WO2020218521A1 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
WO2020218521A1
WO2020218521A1 PCT/JP2020/017725 JP2020017725W WO2020218521A1 WO 2020218521 A1 WO2020218521 A1 WO 2020218521A1 JP 2020017725 W JP2020017725 W JP 2020017725W WO 2020218521 A1 WO2020218521 A1 WO 2020218521A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
coating layer
silicon
coolant
Prior art date
Application number
PCT/JP2020/017725
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 布施
偉鵬 江夏
宏棟 陳
Original Assignee
株式会社デンソー
デゾン・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, デゾン・ジャパン株式会社 filed Critical 株式会社デンソー
Publication of WO2020218521A1 publication Critical patent/WO2020218521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery module.
  • Patent Document 1 proposes to cool a battery by using a coolant flowing through a cooling circuit. According to liquid cooling using a coolant, the cooling capacity of the battery can be increased as compared with air cooling or the like.
  • the present disclosure is a battery module including a battery cell, and the battery cell includes a coating layer provided so as to cover at least a part of one or both of an active part and a conductive part.
  • the battery cell generates heat as it is charged and discharged, and transfers heat to and from the coolant.
  • the live part is a conductive part through which an electric current flows during normal use.
  • the conductive portion is a conductive portion through which an electric current does not flow during normal use.
  • the coating layer is composed of silicon-containing particles composed of molecules containing silicon atoms.
  • an insulating layer made of a coating layer made of silicon-containing particles can be formed on the surface of the active part and the conductive part of the battery cell. Therefore, even if the coolant leaks and comes into contact with the battery cell, the insulating layer exists between the active part or the conductive part and the coolant, so that the generation of liquid entanglement through the cooling water is suppressed. can do.
  • the battery cooling system 1 of the present embodiment is mounted on an electric vehicle that obtains a driving force for driving a vehicle from a traveling electric motor (not shown).
  • the battery cooling system 1 may be mounted on a hybrid vehicle that obtains a driving force for traveling a vehicle from an engine (in other words, an internal combustion engine) and an electric motor for traveling.
  • the battery cooling system 1 of the present embodiment functions as a cooling device for cooling the battery module 23 mounted on the vehicle.
  • the battery cooling system 1 includes a refrigeration cycle device 10 and a battery cooling unit 20.
  • the battery cooling unit 20 the battery module 23 is cooled by the coolant.
  • the refrigeration cycle device 10 is a vapor compression refrigerator and has a refrigerant circulation flow path 11 through which a refrigerant circulates.
  • the refrigeration cycle apparatus 10 of the present embodiment uses a fluorocarbon-based refrigerant as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • a compressor 12, a condenser 13, an expansion valve 14, and an evaporator 15 are arranged in the refrigerant circulation flow path 11.
  • the compressor 12 is an electric compressor driven by the electric power supplied from the battery module 23, and sucks in the refrigerant, compresses it, and discharges it.
  • the condenser 13 is a high-pressure side heat exchanger that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 12 and the outside air.
  • the expansion valve 14 is a decompression unit that depressurizes and expands the liquid phase refrigerant flowing out of the condenser 13.
  • the expansion valve 14 is a mechanical temperature-type expansion valve that has a temperature-sensitive portion and drives the valve body by a mechanical mechanism such as a diaphragm.
  • the evaporator 15 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the expansion valve 14 and the coolant of the battery cooling unit 20.
  • the vapor phase refrigerant evaporated in the evaporator 15 is sucked into the compressor 12 and compressed.
  • the evaporator 15 is a chiller that cools the coolant of the battery cooling unit 20 with the low-pressure refrigerant of the refrigerating cycle device 10.
  • the battery cooling unit 20 has a coolant circuit 21 in which the coolant circulates.
  • the coolant is sealed in the piping constituting the coolant circuit 21.
  • an ethylene glycol-based antifreeze solution (LLC) or the like can be used as the coolant.
  • the evaporator 15, the coolant pump 22, and the battery module 23 are arranged in the coolant circuit 21.
  • the coolant pump 22 sucks in and discharges the coolant circulating in the coolant circuit 21.
  • the coolant pump 22 is an electric pump.
  • the coolant pump 22 adjusts the flow rate of the coolant circulating in the battery cooling unit 20.
  • the battery module 23 is a rechargeable and dischargeable secondary battery, and for example, a lithium ion battery can be used.
  • the battery module 23 can charge the electric power supplied from the external power source (in other words, the commercial power source) when the vehicle is stopped.
  • the electric power stored in the battery module 23 is supplied not only to the traveling electric motor but also to various in-vehicle devices such as the electric components constituting the battery cooling system 1.
  • the battery module 23 generates heat as it is charged and discharged.
  • the battery module 23 is cooled by exchanging heat with the coolant flowing through the coolant circuit 21.
  • a cooling heat exchanger may be provided so as to be in contact with the battery module 23 so that the cooling liquid can flow through the cooling heat exchanger.
  • the battery module 23 As shown in FIG. 2, in this embodiment, as the battery module 23, an assembled battery composed of a plurality of battery cells 24 is used.
  • the battery cell 24 includes an electrode terminal 24a and a battery case 24b.
  • the coating layer 25 is not shown.
  • the electrode terminals 24a are a positive electrode and a negative electrode.
  • the electrode terminal 24a is a metal electrode made of a metal such as aluminum or copper.
  • the electrode terminal 24a is an active part through which a current flows during charging / discharging.
  • the live part in the present specification is a conductive part through which a current flows when the battery cell 24 is normally used.
  • the battery case 24b is, for example, a metal case made of aluminum.
  • the battery case 24b contains components of the battery cell 24 such as a positive electrode current collector, a negative electrode current collector, an electrolyte, and a separator.
  • the battery case 24b is made of a conductor.
  • the battery case 24b is a conductive portion through which a current can flow, and no current flows during charging / discharging.
  • the conductive portion in the present specification is a conductive portion in which a current does not flow when the battery cell 24 is normally used.
  • the case where the battery cell 24 is normally used is when charging or discharging.
  • the battery cell 24 is provided with a coating layer 25.
  • the coating layer 25 is an insulating layer having an insulating property. Further, the coating layer 25 also has water repellency.
  • the coating layer 25 is provided so as to cover the surface of the battery cell 24 where the electrode terminals 24a are provided.
  • the coating layer 25 is provided so as to cover the entire battery cell 24 including the battery case 24b.
  • the coating layer 25 is composed of silicon-containing particles.
  • Silicon-containing particles are particles composed of molecules containing silicon atoms.
  • siloxane can be preferably used as the molecule containing a silicon atom.
  • Siloxane is a compound having a siloxane bond (Si—O) in which silicon atoms and oxygen atoms are alternately bonded as a skeleton.
  • Silicon-containing particles are nano-sized to micro-sized particles and have a particle size of about 10 nm to about 10 ⁇ m.
  • nano-sized silicon-containing particles having a particle size of less than 1 ⁇ m are used, and the silicon-containing particles are also referred to as silicon nanoparticles.
  • the silicon-containing particles of the coating layer 25 are bonded to the surface of the metal constituting the electrode terminal 24a and the battery case 24b by an intermolecular force instead of a chemical bond.
  • the intermolecular force is an attractive force based on electrostatic interaction. Therefore, the bond by intermolecular force is weaker than the chemical bond (intramolecular bond) in which atoms are bonded to each other, such as a covalent bond or an ionic bond.
  • the battery cell 24 is provided with an insulating function and a water-repellent function by forming a coating layer 25 on the surface thereof.
  • the coating layer 25, which is an insulating layer exists between the battery cell 24 and the coolant, so that the generation of liquid entanglement via the cooling water is suppressed. can do.
  • First step: heat treatment First, a heat treatment is performed to heat the battery cell 24.
  • the battery cell 24 is heated at a temperature (for example, 60 ° C. or lower) that does not affect the battery performance. Moisture is removed from the surface of the battery cell 24 by the heat treatment, and silicon-containing particles are likely to adhere.
  • Silicon adhesion treatment Next, a silicon adhesion process for adhering silicon-containing particles to the battery cell 24 is performed.
  • silicon-containing particles can be attached to the surface of the battery cell 24 by immersion, potting, spraying, or the like.
  • the battery cell 24 is immersed in a silicon-dispersed liquid in which silicon-containing particles are dispersed in a liquid.
  • the portion of the battery cell 24 that forms the coating layer 25 may be immersed in the silicon dispersion liquid.
  • the portion of the battery cell 24 where the electrode terminal 24a is provided may be immersed in the silicon dispersion liquid.
  • the entire battery cell 24 including the battery case 24b may be immersed in the silicon dispersion liquid.
  • Siloxane nanoparticles are used as silicon-containing particles.
  • Oil is used as the liquid for dispersing the silicon-containing particles.
  • the type of oil is not particularly limited, and crude oil, mineral oil, or the like can be used.
  • As the oil an oil having a higher degree of purification than crude oil or mineral oil may be used.
  • the viscosity of the silicon-dispersed liquid can be adjusted by adjusting the content of the silicon-containing particles in the silicon-dispersed liquid. By increasing the content of the silicon-containing particles, the viscosity of the silicon-dispersed liquid can be increased, and by decreasing the content of the silicon-containing particles, the viscosity of the silicon-dispersed liquid can be decreased.
  • the viscosity of the silicon-dispersed liquid is increased, the coating layer 25 formed on the battery cell 24 can be thickened, and when the viscosity of the silicon-dispersed liquid is decreased, the coating layer 25 formed on the battery cell 24 can be thickened. Can be made thinner.
  • the time for immersing the battery cell 24 in the silicon dispersion liquid is set to 30 minutes. After the immersion treatment, the excess silicon-dispersed liquid is blown off from the battery cell 24 by an air flow.
  • the battery cell 24 is heated at a temperature (for example, 60 ° C. or lower) that does not affect the battery performance.
  • the heating temperature of the liquid removal treatment may be changed depending on the type of oil. If the oil has a low degree of purification, the heating temperature may be raised, and if the oil has a high degree of purification, the heating temperature may be lowered.
  • Oil is removed from the surface of the battery cell 24 by the liquid removal treatment, and a coating layer 25 made of silicon-containing particles can be formed on the surface of the battery cell 24.
  • a battery cell 24 having a coating layer 25 formed on its surface can be obtained.
  • FIG. 5 shows the change in cell voltage when the battery cell 24 is immersed in a 5% sodium chloride aqueous solution.
  • FIG. 5 shows changes in cell voltage between Examples 1 and 2 and Comparative Example.
  • Example 1 a gel-like silicon dispersion liquid having a viscosity of 1000 mPa ⁇ S is used to form a coating layer 25 having a thickness of 1 mm or more.
  • Example 2 a silicon dispersion liquid having a viscosity of 30 mPa ⁇ S or less is used to form a coating layer 25 having a thickness of about 10 ⁇ m.
  • the battery cell 24 is not provided with the coating layer 25.
  • Example 2 the cell voltage before the start of immersion was 4.086 V, and a sharp drop in cell voltage was observed 21 hours after the start of immersion in the sodium chloride aqueous solution.
  • Example 1 the cell voltage was 4.085 V before the start of immersion, and the cell voltage became 3.650 V 60 hours after the start of immersion in the sodium chloride aqueous solution.
  • Example 1 a sharp drop in cell voltage did not occur.
  • Examples 1 and 2 by providing the coating layer 25 in the battery cell 24, it is possible to prevent a sudden drop in the cell voltage even when the battery cell 24 is immersed in an aqueous sodium chloride solution, or the cell can be prevented from occurring. It is possible to lengthen the time until a sudden drop in voltage occurs.
  • the coating layer 25 made of silicon-containing particles is provided on the surface of the electrode terminal 24a and the battery case 24b. Can be formed.
  • the coating layer 25 which is an insulating layer, exists between the electrode terminal 24a and the battery case 24b and the coolant, so that the cooling water is used. It is possible to suppress the occurrence of the liquid entanglement.
  • the coating layer 25 has water repellency, it is possible to prevent the coolant from adhering to the surfaces of the electrode terminals 24a and the battery case 24b. Therefore, the generation of liquid entanglement via the cooling water can be effectively suppressed.
  • a coating layer 25 is formed on the surface of the electrode terminal 24a, which is an active part.
  • an insulating layer is formed between the electrode terminal 24a, which easily leaks electricity, and the coolant, so that the generation of liquid entanglement via the cooling water can be effectively suppressed.
  • a coating layer 25 is formed on the surface of the battery case 24b, which is a conductive portion.
  • an insulating layer is formed between the battery case 24b, which has a relatively large area, and the coolant, so that the generation of liquid entanglement via the cooling water can be effectively suppressed.
  • the coating layer 25 made of silicon-containing particles has high durability. Therefore, the insulating property of the coating layer 25 can be maintained for a long period of time.
  • the coating layer 25 is formed on the surface of the battery cell 24 by using a silicon dispersion liquid in which silicon-containing particles are dispersed in oil. Thereby, the coating layer 25 can be formed on the surface of the battery cell 24 by a simple method.
  • the battery module of the present disclosure is applied to a lithium ion battery, but the battery module of the present disclosure may be applied to a battery of a different type from the lithium ion battery.
  • FIG. 4 shows an example in which the coating layer 25 is formed on both the battery case 24b which is the active part and the electrode terminal 24a which is the conductive part, but the coating layer 25 is provided only on the battery case 24b. It may be formed.
  • FIG. 3 shows an example in which the coating layer 25 is formed on the entire electrode terminal 24a
  • FIG. 4 shows an example in which the coating layer 25 is formed on the entire electrode terminal 24a and the battery case 24b.
  • the coating layer 25 may be formed not only on the whole of these parts but also on at least a part of them.
  • the battery cell 24 is heated to remove the oil from the silicon dispersed liquid adhering to the surface of the battery cell 24, but by a method other than heating.
  • the oil may be removed.
  • the vaporization temperature of the oil may be lowered by depressurization to remove the oil from the silicon-dispersed liquid.
  • the coating layer 25 formed on the surface of the battery cell 24 is one layer has been described, but a plurality of coating layers 25 may be laminated and formed.
  • the above-mentioned first step to third step may be repeated.
  • the thickness of the coating layer 25 can be increased and the durability can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The present invention is a battery module provided with a battery cell (24), wherein the battery cell is provided with a coating layer (25) disposed so as to cover at least a portion of current-carrying sections (24a) and/or a conductive section (24b). The battery cell generates heat as a result of being electrically charged/discharged and transmits/receives the heat to/from a cooling liquid. The current-carrying sections are conductive sites through which an electrical current flows during normal use. The conductive section is a conductive site through which no electrical currents flow during normal use. The coating layer comprises silicon-containing particles formed of molecules containing silicon atoms.

Description

電池モジュールBattery module 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年4月25日に出願された日本特許出願番号2019-84014号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2019-84014 filed on April 25, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、電池モジュールに関する。 This disclosure relates to a battery module.
 特許文献1では、冷却回路を流れる冷却液を用いて電池を冷却することが提案されている。冷却液を用いる液冷によれば、空冷等に比べて、電池の冷却能力を高くすることができる。 Patent Document 1 proposes to cool a battery by using a coolant flowing through a cooling circuit. According to liquid cooling using a coolant, the cooling capacity of the battery can be increased as compared with air cooling or the like.
特開2016-179747号公報Japanese Unexamined Patent Publication No. 2016-179747
 しかしながら、冷却液を用いて電池の冷却を行う場合、電池への冷却液の漏出が問題となる。冷却液の多くは導電率が高いため、冷却液を介した液絡を防止する必要があり、大がかりな絶縁対策が必要となる。 However, when the battery is cooled by using the coolant, leakage of the coolant to the battery becomes a problem. Since most of the coolants have high conductivity, it is necessary to prevent liquid entanglement through the coolants, and large-scale insulation measures are required.
 本開示は上記点に鑑み、冷却液と熱交換する電池セルを備える電池モジュールにおいて、簡易な構成で冷却液を介した液絡の発生を抑制することを目的とする。 In view of the above points, it is an object of the present disclosure to suppress the generation of liquid entanglement through the coolant with a simple configuration in a battery module including a battery cell that exchanges heat with the coolant.
 本開示は上記目的を達成するため、以下の技術的手段を採用する。 This disclosure employs the following technical means to achieve the above objectives.
 本開示は、電池セルを備える電池モジュールであって、電池セルは、活電部と導電部の一方または両方において、少なくとも一部を覆うように設けられた被覆層を備えている。電池セルは、充放電に伴い発熱し、冷却液との間で熱の授受を行うようになっている。活電部は、通常の使用時に電流が流れる導電性の部位である。導電部は、通常の使用時に電流が流れない導電性の部位である。被覆層は、シリコン原子を含有する分子で構成されるシリコン含有粒子からなる。 The present disclosure is a battery module including a battery cell, and the battery cell includes a coating layer provided so as to cover at least a part of one or both of an active part and a conductive part. The battery cell generates heat as it is charged and discharged, and transfers heat to and from the coolant. The live part is a conductive part through which an electric current flows during normal use. The conductive portion is a conductive portion through which an electric current does not flow during normal use. The coating layer is composed of silicon-containing particles composed of molecules containing silicon atoms.
 これにより、電池セルの活電部や導電部の表面にシリコン含有粒子からなる被覆層からなる絶縁層を形成することができる。このため、冷却液が漏出して電池セルに接触しても、活電部や導電部と冷却液との間に絶縁層が存在しているので、冷却水を介した液絡の発生を抑制することができる。 As a result, an insulating layer made of a coating layer made of silicon-containing particles can be formed on the surface of the active part and the conductive part of the battery cell. Therefore, even if the coolant leaks and comes into contact with the battery cell, the insulating layer exists between the active part or the conductive part and the coolant, so that the generation of liquid entanglement through the cooling water is suppressed. can do.
本実施形態の熱輸送システムの概念図である。It is a conceptual diagram of the heat transport system of this embodiment. 電池モジュールの斜視図である。It is a perspective view of a battery module. 被覆層が形成された電池セルの側面図である。It is a side view of the battery cell in which a coating layer was formed. 被覆層が形成された電池セルの側面図である。It is a side view of the battery cell in which a coating layer was formed. 電池セルを塩化ナトリウム水溶液に浸漬した場合のセル電圧の変化を示す図である。It is a figure which shows the change of the cell voltage when the battery cell is immersed in the sodium chloride aqueous solution.
 以下、本開示の実施形態について図面に基づいて説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 本実施形態の電池冷却システム1は、走行用電動モータ(図示略)から車両走行用の駆動力を得る電気自動車に搭載されている。電池冷却システム1は、エンジン(換言すれば内燃機関)および走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に搭載されていてもよい。本実施形態の電池冷却システム1は、車両に搭載された電池モジュール23を冷却する冷却装置として機能する。 The battery cooling system 1 of the present embodiment is mounted on an electric vehicle that obtains a driving force for driving a vehicle from a traveling electric motor (not shown). The battery cooling system 1 may be mounted on a hybrid vehicle that obtains a driving force for traveling a vehicle from an engine (in other words, an internal combustion engine) and an electric motor for traveling. The battery cooling system 1 of the present embodiment functions as a cooling device for cooling the battery module 23 mounted on the vehicle.
 図1に示すように、電池冷却システム1は、冷凍サイクル装置10と、電池冷却部20とを有している。電池冷却部20では、冷却液による電池モジュール23の冷却が行われる。 As shown in FIG. 1, the battery cooling system 1 includes a refrigeration cycle device 10 and a battery cooling unit 20. In the battery cooling unit 20, the battery module 23 is cooled by the coolant.
 冷凍サイクル装置10は蒸気圧縮式冷凍機であり、冷媒が循環する冷媒循環流路11を有している。本実施形態の冷凍サイクル装置10では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。冷媒循環流路11には、圧縮機12、凝縮器13、膨張弁14および蒸発器15が配置されている。 The refrigeration cycle device 10 is a vapor compression refrigerator and has a refrigerant circulation flow path 11 through which a refrigerant circulates. The refrigeration cycle apparatus 10 of the present embodiment uses a fluorocarbon-based refrigerant as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. A compressor 12, a condenser 13, an expansion valve 14, and an evaporator 15 are arranged in the refrigerant circulation flow path 11.
 圧縮機12は、電池モジュール23から供給される電力によって駆動される電動圧縮機であり、冷媒を吸入して圧縮して吐出する。凝縮器13は、圧縮機12から吐出された高圧側冷媒と外気とを熱交換させることによって高圧側冷媒を凝縮させる高圧側熱交換器である。 The compressor 12 is an electric compressor driven by the electric power supplied from the battery module 23, and sucks in the refrigerant, compresses it, and discharges it. The condenser 13 is a high-pressure side heat exchanger that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 12 and the outside air.
 膨張弁14は、凝縮器13から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁14は、感温部を有し、ダイヤフラム等の機械的機構によって弁体を駆動する機械式の温度式膨張弁である。 The expansion valve 14 is a decompression unit that depressurizes and expands the liquid phase refrigerant flowing out of the condenser 13. The expansion valve 14 is a mechanical temperature-type expansion valve that has a temperature-sensitive portion and drives the valve body by a mechanical mechanism such as a diaphragm.
 蒸発器15は、膨張弁14を流出した低圧冷媒と電池冷却部20の冷却液とを熱交換させることによって低圧冷媒を蒸発させる低圧側熱交換器である。蒸発器15で蒸発した気相冷媒は圧縮機12に吸入されて圧縮される。蒸発器15は、冷凍サイクル装置10の低圧冷媒によって電池冷却部20の冷却液を冷却するチラーである。 The evaporator 15 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant flowing out of the expansion valve 14 and the coolant of the battery cooling unit 20. The vapor phase refrigerant evaporated in the evaporator 15 is sucked into the compressor 12 and compressed. The evaporator 15 is a chiller that cools the coolant of the battery cooling unit 20 with the low-pressure refrigerant of the refrigerating cycle device 10.
 電池冷却部20は、冷却液が循環する冷却液回路21を有している。冷却液は、冷却液回路21を構成する配管内に封入されている。冷却液として、エチレングリコール系の不凍液(LLC)等を用いることができる。 The battery cooling unit 20 has a coolant circuit 21 in which the coolant circulates. The coolant is sealed in the piping constituting the coolant circuit 21. As the coolant, an ethylene glycol-based antifreeze solution (LLC) or the like can be used.
 冷却液回路21には、蒸発器15、冷却液ポンプ22、電池モジュール23が配置されている。 The evaporator 15, the coolant pump 22, and the battery module 23 are arranged in the coolant circuit 21.
 冷却液ポンプ22は、冷却液回路21を循環する冷却液を吸入して吐出する。冷却液ポンプ22は電動式のポンプである。冷却液ポンプ22は、電池冷却部20を循環する冷却液の流量を調整する。 The coolant pump 22 sucks in and discharges the coolant circulating in the coolant circuit 21. The coolant pump 22 is an electric pump. The coolant pump 22 adjusts the flow rate of the coolant circulating in the battery cooling unit 20.
 電池モジュール23は、充放電可能な2次電池であり、例えばリチウムイオン電池を用いることができる。電池モジュール23は、車両停車時に外部電源(換言すれば商用電源)から供給された電力を充電可能となっている。電池モジュール23に蓄えられた電力は、走行用電動モータのみならず、電池冷却システム1を構成する電動式構成機器をはじめとする各種車載機器に供給される。 The battery module 23 is a rechargeable and dischargeable secondary battery, and for example, a lithium ion battery can be used. The battery module 23 can charge the electric power supplied from the external power source (in other words, the commercial power source) when the vehicle is stopped. The electric power stored in the battery module 23 is supplied not only to the traveling electric motor but also to various in-vehicle devices such as the electric components constituting the battery cooling system 1.
 電池モジュール23は、充放電に伴い発熱する。電池モジュール23は、冷却液回路21を流れる冷却液と熱交換して冷却される。例えば、電池モジュール23と接するように冷却用熱交換器を設け、冷却用熱交換器に冷却液が流通するようにすればよい。 The battery module 23 generates heat as it is charged and discharged. The battery module 23 is cooled by exchanging heat with the coolant flowing through the coolant circuit 21. For example, a cooling heat exchanger may be provided so as to be in contact with the battery module 23 so that the cooling liquid can flow through the cooling heat exchanger.
 図2に示すように、本実施形態では、電池モジュール23として、複数個の電池セル24からなる組電池を用いている。電池セル24は、電極端子24aおよび電池ケース24bを備えている。なお、図2では、被覆層25の図示を省略している。 As shown in FIG. 2, in this embodiment, as the battery module 23, an assembled battery composed of a plurality of battery cells 24 is used. The battery cell 24 includes an electrode terminal 24a and a battery case 24b. In FIG. 2, the coating layer 25 is not shown.
 電極端子24aは、正極および負極である。電極端子24aは、例えばアルミニウムや銅などの金属からなる金属電極である。電極端子24aは、充放電時に電流が流れる活電部である。本明細書における活電部は、電池セル24を通常に使用した場合に電流が流れる導電性の部位である。 The electrode terminals 24a are a positive electrode and a negative electrode. The electrode terminal 24a is a metal electrode made of a metal such as aluminum or copper. The electrode terminal 24a is an active part through which a current flows during charging / discharging. The live part in the present specification is a conductive part through which a current flows when the battery cell 24 is normally used.
 電池ケース24bは、例えばアルミニウムからなる金属ケースである。電池ケース24bには、正極集電体、負極集電体、電解質、セパレータ等の電池セル24の構成要素が収容されている。電池ケース24bは、導電体で構成されている。電池ケース24bは、電流が流れ得る導電部であり、充放電時には電流が流れない。本明細書中における導電部は、電池セル24を通常に使用した場合に電流が流れない導電性の部位である。電池セル24を通常に使用した場合とは、充電時や放電時である。 The battery case 24b is, for example, a metal case made of aluminum. The battery case 24b contains components of the battery cell 24 such as a positive electrode current collector, a negative electrode current collector, an electrolyte, and a separator. The battery case 24b is made of a conductor. The battery case 24b is a conductive portion through which a current can flow, and no current flows during charging / discharging. The conductive portion in the present specification is a conductive portion in which a current does not flow when the battery cell 24 is normally used. The case where the battery cell 24 is normally used is when charging or discharging.
 図3、図4に示すように、電池セル24には、被覆層25が設けられている。被覆層25は、絶縁性を備える絶縁層である。さらに、被覆層25は撥水性も備えている。 As shown in FIGS. 3 and 4, the battery cell 24 is provided with a coating layer 25. The coating layer 25 is an insulating layer having an insulating property. Further, the coating layer 25 also has water repellency.
 図3に示す例では、被覆層25が電池セル24における電極端子24aが設けられた面を覆うように設けられている。図4に示す例では、被覆層25が電池ケース24bを含む電池セル24の全体を覆うように設けられている。 In the example shown in FIG. 3, the coating layer 25 is provided so as to cover the surface of the battery cell 24 where the electrode terminals 24a are provided. In the example shown in FIG. 4, the coating layer 25 is provided so as to cover the entire battery cell 24 including the battery case 24b.
 被覆層25は、シリコン含有粒子によって構成されている。シリコン含有粒子は、シリコン原子を含有する分子で構成される粒子である。シリコン原子を含有する分子としては、例えばシロキサンを好適に用いることができる。シロキサンは、シリコン原子と酸素原子が交互に結合したシロキサン結合(Si-O)を骨格とする化合物である。 The coating layer 25 is composed of silicon-containing particles. Silicon-containing particles are particles composed of molecules containing silicon atoms. As the molecule containing a silicon atom, for example, siloxane can be preferably used. Siloxane is a compound having a siloxane bond (Si—O) in which silicon atoms and oxygen atoms are alternately bonded as a skeleton.
 シリコン含有粒子は、ナノサイズからマイクロサイズの粒子であり、10nm程度~10μm程度の粒子径を有している。本実施形態では、粒径が1μm未満のナノサイズのシリコン含有粒子を用いており、シリコン含有粒子をシリコンナノ粒子ともいう。 Silicon-containing particles are nano-sized to micro-sized particles and have a particle size of about 10 nm to about 10 μm. In this embodiment, nano-sized silicon-containing particles having a particle size of less than 1 μm are used, and the silicon-containing particles are also referred to as silicon nanoparticles.
 被覆層25のシリコン含有粒子は、電極端子24aや電池ケース24bを構成する金属の表面に対して、化学結合ではなく、分子間力によって結合している。分子間力は静電相互作用に基づく引力である。このため、分子間力による結合は、共有結合やイオン結合といった原子同士が結合する化学結合(分子内結合)に比べて弱い結合となっている。 The silicon-containing particles of the coating layer 25 are bonded to the surface of the metal constituting the electrode terminal 24a and the battery case 24b by an intermolecular force instead of a chemical bond. The intermolecular force is an attractive force based on electrostatic interaction. Therefore, the bond by intermolecular force is weaker than the chemical bond (intramolecular bond) in which atoms are bonded to each other, such as a covalent bond or an ionic bond.
 電池セル24では、表面に被覆層25が形成されていることで、絶縁機能および撥水機能が付与される。これにより、電池セル24に冷却液が漏出したとしても、電池セル24と冷却液との間に絶縁層である被覆層25が存在しているので、冷却水を介した液絡の発生を抑制することができる。 The battery cell 24 is provided with an insulating function and a water-repellent function by forming a coating layer 25 on the surface thereof. As a result, even if the coolant leaks into the battery cell 24, the coating layer 25, which is an insulating layer, exists between the battery cell 24 and the coolant, so that the generation of liquid entanglement via the cooling water is suppressed. can do.
 次に、被覆層25を備える電池セル24の製造方法について説明する。 Next, a method of manufacturing the battery cell 24 including the coating layer 25 will be described.
 〔第1工程:加熱処理〕
 まず、電池セル24を加熱する加熱処理を行う。加熱処理では、電池セル24の電池性能に影響を与えない温度(例えば60℃以下)で加熱する。加熱処理によって、電池セル24の表面から水分が除去され、シリコン含有粒子が付着しやすくなる。
[First step: heat treatment]
First, a heat treatment is performed to heat the battery cell 24. In the heat treatment, the battery cell 24 is heated at a temperature (for example, 60 ° C. or lower) that does not affect the battery performance. Moisture is removed from the surface of the battery cell 24 by the heat treatment, and silicon-containing particles are likely to adhere.
 〔第2工程:シリコン付着処理〕
 次に、電池セル24にシリコン含有粒子を付着させるシリコン付着処理を行う。シリコン付着処理では、浸漬、ポッティング、スプレー等によって、電池セル24の表面にシリコン含有粒子を付着させることができる。本実施形態では、シリコン含有粒子を液体に分散させたシリコン分散液体に電池セル24を浸漬する浸漬処理を行う。
[Second step: Silicon adhesion treatment]
Next, a silicon adhesion process for adhering silicon-containing particles to the battery cell 24 is performed. In the silicon adhesion treatment, silicon-containing particles can be attached to the surface of the battery cell 24 by immersion, potting, spraying, or the like. In the present embodiment, the battery cell 24 is immersed in a silicon-dispersed liquid in which silicon-containing particles are dispersed in a liquid.
 浸漬処理では、電池セル24における被覆層25を形成する部位をシリコン分散液体に浸漬すればよい。例えば図3に示す例では、電池セル24における電極端子24aが設けられた部位をシリコン分散液体に浸漬すればよい。図4に示す例では、電池ケース24bを含む電池セル24の全体をシリコン分散液体に浸漬すればよい。 In the immersion treatment, the portion of the battery cell 24 that forms the coating layer 25 may be immersed in the silicon dispersion liquid. For example, in the example shown in FIG. 3, the portion of the battery cell 24 where the electrode terminal 24a is provided may be immersed in the silicon dispersion liquid. In the example shown in FIG. 4, the entire battery cell 24 including the battery case 24b may be immersed in the silicon dispersion liquid.
 シリコン含有粒子として、シロキサンナノ粒子を用いている。シリコン含有粒子を分散させる液体としては、オイルを用いている。オイルの種類は特に限定されず、原油や鉱物油等を用いることができる。オイルとして、原油や鉱物油よりも精製度の高い油を用いてもよい。 Siloxane nanoparticles are used as silicon-containing particles. Oil is used as the liquid for dispersing the silicon-containing particles. The type of oil is not particularly limited, and crude oil, mineral oil, or the like can be used. As the oil, an oil having a higher degree of purification than crude oil or mineral oil may be used.
 浸漬処理において、シリコン分散液体におけるシリコン含有粒子の含有量を調整することで、シリコン分散液体の粘度を調整することができる。シリコン含有粒子の含有量を多くすることで、シリコン分散液体の粘度を高くすることができ、シリコン含有粒子の含有量を少なくすることで、シリコン分散液体の粘度を低くすることができる。シリコン分散液体の粘度を高くした場合には、電池セル24に形成する被覆層25を厚くすることができ、シリコン分散液体の粘度を低くした場合には、電池セル24に形成する被覆層25を薄くすることができる。 In the dipping process, the viscosity of the silicon-dispersed liquid can be adjusted by adjusting the content of the silicon-containing particles in the silicon-dispersed liquid. By increasing the content of the silicon-containing particles, the viscosity of the silicon-dispersed liquid can be increased, and by decreasing the content of the silicon-containing particles, the viscosity of the silicon-dispersed liquid can be decreased. When the viscosity of the silicon-dispersed liquid is increased, the coating layer 25 formed on the battery cell 24 can be thickened, and when the viscosity of the silicon-dispersed liquid is decreased, the coating layer 25 formed on the battery cell 24 can be thickened. Can be made thinner.
 本実施形態では、電池セル24をシリコン分散液体に浸漬する時間を30分間としている。浸漬処理後、空気流で電池セル24から余剰なシリコン分散液体を吹き飛ばす。 In this embodiment, the time for immersing the battery cell 24 in the silicon dispersion liquid is set to 30 minutes. After the immersion treatment, the excess silicon-dispersed liquid is blown off from the battery cell 24 by an air flow.
 〔第3工程:液体除去処理〕
 次に、電池セル24の表面に付着したシリコン分散液体からオイルを除去する液体除去処理を行う。本実施形態では、電池セル24を加熱することで、オイルを気化させてシリコン分散液体からオイルを除去している。
[Third step: Liquid removal process]
Next, a liquid removal process for removing oil from the silicon-dispersed liquid adhering to the surface of the battery cell 24 is performed. In the present embodiment, the battery cell 24 is heated to vaporize the oil and remove the oil from the silicon-dispersed liquid.
 本実施形態の液体除去処理では、電池セル24の電池性能に影響を与えない温度(例えば60℃以下)で加熱する。液体除去処理の加熱温度は、オイルの種類によって変更すればよい。精製度が低いオイルであれば加熱温度を高くし、精製度が高いオイルであれば加熱温度を低くすればよい。 In the liquid removal treatment of the present embodiment, the battery cell 24 is heated at a temperature (for example, 60 ° C. or lower) that does not affect the battery performance. The heating temperature of the liquid removal treatment may be changed depending on the type of oil. If the oil has a low degree of purification, the heating temperature may be raised, and if the oil has a high degree of purification, the heating temperature may be lowered.
 液体除去処理によって、電池セル24の表面からオイルが除去され、電池セル24の表面にシリコン含有粒子からなる被覆層25を形成できる。 Oil is removed from the surface of the battery cell 24 by the liquid removal treatment, and a coating layer 25 made of silicon-containing particles can be formed on the surface of the battery cell 24.
 液体除去処理では、電池セル24の表面からオイルを完全に除去する必要はなく、シリコン含有粒子が電池セル24の表面で保持できれば、電池セル24の表面にオイルが少量残留していてもよい。オイルは疎水性を有しているので、電池セル24の表面に残留したオイルは、電池セル24への水分の付着抑制に寄与する。 In the liquid removal process, it is not necessary to completely remove the oil from the surface of the battery cell 24, and a small amount of oil may remain on the surface of the battery cell 24 as long as the silicon-containing particles can be retained on the surface of the battery cell 24. Since the oil has hydrophobicity, the oil remaining on the surface of the battery cell 24 contributes to the suppression of the adhesion of water to the battery cell 24.
 以上の第1工程から第3工程を行うことで、表面に被覆層25が形成された電池セル24を得ることができる。 By performing the above first to third steps, a battery cell 24 having a coating layer 25 formed on its surface can be obtained.
 ここで、本実施形態の電池セル24における被覆層25の耐久性を図5を用いて説明す
る。図5は、電池セル24を5%塩化ナトリウム水溶液に浸漬した場合のセル電圧の変化を示している。図5では、実施例1、2と比較例のセル電圧の変化を示している。
Here, the durability of the coating layer 25 in the battery cell 24 of the present embodiment will be described with reference to FIG. FIG. 5 shows the change in cell voltage when the battery cell 24 is immersed in a 5% sodium chloride aqueous solution. FIG. 5 shows changes in cell voltage between Examples 1 and 2 and Comparative Example.
 実施例1は、粘度が1000mPa・Sのゲル状のシリコン分散液体を用い、1mm以上の厚みを有する被覆層25を形成している。実施例2は、粘度が30mPa・S以下のシリコン分散液体を用い、10μm程度の厚みを有する被覆層25を形成している。比較例は、電池セル24に被覆層25が設けられていない。 In Example 1, a gel-like silicon dispersion liquid having a viscosity of 1000 mPa · S is used to form a coating layer 25 having a thickness of 1 mm or more. In Example 2, a silicon dispersion liquid having a viscosity of 30 mPa · S or less is used to form a coating layer 25 having a thickness of about 10 μm. In the comparative example, the battery cell 24 is not provided with the coating layer 25.
 図5に示すように、比較例では、浸漬開始前のセル電圧が4.094Vであり、塩化ナトリウム水溶液への浸漬開始から6時間経過後にセル電圧の急激な低下が見られた。これに対し、実施例2では、浸漬開始前のセル電圧が4.086Vであり、塩化ナトリウム水溶液への浸漬開始から21時間経過後にセル電圧の急激な低下が見られた。実施例1では、浸漬開始前のセル電圧が4.085Vであり、塩化ナトリウム水溶液への浸漬開始から60時間経過後にセル電圧が3.650Vになった。実施例1では、セル電圧の急激な低下が発生しなかった。 As shown in FIG. 5, in the comparative example, the cell voltage before the start of immersion was 4.094 V, and a sharp drop in cell voltage was observed 6 hours after the start of immersion in the sodium chloride aqueous solution. On the other hand, in Example 2, the cell voltage before the start of immersion was 4.086 V, and a sharp drop in cell voltage was observed 21 hours after the start of immersion in the sodium chloride aqueous solution. In Example 1, the cell voltage was 4.085 V before the start of immersion, and the cell voltage became 3.650 V 60 hours after the start of immersion in the sodium chloride aqueous solution. In Example 1, a sharp drop in cell voltage did not occur.
 実施例1、2では、電池セル24に被覆層25を設けることで、電池セル24を塩化ナトリウム水溶液に浸漬した場合であっても、セル電圧の急激な低下の発生を防止でき、あるいは、セル電圧の急激な低下が発生するまでの時間を長くすることができる。 In Examples 1 and 2, by providing the coating layer 25 in the battery cell 24, it is possible to prevent a sudden drop in the cell voltage even when the battery cell 24 is immersed in an aqueous sodium chloride solution, or the cell can be prevented from occurring. It is possible to lengthen the time until a sudden drop in voltage occurs.
 以上説明した本実施形態によれば、電池セル24の電極端子24aや電池ケース24bにおいて、表面にシリコン含有粒子からなる被覆層25を設けることで、電極端子24aや電池ケース24bの表面に絶縁層を形成することができる。これにより、冷却液が漏出して電池セル24に接触しても、電極端子24aや電池ケース24bと冷却液との間に絶縁層である被覆層25が存在しているので、冷却水を介した液絡の発生を抑制することができる。 According to the present embodiment described above, in the electrode terminal 24a and the battery case 24b of the battery cell 24, by providing the coating layer 25 made of silicon-containing particles on the surface, an insulating layer is provided on the surface of the electrode terminal 24a and the battery case 24b. Can be formed. As a result, even if the coolant leaks and comes into contact with the battery cell 24, the coating layer 25, which is an insulating layer, exists between the electrode terminal 24a and the battery case 24b and the coolant, so that the cooling water is used. It is possible to suppress the occurrence of the liquid entanglement.
 また、被覆層25は撥水性を備えているので、電極端子24aや電池ケース24bの表面に冷却液が付着することを抑制できる。このため、冷却水を介した液絡の発生を効果的に抑制することができる。 Further, since the coating layer 25 has water repellency, it is possible to prevent the coolant from adhering to the surfaces of the electrode terminals 24a and the battery case 24b. Therefore, the generation of liquid entanglement via the cooling water can be effectively suppressed.
 また、図3に示した例では、活電部である電極端子24aの表面に被覆層25を形成している。これにより、漏電しやすい電極端子24aと冷却液との間に絶縁層が形成されるため、冷却水を介した液絡の発生を効果的に抑制することができる。 Further, in the example shown in FIG. 3, a coating layer 25 is formed on the surface of the electrode terminal 24a, which is an active part. As a result, an insulating layer is formed between the electrode terminal 24a, which easily leaks electricity, and the coolant, so that the generation of liquid entanglement via the cooling water can be effectively suppressed.
 また、図4に示した例では、導電部である電池ケース24bの表面に被覆層25を形成している。これにより、面積が比較的大きくなる電池ケース24bと冷却液との間に絶縁層が形成されるため、冷却水を介した液絡の発生を効果的に抑制することができる。 Further, in the example shown in FIG. 4, a coating layer 25 is formed on the surface of the battery case 24b, which is a conductive portion. As a result, an insulating layer is formed between the battery case 24b, which has a relatively large area, and the coolant, so that the generation of liquid entanglement via the cooling water can be effectively suppressed.
 また、シリコン含有粒子からなる被覆層25は、高い耐久性を備えている。このため、被覆層25による絶縁性を長期間に渡って維持することができる。 Further, the coating layer 25 made of silicon-containing particles has high durability. Therefore, the insulating property of the coating layer 25 can be maintained for a long period of time.
 また、本実施形態では、シリコン含有粒子をオイルに分散させたシリコン分散液体を用いて電池セル24の表面に被覆層25を形成している。これにより、簡易な方法で電池セル24の表面に被覆層25を形成することができる。 Further, in the present embodiment, the coating layer 25 is formed on the surface of the battery cell 24 by using a silicon dispersion liquid in which silicon-containing particles are dispersed in oil. Thereby, the coating layer 25 can be formed on the surface of the battery cell 24 by a simple method.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure. In addition, the means disclosed in each of the above embodiments may be appropriately combined to the extent feasible.
 例えば、上記実施形態では、本開示の電池モジュールをリチウムイオン電池に適用したが、本開示の電池モジュールをリチウムイオン電池とは異なる種類の電池に適用してもよい。 For example, in the above embodiment, the battery module of the present disclosure is applied to a lithium ion battery, but the battery module of the present disclosure may be applied to a battery of a different type from the lithium ion battery.
 また、上記実施形態では、図4で活電部である電池ケース24bおよび導電部である電極端子24aの両方に被覆層25を形成した例を示したが、電池ケース24bのみに被覆層25を形成してもよい。 Further, in the above embodiment, FIG. 4 shows an example in which the coating layer 25 is formed on both the battery case 24b which is the active part and the electrode terminal 24a which is the conductive part, but the coating layer 25 is provided only on the battery case 24b. It may be formed.
 また、上記実施形態では、図3は電極端子24aの全体に被覆層25を形成した例を示し、図4は電極端子24aおよび電池ケース24bの全体に被覆層25を形成した例を示したが、これらの部位の全体に限らず、少なくとも一部に被覆層25を形成すればよい。 Further, in the above embodiment, FIG. 3 shows an example in which the coating layer 25 is formed on the entire electrode terminal 24a, and FIG. 4 shows an example in which the coating layer 25 is formed on the entire electrode terminal 24a and the battery case 24b. The coating layer 25 may be formed not only on the whole of these parts but also on at least a part of them.
 また、上記実施形態では、第3工程である液体除去処理において、電池セル24を加熱して電池セル24の表面に付着したシリコン分散液体からオイルを除去するようにしたが、加熱以外の方法によってオイルを除去するようにしてもよい。例えば、減圧によってオイルの気化温度を低下させ、シリコン分散液体からオイルを除去するようにしてもよい。 Further, in the above embodiment, in the liquid removal treatment which is the third step, the battery cell 24 is heated to remove the oil from the silicon dispersed liquid adhering to the surface of the battery cell 24, but by a method other than heating. The oil may be removed. For example, the vaporization temperature of the oil may be lowered by depressurization to remove the oil from the silicon-dispersed liquid.
 また、上記実施形態では、電池セル24の表面に形成する被覆層25を1層とした例について説明したが、複数の被覆層25を積層して形成してもよい。複数の被覆層25を積層する場合には、上述した第1工程~第3工程を繰り返し行えばよい。被覆層25の積層数を多くすることで、被覆層25の厚みを大きくすることができ、耐久性を向上させることができる。 Further, in the above embodiment, the example in which the coating layer 25 formed on the surface of the battery cell 24 is one layer has been described, but a plurality of coating layers 25 may be laminated and formed. When a plurality of coating layers 25 are laminated, the above-mentioned first step to third step may be repeated. By increasing the number of layers of the coating layer 25, the thickness of the coating layer 25 can be increased and the durability can be improved.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, although various combinations and forms are shown in this disclosure, other combinations and forms, including only one element, more, or less, are also within the scope of this disclosure. It is a thing.

Claims (3)

  1.  充放電に伴い発熱する電池セル(24)を備え、前記電池セルは、冷却液との間で熱交換するようになっている電池モジュールであって、
     前記電池セルは、通常に使用した場合に電流が流れる導電性の活電部(24a)と、通常に使用した場合に電流が流れない導電性の導電部(24b)の一方または両方において、少なくとも一部を覆うように設けられた被覆層(25)を備えており、
     前記被覆層は、シリコン原子を含有する分子で構成されるシリコン含有粒子からなる電池モジュール。
    A battery module (24) that generates heat as it is charged and discharged, and the battery cell is a battery module that exchanges heat with a coolant.
    The battery cell has at least one or both of a conductive live part (24a) through which a current flows when used normally and a conductive part (24b) where a current does not flow when used normally. It is provided with a coating layer (25) provided so as to partially cover it.
    The coating layer is a battery module made of silicon-containing particles composed of molecules containing silicon atoms.
  2.  前記活電部は、金属電極(24a)である請求項1に記載の電池モジュール。 The battery module according to claim 1, wherein the live-acting unit is a metal electrode (24a).
  3.  前記電池セルは、前記電池セルの構成要素を収容する金属ケース(24b)を備え、
     前記導電部は、前記金属ケースである請求項1または2に記載の電池モジュール。
    The battery cell comprises a metal case (24b) that houses the components of the battery cell.
    The battery module according to claim 1 or 2, wherein the conductive portion is the metal case.
PCT/JP2020/017725 2019-04-25 2020-04-24 Battery module WO2020218521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-084014 2019-04-25
JP2019084014A JP7252047B2 (en) 2019-04-25 2019-04-25 battery module

Publications (1)

Publication Number Publication Date
WO2020218521A1 true WO2020218521A1 (en) 2020-10-29

Family

ID=72942202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017725 WO2020218521A1 (en) 2019-04-25 2020-04-24 Battery module

Country Status (2)

Country Link
JP (1) JP7252047B2 (en)
WO (1) WO2020218521A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497670B2 (en) 2020-10-29 2024-06-11 セイコーエプソン株式会社 Manufacturing method of watch parts, and watch parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243079A (en) * 2012-05-22 2013-12-05 Hitachi Vehicle Energy Ltd Power storage module
JP2018106800A (en) * 2016-12-22 2018-07-05 三菱電機株式会社 Storage battery and power storage module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243079A (en) * 2012-05-22 2013-12-05 Hitachi Vehicle Energy Ltd Power storage module
JP2018106800A (en) * 2016-12-22 2018-07-05 三菱電機株式会社 Storage battery and power storage module

Also Published As

Publication number Publication date
JP2020181709A (en) 2020-11-05
JP7252047B2 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US9123956B2 (en) Cell barrier for secondary battery module and secondary battery module
JP6019212B2 (en) Battery system and cooling method thereof
US8765282B2 (en) Battery assemblies
EP2248211A1 (en) Thermal management of electrochemical cells
KR101767633B1 (en) Battery Module
EP2475025A1 (en) Electric storage device and electric storage apparatus
JP2009037934A (en) Power supply device for vehicle
RU2596389C2 (en) System of active cooling of electric drive
US20140011059A1 (en) Power supply device and vehicle equipped therewith
US20110117410A1 (en) Battery pack and heatsink frame
WO2021013955A1 (en) Electrical vehicle charging system for charging an electrical vehicle
JP6020942B2 (en) Power storage device
JP2010062130A (en) Vehicular power supply device
KR20140078548A (en) Electrical energy store
WO2020218521A1 (en) Battery module
EA031483B1 (en) System and method for cooling power electronic devices
KR20150110390A (en) Cooling circuit for a motor vehicle and use of an electrically non-conductive cooling fluid
US11335922B2 (en) Energy conversion system
JP5266677B2 (en) Power supply temperature control structure and vehicle
JP2003133188A (en) Electric double-layer capacitor
JP2023171684A (en) battery pack
CN111247688A (en) Assembly of battery cells and aircraft having such an assembly
JP2008300600A (en) Film capacitor
KR101554877B1 (en) Battery Module Of High Cooling Efficiency
JP2009016235A (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794055

Country of ref document: EP

Kind code of ref document: A1