can be a film structure for distance adjustment.
  • the distance adjustment layer can be the first dielectric layer 116, that is, the first dielectric layer 116 can be used for isolation and distance adjustment at the same time. However, there is no need to provide a second dielectric layer 117 between the first sub-antenna 111 and the second sub-antenna 112.
  • the above-mentioned first dielectric layer 116 may be a high-frequency dielectric substrate, and the second dielectric layer 117 may be It is an organic dielectric layer to meet the design requirements of spacing while taking into account the insulation performance.
  • the dielectric constant of the first dielectric layer 116 may be made larger than the dielectric constant of the second dielectric layer 117.
  • the first dielectric layer 116 may be a glass fiber epoxy board with a high dielectric constant
  • the second dielectric layer 117 may be an organic layer with a low dielectric constant, even if the first dielectric layer 116 and the second dielectric layer 117 are obtained.
  • As a composite layer it is convenient to adjust the dielectric constant of the medium between the second sub-antenna 112 and the first sub-antenna 111.
  • the second dielectric layer 117 can also take into account the second sub-antenna 112 and the first sub-antenna in the package antenna 110.
  • the spacing design requirements of the antenna 111 may be a glass fiber epoxy board with a high dielectric constant
  • the second dielectric layer 117 may be an organic layer with a low dielectric constant, even if the first dielectric layer 116 and the second dielectric layer 117 are obtained.
  • the connecting line 113 may be a via conductor that penetrates the distance adjustment layer along the thickness direction, and when the second sub-antenna 112 and the first sub-antenna 111 are connected
  • contact pads 114 can also be provided between the dielectric layers, so that the via conductors penetrating through the dielectric layers can be electrically connected to each other to form an electrical connection between the second sub-antenna 112 and the first sub-antenna 111
  • the connection line improves the electrical connection performance between the sub-antennas and reduces the process difficulty of preparing the connection line.
  • the contact pad 114 in FIG. 2 may be disposed between the second dielectric layer 117 and the first dielectric layer 116.
  • the contact pad 114 is placed above the first dielectric layer 116 only for convenience of explanation.
  • the first sub-antenna 111 may be a dipole antenna, a microstrip antenna, etc.
  • the second sub-antenna 112 may be a type of antenna such as a slot antenna or a patch antenna.
  • Fig. 3 is an exploded view of the packaged antenna in another alternative embodiment.
  • the first sub-antenna 111 is a dipole antenna
  • the second sub-antenna 112 is a slot antenna as an example.
  • the structure of the antenna is explained in detail. Specifically, referring to FIG.
  • the package antenna 210 may include a stacked dipole antenna 211 and a slot antenna 212, and a distance adjustment layer (not shown in the figure) disposed between the dipole antenna 211 and the slot antenna 212 ), the distance adjustment layer may include a stacked organic layer 217 and a high-frequency dielectric substrate 216, that is, the organic layer 217 is stacked on the upper surface of the slot antenna 212, and the high-frequency dielectric substrate 216 is stacked on the upper surface of the organic layer 217
  • the dipole antenna 211 is arranged on the upper surface of the high-frequency dielectric substrate 216, and the dipole antenna 211 and the slot antenna 212 can be electrically connected by a connecting wire 213 that sequentially penetrates the high-frequency dielectric substrate 216 and the organic layer 217 , So that the use of the feeder 2123 of the slot antenna 212 can not only feed the slot antenna 212 but also feed each conductor 2111 in the dipole antenna 211.
  • the dielectric constant of the high-frequency dielectric substrate 216 used can be made larger than that of the organic layer 217, so that the dielectric constant design requirements in the package antenna 210 and the spacing design requirements between sub-antennas can be taken into account. .
  • the organic layer 217 can be omitted.
  • a contact pad 214 may be provided on the upper surface of the slot antenna 212 so that one end of the connecting wire 213 can pass through
  • the contact pad 214 is electrically connected to the slot antenna 214, and the other end of the connecting wire 213 can be connected to the conductor 2111.
  • the above-mentioned connecting wire 213 is, for example, a via-hole conductor.
  • the connecting wire 213 can also be prepared simultaneously when preparing the dipole antenna 211, that is, each conductor 2111 and the connecting wire 213 below are integrally formed, and can pass through the contact pad 214 below. It is electrically connected to the metal layer 2121.
  • the slot antenna 212 may be an antenna formed based on a slot structure opened on the metal layer 2121.
  • the above-mentioned slot antenna 212 can be formed by opening a slot structure 2112 penetrating the redistribution layer in the thickness direction on the redistribution layer (Redistribution Layers, RDL), so as to avoid the newly added metal layer for slotting by sharing the RDL layer
  • RDL redistribution Layers
  • FIG. 4 is a three-dimensional perspective view of the metal layer of the package antenna in an alternative embodiment
  • FIG. 5 is a top view of the structure shown in FIG. 4.
  • the slot antenna 212 may have an "H"-shaped slot structure 2122, and in the opposite direction of the directional radiation of the package antenna 210, any pair of the dipole antenna 211 The projections of the conductors can be respectively located on opposite sides of the slot structure 2122 to further improve the directional radiation performance of the package antenna 210.
  • the distance d between the slot antenna 212 and the dipole antenna 211 can be set at (0, 0.25 ⁇
  • the above-mentioned distance d can be set to a value of 0.05 ⁇ , 0.15 ⁇ , 0.2 ⁇ , or 0.25 ⁇ , so that the image antenna of the dipole antenna 211 and itself have the same phase radiation directly above.
  • the field can also make the radiation field of the dipole antenna 211 and the radiation field directly below the slot antenna 212 have opposite phases and cancel each other. That is, the dipole antenna 211 and the slot antenna 212 can form a composite antenna structure to make the package
  • the antenna 210 can realize directional radiation, and at the same time can expand the working bandwidth of the package antenna 210.
  • the "H"-shaped slit structure 2122 may have two first slits parallel to each other, and the middle part of the two first slits is connected and perpendicular to the first slit.
  • the feeder 2123 can be opened in the middle part of the second slot, and one end of the feeder 2123 can be arranged on a side wall of the second slot, and the other end can extend through the second slot to protect the
  • the second gap block is two gap units with the same length.
  • the slits located on both sides of the feeder 2123 can be connected through a slit unit respectively.
  • the width of can be b, and the width of the slit is smaller than b.
  • the dipole antenna 211 located above the slot antenna 212 may include multiple pairs of conductors, and each conductor may be a rectangular patch as shown in FIG. 5, that is, the dipole antenna 211 may It includes a plurality of conductors 2111, and the plurality of conductors 2111 can be arranged in an array. Wherein, when any two conductors 2111 as a pair of conductors are projected to the slot antenna 212, the projections of the two conductors 2111 are respectively located on both sides of the slot structure. Referring to FIG. 5, the dipole antenna 211 may include four conductors 2111. The four conductors 2111 serve as two pairs of conductors, and the projection of each conductor 2111 is located in the area between the two parallel first slots.
  • the projections of the two conductors 2111 in each pair of conductors are located on both sides of the second slot, and with the slot unit as the central axis, the projections of the conductor 2111 corresponding to each pair of conductors are distributed axisymmetrically; at the same time, the two pairs of conductors are The projections corresponding to the four conductors 2111 are distributed axisymmetrically with the feeder 2123 as the central axis.
  • the distance d between the slot antenna 212 and the dipole antenna 211 may be set to be approximately (0,0.75 ⁇ ].
  • the distance d between the slot antenna 212 and the dipole antenna 211 can be made approximately 0.25 ⁇ , so that the image antenna of the dipole antenna 211 and the dipole antenna 211 have the same phase radiation directly above the package antenna 210
  • the radiation field of the slot antenna 211 and the radiation field of the dipole antenna 211 directly below the package antenna 201 have opposite phases and thus cancel each other, that is, the dipole antenna 211 and the slot antenna 212 in Figure 4-5
  • Forming the package antenna 210 with a composite antenna structure enables the package antenna 210 to achieve directional radiation while expanding the working bandwidth of the package antenna 210.
  • the first sub-antenna 111 is a dipole antenna
  • the second sub-antenna 112 is a slot antenna as an example.
  • the change structure of the antenna is explained in detail.
  • the packaged antenna 310 may include a slot antenna 212, a dipole antenna 311 located above the slot antenna 212, and a connecting wire 213 that electrically connects the slot antenna 212 and the dipole antenna 311 to each other.
  • the package antenna 310 further includes a contact pad 214.
  • the structure of the slot antenna 212 in the package antenna 310 of this embodiment may be the same as the structure of the slot antenna of the package antenna as shown in FIG. 3 to FIG. 7, and the similarities will not be described in detail here.
  • the slot antenna 212 includes an "H"-shaped slot structure 2122.
  • the "H"-shaped slot structure 2122 may have two first slots parallel to each other, and connect the two The second slot in the middle of the first slot and perpendicular to the first slot, and the dipole antenna 311 may include two rectangular patches 3111 arranged in an array, and the length direction of the rectangular patches 3111 is consistent with the "H"-shaped slot structure
  • the extending direction of the second slot in the middle is vertical, and the projections of the two conductors 3111 of the dipole antenna 311 can be respectively located on opposite sides of the "H"-shaped slot structure.
  • the slot antenna of the package antenna 410 may have the same structure as the slot antenna shown in FIG. 6, The similarities will not be detailed here.
  • the dipole antenna 411 of the package antenna 410 may include four strip-shaped patches 4111 arranged in an array, and the extending direction of the strip-shaped patch 4111 is parallel to the two slots in the "H"-shaped slot structure.
  • the extension direction of the dipole antenna 411 is parallel, and the four strips 4111 of the dipole antenna 411 constitute two pairs of conductors, and the projections of the two strips 4111 corresponding to each pair of conductors are located in the "H"-shaped slots. Opposite sides of the structure.
  • any two strip-shaped patches 4111 adjacent ends can be used for electrical connection with the connecting line 213, that is, the adjacent ends
  • the shape conforms to the cross-sectional shape of the connecting line 213, and the opposite ends may be arc-shaped.
  • the shape, number, and distribution of the conductors included in the dipole antenna in the above embodiment can be adjusted according to actual needs, as long as the projections of any pair of conductors in the dipole antenna are located in the slot. Both sides of the slot structure in the antenna are sufficient.
  • Fig. 8 is a schematic diagram of a redundant structure in an alternative embodiment.
  • the packaged antenna 510 may include a slot antenna 512, a dipole antenna 211 located above the slot antenna 512, and the slot antenna 512 and the dipole antenna 211 are electrically connected to each other ⁇ 213 ⁇ The connection line 213.
  • the non-device area of the metal layer 5121 in the slot antenna 512 can have openings 5124 uniformly distributed, such as circular holes, square holes, etc., that is, the uniformly distributed openings 5124 are used as a dummy structure to improve
  • the uniformity of the material can effectively reduce structural deformation caused by uneven stress distribution and difference in expansion coefficient during manufacturing and use, and improve the yield and reliability of the package antenna 510.
  • Fig. 9 is a schematic diagram of a redundant structure in another alternative embodiment.
  • the packaged antenna 610 may include a slot antenna 612, a dipole antenna 311 located above the slot antenna 612, and a connecting wire 213 that electrically connects the slot antenna 612 and the dipole antenna 311 to each other.
  • the slot antenna 612 includes a metal layer 6121, a slot structure 6122 penetrating the metal layer 6121, a feed line 6123 formed in the metal layer 6121, and a plurality of metal sheets 6124 evenly distributed on the metal layer 6121, that is, the metal sheet 6124 It has the same function as the opening 5124 shown in FIG. 10, and can also be used as a dummy structure to improve the uniformity of the material, so as to effectively reduce the uneven stress distribution and the difference in expansion coefficient during production and use. Such as causing structural deformation, improving the yield and reliability of the packaged antenna 510.
  • the redundant structure (dummy) in the embodiment of the present application can select the shape, size and distribution of the redundant structure according to specific design requirements to improve the yield and reliability of the packaged antenna.
  • slot antennas with different slot shapes are top views of slot antennas with different slot shapes.
  • slot antennas with different slot shapes can be illustrated as examples, specifically:
  • the slot antenna 312 may include a metal layer 3121, a slot structure 3122 penetrating through the metal layer 3121, and a feeder 3123 formed in the metal layer 3121; wherein the slot structure 3122 may be Based on the "H"-shaped slot structure shown in FIG. 5, two parallel first slots are adjusted to extend at the same inclination angle relative to the second slot to form a symmetrical slot antenna 312 in FIG. 15.
  • the slot antenna 412 may include a metal layer 4121 and a strip-shaped slot structure 4122 penetrating the metal layer 4121.
  • the strip-shaped slot structure 4122 of the slot antenna 412 can be used to radiate electromagnetic waves.
  • the slot antenna 412 can be used to replace the slot antenna in the package antenna of each of the foregoing embodiments.
  • the package antenna may include a composite antenna composed of a slot antenna 412 and a dipole antenna 211.
  • FIG. 12 is an exploded view of a package antenna with a strip-shaped slot antenna according to an alternative embodiment
  • FIG. 13 is a top view of a package antenna with a strip-shaped slot antenna according to an alternative embodiment; among them, for clarity, in FIG. 12
  • Each part of the package antenna is shown separately in FIG. 13, and the dielectric layer 716 and the isolation layer 717 are omitted in FIG. 13.
  • the packaged antenna 710 may include a strip-shaped slot antenna 712, a dipole antenna 711 located above the strip-shaped slot antenna 712, a strip-shaped slot antenna 712, and a dipole.
  • the package antenna 710 may further include a contact pad 714 and an isolation layer 717. Wherein, when the dielectric layer of the strip-shaped slot antenna 712 and the dipole antenna 711 is a single-layer structure, that is, in the structure shown in FIG. 12, when the strip-shaped slot antenna 712 and the dipole antenna 711 are only provided with the dielectric layer 716 or When the isolation layer 717 is used, the contact pad 714 may not be provided.
  • the strip-shaped slot antenna 712 may include a first metal layer 7121, a second metal layer 7122, and a slot structure 7124 penetrating the first metal layer 7121, wherein the slot Structure 7124 includes strip-shaped slits. As shown in the figure, between the first metal layer 7121 and the second metal layer 7122 also includes connecting lines 7123, the connecting lines 7123 are distributed on both sides of the strip-shaped gap, the first metal layer 7121, the second metal layer and the connecting lines A waveguide is formed between 7123.
  • the strip-shaped slot antenna 712 may include a metal waveguide, and a strip-shaped slot structure 7124 is provided on the surface of the metal waveguide.
  • the projections of any pair of conductors are distributed on both sides of the strip-shaped slot in the strip-shaped slot structure 7124 , That is, the upper and lower sides of the strip-shaped gap structure 4122 shown in FIG. 11.
  • the slot antenna in the embodiment of the present application can also be an asymmetrically distributed structure, such as an "S"-shaped slot antenna, an "L”-shaped slot antenna, etc., or the "H” shown in FIG. 5
  • the symmetrically distributed structure such as the slot antenna is also the strip slot antenna shown in FIG. 13, that is, it only needs to be able to form a package antenna with its corresponding dipole antenna.
  • the packaged antenna in the embodiments of the present application can be an independent module component, or it can be an antenna unit that can be integrated with other components to form a radio frequency component.
  • the packaged antenna can be used for applications such as wireless communication, radar detection, ranging and imaging. In many other fields, it can also be used to form sensors such as industrial, automotive, consumer electronics and smart homes, such as high-frequency sensors such as millimeter waves.
  • the size of the antenna is generally proportional to the wavelength of the guided wave in the base material used to make the antenna, the size of the antenna working in the millimeter wave and other high frequency bands is relatively small, so a packaged antenna structure can be realized.
  • embodiments of the present application also provide a packaged antenna. Based on the packaged antennas in the embodiments of the present application, the dipole antenna and the slot antenna may be arranged adjacent to each other. To form a composite antenna structure, the package antenna can then achieve directional radiation of electromagnetic waves. The packaged antenna can improve the distribution of energy intensity in the directional radiation area while using the slot antenna as the "reflecting surface" of the dipole antenna.
  • the thickness of the formed package antenna can be further reduced, the flexibility of antenna arrangement can also be achieved, and the manufacturing difficulty and reliability problems of the antenna can be effectively reduced.
  • the packaged antenna may include components such as a slot antenna, a dipole antenna, and a dielectric layer.
  • the dipole antenna is arranged above the antenna emitting surface of the slot antenna, so that the slot antenna and the dipole
  • the pole antenna constitutes a composite antenna structure to achieve directional radiation
  • the dielectric layer can be set between the dipole antenna and the slot antenna to isolate the dipole antenna from the slot antenna and at the same time adjust the dielectric layer
  • the thickness is used to adjust the distance between the dipole antenna and the slot antenna to further improve the directional radiation performance of the composite antenna structure.
  • the packaged antenna in the embodiment of the present application can be used as a transceiver antenna in the high frequency band in various fields, for example, as a transceiver antenna in the millimeter wave frequency band in the 5G communication system, the transceiver antenna in the 77GHz frequency band in the radar field, and the 24GHz frequency band in the radar field.
  • the transceiver antenna and so on can be used as a transceiver antenna in the high frequency band in various fields, for example, as a transceiver antenna in the millimeter wave frequency band in the 5G communication system, the transceiver antenna in the 77GHz frequency band in the radar field, and the 24GHz frequency band in the radar field.
  • the transceiver antenna and so on can be used as a transceiver antenna in the high frequency band in various fields, for example, as a transceiver antenna in the millimeter wave frequency band in the 5G communication system, the transceiver antenna in the 77GHz frequency band in the radar field, and the 24GHz frequency band in the
  • the projection of the dipole antenna is at least partially or completely projected on the antenna emitting surface of the slot antenna to improve the directional radiation performance of the package antenna.
  • the directional radiation performance of the package antenna can be further improved by adjusting the distance between the slot antenna and the dipole antenna in the directional radiation direction.
  • the distance d between the slot antenna and the dipole antenna in the directional radiation direction can be set within the value set range of (0,0.75 ⁇ ), that is, the value of d can be 0.12 ⁇ , 0.22 ⁇ , 0.252 ⁇ , 0.32 ⁇ , 0.42 ⁇ , 0.452 ⁇ , 0.552 ⁇ , 0.652 ⁇ or 0.75 ⁇ , etc.
  • the value of d can be as close as possible or equal to 0.25 ⁇ within the design spacing range to take into account the package antenna size and the directional radiation of the package antenna Performance.
  • is the wavelength of electromagnetic waves radiated by the package antenna.
  • the antenna emission surface of the slot antenna and the antenna emission surface of the dipole antenna may be parallel to each other, and the projections of any pair of conductors in the dipole antenna away from the directional radiation direction are respectively located in the slot antenna
  • each conductor can be electrically connected to the slot antenna through the connecting wire through the dielectric layer, that is, the dipole antenna can be fed through the slot antenna to further improve the directional radiation of the package antenna characteristic.
  • the present application also provides a radar component package, which may include a wiring layer, a radar chip die provided on the wiring layer, and the packaged antenna described in any embodiment of the present application, That is, the bare radar chip can be electrically connected with the package antenna through the wiring layer to form a radar chip integrated with a directional transceiver antenna.
  • a radar component package which may include a wiring layer, a radar chip die provided on the wiring layer, and the packaged antenna described in any embodiment of the present application, That is, the bare radar chip can be electrically connected with the package antenna through the wiring layer to form a radar chip integrated with a directional transceiver antenna.
  • the package antenna of the radar component package may include a slot antenna and a dipole antenna disposed above the transmitting surface of the slot antenna, and the radar component package may further include an encapsulation layer, and the The encapsulation layer can seal the radar chip bare chip on the above-mentioned wiring layer; the above-mentioned dipole antenna and the radar chip bare chip are integrated on the same side of the wiring layer, and the wiring layer is located at a different position relative to the radar chip bare chip. Solder balls may be provided on one side surface.
  • the above-mentioned dipole antenna can be integrated in the packaging layer to form an AIP (Antenna in Package) package antenna, and the dipole antenna can also be integrated on the outer surface of the packaging layer to form an AOP (Antenna on Package) package antenna .
  • AIP Antenna in Package
  • AOP Antenna on Package
  • the slot antenna of the encapsulated antenna may be an antenna formed by opening a slot structure on a metal layer prepared in the encapsulation layer, and may pass through via conductors respectively. It is electrically connected to the wiring layer and the dipole antenna, so that the slot antenna is used to feed the dipole antenna, so as to reduce the size of the package antenna by saving the feed line and improve the commonality of the radiation signal of the slot antenna and the dipole antenna.
  • the slot antenna of the package antenna can be an antenna formed by opening a slot structure on the wiring layer, and can pass through a via conductor and a dipole antenna Electrically connected, so that the slot antenna is used to feed the dipole antenna, so as to further reduce the size of the package antenna by saving the metal layer, and also ensure the commonality of the radiation signal of the slot antenna and the dipole antenna.
  • a dummy structure in order to improve the uniformity of the metal structure material, may be provided in a blank area (such as a non-device area) in the metal layer or wiring layer forming the slot antenna, that is, define The area where the above-mentioned slit structure and other components are provided is the device area.
  • the packaged antenna may include a stacked dipole antenna and a slot antenna.
  • the "forward” radiation direction is the direction perpendicular to the metal layer of the dipole antenna and away from the slot antenna (as shown in Figures 14 to 18).
  • the direction indicated by the arrow), and the “backward” radiation direction is the direction perpendicular to the metal layer of the dipole antenna and towards the slot antenna (as the direction deviated from the direction indicated by the arrows in Figs. 16-19).
  • Fig. 14 is a schematic cross-sectional view of an optional embodiment of a radar component package.
  • the radar component package 800 includes a wiring layer 101, a radar chip die 102 mounted on the first surface of the wiring layer 101, a packaging layer 103 covering the radar chip die 102, and an AIP package antenna 810 located in the packaging layer 103 Wait.
  • the wiring layer 101 can be a fan-out metal layer for chip packaging, and the AIP package antenna 810 can be electrically connected to the radar chip die 102 through the wiring layer 101.
  • the AIP package antenna 810 can be manufactured separately and then packaged with the radar chip die 102, or the AIP package antenna can be manufactured in the packaging process steps of the radar chip die 102 The various parts of the 810 to form a wafer-level packaged antenna provides process flexibility.
  • the AIP package antenna 810 may include a second sub antenna 812, a first sub antenna 811 located above the emission surface of the second sub antenna 812, and located between the second sub antenna 812 and the first sub antenna 811
  • the specific structures of the first sub-antenna 811 and the second sub-antenna 812 can be compared with the first sub-antenna (such as the slot antenna) and the second sub-antenna (such as the even antenna) in the package antenna as shown in FIG. 1 to FIG.
  • the structures of the pole antennas correspond to each other. For simplicity of explanation, the similarities are not described in detail here.
  • the dielectric layer 816 shown in FIG. 14 may be a glass fiber epoxy board (FR4), a ceramic board, or a high-frequency radio frequency substrate, etc., and the dielectric layer 816 has insulation properties and can
  • the second sub antenna 812 is insulated from the first sub antenna 811.
  • both the second sub-antenna 812 and the first sub-antenna 811 can be antenna structures formed by patterning a metal layer, and the connecting line 813 can be a via conductor, and the via conductor can be filled with a copper material in the dielectric layer 816
  • the through hole is formed in.
  • redundant structures 104 in the form of holes or metal patches can also be provided in the blank area (ie, non-device area) of the wiring layer 101.
  • the radar chip die 102 shown in FIG. 14 can transmit electrical signals to the second sub-antenna 812 via the wiring layer 101 and the feeder 818 in turn, and can be connected via the second sub-antenna 812
  • the line 813 transmits electrical signals to the first sub-antenna 811.
  • the packaged antenna 810 may also include a transmission line coupled to the ground layer, and the transmission line may be used instead of the feeder to transmit electrical signals. At the same time, a separate transmission line may be used to transmit electrical signals to the first sub via the wiring layer 101.
  • the antenna 811 and the second sub-antenna 812 are fed.
  • the radar component package 800 forms the above-mentioned overall package structure, wherein the second surface of the wiring layer 101 may also be provided with solder balls 105 for electrical connection with an external circuit.
  • Fig. 15 is a schematic cross-sectional view of a radar component package according to another alternative embodiment.
  • the radar component package 801 may include a wiring layer 101, a radar chip die 102 mounted on the first surface of the wiring layer 101, an encapsulation layer 103 covering the radar chip die 102, and an AIP package antenna located in the encapsulation layer 103 820 etc.
  • the wiring layer 101 may be a metal layer used for chip packaging (fan-out), and the AIP package antenna 820 may be electrically connected to the radar chip die 102 through the wiring layer 101.
  • the AIP package antenna 820 may include a second sub antenna 822, a first sub antenna 821 located above the emission surface of the second sub antenna 822, and a medium between the second sub antenna 822 and the first sub antenna 821.
  • the connecting wire 823 passes through the distance adjustment layer 826, and the first sub-antenna 821 is electrically connected to the second sub-antenna 822 via a via conductor.
  • the second sub-antenna 822 may be an antenna in a metal layer in the wiring layer 101, and is electrically connected to the radar chip die 102 via the wiring layer 101.
  • a slit pattern is formed by performing a metal layer etching process on the wiring layer 101 to form the second sub-antenna 822.
  • the radar component package shown in FIG. 14 the radar component package shown in FIG.
  • the feeder 828 that is, it is not necessary to prepare a metal layer for forming the second sub-antenna 822 in the package layer, but only It is sufficient to prepare one metal layer for preparing the first sub-antenna to further reduce the size of the package antenna and the package body of the radar component.
  • redundant structures 104 in the form of holes or metal patches can also be provided in the blank area (ie, non-device area) of the wiring layer 101.
  • a redundant structure in the form of holes or metal patches may be provided in the metal layer of the second sub-antenna 822 to improve the uniformity of the material.
  • Fig. 16 is a schematic cross-sectional view of a radar component package with an AOP package antenna in an alternative embodiment.
  • the radar component package 802 may include a wiring layer 101, a radar chip die 102 provided on the front surface of the wiring layer 101, an encapsulation layer 103 covering the radar chip die 102, an AOP package antenna 830, and the like.
  • the wiring layer 101 can be a fan-out metal layer for chip packaging, and the AOP package antenna 830 can be electrically connected to the radar chip die 102 through the wiring layer 101.
  • the AOP package antenna 830 may include a second sub antenna 832, a first sub antenna 831 located above the emission surface of the second sub antenna 832, and a medium between the second sub antenna 832 and the first sub antenna 831.
  • various parts of the AOP package antenna 830 can be manufactured in the packaging process steps of the radar chip die 102 to form a wafer-level package antenna.
  • the second sub-antenna 832, the dielectric layer 836, and the connecting line 833 of the AOP package antenna 830 are formed inside the packaging layer 103, and the first sub-antenna 831 is formed on the surface of the packaging layer 103 and electrically connected to the connecting line 833.
  • the AOP package antenna 830 makes full use of the surface of the package layer to further reduce the size of the radar component package, and also reduces the interconnection loss from the chip to the antenna.
  • the specific structures of the first sub-antenna 831 and the second sub-antenna 832 may be one-to-one according to the structure of the first sub-antenna and the second sub-antenna in the package antenna shown in FIG. 1 to FIG.
  • the specific structures of the wiring layer 101, the radar chip die 102, and the packaging layer 103 can be respectively compared with the wiring layer, the radar chip die and the packaging layer in the radar component package as shown in FIG.
  • the structure corresponds to one-to-one.
  • the similarities are not detailed here.
  • the second sub-antenna 832 in FIG. 16 may also be an antenna formed in the metal layer of the wiring layer 101.
  • a metal layer etching process is performed on the wiring layer 101 to form a slit pattern to form the second sub-antenna 832, that is, it is not necessary to prepare a metal layer for forming the second sub-antenna 832 in the encapsulation layer, but only a The layer can be used to prepare the metal layer of the first sub-antenna to further reduce the size of the package antenna and the radar component package.
  • FIG. 17 is a schematic cross-sectional view of a radar component package with an AIP package antenna in an alternative embodiment.
  • the radar component package 900 may include a wiring layer 101, a radar chip die 102 disposed on the front surface of the wiring layer 101, an encapsulation layer 103 covering the radar chip die 102, and an encapsulation layer. 103 in the AIP package antenna 910 and so on.
  • the wiring layer 101 can be a fan-out metal layer for chip packaging, and the AIP package antenna 910 can be electrically connected to the radar chip die 102 through the wiring layer 101.
  • the AIP packaged antenna 910 can be manufactured separately and then packaged with the radar chip die 102, or the AIP packaged antenna can be manufactured in the packaging process steps of the radar chip die 102 The various parts of the 910 form a wafer-level packaged antenna, which provides process flexibility.
  • the AIP package antenna 910 may include a slot antenna 912, a dipole antenna 911 located above the emitting surface of the slot antenna 912, a dielectric layer 916 located between the slot antenna 912 and the dipole antenna 911, and A connecting wire (such as a via conductor) 913 that electrically connects the slot antenna 912 and the dipole antenna 911 to each other, that is, in this embodiment, each of the AIP package antenna 910 can be manufactured in the packaging process steps of the radar chip die 102 Part to form a wafer-level packaged antenna.
  • the specific structures of the dipole antenna 911 and the slot antenna 912 can correspond to the structures of the dipole antenna and the slot antenna in the package antenna as shown in FIGS. 3 to 13 respectively. For simplicity of explanation, here is The similarities are not detailed again.
  • the slot antenna 912 in FIG. 17 may also be an antenna formed by opening a slot structure in the wiring layer 101.
  • a metal layer etching process is performed on the wiring layer 101 to form a slot pattern to form the slot antenna 912, that is, there is no need to prepare a metal layer for forming the slot antenna 912 in the encapsulation layer, but only one layer is required for preparation.
  • the metal layer of the dipole antenna can be used to further reduce the size of the package antenna and the package body of the radar component.
  • the dielectric layer 916 shown in FIG. 17 may be a glass fiber epoxy board (FR4), a ceramic board, or a high-frequency radio frequency substrate, etc., and the dielectric layer 916 has insulation properties and can
  • the slot antenna 912 is insulated from the dipole antenna 911.
  • both the slot antenna 912 and the dipole antenna 911 can be antenna structures formed by patterning a metal layer, and the connecting line 913 can be a via conductor, which can be filled with copper material in the dielectric layer 916 The through hole is formed.
  • redundant structures 104 in the form of holes or metal patches can also be provided in the blank area (ie, non-device area) of the wiring layer 101.
  • the radar chip die 102 shown in FIG. 17 can transmit electrical signals to the slot antenna 912 via the wiring layer 101 and the feed line 918 in sequence, and can use the slot antenna 912 to transmit the electrical signal to the slot antenna 912 via the connection line 913.
  • the pole antenna 911 transmits electric signals.
  • the packaged antenna 910 may also include a transmission line coupled to the ground layer, and the transmission line may be used instead of the feed line to transmit electrical signals. At the same time, separate transmission lines may be used to transmit electrical signals to the dipole via the wiring layer 101. The antenna 911 and the slot antenna 912 are fed.
  • the radar component package 901 may include a wiring layer 101, a radar chip die 102 mounted on the first surface of the wiring layer 101, a packaging layer 103 covering the radar chip die 102, and an AIP package antenna located in the packaging layer 103 920 and so on.
  • the wiring layer 101 can be a fan-out metal layer for chip packaging, and the AIP package antenna 920 can be electrically connected to the radar chip die 102 through the wiring layer 101.
  • the AIP package antenna 920 may include a slot antenna 922, a dipole antenna 921 located above the emitting surface of the slot antenna 922, a dielectric layer 926 located between the slot antenna 922 and the dipole antenna 921, and a The antenna 922 and the dipole antenna 921 are electrically connected to each other by a connection line (such as a via conductor) 923.
  • a connection line such as a via conductor
  • the connecting wire 923 passes through the distance adjustment layer 926, and the dipole antenna 921 is electrically connected to the slot antenna 922 via a via conductor.
  • the slot antenna 922 may be an antenna formed by opening a slot structure in the wiring layer 101 and electrically connected to the radar chip die 102 via the wiring layer 101.
  • a slot pattern is formed by performing a metal layer etching process on the wiring layer 101 to form the slot antenna 922.
  • the feeder 928 that is, it is not necessary to prepare a metal layer for forming the slot antenna 922 in the package layer, but only a The layer can be used to prepare the metal layer of the dipole antenna to further reduce the size of the package antenna and the radar component package.
  • redundant structures 104 in the form of holes or metal patches can also be provided in the blank area (ie, non-device area) of the wiring layer 101.
  • a redundant structure in the form of a hole or a metal patch may be provided in the metal layer of the slot antenna 922 to improve the uniformity of the material.
  • the radar component package 902 may include a wiring layer 101, a radar chip die 102 disposed on the front surface of the wiring layer 101, an encapsulation layer 103 covering the radar chip die 102, an AOP package antenna 930, and the like.
  • the wiring layer 101 can be a fan-out metal layer for chip packaging, and the AOP package antenna 930 can be electrically connected to the radar chip die 102 through the wiring layer 101.
  • the AOP package antenna 930 may include a slot antenna 932, a dipole antenna 931 located above the emitting surface of the slot antenna 932, a dielectric layer 936 located between the slot antenna 932 and the dipole antenna 931, and The antenna 932 and the dipole antenna 931 are electrically connected to each other by a connection line (such as a via conductor) 933.
  • a connection line such as a via conductor
  • various parts of the AOP package antenna 930 can be manufactured in the packaging process steps of the radar chip die 102 to form a wafer-level package antenna.
  • the slot antenna 932, the dielectric layer 936, and the connecting wire 933 of the AOP encapsulated antenna 930 are formed inside the encapsulation layer 103, and the dipole antenna 931 is formed on the surface of the encapsulation layer 103 and is electrically connected to the connecting wire 933.
  • the AOP package antenna 930 makes full use of the surface of the package layer, so that the size of the radar component package is further reduced, and the interconnection loss from the chip to the antenna is also reduced.
  • the specific structures of the dipole antenna 931 and the slot antenna 932 can respectively correspond to the structures of the dipole antenna and the slot antenna in the package antenna as shown in FIGS. 1 to 13.
  • the specific structures of the wiring layer 101, the radar chip die 102, and the packaging layer 103 can respectively correspond to the structures of the wiring layer, the radar chip die, and the packaging layer in the radar component package as shown in FIG. For the sake of simplicity, the similarities will not be detailed here.
  • the slot antenna 932 in FIG. 16 can also be an antenna formed by opening a slot structure in the wiring layer 101.
  • a metal layer etching process is performed on the wiring layer 101 to form a slot pattern to form the slot antenna 932, that is, it is not necessary to prepare a metal layer for forming the slot antenna 932 in the encapsulation layer, but only one layer is required for preparation.
  • the metal layer of the dipole antenna can be used to further reduce the size of the package antenna and the package body of the radar component.
  • the conventional radar component package needs to form a large-area ground layer, and an opening through which a via conductor passes must be formed in the ground layer.
  • the radar component package in the embodiment of the present application forms a package antenna.
  • the slot antenna or the second sub-antenna of the package antenna replaces the ground layer. Electromagnetic waves in a predetermined area can thereby achieve directional radiation, simplify the structure of the radar component package, effectively reduce manufacturing costs, and greatly expand the application prospects.
  • FIG. 20 is a frequency response graph of the packaged antenna of an alternative embodiment, and the horizontal axis of the graph shown in FIG. 20 may indicate frequency, and the vertical axis may indicate reflection coefficient.
  • the reflection coefficient of the package antenna 210 can be obtained at different operating frequencies, and the power ratio of the reflected wave to the incident wave at the antenna feed port, that is, Return loss ratio. Among them, the smaller the reflection coefficient, the more energy radiated by the antenna.
  • the reflection coefficient of the package antenna 210 in the frequency band from 71.6 GHz to 86.5 GHz is less than -20 dB.
  • the working bandwidth of the package antenna 210 can reach a range of 71.6 GHz to 86.5 GHz.
  • the operating frequency band is much higher than that of the packaged antenna in the existing radar component package shown in FIG. 1.
  • the processing technology limit of the wiring layer processing factory and the error are both at the level of 0.1 mm.
  • the operating frequency of the antenna can also be shifted by about 10%.
  • the packaged antenna adopting the embodiment of the present application has a relatively wide operating frequency band. Even if there is a certain manufacturing process error, the reflection coefficient of the packaged antenna is still small and can meet the requirements of the normal operation of the radio frequency module.
  • Fig. 21 is a gain pattern of the packaged antenna of an alternative embodiment. Based on the package antenna structure shown in FIGS. 3 to 5, the horizontal axis of the graph represents the gain of the antenna's magnetic field vector plane (H plane) and the appropriate electric field plane (E plane), and the vertical axis represents the dipole relative to the package antenna 210 The direction angle of the normal direction of the sub-antenna metal layer.
  • H plane magnetic field vector plane
  • E plane electric field plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种封装天线(110)和雷达组件封装体(800)。封装天线(110)包括:第一子天线(111);以及临近第一子天线(111)所处位置设置的第二子天线(112);其中,第一子天线(111)与第二子天线(112)相互抵消在预设区域中的辐射场使得封装天线(110)实现定向辐射。

Description

封装天线及雷达组件封装体 技术领域
本申请属于天线技术,更具体地涉及封装天线及雷达组件封装体。
背景技术
由于诸如毫米波等高频波段的射频前端的尺寸小、集成度高等特点,进而能够实现的封装天线,从而被广泛的应用于诸如无线通信、雷达探测、测距及成像等多个领域中。
在传统天线设计中,需要设置作为地平面(即反射面)的金属层来确保封装天线辐射电磁波的定向性,而该金属层不仅会限制天线尺寸的缩减,也会加大制造的复杂度及难度,同时也带来了可靠性的问题。
发明内容
根据本申请的第一方面,提供一种封装天线,包括:
第一子天线;以及
临近所述第一子天线所处位置设置的第二子天线;
其中,所述第一子天线与所述第二子天线相互抵消在预设区域中的辐射场使得所述封装天线实现定向辐射。
根据本申请的第二方面,提供一种封装天线,包括:
缝隙天线;
设置于所述缝隙天线的天线发射面上方的偶极子天线;以及
设置在所述缝隙天线与所述偶极子天线之间的介质层;
其中,所述缝隙天线用于作为所述偶极子天线的反射面使得所述封装天线定向辐射。
根据本申请的第三方面,提供一种雷达组件封装体,包括:
布线层;
雷达芯片裸片,设置于所述布线层上;以及
如本申请任一实施例中所述的封装天线,通过所述布线层与所述雷达芯片裸片电连接。
本申请的一个可选的实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
通过以下参照附图对本申请实施例的描述,本申请的上述以及其他目的、特征和优点将更为清楚。
图1为一个可选的实施例中封装天线的结构示意图。
图2为一个可选的实施例中封装天线的***图。
图3为另一个可选的实施例中封装天线的***图。
图4为一个可选的实施例中封装天线的金属层立体透视图。
图5为图4中所示结构的俯视图。
图6-7为具有其他可选类型偶极子天线的封装天线中金属层的俯视图。
图8为一个可选的实施例中冗余结构的示意图。
图9为另一个可选的实施例中冗余结构的示意图。
图10为一个可选的实施例中缝隙天线的俯视图。
图11为另一个可选的实施例中缝隙天线的俯视图。
图12为一个可选的实施例具有条形缝隙天线的封装天线的***图。
图13为一个可选的实施例具有条形缝隙天线的封装天线的俯视图。
图14为一个可选的实施例的雷达组件封装体的截面示意图。
图15为另一个可选的实施例的雷达组件封装体的截面示意图。
图16为一个可选的实施例中具有AOP封装天线的雷达组件封装体的截面示意图。
图17为一个可选的实施例中具有AIP封装天线的雷达组件封装体的截面示意图。
图18为另一个可选的实施例中具有AIP封装天线DE雷达组件封装体的截面示意图。
图19为另一个可选的实施例中具有AOP封装天线的雷达组件封装体的截面示意图。
图20为一个可选的实施例的封装天线的频率响应曲线图。
图21为一个可选的实施例的封装天线的增益方向图。
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
具体实施方式
以下将参照附图更详细地描述本申请。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,在图中可能未示出某些公知的部分。
在下文中描述了本申请的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本申请。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本申请。
针对诸如无线通信、雷达探测、测距、校准及成像等多个领域中,天线设计时由于需要设置特定金属结构来作为反射面以实现定向辐射,进而所带来的诸如限制尺寸缩减、增大制造难度及可靠性等诸多技术问题,本申请实施例中创造性的提出了一种封装天线,通过将至少两个子天线临近设置,以使得该至少两个子天线能够在预设区域中能够实现辐射场的相互抵消,进而使得该至少两个子天线所构成的天线结构实现定向辐射电磁波的功能,相较于传统需要设置金属层来作为反射面实现定向辐射的结构,不仅使得所形成的封装天线的尺寸能够进一步的缩减,还减小了天线的制造难度及可靠性问题。具体的:
图1为一个可选的实施例中封装天线的结构示意图。如图1所示,在本实施例中,封装天线110可包括第一子天线111和第二子天线112等部件。该封装天线110可为基于第一子天线111所形成的复合天线结构,即上述的第二子天线112可临近第一子天线111所处的位置固定设置,以使得该第二子天线112能够抵消第一子天线111所辐射出的一部分电磁波,进而使得该第一子天线111实现向预定方向的定向辐射,相较于传统的封装天线结构中作为反射层的金属层,该第二子天线112的尺寸较小,能够使得图1中所形成的封装天线110的尺寸能够进一步的缩减,还有效降低了天线的制造难度,提升了天线的可靠性及集成度。
在另一个可选的实施例中,如图1所示,上述的第二子天线112与第一子天线111之间还能在预定区域中相互抵消辐射场,同时该第二子天线112所发射的部分电磁波还能辐射至目标区域,即第一子天线111与第二子天线112所发射的电磁波能同时辐射到该目标区域中,以起到增强该目标区域中辐射的能量,进而增强所构成的封装天线110在定向辐射方向(即预定方向)所发射电磁波的能量,同时还能使得在预设区域中,第二子天线112与第一子天线111所发射的电磁波相互抵消,以使得封装天线110能够实现朝向目标区域的定向辐射。
需要说明的是,本申请实施例中预定区域可包括图1中所示的A区域,即第二子天线112与第一子天线111之间区域,同时该预定区域也可包括第二子天线112背离第一子天线111一侧的区域(即图1中所示第二子天线112下方的区域),而在一个可选的实施例中,该预定区域也可为第二子天线112位于第一子天线111一侧的区域(即图1中所示第一子天线111下方的区域)。同时,目标区域则可为第一子天线111背离第二子天线112一侧的区域,即图1中所示的B区域,以使得封装天线110沿箭头C所示的方向进行定向辐射。其中,箭头C所指的方向可为垂直于第一子天线111背离第二子天线112一侧的天线发射面。在本申请实施例中,可定义箭头C所指的方向为上方。
另外,在本申请实施例中,天线发射面可包括子天线出射电磁波的表面,而定向辐射的方向则可以是天线(例如单个子天线或组合天线)的主要电磁波辐射方向,如主瓣和/或副瓣的辐射方向等。
在另一个可选的实施例中,如图1所示,沿上述封装天线110的定向辐射方向(即箭头C所示的方向),第二子天线112的投影至少部分投射在第一子天线111之上,即可在封装天线110的定向辐射方向上,该第二子天线112与第一子天线111交叠设置,以提升封装天线110的定向辐射性能。
在一个可选的实施例中,如图1所示,封装天线110朝向正上方(即箭头C所示的方向)进行定向辐射,第二子天线112则可对应设置在第一子天线111的正下方,以有效的提升该封装天线110朝向正上方的辐射能量。另外,上述的第一子天线111和第二子天线112的天线发射面的延展方向可相互平行,同时该第一子天线111和第二子天线112的天线发射面的延展方向也可垂直于封装天线110的定向辐射的方向,以进一步的提升该封装天线110朝向正上方的辐射能量。
在一个可选的实施例中,如图1所示,在封装天线110的定向辐射方向上,第一子天线111与第二子天线112的间距大于零,而为了进一步提升封装天线110的定向辐射性能,则可使得第一子天线111与第二子天线112在定向辐射方向上的间距d大致为0.25λ*n,也可表示为:
Figure PCTCN2019084863-appb-000001
其中,d为第一子天线111与第二子天线112在定向辐射方向上的间距,n为奇数,m为自然数,λ为封装天线110所辐射电磁波的波长。
在一个可选的实施例中,如图1所示,针对诸如雷达芯片等集成部件对于小尺寸 的要求,可将第一子天线111与第二子天线112在定向辐射方向上的间距d设置在预设间距范围内,例如d∈(0,0.75λ],即该d可取值为0.1λ、0.2λ、0.25λ、0.3λ、0.4λ、0.45λ、0.55λ、0.65λ或0.75λ等值。而在基于小尺寸的考虑基础上,使得该d的取值尽量靠近(2m+1)*0.25λ,以尽可能的提升封装天线110的定向辐射性能。
在一个可选的实施例中,如图1所示,第一子天线111还可与第二子天线112共用馈线,即通过连接线113将第一子天线111与第二子天线112直接电连接,以使得对第一子天线111进行馈电的同时也通过连接线113对第二子天线112进行馈电,或者使得对第二子天线112进行馈电的同时也通过连接线113对第一子天线111进行馈电,即通过第一子天线111可对第二子天线112进行馈电,也可通过第二子天线112对第一子天线111进行馈电,以在尽量降低增加第二子天线112所带来馈线的尺寸,同时又能提升第一子天线111和第二子天线112辐射电磁波的一致性。
图2为一个可选的实施例中封装天线的***图。如图1~2所示,在一个可选的实施例中,基于图1所示结构的基础上,为了降低封装天线110在生产制造过程中的成本,以及提升在实际应用中的性能,可在第一子天线111与第二子天线112之间设置距离调整层(图中未标示),该距离调整层可在将第一子天线111与第二子天线112绝缘的同时,基于实际需求设置该距离调整层具有相应的厚度,以使的第一子天线111与第二子天线112之间的间距满足设计需求。
在一个可选的实施例中,距离调整层可为复合层结构也可为单层结构,具体可以根据实际需求设置。例如,如图2所示,距离调整层可包括叠置的第一介质层116和第二介质层117;其中,第一介质层116可为用于隔离的绝缘层,而第二介质层117则可为用于距离调整的膜层结构,而在一些可选的实施例中,距离调整层可为第一介质层116,即此时第一介质层116可同时用于隔离及距离调整,而在第一子天线111与第二子天线112之间则无需设置第二介质层117。
在一个可选的实施例中,如图2所示,当封装天线110用于发射高频电磁波信号时,上述的第一介质层116可为高频介质基板,而第二介质层117则可为有机介质层,以在兼顾绝缘性能的同时满足间距的设计要求。
在一个可选的实施例中,如图2所示,为了满足介电常数设计要求,还可使得第一介质层116的介电常数大于第二介质层117的介电常数。例如,第一介质层116可为高介质常数的玻璃纤维环氧树脂板,而第二介质层117则可为低介电常数的有机层, 即使得第一介质层116与第二介质层117作为复合层,以便于调整第二子天线112与第一子天线111之间介质的介电常数,同时利用第二介质层117还可兼顾封装天线110中的第二子天线112与第一子天线111的间距设计要求。
在一个可选的实施例中,如图2所示,连接线113可为沿厚度方向贯穿距离调整层的过孔(via)导体,而当第二子天线112与第一子天线111之间设置多个介质层时,还可在介质层之间设置接触垫114,以便于贯穿各介质层的过孔导体能够相互电连接,形成将第二子天线112与第一子天线111电连接的连接线,提升子天线之间的电连接性能,降低制备连接线的工艺难度。
需要说明的是,在实际应用中,图2中的接触垫114可设置在第二介质层117与第一介质层116之间。在本申请的图2中,只是为了便于解释,才将接触垫114置于第一介质层116的上方。其中,在本申请实施例中,第一子天线111可为偶极子天线、微带天线等,而第二子天线112可为缝隙天线或贴片天线等类型的天线。
图3为另一个可选的实施例中封装天线的***图。在一个可选的实施例中,可基于图2所示结构的基础上,以第一子天线111为偶极子天线,第二子天线112为缝隙天线为例,对本申请实施例中的封装天线的结构进行详细说明。具体的,参见图3所示,封装天线210可包括叠置的偶极子天线211和缝隙天线212,以及设置在偶极子天线211与缝隙天线212之间的距离调整层(图中未标示),该距离调整层可包括叠置的有机层217和高频介质基板216,即有机层217叠置在缝隙天线212的上表面,而高频介质基板216叠置在有机层217的上表面,同时偶极子天线211则设置在高频介质基板216的上表面之上,同时偶极子天线211与缝隙天线212可通过依次贯穿高频介质基板216和有机层217的连接线213电连接,以使得利用缝隙天线212的馈线2123就能在实现对缝隙天线212进行馈电的同时,也能对偶极子天线211中各个导体2111进行馈电。
在一个可选的实施例中,可使得所使用的高频介质基板216的介电常数大于有机层217的介电常数,从而可以兼顾封装天线210中介电常数设计要求和子天线之间间距设计要求。在可选的替代实施例中,如果封装天线210的介高频介质基板216可以兼顾介质常数设计要求和间距设计要求,则可以省去有机层217。
在一个可选的实施例中,如图3所示,为了提升电连接性能以及制备工艺的便捷性,还可在缝隙天线212的上表面设置接触垫214,以使得连接线213的一端部通过接触垫214与该缝隙天线214电连接,而连接线213的另一端部则可与导体2111相 连。其中,上述的连接线213例如为过孔导体,连接线213还可在制备偶极子天线211时同步制备,即各导体2111与其下方的连接线213一体成型,并可通过下方的接触垫214与金属层2121电连接。
在一个可选的实施例中,如图3所示,缝隙天线212可为基于金属层2121上开设的缝隙结构而形成的天线。例如,可通过在重新布线层(Redistribution Layers,简称RDL)上,开设沿厚度方向贯穿重新布线层的缝隙结构2112来形成上述的缝隙天线212,以通过共享RDL层来避免新增金属层进行缝隙天线212的制备,以有效降低封装天线210的叠置结构的厚度,同时又能降低生产制造成本。
图4为一个可选的实施例中封装天线的金属层立体透视图,图5为图4所示结构的俯视图。如图4-5所示,在一个可选的实施例中,缝隙天线212可具有一个“H”形缝隙结构2122,而在封装天线210定向辐射反方向上,偶极子天线211中任意一对导体的投影均可分别位于该缝隙结构2122的相对两侧,以进一步提升封装天线210的定向辐射性能,同时缝隙天线212与偶极子天线211之间的间距d可设置在(0,0.25λ]的范围内。例如,上述的间距d可取值为0.05λ、0.15λ、0.2λ或0.25λ等值,以使得偶极子天线211的镜像天线和其本身在正上方具有相同相位的辐射场,同时也可使得偶极子天线211的辐射场与缝隙天线212在正下方的辐射场具有相反相位而彼此抵消,即偶极子天线211与缝隙天线212可形成复合天线结构,以使得封装天线210能够实现定向辐射,同时也可扩展该封装天线210的工作带宽。
在另一个可选的实施例中,如图5所示,“H”形缝隙结构2122可具有相互平行的两个第一缝隙,以及连接该两个第一缝隙中间部分且与第一缝隙垂直的第二缝隙,同时馈线2123可开设在第二缝隙的中间部分,且该馈线2123一端部可设置在第二缝隙的一侧壁,另一端部则可贯穿该第二缝隙延伸,以将上述的第二缝隙阻断为两个长度相同的缝隙单元。另外,位于馈线2123两侧的细缝可分别一缝隙单元贯通连接。其中,上述的第一缝隙与缝隙单元的等效长度leq可设置约为0.5λ~λ(例如0.5λ、0.6λ、0.7λ、0.85λ、1λ等),且leq=(1/2*h+w),λ为在偶极子天线与缝隙天线之间的介质层中的传播的电磁波波长,而h为第一缝隙的长度,w为缝隙单元的长度,且第一缝隙和第二缝隙的宽度均可为b,同时细缝的宽度则小于b。
在另一个可选的实施例中,位于缝隙天线212上方的偶极子天线211可包括多对导体,各导体均可为图5中所示的矩形贴片,即该偶极子天线211可包括多个导体2111,且该多个导体2111可成阵列排列。其中,作为一对导体的任意两个导体2111投影至 缝隙天线212时,该两个导体2111的投影分别位于缝隙结构的两侧。参见图5中所示,偶极子天线211可包括四个导体2111,该四个导体2111作为两对导体,且各导体2111的投影均位于两平行第一缝隙之间的区域中。另外,各对导体中两个导体2111的投影分别位于第二缝隙的两侧,且以缝隙单元为中轴线,各对导体所对应导体2111的投影呈轴对称分布;同时,上述两对导体所对应四个导体2111的投影以馈线2123为中轴线呈轴对称分布。
另一个可选的实施例中,如图4所示,针对集成器件中的天线结构,缝隙天线212与偶极子天线211之间的间距d可设置约为(0,0.75λ]。例如,可使得缝隙天线212与偶极子天线211之间的间距d约为0.25λ,以使得偶极子天线211的镜像天线与该偶极子天线211在封装天线210的正上方具有相同相位的辐射场,同时也使得缝隙天线211的辐射场与偶极子天线211在封装天线201的正下方的辐射场具有相反相位因而彼此抵消,即图4-5中的偶极子天线211与缝隙天线212形成具有复合天线结构的封装天线210,能够使得封装天线210在实现定向辐射的同时,还能扩展封装天线210的工作带宽。
在一个可选的实施例中,可基于图2所示结构的基础上,以第一子天线111为偶极子天线,第二子天线112为缝隙天线为例,对本申请实施例中的封装天线的变化结构进行详细说明。
如图6所示,封装天线310可包括缝隙天线212、位于缝隙天线212上方的偶极子天线311、以及将缝隙天线212和偶极子天线311彼此电连接的连接线213。在一个可选的实施例中,封装天线310还包括接触垫214。其中,本实施例封装天线310中的缝隙天线212可与如图3至图7所示的封装天线的缝隙天线结构相同,在此不再详述相同之处。
在一个可选的实施例中,如图8所示,缝隙天线212包括“H”形缝隙结构2122,“H”形缝隙结构2122可具有相互平行的两个第一缝隙,以及连接该两个第一缝隙中间部分且与第一缝隙垂直的第二缝隙,而偶极子天线311可包括排列成阵列的两个长方形贴片3111,且长方形贴片3111的长度方向与“H”形缝隙结构中第二缝隙的延伸方向垂直,同时该偶极子天线311的两个导体3111的投影则可分别位于“H”形缝隙结构相对的两侧。
如图7所示,在另一个可选的实施例中,可基于图2和图6所示结构的基础上,封装天线410的缝隙天线可具有与图6所示的缝隙天线相同的结构,在此不再详述相 同之处。同时,封装天线410的偶极子天线411则可包括排列成阵列的四个长条形贴片4111,且长条形贴片4111的延伸方向与“H”形缝隙结构中平行的两个缝隙的延伸方向平行,同时该偶极子天线411的四个长条形贴片4111构成两对导体,且各对导体所对应的两个长条形贴片4111的投影分别位于“H”形缝隙结构相对的两侧。
在一个可选的实施例中,如图7所示,作为一对导体的任意两个长条形贴片4111,相邻端部可用于与连接线213电连接,即该相邻端部的形状与连接线213的截面形状共形,而相背离的两端端部则可均为弧形。
需要说明的是,上述实施例中偶极子天线所包括的导体的形状、数量及分布情况等均可根据实际需求而对应调整,只要确保偶极子天线中任意一对导体的投影分别位于缝隙天线中缝隙结构的两侧即可。
图8为一个可选的实施例中冗余结构的示意图。如图8所示,在一个可选的实施例中,封装天线510可包括缝隙天线512、位于缝隙天线512上方的偶极子天线211、以及将缝隙天线512和偶极子天线211彼此电连接的连接线213。其中,缝隙天线512中的金属层5121的非器件区域中可均匀分布有开孔5124,例如圆形孔、方形孔等,即以均匀分布的开孔5124作为冗余结构(dummy),来提升材料的均匀性,以有效减小在生产制造及使用过程中因应力分布不均、膨胀系数差异等导致结构变形,提升封装天线510的良率和可靠性。
图9为另一个可选的实施例中冗余结构的示意图。在一个可选的实施例中,封装天线610可包括缝隙天线612、位于缝隙天线612上方的偶极子天线311、以及将缝隙天线612和偶极子天线311彼此电连接的连接线213。其中,缝隙天线612包括可金属层6121、贯穿金属层6121的缝隙结构6122、在金属层6121中形成的馈线6123、以及均匀分布在金属层6121上的多个金属片6124,即该金属片6124与图10中所示的开孔5124作用相同,也可作为冗余结构(dummy),来提升材料的均匀性,以有效减小在生产制造及使用过程中因应力分布不均、膨胀系数差异等导致结构变形,提升封装天线510的良率和可靠性。
需要说明的是,本申请实施例中冗余结构(dummy),可依据具体设计需求,选择冗余结构的形状、尺寸及分布等,来提升封装天线的良率和可靠性。
图10-11为具有不同缝隙形状的缝隙天线的俯视图。在一个可选的实施例中,可基于图2所示结构的基础上,对具有不同缝隙形状的缝隙天线进行举例说明,具体的:
如图10所示,在一个可选的实施例中,缝隙天线312可包括金属层3121、贯穿 金属层3121的缝隙结构3122以及在金属层3121中形成的馈线3123;其中,缝隙结构3122可为基于图5中所示的“H”形缝隙结构,即将两个平行的第一缝隙调整为相对于第二缝隙以相同倾斜角度相向延伸,形成图15中呈对称分布的缝隙天线312。而在另一个可选的实施例中,如图11所示,缝隙天线412可包括金属层4121和贯穿金属层4121的条形缝隙结构4122。
如图11所示,缝隙天线412的条形缝隙结构4122可用于辐射电磁波。该缝隙天线412可以用于替代上述各个实施例的封装天线中的缝隙天线。例如,以如图3至图9所示的封装天线为例,封装天线可以包括由缝隙天线412与偶极子天线211组成的复合天线。
图12为一个可选的实施例具有条形缝隙天线的封装天线的***图,图13为一个可选的实施例具有条形缝隙天线的封装天线的俯视图;其中,为了清楚起见,在图12中将封装天线的各个部分分离示出,而在图13中则省略了介质层716和隔离层717。
如图12所示,在一个可选的实施例中,封装天线710可包括条形缝隙天线712、位于条形缝隙天线712上方的偶极子天线711、位于条形缝隙天线712和偶极子天线711之间的介质层716、以及将条形缝隙天线712和偶极子天线711彼此电连接的连接线713。在一个可选的实施例中,封装天线710还可包括接触垫714和隔离层717。其中,当条形缝隙天线712与偶极子天线711的介质层为单层结构时,即如图12所示结构中,当条形缝隙天线712与偶极子天线711只设置介质层716或隔离层717时,可将不用设置接触垫714。
在另一个可选的实施例中,如图12所示,条形缝隙天线712可包括第一金属层7121、第二金属层7122、以及贯穿第一金属层7121的缝隙结构7124,其中,缝隙结构7124包括条形缝隙。如图所示,在第一金属层7121和第二金属层7122之间还包括连接线7123,连接线7123分布于条形缝隙的两侧,第一金属层7121、第二金属层和连接线7123之间形成波导。在一个可选的实施例中,条形缝隙天线712可以包括金属波导,在金属波导的表面具有条形缝隙结构7124。同时,在与该条形缝隙结构7124构成封装天线710的偶极子天线711中,任意一对导体(即金属贴片7111)的投影均分布于条形缝隙结构7124中条形缝隙的两侧,即图11中所示的条形缝隙结构4122的上下两侧。
需要说明的是,本申请实施例中的缝隙天线还可为非对称分布的结构,例如“S”形缝隙天线、“L”形缝隙天线等,也可为图5中所示的“H”形缝隙天线等对称分布 的结构,同时也为图13所示的条形缝隙天线等,即其只要能与其所对应的偶极子天线形成封装天线即可。
另外,本申请实施例中的封装天线可为独立的模组组件,也可为能够与其他部件集成构成射频组件的天线单元,同时该封装天线可应用诸如无线通信、雷达探测、测距及成像等多个领域中,也可用于构成诸如工业、汽车、消费电子及智慧家居等的传感器,例如毫米波等高频传感器。
在实际的应用,由于天线的尺寸一般和制作天线的基材中的导波波长成正比,因此,工作于毫米波等高频段的天线尺寸相对较小,故而可实现封装天线结构。针对诸如高频传感器等可需要集成封装天线的领域,本申请实施例还提供了一种封装天线,可基于本申请实施例中封装天线的基础上,通过将偶极子天线与缝隙天线临近设置来构成复合天线结构,继而可使得该封装天线能够实现电磁波的定向辐射。该封装天线能够在提升定向辐射区域分布能量强度的同时,利用缝隙天线作为偶极子天线的“反射面”,相较于传统需要单独设置金属层来作为反射面实现定向辐射的天线结构,不仅使得所形成的封装天线的厚度能够进一步的缩减,还能天线布置的灵活性,同时也能有效降低天线的制造难度及可靠性问题。
具体的,在一个可选的实施例中,封装天线可包括缝隙天线、偶极子天线和介质层等部件,偶极子天线设置于上述缝隙天线的天线发射面上方,以使得缝隙天线与偶极子天线构成复合天线结构实现定向辐射,而介质层则可设置在偶极子天线与缝隙天线之间,以在对偶极子天线和缝隙天线进行隔离的同时,还能通过调整该介质层的厚度来调节偶极子天线与缝隙天线之间间距,以进一步提升复合天线结构定向辐射的性能。其中,本申请实施例中的封装天线可作为各个领域中高频频段的收发天线,例如用于作为5G通讯***中毫米波频段的收发天线、雷达领域中77GHz频段的收发天线、雷达领域中24GHz频段的收发天线等。
在一个可选的实施例中,在背离定向辐射方向上,偶极子天线的投影至少部分或全部投射在缝隙天线的天线发射面上,以提升封装天线的定向辐射性能。另外,还可通过调整缝隙天线与偶极子天线之间在定向辐射方向上的间距,来进一步提升封装天线的定向辐射性能。例如,可将缝隙天线与偶极子天线之间在定向辐射方向上的间距d设置(0,0.75λ]的数值集合范围内,即该d可取值为0.12λ、0.22λ、0.252λ、0.32λ、0.42λ、0.452λ、0.552λ、0.652λ或0.75λ等值,同时在设计间距范围 内可使得d的取值尽量靠近或等于0.25λ,以兼顾封装天线尺寸和封装天线的定向辐射性能。其中,λ为封装天线辐射电磁波的波长。
在另一个可选的实施例中,缝隙天线的天线发射面可与偶极子天线的天线发射面相互平行,且偶极子天线中任意一对导体在背离定向辐射方向的投影分别位于缝隙天线中缝隙结构相对的两侧,同时各导体均可通过贯穿介质层的连接线分别电连接至缝隙天线上,即通过缝隙天线即可对偶极子天线进行馈电,以进一步提升封装天线的定向辐射特性。
在一个可选的实施例中,本申请还提供了一种雷达组件封装体,可包括布线层、设置在布线层上的雷达芯片裸片和本申请任一实施例中所阐述的封装天线,即雷达芯片裸片可通过布线层与封装天线电连接,以形成集成有定向收发天线的雷达芯片。
在一个可选的实施例中,雷达组件封装体的封装天线可包括缝隙天线,以及设置在该缝隙天线发射面上方的偶极子天线,而雷达组件封装体则还可包括封装层,且该封装层可将上述的布线层上的雷达芯片裸片予以密封;上述的偶极子天线和雷达芯片裸片集成在布线层的同一侧,而布线层上相对于雷达芯片裸片设置位置的另一侧表面上可设置有焊球。其中,上述的偶极子天线可集成在封装层之中形成AIP(Antenna in Package)封装天线,同时该偶极子天线也可集成在封装层的外表面上形成AOP(Antenna on Package)封装天线。
在一个可选的实施例中,在雷达组件封装体中,封装天线的缝隙天线可为在封装层中制备的金属层上开设缝隙结构所形成的天线,并可通过过孔(via)导体分别与布线层和偶极子天线电连接,以使得利用缝隙天线对偶极子天线进行馈电,以通过节省馈线减小封装天线的尺寸,提升缝隙天线与偶极子天线辐射信号的共性。
在另一个可选的实施例中,在雷达组件封装体中,封装天线的缝隙天线可为在布线层上开设缝隙结构所形成的天线,并可通过过孔(via)导体与偶极子天线电连接,以使得利用缝隙天线对偶极子天线进行馈电,以通过节省金属层来进一步减小封装天线的尺寸,还能确保缝隙天线与偶极子天线辐射信号的共性。
在另一个可选的实施例中,为了提升金属结构材料的均匀性,可通过在形成缝隙天线的金属层或布线层中空白区域(如非器件区域)设置冗余结构(dummy),即定义上述的缝隙结构等部件所设置的区域为器件区域。
下面结合附图,针对本申请实施例中的雷达组件封装体及设置在雷达组件封装体 中的封装天线进行详细说明:
在本申请实施例中,封装天线可包括堆叠的偶极子天线和缝隙天线,“前向”辐射方向是垂直于偶极子天线的金属层并且远离缝隙天线的方向(如图14至18中箭头所指方向),“后向”辐射方向是垂直于偶极子天线的金属层并且朝向缝隙天线的方向(如与图16至19中箭头所指方向相背离的方向)。
图14为一个可选的实施例的雷达组件封装体的截面示意图。雷达组件封装体800包括布线层101、安装在布线层101第一表面的雷达芯片裸片(die)102、覆盖雷达芯片裸片102的封装层103、以及位于封装层103中的AIP封装天线810等。其中,布线层101可为用于芯片封装展开(fan-out)金属层,AIP封装天线810则可通过布线层101与雷达芯片裸片102电连接。
在一个可选的实施例中,如图14所示,AIP封装天线810可以单独制造,然后与雷达芯片裸片102一起封装,也可以在雷达芯片裸片102的封装工艺步骤中制造AIP封装天线810的各个部分,以形成晶圆级封装天线,提供了工艺的灵活性。
例如,如图14所示,AIP封装天线810可包括第二子天线812、位于第二子天线812发射面上方的第一子天线811、位于第二子天线812和第一子天线811之间的介质层816、以及将第二子天线812和第一子天线811彼此电连接的连接线(如过孔导体)813,即在本实施例中,可以在雷达芯片裸片102的封装工艺步骤中制造AIP封装天线810的各个部分,以形成晶圆级封装天线。同时,第一子天线811和第二子天线812的具体结构,可分别与根据如图1至图13所示的封装天线中第一子天线(如缝隙天线)及第二子天线(如偶极子天线)的结构一一对应,为了阐述简便,在此不再详述相同之处。
在一个可选的实施例中,图14中所示的介质层816可为玻璃纤维环氧树脂板(FR4)、陶瓷板或高频射频基板等,且该介质层816具有绝缘性,能够将第二子天线812与第一子天线811绝缘隔离。同时,第二子天线812和第一子天线811均可为通过金属层图案化所形成的天线结构,而连接线813则可为过孔导体,该过孔导体可由利用铜材料填充介质层816中的贯穿孔形成。另外,为了提升制备工艺中材料的均匀性,还可在布线层101的空白区域(即非器件区域)中设置孔洞或金属贴片等形式的冗余结构104。
在另一个可选的实施例中,图14中所示的雷达芯片裸片102可依次经由布线层101和馈线818向第二子天线812传输电信号,并可利用第二子天线812经连接线813 向第一子天线811传输电信号。而在其他可替代的实施例中,封装天线810还可以包括与接地层耦合的传输线,并可采用传输线替代馈线来传输电信号,同时也可经由布线层101采用单独的传输线分别向第一子天线811和第二子天线812馈电。
雷达组件封装体800形成上述的整体封装结构,其中,布线层101的第二表面还可以设置焊球105,用于与外部电路电连接。
图15为另一个可选的实施例的雷达组件封装体的截面示意图。雷达组件封装体801可以包括布线层101、安装在布线层101第一表面的雷达芯片裸片(die)102、覆盖雷达芯片裸片102的封装层103、以及位于封装层103中的AIP封装天线820等。其中,布线层101可为用于芯片封装展开(fan-out)金属层,AIP封装天线820则可通过布线层101与雷达芯片裸片102电连接。
在本实施例中,AIP封装天线820可包括第二子天线822、位于第二子天线822发射面上方的第一子天线821、位于第二子天线822和第一子天线821之间的介质层826、以及将第二子天线822和第一子天线821彼此电连接的连接线(如过孔导体)823。
该雷达组件封装体801的AIP封装天线820中,连接线823穿过距离调整层826,第一子天线821经由过孔导体与第二子天线822电连接。进一步地,第二子天线822可为在布线层101中的金属层中的天线,并经由布线层101与雷达芯片裸片102电连接。例如,通过在布线层101上进行金属层刻蚀工艺形成缝隙图案,以构成第二子天线822。与图14所示的雷达组件封装体相比,图15所示的雷达组件封装体省去了馈线828,即无需在封装层中制备用于形成第二子天线822的金属层,而只需制备一层用于制备第一子天线的金属层即可,以进一步降低封装天线及雷达组件封装体的尺寸。
另外,为了提升制备工艺中材料的均匀性,还可在布线层101的空白区域(即非器件区域)中设置孔洞或金属贴片等形式的冗余结构104。在另一个可选的实施例中,可以在第二子天线822的金属层中设置孔洞或金属贴片等形式的冗余结构,以提高材料的均匀性。
图16为一个可选的实施例中具有AOP封装天线的雷达组件封装体的截面示意图。雷达组件封装体802可包括布线层101、设置在布线层101前向表面的雷达芯片裸片(die)102、覆盖雷达芯片裸片102的封装层103、以及AOP封装天线830等。其中,布线层101可为用于芯片封装展开(fan-out)金属层,AOP封装天线830则可通过布线层101与雷达芯片裸片102电连接。
在本实施例中,AOP封装天线830可包括第二子天线832、位于第二子天线832发射面上方的第一子天线831、位于第二子天线832和第一子天线831之间的介质层836、以及将第二子天线832和第一子天线831彼此电连接的连接线(如过孔导体)833。
在本实施例中,可以在雷达芯片裸片102的封装工艺步骤中制造AOP封装天线830的各个部分,以形成晶圆级封装天线。AOP封装天线830的第二子天线832、介质层836以及连接线833形成于封装层103内部,第一子天线831形成于封装层103的表面并与连接线833电连接。AOP封装天线830充分利用了封装层的表面,使雷达组件封装体的尺寸进一步缩小,同时也降低了从芯片到天线之间的互联损耗。
在本实施例中,第一子天线831和第二子天线832的具体结构,可分别与根据如图1至图13所示的封装天线中第一子天线及第二子天线的结构一一对应,同时,布线层101、雷达芯片裸片(die)102以及封装层103的具体结构,可分别与根据如图14所示的雷达组件封装体中布线层、雷达芯片裸片以及封装层的结构一一对应,为了阐述简便,在此不再详述相同之处。
在另一个可选的实施例中,图16中的第二子天线832还可为在布线层101的金属层中形成的天线。例如,通过在布线层101上进行金属层刻蚀工艺形成缝隙图案,以构成第二子天线832,即无需在封装层中制备用于形成第二子天线832的金属层,而只需制备一层用于制备第一子天线的金属层即可,以进一步降低封装天线及雷达组件封装体的尺寸。
图17为一个可选的实施例中具有AIP封装天线的雷达组件封装体的截面示意图。如图17所示,雷达组件封装体900可包括布线层101、设置在布线层101前向表面的雷达芯片裸片(die)102、覆盖雷达芯片裸片102的封装层103、以及位于封装层103中的AIP封装天线910等。其中,布线层101可为用于芯片封装展开(fan-out)金属层,AIP封装天线910则可通过布线层101与雷达芯片裸片102电连接。
在一个可选的实施例中,如图17所示,AIP封装天线910可以单独制造,然后与雷达芯片裸片102一起封装,也可以在雷达芯片裸片102的封装工艺步骤中制造AIP封装天线910的各个部分,以形成晶圆级封装天线,提供了工艺的灵活性。
例如,如图17所示,AIP封装天线910可包括缝隙天线912、位于缝隙天线912发射面上方的偶极子天线911、位于缝隙天线912和偶极子天线911之间的介质层916、以及将缝隙天线912和偶极子天线911彼此电连接的连接线(如过孔导体)913,即 在本实施例中,可以在雷达芯片裸片102的封装工艺步骤中制造AIP封装天线910的各个部分,以形成晶圆级封装天线。同时,偶极子天线911和缝隙天线912的具体结构,可分别与根据如图3至图13所示的封装天线中偶极子天线及缝隙天线的结构一一对应,为了阐述简便,在此不再详述相同之处。
在另一个可选的实施例中,图17中的缝隙天线912还可为在布线层101中开设缝隙结构所形成的天线。例如,通过在布线层101上进行金属层刻蚀工艺形成缝隙图案,以构成缝隙天线912,即无需在封装层中制备用于形成缝隙天线912的金属层,而只需制备一层用于制备偶极子天线的金属层即可,以进一步降低封装天线及雷达组件封装体的尺寸。
在一个可选的实施例中,图17中所示的介质层916可为玻璃纤维环氧树脂板(FR4)、陶瓷板或高频射频基板等,且该介质层916具有绝缘性,能够将缝隙天线912与偶极子天线911绝缘隔离。同时,缝隙天线912和偶极子天线911均可为通过金属层图案化所形成的天线结构,而连接线913则可为过孔导体,该过孔导体可由利用铜材料填充介质层916中的贯穿孔形成。另外,为了提升制备工艺中材料的均匀性,还可在布线层101的空白区域(即非器件区域)中设置孔洞或金属贴片等形式的冗余结构104。
在另一个可选的实施例中,图17中所示的雷达芯片裸片102可依次经由布线层101和馈线918向缝隙天线912传输电信号,并可利用缝隙天线912经连接线913向偶极子天线911传输电信号。而在其他可替代的实施例中,封装天线910还可以包括与接地层耦合的传输线,并可采用传输线替代馈线来传输电信号,同时也可经由布线层101采用单独的传输线分别向偶极子天线911和缝隙天线912馈电。
图18为另一个可选的实施例中具有AIP封装天线的雷达组件封装体的截面示意图。雷达组件封装体901可以包括布线层101、安装在布线层101第一表面的雷达芯片裸片(die)102、覆盖雷达芯片裸片102的封装层103、以及位于封装层103中的AIP封装天线920等。其中,布线层101可为用于芯片封装展开(fan-out)金属层,AIP封装天线920则可通过布线层101与雷达芯片裸片102电连接。
在本实施例中,AIP封装天线920可包括缝隙天线922、位于缝隙天线922发射面上方的偶极子天线921、位于缝隙天线922和偶极子天线921之间的介质层926、以及将缝隙天线922和偶极子天线921彼此电连接的连接线(如过孔导体)923。
该雷达组件封装体901的AIP封装天线920中,连接线923穿过距离调整层926, 偶极子天线921经由过孔导体与缝隙天线922电连接。进一步地,缝隙天线922可为在布线层101中开设缝隙结构所形成的天线,并经由布线层101与雷达芯片裸片102电连接。例如,通过在布线层101上进行金属层刻蚀工艺形成缝隙图案,以构成缝隙天线922。与图14所示的雷达组件封装体相比,图15所示的雷达组件封装体省去了馈线928,即无需在封装层中制备用于形成缝隙天线922的金属层,而只需制备一层用于制备偶极子天线的金属层即可,以进一步降低封装天线及雷达组件封装体的尺寸。
另外,为了提升制备工艺中材料的均匀性,还可在布线层101的空白区域(即非器件区域)中设置孔洞或金属贴片等形式的冗余结构104。在另一个可选的实施例中,可以在缝隙天线922的金属层中设置孔洞或金属贴片等形式的冗余结构,以提高材料的均匀性。
图19为另一个可选的实施例中具有AOP封装天线的雷达组件封装体的截面示意图。雷达组件封装体902可包括布线层101、设置在布线层101前向表面的雷达芯片裸片(die)102、覆盖雷达芯片裸片102的封装层103、以及AOP封装天线930等。其中,布线层101可为用于芯片封装展开(fan-out)金属层,AOP封装天线930则可通过布线层101与雷达芯片裸片102电连接。
在本实施例中,AOP封装天线930可包括缝隙天线932、位于缝隙天线932发射面上方的偶极子天线931、位于缝隙天线932和偶极子天线931之间的介质层936、以及将缝隙天线932和偶极子天线931彼此电连接的连接线(如过孔导体)933。
在本实施例中,可以在雷达芯片裸片102的封装工艺步骤中制造AOP封装天线930的各个部分,以形成晶圆级封装天线。AOP封装天线930的缝隙天线932、介质层936以及连接线933形成于封装层103内部,偶极子天线931形成于封装层103的表面并与连接线933电连接。AOP封装天线930充分利用了封装层的表面,使雷达组件封装体的尺寸进一步缩小,同时也降低了从芯片到天线之间的互联损耗。
在本实施例中,偶极子天线931和缝隙天线932的具体结构,可分别与根据如图1至图13所示的封装天线中偶极子天线及缝隙天线的结构一一对应,同时,布线层101、雷达芯片裸片(die)102以及封装层103的具体结构,可分别与根据如图14所示的雷达组件封装体中布线层、雷达芯片裸片以及封装层的结构一一对应,为了阐述简便,在此不再详述相同之处。
在另一个可选的实施例中,图16中的缝隙天线932还可为在布线层101中开设缝隙结构所形成的天线。例如,通过在布线层101上进行金属层刻蚀工艺形成缝隙图 案,以构成缝隙天线932,即无需在封装层中制备用于形成缝隙天线932的金属层,而只需制备一层用于制备偶极子天线的金属层即可,以进一步降低封装天线及雷达组件封装体的尺寸。
传统的雷达组件封装体需要形成大面积的接地层,且在接地层中需要形成过孔导体穿过的开口。与传统的雷达组件封装体相比,本申请实施例中的雷达组件封装体中形成了封装天线,封装天线的缝隙天线或第二子天线代替了接地层,缝隙天线或第二子天线抵消位于预定区域的电磁波,从而可以实现定向辐射,且能够使得雷达组件封装体的结构简单化,有效降低制造成本,大大拓展了应用前景。
图20为一个可选的实施例的封装天线的频率响应曲线图,且该图20中所示的曲线图中横轴可表示频率,而纵轴则可表示反射系数。参见图3~5所示,基于图3~5所示的封装天线结构,可得到封装天线210的反射系数在不同工作频率下,天线馈电端口的反射波与入射波的功率比,也即回波损耗比。其中,反射系数越小,表示天线辐射出去的能量越多。
从图20中可以看出,封装天线210在71.6GHz至86.5GHz的频带内的反射系数均小于-20dB。以77GHz为中心频率,封装天线210的工作带宽可以达到71.6GHz至86.5GHz的范围。该工作频带远高于图1所示的现有雷达组件封装体中的封装天线。如前所述,布线层加工工厂的加工工艺极限为以及误差都在0.1毫米级别。天线的工作频率也可以偏移约10%左右。采用本申请实施例的封装天线具有较宽的工作频带,即使存在着一定的制造工艺误差,该封装天线的反射系数仍然较小可以满足射频模块正常工作的要求。
图21为一个可选的实施例的封装天线的增益方向图。基于图3~5所示的封装天线结构,该曲线图的横轴表示天线的磁场矢量平面(H面)、电场适量平面(E面)的增益,纵轴表示相对于封装天线210的偶极子天线金属层的法线方向的方向角。
从图21中可以看出,该封装天线的主要辐射能量都集中在前向,也就是0度到+-90度以内,而后向的辐射相对较弱。该特性保证了此发明的封装天线可以运用于多种复杂的***环境中,其天线方向图受到布线层设计等影响较小。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设 备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
依照本申请的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (23)

  1. 一种封装天线,包括:
    第一子天线;以及
    临近所述第一子天线所处位置设置的第二子天线;
    其中,所述第一子天线与所述第二子天线相互抵消在预设区域中的辐射场,使得所述封装天线实现定向辐射。
  2. 根据权利要求1所述的封装天线,其中,在所述封装天线的定向辐射方向上,所述第一子天线的投影与所述第二子天线的投影之间至少部分重叠。
  3. 根据权利要求1所述的封装天线,其中,沿所述封装天线定向辐射方向,所述第一子天线与所述第二子天线之间的间距大致为n*0.25λ;n为奇数,λ为所述封装天线辐射电磁波的波长。
  4. 根据权利要求1所述的封装天线,其中,所述第一子天线的天线发射面与所述第二子天线的天线发射面相互平行。
  5. 根据权利要求1所述的封装天线,还包括:
    距离调整层,位于所述第一子天线与第二子天线之间,
    其中,所述距离调整层用于调节所述第一子天线与第二子天线之间的间距。
  6. 根据权利要求1所述的封装天线,还包括:
    连接线,所述第一子天线通过所述连接线与所述第二子天线电连接;
    其中,所述第一子天线通过所述连接线对所述第二子天线进行馈电,或者所述第二子天线通过所述连接线对所述第一子天线进行馈电。
  7. 根据权利要求1-6中任意一项所述的封装天线,其中,所述第一天线和所述第二天线沿所述定向天线的定向辐射延展方向依序排列;
    其中,所述预设区域为所述第一子天线背离所述第二子天线一侧的区域。
  8. 根据权利要求7所述的封装天线,其中,所述第一子天线包括缝隙天线,所述第二子天线包括偶极子天线。
  9. 根据权利要求8所述的封装天线,其中,所述偶极子天线包括至少一对导体;所述缝隙天线包括:
    金属层;以及
    沿厚度方向贯穿所述金属层的至少一个缝隙结构,
    其中,在背离所述封装天线定向辐射反方向上,所述偶极子天线中任意一对导体 的投影分别位于同一个所述缝隙结构相对的两侧。
  10. 一种封装天线,包括:
    缝隙天线;
    设置于所述缝隙天线的天线发射面上方的偶极子天线;以及
    设置在所述缝隙天线与所述偶极子天线之间的介质层;
    其中,所述缝隙天线用于作为所述偶极子天线的反射面使得所述封装天线定向辐射。
  11. 根据权利要求10所述的封装天线,其中,在背离所述封装天线的定向辐射方向上,所述偶极子天线的投影至少部分覆盖所述缝隙天线的天线发射面上。
  12. 根据权利要求10所述的封装天线,其中,在所述封装天线定向辐射方向上,所述缝隙天线与所述偶极子天线之间的间距d∈(0,0.75λ];λ为所述封装天线辐射电磁波的波长。
  13. 根据权利要求10所述的封装天线,其中,所述缝隙天线的天线发射面与所述偶极子天线的天线发射面相互平行。
  14. 根据权利要求10所述的封装天线,所述介质层为绝缘层,用于将所述缝隙天线与所述偶极子天线隔离,
    其中,所述介质层还用于调节所述缝隙天线与所述偶极子天线之间的间距。
  15. 根据权利要求10-14中任意一项所述的封装天线,其中,定义所述封装天线的定向辐射的延展方向为前方,所述偶极子天线位于所述缝隙天线的前方。
  16. 根据权利要求15所述的封装天线,其中,所述偶极子天线包括至少一对导体;所述缝隙天线包括:
    金属层;以及
    沿厚度方向贯穿所述金属层的至少一个缝隙结构,
    其中,在所述封装天线定向辐射反方向上,所述偶极子天线中各对导体的投影分别位于同一个所述缝隙结构相对的两侧。
  17. 根据权利要求15所述的封装天线,还包括:
    沿厚度方向贯穿所述介质层的连接线;
    其中,各所述导体经所述连接线分别与所述缝隙天线的波导或馈线电连接。
  18. 根据权利要求17所述的封装天线,所述缝隙天线为波导缝隙天线,各所述导体经所述连接线分别与所述波导缝隙天线的波导电连接;或者
    所述缝隙天线为包括馈线的非波导缝隙天线,各所述导体经所述连接线分别与所述馈线电连接。
  19. 一种雷达组件封装体,包括:
    布线层;
    雷达芯片裸片,设置于所述布线层上;以及
    如权利要求10-18中任意一项所述的封装天线,通过所述布线层与所述雷达芯片裸片电连接。
  20. 根据权利要求19所述的雷达组件封装体,还包括:
    封装层,将所述布线层上的所述雷达芯片裸片予以密封;
    其中,所述雷达芯片裸片与所述封装天线中的所述偶极子天线位于所述布线层的同一侧,以及
    所述偶极子天线设置在所述封装层的外表面上或所述封装层之中。
  21. 根据权利要求20所述的雷达组件封装体,其中,所述封装天线中的所述缝隙天线为在所述布线层中开设缝隙结构所形成的天线。
  22. 根据权利要求20所述的雷达组件封装体,其中,所述封装天线中的所述缝隙天线设置在所述封装层之中。
  23. 根据权利要求19-22中任意一项所述的雷达组件封装体,其中,所述布线层包括器件区和非器件区;
    所述雷达芯片裸片和所述偶极子天线设置于所述器件区中,在所述布线层的所述非器件区中设置有冗余结构。
PCT/CN2019/084863 2019-04-28 2019-04-28 封装天线及雷达组件封装体 WO2020220175A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021557694A JP7320869B2 (ja) 2019-04-28 2019-04-28 アンテナ・イン・パッケージ及びレーダアセンブリパッケージ
US17/606,989 US20220209392A1 (en) 2019-04-28 2019-04-28 Package antenna and radar assembly package
KR1020217029496A KR102661906B1 (ko) 2019-04-28 2019-04-28 안테나-인-패키지 및 레이다 어셈블리 패키지
CN201980095775.2A CN113795978A (zh) 2019-04-28 2019-04-28 封装天线及雷达组件封装体
EP19927007.5A EP3965227A4 (en) 2019-04-28 2019-04-28 HOUSING ANTENNA AND RADAR ASSEMBLY HOUSING
PCT/CN2019/084863 WO2020220175A1 (zh) 2019-04-28 2019-04-28 封装天线及雷达组件封装体
JP2023025860A JP2023062161A (ja) 2019-04-28 2023-02-22 アンテナ・イン・パッケージ及びレーダアセンブリパッケージ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/084863 WO2020220175A1 (zh) 2019-04-28 2019-04-28 封装天线及雷达组件封装体

Publications (1)

Publication Number Publication Date
WO2020220175A1 true WO2020220175A1 (zh) 2020-11-05

Family

ID=73029297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084863 WO2020220175A1 (zh) 2019-04-28 2019-04-28 封装天线及雷达组件封装体

Country Status (6)

Country Link
US (1) US20220209392A1 (zh)
EP (1) EP3965227A4 (zh)
JP (2) JP7320869B2 (zh)
KR (1) KR102661906B1 (zh)
CN (1) CN113795978A (zh)
WO (1) WO2020220175A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3930204A1 (en) * 2020-06-27 2021-12-29 Pharrowtech BV A structure for distributing radio frequency signals
KR20230069548A (ko) * 2021-11-12 2023-05-19 삼성전자주식회사 안테나 모듈을 포함하는 전자 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742001B2 (en) * 2008-03-31 2010-06-22 Tdk Corporation Two-tier wide band antenna
CN105609944A (zh) * 2015-12-28 2016-05-25 西安电子科技大学昆山创新研究院 基于空腔结构的双层分形微带射频封装天线
CN105932419A (zh) * 2016-07-01 2016-09-07 西安电子科技大学 基于阶梯型层叠结构的多频段封装天线
CN109088180A (zh) * 2018-08-12 2018-12-25 瑞声科技(南京)有限公司 Aog天线***及移动终端
CN109149090A (zh) * 2018-07-13 2019-01-04 陈彭 一种多层封装天线
CN208336188U (zh) * 2018-03-16 2019-01-04 中芯长电半导体(江阴)有限公司 天线的封装结构
CN109244641A (zh) * 2018-08-07 2019-01-18 清华大学 封装天线及其制造方法
CN109326584A (zh) * 2018-08-07 2019-02-12 清华大学 封装天线及其制造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710775A (en) * 1985-09-30 1987-12-01 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
US4839663A (en) * 1986-11-21 1989-06-13 Hughes Aircraft Company Dual polarized slot-dipole radiating element
US6806839B2 (en) * 2002-12-02 2004-10-19 Bae Systems Information And Electronic Systems Integration Inc. Wide bandwidth flat panel antenna array
KR100527851B1 (ko) * 2003-12-17 2005-11-15 한국전자통신연구원 개구면을 가지는 금속판을 이용한 적층형 마이크로스트립안테나
US7268741B2 (en) * 2004-09-13 2007-09-11 Emag Technologies, Inc. Coupled sectorial loop antenna for ultra-wideband applications
KR100642933B1 (ko) * 2004-11-23 2006-11-10 주식회사 이엠따블유안테나 양면 pcb형 안테나
US7342299B2 (en) * 2005-09-21 2008-03-11 International Business Machines Corporation Apparatus and methods for packaging antennas with integrated circuit chips for millimeter wave applications
KR100776683B1 (ko) * 2005-09-26 2007-11-16 한국전자통신연구원 같은 방향의 균일 전류 방사 전원을 가지는 전기적 루프안테나
US7800543B2 (en) * 2008-03-31 2010-09-21 Tdk Corporation Feed-point tuned wide band antenna
JP2010200211A (ja) * 2009-02-27 2010-09-09 Nec Corp 指向性アンテナ
US9190738B2 (en) * 2010-04-11 2015-11-17 Broadcom Corporation Projected artificial magnetic mirror
KR101124131B1 (ko) * 2010-08-12 2012-03-21 주식회사 에이스테크놀로지 패치 안테나
CN104508907B (zh) * 2012-07-20 2017-03-08 旭硝子株式会社 天线装置以及具备该天线装置的无线装置
KR101355865B1 (ko) * 2012-08-31 2014-02-03 한국과학기술원 영상이론을 적용한 수직 매립형 야기-우다 안테나와 송수신 집적회로 칩이 실장된 수직 매립형 야기-우다 안테나 및 이의 제조 방법
US9806422B2 (en) * 2013-09-11 2017-10-31 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
US20160104934A1 (en) * 2014-10-10 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Antenna, antenna package, and communications module
US10887439B2 (en) * 2015-12-22 2021-01-05 Intel Corporation Microelectronic devices designed with integrated antennas on a substrate
US10700429B2 (en) * 2016-09-14 2020-06-30 Kymeta Corporation Impedance matching for an aperture antenna
CN109845034B (zh) * 2016-10-19 2020-07-31 株式会社村田制作所 天线元件、天线模块以及通信装置
EP3364457A1 (en) * 2017-02-15 2018-08-22 Nxp B.V. Integrated circuit package including an antenna
JP2018148268A (ja) * 2017-03-01 2018-09-20 パナソニック株式会社 アンテナ装置
CN107134637B (zh) * 2017-04-21 2020-12-11 华东交通大学 一种双频ebg结构以及基于该双频ebg结构的微带天线
US20200106194A1 (en) * 2017-05-30 2020-04-02 Hitachi Metals, Ltd. Planar array antenna and wireless communication module
US10651555B2 (en) * 2017-07-14 2020-05-12 Apple Inc. Multi-band millimeter wave patch antennas
US10665959B2 (en) * 2017-07-24 2020-05-26 Apple Inc. Millimeter wave antennas having dual patch resonating elements
KR102019951B1 (ko) * 2017-08-11 2019-09-11 삼성전기주식회사 안테나 모듈
CN108649019B (zh) * 2018-05-14 2020-12-08 中国科学院微电子研究所 扇出型封装结构
CN109244642B (zh) * 2018-08-07 2020-11-13 清华大学 封装天线的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742001B2 (en) * 2008-03-31 2010-06-22 Tdk Corporation Two-tier wide band antenna
CN105609944A (zh) * 2015-12-28 2016-05-25 西安电子科技大学昆山创新研究院 基于空腔结构的双层分形微带射频封装天线
CN105932419A (zh) * 2016-07-01 2016-09-07 西安电子科技大学 基于阶梯型层叠结构的多频段封装天线
CN208336188U (zh) * 2018-03-16 2019-01-04 中芯长电半导体(江阴)有限公司 天线的封装结构
CN109149090A (zh) * 2018-07-13 2019-01-04 陈彭 一种多层封装天线
CN109244641A (zh) * 2018-08-07 2019-01-18 清华大学 封装天线及其制造方法
CN109326584A (zh) * 2018-08-07 2019-02-12 清华大学 封装天线及其制造方法
CN109088180A (zh) * 2018-08-12 2018-12-25 瑞声科技(南京)有限公司 Aog天线***及移动终端

Also Published As

Publication number Publication date
US20220209392A1 (en) 2022-06-30
EP3965227A4 (en) 2022-05-04
JP2023062161A (ja) 2023-05-02
KR102661906B1 (ko) 2024-04-29
EP3965227A1 (en) 2022-03-09
JP7320869B2 (ja) 2023-08-04
KR20210125569A (ko) 2021-10-18
CN113795978A (zh) 2021-12-14
JP2022528845A (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
US10854994B2 (en) Broadband phased array antenna system with hybrid radiating elements
US7675466B2 (en) Antenna array feed line structures for millimeter wave applications
EP3621154A1 (en) Integrated antenna package structure, and terminal
WO2019213878A1 (zh) 毫米波天线阵元、阵列天线及通信产品
US20180076526A1 (en) Antenna-in-package structures with broadside and end-fire radiations
CN113328231B (zh) 天线封装和通信装置
US11258171B2 (en) Antenna
US11367943B2 (en) Patch antenna unit and antenna in package structure
JP2005505963A (ja) スロット結合偏波放射器
JP2023062161A (ja) アンテナ・イン・パッケージ及びレーダアセンブリパッケージ
WO2020029060A1 (zh) 一种天线
JPH11298230A (ja) 平面アンテナ
US20140104135A1 (en) Radiating element for an active array antenna consisting of elementary tiles
JP2019536317A (ja) 単層共用開口デュアルバンドアンテナ
US6486847B1 (en) Monopole antenna
US11437736B2 (en) Broadband antenna having polarization dependent output
TWI462394B (zh) 多迴圈天線系統及具有該多迴圈天線系統的電子裝置
CN105552541B (zh) 一种毫米波硅基片载端射天线
TWI462392B (zh) 多天線系統及具有該多天線系統的電子裝置
TWI451632B (zh) 高增益迴圈陣列天線系統及電子裝置
JP4480570B2 (ja) 誘電体共振器アンテナおよび配線基板ならびに電子装置
TWI764682B (zh) 天線模組
TWI837631B (zh) 用於毫米波非接觸式通訊的天線的設備
CN220895845U (zh) 封装天线和雷达***
WO2024037124A1 (zh) 天线模组、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217029496

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021557694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019927007

Country of ref document: EP

Effective date: 20211129