WO2020218311A1 - Surface treated metal member, composite laminate, metal-nonmetal joined body, and manufacturing method of these - Google Patents

Surface treated metal member, composite laminate, metal-nonmetal joined body, and manufacturing method of these Download PDF

Info

Publication number
WO2020218311A1
WO2020218311A1 PCT/JP2020/017260 JP2020017260W WO2020218311A1 WO 2020218311 A1 WO2020218311 A1 WO 2020218311A1 JP 2020017260 W JP2020017260 W JP 2020017260W WO 2020218311 A1 WO2020218311 A1 WO 2020218311A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
metal material
metal
treatment
Prior art date
Application number
PCT/JP2020/017260
Other languages
French (fr)
Japanese (ja)
Inventor
大谷 和男
臣二 沼尾
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020559592A priority Critical patent/JP6919077B2/en
Publication of WO2020218311A1 publication Critical patent/WO2020218311A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a surface-treated metal material that has been surface-treated for the purpose of improving the bonding strength with an organic material, a surface treatment method for obtaining the surface-treated metal material, a composite laminate using the surface-treated metal material, and a composite laminate.
  • the present invention relates to a method for producing the same, a metal-non-metal joint using the composite laminate, and a method for producing the same.
  • Patent Document 1 a method of forming a film on the surface of an aluminum material and then contacting it with an etching solution to form a porous etching layer on the surface of the material is known (Patent Document 1). Further, a method of forming an adhesive layer containing a modified polypropylene resin having a polar group introduced therein is also known on a base treatment film provided on the surface of a base material made of an aluminum alloy (Patent Document 2). Further, the aluminum material is immersed in an electrolytic bath of phosphoric acid or sodium hydroxide, and by direct current electrolysis, an anodic oxide film having holes having at least 85% of the holes opened on the surface having a diameter of 25 to 90 nm is formed. A method (Patent Document 3) is known in which a molten synthetic resin is injection-molded on the surface on which the anodized film is formed to improve the bonding strength by an anchor effect.
  • Patent Document 4 a method of forming an uneven thin layer of a metal oxide or a metal phosphor oxide on a fine uneven surface formed by etching the surface of an aluminum material has also been proposed.
  • a treatment method for attaching a functional group has been proposed. For example, surface reactivity obtained by immersing a solid such as a metal material or ceramic material in a solution containing a water-soluble alkoxysilane-containing triazinedithiol metal salt and adhering the water-soluble alkoxysilane-containing triazinedithiol metal salt to the solid surface. It has been proposed to use a solid (metal material or the like) (Patent Document 5).
  • Patent Document 6 a method has been proposed in which an alkoxysilane-containing triazine thiol derivative is used as a silane coupling agent for coating after roughening the surface of an aluminum material (Patent Document 6), and a method using epoxysilane or aminosilanemethacryloylsilane. Has also been proposed (Patent Documents 7 and 8).
  • SAM self-assembled monolayer: self-assembled monolayer or self-assembled monolayer
  • SAM consists of three parts: a reactive functional group that chemically adsorbs to the surface of a material such as a metal material, a spacer chain that can bring about a regular structure in a two-dimensional direction, and a functional functional group that makes the surface of the material functional.
  • the silanol group (-SiOH) which is a reactive functional group, causes a dehydration condensation reaction with the OH group (-Al-OH) of the oxide film existing on the surface of the aluminum material, and SAM is generated. It is formed. At this time, silanol groups are also bonded to each other.
  • the bonding strength between the surface-treated metal material and the material to be bonded remains at a predetermined level, further improving the bonding strength and durability.
  • the present invention has been made in view of such a technical background, and is a surface-treated metal material capable of firmly joining a surface-treated metal material that has been surface-modified by SAM and a material to be joined, and related techniques thereof. Is to provide.
  • the related technology includes a surface treatment method for a metal material, which is a method for obtaining the surface-treated metal material, a composite laminate using the surface-treated metal material and a method for producing the same, and a metal using the composite laminate. It means a non-metal joint and a method for producing the same.
  • the present inventor has completed the present invention by finding that the limit of the bonding strength between the surface-treated metal material surface-modified by SAM and the material to be bonded is based on the structure of SAM.
  • the present invention provides the following means for achieving the above object.
  • bonding means connecting objects to each other, and adhesion is a subordinate concept thereof, and organic materials such as tapes and adhesives (thermosetting resins, thermoplastic resins, etc.) are used.
  • ) Means that the two adherends (those to be bonded) are put into a bonded state.
  • a surface-treated metal material containing a group-containing layer is
  • the silane coupling agent contains at least one functional group selected from the group consisting of an amino group, an epoxy group, a (meth) acryloyl group, a styryl group, an isocyanato group, and a mercapto group.
  • the thiol compound is a bifunctional or higher functional thiol compound.
  • the metal material is pretreated aluminum, and the pretreatment includes etching treatment, boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment and sanding treatment.
  • the surface-treated metal material according to any one of [1] to [6], which is at least one selected from the group consisting of.
  • the primer layer is a cured product of a curable resin having a group that reacts with a functional group contained in the functional group-containing layer.
  • the primer layer comprises a polyaddition reaction product or a radical polymerization reaction product of a monomer composition forming a thermoplastic resin having a group that reacts with a functional group contained in the functional group-containing layer [9]. ]
  • the material to be joined, which is a non-metal is preferably a resin.
  • At least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound and an amino compound is selected from the silane.
  • a method for producing a surface-treated metal material which comprises reacting with a functional group contained in a coupling agent to form a functional group-containing layer having a functional group derived from the compound on the surface.
  • the silane coupling agent contains one or more functional groups selected from the group consisting of an amino group, an epoxy group, a (meth) acryloyl group, a styryl group, an isocyanato group, and a mercapto group.
  • the method for producing a surface-treated metal material according to the above. [17] The method for producing a surface-treated metal material according to [15] or [16], wherein the isocyanate compound is at least one of an isocyanate compound having a (meth) acryloyl group and a bifunctional or higher functional isocyanate compound.
  • the metal material is pretreated aluminum, and the pretreatment is at least one of boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment, and sanding treatment.
  • a primer layer made of a thermoplastic resin is formed by performing a polyaddition reaction or a radical polymerization reaction on the surface of the functional group-containing layer of the surface-treated metal material according to any one of [1] to [8].
  • a method for producing a composite laminate is performed by performing a polyaddition reaction or a radical polymerization reaction on the surface of the functional group-containing layer of the surface-treated metal material according to any one of [1] to [8].
  • An adhesive layer is formed on the surface of the functional group-containing layer of the surface-treated metal material according to any one of [1] to [8], and injection molding or compression molding is performed on the adhesive layer.
  • a method for manufacturing a metal-non-metal bonded body, in which a metal object to be bonded is joined and integrated.
  • the surface-treated metal material surface-modified by SAM and the material to be bonded can be firmly bonded.
  • the surface-treated metal material 3 of the present invention has a metal material 1 and a surface-treated layer 2.
  • the surface treatment layer 2 is at least one selected from the group consisting of a silane coupling agent treatment layer 21 obtained by subjecting the metal material 1 to a silane coupling agent treatment, and an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound.
  • a functional group-containing layer 22 having a functional group derived from the compound of.
  • the functional group-containing layer 22 is formed by reacting at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound with a functional group derived from the silane coupling agent. Since there are many types of silane coupling agents, a wide variety of compounds constituting the functional group-containing layer, and it is not possible to comprehensively express a specific embodiment based on the combination thereof, the surface-treated metal of the present invention It can be said that it is impossible or impractical to directly specify the material 3 by its structure or characteristics.
  • the type of metal constituting the metal material is not particularly limited.
  • the metal constituting the metal material include iron, aluminum, magnesium, copper, stainless steel and the like.
  • aluminum is particularly preferably used from the viewpoint of light weight and ease of processing.
  • the term "aluminum” is used to include aluminum and its alloys.
  • iron, titanium, magnesium and copper shall also be used in the sense of including these simple substances and their alloys.
  • the metal material is pretreated before being treated with the silane coupling agent.
  • the pretreatment include cleaning with a solvent, degreasing treatment, blasting treatment, polishing treatment, etching treatment, chemical conversion treatment and the like.
  • a pretreatment that generates a hydroxyl group, which is a functional group that reacts with the silane coupling agent, on the surface of the metal material is preferable.
  • the pretreatment applied to the metal material may be only one type or two or more types. As a specific method of these pretreatments, a known method can be used.
  • the pretreatment By the pretreatment, contaminants on the surface of the metal material can be removed, the surface of the metal material can be roughened, and fine irregularities 4 for the purpose of anchoring effect can be formed on the surface of the metal material. Due to the anchor effect, the adhesiveness with the primer layer 6 described later can be improved.
  • the pretreatment can also contribute to improving the adhesiveness with the material to be joined.
  • the pretreatment is preferably at least one selected from the group consisting of etching treatment, boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment and sanding treatment.
  • etching process for example, a known etching process such as a chemical etching process or an electrochemical etching process can be applied.
  • a known etching process such as a chemical etching process or an electrochemical etching process can be applied.
  • fine irregularities can be formed on the surface of the aluminum material, which can contribute to the improvement of the adhesiveness with the material to be joined.
  • the chemical etching treatment is not particularly limited, and examples thereof include a caustic soda method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method.
  • the electrochemical etching treatment is not particularly limited, and examples thereof include an electrolytic etching method.
  • the etching treatment is preferably performed by the caustic soda method, and more preferably the etching treatment is performed by the caustic soda method using an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the metal material is put into a 3% by mass to 20% by mass sodium hydroxide aqueous solution or a 3% by mass to 20% by mass potassium hydroxide aqueous solution at a temperature of 20 ° C. to 70 ° C. for 1 minute. After immersing for about 15 minutes, it is preferable to immerse in a 5% by mass to 20% by mass aqueous nitrate solution to neutralize, and then wash and dry.
  • a chelating agent, an oxidizing agent, a phosphate or the like can be used as an additive.
  • boehmite treatment a known boehmite treatment or the like can be used. Specifically, for example, it is a process of subjecting an aluminum material to hot water treatment to form a boehmite film on the surface.
  • the boehmite is an acicular crystal, and as the treatment time becomes longer, the crystal grows and the shape becomes complicated. Since fine irregularities are formed on the surface of the boehmite film, it can contribute to the improvement of the adhesiveness with the material to be bonded. Distilled water is used for the boehmite treatment, but ammonia, triethanolamine, or the like may be added as a reaction accelerator.
  • distilled water to which 0.1% by mass to 5.0% by mass of triethanolamine is added is made into hot water at 90 ° C. to 100 ° C., and a metal material is immersed in the hot water for 3 seconds to 5 minutes to beemite. It is better to process.
  • the metal material after the boehmite treatment may be subjected to the next silane coupling agent treatment step as it is, but after degreasing or etching treatment by the caustic soda method, the silane coupling agent treatment step May be offered to.
  • the zirconium treatment a known zirconium treatment or the like can be used.
  • a zirconium salt film is formed on the surface of a metal material using a zirconium compound such as zirconium phosphate or a zirconium salt. Since fine irregularities are formed on the surface of this film, it can contribute to the improvement of the adhesiveness with the material to be joined.
  • the zirconium treatment for example, the chemical agents "Palcoat 3762" and "Palcoat 3796" manufactured by Nihon Parkerizing Co., Ltd. are heated to 45 ° C. to 70 ° C., and 0.5 metal material is added to the liquid. Examples thereof include a method of immersing for 1 to 3 minutes to perform zirconium treatment. When this zirconium treatment is performed, it is desirable to first perform the etching treatment by the caustic soda method and then perform the zirconium treatment.
  • the surface treatment layer 2 is at least one selected from the group consisting of a silane coupling agent treatment layer 21 obtained by subjecting the metal material 1 to a silane coupling agent treatment, an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound. It contains a functional group-containing layer 22 having a functional group derived from the compound.
  • the functional group-containing layer 22 is formed by reacting at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound with a functional group derived from the silane coupling agent.
  • the silane coupling agent-treated layer is a layer formed by subjecting a metal material to a silane coupling agent treatment, and is composed of a self-assembled monolayer (SAM) having a two-dimensional structure.
  • SAM self-assembled monolayer
  • the silane coupling agent is a functional group derived from at least one compound selected from the group consisting of the functional group (isocyanate compound, thiol compound, epoxy compound, and amino compound) contained in the functional group-containing layer 22. ), It is preferable to have a functional group that reacts with.
  • silane coupling agent a known silane coupling agent or the like used for surface treatment of glass fibers or the like can be used.
  • Specific functional groups of the silane coupling agent include an isocyanato group, a mercapto group, an epoxy group, an amino group, a glycidyl group, a (meth) acryloyl group, and a styryl group, in addition to the silanol group of the silane coupling agent. It is preferable that it is one or more functional groups selected from the group consisting of. Among them, one or more functional groups selected from the group consisting of an amino group, a glycidyl group, and a (meth) acryloyl group are more preferable. These functional groups are appropriately selected according to the functional groups of the compound contained in the functional group-containing layer.
  • silane coupling agent examples include 3-isocyanatopropyltriethoxysilane having an isocyanato group, 3-mercaptopropylmethyldimethoxysilane having a mercapto group, and 2- (3,4-epoxycyclohexyl) ethyltri having an epoxy group.
  • TES 6- (triethoxysilylpropylamino) -1,3,5-triazine-2,4-dithiolmonosodium salt
  • the method for forming the silane coupling agent-treated layer with the silane coupling agent is not particularly limited, and examples thereof include a spray coating method and a dipping method.
  • the spray coating method the silane coupling agent itself or the silane coupling agent diluted in an organic solvent is sprayed on the surface of the metal material, and the drying treatment is performed at room temperature to 100 ° C. for 1 minute to 5 hours. After the drying treatment, a strong chemical bond is formed, and a functional group chemically bonded to the surface of the metal material can be introduced.
  • a low-concentration aqueous solution of the silane coupling agent or a low-concentration organic solvent solution of the silane coupling agent is brought into contact with the surface of the metal material, so that the hydroxyl groups and the like existing on the surface of the metal and the silane coupling agent are separated.
  • the reaction produces silanol groups, and the oligomerized silanol groups are bonded to the surface of the aluminum material.
  • a diluted solution obtained by diluting a silane coupling agent with an organic solvent to a concentration of about 0.5% by mass to 50% by mass is heated to room temperature to 100 ° C. and contained in this diluted solution.
  • a functional group chemically bonded to the surface of the metal material can be introduced.
  • the functional group-containing layer is a three-dimensional extension of a silane coupling agent-treated layer made of a self-assembled monolayer (SAM) having a two-dimensional structure.
  • SAM self-assembled monolayer
  • at least a part of the functional groups on the surface of the silane coupling agent-treated layer spread in two dimensions is at least one compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds. It can be formed by reacting.
  • At least one compound selected from the group consisting of the isocyanate compound, the thiol compound, the epoxy compound, and the amino compound is a functional group capable of reacting with a functional group on the surface of the silane coupling agent layer, and an organic compound constituting a primer layer described later.
  • a compound having both a functional group possessed by the material and a functional group capable of reacting with the material is preferable.
  • a metal material having only a silane coupling agent-treated layer having a two-dimensional structure there is a limit to the strength of the chemical bond with the organic material (primer, resin, adhesive, etc.), and a stronger chemical bond can be obtained.
  • the surface of the metal material has a functional group-containing structure in which chemically bondable functional groups are extended in a three-dimensional direction, the metal material and the organic material (primer, resin, adhesive) Etc.), the bond by chemical bond can be strengthened, and the durability over a long period of time can be improved.
  • an isocyanate compound having an isocyanato group, an epoxy compound having an epoxy group, or the like can be reacted with the amino group to form a functional group-containing layer.
  • 2-isocyanatoethyl methacrylate for example, "Karens MOI (registered trademark)" manufactured by Showa Denko Co., Ltd.
  • glycidyl methacrylate which is an isocyanate compound having a radical reactive group
  • the extreme end is a radically polymerizable (meth) acryloyl group.
  • a functional group-containing layer can be formed by reacting a carboxy group with a compound having another carboxy group or another functional group with the epoxy group.
  • (meth) acrylic acid is reacted with the epoxy group of the silane coupling agent, the terminal end extending in the three-dimensional direction also becomes a radically polymerizable (meth) acryloyl group.
  • the functional group of the silane coupling agent is a (meth) acryloyl group
  • a thiol compound having a mercapto group or the like can be reacted with the (meth) acryloyl group to form a functional group-containing layer.
  • the bifunctional thiol compound 1,4-bis (3-mercaptobutylyloxy) butane for example, "Karens MT (registered trademark) BD1” manufactured by Showa Denko Co., Ltd.
  • the trifunctional thiol compound pentaerythritol tetrakis (3-)
  • mercaptobutyrate for example, "Carens MT (registered trademark) PE1” manufactured by Showa Denko Co., Ltd.
  • a (meth) acryloyl group for example, "Carens MT (registered trademark) PE1” manufactured by Showa Denko Co., Ltd.
  • the terminal end extended in the three-dimensional direction is an epoxy group or a (meth) acryloyl group. It becomes a mercapto group capable of an addition reaction.
  • the (meth) acryloyl group can be reacted with the mercapto group to form a functional group-containing layer.
  • the terminal end extending in the three-dimensional direction can be an isocyanato group
  • the (meth) acryloyl group of (meth) acrylamide can be used as a mercapto group. If the reaction is carried out, the terminal end extending in the three-dimensional direction can be used as an amino group.
  • the terminal end extending in the three-dimensional direction can be used as the epoxy group.
  • the terminal end extending in the three-dimensional direction in this way can be used as various functional groups.
  • a diisocyanate compound is reacted, it can be expected that only one isocyanato group will react and the terminal end will be an isocyanato group, and if a diamine is reacted, only one amino group will react and the most. It can also be expected that the terminal will be an amino group.
  • Examples of the method for forming the functional group-containing layer include a dipping method and a spray coating method.
  • a low-concentration organic solvent solution of at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound in which a catalyst such as a tertiary amine coexists is prepared at 25 ° C. to 120 ° C.
  • the functional group at the end of the silane coupling agent treatment of the first layer is reacted as the second layer to form a functional group structure extending in the three-dimensional direction. Can be done.
  • a catalyst such as a tertiary amine coexists on the surface of a metal material treated with a silane coupling agent.
  • the content of at least one compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds in the organic solvent solution is preferably 90 to 100% by mass in the components other than the organic solvent. , 98% by mass or more is more preferable.
  • the isocyanate compound As the isocyanate compound, a known isocyanate compound or the like can be used.
  • the isocyanate compound is not particularly limited, but for example, polyfunctional isocyanates such as diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and isophorone diisocyanate (IPDI) are used.
  • MDI diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • IPDI isophorone diisocyanate
  • 2-isocyanatoethyl methacrylate for example, "Karens MOI” (registered trademark) manufactured by Showa Denko Co., Ltd.
  • 2-isocyanatoethyl acrylate for example, “Karens” manufactured by Showa Denko Co., Ltd.
  • AOI registered trademark
  • 1,1- (bisacryloyloxyethyl) ethyl isocyanate for example
  • Karens BEI registered trademark
  • the method for treating with the isocyanate compound is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, for example, a diluted solution obtained by diluting an isocyanate compound with an organic solvent to a concentration of about 5% by mass to 50% by mass is heated to room temperature to 100 ° C., and an aluminum material is added to the diluted solution. Examples thereof include a method in which the aluminum material is taken out after immersion for 1 minute to 5 days and then dried at room temperature to 100 ° C. for 1 minute to 5 hours.
  • thiol compound As the thiol compound, a known thiol compound or the like can be used. Polyfunctional thiol compounds and compounds having an alkenyl group in addition to the mercapto group are preferable.
  • the thiol compound is not particularly limited, but for example, pentaerythritol tetrakis (3-mercaptopropionate) (for example, "QX40" manufactured by Mitsubishi Chemical Corporation and "QE-340M” manufactured by Toray Fine Chemicals Co., Ltd.
  • Ether-based first-class thiols for example,“ Cup Cure 3-800 ”manufactured by Cognis
  • 1,4-bis (3-mercaptobutyryloxy) butane for example,“ Karens MT (registered) manufactured by Showa Denko KK) BD1 "
  • pentaerythritol tetrakis (3-mercaptobutyrate) for example, Showa Denko KK” Karenz MT (registered trademark) PE1 "
  • pentaerythritol tetrakis (3-mercaptobutyrate) is excellent in stability in epoxy resin.
  • the method for treating with the thiol compound is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, for example, a diluted solution obtained by diluting a thiol compound with an organic solvent to a concentration of about 5% by mass to 50% by mass is heated to room temperature to 100 ° C., and an aluminum material is added to the diluted solution. Examples thereof include a method in which the aluminum material is taken out after immersion for 1 minute to 5 days and then dried at room temperature to 100 ° C. for 1 minute to 5 hours. Amines may be contained as a catalyst in the diluted solution of the thiol compound.
  • epoxy compound As the epoxy compound, a known epoxy compound or the like can be used. A polyvalent epoxy compound or a compound having an alkenyl group other than the epoxy group is preferable.
  • the epoxy compound is not particularly limited, but is, for example, glycidyl (meth) acrylate, allyl glycidyl ether, 1,6-hexanediol diglycidyl ether, and an epoxy resin having two or more epoxy groups in the molecule. And so on.
  • amino compound As the amino compound, a known amino compound or the like can be used. Polyfunctional amino compounds and compounds having an alkenyl group in addition to the amino group (including amide) are preferable.
  • the amino compound is not particularly limited, but for example, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, 2,5-dimethyl-.
  • the composite laminate 5 of the present invention has a primer layer 6 on the surface of the surface-treated metal material 3 on the functional group-containing layer 22 side.
  • the primer layer may be a single layer or a plurality of layers.
  • a curable resin or a thermoplastic resin is used to form the primer layer.
  • the curable resin referred to in the present invention broadly means a resin that is cured by forming a three-dimensional network having a crosslinked structure, and includes not only a thermosetting type but also a room temperature curing type and a photocuring type. ..
  • the photocurable type can be cured in a short time by irradiation with visible light or ultraviolet rays.
  • the photo-curing type may be used in combination with a heat-curing type and / or a room temperature curing type.
  • Examples of the photocurable type include vinyl ester resins such as “Lipoxy (registered trademark) LC-760" and “Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
  • the functional group-containing layer of the surface-treated metal material can be formed by appropriately selecting an optimum compound according to the type of the primer layer.
  • the primer layer is a layer for improving the bondability by interposing between the surface-treated metal material and the surface-treated metal material when the surface-treated metal material is bonded and integrated with the non-metal material to be bonded. Is.
  • the primer layer also has the effect of preventing the surface of the surface-treated metal material from being deteriorated by dirt or oxidation, and maintaining a stable adhesive force for a long period of time.
  • the primer layer is formed by applying a primer containing a curable resin or a primer-containing treatment liquid containing the primer to at least a part of the surface of the surface-treated metal material on the side where the functional group-containing layer is formed. can do.
  • the primer layer is formed by applying a primer containing a thermoplastic resin or a primer-containing treatment liquid containing the primer to at least a part of the surface of the surface-treated metal material on the side where the functional group-containing layer is formed. You can also do it.
  • the primer layer is preferably a primer layer that can be adhered to a non-metal object to be bonded.
  • the "primer containing a curable resin or a primer-containing treatment liquid containing the primer” may be composed of only a curable resin and may not contain other components such as a solvent, or may be a curable resin. And other components such as a solvent may be contained.
  • the "primer containing a thermoplastic resin or a primer-containing treatment liquid containing the primer” may be composed of only a thermoplastic resin and may not contain other components such as a solvent, or may be reacted as an in-situ polymerization type. It may be configured to contain a component that becomes a thermoplastic resin and other components such as a solvent. This will be described in detail below.
  • the curable resin constituting the "primer containing a curable resin” is not particularly limited, but is preferably a curable resin capable of normal temperature curing, thermosetting or photocuring, and is urethane resin-based or epoxy. It is more preferable to use at least one curable resin selected from the group consisting of resin-based, vinyl ester resin-based and unsaturated polyester resin-based.
  • the urethane resin is a polymer multimer containing a urethane bond in its chemical structure, and is usually a resin obtained by reacting an isocyanato group with a hydroxyl group. Among these, a resin having a crosslinked structure after curing is preferable.
  • the urethane resin may be a one-component type or a two-component type.
  • the one-component type is not particularly limited, and is, for example, an oil-modified type (oxidative polymerization of unsaturated fatty acid groups), a moisture-curable type (reaction of water in air and an isocyanato group), and a block type (block).
  • examples include a lacquer type (drying due to volatilization of a solvent), a lacquer type (drying due to volatilization of a solvent), and the like.
  • the primer made of a moisture-curable one-component urethane resin-based thermosetting resin can be easily used because it is only necessary to apply the one-component type.
  • Examples of commercially available products of such a moisture-curable one-component urethane resin-based thermosetting resin include "UM-50P" manufactured by Showa Denko KK.
  • the two-component type has a crosslinked structure of the cured product.
  • a catalyst-curable type reaction between an isocyanato group and water in the air and an amine of a catalyst
  • a polyol-curable type reaction between an isocyanato group and a hydroxyl group
  • the polyol component of the polyol curing type as the two-component type is not particularly limited, and examples thereof include polyester polyol, polyether polyol, and phenol resin.
  • the polyol-curable isocyanate component (isocyanate compound) as the two-component type is not particularly limited, and examples thereof include aliphatic isocyanates, aromatic isocyanates, and alicyclic isocyanates.
  • the aliphatic isocyanate is not particularly limited, and examples thereof include hexamethylene diisocyanate, tetramethylene diisocyanate, and dimerate diisocyanate.
  • the aromatic isocyanate is not particularly limited, but is, for example, 2,4- or 2,6-tolylene diisocyanate (TDI) or a mixture thereof, p-phenylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate. (MDI) and a polymeric MDI which is a mixture thereof can be mentioned.
  • the compounding ratio is preferably in the range of 0.7 to 1.5 in terms of ⁇ OH / ⁇ NCO equivalent ratio, and the cured product has a crosslinked structure.
  • the urethanization catalyst used in the catalyst curing type as the two-component type is not particularly limited, and examples thereof include an amine-based catalyst and an organic tin-based catalyst.
  • the amine-based catalyst is not particularly limited, but for example, triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyl etheramine, N, Examples thereof include N, N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholine, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, triethylamine and the like.
  • the organic tin catalyst is not particularly limited, and examples thereof include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin thiocarboxylate, and dibutyltin dimalate. Generally, it is preferable to add 0.01 to 10 parts by mass of the urethanization catalyst with respect to 100 parts by mass of the polyol component.
  • the epoxy resin is not particularly limited, but for example, it is preferable to use a thermosetting epoxy resin having at least two epoxy groups in one molecule.
  • the thermosetting epoxy resin having at least two epoxy groups in one molecule is not particularly limited, but for example, an ether type bisphenol type epoxy resin, a novolac type epoxy resin, and a polyphenol type epoxy.
  • Known thermocurable epoxy resins such as resins, aliphatic epoxy resins, ester-based aromatic epoxy resins, cyclic aliphatic epoxy resins, and ether ester epoxy resins are mentioned, and bisphenol A type epoxy resins are particularly preferable. ..
  • As the epoxy resin one type may be used alone, or two or more types may be used in combination.
  • Examples of commercially available bisphenol A type epoxy resins include “jER (registered trademark) 828” and “jER (registered trademark) 1001" manufactured by Mitsubishi Chemical Co., Ltd., and examples of commercially available novolak type epoxy resins include, for example. Examples include “DEN438” manufactured by Dow Chemical Company.
  • the curing agent for the epoxy resin is not particularly limited, but for example, known curing agents such as aliphatic amines, aromatic amines, acid anhydrides, phenol resins, thiols, imidazoles, and cationic catalysts. Can be mentioned. Further, when these exemplified curing agents are used in combination with long-chain aliphatic amines and / and thiols, an effect of high elongation rate and excellent impact resistance can be obtained.
  • Specific examples of the thiol compounds include the same thiols as those exemplified in the above-mentioned thiol compound treatment.
  • the curing agent for the epoxy resin it is more preferable to use pentaerythritol tetrakis (3-mercaptobutyrate) which is a thiol compound (for example, "Carens MT (registered trademark) PE1" manufactured by Showa Denko KK).
  • pentaerythritol tetrakis 3-mercaptobutyrate
  • thiol compound for example, "Carens MT (registered trademark) PE1” manufactured by Showa Denko KK.
  • Resin articles of various resin types can be bonded to (the primer layer) of the aluminum material on which the primer layer made of such an epoxy resin-based thermosetting resin is formed (the resin type of the resin article to be bonded can be bonded. It doesn't matter).
  • vinyl ester resin-based thermosetting resin examples include those obtained by dissolving a vinyl ester oligomer in a polymerizable monomer (for example, a styrene monomer). Such vinyl ester resins are also called epoxy acrylate resins and are described in "Polyester Resin Handbook” (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary” (Japan Society of Color Material, published in 1993), etc. You can also use the ones that have been made.
  • the commercially available vinyl ester resin is not particularly limited, but for example, "Lipoxy (registered trademark) R-802”, “Lipoxy (registered trademark) R-804", and “Lipoxy” manufactured by Showa Denko KK. (Registered trademark) R-806 ”and the like.
  • urethane acrylate resin and urethane methacrylate resin may be used.
  • a urethane (meth) acrylate resin is not particularly limited, but for example, after reacting polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acrylic compound and Examples thereof include radically polymerizable unsaturated group-containing oligomers that can be obtained by reacting a hydroxyl group-containing allyl ether compound as needed. Examples of commercially available products of such radically polymerizable unsaturated group-containing oligomers include. , Showa Denko Co., Ltd. "Lipoxy (registered trademark) R-6545" and the like.
  • Unsaturated polyester resin-based thermosetting resin As the unsaturated polyester resin, a condensation product (unsaturated polyester) obtained by an esterification reaction between a dihydric alcohol and an unsaturated dibasic acid (and a saturated dibasic acid may be used if necessary) is polymerizable. Examples thereof include those dissolved in a monomer (for example, styrene monomer). As the unsaturated polyester resin, those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), “Paint Glossary” (Japan Society of Color Material, published in 1993) and the like can also be used. Examples of commercially available products of the unsaturated polyester resin include “Rigolac” manufactured by Showa Denko KK.
  • Both the vinyl ester resin and the unsaturated polyester resin can be cured by radical polymerization by heating by adding an organic peroxide initiator.
  • the organic peroxide is not particularly limited, and is classified into, for example, ketone peroxide, peroxyketal, hydroperoxide, diallyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate. If it is combined with a cobalt metal salt or the like, it can be cured at room temperature.
  • the cobalt metal salt is not particularly limited, and examples thereof include cobalt naphthenate, cobalt octylate, and cobalt hydroxide. Among them, cobalt naphthenate and / and cobalt octylate are preferably used. ..
  • a photocurable type may be used as the curable resin, and in this case, irradiation with visible light can be cured in a shorter time. Further, as the curable resin, a photocurable type can be used in combination with a thermosetting type and a room temperature curing type. Examples of commercially available products of the photocurable resin (photocurable type) include "Lipoxy (registered trademark) LC-760" and “Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
  • the thermoplastic resin constituting the "primer containing a thermoplastic resin” is preferably a thermoplastic resin produced by reacting a monomer on a functional group-containing layer. Rather than using a thermoplastic resin that has already been polymerized, the monomer composition for polymerization is polymerized by subjecting it to a polyaddition reaction or a radical polymerization reaction on the functional group-containing layer to polymerize the linear polymer structure.
  • a primer layer composed of a linear polymer is formed, and can be chemically bonded to a functional group on the functional group-containing layer.
  • the linear polymer means a polymer that does not contain a crosslinked structure in the polymer molecule and is one-dimensional linear.
  • Linear polymers have thermoplasticity, unlike thermosetting resins that form a three-dimensional network with a crosslinked structure.
  • a heavy addition type thermoplastic resin the one to be subjected to a radical polymerization reaction is referred to as a radical polymerization type thermoplastic resin.
  • the monomer composition for producing a double-addition type thermoplastic resin is a composition containing a combination of double-addition reactive compounds that produce a linear polymer having a linear polymer structure by double addition as a constituent component.
  • the combination is preferably at least one of the following combinations (1) to (4).
  • Bifunctional isocyanate compound and compound having bifunctional hydroxyl group (2) Bifunctional epoxy compound and compound having bifunctional hydroxyl group (3) Bifunctional epoxy compound and bifunctional carboxy compound (4) Bifunctional epoxy compound Bifunctional thiol compound
  • a compound having a bifunctional isocyanate compound and a bifunctional hydroxyl group By combining a bifunctional isocyanate compound and a compound having a bifunctional hydroxyl group among the raw materials described in the urethane resin, a linear polymer having a linear polymer structure can be produced. Specifically, for example, hexamethylene diisocyanate, tetramethylene diisocyanate, diimmerate diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI) or a mixture thereof, p-phenylenediocyanate, xylylene diisocyanate, diphenylmethane diisocyanate.
  • TDI 2,4- or 2,6-tolylene diisocyanate
  • Examples thereof include a combination of a diisocyanate compound such as (MDI) and an aliphatic glycol such as ethylene glycol, propylene glycol and diethylene glycol.
  • the compounding ratio is preferably in the range of 0.7 to 1.5 in terms of -OH / -NCO equivalent ratio.
  • the urethanization catalyst used in the catalyst curing type as the two-component type is not particularly limited, and examples thereof include an amine-based catalyst and an organic tin-based catalyst.
  • the amine-based catalyst is not particularly limited, but for example, triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyl etheramine, N, Examples thereof include N, N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholine, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, triethylamine and the like.
  • the organic tin catalyst is not particularly limited, and examples thereof include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin thiocarboxylate, and dibutyltin dimalate. Generally, it is preferable to add 0.01 to 10 parts by mass of the urethanization catalyst with respect to 100 parts by mass of the polyol component.
  • a compound having a bifunctional epoxy compound and a bifunctional hydroxyl group is typical, but known epoxy resins other than bisphenol A can be used. Specific examples thereof include aromatic epoxy resins such as bisphenol F, bisphenol S, biphenol type epoxy resins and naphthalene type bifunctional epoxy resins, and aliphatic epoxy resins such as 1,6-hexanediol diglycidyl ether. Examples of the compound having a bifunctional hydroxyl group other than bisphenol A include phenols such as bisphenol F, bisphenol S and biphenol, and aliphatic glycols such as ethylene glycol, propylene glycol and diethylene glycol.
  • thermoplastic epoxy resins are resins also called in-situ polymerization type phenoxy resins or thermoplastic epoxy resins. Before curing, it is handled in the same way as a thermosetting resin, and after heat curing, it has a structure of a thermoplastic resin.
  • the catalyst is not particularly limited, and examples thereof include amine-based catalysts and phosphorus-based catalysts. Examples thereof include triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, triphenylphosphine and the like.
  • the bifunctional epoxy compound can be used.
  • the bifunctional carboxy compound may be a compound having two carboxy groups in the molecule, for example, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, succinic acid, succinic acid, malonic acid, glutaric acid, adipic acid, and the like. Examples thereof include aliphatic dicarboxylic acids such as succinic acid, malonic acid, and fumaric acid.
  • aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid
  • succinic acid, succinic acid, malonic acid, glutaric acid, adipic acid, and the like examples thereof include aliphatic dicarboxylic acids such as succinic acid, malonic acid, and fumaric acid.
  • the catalyst is not particularly limited, and examples thereof include amine-based catalysts and phosphorus-based catalysts. Examples thereof include triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, triphenylphosphine and the like.
  • the bifunctional epoxy compound can be used.
  • the bifunctional thiol compound may be a compound having two mercapto groups in the molecule.
  • a bifunctional secondary thiol compound Karenz MT (registered trademark) BD1: 1,4-bis (3-) manufactured by Showa Denko Co., Ltd. Mercaptobutyryloxy) butane and the like can be mentioned.
  • the catalyst is not particularly limited, and examples thereof include amine-based catalysts and phosphorus-based catalysts. Examples thereof include triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, triphenylphosphine and the like.
  • the radical polymerization type thermoplastic resin preferably comprises a resin composition containing a linear polymer having a linear polymer structure, which is a radical homopolymer or a radical copolymer of a monofunctional monomer having an unsaturated group.
  • the monomer composition for producing a radical polymerization type thermoplastic resin is a composition containing at least one monofunctional monomer having an ethylenically unsaturated group.
  • Examples of the monofunctional monomer having an ethylenically unsaturated group include styrene monomer, ⁇ -, o-, m-, p-alkyl, nitro, cyano, amide, ester derivative, chlorostyrene, vinyltoluene, and divinyl of styrene.
  • Sterylous monomers such as benzene; Dienes such as butadiene, 2,3-dimethylbutadiene, isoprene, chloroprene; ethyl (meth) acrylate, methyl (meth) acrylate, -n-propyl (meth) acrylate, (meth) ) Acrylic acid-i-propyl, (meth) hexyl acrylate, (meth) 2-ethylhexyl acrylate, (meth) lauryl acrylate, dodecyl (meth) acrylate, cyclopentyl (meth) acrylate, (meth) acrylate Examples thereof include (meth) acrylic acid esters such as cyclohexyl, tetrahydrofuryl (meth) acrylate, acetoacetoxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and phenoxyethyl (
  • the catalyst for the radical polymerization reaction of the radically polymerizable compound for example, known organic peroxides, photoinitiators and the like are preferably used.
  • a room temperature radical polymerization initiator in which a cobalt metal salt or amines are combined with an organic peroxide may be used.
  • organic peroxides include those classified into ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates.
  • the photoinitiator it is desirable to use one that can initiate polymerization with visible light from ultraviolet rays.
  • the radical polymerization reaction is preferably carried out by heating at room temperature to 200 ° C.
  • the polymerization reaction is carried out by irradiating with ultraviolet rays or visible light.
  • a thermoplastic resin layer made of the radically polymerizable compound can be formed by coating the resin composition and then heating it to carry out a radical polymerization reaction.
  • the metal-non-metal joint 7 of the present invention is formed on the surface of the surface-treated metal material 3 on the functional group-containing layer 22 side or the surface of the composite laminate 5 on the primer layer 6 side.
  • the non-metal material 8 to be joined is joined and integrated.
  • the method of joining and integrating may be a method of joining and integrating the non-metal material to be joined with the surface-treated metal material or the composite laminate after molding, or the non-metal material to be joined. At the same time as molding, a method of joining and integrating may be used.
  • joining by welding specifically, ultrasonic welding, vibration welding, and heat welding.
  • Hot air welding, high frequency induction welding, high frequency dielectric welding, and injection welding can be exemplified.
  • the non-metal object to be joined is molded and integrated at the same time, specifically, when the non-metal object to be bonded is a resin, the resin is injection-molded, press-molded, or filament.
  • the surface of the surface-treated metal material on the surface-treated layer side or the primer layer side of the composite laminate A metal-non-metal joint can be obtained by joining and integrating with the surface.
  • injection molding, press molding, filament winding molding, and hand layup molding are preferable.
  • the surface of the primer layer is excellent in adhesiveness to a material to be bonded of various materials (metal material, organic material, etc.), particularly a non-metal material to be bonded (resin material, etc.). ..
  • a metal-non-metal bond in which the metal material and the non-metal object to be bonded are bonded with high strength can be obtained. It can be preferably obtained.
  • the thickness (dry thickness) of the primer layer depends on the material of the material to be joined and the contact area of the joint portion, but is 1 ⁇ m from the viewpoint of obtaining excellent adhesiveness between the primer layer and the material to be joined. It is preferably to 10 mm, more preferably 2 ⁇ m to 8 mm, still more preferably 3 ⁇ m to 5 mm.
  • the thickness of the primer layer (dry thickness) means the total thickness when the primer layers are a plurality of layers.
  • the thickness of the primer layer is preferably 0.1 to 10 mm, more preferably 0.2 to 8 mm, still more preferably. Is 0.5 to 5 mm.
  • a metal-non-metal bonded body bonded to the metal material with higher strength can be obtained by using an adhesive.
  • the adhesive is appropriately selected depending on the type of the material to be bonded, and for example, a known adhesive such as an epoxy resin type, a urethane resin type, or a vinyl ester resin type can be used.
  • a metal-non-metal bonded body due to the difference in thermal expansion coefficient between the metal material and the non-metal bonded material in the process of cooling to room temperature after bonding. Is prone to thermal deformation.
  • the thickness of the adhesive layer is set so that the total thickness of the primer layer and the adhesive layer is 0.5 mm or more, and between the metal material and the material to be bonded.
  • the total thickness is determined in consideration of the temperature change at the time of adhesion (temperature change from the heating temperature of the adhesive holding to room temperature cooling) and physical properties such as the elongation rate of the primer layer and the adhesive.
  • the material to be joined which is a non-metal, is preferably a resin such as a thermoplastic resin or a thermosetting resin (cured product).
  • the resin may be a resin alone, or may be reinforced with glass fibers such as FRP or carbon fibers.
  • the resin to be bonded is metal-non-metal bonded by bonding (adhering) to the metal material as a preformed member via the primer layer of the composite laminate or the functional group-containing layer of the surface-treated metal material. You may form a body.
  • the resin material to be bonded may be formed by polymerizing the monomer on the primer layer or the functional group-containing layer.
  • a metal-non-metal joint may be formed by insert-molding a thermoplastic resin on a surface-treated metal material or a composite laminate.
  • the resin used as the material to be bonded is not particularly limited, and may be a general synthetic resin.
  • resins used for automobile parts such as polycarbonate resin, polyester resin, polybutylene terephthalate resin, and polyetherimide resin can also be mentioned.
  • FRP or thermosetting resin may be used.
  • FRP means a composite material in which fibers such as glass fiber and carbon fiber are put in plastic to improve the strength.
  • FRP may be hand lay-up molded or filament winding molded using the same type of resin and glass fiber, carbon fiber, aramid fiber and the like used for forming the primer layer. Good.
  • a sheet molding compound (SMC) or a bulk molding compound (BMC) may be used.
  • the sheet molding compound (SMC) is a mixture of unsaturated polyester resin and / or vinyl ester resin, polymerizable unsaturated monomer, curing agent, low shrinkage agent, filler, etc., and then further contains a fiber reinforcing material. It is a sheet-shaped molding material obtained by allowing the resin to be formed.
  • the bulk molding compound (BMC) is a bulk molding material. These molding materials are molded into a target molded product by a molding method such as compression molding, transfer molding, injection molding, etc. At this time, a metal material is put together on the primer layer side surface of the composite laminate having a primer layer. They may be integrally molded and both may be joined and integrated.
  • the material to be joined may be in the form of a film instead of the shape of a member.
  • it may be a coating film made of paint or a metal protective film.
  • the coating film means a layer formed by applying a coating material containing a pigment, a resin, an additive, and a solvent.
  • the coating film can be formed by applying the paint and then drying it.
  • the metal protective film plays a role of imparting corrosion resistance to the surface-treated metal material by forming a resin film on the surface of the surface-treated layer of the surface-treated metal material.
  • the metal protective film include an epoxy resin / phenol resin-based resin film and a saturated polyester resin / phenol resin-based resin film as the can inner surface protective film.
  • Example 1 An aluminum plate (A6063) (aluminum article) having a size of 25 mm ⁇ 100 mm and a rectangular shape in a plan view and a thickness of 1.6 mm is immersed in an aqueous solution of sodium hydroxide having a concentration of 5% by mass for 1.5 minutes, and then has a concentration of 5. Neutralization treatment with mass% aqueous nitrate solution, washing with water, drying, chemical conversion treatment, and then boehmite treatment (pretreatment) by boiling the aluminum plate after the chemical conversion treatment in pure water for 10 minutes. Was done. By this boehmite treatment, a pre-treated portion (boehmite film having surface irregularities) was formed on the surface of the aluminum plate.
  • silane coupling agent treatment process 0.5 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Silicone Co., Ltd .; silane coupling agent) is dissolved in 100 g of industrial ethanol in a silane coupling agent solution at 70 ° C. After immersing the aluminum plate after the boehmite treatment for 5 minutes, the aluminum plate was taken out and dried to form a layer with a silane coupling agent.
  • KBM-903 manufactured by Shin-Etsu Silicone Co., Ltd .
  • silane coupling agent silane coupling agent
  • thermosetting resin composition was sprayed onto the functional group-adhering surface (hereinafter referred to as the functional group-containing layer surface) of the aluminum plate after undergoing the functional group-imparting step so that the dry thickness was 15 ⁇ m.
  • the solvent was volatilized by leaving it in the air at room temperature for 1 hour. Then, it was left in a drying oven at 120 ° C. for 30 minutes to cure the vinyl ester resin to obtain an aluminum plate-1 (with a primer) on which a primer layer was formed.
  • Example 2 (Pretreatment process) The same operation as in Example 1 was performed.
  • thermosetting resin composition obtained by mixing 100 g of vinyl ester resin (R-806 manufactured by Showa Denko Co., Ltd.) with 1.0 g of organic peroxide (Perbutyl (registered trademark) O manufactured by Kayaku Akzo Corporation). After applying the functional group-containing layer surface of the aluminum plate after undergoing the functional group imparting step by a spray method so that the drying thickness becomes 20 ⁇ m, the vinyl ester resin is left in a drying furnace at 120 ° C. for 30 minutes. Curing was performed to obtain an aluminum plate-3 (with a primer) on which a primer layer was formed.
  • Example 3> (Pretreatment process) The same operation as in Example 1 was performed.
  • a resin composition obtained by dissolving 100 g of an epoxy resin (jER (registered trademark) 1004 manufactured by Mitsubishi Chemical Corporation): 100 g, bisphenol A: 12.6 g, and triethylamine: 0.45 g in acetone: 209 g was prepared.
  • the solvent is volatilized by applying it to the surface of the functional group-containing layer of the aluminum plate after the functional group-imparting step by a spray method so that the dry thickness becomes 10 ⁇ m, and then leaving it in the air at room temperature for 30 minutes. After that, it was left in a furnace at 150 ° C. for 30 minutes to carry out an addition polymerization reaction and returned to room temperature.
  • An aluminum plate-4 (with a primer) having a primer layer having a thickness of 10 ⁇ m formed on the surface of the functional group-containing layer was obtained.
  • Example 4 (Pretreatment process) The same operation as in Example 1 was performed.
  • silane coupling agent treatment process Next, a silane coupling agent solution prepared by dissolving 0.5 g of 3-glycidoxypropylmethyldiethoxysilane (KBM-403 manufactured by Shinetsu Silicone Co., Ltd .; silane coupling agent) in 100 g of industrial ethanol was added to the boehmite. What was sprayed onto the treated aluminum plate until the surface was uniformly wet was left in a drying furnace at 100 ° C. for 5 minutes to proceed with the reaction to form a layer with a silane coupling agent.
  • KBM-403 3-glycidoxypropylmethyldiethoxysilane
  • Primer layer forming step The same treatment as in the primer layer forming step of Example 2 was carried out to obtain an aluminum plate-6 (with a primer).
  • Example 5> (Pretreatment process) The same operation as in Example 1 was performed.
  • Adhesion durability test Adhesion evaluation
  • the aluminum plates (1 to 9) produced in each of the above Examples and Comparative Examples were subjected to before immersion in 60 ° C. hot water and in 60 ° C. hot water in accordance with the grid test method of JIS K5400-8.5: 1999.
  • a grid test was performed. Specifically, a cut is made in a grid pattern that penetrates the membrane layer (primer layer) on the test piece according to JIS K 5400 8.5.2: 1999 (adhesive grid tape method) and reaches the bare ground.
  • Example 6 An aluminum plate (A6063: 18 mm ⁇ 45 mm) for a tensile test of ISO19095 is degreased with acetone, the surface is roughened with # 100 sandpaper (sanding treatment), and the same operation as in Example 3 (silane cup). A ring agent treatment step, a functional group addition step, and a primer layer formation step) were performed. Next, using the polycarbonate resin "LEXAN 121R-111" (general-purpose, high-fluidity type) manufactured by SABIC Japan LLC, using the injection molding machine of Sumitomo Heavy Industries SE100V, cylinder temperature: 300 ° C, tool temperature: 110 ° C, injection.
  • Example 7 An aluminum plate (A6063: 18 mm ⁇ 45 mm) for a tensile test of ISO19095 was degreased with acetone, the surface was roughened with # 100 sandpaper (sanding treatment), and the same silane coupling agent as in Example 6 was used. A treatment step and a functional group addition step were performed. Next, the bulk molding compound (BMC) (Showa Denko Co., Ltd. "Rigolac (registered trademark) RNC-980) (joining target) was molded with an injection molding machine (FANUC Co., Ltd.” ⁇ -S100iA "; mold temperature 160 ° C.
  • BMC bulk molding compound
  • Example 6 The same operation as in Example 7 was carried out except that the functional group addition step was not performed, to obtain a metal-non-metal bonded body-4.
  • the surface-treated metal material according to the present invention is joined and integrated with other materials (parts, etc.) such as CFRP (carbon fiber reinforced plastic) material, for example, automobile parts (door side panel, roof, braiding, etc.). , A pillar, B pillar, etc.). Further, the surface-treated metal material according to the present invention is, for example, joined and integrated with a polycarbonate molded body and used as, for example, a structure of a smartphone, but is not particularly limited to these exemplified uses.
  • CFRP carbon fiber reinforced plastic

Abstract

A surface treated metal member comprising a metal member and a resin that can be strongly joined, and a related technique are provided. In this surface treated metal member comprising a metal member and a surface treated layer on the surface thereof, the surface treated layer includes a silane coupling agent-treated layer formed by treating the metal member with a silane coupling agent, and a functional group-containing layer is obtained by reacting at least one type of compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds and amino compounds with the functional group of the aforementioned silane coupling agent, and has a functional group derived from the aforementioned compound.

Description

表面処理金属材、複合積層体及び、金属-非金属接合体並びにそれらの製造方法Surface-treated metal materials, composite laminates, metal-non-metal joints, and methods for manufacturing them.
 本発明は、有機材料との接合強度向上を目的とした表面処理を施した表面処理金属材及び前記表面処理金属材を得るための表面処理方法、前記表面処理金属材を用いた複合積層体及びその製造方法、前記複合積層体を用いた金属-非金属接合体及びその製造方法、に関する。 The present invention relates to a surface-treated metal material that has been surface-treated for the purpose of improving the bonding strength with an organic material, a surface treatment method for obtaining the surface-treated metal material, a composite laminate using the surface-treated metal material, and a composite laminate. The present invention relates to a method for producing the same, a metal-non-metal joint using the composite laminate, and a method for producing the same.
 自動車部品やOA機器等の分野において、部品や製品の軽量化が求められている。これらの分野において、部品や製品の軽量化の観点からアルミニウム等の金属材と樹脂材とを接合一体化させた複合材が使用されることが多くなってきている。これら複合材中の金属材としてアルミニウムが用いられる場合には、接合強度を十分に確保するために、アルミニウム材に表面処理が行われている。 In the fields of automobile parts and OA equipment, weight reduction of parts and products is required. In these fields, from the viewpoint of weight reduction of parts and products, composite materials in which a metal material such as aluminum and a resin material are joined and integrated are often used. When aluminum is used as the metal material in these composite materials, the aluminum material is surface-treated in order to secure sufficient joint strength.
 従来、アルミニウム材の表面処理としては、ショットブラスト処理等の物理的な表面処理方法が一般的である。しかし、これらの物理的な表面処理方法は、生産性に劣る上に、薄い形状や複雑な形状の物品には適さないことから、化学的な表面処理方法の検討が進んでいる。 Conventionally, as a surface treatment of an aluminum material, a physical surface treatment method such as shot blasting is generally used. However, since these physical surface treatment methods are inferior in productivity and are not suitable for articles having a thin shape or a complicated shape, studies on chemical surface treatment methods are in progress.
 化学的な表面処理方法として、例えば、アルミニウム材の表面に被膜を形成した後、エッチング溶液と接触させて材料表面に多孔質エッチング層を形成させる方法(特許文献1)が知られている。また、アルミニウム合金からなる基材の表面に設けられた下地処理皮膜の上に、極性基が導入された変性ポリプロピレン樹脂を含有する接着層を形成する方法(特許文献2)も知られている。また、アルミニウム材をリン酸又は水酸化ナトリウムの電解浴に浸漬して、直流電気分解により、表面に開口する孔の少なくとも85%が直径25~90nmである孔を有する陽極酸化皮膜を形成し、この陽極酸化皮膜形成面に溶融合成樹脂を射出成形してアンカー効果により接合強度を向上させる方法(特許文献3)等が知られている。 As a chemical surface treatment method, for example, a method of forming a film on the surface of an aluminum material and then contacting it with an etching solution to form a porous etching layer on the surface of the material is known (Patent Document 1). Further, a method of forming an adhesive layer containing a modified polypropylene resin having a polar group introduced therein is also known on a base treatment film provided on the surface of a base material made of an aluminum alloy (Patent Document 2). Further, the aluminum material is immersed in an electrolytic bath of phosphoric acid or sodium hydroxide, and by direct current electrolysis, an anodic oxide film having holes having at least 85% of the holes opened on the surface having a diameter of 25 to 90 nm is formed. A method (Patent Document 3) is known in which a molten synthetic resin is injection-molded on the surface on which the anodized film is formed to improve the bonding strength by an anchor effect.
 また、アルミニウム材の表面をエッチング処理して形成された微細凹凸面に、金属酸化物又は金属リン酸化物の凹凸薄層を形成させる方法も提案されている(特許文献4)。 Further, a method of forming an uneven thin layer of a metal oxide or a metal phosphor oxide on a fine uneven surface formed by etching the surface of an aluminum material has also been proposed (Patent Document 4).
 以上のようなアンカー効果に頼る方法では、例えば樹脂を接合したい場合、樹脂が穴の中にしっかりと侵入しないと効果が発現できないため、金属材の表面にシランカップリング剤により樹脂と反応が可能な官能基を付ける処理方法が提案されている。例えば、水溶性アルコキシシラン含有トリアジンジチオール金属塩を含有する溶液に金属材、セラミックス材等の固体を浸漬して、固体表面に該水溶性アルコキシシラン含有トリアジンジチオール金属塩を付着させてなる表面反応性固体(金属材等)を用いることが提案されている(特許文献5)。 In the method that relies on the anchor effect as described above, for example, when it is desired to join a resin, the effect cannot be exhibited unless the resin penetrates firmly into the hole, so that the surface of the metal material can be reacted with the resin by a silane coupling agent. A treatment method for attaching a functional group has been proposed. For example, surface reactivity obtained by immersing a solid such as a metal material or ceramic material in a solution containing a water-soluble alkoxysilane-containing triazinedithiol metal salt and adhering the water-soluble alkoxysilane-containing triazinedithiol metal salt to the solid surface. It has been proposed to use a solid (metal material or the like) (Patent Document 5).
 また、アルミニウム材の表面を粗面化した後にアルコキシシラン含有トリアジンチオール誘導体をシランカップリング剤として被覆処理を行う方法が提案されており(特許文献6)、エポキシシラン、アミノシランメタクリロイルシランを使用する方法も提案されている(特許文献7、8)。 Further, a method has been proposed in which an alkoxysilane-containing triazine thiol derivative is used as a silane coupling agent for coating after roughening the surface of an aluminum material (Patent Document 6), and a method using epoxysilane or aminosilanemethacryloylsilane. Has also been proposed (Patent Documents 7 and 8).
 この様にシランカップリング剤による処理は広く提案されている。
 シランカップリング剤による処理は、いわゆるSAM(self-assembled monolayer:自己組織化単分子膜あるいは自己集積化単分子膜)による表面改質である。SAMは、金属材等の素材表面に化学吸着する反応性官能基と、二次元方向に規則構造をもたらせるスペーサー鎖と、素材表面を機能化させる機能性官能基、の三つの部分からなるとされる(非特許文献1)。
 アルミニウム材のシランカップリング剤処理では、反応性官能基であるシラノール基(-SiOH)が、アルミニウム材表面に存在する酸化皮膜のOH基(-Al-OH)と脱水縮合反応を起こし、SAMが形成される。このとき、シラノール基同士も結合する。
As described above, treatment with a silane coupling agent has been widely proposed.
The treatment with a silane coupling agent is a surface modification by a so-called SAM (self-assembled monolayer: self-assembled monolayer or self-assembled monolayer). SAM consists of three parts: a reactive functional group that chemically adsorbs to the surface of a material such as a metal material, a spacer chain that can bring about a regular structure in a two-dimensional direction, and a functional functional group that makes the surface of the material functional. (Non-Patent Document 1).
In the silane coupling agent treatment of the aluminum material, the silanol group (-SiOH), which is a reactive functional group, causes a dehydration condensation reaction with the OH group (-Al-OH) of the oxide film existing on the surface of the aluminum material, and SAM is generated. It is formed. At this time, silanol groups are also bonded to each other.
特開2012-41579号公報Japanese Unexamined Patent Publication No. 2012-41579 特開2016-16584号公報Japanese Unexamined Patent Publication No. 2016-16584 特許第4541153号公報Japanese Patent No. 4541153 特開2010-131888号公報Japanese Unexamined Patent Publication No. 2010-131888 特開2006-213677号公報Japanese Unexamined Patent Publication No. 2006-213677 特開2011-52292号公報Japanese Unexamined Patent Publication No. 2011-52292 特開2016―089261号公報Japanese Unexamined Patent Publication No. 2016-089261 特開2014―218050号公報Japanese Unexamined Patent Publication No. 2014-218050
 しかし、SAMによる表面改質をした表面処理金属材では、表面処理金属材と被接合材(金属材料、有機材料等)との接合強度が所定レベルにとどまり、更なる接合強度の向上や、耐久性の向上といった需要に応えることが難しいという課題があった。
 本発明は、かかる技術的背景に鑑みてなされたものであって、SAMによる表面改質をした表面処理金属材と被接合材を強固に接合することができる表面処理金属材およびその関連技術を提供することである。前記関連技術とは、前記表面処理金属材を得るための方法である金属材の表面処理方法、前記表面処理金属材を用いた複合積層体及びその製造方法、前記複合積層体を用いた金属-非金属接合体及びその製造方法、を意味する。
However, in the surface-treated metal material whose surface has been modified by SAM, the bonding strength between the surface-treated metal material and the material to be bonded (metal material, organic material, etc.) remains at a predetermined level, further improving the bonding strength and durability. There was a problem that it was difficult to meet the demand such as improvement of sex.
The present invention has been made in view of such a technical background, and is a surface-treated metal material capable of firmly joining a surface-treated metal material that has been surface-modified by SAM and a material to be joined, and related techniques thereof. Is to provide. The related technology includes a surface treatment method for a metal material, which is a method for obtaining the surface-treated metal material, a composite laminate using the surface-treated metal material and a method for producing the same, and a metal using the composite laminate. It means a non-metal joint and a method for producing the same.
 本発明者は、SAMによる表面改質をした表面処理金属材と被接合材との接合強度の限界が、SAMの構造に基因することを見出し、本発明を完成させた。本発明は、前記目的を達成するために、以下の手段を提供する。
 なお、本明細書において、接合とは、物と物を繋合わせることを意味し、接着とはその下位概念であり、テープや接着剤の様な有機材(熱硬化性樹脂や熱可塑性樹脂等)を介して、2つの被着材(接着しようとするもの)を接合状態とすることを意味する。
The present inventor has completed the present invention by finding that the limit of the bonding strength between the surface-treated metal material surface-modified by SAM and the material to be bonded is based on the structure of SAM. The present invention provides the following means for achieving the above object.
In this specification, bonding means connecting objects to each other, and adhesion is a subordinate concept thereof, and organic materials such as tapes and adhesives (thermosetting resins, thermoplastic resins, etc.) are used. ) Means that the two adherends (those to be bonded) are put into a bonded state.
 [1] 金属材とその表面に表面処理層とを有する表面処理金属材であって、前記表面処理層が、前記金属材にシランカップリング剤による処理を施してなるシランカップリング剤処理層と、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物を、前記シランカップリング剤が有する官能基と反応させてなり、前記化合物に由来の官能基を有する官能基含有層を含む、表面処理金属材。
 [2] 前記シランカップリング剤が、アミノ基、エポキシ基、(メタ)アクリロイル基、スチリル基、イソシアナト基、及びメルカプト基からなる群より選ばれる少なくとも一種の官能基を含有する、[1]に記載の表面処理金属材。
 [3] 前記イソシアネート化合物が、(メタ)アクリロイル基を有するイソシアネート化合物及び2官能以上のイソシアネート化合物から選ばれる少なくとも一種である、[1]又は[2]に記載の表面処理金属材。
 [4] 前記チオール化合物が、2官能以上のチオール化合物である、[1]又は[2]に記載の表面処理金属材。
 [5] 前記エポキシ化合物が、(メタ)アクリロイル基を有する化合物及び2官能以上のエポキシ化合物から選ばれる少なくとも一種である、[1]又は[2]に記載の表面処理金属材。
 [6] 前記アミノ化合物が、(メタ)アクリロイル基を有する化合物及び2官能以上のアミノ化合物から選ばれる少なくとも一種である、[1]又は[2]に記載の表面処理金属材。
 [7] 前記金属材が、鉄、アルミニウム、マグネシウム、銅及びステンレス鋼からなる群より選ばれる金属である、[1]~[6]の何れかに記載の表面処理金属材。
 [8] 前記金属材が、前処理を施したアルミニウムであり、前記前処理が、エッチング処理、ベーマイト処理、アルマイト処理、リン酸亜鉛処理、ジルコニウム処理、レーザー処理、プラズマ処理、ブラスト処理及びサンディング処理からなる群より選ばれる少なくとも一種である、[1]~[6]の何れかに記載の表面処理金属材。
[1] A surface-treated metal material having a metal material and a surface-treated layer on the surface thereof, wherein the surface-treated layer is a silane coupling agent-treated layer obtained by treating the metal material with a silane coupling agent. , At least one compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds is reacted with the functional groups of the silane coupling agent to form functional groups derived from the compounds. A surface-treated metal material containing a group-containing layer.
[2] In [1], the silane coupling agent contains at least one functional group selected from the group consisting of an amino group, an epoxy group, a (meth) acryloyl group, a styryl group, an isocyanato group, and a mercapto group. The surface-treated metal material described.
[3] The surface-treated metal material according to [1] or [2], wherein the isocyanate compound is at least one selected from an isocyanate compound having a (meth) acryloyl group and a bifunctional or higher functional isocyanate compound.
[4] The surface-treated metal material according to [1] or [2], wherein the thiol compound is a bifunctional or higher functional thiol compound.
[5] The surface-treated metal material according to [1] or [2], wherein the epoxy compound is at least one selected from a compound having a (meth) acryloyl group and a bifunctional or higher functional epoxy compound.
[6] The surface-treated metal material according to [1] or [2], wherein the amino compound is at least one selected from a compound having a (meth) acryloyl group and a bifunctional or higher functional amino compound.
[7] The surface-treated metal material according to any one of [1] to [6], wherein the metal material is a metal selected from the group consisting of iron, aluminum, magnesium, copper and stainless steel.
[8] The metal material is pretreated aluminum, and the pretreatment includes etching treatment, boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment and sanding treatment. The surface-treated metal material according to any one of [1] to [6], which is at least one selected from the group consisting of.
 [9] [1]~[8]の何れかに記載の表面処理金属材の表面処理層側の表面に、1層又は複数層のプライマー層が形成された、複合積層体。
 [10] 前記プライマー層が、前記官能基含有層に含まれている官能基と反応する基を有する硬化性樹脂硬化物からなる、[9]に記載の複合積層体。
 [11] 前記プライマー層が、前記官能基含有層に含まれている官能基と反応する基を有する熱可塑性樹脂を形成するモノマー組成物の重付加反応物又はラジカル重合反応物からなる、[9]に記載の複合積層体。
[9] A composite laminate in which one or a plurality of primer layers are formed on the surface of the surface-treated metal material according to any one of [1] to [8] on the surface-treated layer side.
[10] The composite laminate according to [9], wherein the primer layer is a cured product of a curable resin having a group that reacts with a functional group contained in the functional group-containing layer.
[11] The primer layer comprises a polyaddition reaction product or a radical polymerization reaction product of a monomer composition forming a thermoplastic resin having a group that reacts with a functional group contained in the functional group-containing layer [9]. ] The composite laminate described in.
 [12] [1]~[8]の何れかに記載の表面処理金属材と、非金属である被接合材とが直接又は接着剤を介して接合一体化された、金属-非金属接合体。
 [13] [9]~[11]の何れかに記載の複合積層体のプライマー層と、非金属である被接合材とが直接又は接着剤を介して接合一体化された、金属-非金属接合体。
 前記非金属である被接合材は、樹脂であることが好ましい。
 [14] 前記非金属である被接合材が、樹脂である、[12]又は[13]に記載の金属-非金属接合体。
[12] A metal-non-metal bonded body in which the surface-treated metal material according to any one of [1] to [8] and a non-metal bonded material are joined and integrated directly or via an adhesive. ..
[13] A metal-non-metal in which the primer layer of the composite laminate according to any one of [9] to [11] and a non-metal object to be bonded are bonded and integrated directly or via an adhesive. Joined body.
The material to be joined, which is a non-metal, is preferably a resin.
[14] The metal-non-metal joint according to [12] or [13], wherein the non-metal joint material is a resin.
 [15] 金属材にシランカップリング剤処理を施してシランカップリング剤処理層を形成した後、イソシアネート化合物、チオール化合物、エポキシ化合物及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物を、前記シランカップリング剤が有する官能基と反応させて、前記化合物に由来の官能基を表面に有する官能基含有層を形成する、表面処理金属材の製造方法。
 [16] 前記シランカップリング剤が、アミノ基、エポキシ基、(メタ)アクリロイル基、スチリル基、イソシアナト基、及びメルカプト基からなる群より選ばれる一種以上の官能基を含有する、[15]に記載の表面処理金属材の製造方法。
 [17] 前記イソシアネート化合物が、(メタ)アクリロイル基を有するイソシアネート化合物、2官能以上のイソシアネート化合物、の少なくとも一種である、[15]又は[16]に記載の表面処理金属材の製造方法。
 [18] 前記チオール化合物が、2官能以上のチオール化合物である、[15]又は[16]に記載の表面処理金属材の製造方法。
 [19] 前記エポキシ化合物が、(メタ)アクリロイル基を有する化合物、2官能以上のエポキシ化合物の少なくとも一種である、[15]又は[16]に記載の表面処理金属材の製造方法。
 [20] 前記アミノ化合物が、(メタ)アクリロイル基を有する化合物、2官能以上のアミノ化合物の少なくとも一種である、[15]又は[16]に記載の表面処理金属材の製造方法。
 [21] 前記金属材が、鉄、アルミニウム、マグネシウム、銅、及びステンレス鋼からなる群より選ばれる金属である、[15]~[20]の何れかに記載の表面処理金属材の製造方法。
 [22] 前記金属材が、前処理を施したアルミニウムであり、前記前処理が、ベーマイト処理、アルマイト処理、リン酸亜鉛処理、ジルコニウム処理、レーザー処理、プラズマ処理、ブラスト処理、サンディング処理の少なくとも一種である、[15]~[20]の何れかに記載の表面処理金属材の製造方法。
[15] After the metal material is treated with a silane coupling agent to form a silane coupling agent-treated layer, at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound and an amino compound is selected from the silane. A method for producing a surface-treated metal material, which comprises reacting with a functional group contained in a coupling agent to form a functional group-containing layer having a functional group derived from the compound on the surface.
[16] In [15], the silane coupling agent contains one or more functional groups selected from the group consisting of an amino group, an epoxy group, a (meth) acryloyl group, a styryl group, an isocyanato group, and a mercapto group. The method for producing a surface-treated metal material according to the above.
[17] The method for producing a surface-treated metal material according to [15] or [16], wherein the isocyanate compound is at least one of an isocyanate compound having a (meth) acryloyl group and a bifunctional or higher functional isocyanate compound.
[18] The method for producing a surface-treated metal material according to [15] or [16], wherein the thiol compound is a bifunctional or higher functional thiol compound.
[19] The method for producing a surface-treated metal material according to [15] or [16], wherein the epoxy compound is at least one of a compound having a (meth) acryloyl group and a bifunctional or higher functional epoxy compound.
[20] The method for producing a surface-treated metal material according to [15] or [16], wherein the amino compound is at least one of a compound having a (meth) acryloyl group and a bifunctional or higher functional amino compound.
[21] The method for producing a surface-treated metal material according to any one of [15] to [20], wherein the metal material is a metal selected from the group consisting of iron, aluminum, magnesium, copper, and stainless steel.
[22] The metal material is pretreated aluminum, and the pretreatment is at least one of boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment, and sanding treatment. The method for producing a surface-treated metal material according to any one of [15] to [20].
 [23] [1]~[8]の何れかに記載の表面処理金属材の官能基含有層の表面で、重付加反応又はラジカル重合反応を行い、熱可塑性樹脂からなるプライマー層を形成する、複合積層体の製造方法。 [23] A primer layer made of a thermoplastic resin is formed by performing a polyaddition reaction or a radical polymerization reaction on the surface of the functional group-containing layer of the surface-treated metal material according to any one of [1] to [8]. A method for producing a composite laminate.
 [24] [1]~[8]の何れかに記載の表面処理金属材の官能基含有層の表面に、接着剤層を形成し、該接着剤層の上に、射出成形、圧縮成形、及びハンドレイアップ成形からなる群より選ばれる少なくとも一種の方法で、非金属である被接合材を接合一体化する、金属-非金属接合体の製造方法。
 [25] [9]~[11]の何れかに記載の複合積層体のプライマー層の上に、射出成形、圧縮成形、及びハンドレイアップ成形からなる群より選ばれる少なくとも一種の方法で、非金属である被接合材を接合一体化する、金属-非金属接合体の製造方法。
[24] An adhesive layer is formed on the surface of the functional group-containing layer of the surface-treated metal material according to any one of [1] to [8], and injection molding or compression molding is performed on the adhesive layer. A method for producing a metal-non-metal bonded body, which joins and integrates a non-metal object to be bonded by at least one method selected from the group consisting of hand lay-up molding.
[25] On the primer layer of the composite laminate according to any one of [9] to [11], at least one method selected from the group consisting of injection molding, compression molding, and hand lay-up molding is used. A method for manufacturing a metal-non-metal bonded body, in which a metal object to be bonded is joined and integrated.
 本発明によれば、SAMによる表面改質をした表面処理金属材と被接合材を強固に接合することができる。 According to the present invention, the surface-treated metal material surface-modified by SAM and the material to be bonded can be firmly bonded.
表面処理金属材の構成を示す説明図である。It is explanatory drawing which shows the structure of the surface-treated metal material. 複合積層体の構成を示す説明図である。It is explanatory drawing which shows the structure of the composite laminated body. 金属-非金属接合体の構成を示す説明図である。It is explanatory drawing which shows the structure of the metal-non-metal joint.
 本発明の表面処理金属材およびその関連技術について詳述する。
[表面処理金属材]
 本発明の表面処理金属材3は、図1に示すように、金属材1と表面処理層2を有する。前記表面処理層2は、前記金属材1にシランカップリング剤処理を施してなるシランカップリング剤処理層21と、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物に由来の官能基を有する官能基含有層22を含む。前記官能基含有層22は、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物を、前記シランカップリング剤由来の官能基と反応させてなる。
 なお、シランカップリング剤の種類は数多く、また官能基含有層を構成する化合物も多岐にわたり、かつ、その組み合わせに基づく具体的態様を包括的に表現することもできないため、本発明の表面処理金属材3を構造又は特性により直接特定することは不可能又は非実際的といえる。
The surface-treated metal material of the present invention and related techniques thereof will be described in detail.
[Surface-treated metal material]
As shown in FIG. 1, the surface-treated metal material 3 of the present invention has a metal material 1 and a surface-treated layer 2. The surface treatment layer 2 is at least one selected from the group consisting of a silane coupling agent treatment layer 21 obtained by subjecting the metal material 1 to a silane coupling agent treatment, and an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound. Includes a functional group-containing layer 22 having a functional group derived from the compound of. The functional group-containing layer 22 is formed by reacting at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound with a functional group derived from the silane coupling agent.
Since there are many types of silane coupling agents, a wide variety of compounds constituting the functional group-containing layer, and it is not possible to comprehensively express a specific embodiment based on the combination thereof, the surface-treated metal of the present invention It can be said that it is impossible or impractical to directly specify the material 3 by its structure or characteristics.
<金属材>
 金属材を構成する金属の種類は特に限定されるものではない。
 金属材を構成する金属としては、例えば、鉄、アルミニウム、マグネシウム、銅、ステンレス鋼等が挙げられる。これらのうち、軽量性及び加工容易性等の観点から、アルミニウムが、特に好適に用いられる。
 なお、本発明において、「アルミニウム」の語は、アルミニウム及びその合金を含む意味で用いられる。同様に、鉄、チタン、マグネシウム及び銅も、これらの単体及びその合金を含む意味で用いるものとする。
<Metallic material>
The type of metal constituting the metal material is not particularly limited.
Examples of the metal constituting the metal material include iron, aluminum, magnesium, copper, stainless steel and the like. Of these, aluminum is particularly preferably used from the viewpoint of light weight and ease of processing.
In the present invention, the term "aluminum" is used to include aluminum and its alloys. Similarly, iron, titanium, magnesium and copper shall also be used in the sense of including these simple substances and their alloys.
 金属材には、シランカップリング剤処理を施す前に、前処理を施すことが好ましい。
 前記前処理としては、例えば、溶剤等による洗浄、脱脂処理、ブラスト処理、研磨処理、エッチング処理、化成処理等が挙げられる。なかでも、シランカップリング剤と反応する官能基である水酸基を、金属材の表面に発生させる前処理が好ましい。金属材に施す前処理は、一種のみでもよいし、二種以上でもよい。これらの前処理の具体的な方法としては、公知の方法を用いることができる。
 前記前処理により、金属材の表面の汚染物を除去したり、金属材の表面を粗面化させ、金属材の表面に、アンカー効果を目的とした微細な凹凸4を形成することができる。
 前記アンカー効果により、後述するプライマー層6との接着性を向上させることができる。前記前処理は、被接合材との接着性の向上にも寄与し得る。
 前記前処理は、エッチング処理、ベーマイト処理、アルマイト処理、リン酸亜鉛処理、ジルコニウム処理、レーザー処理、プラズマ処理、ブラスト処理及びサンディング処理からなる群より選ばれる少なくとも一種であることが好ましい。
It is preferable that the metal material is pretreated before being treated with the silane coupling agent.
Examples of the pretreatment include cleaning with a solvent, degreasing treatment, blasting treatment, polishing treatment, etching treatment, chemical conversion treatment and the like. Of these, a pretreatment that generates a hydroxyl group, which is a functional group that reacts with the silane coupling agent, on the surface of the metal material is preferable. The pretreatment applied to the metal material may be only one type or two or more types. As a specific method of these pretreatments, a known method can be used.
By the pretreatment, contaminants on the surface of the metal material can be removed, the surface of the metal material can be roughened, and fine irregularities 4 for the purpose of anchoring effect can be formed on the surface of the metal material.
Due to the anchor effect, the adhesiveness with the primer layer 6 described later can be improved. The pretreatment can also contribute to improving the adhesiveness with the material to be joined.
The pretreatment is preferably at least one selected from the group consisting of etching treatment, boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment and sanding treatment.
 エッチング処理としては、例えば、化学的エッチング処理、電気化学的エッチング処理等の公知のエッチング処理等を適用できる。このようなエッチング処理を行うことにより、アルミニウム材の表面に微細な凹凸を形成させることができ、被接合材との接着性の向上にも寄与し得る。前記化学的エッチング処理としては、特に限定されるものではないが、例えば、苛性ソーダ法、リン酸-硫酸法、フッ化物法、クロム酸-硫酸法、塩鉄法等が挙げられる。前記電気化学的エッチング処理としては、特に限定されるものではないが、例えば、電解エッチング法等が挙げられる。これらの中でも、苛性ソーダ法によりエッチング処理を行うのが好ましく、さらに水酸化ナトリウム水溶液又は水酸化カリウム水溶液を用いた苛性ソーダ法によりエッチング処理を行うのがより好ましい。具体的には、例えば、金属材の少なくとも一部を3質量%~20質量%の水酸化ナトリウム水溶液又は3質量%~20質量%の水酸化カリウム水溶液に20℃~70℃の温度で1分~15分間浸漬した後、5質量%~20質量%の硝酸水溶液に浸漬して中和を行い、その後、水洗、乾燥を行うのがよい。なお、前記苛性ソーダ法では、添加剤としてキレート剤、酸化剤、リン酸塩等を使用することもできる。 As the etching process, for example, a known etching process such as a chemical etching process or an electrochemical etching process can be applied. By performing such an etching treatment, fine irregularities can be formed on the surface of the aluminum material, which can contribute to the improvement of the adhesiveness with the material to be joined. The chemical etching treatment is not particularly limited, and examples thereof include a caustic soda method, a phosphoric acid-sulfuric acid method, a fluoride method, a chromic acid-sulfuric acid method, and a salt iron method. The electrochemical etching treatment is not particularly limited, and examples thereof include an electrolytic etching method. Among these, the etching treatment is preferably performed by the caustic soda method, and more preferably the etching treatment is performed by the caustic soda method using an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution. Specifically, for example, at least a part of the metal material is put into a 3% by mass to 20% by mass sodium hydroxide aqueous solution or a 3% by mass to 20% by mass potassium hydroxide aqueous solution at a temperature of 20 ° C. to 70 ° C. for 1 minute. After immersing for about 15 minutes, it is preferable to immerse in a 5% by mass to 20% by mass aqueous nitrate solution to neutralize, and then wash and dry. In the caustic soda method, a chelating agent, an oxidizing agent, a phosphate or the like can be used as an additive.
 ベーマイト処理としては、公知のベーマイト処理等を使用できる。具体的には、例えば、アルミニウム材に対して熱水処理を行って表面にベーマイト皮膜を形成させる処理である。前記ベーマイトは、針状結晶であり、処理時間が長くなるに伴い結晶が成長し形状が複雑になる。このベーマイト皮膜の表面に微細な凹凸が形成されているので、被接合材との接着性の向上に寄与し得る。
 ベーマイト処理には蒸留水が使用されるが、反応促進剤としてアンモニアやトリエタノールアミン等を添加してもよい。例えば、トリエタノールアミンを0.1質量%~5.0質量%添加した蒸留水を90℃~100℃の熱水にして、該熱水中に金属材を3秒~5分間浸漬してベーマイト処理を行うのがよい。
 前記ベーマイト処理を行った後の金属材は、そのまま次のシランカップリング剤処理工程に供してもよいが、脱脂を行ってから或いは苛性ソーダ法でエッチング処理を行ってから、シランカップリング剤処理工程に供してもよい。
As the boehmite treatment, a known boehmite treatment or the like can be used. Specifically, for example, it is a process of subjecting an aluminum material to hot water treatment to form a boehmite film on the surface. The boehmite is an acicular crystal, and as the treatment time becomes longer, the crystal grows and the shape becomes complicated. Since fine irregularities are formed on the surface of the boehmite film, it can contribute to the improvement of the adhesiveness with the material to be bonded.
Distilled water is used for the boehmite treatment, but ammonia, triethanolamine, or the like may be added as a reaction accelerator. For example, distilled water to which 0.1% by mass to 5.0% by mass of triethanolamine is added is made into hot water at 90 ° C. to 100 ° C., and a metal material is immersed in the hot water for 3 seconds to 5 minutes to beemite. It is better to process.
The metal material after the boehmite treatment may be subjected to the next silane coupling agent treatment step as it is, but after degreasing or etching treatment by the caustic soda method, the silane coupling agent treatment step May be offered to.
 ジルコニウム処理としては、公知のジルコニウム処理等を使用できる。前記ジルコニウム処理は、例えば、リン酸ジルコニウム、ジルコニウム塩等のジルコニウム化合物を用いて金属材の表面にジルコニウム塩皮膜を形成させるものである。この皮膜の表面に微細な凹凸が形成されているので、被接合材との接着性の向上に寄与し得る。前記ジルコニウム処理としては、具体的には、例えば、日本パーカライジング社製の化成剤「パルコート3762」や「パルコート3796」を45℃~70℃に加温してこの液中に金属材を0.5分~3分間浸漬してジルコニウム処理を行う方法等が挙げられる。このジルコニウム処理を行う場合には、先に前記の苛性ソーダ法でエッチング処理を行った後に、ジルコニウム処理を行うのが望ましい。 As the zirconium treatment, a known zirconium treatment or the like can be used. In the zirconium treatment, for example, a zirconium salt film is formed on the surface of a metal material using a zirconium compound such as zirconium phosphate or a zirconium salt. Since fine irregularities are formed on the surface of this film, it can contribute to the improvement of the adhesiveness with the material to be joined. Specifically, as the zirconium treatment, for example, the chemical agents "Palcoat 3762" and "Palcoat 3796" manufactured by Nihon Parkerizing Co., Ltd. are heated to 45 ° C. to 70 ° C., and 0.5 metal material is added to the liquid. Examples thereof include a method of immersing for 1 to 3 minutes to perform zirconium treatment. When this zirconium treatment is performed, it is desirable to first perform the etching treatment by the caustic soda method and then perform the zirconium treatment.
<表面処理層>
 表面処理層2は、前記金属材1にシランカップリング剤処理を施してなるシランカップリング剤処理層21と、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物に由来の官能基を有する官能基含有層22を含む。前記官能基含有層22は、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物を、前記シランカップリング剤由来の官能基と反応させてなる。
<Surface treatment layer>
The surface treatment layer 2 is at least one selected from the group consisting of a silane coupling agent treatment layer 21 obtained by subjecting the metal material 1 to a silane coupling agent treatment, an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound. It contains a functional group-containing layer 22 having a functional group derived from the compound. The functional group-containing layer 22 is formed by reacting at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound with a functional group derived from the silane coupling agent.
(シランカップリング剤処理層)
 シランカップリング剤処理層は、金属材にシランカップリング剤処理を施して形成した層であり、2次元構造の自己組織化単分子膜(SAM)からなる。
 金属材の表面に存在する水酸基を基点にシランカップリング剤処理でシラノール基を結合させると、前記のようにシラノール基同士も結合するため、2次元に広がったシランカップリング剤処理層が形成される。シランカップリング剤は、シラノール基のほかに、官能基含有層22の有する前記官能基(イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物に由来の官能基)と反応する官能基を有することが好ましい。
(Silane coupling agent treated layer)
The silane coupling agent-treated layer is a layer formed by subjecting a metal material to a silane coupling agent treatment, and is composed of a self-assembled monolayer (SAM) having a two-dimensional structure.
When silanol groups are bonded by silane coupling agent treatment with the hydroxyl group existing on the surface of the metal material as a base point, silanol groups are also bonded to each other as described above, so that a two-dimensionally expanded silane coupling agent treatment layer is formed. To. In addition to the silanol group, the silane coupling agent is a functional group derived from at least one compound selected from the group consisting of the functional group (isocyanate compound, thiol compound, epoxy compound, and amino compound) contained in the functional group-containing layer 22. ), It is preferable to have a functional group that reacts with.
 シランカップリング剤としては、ガラス繊維の表面処理等に用いられる公知のシランカップリング剤等を使用できる。 As the silane coupling agent, a known silane coupling agent or the like used for surface treatment of glass fibers or the like can be used.
 シランカップリング剤の有する具体的な官能基としては、シランカップリング剤が有するシラノール基以外には、イソシアナト基、メルカプト基、エポキシ基、アミノ基、グリシジル基、(メタ)アクリロイル基、及びスチリル基からなる群より選ばれる一種以上の官能基であることが好ましい。なかでも、アミノ基、グリシジル基、及び(メタ)アクリロイル基からなる群より選ばれる一種以上の官能基がより好ましい。これらの官能基は、官能基含有層に含まれる前記化合物の官能基に応じて適切に選択される。 Specific functional groups of the silane coupling agent include an isocyanato group, a mercapto group, an epoxy group, an amino group, a glycidyl group, a (meth) acryloyl group, and a styryl group, in addition to the silanol group of the silane coupling agent. It is preferable that it is one or more functional groups selected from the group consisting of. Among them, one or more functional groups selected from the group consisting of an amino group, a glycidyl group, and a (meth) acryloyl group are more preferable. These functional groups are appropriately selected according to the functional groups of the compound contained in the functional group-containing layer.
 シランカップリング剤の具体例としては、イソシアナト基を有する3-イソシアネートプロピルトリエトキシシラン、メルカプト基を有する3-メルカプトプロピルメチルジメトキシシラン、エポキシ基を有する2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、アミノ基を有するN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノプロピルトリメトキシシランの塩酸塩、グリシジル基を有する3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、メタクリロキシ基を有する3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、スチリル基を有するp-スチリルトリメトキシシラン、アクリロキシ基を有する3-アクリロキシプロピルトリメトキシシラン、ビニル基を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、イソシアヌレート基を有するトリス-(トリメトキシシリルプロピル)イソシアヌレート、ウレイド基を有する3-ウレイドプロピルトリアルコキシシラン、トリアジンメルカプト基を有するジチオールトリアジンプロピルトリエトキシシラン、エトキシシリル基及びメルカプト基を有する6-(トリエトキシシリルプロピルアミノ)-1,3,5-トリアジン―2,4-ジチオールモノナトリウム塩(TES)等が挙げられる。 Specific examples of the silane coupling agent include 3-isocyanatopropyltriethoxysilane having an isocyanato group, 3-mercaptopropylmethyldimethoxysilane having a mercapto group, and 2- (3,4-epoxycyclohexyl) ethyltri having an epoxy group. Methoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane having an amino group, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl)- 3-Aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3- Aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminopropyltrimethoxysilane hydrochloride, 3-glycidoxypropylmethyldimethoxysilane with glycidyl group, 3-glycidoxypropylmethyltrimethoxysilane, 3 -Glysidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane having a methacryloxy group, 3-methacryloxypropyltri It has methoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, p-styryltrimethoxysilane having a styryl group, 3-acryloxypropyltrimethoxysilane having an acryloxy group, and a vinyl group. Vinyl trimethoxysilane, vinyl triethoxysilane, tris- (trimethoxysilylpropyl) isocyanurate with isocyanurate group, 3-ureidopropyltrialkoxysilane with ureido group, dithioltriazinepropyltriethoxysilane with triazine mercapto group, Examples thereof include 6- (triethoxysilylpropylamino) -1,3,5-triazine-2,4-dithiolmonosodium salt (TES) having an ethoxysilyl group and a mercapto group.
 シランカップリング剤によりシランカップリング剤処理層を形成する方法は、特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。
 スプレー塗布法では、金属材の表面にシランカップリング剤そのもの又は有機溶剤に希釈したシランカップリング剤を吹き付け、常温~100℃で1分~5時間乾燥処理を行う。乾燥処理を経て強固な化学結合となり、金属材の表面と化学結合した官能基を導入することができる。
 浸漬法では、シランカップリング剤の低濃度の水溶液やシランカップリング剤の低濃度の有機溶剤溶液を金属材の表面に接触させることで、金属の表面に存在する水酸基等とシランカップリング剤が反応してシラノール基が生成し、オリゴマー化したシラノール基がアルミニウム材の表面に結合する。具体的には、例えば、シランカップリング剤を有機溶剤で0.5質量%~50質量%程度の濃度になるように希釈した希釈溶液を常温~100℃に加温してこの希釈溶液中に金属材を1分~5日間浸漬することで、金属材の表面と化学結合した官能基を導入することができる。
The method for forming the silane coupling agent-treated layer with the silane coupling agent is not particularly limited, and examples thereof include a spray coating method and a dipping method.
In the spray coating method, the silane coupling agent itself or the silane coupling agent diluted in an organic solvent is sprayed on the surface of the metal material, and the drying treatment is performed at room temperature to 100 ° C. for 1 minute to 5 hours. After the drying treatment, a strong chemical bond is formed, and a functional group chemically bonded to the surface of the metal material can be introduced.
In the dipping method, a low-concentration aqueous solution of the silane coupling agent or a low-concentration organic solvent solution of the silane coupling agent is brought into contact with the surface of the metal material, so that the hydroxyl groups and the like existing on the surface of the metal and the silane coupling agent are separated. The reaction produces silanol groups, and the oligomerized silanol groups are bonded to the surface of the aluminum material. Specifically, for example, a diluted solution obtained by diluting a silane coupling agent with an organic solvent to a concentration of about 0.5% by mass to 50% by mass is heated to room temperature to 100 ° C. and contained in this diluted solution. By immersing the metal material for 1 minute to 5 days, a functional group chemically bonded to the surface of the metal material can be introduced.
(官能基含有層)
 官能基含有層は、二次元構造の自己組織化単分子膜(SAM)からなるシランカップリング剤処理層を三次元的に延長した層である。
 官能基含有層は、二次元に広がったシランカップリング剤処理層表面の官能基の少なくとも一部に、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物を反応させて形成することができる。前記イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物は、シランカップリング剤層表面の官能基と反応可能な官能基と、後述するプライマー層を構成する有機材料が有する官能基と反応可能な官能基、の双方を有する化合物であることが好ましい。
 官能基含有層を設けることにより、金属材の表面を、プライマー層を構成する有機材料が有する官能基と化学結合可能な官能基を三次元方向に延ばした官能基含有構造とすることができる。二次元構造のシランカップリング剤処理層のみを備えた金属材では、有機材料(プライマー、樹脂、接着剤等)との間の化学結合の強さには限界があり、より強固な化学結合を形成することが難しいが、金属材の表面を、化学結合可能な官能基を三次元方向に延ばした官能基含有構造とした本発明によれば、金属材と有機材料(プライマー、樹脂、接着剤等)との化学結合による接合をより強固にし、長期間にわたっての耐久性も向上させることができる。
(Functional group-containing layer)
The functional group-containing layer is a three-dimensional extension of a silane coupling agent-treated layer made of a self-assembled monolayer (SAM) having a two-dimensional structure.
In the functional group-containing layer, at least a part of the functional groups on the surface of the silane coupling agent-treated layer spread in two dimensions is at least one compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds. It can be formed by reacting. At least one compound selected from the group consisting of the isocyanate compound, the thiol compound, the epoxy compound, and the amino compound is a functional group capable of reacting with a functional group on the surface of the silane coupling agent layer, and an organic compound constituting a primer layer described later. A compound having both a functional group possessed by the material and a functional group capable of reacting with the material is preferable.
By providing the functional group-containing layer, the surface of the metal material can be formed into a functional group-containing structure in which functional groups capable of chemically bonding with the functional groups of the organic material constituting the primer layer are extended in a three-dimensional direction. In a metal material having only a silane coupling agent-treated layer having a two-dimensional structure, there is a limit to the strength of the chemical bond with the organic material (primer, resin, adhesive, etc.), and a stronger chemical bond can be obtained. Although difficult to form, according to the present invention in which the surface of the metal material has a functional group-containing structure in which chemically bondable functional groups are extended in a three-dimensional direction, the metal material and the organic material (primer, resin, adhesive) Etc.), the bond by chemical bond can be strengthened, and the durability over a long period of time can be improved.
 例えばシランカップリング剤の有する官能基がアミノ基の場合、イソシアナト基を有するイソシアネート化合物、エポキシ基を有するエポキシ化合物等を、前記アミノ基と反応させて官能基含有層を形成することができる。ラジカル反応性基を有するイソシアネート化合物である2-イソシアナトエチルメタクリレート(例えば昭和電工株式会社製「カレンズMOI(登録商標)」)やグリシジルメタクリレートをアミノ基に反応させれば、三次元方向に延ばした最末端はラジカル重合可能な(メタ)アクリロイル基となる。
 シランカップリング剤の有する官能基がエポキシ基の場合、アミノ基と、別のアミノ基や他の官能基を有するアミノ化合物、メルカプト基と、別のメルカプト基や他の官能基を有するチオール化合物、カルボキシ基と、別のカルボキシ基や他の官能基を有する化合物等を、前記エポキシ基と反応させて官能基含有層を形成することができる。(メタ)アクリル酸をシランカップリング剤のエポキシ基に反応させれば、三次元方向に延ばした最末端はこれもラジカル重合可能な(メタ)アクリロイル基となる。
 シランカップリング剤の有する官能基が(メタ)アクリロイル基の場合、メルカプト基を有するチオール化合物等を、前記(メタ)アクリロイル基と反応させて官能基含有層を形成することができる。2官能チオール化合物である1,4-ビス(3-メルカプトブチリルオキシ)ブタン(例えば昭和電工株式会社製「カレンズMT(登録商標) BD1」)や3官能チオール化合物であるペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば昭和電工株式会社製「カレンズMT(登録商標) PE1」)を(メタ)アクリロイル基に反応させれば、三次元方向に延ばした最末端はエポキシ基や(メタ)アクリロイル基と付加反応可能なメルカプト基となる。
 シランカップリング剤の有する官能基がメルカプト基の場合、(メタ)アクリロイル基を、前記メルカプト基と反応させて官能基含有層を形成することができる。例えばカレンズMOI(登録商標)のメタクリロイル基をメルカプト基に反応させれば、三次元方向に延ばした最末端をイソシアナト基とすることができ、(メタ)アクリルアミドの(メタ)アクリロイル基をメルカプト基に反応させれば三次元方向に延ばした最末端をアミノ基とすることができる。さらにグリシジル(メタ)アクリレートの(メタ)アクリロイル基をメルカプト基に反応させれば三次元方向に延ばした最末端をエポキシ基とすることができる。
 この様に三次元方向に延ばした最末端を様々な官能基とすることができる。また上述の化合物以外に、例えばジイソシアネート化合物を反応させれば片側のイソシアナト基のみ反応して最末端がイソシアナト基となることも期待でき、ジアミンを反応させれば片側のアミノ基のみ反応して最末端がアミノ基となることも期待できる。
For example, when the functional group of the silane coupling agent is an amino group, an isocyanate compound having an isocyanato group, an epoxy compound having an epoxy group, or the like can be reacted with the amino group to form a functional group-containing layer. When 2-isocyanatoethyl methacrylate (for example, "Karens MOI (registered trademark)" manufactured by Showa Denko Co., Ltd.) or glycidyl methacrylate, which is an isocyanate compound having a radical reactive group, is reacted with an amino group, it is extended in the three-dimensional direction. The extreme end is a radically polymerizable (meth) acryloyl group.
When the functional group of the silane coupling agent is an epoxy group, an amino group and an amino compound having another amino group or another functional group, a mercapto group, and a thiol compound having another mercapto group or another functional group, A functional group-containing layer can be formed by reacting a carboxy group with a compound having another carboxy group or another functional group with the epoxy group. When (meth) acrylic acid is reacted with the epoxy group of the silane coupling agent, the terminal end extending in the three-dimensional direction also becomes a radically polymerizable (meth) acryloyl group.
When the functional group of the silane coupling agent is a (meth) acryloyl group, a thiol compound having a mercapto group or the like can be reacted with the (meth) acryloyl group to form a functional group-containing layer. The bifunctional thiol compound 1,4-bis (3-mercaptobutylyloxy) butane (for example, "Karens MT (registered trademark) BD1" manufactured by Showa Denko Co., Ltd.) and the trifunctional thiol compound pentaerythritol tetrakis (3-) If mercaptobutyrate) (for example, "Carens MT (registered trademark) PE1" manufactured by Showa Denko Co., Ltd.) is reacted with a (meth) acryloyl group, the terminal end extended in the three-dimensional direction is an epoxy group or a (meth) acryloyl group. It becomes a mercapto group capable of an addition reaction.
When the functional group of the silane coupling agent is a mercapto group, the (meth) acryloyl group can be reacted with the mercapto group to form a functional group-containing layer. For example, by reacting the methacryloyl group of Karenz MOI (registered trademark) with a mercapto group, the terminal end extending in the three-dimensional direction can be an isocyanato group, and the (meth) acryloyl group of (meth) acrylamide can be used as a mercapto group. If the reaction is carried out, the terminal end extending in the three-dimensional direction can be used as an amino group. Further, if the (meth) acryloyl group of glycidyl (meth) acrylate is reacted with the mercapto group, the terminal end extending in the three-dimensional direction can be used as the epoxy group.
The terminal end extending in the three-dimensional direction in this way can be used as various functional groups. In addition to the above compounds, for example, if a diisocyanate compound is reacted, it can be expected that only one isocyanato group will react and the terminal end will be an isocyanato group, and if a diamine is reacted, only one amino group will react and the most. It can also be expected that the terminal will be an amino group.
 官能基含有層の形成方法としては、浸漬法やスプレー塗布法が挙げられる。
 浸漬法では、3級アミン等の触媒を共存させたイソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物の低濃度の有機溶剤溶液を25℃~120℃でシランカップリング剤処理を施した金属材の表面に接触させることで、一層目のシランカップリング剤処理末端の官能基に、二層目として反応させ三次元方向に延ばした官能基構造とすることができる。
 スプレー塗布法では、シランカップリング剤処理を施した金属材の表面に3級アミン等の触媒を共存させたイソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物の有機溶剤溶液を吹き付け、常温~100℃で1分~5時間乾燥処理を行う。この様な処理を行うことで、一層目のシランカップリング剤処理末端の官能基に、二層目として反応させ三次元方向に延ばした官能基構造とすることができる。
 前記有機溶剤溶液は、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物の含有率が、有機溶剤以外の成分中、90~100質量%であることが好ましく、98質量%以上であることがより好ましい。
Examples of the method for forming the functional group-containing layer include a dipping method and a spray coating method.
In the dipping method, a low-concentration organic solvent solution of at least one compound selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound in which a catalyst such as a tertiary amine coexists is prepared at 25 ° C. to 120 ° C. By contacting the surface of the metal material treated with the silane coupling agent, the functional group at the end of the silane coupling agent treatment of the first layer is reacted as the second layer to form a functional group structure extending in the three-dimensional direction. Can be done.
In the spray coating method, at least one compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds in which a catalyst such as a tertiary amine coexists on the surface of a metal material treated with a silane coupling agent. Is sprayed with the organic solvent solution of No. 1 and dried at room temperature to 100 ° C. for 1 minute to 5 hours. By performing such a treatment, the functional group at the end of the silane coupling agent treatment of the first layer is reacted as the second layer to form a functional group structure extending in the three-dimensional direction.
The content of at least one compound selected from the group consisting of isocyanate compounds, thiol compounds, epoxy compounds, and amino compounds in the organic solvent solution is preferably 90 to 100% by mass in the components other than the organic solvent. , 98% by mass or more is more preferable.
〔イソシアネート化合物〕
 イソシアネート化合物としては、公知のイソシアネート化合物等を使用できる。前記イソシアネート化合物としては、特に限定されるものではないが、例えば、多官能のイソシアネートであるジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、イソホロンジイソシアネート(IPDI)等の他、ラジカル反応性基を有するイソシアネート化合物である2-イソシアナトエチルメタクリレート(例えば昭和電工株式会社製「カレンズMOI」(登録商標))、2-イソシアナトエチルアクリレート(例えば昭和電工株式会社製「カレンズAOI(登録商標)」)、1,1-(ビスアクリロイルオキシエチル)エチルイソシアネート(例えば昭和電工株式会社製「カレンズBEI(登録商標)」)等が挙げられる。
 前記イソシアネート化合物で処理する方法は、特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。具体的には、例えば、イソシアネート化合物を有機溶剤で5質量%~50質量%程度の濃度になるように希釈した希釈溶液を常温~100℃に加温してこの希釈溶液中にアルミニウム材を1分~5日間浸漬した後、アルミニウム材を取り出して常温~100℃で1分~5時間乾燥処理を行う方法等が挙げられる。
[Isocyanate compound]
As the isocyanate compound, a known isocyanate compound or the like can be used. The isocyanate compound is not particularly limited, but for example, polyfunctional isocyanates such as diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and isophorone diisocyanate (IPDI) are used. In addition, 2-isocyanatoethyl methacrylate (for example, "Karens MOI" (registered trademark) manufactured by Showa Denko Co., Ltd.) and 2-isocyanatoethyl acrylate (for example, "Karens" manufactured by Showa Denko Co., Ltd.), which are isocyanate compounds having a radical reactive group. AOI (registered trademark) "), 1,1- (bisacryloyloxyethyl) ethyl isocyanate (for example," Karens BEI (registered trademark) "manufactured by Showa Denko Co., Ltd.) and the like.
The method for treating with the isocyanate compound is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, for example, a diluted solution obtained by diluting an isocyanate compound with an organic solvent to a concentration of about 5% by mass to 50% by mass is heated to room temperature to 100 ° C., and an aluminum material is added to the diluted solution. Examples thereof include a method in which the aluminum material is taken out after immersion for 1 minute to 5 days and then dried at room temperature to 100 ° C. for 1 minute to 5 hours.
〔チオール化合物〕
 チオール化合物としては、公知のチオール化合物等を使用できる。多官能のチオール化合物や、メルカプト基以外にアルケニル基を有する化合物が好ましい。前記チオール化合物としては、特に限定されるものではないが、例えば、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(例えば、三菱化学株式会社製「QX40」、東レ・ファインケミカル株式会社製「QE-340M」)、エーテル系一級チオール(例えばコグニス(Cognis)社製「カップキュア3-800」)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(例えば昭和電工株式会社製「カレンズMT(登録商標) BD1」)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば昭和電工株式会社製「カレンズMT(登録商標) PE1」)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(例えば昭和電工株式会社製「カレンズMT(登録商標) NR1」)等が挙げられる。中でも、エポキシ樹脂中での安定性はペンタエリスリトールテトラキス(3-メルカプトブチレート)が優れている。
 前記チオール化合物で処理する方法としては、特に限定されるものではないが、例えば、スプレー塗布法、浸漬法等が挙げられる。具体的には、例えば、チオール化合物を有機溶剤で5質量%~50質量%程度の濃度になるように希釈した希釈溶液を常温~100℃に加温してこの希釈溶液中にアルミニウム材を1分~5日間浸漬した後、アルミニウム材を取り出して常温~100℃で1分~5時間乾燥処理を行う方法等が挙げられる。前記チオール化合物の希釈溶液中に触媒としてアミン類を含有せしめてもよい。
[Thiol compound]
As the thiol compound, a known thiol compound or the like can be used. Polyfunctional thiol compounds and compounds having an alkenyl group in addition to the mercapto group are preferable. The thiol compound is not particularly limited, but for example, pentaerythritol tetrakis (3-mercaptopropionate) (for example, "QX40" manufactured by Mitsubishi Chemical Corporation and "QE-340M" manufactured by Toray Fine Chemicals Co., Ltd. ”), Ether-based first-class thiols (for example,“ Cup Cure 3-800 ”manufactured by Cognis), 1,4-bis (3-mercaptobutyryloxy) butane (for example,“ Karens MT (registered) manufactured by Showa Denko KK) BD1 "), pentaerythritol tetrakis (3-mercaptobutyrate) (for example, Showa Denko KK" Karenz MT (registered trademark) PE1 "), 1,3,5-tris (3-mercaptobutyloxyethyl)- Examples thereof include 1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trion (for example, "Karensu MT (registered trademark) NR1" manufactured by Showa Denko KK). Among them, pentaerythritol tetrakis (3-mercaptobutyrate) is excellent in stability in epoxy resin.
The method for treating with the thiol compound is not particularly limited, and examples thereof include a spray coating method and a dipping method. Specifically, for example, a diluted solution obtained by diluting a thiol compound with an organic solvent to a concentration of about 5% by mass to 50% by mass is heated to room temperature to 100 ° C., and an aluminum material is added to the diluted solution. Examples thereof include a method in which the aluminum material is taken out after immersion for 1 minute to 5 days and then dried at room temperature to 100 ° C. for 1 minute to 5 hours. Amines may be contained as a catalyst in the diluted solution of the thiol compound.
〔エポキシ化合物〕
 エポキシ化合物としては、公知のエポキシ化合物等を使用できる。多価エポキシ化合物や、エポキシ基以外にアルケニル基を有する化合物が好ましい。前記エポキシ化合物としては、特に限定されるものではないが、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、分子中に2個以上のエポキシ基を有するエポキシ樹脂等が挙げられる。また脂環式のエポキシ化合物でもよく、3,4-エポキシシクロヘキシルメチルメタクリレート(株式会社ダイセル製 サイクロマーM100)、1,2-エポキシ-4-ビニルシクロヘキサン(株式会社ダイセル製 セロキサイド2000)、3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製セロキサイド2021P)等が挙げられる。
[Epoxy compound]
As the epoxy compound, a known epoxy compound or the like can be used. A polyvalent epoxy compound or a compound having an alkenyl group other than the epoxy group is preferable. The epoxy compound is not particularly limited, but is, for example, glycidyl (meth) acrylate, allyl glycidyl ether, 1,6-hexanediol diglycidyl ether, and an epoxy resin having two or more epoxy groups in the molecule. And so on. It may also be an alicyclic epoxy compound, such as 3,4-epoxycyclohexylmethylmethacrylate (Cyclomer M100 manufactured by Daicel Co., Ltd.), 1,2-epoxy-4-vinylcyclohexane (Ceroxide 2000 manufactured by Daicel Co., Ltd.), 3', Examples thereof include 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate (celloxide 2021P manufactured by Daicel Co., Ltd.).
〔アミノ化合物〕
 アミノ化合物としては、公知のアミノ化合物等を使用できる。多官能アミノ化合物や、アミノ基(アミドを含む)以外にアルケニル基を有する化合物が好ましい。前記アミノ化合物としては、特に限定されるものではないが、例えば、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ジアミノブタン、ヘキサメチレンジアミン、2,5-ジメチル-2,5-ヘキサンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、4-アミノメチルオクタメチレンジアミン、3,3’-イミノビス(プロピルアミン)、3,3’-メチルイミノビス(プロピルアミン)、ビス(3-アミノプロピル)エーテル、1,2-ビス(3-アミノプロピルオキシ)エタン、メンセンジアミン、イソホロンジアミン、ビスアミノメチルノルボルナン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,3-ジアミノシクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、アミノエチルピペラジン、(メタ)アクリルアミド等が挙げられる。
[Amino compound]
As the amino compound, a known amino compound or the like can be used. Polyfunctional amino compounds and compounds having an alkenyl group in addition to the amino group (including amide) are preferable. The amino compound is not particularly limited, but for example, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-diaminobutane, hexamethylenediamine, 2,5-dimethyl-. 2,5-Hexamethylenediamine, 2,2,4-trimethylhexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 4-aminomethyloctamethylenediamine, 3,3'-iminobis (propylamine) ), 3,3'-Methylimminobis (propylamine), bis (3-aminopropyl) ether, 1,2-bis (3-aminopropyloxy) ethane, mensendiamine, isophoronediamine, bisaminomethylnorbornan, Bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminocyclohexane, 3,9-bis (3-aminopropyl) -2,4,8,10-tetra Examples thereof include oxaspiro [5,5] undecane, aminoethylpiperazine, and (meth) acrylamide.
[複合積層体]
 本発明の複合積層体5は、図2に示すように、前記の表面処理金属材3の官能基含有層22側の表面に、プライマー層6を有する。プライマー層は、一層であっても、複数層であってもよい。
[Composite laminate]
As shown in FIG. 2, the composite laminate 5 of the present invention has a primer layer 6 on the surface of the surface-treated metal material 3 on the functional group-containing layer 22 side. The primer layer may be a single layer or a plurality of layers.
<プライマー層>
 プライマー層の形成には、硬化性樹脂や熱可塑性樹脂が使用される。なお、本発明で言う硬化性樹脂は、広く、架橋構造による3次元ネットワークを構成して硬化する樹脂を意味し、加熱硬化タイプに限られず、常温硬化タイプや光硬化タイプも包含するものとする。前記光硬化タイプは、可視光線や紫外線の照射によって短時間での硬化も可能である。前記光硬化タイプを、加熱硬化タイプ及び/又は常温硬化タイプと併用してもよい。前記光硬化タイプとしては、例えば、昭和電工株式会社製「リポキシ(登録商標)LC-760」、同「リポキシ(登録商標)LC-720」等のビニルエステル樹脂が挙げられる。
 前記表面処理金属材の官能基含有層は、プライマー層の種類に合わせて適宜最適な化合物を選択して形成することができる。
<Primer layer>
A curable resin or a thermoplastic resin is used to form the primer layer. The curable resin referred to in the present invention broadly means a resin that is cured by forming a three-dimensional network having a crosslinked structure, and includes not only a thermosetting type but also a room temperature curing type and a photocuring type. .. The photocurable type can be cured in a short time by irradiation with visible light or ultraviolet rays. The photo-curing type may be used in combination with a heat-curing type and / or a room temperature curing type. Examples of the photocurable type include vinyl ester resins such as "Lipoxy (registered trademark) LC-760" and "Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
The functional group-containing layer of the surface-treated metal material can be formed by appropriately selecting an optimum compound according to the type of the primer layer.
 プライマー層は、表面処理金属材が、非金属である被接合材と接合一体化される際に、被接合材と表面処理金属材との間に介在して接合性をより向上させるための層である。
 プライマー層には、表面処理金属材の表面が汚れや、酸化等で変質することを防止し、長期間にわたり安定した接着力を維持する効果もある。
 前記プライマー層は、前記表面処理金属材において前記官能基含有層を形成した側の表面の少なくとも一部に、硬化性樹脂を含むプライマー又は該プライマーを含有するプライマー含有処理液を塗布することによって形成することができる。前記プライマー層は、前記表面処理金属材において前記官能基含有層を形成した側の表面の少なくとも一部に、熱可塑性樹脂を含むプライマー又は該プライマーを含有するプライマー含有処理液を塗布することによって形成することもできる。
 前記プライマー層は、非金属である被接合材に接着可能なプライマー層であるのが好ましい。
 なお、前記「硬化性樹脂を含むプライマー又は該プライマーを含有するプライマー含有処理液」は、硬化性樹脂のみからなり、溶剤等の他の成分を含有しない構成であってもよいし、硬化性樹脂および溶剤等の他の成分を含有する構成であってもよい。前記「熱可塑性樹脂を含むプライマー又は該プライマーを含有するプライマー含有処理液」は、熱可塑性樹脂のみからなり、溶剤等の他の成分を含有しない構成であってもよいし、現場重合型として反応して熱可塑性樹脂となる成分および溶剤等の他の成分を含有する構成であってもよい。
 以下に具体的に説明する。
The primer layer is a layer for improving the bondability by interposing between the surface-treated metal material and the surface-treated metal material when the surface-treated metal material is bonded and integrated with the non-metal material to be bonded. Is.
The primer layer also has the effect of preventing the surface of the surface-treated metal material from being deteriorated by dirt or oxidation, and maintaining a stable adhesive force for a long period of time.
The primer layer is formed by applying a primer containing a curable resin or a primer-containing treatment liquid containing the primer to at least a part of the surface of the surface-treated metal material on the side where the functional group-containing layer is formed. can do. The primer layer is formed by applying a primer containing a thermoplastic resin or a primer-containing treatment liquid containing the primer to at least a part of the surface of the surface-treated metal material on the side where the functional group-containing layer is formed. You can also do it.
The primer layer is preferably a primer layer that can be adhered to a non-metal object to be bonded.
The "primer containing a curable resin or a primer-containing treatment liquid containing the primer" may be composed of only a curable resin and may not contain other components such as a solvent, or may be a curable resin. And other components such as a solvent may be contained. The "primer containing a thermoplastic resin or a primer-containing treatment liquid containing the primer" may be composed of only a thermoplastic resin and may not contain other components such as a solvent, or may be reacted as an in-situ polymerization type. It may be configured to contain a component that becomes a thermoplastic resin and other components such as a solvent.
This will be described in detail below.
(硬化性樹脂を含むプライマー)
 「硬化性樹脂を含むプライマー」を構成する硬化性樹脂は、特に限定されるものではないが、常温硬化、加熱硬化又は光硬化が可能な硬化性樹脂であることが好ましく、ウレタン樹脂系、エポキシ樹脂系、ビニルエステル樹脂系及び不飽和ポリエステル樹脂系からなる群より選ばれる少なくとも一種の硬化性樹脂を用いるのがより好ましい
(Primer containing curable resin)
The curable resin constituting the "primer containing a curable resin" is not particularly limited, but is preferably a curable resin capable of normal temperature curing, thermosetting or photocuring, and is urethane resin-based or epoxy. It is more preferable to use at least one curable resin selected from the group consisting of resin-based, vinyl ester resin-based and unsaturated polyester resin-based.
〔ウレタン樹脂系熱硬化性樹脂〕
 ウレタン樹脂は、化学構造中にウレタン結合を含む高分子多量体であり、通常、イソシアナト基と水酸基との反応によって得られる樹脂であるが、この中では硬化後に架橋構造となるものが好ましい。前記ウレタン樹脂としては、一液型であってもよいし、二液型であってもよい。
[Urethane resin-based thermosetting resin]
The urethane resin is a polymer multimer containing a urethane bond in its chemical structure, and is usually a resin obtained by reacting an isocyanato group with a hydroxyl group. Among these, a resin having a crosslinked structure after curing is preferable. The urethane resin may be a one-component type or a two-component type.
 前記一液型としては、特に限定されるものではないが、例えば、油変性タイプ(不飽和脂肪酸基の酸化重合)、湿気硬化型(空気中の水とイソシアナト基の反応)、ブロック型(ブロック剤が加熱により解離し再生したイソシアナト基と水酸基が反応)、ラッカー型(溶剤の揮発による乾燥)等が挙げられる。これらの中でも、湿気硬化型一液ウレタン樹脂系熱硬化性樹脂からなるプライマーは、一液型を塗布するだけでよいので、容易に使用できる。このような湿気硬化型一液ウレタン樹脂系熱硬化性樹脂の市販品としては、例えば、昭和電工株式会社製「UM-50P」等が挙げられる。
 前記二液型としては、硬化物が架橋構造となるもので、例えば、触媒硬化型(イソシアナト基と空気中の水、触媒のアミンとの反応)、ポリオール硬化型(イソシアナト基と水酸基の反応)等が挙げられる。
The one-component type is not particularly limited, and is, for example, an oil-modified type (oxidative polymerization of unsaturated fatty acid groups), a moisture-curable type (reaction of water in air and an isocyanato group), and a block type (block). Examples include a lacquer type (drying due to volatilization of a solvent), a lacquer type (drying due to volatilization of a solvent), and the like. Among these, the primer made of a moisture-curable one-component urethane resin-based thermosetting resin can be easily used because it is only necessary to apply the one-component type. Examples of commercially available products of such a moisture-curable one-component urethane resin-based thermosetting resin include "UM-50P" manufactured by Showa Denko KK.
The two-component type has a crosslinked structure of the cured product. For example, a catalyst-curable type (reaction between an isocyanato group and water in the air and an amine of a catalyst) and a polyol-curable type (reaction between an isocyanato group and a hydroxyl group). And so on.
 前記二液型としてのポリオール硬化型のポリオール成分としては、特に限定されるものではないが、例えば、ポリエステルポリオール、ポリエーテルポリオール、フェノール樹脂等が挙げられる。また、前記二液型としてのポリオール硬化型のイソシアネート成分(イソシアネート化合物)としては、特に限定されるものではないが、例えば、脂肪族イソシアネート、芳香族イソシアネート、脂環族イソシアネート等が挙げられる。前記脂肪族イソシアネートとしては、特に限定されるものではないが、例えば、ヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、ダイマー酸ジイソシアネート等が挙げられる。前記芳香族イソシアネートとしては、特に限定されるものではないが、例えば、2,4-又は2,6-トリレンジイソシアネート(TDI)又はその混合物、p-フェニレンジシソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)やその多核体混合物であるポリメリックMDI等などが挙げられる。前記二液型において配合比は、-OH/-NCO当量比で0.7~1.5の範囲が好適で、硬化物が架橋構造となるものである。 The polyol component of the polyol curing type as the two-component type is not particularly limited, and examples thereof include polyester polyol, polyether polyol, and phenol resin. The polyol-curable isocyanate component (isocyanate compound) as the two-component type is not particularly limited, and examples thereof include aliphatic isocyanates, aromatic isocyanates, and alicyclic isocyanates. The aliphatic isocyanate is not particularly limited, and examples thereof include hexamethylene diisocyanate, tetramethylene diisocyanate, and dimerate diisocyanate. The aromatic isocyanate is not particularly limited, but is, for example, 2,4- or 2,6-tolylene diisocyanate (TDI) or a mixture thereof, p-phenylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate. (MDI) and a polymeric MDI which is a mixture thereof can be mentioned. In the two-component type, the compounding ratio is preferably in the range of 0.7 to 1.5 in terms of −OH / −NCO equivalent ratio, and the cured product has a crosslinked structure.
 前記二液型としての触媒硬化型で使用するウレタン化触媒としては、特に限定されるものではないが、例えば、アミン系触媒、有機錫系触媒等が挙げられる。前記アミン系触媒としては、特に限定されるものではないが、例えば、トリエチレンジアミン、テトラメチルグアニジン、N,N,N’,N’-テトラメチルヘキサン-1,6-ジアミン、ジメチルエーテルアミン、N,N,N’,N’’,N’’-ペンタメチルジプロピレン-トリアミン、N-メチルモルフォリン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルアミノエトキシエタノール、トリエチルアミン等が挙げられる。前記有機錫系触媒としては、特に限定されるものではないが、例えば、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンチオカルボキシレート、ジブチルチンジマレエート等が挙げられる。一般にはポリオール成分100質量部に対しウレタン化触媒を0.01~10質量部配合するのが好ましい。 The urethanization catalyst used in the catalyst curing type as the two-component type is not particularly limited, and examples thereof include an amine-based catalyst and an organic tin-based catalyst. The amine-based catalyst is not particularly limited, but for example, triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyl etheramine, N, Examples thereof include N, N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholine, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, triethylamine and the like. The organic tin catalyst is not particularly limited, and examples thereof include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin thiocarboxylate, and dibutyltin dimalate. Generally, it is preferable to add 0.01 to 10 parts by mass of the urethanization catalyst with respect to 100 parts by mass of the polyol component.
〔エポキシ樹脂系熱硬化性樹脂〕
 前記エポキシ樹脂は、特に限定されるものではないが、例えば、1分子中に少なくとも2個のエポキシ基を有する熱硬化性エポキシ樹脂を用いるのが好ましい。このような1分子中に少なくとも2個のエポキシ基を有する熱硬化性エポキシ樹脂としては、特に限定されるものではないが、例えば、エーテル型のビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、脂肪族型エポキシ樹脂、エステル系芳香族エポキシ樹脂、環状脂肪族エポキシ樹脂、エーテル・エステル型エポキシ樹脂等の公知の熱硬化性エポキシ樹脂などが挙げられ、中でもビスフェノールA型エポキシ樹脂が特に好ましい。前記エポキシ樹脂としては、一種を単独で用いてもよいし、二種以上を併用してもよい。ビスフェノールA型エポキシ樹脂の市販品として、例えば、三菱ケミカル株式会社製「jER(登録商標)828」や「jER(登録商標)1001」等が挙げられ、ノボラック型エポキシ樹脂の市販品として、例えば、ダウケミカルカンパニー製「DEN438」等が挙げられる。
[Epoxy resin-based thermosetting resin]
The epoxy resin is not particularly limited, but for example, it is preferable to use a thermosetting epoxy resin having at least two epoxy groups in one molecule. The thermosetting epoxy resin having at least two epoxy groups in one molecule is not particularly limited, but for example, an ether type bisphenol type epoxy resin, a novolac type epoxy resin, and a polyphenol type epoxy. Known thermocurable epoxy resins such as resins, aliphatic epoxy resins, ester-based aromatic epoxy resins, cyclic aliphatic epoxy resins, and ether ester epoxy resins are mentioned, and bisphenol A type epoxy resins are particularly preferable. .. As the epoxy resin, one type may be used alone, or two or more types may be used in combination. Examples of commercially available bisphenol A type epoxy resins include "jER (registered trademark) 828" and "jER (registered trademark) 1001" manufactured by Mitsubishi Chemical Co., Ltd., and examples of commercially available novolak type epoxy resins include, for example. Examples include "DEN438" manufactured by Dow Chemical Company.
 前記エポキシ樹脂の硬化剤としては、特に限定されるものではないが、例えば、脂肪族アミン、芳香族アミン、酸無水物、フェノール樹脂、チオール類、イミダゾール類、カチオン触媒等の公知の硬化剤等が挙げられる。また、これら例示の硬化剤と、長鎖脂肪族アミン又は/及びチオール類と、を併用すると、伸び率が大きく耐衝撃性に優れるという効果が得られる。このチオール類の具体的な化合物としては、例えば、上述したチオール化合物処理で例示したものと同じチオール類を挙げることができる。中でも、前記エポキシ樹脂の硬化剤としては、チオール化合物であるペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば昭和電工株式会社製「カレンズMT(登録商標) PE1」)を使用するのがより好ましく、この場合には伸び率が特に大きく耐衝撃性により優れるという利点がある。このようなエポキシ樹脂系熱硬化性樹脂からなるプライマー層が形成されたアルミニウム材(の該プライマー層)には様々な樹脂種の樹脂物品が接合可能である(接合対象の樹脂物品の樹脂種を問わない)。 The curing agent for the epoxy resin is not particularly limited, but for example, known curing agents such as aliphatic amines, aromatic amines, acid anhydrides, phenol resins, thiols, imidazoles, and cationic catalysts. Can be mentioned. Further, when these exemplified curing agents are used in combination with long-chain aliphatic amines and / and thiols, an effect of high elongation rate and excellent impact resistance can be obtained. Specific examples of the thiol compounds include the same thiols as those exemplified in the above-mentioned thiol compound treatment. Above all, as the curing agent for the epoxy resin, it is more preferable to use pentaerythritol tetrakis (3-mercaptobutyrate) which is a thiol compound (for example, "Carens MT (registered trademark) PE1" manufactured by Showa Denko KK). In this case, there is an advantage that the elongation rate is particularly large and the impact resistance is superior. Resin articles of various resin types can be bonded to (the primer layer) of the aluminum material on which the primer layer made of such an epoxy resin-based thermosetting resin is formed (the resin type of the resin article to be bonded can be bonded. It doesn't matter).
〔ビニルエステル樹脂系熱硬化性樹脂〕
 前記ビニルエステル樹脂としては、ビニルエステルオリゴマーを重合性モノマー(例えばスチレンモノマー等)に溶解したもの等が挙げられる。このようなビニルエステル樹脂は、エポキシアクリレート樹脂とも呼ばれており、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)、「塗料用語辞典」(色材協会、1993年発行)等に記載されているものも使用できる。前記ビニルエステル樹脂の市販品としては、特に限定されるものではないが、例えば、昭和電工株式会社製「リポキシ(登録商標)R-802」、「リポキシ(登録商標)R-804」、「リポキシ(登録商標)R-806」等が挙げられる。
[Vinyl ester resin-based thermosetting resin]
Examples of the vinyl ester resin include those obtained by dissolving a vinyl ester oligomer in a polymerizable monomer (for example, a styrene monomer). Such vinyl ester resins are also called epoxy acrylate resins and are described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary" (Japan Society of Color Material, published in 1993), etc. You can also use the ones that have been made. The commercially available vinyl ester resin is not particularly limited, but for example, "Lipoxy (registered trademark) R-802", "Lipoxy (registered trademark) R-804", and "Lipoxy" manufactured by Showa Denko KK. (Registered trademark) R-806 ”and the like.
 前記ビニルエステル樹脂としては、ウレタンアクリレート樹脂およびウレタンメタクリレート樹脂を用いてもよい。このようなウレタン(メタ)アクリレート樹脂は、特に限定されるものではないが、例えば、ポリイソシアネートと、ポリヒドロキシ化合物又は多価アルコールとを反応させた後、さらに、水酸基含有(メタ)アクリル化合物および必要に応じて水酸基含有アリルエーテル化合物を反応させることによって得ることができるラジカル重合性不飽和基含有オリゴマーを挙げることができ、このようなラジカル重合性不飽和基含有オリゴマーの市販品としては、例えば、昭和電工株式会社製「リポキシ(登録商標)R-6545」等が挙げられる。 As the vinyl ester resin, urethane acrylate resin and urethane methacrylate resin may be used. Such a urethane (meth) acrylate resin is not particularly limited, but for example, after reacting polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acrylic compound and Examples thereof include radically polymerizable unsaturated group-containing oligomers that can be obtained by reacting a hydroxyl group-containing allyl ether compound as needed. Examples of commercially available products of such radically polymerizable unsaturated group-containing oligomers include. , Showa Denko Co., Ltd. "Lipoxy (registered trademark) R-6545" and the like.
〔不飽和ポリエステル樹脂系熱硬化性樹脂〕
 前記不飽和ポリエステル樹脂としては、二価アルコールと不飽和二塩基酸(及び必要に応じて飽和二塩基酸を用いてもよい)とのエステル化反応による縮合生成物(不飽和ポリエステル)を重合性モノマー(例えばスチレンモノマー等)に溶解したもの等が挙げられる。前記不飽和ポリエステル樹脂としては、「ポリエステル樹脂ハンドブック」(日刊工業新聞社、1988年発行)、「塗料用語辞典」(色材協会、1993年発行)等に記載されているものも使用できる。前記不飽和ポリエステル樹脂の市販品としては、例えば、昭和電工株式会社製「リゴラック」等が挙げられる。
[Unsaturated polyester resin-based thermosetting resin]
As the unsaturated polyester resin, a condensation product (unsaturated polyester) obtained by an esterification reaction between a dihydric alcohol and an unsaturated dibasic acid (and a saturated dibasic acid may be used if necessary) is polymerizable. Examples thereof include those dissolved in a monomer (for example, styrene monomer). As the unsaturated polyester resin, those described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988), "Paint Glossary" (Japan Society of Color Material, published in 1993) and the like can also be used. Examples of commercially available products of the unsaturated polyester resin include "Rigolac" manufactured by Showa Denko KK.
 前記ビニルエステル樹脂、不飽和ポリエステル樹脂は、いずれも、有機過酸化物開始剤を添加して加熱によるラジカル重合によって硬化させることができる。前記有機過酸化物としては、特に限定されるものではないが、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類されるもの等が挙げられ、コバルト金属塩等と組み合わせれば常温での硬化も可能となる。前記コバルト金属塩としては、特に限定されるものではないが、例えば、ナフテン酸コバルト、オクチル酸コバルト、水酸化コバルト等が挙げられ、中でも、ナフテン酸コバルト又は/及びオクチル酸コバルトを用いるのが好ましい。 Both the vinyl ester resin and the unsaturated polyester resin can be cured by radical polymerization by heating by adding an organic peroxide initiator. The organic peroxide is not particularly limited, and is classified into, for example, ketone peroxide, peroxyketal, hydroperoxide, diallyl peroxide, diacyl peroxide, peroxyester, and peroxydicarbonate. If it is combined with a cobalt metal salt or the like, it can be cured at room temperature. The cobalt metal salt is not particularly limited, and examples thereof include cobalt naphthenate, cobalt octylate, and cobalt hydroxide. Among them, cobalt naphthenate and / and cobalt octylate are preferably used. ..
 なお、前記硬化性樹脂として、光硬化タイプを使用してもよく、この場合には可視光線の照射もより短時間で硬化させることができる。また、前記硬化性樹脂として、熱硬化タイプや常温硬化タイプと共に光硬化タイプを併用することもできる。前記光硬化性樹脂(光硬化タイプ)の市販品としては、例えば、昭和電工株式会社製「リポキシ(登録商標)LC-760」、「リポキシ(登録商標)LC-720」等が挙げられる。 A photocurable type may be used as the curable resin, and in this case, irradiation with visible light can be cured in a shorter time. Further, as the curable resin, a photocurable type can be used in combination with a thermosetting type and a room temperature curing type. Examples of commercially available products of the photocurable resin (photocurable type) include "Lipoxy (registered trademark) LC-760" and "Lipoxy (registered trademark) LC-720" manufactured by Showa Denko KK.
(熱可塑性樹脂を含むプライマー)
 「熱可塑性樹脂を含むプライマー」を構成する熱可塑性樹脂は、官能基含有層上でモノマーを反応させて生成した熱可塑性樹脂であることが望ましい。既にポリマー化している熱可塑性樹脂を使用するのではなく、ポリマー化するためのモノマー組成物を官能基含有層上で重付加反応又はラジカル重合反応させて、ポリマー化することで、リニアポリマー構造の直鎖状高分子で構成されるプライマー層が形成され、官能基含有層上の官能基とも化学結合させることができる。ここで、リニアポリマーとは、ポリマー分子中に架橋構造を含まず、1次元の直鎖状であるポリマーを意味する。リニアポリマーは、架橋構造による3次元ネットワークを構成する熱硬化性樹脂とは異なり、熱可塑性を有する。
 以下、重付加反応させるものを重付加型熱可塑性樹脂、ラジカル重合反応させるものをラジカル重合型熱可塑性樹脂という。
(Primer containing thermoplastic resin)
The thermoplastic resin constituting the "primer containing a thermoplastic resin" is preferably a thermoplastic resin produced by reacting a monomer on a functional group-containing layer. Rather than using a thermoplastic resin that has already been polymerized, the monomer composition for polymerization is polymerized by subjecting it to a polyaddition reaction or a radical polymerization reaction on the functional group-containing layer to polymerize the linear polymer structure. A primer layer composed of a linear polymer is formed, and can be chemically bonded to a functional group on the functional group-containing layer. Here, the linear polymer means a polymer that does not contain a crosslinked structure in the polymer molecule and is one-dimensional linear. Linear polymers have thermoplasticity, unlike thermosetting resins that form a three-dimensional network with a crosslinked structure.
Hereinafter, the one to be subjected to the double addition reaction is referred to as a heavy addition type thermoplastic resin, and the one to be subjected to a radical polymerization reaction is referred to as a radical polymerization type thermoplastic resin.
〔重付加型熱可塑性樹脂〕
 重付加型熱可塑性樹脂を製造するためのモノマー組成物は、重付加によりリニアポリマー構造の直鎖状高分子を生成する重付加反応性化合物の組み合わせを構成成分として含む組成物である。前記組み合わせは、下記(1)~(4)の少なくとも何れかの組み合わせであることが好ましい。
(1)2官能イソシアネート化合物と2官能の水酸基を有する化合物
(2)2官能エポキシ化合物と2官能の水酸基を有する化合物
(3)2官能エポキシ化合物と2官能カルボキシ化合物
(4)2官能エポキシ化合物と2官能チオール化合物
[Heavy addition type thermoplastic resin]
The monomer composition for producing a double-addition type thermoplastic resin is a composition containing a combination of double-addition reactive compounds that produce a linear polymer having a linear polymer structure by double addition as a constituent component. The combination is preferably at least one of the following combinations (1) to (4).
(1) Bifunctional isocyanate compound and compound having bifunctional hydroxyl group (2) Bifunctional epoxy compound and compound having bifunctional hydroxyl group (3) Bifunctional epoxy compound and bifunctional carboxy compound (4) Bifunctional epoxy compound Bifunctional thiol compound
《2官能イソシアネート化合物と2官能の水酸基を有する化合物》
 前記ウレタン樹脂に記載の原料の中で、2官能イソシアネート化合物と2官能の水酸基を有する化合物の組み合わせることで、リニアポリマー構造の直鎖状高分子を生成させることができる。
 具体的には、例えばヘキサメチレンジイソシアネート、テトラメチレンジイソシアネート、ダイマー酸ジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)又はその混合物、p-フェニレンジシソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート(MDI)等のジイソシアネート化合物とエチレングリコール、プロピレングリコール、ジエチレングリコール等の脂肪族グリコールとの組み合わせが挙げられる。その配合比は、-OH/-NCO当量比で0.7~1.5の範囲が好適である。
  前記二液型としての触媒硬化型で使用するウレタン化触媒としては、特に限定されるものではないが、例えば、アミン系触媒、有機錫系触媒等が挙げられる。前記アミン系触媒としては、特に限定されるものではないが、例えば、トリエチレンジアミン、テトラメチルグアニジン、N,N,N’,N’-テトラメチルヘキサン-1,6-ジアミン、ジメチルエーテルアミン、N,N,N’,N’’,N’’-ペンタメチルジプロピレン-トリアミン、N-メチルモルフォリン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルアミノエトキシエタノール、トリエチルアミン等が挙げられる。前記有機錫系触媒としては、特に限定されるものではないが、例えば、ジブチルチンジアセテート、ジブチルチンジラウレート、ジブチルチンチオカルボキシレート、ジブチルチンジマレエート等が挙げられる。一般にはポリオール成分100質量部に対しウレタン化触媒を0.01~10質量部配合するのが好ましい。
<< A compound having a bifunctional isocyanate compound and a bifunctional hydroxyl group >>
By combining a bifunctional isocyanate compound and a compound having a bifunctional hydroxyl group among the raw materials described in the urethane resin, a linear polymer having a linear polymer structure can be produced.
Specifically, for example, hexamethylene diisocyanate, tetramethylene diisocyanate, diimmerate diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI) or a mixture thereof, p-phenylenediocyanate, xylylene diisocyanate, diphenylmethane diisocyanate. Examples thereof include a combination of a diisocyanate compound such as (MDI) and an aliphatic glycol such as ethylene glycol, propylene glycol and diethylene glycol. The compounding ratio is preferably in the range of 0.7 to 1.5 in terms of -OH / -NCO equivalent ratio.
The urethanization catalyst used in the catalyst curing type as the two-component type is not particularly limited, and examples thereof include an amine-based catalyst and an organic tin-based catalyst. The amine-based catalyst is not particularly limited, but for example, triethylenediamine, tetramethylguanidine, N, N, N', N'-tetramethylhexane-1,6-diamine, dimethyl etheramine, N, Examples thereof include N, N', N'', N''-pentamethyldipropylene-triamine, N-methylmorpholine, bis (2-dimethylaminoethyl) ether, dimethylaminoethoxyethanol, triethylamine and the like. The organic tin catalyst is not particularly limited, and examples thereof include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin thiocarboxylate, and dibutyltin dimalate. Generally, it is preferable to add 0.01 to 10 parts by mass of the urethanization catalyst with respect to 100 parts by mass of the polyol component.
《2官能エポキシ化合物と2官能の水酸基を有する化合物》
 ビスフェノールA型エポキシ樹脂とビスフェノールAの組み合わせが代表的であるが、ビスフェノールA以外のエポキシ樹脂としては公知のものが使用できる。具体的にはビスフェノールF、ビスフェノールS、ビフェノール型エポキシ樹脂、ナフタレン型2官能エポキシ樹脂等の芳香族エポキシ樹脂や1,6-ヘキサンジオールジグリシジルエーテル等脂肪族エポキシ樹脂が挙げられる。
 また、ビスフェノールA以外の2官能の水酸基を有する化合物としては、ビスフェノールF、ビスフェノールS、ビフェノール等のフェノール類やエチレングリコール、プロピレングリコール、ジエチレングリコール等の脂肪族グリコールが挙げられる。これらの組み合わせは、前記現場重合型フェノキシ樹脂とか熱可塑エポキシ樹脂とも呼ばれる樹脂である。硬化前は、熱硬化性樹脂と同様の取り扱いで、加熱硬化後に熱可塑性樹脂の構造となる樹脂である。
 触媒としては、特に限定されるものではないが、例えば、アミン系触媒、リン系触媒等が挙げられる。トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、トリフェニルホスフィン等が挙げられる。
<< A compound having a bifunctional epoxy compound and a bifunctional hydroxyl group >>
A combination of bisphenol A type epoxy resin and bisphenol A is typical, but known epoxy resins other than bisphenol A can be used. Specific examples thereof include aromatic epoxy resins such as bisphenol F, bisphenol S, biphenol type epoxy resins and naphthalene type bifunctional epoxy resins, and aliphatic epoxy resins such as 1,6-hexanediol diglycidyl ether.
Examples of the compound having a bifunctional hydroxyl group other than bisphenol A include phenols such as bisphenol F, bisphenol S and biphenol, and aliphatic glycols such as ethylene glycol, propylene glycol and diethylene glycol. These combinations are resins also called in-situ polymerization type phenoxy resins or thermoplastic epoxy resins. Before curing, it is handled in the same way as a thermosetting resin, and after heat curing, it has a structure of a thermoplastic resin.
The catalyst is not particularly limited, and examples thereof include amine-based catalysts and phosphorus-based catalysts. Examples thereof include triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, triphenylphosphine and the like.
《2官能エポキシ化合物と2官能カルボキシ化合物》
 2官能エポキシ化合物は、前記2官能エポキシ化合物を使用することができる。2官能カルボキシ化合物としては、分子内にカルボキシ基を2つ有する化合物であればよく、例えばテレフタル酸、イソフタル酸等の芳香族ジカルボン酸やシュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、等の脂肪族ジカルボン酸が挙げられる。
 硬化前は、熱硬化性樹脂と同様の取り扱いで、加熱硬化後に熱可塑性樹脂の構造となる樹脂である。
 触媒としては、特に限定されるものではないが、例えば、アミン系触媒、リン系触媒等が挙げられる。トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、トリフェニルホスフィン等が挙げられる。
<< Bifunctional epoxy compound and bifunctional carboxy compound >>
As the bifunctional epoxy compound, the bifunctional epoxy compound can be used. The bifunctional carboxy compound may be a compound having two carboxy groups in the molecule, for example, aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid, succinic acid, succinic acid, malonic acid, glutaric acid, adipic acid, and the like. Examples thereof include aliphatic dicarboxylic acids such as succinic acid, malonic acid, and fumaric acid.
Before curing, it is handled in the same way as a thermosetting resin, and after heat curing, it has a structure of a thermoplastic resin.
The catalyst is not particularly limited, and examples thereof include amine-based catalysts and phosphorus-based catalysts. Examples thereof include triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, triphenylphosphine and the like.
《2官能エポキシ化合物と2官能チオール化合物》
 2官能エポキシ化合物は、前記2官能エポキシ化合物を使用することができる。2官能チオール化合物としては、分子内にメルカプト基を2つ有する化合物であればよく、例えば昭和電工株式会社製2官能2級チオール化合物カレンズMT(登録商標)BD1:1,4-ビス(3-メルカプトブチリルオキシ)ブタン等が挙げられる。
 硬化前は、熱硬化性樹脂と同様の取り扱いで、加熱硬化後に熱可塑性樹脂の構造となる樹脂である。
 触媒としては、特に限定されるものではないが、例えば、アミン系触媒、リン系触媒等が挙げられる。トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、トリフェニルホスフィン等が挙げられる。
<< Bifunctional epoxy compound and bifunctional thiol compound >>
As the bifunctional epoxy compound, the bifunctional epoxy compound can be used. The bifunctional thiol compound may be a compound having two mercapto groups in the molecule. For example, a bifunctional secondary thiol compound Karenz MT (registered trademark) BD1: 1,4-bis (3-) manufactured by Showa Denko Co., Ltd. Mercaptobutyryloxy) butane and the like can be mentioned.
Before curing, it is handled in the same way as a thermosetting resin, and after heat curing, it has a structure of a thermoplastic resin.
The catalyst is not particularly limited, and examples thereof include amine-based catalysts and phosphorus-based catalysts. Examples thereof include triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, triphenylphosphine and the like.
〔ラジカル重合型熱可塑性樹脂〕
 ラジカル重合型熱可塑性樹脂は、不飽和基を有する単官能モノマーのラジカル単独重合体又はラジカル共重合体である、リニアポリマー構造の直鎖状高分子を含む樹脂組成物からなることが好ましい。
 ラジカル重合型熱可塑性樹脂を製造するためのモノマー組成物は、エチレン性不飽和基を有する単官能モノマーを少なくとも一種含む組成物である。
 前記エチレン性不飽和基を有する単官能モノマーとしては、例えば、スチレンモノマー、スチレンのα-,o-,m-,p-アルキル,ニトロ,シアノ,アミド,エステル誘導体、クロルスチレン、ビニルトルエン、ジビニルベンゼンなどのスチレン系モノマー;ブタジエン、2,3-ジメチルブタジエン、イソプレン、クロロプレンなどのジエン類;(メタ)アクリル酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸-i-プロピル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸テトラヒドロフリル、アセトアセトキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートおよびフェノキシエチル(メタ)アクリレートなどの(メタ)アクリル酸エステル類が挙げられる。
[Radical polymerization type thermoplastic resin]
The radical polymerization type thermoplastic resin preferably comprises a resin composition containing a linear polymer having a linear polymer structure, which is a radical homopolymer or a radical copolymer of a monofunctional monomer having an unsaturated group.
The monomer composition for producing a radical polymerization type thermoplastic resin is a composition containing at least one monofunctional monomer having an ethylenically unsaturated group.
Examples of the monofunctional monomer having an ethylenically unsaturated group include styrene monomer, α-, o-, m-, p-alkyl, nitro, cyano, amide, ester derivative, chlorostyrene, vinyltoluene, and divinyl of styrene. Sterylous monomers such as benzene; Dienes such as butadiene, 2,3-dimethylbutadiene, isoprene, chloroprene; ethyl (meth) acrylate, methyl (meth) acrylate, -n-propyl (meth) acrylate, (meth) ) Acrylic acid-i-propyl, (meth) hexyl acrylate, (meth) 2-ethylhexyl acrylate, (meth) lauryl acrylate, dodecyl (meth) acrylate, cyclopentyl (meth) acrylate, (meth) acrylate Examples thereof include (meth) acrylic acid esters such as cyclohexyl, tetrahydrofuryl (meth) acrylate, acetoacetoxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and phenoxyethyl (meth) acrylate.
 前記ラジカル重合性化合物のラジカル重合反応のための触媒としては、例えば、公知の有機過酸化物や光開始剤等が好適に用いられる。有機過酸化物にコバルト金属塩やアミン類を組み合わせた常温ラジカル重合開始剤を使用してもよい。有機過酸化物としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアリルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートに分類されるものが挙げられる。光開始剤としては、紫外線から可視光線で重合開始できるものを使用することが望ましい。
 前記ラジカル重合反応は、反応化合物等の種類にもよるが、常温~200℃で、5~90分間加熱して行うことが好ましい。また光硬化の場合は紫外線や可視光線を照射して重合反応を行う。具体的には、前記樹脂組成物をコーティングした後、加熱してラジカル重合反応を行うことにより、前記ラジカル重合性化合物からなる熱可塑性樹脂層を形成することができる。
As the catalyst for the radical polymerization reaction of the radically polymerizable compound, for example, known organic peroxides, photoinitiators and the like are preferably used. A room temperature radical polymerization initiator in which a cobalt metal salt or amines are combined with an organic peroxide may be used. Examples of organic peroxides include those classified into ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates. As the photoinitiator, it is desirable to use one that can initiate polymerization with visible light from ultraviolet rays.
The radical polymerization reaction is preferably carried out by heating at room temperature to 200 ° C. for 5 to 90 minutes, although it depends on the type of the reaction compound and the like. In the case of photocuring, the polymerization reaction is carried out by irradiating with ultraviolet rays or visible light. Specifically, a thermoplastic resin layer made of the radically polymerizable compound can be formed by coating the resin composition and then heating it to carry out a radical polymerization reaction.
[金属-非金属接合体]
 本発明の金属-非金属接合体7は、図3に示すように、前記の表面処理金属材3の官能基含有層22側の表面又は前記の複合積層体5のプライマー層6側の表面に、非金属である被接合材8が接合一体化されてなる。
 接合一体化する方法としては、前記非金属である被接合材を成形後に、前記の表面処理金属材又は前記の複合積層体と接合一体化させる方法でもよいし、前記非金属である被接合材を成形するのと同時に、接合一体化させる方法でもよい。
 前記非金属である被接合材を成形後に、前記の表面処理金属材又は前記の複合積層体と接合一体化させる方法として、溶着による接合、具体的には、超音波溶着、振動溶着、熱溶着、熱風溶着、高周波誘導溶着、高周波誘電溶着、及び射出溶着を例示することができる。
 前記非金属である被接合材を成形するのと同時に、接合一体化させる場合、具体的には、前記非金属である被接合材が樹脂のとき、当該樹脂を、射出成形、プレス成形、フィラメントワインディング成形、ハンドレイアップ成形、トランスファー成形、スプレードライ、塗布、浸漬等の方法で成形する際に、前記の表面処理金属材の表面処理層側の表面又は前記の複合積層体のプライマー層側の表面と接合一体化させることにより、金属-非金属接合体を得ることができる。これらの成形の方法のうち、射出成形、プレス成形、フィラメントワインディング成形、ハンドレイアップ成形が好ましい。
[Metal-non-metal joint]
As shown in FIG. 3, the metal-non-metal joint 7 of the present invention is formed on the surface of the surface-treated metal material 3 on the functional group-containing layer 22 side or the surface of the composite laminate 5 on the primer layer 6 side. , The non-metal material 8 to be joined is joined and integrated.
The method of joining and integrating may be a method of joining and integrating the non-metal material to be joined with the surface-treated metal material or the composite laminate after molding, or the non-metal material to be joined. At the same time as molding, a method of joining and integrating may be used.
As a method of joining and integrating the non-metal material to be joined with the surface-treated metal material or the composite laminate after molding, joining by welding, specifically, ultrasonic welding, vibration welding, and heat welding. , Hot air welding, high frequency induction welding, high frequency dielectric welding, and injection welding can be exemplified.
When the non-metal object to be joined is molded and integrated at the same time, specifically, when the non-metal object to be bonded is a resin, the resin is injection-molded, press-molded, or filament. When molding by a method such as winding molding, hand lay-up molding, transfer molding, spray drying, coating, or dipping, the surface of the surface-treated metal material on the surface-treated layer side or the primer layer side of the composite laminate A metal-non-metal joint can be obtained by joining and integrating with the surface. Of these molding methods, injection molding, press molding, filament winding molding, and hand layup molding are preferable.
 上述したように、前記プライマー層の表面は、種々の材質(金属材料、有機材料等)の被接合材、特に、非金属である被接合材(樹脂材等)との接着性に優れている。非金属である被接合材を複合積層体のプライマー層側の表面に接合一体化することで、金属材と、非金属である被接合材とが高い強度で接合した金属-非金属接合体を好適に得ることができる。 As described above, the surface of the primer layer is excellent in adhesiveness to a material to be bonded of various materials (metal material, organic material, etc.), particularly a non-metal material to be bonded (resin material, etc.). .. By joining and integrating the non-metal object to be bonded to the surface of the composite laminate on the primer layer side, a metal-non-metal bond in which the metal material and the non-metal object to be bonded are bonded with high strength can be obtained. It can be preferably obtained.
 前記プライマー層の厚さ(乾燥厚さ)は、前記被接合材の材質や接合部分の接触面積にもよるが、前記プライマー層と前記被接合材との優れた接着性を得る観点から、1μm~10mmであることが好ましく、より好ましくは2μm~8mm、さらに好ましくは3μm~5mmである。なお、プライマー層の厚さ(乾燥厚さ)は、前記プライマー層が複数層のときは、合計の厚さのことをいうものとする。
 なお、接合時に加熱する場合、その加熱温度によっては、接合後に室温に冷却する過程で、金属材と被接合材との熱膨張係数の差に起因して金属-非金属接合体が熱変形を生じやすくなる。このような熱変形を抑制緩和する観点から、金属材と被接合材との間に伸び率の大きい特性を有する部分を所定の厚みで設けておくことが望ましい。前記厚さは、接合時の温度変化(接合時の加熱温度から室温冷却までの温度変化)と前記プライマー層の伸び率等の物性を考慮して求められる。
 例えば、アルミニウム材と炭素繊維強化樹脂(CFRP)等とを接合一体化させる場合、前記プライマー層の厚さは0.1~10mmであることが好ましく、より好ましくは0.2~8mm、さらに好ましくは0.5~5mmである。
The thickness (dry thickness) of the primer layer depends on the material of the material to be joined and the contact area of the joint portion, but is 1 μm from the viewpoint of obtaining excellent adhesiveness between the primer layer and the material to be joined. It is preferably to 10 mm, more preferably 2 μm to 8 mm, still more preferably 3 μm to 5 mm. The thickness of the primer layer (dry thickness) means the total thickness when the primer layers are a plurality of layers.
When heating at the time of joining, depending on the heating temperature, the metal-non-metal bonded body undergoes thermal deformation due to the difference in the coefficient of thermal expansion between the metal material and the material to be joined in the process of cooling to room temperature after joining. It is easy to occur. From the viewpoint of suppressing and alleviating such thermal deformation, it is desirable to provide a portion having a large elongation rate between the metal material and the material to be joined with a predetermined thickness. The thickness is determined in consideration of the temperature change at the time of joining (the temperature change from the heating temperature at the time of joining to the cooling at room temperature) and the physical properties such as the elongation rate of the primer layer.
For example, when an aluminum material and a carbon fiber reinforced resin (CFRP) or the like are joined and integrated, the thickness of the primer layer is preferably 0.1 to 10 mm, more preferably 0.2 to 8 mm, still more preferably. Is 0.5 to 5 mm.
 非金属である被接合材の種類によっては、接着剤を用いることにより、金属材とより高い強度で接合した金属-非金属接合体を得ることができる。 Depending on the type of non-metal bonded material, a metal-non-metal bonded body bonded to the metal material with higher strength can be obtained by using an adhesive.
 接着剤は、被接合材の種類に応じて適宜選択されるが、例えば、エポキシ樹脂系、ウレタン樹脂系、ビニルエステル樹脂系等の公知の接着剤を用いることができる。
 なお、接着時に加熱する場合、その加熱温度によっては、接着後に室温に冷却する過程で、金属材と非金属である被接合材との熱膨張係数の差に起因して金属-非金属接合体が熱変形を生じやすくなる。このような熱変形を抑制緩和する観点から、接着剤層の厚さは、前記プライマー層と接着剤層の合計厚さが0.5mm以上になるようにし、金属材と被接合材との間に伸び率の大きい特性を有する部分を所定の厚みで設けておくことが望ましい。前記合計厚さは、接着時の温度変化(接着持の加熱温度から室温冷却までの温度変化)と前記プライマー層及び接着剤の伸び率等の物性を考慮して求められる。
The adhesive is appropriately selected depending on the type of the material to be bonded, and for example, a known adhesive such as an epoxy resin type, a urethane resin type, or a vinyl ester resin type can be used.
When heating at the time of bonding, depending on the heating temperature, a metal-non-metal bonded body due to the difference in thermal expansion coefficient between the metal material and the non-metal bonded material in the process of cooling to room temperature after bonding. Is prone to thermal deformation. From the viewpoint of suppressing and alleviating such thermal deformation, the thickness of the adhesive layer is set so that the total thickness of the primer layer and the adhesive layer is 0.5 mm or more, and between the metal material and the material to be bonded. It is desirable to provide a portion having a characteristic of high elongation rate in a predetermined thickness. The total thickness is determined in consideration of the temperature change at the time of adhesion (temperature change from the heating temperature of the adhesive holding to room temperature cooling) and physical properties such as the elongation rate of the primer layer and the adhesive.
<被接合材>
 非金属である被接合材は、熱可塑性樹脂、熱硬化性樹脂(硬化物)等の樹脂であることが好ましい。前記樹脂は、樹脂単独であってもよいし、FRPなどガラス繊維や炭素繊維で強化されたものであってもよい。被接合材である樹脂は、あらかじめ成形された部材として、複合積層体のプライマー層又は前記表面処理金属材の官能基含有層を介して金属材と接合(接着)することにより金属-非金属接合体を形成してもよい。また前述のように、プライマー層又は官能基含有層上でモノマーを重合することにより、樹脂の被接合材を形成してもよい。あるいは、表面処理金属材又は複合積層体に対して熱可塑性樹脂をインサート成形することで金属-非金属接合体としてもよい。
<Material to be joined>
The material to be joined, which is a non-metal, is preferably a resin such as a thermoplastic resin or a thermosetting resin (cured product). The resin may be a resin alone, or may be reinforced with glass fibers such as FRP or carbon fibers. The resin to be bonded is metal-non-metal bonded by bonding (adhering) to the metal material as a preformed member via the primer layer of the composite laminate or the functional group-containing layer of the surface-treated metal material. You may form a body. Further, as described above, the resin material to be bonded may be formed by polymerizing the monomer on the primer layer or the functional group-containing layer. Alternatively, a metal-non-metal joint may be formed by insert-molding a thermoplastic resin on a surface-treated metal material or a composite laminate.
(樹脂)
 被接合材とする樹脂は、特に限定されるものではなく、一般的な合成樹脂でよい。例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリブチレンテレフタレート樹脂、ポリエーテルイミド樹脂等の自動車部品等に用いられるような樹脂等も挙げられる。あるいは、FRPや熱硬化性樹脂でもよい。FRPは、ガラス繊維、炭素繊維などの繊維をプラスチックの中に入れて強度を向上させた複合材料を意味する。
 FRPは、前記プライマー層の形成に使用したものと同一種類の樹脂とガラス繊維、炭素繊維、アラミド繊維等を使用した織物や不織布をハンドレイアップ成形してもよいし、フィラメントワインディング成形してもよい。またシートモールディングコンパウンド(SMC)やバルクモールディングコンパウンド(BMC)を使用してもよい。
 前記シートモールディングコンパウンド(SMC)とは、不飽和ポリエステル樹脂及び/又はビニルエステル樹脂、重合性不飽和単量体、硬化剤、低収縮剤、充填剤等を混合した後、さらに繊維補強材を含有させることによって得られるシート状の成形材料である。前記バルクモールディングコンパウンド(BMC)とは、バルク状の成形材料である。これらの成形材料は、圧縮成形、トランスファー成形、射出成形等の成形法により目的の成形体に成形するが、この際にプライマー層を有する複合積層体のプライマー層側表面上に金属材を一緒に一体成形して両者を接合一体化してもよい。
(resin)
The resin used as the material to be bonded is not particularly limited, and may be a general synthetic resin. For example, resins used for automobile parts such as polycarbonate resin, polyester resin, polybutylene terephthalate resin, and polyetherimide resin can also be mentioned. Alternatively, FRP or thermosetting resin may be used. FRP means a composite material in which fibers such as glass fiber and carbon fiber are put in plastic to improve the strength.
FRP may be hand lay-up molded or filament winding molded using the same type of resin and glass fiber, carbon fiber, aramid fiber and the like used for forming the primer layer. Good. Further, a sheet molding compound (SMC) or a bulk molding compound (BMC) may be used.
The sheet molding compound (SMC) is a mixture of unsaturated polyester resin and / or vinyl ester resin, polymerizable unsaturated monomer, curing agent, low shrinkage agent, filler, etc., and then further contains a fiber reinforcing material. It is a sheet-shaped molding material obtained by allowing the resin to be formed. The bulk molding compound (BMC) is a bulk molding material. These molding materials are molded into a target molded product by a molding method such as compression molding, transfer molding, injection molding, etc. At this time, a metal material is put together on the primer layer side surface of the composite laminate having a primer layer. They may be integrally molded and both may be joined and integrated.
 被接合材は、部材の形ではなく、膜状であってもよい。例えば、塗料による塗膜や、金属保護膜であってもよい。 The material to be joined may be in the form of a film instead of the shape of a member. For example, it may be a coating film made of paint or a metal protective film.
(塗膜)
 塗膜は、顔料、樹脂、添加剤、溶剤を含む塗料を塗って形成される層を意味する。塗膜は、塗料を塗布後乾燥して形成することができる。
(Coating film)
The coating film means a layer formed by applying a coating material containing a pigment, a resin, an additive, and a solvent. The coating film can be formed by applying the paint and then drying it.
(金属保護膜)
 金属保護膜は、前記の表面処理金属材の表面処理層の表面に樹脂膜形成することにより、表面処理金属材に耐蝕性を付与する役割を果たす。
 金属保護膜としては、例えば缶内面保護膜としてエポキシ樹脂/フェノール樹脂系、飽和ポリエステル樹脂/フェノール樹脂系の樹脂膜等がある。
(Metal protective film)
The metal protective film plays a role of imparting corrosion resistance to the surface-treated metal material by forming a resin film on the surface of the surface-treated layer of the surface-treated metal material.
Examples of the metal protective film include an epoxy resin / phenol resin-based resin film and a saturated polyester resin / phenol resin-based resin film as the can inner surface protective film.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
 <実施例1>
 (前処理工程)
 25mm×100mmの大きさの平面視矩形状の厚さ1.6mmのアルミニウム板(A6063)(アルミニウム物品)を、濃度5質量%の水酸化ナトリウム水溶液中に1.5分間浸漬した後、濃度5質量%の硝酸水溶液で中和処理し、水洗、乾燥を行って、化成処理を施し、次いで前記化成処理後のアルミニウム板を、純水中で10分間煮沸することによって、ベーマイト処理(前処理)を行った。このベーマイト処理によって前記アルミニウム板の表面に前処理部(表面凹凸を有するベーマイト皮膜)を形成した。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to those of these examples.
<Example 1>
(Pretreatment process)
An aluminum plate (A6063) (aluminum article) having a size of 25 mm × 100 mm and a rectangular shape in a plan view and a thickness of 1.6 mm is immersed in an aqueous solution of sodium hydroxide having a concentration of 5% by mass for 1.5 minutes, and then has a concentration of 5. Neutralization treatment with mass% aqueous nitrate solution, washing with water, drying, chemical conversion treatment, and then boehmite treatment (pretreatment) by boiling the aluminum plate after the chemical conversion treatment in pure water for 10 minutes. Was done. By this boehmite treatment, a pre-treated portion (boehmite film having surface irregularities) was formed on the surface of the aluminum plate.
 (シランカップリング剤処理工程)
 次に、3-アミノプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-903;シランカップリング剤)0.5gを工業用エタノール100gに溶解せしめてなる70℃のシランカップリング剤溶液中に、前記ベーマイト処理後のアルミニウム板を5分間浸漬した後、該アルミニウム板を取り出して乾燥せしめシランカップリング剤による層を形成した。
 (官能基付与工程)
 次に2-イソシアネトエチルメタクリレート(昭和電工株式会社製 カレンズMOI(登録商標)):1.2g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30):0.05gをトルエン150g中に溶解した溶液に70℃で5分間浸漬した後に引き揚げて乾燥した。このようにして、メタアクリロイル基を三次元方向に延ばした。
(Silane coupling agent treatment process)
Next, 0.5 g of 3-aminopropyltrimethoxysilane (KBM-903 manufactured by Shin-Etsu Silicone Co., Ltd .; silane coupling agent) is dissolved in 100 g of industrial ethanol in a silane coupling agent solution at 70 ° C. After immersing the aluminum plate after the boehmite treatment for 5 minutes, the aluminum plate was taken out and dried to form a layer with a silane coupling agent.
(Functional group imparting step)
Next, 2-isocyanate ethyl methacrylate (Showa Denko KK Karens MOI (registered trademark)): 1.2 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30): 0.05 g in toluene It was immersed in a solution dissolved in 150 g at 70 ° C. for 5 minutes, then lifted and dried. In this way, the meta-acryloyl group was extended in the three-dimensional direction.
 (プライマー層形成工程)
 次に、固形ビニルエステル樹脂(昭和電工株式会社製 VR-77)100gをアセトン100g中に溶解し、さらに有機過酸化物(化薬アクゾ株式会社製 パーブチル(登録商標)O)1.0gを混合した熱硬化性樹脂組成物を、前記官能基付与工程を経た後のアルミニウム板の官能基付着面(以下、官能基含有層表面という)に、乾燥厚さが15μmになるようにスプレー法にて塗布した後、空気中に常温で1時間放置することによって溶剤の揮発を行った。その後、120℃の乾燥炉中に30分間放置しビニルエステル樹脂の硬化を行ってプライマー層が形成されたアルミニウム板-1(プライマー付き)を得た。
(Primer layer forming step)
Next, 100 g of solid vinyl ester resin (VR-77 manufactured by Showa Denko Co., Ltd.) is dissolved in 100 g of acetone, and 1.0 g of organic peroxide (Perbutyl (registered trademark) O manufactured by Kayaku Akzo Corporation) is further mixed. The thermosetting resin composition was sprayed onto the functional group-adhering surface (hereinafter referred to as the functional group-containing layer surface) of the aluminum plate after undergoing the functional group-imparting step so that the dry thickness was 15 μm. After the coating, the solvent was volatilized by leaving it in the air at room temperature for 1 hour. Then, it was left in a drying oven at 120 ° C. for 30 minutes to cure the vinyl ester resin to obtain an aluminum plate-1 (with a primer) on which a primer layer was formed.
<比較例1>
 (前処理工程)
 実施例1の(前処理工程)と同様の操作を行った。
 (シランカップリング剤処理工程)
 3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-503;シランカップリング剤)0.5gを工業用エタノール100gに溶解せしめてなる70℃のシランカップリング剤溶液中で行うシランカップリング剤溶液中に、前記ベーマイト処理後のアルミニウム板を5分間浸漬した後、該アルミニウム板を取り出して乾燥せしめシランカップリング剤による層を形成した。
 (プライマー層形成工程)
 官能基付与工程は行わずに、実施例1の(プライマー層形成工程)と同様の操作を行い、アルミニウム版-2(プライマー付き)を得た。
<Comparative example 1>
(Pretreatment process)
The same operation as in (pretreatment step) of Example 1 was performed.
(Silane coupling agent treatment process)
3-Silane coupling performed in a silane coupling agent solution at 70 ° C. in which 0.5 g of metharoxypropyltrimethoxysilane (KBM-503 manufactured by Shinetsu Silicone Co., Ltd .; silane coupling agent) is dissolved in 100 g of industrial ethanol. The aluminum plate after the boehmite treatment was immersed in the agent solution for 5 minutes, and then the aluminum plate was taken out and dried to form a layer with a silane coupling agent.
(Primer layer forming step)
An aluminum plate-2 (with a primer) was obtained by performing the same operation as in Example 1 (primer layer forming step) without performing the functional group addition step.
 <実施例2>
 (前処理工程)
 実施例1と同様の操作を行った。
<Example 2>
(Pretreatment process)
The same operation as in Example 1 was performed.
 (シランカップリング剤処理工程)
 実施例1と同様の操作を行った。
 (官能基付与工程)
 次にグリシジルメタクリレート:1.0gをトルエン150g中に溶解した溶液に70℃で5分間浸漬した後に引き揚げて乾燥した。このようにして、メタクリロイル基を三次元方向に延ばした。
(Silane coupling agent treatment process)
The same operation as in Example 1 was performed.
(Functional group imparting step)
Next, glycidyl methacrylate: 1.0 g was immersed in a solution dissolved in 150 g of toluene at 70 ° C. for 5 minutes, and then lifted and dried. In this way, the methacryloyl group was extended in the three-dimensional direction.
 (プライマー層形成工程)
 次に、ビニルエステル樹脂(昭和電工株式会社製 R-806)100gに有機過酸化物(化薬アクゾ株式会社製 パーブチル(登録商標)O)1.0gを混合した熱硬化性樹脂組成物を、前記官能基付与工程を経た後のアルミニウム板の官能基含有層表面に、乾燥厚さが20μmになるようにスプレー法にて塗布した後、120℃乾燥炉中に30分間放置しビニルエステル樹脂の硬化を行ってプライマー層が形成されたアルミニウム板-3(プライマー付き)を得た。
(Primer layer forming step)
Next, a thermosetting resin composition obtained by mixing 100 g of vinyl ester resin (R-806 manufactured by Showa Denko Co., Ltd.) with 1.0 g of organic peroxide (Perbutyl (registered trademark) O manufactured by Kayaku Akzo Corporation). After applying the functional group-containing layer surface of the aluminum plate after undergoing the functional group imparting step by a spray method so that the drying thickness becomes 20 μm, the vinyl ester resin is left in a drying furnace at 120 ° C. for 30 minutes. Curing was performed to obtain an aluminum plate-3 (with a primer) on which a primer layer was formed.
 <実施例3>
 (前処理工程)
 実施例1と同様の操作を行った。
<Example 3>
(Pretreatment process)
The same operation as in Example 1 was performed.
 (シランカップリング剤処理工程)
 比較例1と同様の操作を行った。
 (官能基付与工程)
 次に2官能チオール化合物である1,4ビス(3-メルカプトブチリルオキシ)ブタン(昭和電工株式会社製 カレンズMT(登録商標) BD1):0.6g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30):0.05gをトルエン150g中に溶解した溶液に70℃で10分間浸漬した後に引き揚げて乾燥した。このようにして、化学結合可能な官能基を三次元方向に延ばした。
(Silane coupling agent treatment process)
The same operation as in Comparative Example 1 was performed.
(Functional group imparting step)
Next, 1,4 bis (3-mercaptobutyryloxy) butane (Carens MT (registered trademark) BD1 manufactured by Showa Denko Co., Ltd.), which is a bifunctional thiol compound: 0.6 g, 2,4,6-tris (dimethylamino) Methyl) phenol (DMP-30): 0.05 g was immersed in a solution of 0.05 g in 150 g of toluene at 70 ° C. for 10 minutes, then lifted and dried. In this way, the chemically bondable functional groups were extended in the three-dimensional direction.
 (プライマー層形成工程)
 次に、エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1004):100g、ビスフェノールA:12.6g、トリエチルアミン:0.45gをアセトン:209g中に溶解して得られた樹脂組成物を、前記官能基付与工程を経た後のアルミニウム板の官能基含有層表面に、乾燥厚さが10μmになるようにスプレー法にて塗布した後、空気中常温で30分間放置することによって溶剤を揮発させ、その後150℃の炉中に30分間放置して付加重合反応を行ない常温に戻した。前記官能基含有層表面に厚さ10μmのプライマー層が形成された、アルミニウム板-4(プライマー付き)を得た。
(Primer layer forming step)
Next, a resin composition obtained by dissolving 100 g of an epoxy resin (jER (registered trademark) 1004 manufactured by Mitsubishi Chemical Corporation): 100 g, bisphenol A: 12.6 g, and triethylamine: 0.45 g in acetone: 209 g was prepared. The solvent is volatilized by applying it to the surface of the functional group-containing layer of the aluminum plate after the functional group-imparting step by a spray method so that the dry thickness becomes 10 μm, and then leaving it in the air at room temperature for 30 minutes. After that, it was left in a furnace at 150 ° C. for 30 minutes to carry out an addition polymerization reaction and returned to room temperature. An aluminum plate-4 (with a primer) having a primer layer having a thickness of 10 μm formed on the surface of the functional group-containing layer was obtained.
 <比較例2>
 (前処理工程)
 実施例1の(前処理工程)と同様の操作を行った。
 (シランカップリング剤処理工程)
 実施例1のシランカップリング剤処理工程と同様の処理を行ってシランカップリング剤による層を形成した。
 (プライマー層形成工程)
 官能基付与工程は行わずに、実施例3の(プライマー層形成工程)と同様の操作を行い、アルミニウム版-5(プライマー付き)を得た。
<Comparative example 2>
(Pretreatment process)
The same operation as in (pretreatment step) of Example 1 was performed.
(Silane coupling agent treatment process)
The same treatment as in the silane coupling agent treatment step of Example 1 was carried out to form a layer with the silane coupling agent.
(Primer layer forming step)
An aluminum plate-5 (with a primer) was obtained by performing the same operation as in Example 3 (primer layer forming step) without performing the functional group addition step.
 <実施例4>
 (前処理工程)
 実施例1と同様の操作を行った。
<Example 4>
(Pretreatment process)
The same operation as in Example 1 was performed.
 (シランカップリング剤処理工程)
 次に、3-グリシドキシプロピルメチルジエトキシシラン(信越シリコーン株式会社製 KBM-403;シランカップリング剤)0.5gを工業用エタノール100gに溶解せしめてなるシランカップリング剤溶液を、前記ベーマイト処理後のアルミニウム板の上にスプレーで表面が均一に濡れるまで吹き付けたものを100℃乾燥炉中で5分間放置し反応を進めシランカップリング剤による層を形成した。
 (官能基付与工程)
 次にメタクリルアミド:0.3gをトルエン150g中に溶解した溶液をスプレーで表面が均一に濡れるまで吹き付けたものを100℃乾燥炉中で5分間放置しシランカップリング剤層との反応を進めた。このようにして、メタクリロイル基を三次元方向に延ばした。
(Silane coupling agent treatment process)
Next, a silane coupling agent solution prepared by dissolving 0.5 g of 3-glycidoxypropylmethyldiethoxysilane (KBM-403 manufactured by Shinetsu Silicone Co., Ltd .; silane coupling agent) in 100 g of industrial ethanol was added to the boehmite. What was sprayed onto the treated aluminum plate until the surface was uniformly wet was left in a drying furnace at 100 ° C. for 5 minutes to proceed with the reaction to form a layer with a silane coupling agent.
(Functional group imparting step)
Next, a solution prepared by dissolving 0.3 g of methacrylamide in 150 g of toluene was sprayed with a spray until the surface was uniformly wet, and left in a drying oven at 100 ° C. for 5 minutes to proceed with the reaction with the silane coupling agent layer. .. In this way, the methacryloyl group was extended in the three-dimensional direction.
 (プライマー層形成工程)
 実施例2のプライマー層形成工程と同様の処理を行ってアルミニウム板-6(プライマー付き)を得た。
(Primer layer forming step)
The same treatment as in the primer layer forming step of Example 2 was carried out to obtain an aluminum plate-6 (with a primer).
 <比較例3>
 (前処理工程)
 実施例1の(前処理工程)と同様の操作を行った。
 (シランカップリング剤処理工程)
 3-メタクリロキシプロピルトリメトキシシラン(信越シリコーン株式会社製 KBM-503;シランカップリング剤)0.5gを工業用エタノール100gに溶解せしめてなるシランカップリング剤溶液を、前記ベーマイト処理後のアルミニウム板の上にスプレーで表面が均一に濡れるまで吹き付けたものを100℃乾燥炉中で5分間放置し反応を進めシランカップリング剤による層を形成した。
 (プライマー層形成工程)
 官能基付与工程は行わずに、実施例4の(プライマー層形成工程)と同様の操作を行い、アルミニウム版-7(プライマー付き)を得た。
<Comparative example 3>
(Pretreatment process)
The same operation as in (pretreatment step) of Example 1 was performed.
(Silane coupling agent treatment process)
A silane coupling agent solution prepared by dissolving 0.5 g of 3-methacryloxypropyltrimethoxysilane (KBM-503 manufactured by Shin-Etsu Silicone Co., Ltd .; silane coupling agent) in 100 g of industrial ethanol is added to the aluminum plate after the boehmite treatment. What was sprayed on the surface until the surface was uniformly wet was left in a drying furnace at 100 ° C. for 5 minutes to proceed with the reaction to form a layer with a silane coupling agent.
(Primer layer forming step)
An aluminum plate-7 (with a primer) was obtained by performing the same operation as in Example 4 (primer layer forming step) without performing the functional group addition step.
 <実施例5>
 (前処理工程)
 実施例1と同様の操作を行った。
<Example 5>
(Pretreatment process)
The same operation as in Example 1 was performed.
 (シランカップリング剤処理工程)
 比較例1のシランカップリング剤処理工程と同様の操作を行った。
 (官能基付与工程)
 次に3官能チオール化合物であるペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製 カレンズMT(登録商標) PE1):0.6g、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30):0.05gをトルエン150g中に溶解した溶液に70℃で10分間浸漬した後に引き揚げて乾燥した。このようにして、メルカプト基を三次元方向に延ばした。
(Silane coupling agent treatment process)
The same operation as in the silane coupling agent treatment step of Comparative Example 1 was performed.
(Functional group imparting step)
Next, pentaerythritol tetrakis (3-mercaptobutyrate), which is a trifunctional thiol compound (Carens MT (registered trademark) PE1 manufactured by Showa Denko KK): 0.6 g, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30): 0.05 g was immersed in a solution dissolved in 150 g of toluene at 70 ° C. for 10 minutes, and then lifted and dried. In this way, the mercapto group was extended in the three-dimensional direction.
 (プライマー層形成工程)
 次に、エポキシ樹脂(三菱ケミカル株式会社製 jER(登録商標)1001):100g、2-エチル-4-メチルイミダゾール:2gをアセトン:200g中に溶解して得られた組成物を、前記官能基付与工程を経た後のアルミニウム板の官能基含有層表面に、乾燥厚さが10μmになるようにスプレー法にて塗布した後、空気中常温で30分間放置することによって溶剤を揮発させ、その後120℃の炉中に30分間放置して硬化反応を行ない常温に戻した。官能基含有層表面に厚さ10μmの架橋型エポキシ樹脂のプライマー層が形成された、アルミニウム板-8(プライマー付き)を得た。
(Primer layer forming step)
Next, the composition obtained by dissolving 100 g of an epoxy resin (jER® 1001 manufactured by Mitsubishi Chemical Co., Ltd.) and 2 g of 2-ethyl-4-methylimidazole in acetone: 200 g was used as the functional group. After the application step, the surface of the functional group-containing layer of the aluminum plate is coated by a spray method so that the dry thickness becomes 10 μm, and then the solvent is volatilized by leaving it in the air at room temperature for 30 minutes, and then 120. It was left in a furnace at ° C. for 30 minutes to undergo a curing reaction and returned to room temperature. An aluminum plate-8 (with a primer) having a 10 μm-thick crosslinked epoxy resin primer layer formed on the surface of the functional group-containing layer was obtained.
 <比較例4>
 (前処理工程)
 実施例1の(前処理工程)と同様の操作を行った。
 (シランカップリング剤処理工程)
 実施例1のシランカップリング剤処理工程と同様の操作を行ってシランカップリング剤による層を形成した。
 (プライマー層形成工程)
 官能基付与工程は行わずに、実施例5の(プライマー層形成工程)と同様の操作を行い、アルミニウム版-9(プライマー付き)を得た。
<Comparative example 4>
(Pretreatment process)
The same operation as in (pretreatment step) of Example 1 was performed.
(Silane coupling agent treatment process)
The same operation as in the silane coupling agent treatment step of Example 1 was carried out to form a layer with the silane coupling agent.
(Primer layer forming step)
An aluminum plate-9 (with a primer) was obtained by performing the same operation as in Example 5 (primer layer forming step) without performing the functional group addition step.
〔密着性耐久性試験:接着性評価〕
 前記の各実施例、比較例で作製したアルミニウム板(1~9)について、JIS K5400-8.5:1999の碁盤目試験法に準拠して、60℃温水に浸漬前と、60℃温水に24時間浸漬後と、60℃温水に1週間浸漬後と、60℃温水に1か月浸漬後と、60℃温水に3か月浸漬後に、それぞれ碁盤目試験を行った。
 具体的には、JIS K 5400 8.5.2:1999(付着性 碁盤目テープ法)に準ずる試験片上の膜層(プライマー層)を貫通して、素地面に達する切り傷を碁盤目状に付け、この碁盤目の上に粘着テープをはり、はがした後の膜層(プライマー層)の付着状態を目視によって観察し、JIS K5400-8.5.1:1999の表18に準じ、評価した。評価結果を下記表1に示す。
 JIS K5400-8.5.1:1999の表18 碁盤目試験の評価点数は以下の通り。
10点:切り傷1本ごとが、細くて両側が滑らかで、切り傷の交点と正方形の一目一目にはがれがない。
8点:切り傷の交点にわずかなはがれがあって、正方形の一目一目にはがれがなく、欠損部の面積は全正方形面積の5%以内。
6点:切り傷の両側と交点とにはがれがあって、欠損部の面積は全正方形面積の5~15%。
4点:切り傷によるはがれの幅が広く、欠損部の面積は全正方形面積の15~35%。
2点:切り傷によるはがれの幅は4点よりも広く、欠損部の面積は全正方形面積の35~65%。
0点:はがれの面積は全正方形面積の65%以上。
[Adhesion durability test: Adhesion evaluation]
The aluminum plates (1 to 9) produced in each of the above Examples and Comparative Examples were subjected to before immersion in 60 ° C. hot water and in 60 ° C. hot water in accordance with the grid test method of JIS K5400-8.5: 1999. After soaking for 24 hours, after soaking in 60 ° C. warm water for 1 week, after soaking in 60 ° C. warm water for 1 month, and after soaking in 60 ° C. warm water for 3 months, a grid test was performed.
Specifically, a cut is made in a grid pattern that penetrates the membrane layer (primer layer) on the test piece according to JIS K 5400 8.5.2: 1999 (adhesive grid tape method) and reaches the bare ground. An adhesive tape was applied on the grid, and the adhesion state of the film layer (primer layer) after peeling was visually observed and evaluated according to Table 18 of JIS K5400-8.5.1: 1999. .. The evaluation results are shown in Table 1 below.
The evaluation scores of the table 18 grid test of JIS K5400-8.5.1: 1999 are as follows.
10 points: Each cut is thin and smooth on both sides, and there is no peeling at the intersection of the cut and the square at a glance.
8 points: There is slight peeling at the intersection of the cuts, there is no peeling at the first glance of the square, and the area of the defect is within 5% of the total square area.
6 points: There is peeling between both sides of the cut and the intersection, and the area of the defect is 5 to 15% of the total square area.
4 points: The width of peeling due to cuts is wide, and the area of the defect is 15 to 35% of the total square area.
2 points: The width of peeling due to cuts is wider than 4 points, and the area of the defect is 35 to 65% of the total square area.
0 point: The area of peeling is 65% or more of the total square area.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 <実施例6>
 ISO19095の引張試験用試験片アルミニウム板(A6063:18mm×45mm)に対して、アセトンで脱脂し、#100のサンドペーパーで表面を粗らし(サンディング処理)、実施例3と同様の操作(シランカップリング剤処理工程、官能基付与工程、プライマー層形成工程)を行った。
 次にSABICジャパン合同会社製のポリカーボネート樹脂「LEXAN 121R-111」(汎用、高流動タイプ)を使用し、住友重機SE100Vの射出成形機を用いてシリンダー温度:300℃、ツール温度:110℃、インジェクションスピード:10mm/sec、ピーク/ホールディング圧力:100/80(MPa/MPa)の条件で、ISO19095の引張試験用試験片(アルミ:18mm×45mm×1.5mm、樹脂:10mm×45mm×3mm)である金属-非金属接合体-1を得た。
<Example 6>
An aluminum plate (A6063: 18 mm × 45 mm) for a tensile test of ISO19095 is degreased with acetone, the surface is roughened with # 100 sandpaper (sanding treatment), and the same operation as in Example 3 (silane cup). A ring agent treatment step, a functional group addition step, and a primer layer formation step) were performed.
Next, using the polycarbonate resin "LEXAN 121R-111" (general-purpose, high-fluidity type) manufactured by SABIC Japan LLC, using the injection molding machine of Sumitomo Heavy Industries SE100V, cylinder temperature: 300 ° C, tool temperature: 110 ° C, injection. With ISO19095 tensile test test piece (aluminum: 18 mm x 45 mm x 1.5 mm, resin: 10 mm x 45 mm x 3 mm) under the conditions of speed: 10 mm / sec and peak / holding pressure: 100/80 (MPa / MPa). A metal-non-metal joint-1 was obtained.
 <比較例5>
 ISO19095の引張試験用試験片アルミニウム板(A6063:18mm×45mm)に対して、アセトンで脱脂し#100のサンドペーパーで表面を粗らし(サンディング処理)、比較例2と同様の操作(シランカップリング剤処理工程、プライマー層形成工程)を行った。
 次にSABICジャパン合同会社製のポリカーボネート樹脂「LEXAN 121R-111」(汎用、高流動タイプ)を使用し、住友重機SE100Vの射出成形機を用いてシリンダー温度:300℃、ツール温度:110℃、インジェクションスピード:10mm/sec、ピーク/ホールディング圧力:100/80(MPa/MPa)の条件で、ISO19095の引張試験用試験片(アルミ:18mm×45mm×1.5mm、樹脂:10mm×45mm×3mm)である金属-非金属接合体-2を得た。
<Comparative example 5>
An aluminum plate (A6063: 18 mm x 45 mm) for a tensile test of ISO19095 is degreased with acetone, the surface is roughened with # 100 sandpaper (sanding treatment), and the same operation as in Comparative Example 2 (silane coupling). The agent treatment step and the primer layer forming step) were carried out.
Next, using the polycarbonate resin "LEXAN 121R-111" (general-purpose, high-fluidity type) manufactured by SABIC Japan LLC, using the injection molding machine of Sumitomo Heavy Industries SE100V, cylinder temperature: 300 ° C, tool temperature: 110 ° C, injection. With ISO19095 tensile test test piece (aluminum: 18 mm x 45 mm x 1.5 mm, resin: 10 mm x 45 mm x 3 mm) under the conditions of speed: 10 mm / sec and peak / holding pressure: 100/80 (MPa / MPa). A metal-non-metal joint-2 was obtained.
 <実施例7>
 ISO19095の引張試験用試験片アルミニウム板(A6063:18mm×45mm)に対して、アセトンで脱脂し、#100のサンドペーパーで表面を粗らし(サンディング処理)、実施例6と同様のシランカップリング剤処理工程、官能基付与工程を行った。
 次に、バルクモールディングコンパウンド(BMC)(昭和電工社製「リゴラック(登録商標)RNC-980)(接合対象)を、射出成形機(ファナック株式会社「α‐S100iA」;金型温度160℃、成形圧力100MPa、成形時間3分で射出成形することにより、金型内に設置したアルミ部材とBMCを接合してISO19095の引張試験用試験片(アルミ:18mm×45mm×1.5mm、樹脂:10mm×45mm×3mm)である金属-非金属接合体-3を得た
<Example 7>
An aluminum plate (A6063: 18 mm × 45 mm) for a tensile test of ISO19095 was degreased with acetone, the surface was roughened with # 100 sandpaper (sanding treatment), and the same silane coupling agent as in Example 6 was used. A treatment step and a functional group addition step were performed.
Next, the bulk molding compound (BMC) (Showa Denko Co., Ltd. "Rigolac (registered trademark) RNC-980) (joining target) was molded with an injection molding machine (FANUC Co., Ltd." α-S100iA "; mold temperature 160 ° C. By injection molding at a pressure of 100 MPa and a molding time of 3 minutes, the aluminum member installed in the mold and BMC are joined to form an ISO19095 tensile test test piece (aluminum: 18 mm × 45 mm × 1.5 mm, resin: 10 mm × A metal-non-metal joint-3 of 45 mm x 3 mm) was obtained.
 <比較例6>
 官能基付与工程を行わないこと以外は実施例7と同様の操作を行い、金属-非金属接合体-4を得た。
<Comparative Example 6>
The same operation as in Example 7 was carried out except that the functional group addition step was not performed, to obtain a metal-non-metal bonded body-4.
〔金属-非金属接合体の接合強度の評価〕
 実施例6、7及び比較例5、6で得た金属-非金属接合体について、常温で1日間放置後と、60℃純水中に3ヶ月浸漬後に、ISO19095 1-4に準拠して、引張試験機(株式会社島津製作所製万能試験機オートグラフ「AG-IS」;ロードセル10kN、引張速度10mm/min、温度23℃、50%RH)にて、引張剪断接着強度試験を行い、金属と非金属の接合強度を測定した。これらの測定結果を下記表2に示す。
[Evaluation of joint strength of metal-non-metal joint]
The metal-non-metal bonded bodies obtained in Examples 6 and 7 and Comparative Examples 5 and 6 were left at room temperature for 1 day and immersed in pure water at 60 ° C. for 3 months, and then in accordance with ISO19095 1-4. Tensile testing machine (universal testing machine Autograph "AG-IS" manufactured by Shimadzu Corporation; load cell 10kN, tensile speed 10mm / min, temperature 23 ° C., 50% RH) was used to perform a tensile shear adhesion test with metal. The bonding strength of non-metals was measured. The results of these measurements are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係る表面処理金属材は、例えば、CFRP(炭素繊維強化プラスチック)材等の他の材料(部品等)と接合一体化されて、例えば、自動車用部品(ドアサイドパネル、ルーフ、ブレーディング、Aピラー、Bピラー等)等として用いられる。また、本発明に係る表面処理金属材は、例えば、ポリカーボネート成形体と接合一体化されて、例えば、スマートフォンの構造体等として用いられるが、特にこれら例示の用途に限定されるものではない。 The surface-treated metal material according to the present invention is joined and integrated with other materials (parts, etc.) such as CFRP (carbon fiber reinforced plastic) material, for example, automobile parts (door side panel, roof, braiding, etc.). , A pillar, B pillar, etc.). Further, the surface-treated metal material according to the present invention is, for example, joined and integrated with a polycarbonate molded body and used as, for example, a structure of a smartphone, but is not particularly limited to these exemplified uses.
  1  金属材
  2  表面処理層
  21 シランカップリング剤処理層
  22 官能基含有層
  3  表面処理金属材
  4  前処理により形成された金属材の表面の微細な凹凸
  5  複合積層体
  6  プライマー層
  7  金属-非金属接合体
  8  被接合材
 
1 Metal material 2 Surface treatment layer 21 Silane coupling agent treatment layer 22 Functional group-containing layer 3 Surface treatment metal material 4 Fine irregularities on the surface of the metal material formed by pretreatment 5 Composite laminate 6 Primer layer 7 Metal-non Metal joint 8 Material to be joined

Claims (18)

  1.  金属材とその表面に表面処理層とを有する表面処理金属材であって、
     前記表面処理層が、前記金属材にシランカップリング剤による処理を施してなるシランカップリング剤処理層と、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種の化合物を、前記シランカップリング剤が有する官能基と反応させてなり、前記化合物に由来の官能基を有する官能基含有層を含む、表面処理金属材。
    A surface-treated metal material having a metal material and a surface-treated layer on the surface thereof.
    The surface treatment layer is at least one compound selected from the group consisting of a silane coupling agent treatment layer obtained by treating the metal material with a silane coupling agent, and an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound. A surface-treated metal material comprising a functional group-containing layer having a functional group derived from the compound, which is obtained by reacting with a functional group contained in the silane coupling agent.
  2.  前記シランカップリング剤が、アミノ基、エポキシ基、(メタ)アクリロイル基、スチリル基、イソシアナト基、及びメルカプト基からなる群より選ばれる少なくとも一種の官能基を含有する、請求項1に記載の表面処理金属材。 The surface according to claim 1, wherein the silane coupling agent contains at least one functional group selected from the group consisting of an amino group, an epoxy group, a (meth) acryloyl group, a styryl group, an isocyanato group, and a mercapto group. Treated metal material.
  3.  前記イソシアネート化合物が、(メタ)アクリロイル基を有するイソシアネート化合物、及び2官能以上のイソシアネート化合物から選ばれる少なくとも一種である、請求項1又は2に記載の表面処理金属材。 The surface-treated metal material according to claim 1 or 2, wherein the isocyanate compound is at least one selected from an isocyanate compound having a (meth) acryloyl group and a bifunctional or higher functional isocyanate compound.
  4.  前記チオール化合物が、2官能以上のチオール化合物である、請求項1又は2に記載の表面処理金属材。 The surface-treated metal material according to claim 1 or 2, wherein the thiol compound is a bifunctional or higher functional thiol compound.
  5.  前記エポキシ化合物が、(メタ)アクリロイル基を有する化合物、及び2官能以上のエポキシ化合物から選ばれる少なくとも一種である、請求項1又は2に記載の表面処理金属材。 The surface-treated metal material according to claim 1 or 2, wherein the epoxy compound is at least one selected from a compound having a (meth) acryloyl group and a bifunctional or higher functional epoxy compound.
  6.  前記アミノ化合物が、(メタ)アクリロイル基を有する化合物、及び2官能以上のアミノ化合物から選ばれる少なくとも一種である、請求項1又は2に記載の表面処理金属材。 The surface-treated metal material according to claim 1 or 2, wherein the amino compound is at least one selected from a compound having a (meth) acryloyl group and a bifunctional or higher functional amino compound.
  7.  前記金属材が、鉄、アルミニウム、マグネシウム、銅、及びステンレス鋼からなる群より選ばれる金属である、請求項1~6の何れか1項に記載の表面処理金属材。 The surface-treated metal material according to any one of claims 1 to 6, wherein the metal material is a metal selected from the group consisting of iron, aluminum, magnesium, copper, and stainless steel.
  8.  前記金属材が、前処理を施したアルミニウムであり、
     前記前処理が、エッチング処理、ベーマイト処理、アルマイト処理、リン酸亜鉛処理、ジルコニウム処理、レーザー処理、プラズマ処理、ブラスト処理、及びサンディング処理からなる群より選ばれる少なくとも一種である、請求項1~6の何れか1項に記載の表面処理金属材。
    The metal material is pretreated aluminum.
    Claims 1 to 6 wherein the pretreatment is at least one selected from the group consisting of etching treatment, boehmite treatment, alumite treatment, zinc phosphate treatment, zirconium treatment, laser treatment, plasma treatment, blast treatment, and sanding treatment. The surface-treated metal material according to any one of the above items.
  9.  請求項1~8の何れか1項に記載の表面処理金属材の官能基含有層表面に、1層又は複数層のプライマー層が形成された、複合積層体。 A composite laminate in which one or a plurality of primer layers are formed on the surface of the functional group-containing layer of the surface-treated metal material according to any one of claims 1 to 8.
  10.  前記プライマー層が、前記官能基含有層に含まれている官能基と反応する基を有する硬化性樹脂硬化物からなる、請求項9に記載の複合積層体。 The composite laminate according to claim 9, wherein the primer layer is a cured product of a curable resin having a group that reacts with a functional group contained in the functional group-containing layer.
  11.  前記プライマー層が、前記官能基含有層に含まれている官能基と反応する基を有する熱可塑性樹脂を形成するモノマー組成物の重付加反応物又はラジカル重合反応物からなる、請求項9に記載の複合積層体。 The ninth aspect of the present invention, wherein the primer layer comprises a polyaddition reaction product or a radical polymerization reaction product of a monomer composition forming a thermoplastic resin having a group that reacts with a functional group contained in the functional group-containing layer. Composite laminate.
  12.  請求項1~8の何れか1項に記載の表面処理金属材と、非金属である被接合材とが直接又は接着剤を介して接合一体化された、金属-非金属接合体。 A metal-non-metal bonded body in which the surface-treated metal material according to any one of claims 1 to 8 and a non-metal bonded material are joined and integrated directly or via an adhesive.
  13.  請求項9~11の何れか1項に記載の複合積層体のプライマー層と、非金属である被接合材とが直接又は接着剤を介して接合一体化された、金属-非金属接合体。 A metal-non-metal bonded body in which the primer layer of the composite laminate according to any one of claims 9 to 11 and a non-metal bonded material are joined and integrated directly or via an adhesive.
  14.  前記非金属である被接合材が、樹脂である、請求項12又は13に記載の金属-非金属接合体。 The metal-non-metal joint according to claim 12 or 13, wherein the non-metal joint material is a resin.
  15.  金属材にシランカップリング剤処理を施してシランカップリング剤処理層を形成した後、イソシアネート化合物、チオール化合物、エポキシ化合物、及びアミノ化合物からなる群より選ばれる少なくとも一種以上の化合物を、前記シランカップリング剤が有する官能基と反応させて、前記化合物に由来の官能基を表面に有する官能基含有層を形成する、表面処理金属材の製造方法。 After the metal material is treated with a silane coupling agent to form a silane coupling agent-treated layer, at least one or more compounds selected from the group consisting of an isocyanate compound, a thiol compound, an epoxy compound, and an amino compound are added to the silane cup. A method for producing a surface-treated metal material, which comprises reacting with a functional group contained in a ring agent to form a functional group-containing layer having a functional group derived from the compound on the surface.
  16.  請求項1~8の何れか1項に記載の表面処理金属材の前記官能基含有層の表面で、重付加反応又はラジカル重合反応を行い、熱可塑性樹脂からなるプライマー層を形成する、複合積層体の製造方法。 A composite laminate in which a polyaddition reaction or a radical polymerization reaction is carried out on the surface of the functional group-containing layer of the surface-treated metal material according to any one of claims 1 to 8 to form a primer layer made of a thermoplastic resin. How to make a body.
  17.  請求項1~8の何れか1項に記載の表面処理金属材の前記官能基含有層の表面に、接着剤層を形成し、該接着剤層の上に、射出成形、圧縮成形、及びハンドレイアップ成形からなる群より選ばれる少なくとも一種の方法で、非金属である被接合材を接合一体化する、金属-非金属接合体の製造方法。 An adhesive layer is formed on the surface of the functional group-containing layer of the surface-treated metal material according to any one of claims 1 to 8, and injection molding, compression molding, and a hand are performed on the adhesive layer. A method for producing a metal-non-metal bonded body, in which a non-metal object to be bonded is joined and integrated by at least one method selected from the group consisting of lay-up molding.
  18.  請求項9~11の何れか1項に記載の複合積層体のプライマー層の上に、射出成形、圧縮成形、及びハンドレイアップ成形からなる群より選ばれる少なくとも一種の方法で、非金属である被接合材を接合一体化する、金属-非金属接合体の製造方法。
     
    On the primer layer of the composite laminate according to any one of claims 9 to 11, at least one method selected from the group consisting of injection molding, compression molding, and hand lay-up molding is a non-metal. A method for manufacturing a metal-non-metal joint in which a material to be joined is joined and integrated.
PCT/JP2020/017260 2019-04-26 2020-04-21 Surface treated metal member, composite laminate, metal-nonmetal joined body, and manufacturing method of these WO2020218311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559592A JP6919077B2 (en) 2019-04-26 2020-04-21 Surface-treated metal materials, composite laminates, metal-non-metal joints, and methods for manufacturing them.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019086181 2019-04-26
JP2019-086181 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218311A1 true WO2020218311A1 (en) 2020-10-29

Family

ID=72942799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017260 WO2020218311A1 (en) 2019-04-26 2020-04-21 Surface treated metal member, composite laminate, metal-nonmetal joined body, and manufacturing method of these

Country Status (3)

Country Link
JP (1) JP6919077B2 (en)
TW (1) TW202104665A (en)
WO (1) WO2020218311A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307179A (en) * 1991-03-15 1993-11-19 Toshiba Corp Production of monomolecular film and production of monomolecular piled up film
JPH0899387A (en) * 1994-09-30 1996-04-16 Toyo Ink Mfg Co Ltd Adhesive structure and metal laminate using the same
JPH10287862A (en) * 1996-08-26 1998-10-27 Fuji Xerox Co Ltd Composite material and its production
JP2011091066A (en) * 2009-10-20 2011-05-06 Hitachi Ltd Low dielectric loss wiring board, multilayer wiring board, and copper foil and laminate used for the same
JP2012098134A (en) * 2010-11-01 2012-05-24 Utsunomiya Univ Heat conductivity measuring probe and manufacturing method thereof
JP2012121151A (en) * 2010-12-06 2012-06-28 Toppan Printing Co Ltd Laminate and packaging material
WO2019116879A1 (en) * 2017-12-13 2019-06-20 昭和電工株式会社 Composite laminate and method for producing same, and metal resin bonded product and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555800B2 (en) * 1996-04-30 2004-08-18 株式会社日鉱マテリアルズ Novel organosilicon compound, method for producing the same, surface treating agent and resin additive using the same
KR101139099B1 (en) * 2008-03-10 2012-04-30 미쓰이 가가쿠 가부시키가이샤 Primer composition
JP2013105803A (en) * 2011-11-11 2013-05-30 Seiko Epson Corp Joining method and junction material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307179A (en) * 1991-03-15 1993-11-19 Toshiba Corp Production of monomolecular film and production of monomolecular piled up film
JPH0899387A (en) * 1994-09-30 1996-04-16 Toyo Ink Mfg Co Ltd Adhesive structure and metal laminate using the same
JPH10287862A (en) * 1996-08-26 1998-10-27 Fuji Xerox Co Ltd Composite material and its production
JP2011091066A (en) * 2009-10-20 2011-05-06 Hitachi Ltd Low dielectric loss wiring board, multilayer wiring board, and copper foil and laminate used for the same
JP2012098134A (en) * 2010-11-01 2012-05-24 Utsunomiya Univ Heat conductivity measuring probe and manufacturing method thereof
JP2012121151A (en) * 2010-12-06 2012-06-28 Toppan Printing Co Ltd Laminate and packaging material
WO2019116879A1 (en) * 2017-12-13 2019-06-20 昭和電工株式会社 Composite laminate and method for producing same, and metal resin bonded product and method for producing same

Also Published As

Publication number Publication date
JP6919077B2 (en) 2021-08-11
TW202104665A (en) 2021-02-01
JPWO2020218311A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP6918973B2 (en) Composite laminate and its manufacturing method, and metal resin bonded body and its manufacturing method
JP6919075B2 (en) Composite laminates and metal-polyolefin conjugates
JP6964809B2 (en) Metal resin joint and its manufacturing method
JP6964808B2 (en) Composite laminate, its manufacturing method, and metal resin joint
JP6919077B2 (en) Surface-treated metal materials, composite laminates, metal-non-metal joints, and methods for manufacturing them.
JP6919076B1 (en) Composite laminates and metal-resin joints
JP6923762B1 (en) Composite laminates and joints
US20230330946A1 (en) Method for joining metal and resin, and joined body thereof
JP6919074B2 (en) Composite laminates and metal-modified polyphenylene ether conjugates
JP2022024753A (en) Base material with primer and method for producing the same, and joined body
JP6967675B2 (en) Joined body and its manufacturing method
JP6918894B2 (en) Composite laminate and metal-polyamide resin joint
JP6967676B2 (en) Bonds and materials with primers
JP6923765B1 (en) Surface-treated base materials, composite laminates, bonded bodies, and methods for manufacturing them.
JP2020199687A (en) Portable information terminal housing and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020559592

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794742

Country of ref document: EP

Kind code of ref document: A1