WO2020218150A1 - Ytterbium-doped barium zirconate particles and method for producing same - Google Patents

Ytterbium-doped barium zirconate particles and method for producing same Download PDF

Info

Publication number
WO2020218150A1
WO2020218150A1 PCT/JP2020/016717 JP2020016717W WO2020218150A1 WO 2020218150 A1 WO2020218150 A1 WO 2020218150A1 JP 2020016717 W JP2020016717 W JP 2020016717W WO 2020218150 A1 WO2020218150 A1 WO 2020218150A1
Authority
WO
WIPO (PCT)
Prior art keywords
ytterbium
slurry
barium
hydroxide
added
Prior art date
Application number
PCT/JP2020/016717
Other languages
French (fr)
Japanese (ja)
Inventor
和弥 宮阪
拓磨 西本
尚志 式田
稔 米田
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to JP2020540822A priority Critical patent/JP6787537B1/en
Publication of WO2020218150A1 publication Critical patent/WO2020218150A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to ytterbium-added barium zirconate particles and a method for producing the same, and more particularly to ytterbium-added barium zirconate particles having a uniform composition, fine particles, excellent crystallinity, and a low porosity, and a method for producing the same.
  • the ytterbium-added barium zirconate particles according to the present invention have the above-mentioned characteristics, they can be suitably used as an electrolyte material for a solid oxide fuel cell.
  • SOFC solid oxide fuel cell
  • Such an SOFC has, as a basic structure, a fuel cell in which a solid oxide electrolyte layer is arranged between an air electrode (casode) and a fuel electrode (anode), and air is required.
  • An anti-reaction layer is provided between the electrode and the electrolyte layer to prevent a reaction between the two.
  • a sintered body of yttria-stabilized zirconia is typically used for the electrolyte layer, and in recent years, electron conductivity and ionic conductivity have been provided for the air electrode in order to increase the output of SOFC.
  • a perovskite-type composite oxide having an ABO 3 structure, for example, (La, Sr) (Co, Fe) O 3 has been used (see, for example, Patent Document 1).
  • the conventional SOFC has a problem that the structural material is liable to deteriorate because the operating temperature is high.
  • barium zirconate perovskite type composite oxide (BZM) powder has good proton conductivity at medium and low temperatures of 700 ° C. or lower, and is therefore expected as an electrolyte material for medium and low temperature operating SOFCs. There is.
  • the barium zirconate-based perovskite-type composite oxide has a composition formula of BaZr 1-x M x O 3- ⁇ . Represented by, where M is a doping element, ie, Y (yttrium) or Yb (ytterbium).
  • yttrium-added barium zirconate is laminated as a solid electrolyte layer on one side of a cathode electrode layer made of lanthanum strontium cobalt composite oxide (LSC) to laminate a solid electrolyte.
  • LSC lanthanum strontium cobalt composite oxide
  • Such yttrium-added barium zirconate has, for example, a barium source (for example, barium carbonate), a zirconium source (for example, zirconium oxide), and an yttrium source (for example, so that the composition ratios of Ba, Zr, and Y have a predetermined ratio.
  • a barium source for example, barium carbonate
  • a zirconium source for example, zirconium oxide
  • an yttrium source for example, so that the composition ratios of Ba, Zr, and Y have a predetermined ratio.
  • Yttrium oxide is mixed and wet-ground to obtain a uniform mixture, which is then fired and wet-ground again to obtain a solid-state method (see Patent Document 1).
  • a doping element such as yttrium is easily segregated and a heterogeneous phase is easily generated, so that the composition is uniform, and the composition is fine and highly crystalline. It is difficult to obtain a product that is.
  • fine particles can be obtained as a crushed product by wet pulverizing the obtained primary particles for a long time, but on the other hand, impurities derived from the pulverized medium are contained in the pulverized product.
  • impurities derived from the pulverized medium are contained in the pulverized product.
  • barium elutes into a solvent during pulverization and coarse barium carbonate is produced during subsequent drying.
  • impurities are mixed in the obtained yttrium-added barium zirconate, the proton conductivity is adversely affected.
  • Such ytterbium-added barium zirconate can be obtained by, for example, allowing citric acid and ethylenediaminetetraacetic acid to act as a complex-forming agent on a mixed aqueous solution of barium nitrate, zirconium oxynitrate, and ytterbium nitrate, adjusting the pH, and then removing water. It can be obtained by pulverizing the obtained solid matter (see Patent Document 2).
  • liquid phase method described above a product with less segregation of the doped element can be obtained as compared with the solid phase method described above, but the raw material cost is high, so that it is not suitable for industrial mass production.
  • the present invention has been made to solve the above-mentioned problems in the production of ytterbium-added barium zirconate, which is free of different phases, has a uniform composition, is fine and highly crystalline, and is open.
  • An object of the present invention is to provide a ytterbium-added barium zirconate with the above-mentioned properties obtained by such a method.
  • the composition formula (I) BaZr 1-x Yb x O 3- ⁇ (In the formula, x is a number satisfying 0.1 ⁇ x ⁇ 0.6, and ⁇ indicates the amount of oxygen deficiency.) It is a method for producing barium particles containing ytterbium-added zirconate, which is represented by. (A) A step of mixing barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and seed crystals of barium zirconate containing ytterbium with water to obtain a first slurry.
  • step B A step of wet-pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 ⁇ m or less.
  • C A step of adding barium hydroxide to the second slurry to obtain a third slurry.
  • D The step of hydrothermally reacting the third slurry to obtain a fourth slurry, and (e) the fourth slurry is acid-treated and then washed with water to remove excess barium hydroxide.
  • the Ba / (Zr + Yb) molar ratio of the first slurry is set in the range of 0.1 to 1.2.
  • the Ba / (Zr + Yb) molar ratio of the third slurry is set in the range of 1.5 to 5.0.
  • a method for producing ytterbium-added barium zirconate particles is provided.
  • seed crystals of ytterbium-added barium zirconate particles in the range of 1 to 20 mol parts with respect to 100 mol parts of the total number of moles of zirconium and ytterbium contained in the first slurry. Is preferably used. It is desirable that the seed crystal has the composition formula (I).
  • a previously produced mixed hydroxide of zirconium and ytterbium can be used instead of the zirconium hydroxide and ytterbium hydroxide.
  • the hydrothermal reaction is preferably carried out in a temperature range of 120 to 300 ° C.
  • the composition formula (I) BaZr 1-x Yb x O 3- ⁇
  • x is a number satisfying 0.1 ⁇ x ⁇ 0.6, and ⁇ indicates the amount of oxygen deficiency.
  • Itterbium-added barium zirconate which is a single-phase particle represented by, has a specific surface area of 10 m 2 / g or more, and has a crystallite diameter / specific surface area equivalent particle diameter in the range of 0.7 to 1.5. Particles are provided.
  • described in the composition formula represents the amount of oxygen deficiency and can take different values depending on the composition, temperature, atmosphere, etc., so that it is meaningless to specify the numerical range. is there.
  • ytterbium-added zirconate which does not contain heterogeneous phases, has a uniform composition, is fine, has excellent crystallinity, and has a low open porosity, and thus can easily form a dense electrolyte membrane. Barium particles can be obtained.
  • the ytterbium-added barium zirconate particles obtained by the method of the present invention have the above-mentioned characteristics, they can be suitably used as an electrolyte material for a solid oxide fuel cell.
  • the itterbium-added barium zirconate particles according to the present invention have a uniform composition, and therefore, when used as an electrolyte material for a solid oxide fuel cell, have excellent proton conduction characteristics and can be obtained by a solid phase method. Since it is sintered at a lower temperature than the itterbium-added barium zirconate particles, a finer electrolyte membrane can be obtained, not only the proton conductivity is improved, but also the production cost of the electrolyte can be reduced. Therefore, it can contribute to stabilizing the performance of the SOFC cell and improving its durability.
  • the method for producing ytterbium-added barium zirconate particles according to the present invention is described in the composition formula (I).
  • BaZr 1-x Yb x O 3- ⁇ In the formula, x is a number satisfying 0.1 ⁇ x ⁇ 0.6, and ⁇ indicates the amount of oxygen deficiency.
  • step B A step of wet-pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 ⁇ m or less.
  • step C A step of adding barium hydroxide to the second slurry to obtain a third slurry.
  • step D The step of hydrothermally reacting the third slurry to obtain a fourth slurry, and (e) the fourth slurry is acid-treated and then washed with water to remove excess barium hydroxide.
  • the Ba / (Zr + Yb) molar ratio of the first slurry is set in the range of 0.1 to 1.2.
  • step (c) the Ba / (Zr + Yb) molar ratio of the third slurry is set in the range of 1.5 to 5.0. It is characterized by that.
  • the Ba / (Zr + Yb) molar ratio in the steps (a) and (c) is the amount of barium hydroxide, zirconium hydroxide and ytterbium hydroxide used in each step, that is, the amount charged.
  • the Ba / (Zr + Yb) molar ratio and the Yb / (Zr + Yb) molar ratio in the finally obtained ytterbium-added barium zirconate particles are based on the analysis method described later.
  • the Ba / (Zr + Yb) molar ratio of the obtained slurry is adjusted to a predetermined value, and the step (a) is performed.
  • step (c) Through step (c), and subjecting this slurry to a hydrothermal reaction, barium zirconate with itterbium added, which has a uniform target composition, is fine and has excellent crystallinity, and has a low porosity. Particles can be obtained.
  • examples of the barium hydroxide include anhydrous barium hydroxide, monohydrate, and octahydrate.
  • zirconium hydroxide commercially available products of anhydrous zirconium hydride and various hydrates can be used. However, the above-mentioned commercial product easily absorbs water and is unstable. Therefore, in the present invention, as the zirconium hydroxide, preferably, a water-soluble zirconium compound such as zirconium oxychloride, zirconium acetate or zirconium sulfate is used as an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide or aqueous ammonia. And water to produce zirconium hydroxide almost quantitatively, and the zirconium hydroxide thus obtained as a wet cake is used.
  • a water-soluble zirconium compound such as zirconium oxychloride, zirconium acetate or zirconium sulfate is used as an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide or aqueous ammonia.
  • ytterbium hydroxide a commercially available product of an anhydrous ytterbium hydroxide or various hydrates can be used.
  • the above-mentioned commercial products also easily absorb water and are unstable. Therefore, in the present invention, as the ytterbium hydroxide, preferably, a water-soluble ytterbium compound such as ytterbium sulfate, ytterbium chloride, or ytterbium nitrate is used as an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide, or aqueous ammonia.
  • Ytterbium hydroxide is produced as a wet cake obtained by reacting in water to form ytterbium hydroxide almost quantitatively, and ytterbium hydroxide is used as a wet cake thus obtained.
  • the seed crystal particles of barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and ytterbium-added barium zirconate are slurried in water without performing steps (a) to (c), and this is subjected to a hydrothermal reaction. Even if it is provided, the desired ytterbium-added barium zirconate particles cannot be obtained.
  • Step (a) is a step of mixing barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and seed crystals of ytterbium-added barium zirconate with water to obtain a first slurry.
  • This first slurry contains a solid containing zirconium hydroxide, ytterbium hydroxide, and seed crystals of ytterbium-added barium zirconate, and in some cases, may contain a water-insoluble portion of the barium hydroxide. ..
  • the zirconium hydroxide and ytterbium hydroxide may be a mixed hydroxide of zirconium and ytterbium produced in advance.
  • the seed crystal of the ytterbium-added barium zirconate may be any one represented by the general formula (I).
  • the Ba / (Zr + Yb) molar ratio of the first slurry is in the range of 0.1 to 1.2.
  • step (a) when barium hydroxide is used at a value smaller than 0.1, in order to obtain ytterbium-added barium zirconate particles having a specific surface area of 10 m 2 / g or more, the step In (b), very long crushing is required. As a result, impurities derived from the pulverized media are mixed in the obtained pulverized product, and finally, ytterbium-added barium zirconate particles having high quality cannot be obtained.
  • the finally obtained ytterbium-added barium zirconate particles contain a heterogeneous phase.
  • the Yb / (Zr + Yb) molar ratio of the first slurry is adjusted so that ytterbium-added barium zirconate particles having higher purity and higher conductivity can be obtained.
  • the range is preferably 0.1 to 0.6.
  • the Yb / (Zr + Yb) molar ratio is based on the amounts of barium hydroxide, zirconium hydroxide and ytterbium hydroxide used in step (a), that is, the amount charged.
  • Step (b) is a step of wet pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 ⁇ m or less.
  • step (b) when the particulate solid in the obtained second slurry has an average particle size of more than 3.0 ⁇ m, the desired fine and highly crystalline barium zirconate titerbium-added zirconate particles are obtained. Can't.
  • the lower limit of the average particle size of the particulate solids in the obtained slurry is not particularly limited, but is usually preferably about 0.1 ⁇ m.
  • the average particle size of the particulate solids in the obtained slurry is made too small, it takes an unnecessarily long time for pulverization, which is economically problematic as an industrial production method.
  • impurities derived from the pulverized medium may be mixed into the pulverized product.
  • a planetary ball mill or a bead mill is usually used for wet pulverization in the step (b).
  • the pulverization medium zirconia balls having an appropriate diameter, for example, a diameter of about 0.3 to 3.0 mm, or the like is preferably used in consideration of the required average particle diameter.
  • Step (c) is a step of adding barium hydroxide to the second slurry obtained in the above step (b) to obtain a third slurry.
  • step (c) barium hydroxide is added to the second slurry obtained in the above step (b), and the third slurry is provided with excess barium to prepare a raw material mixture for a hydrothermal reaction.
  • the third slurry contains excess barium hydroxide as well as zirconium hydroxide and ytterbium hydroxide.
  • the fact that the third slurry has an excess barium means that the amount of barium exceeds 1 mol part with respect to 1 mol part of the total amount of zirconium and ytterbium contained in the third slurry. That is, in the step (c), it is preferable that the Ba / (Zr + Yb) molar ratio of the obtained third slurry is 1.5 or more.
  • ytterbium and zirconium do not sufficiently react with barium in the hydrothermal reaction in the next step (d), and ytterbium is added.
  • Barium zirconate contains ytterbium compound (YbOOH) as a heterogeneous phase.
  • the upper limit of the molar ratio is not necessarily fixed, but is usually preferably about 5.0. Even if the molar ratio exceeds 5.0, the desired ytterbium-added barium zirconate particles can be obtained, but in the next step (e), after the fourth slurry obtained by the hydrothermal reaction is acid-treated. In order to remove excess barium by washing with water, it is necessary to use a large amount of acid and water for the acid treatment and the subsequent washing with water, respectively, which increases the manufacturing cost.
  • Step (d) is a step of hydrothermally reacting the third slurry obtained in step (c) to obtain a fourth slurry.
  • the temperature of this hydrothermal reaction is usually in the range of 120 to 300 ° C, preferably in the range of 130 to 250 ° C, and most preferably in the range of 150 to 200 ° C.
  • the fourth slurry contains ytterbium-added barium zirconate particles produced from the raw material mixture by a hydrothermal reaction in the presence of excess barium hydroxide. Therefore, in the step (e), the fourth slurry obtained by the hydrothermal reaction is acid-treated and then washed with water. That is, in step (d), an acid such as nitric acid is added to the fourth slurry, and the excess barium hydroxide is added from the obtained barium particles containing itterbium-added zirconate, for example, barium nitrate. It is a step of removing as a barium salt.
  • ytterbium-added barium zirconate particles containing barium carbonate as a heterogeneous phase can be obtained by acid-treating the fourth slurry, washing it with water, filtering and drying it, if necessary.
  • the acid used for the acid treatment may be either an inorganic acid or an organic acid, but usually nitric acid, hydrochloric acid, acetic acid and the like are preferably used.
  • the reaction mixture obtained in step (d) is acid-treated so as to have a pH of about 5. Further, ion-exchanged water or pure water is preferably used for the water washing treatment. The water washing treatment is preferably carried out until the electric conductivity of the filtrate becomes 5 ms / m or less.
  • the single-phase particles represented by the composition formula (I) have a specific surface area of 10 m 2 / g or more, are fine, and are 0.7. Itterbium-added barium zirconate particles having a crystallite diameter / specific surface area equivalent particle diameter in the range of about 1.5, having excellent crystallinity and having a low porosity can be obtained. Such ytterbium-added barium zirconate particles can easily form a dense electrolyte membrane.
  • the itterbium-added barium zirconate particles according to the present invention preferably have a specific surface area of 11 m 2 / g or more, particularly preferably 12 m 2 / g or more, and are fine and have a crystallite size / specific surface area conversion particle size. It has a crystallite diameter / specific surface area equivalent particle diameter in the range of 0.9 to 1.3, which is a value close to 1, and is excellent in crystallinity. In general, the closer the crystallite diameter / specific surface area conversion particle diameter is to 1, the closer the geometric particle diameter and the size of the single crystal are, and therefore the particles have higher crystallinity.
  • the specific surface area equivalent diameter of a particle is larger than the crystallite diameter. That is, the value of the crystallite diameter / specific surface area equivalent particle diameter is often smaller than 1, but the specific surface area equivalent diameter is calculated assuming that each particle is spherical, so the particle shape is not spherical. In this case, the value of the crystallite diameter / specific surface area equivalent particle diameter may be larger than 1 due to the difference from the actual particle shape.
  • the barium amount of the obtained ytterbium-added zirconate titerium is deficient, that is, when the Ba / (Zr + Yb) molar ratio is smaller than 1
  • barium is added to the ytterbium-added lead zirconate titer.
  • ytterbium-added barium zirconate with the desired Ba / (Zr + Yb) molar ratio can be obtained.
  • the obtained reaction mixture (solid) is filtered, acid-treated, washed with water to remove barium hydroxide dissolved in water in the reaction mixture, and then obtained.
  • the Ba / (Zr + Yb) molar ratio of the reaction product obtained was analyzed, and then a barium compound was added as an additive to the reaction product so as to obtain the desired Ba / (Zr + Yb) molar ratio, and the desired Ba was obtained. If a / (Zr + Yb) molar ratio is provided and this is sintered, an itterbium-added barium zirconate titer having a desired Ba / (Zr + Yb) molar ratio can be obtained.
  • the above-mentioned additives have low solubility in water, and even if the additive is thermally decomposed when the reaction mixture to which the additive is added is sintered, those other than barium are used. Those that do not remain in the sintered body, for example, carbonates, organic acid salts, oxides and the like are preferably used.
  • the ytterbium-added barium zirconate particles according to the invention having such physical properties can be suitably used as an electrolyte material for a solid oxide fuel cell.
  • Particle size distribution of particulate solids in the second slurry in step (b) (excluding Comparative Example 4) and average particle size
  • a part of the second slurry obtained in step (b) was separated.
  • sodium hexametaphosphate was added as a dispersant, dispersed by an ultrasonic homogenizer, and by the light diffraction / scattering method, that is, a laser diffraction / scattering particle size distribution meter (MT-Made by Microtrac Bell Co., Ltd.). It was measured under the following conditions using 3300 EXII).
  • Measurement mode MT-3000 Upper limit of measurement: 1408 ⁇ m Lower limit of measurement: 0.021 ⁇ m Refractive index of particles: 2.07 Particle shape: Non-spherical Solvent refractive index: 1.333
  • the volume median diameter (medium volume diameter) obtained in the above particle size distribution measurement was taken as the average particle diameter.
  • Comparative Example 4 the measurement was carried out in the same manner as above except that a part of the slurry before the hydrothermal reaction was separated and used as a sample.
  • the specific surface area was measured by the BET flow method using a specific surface area measuring device (Macsorb HM-1220 manufactured by Mountech Co., Ltd.). Pure nitrogen was used as the adsorbed gas, and the mixture was held at 230 ° C. for 30 minutes.
  • X-ray diffraction pattern The powder X-ray diffraction pattern was measured by a powder X-ray diffractometer (manufactured by Rigaku Co., Ltd., sample horizontal strong X-ray diffractometer RINT-TTRIII under the following conditions.
  • Optical system Parallel beam optical system (long slit: PSA200 / opening angle: 0.057 degrees) Tube voltage: 50kV Current: 300mA Measurement method: Parallel method (continuous) Measurement range (2 ⁇ ): 10 to 60 degrees Sampling width: 0.04 degrees Scan speed: 5 degrees / minute
  • Crystallet diameter K ⁇ ⁇ / ⁇ cos ⁇
  • X-ray wavelength (Cu-K ⁇ line 1.5418 ⁇ )
  • half price range (radian unit)
  • Bragg angle (1/2 of the diffraction angle 2 ⁇ )
  • the molar concentration of each element of the above glass bead sample was measured by a wavelength dispersive fluorescent X-ray analysis method using a fluorescent X-ray apparatus (ZSX PrimusII manufactured by Rigaku Co., Ltd.), and the molar ratio was calculated by a calibration curve method. ..
  • the measurement conditions are as follows.
  • Porosity 100 mL of a 10% aqueous solution of polyvinyl alcohol (Fuji Film Wako Pure Chemical Industries, Ltd.) was prepared.
  • the obtained dried product was crushed using a mortar and passed through a sieve having an opening of 150 ⁇ m to obtain a granulated powder.
  • the pellets are placed in a vacuum packaging bag, vacuum packaged with a vacuum packaging machine (BMV-281 manufactured by TOSEI Co., Ltd.), and the vacuum packaging bag is vacuum-packed with a cold hydrostatic molding machine (CPP35-200 manufactured by NPA System Co., Ltd.). It was pressed at 190 Mpa.
  • the obtained pellets are taken out from the vacuum packaging bag, heated to 500 ° C. at a rate of 100 ° C./hour in an electric furnace (HT16 / 17 manufactured by Chugai Engineering Co., Ltd.) in an air atmosphere, and 1 at 500 ° C.
  • the temperature was raised to 1700 ° C. at a rate of 100 ° C./hour, then held at 1700 ° C. for 5 hours, and the temperature was lowered at a rate of 100 ° C./hour to obtain sintered pellets.
  • the open porosity was measured according to JIS-R1634: 1998 "Method for measuring sintered body density and open porosity of fine ceramics".
  • Manufacturing example 1 Production of wet cake of mixed hydroxide of zirconium and ytterbium) 181.47 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) and 3.05 L of ion-exchanged water were added to a glass beaker and stirred to dissolve zirconium oxychloride in water to obtain an aqueous solution. ..
  • the mixed aqueous solution is added to a beaker equipped with another stirrer containing 600 mL of ion-exchanged water at 45 mL / min, and the beaker is adjusted to have a pH of 8.5 to 9.5.
  • the above aqueous sodium hydroxide solution was added to the mixture using another tube pump.
  • the slurry was obtained by stirring for 1 hour as it was.
  • the obtained slurry was filtered, and the obtained solid substance was washed with ion-exchanged water until the electrical conductivity of the filtrate became 5 ms / m or less, and 765 g of a wet cake of a mixed hydroxide of zirconium and ytterbium (hydroxylation) was used.
  • a zirconium concentration of 11.72%, a ytterbium hydroxide concentration of 4.12%, a Zr / Yb molar ratio of 4/1, and a yield of an aqueous mixed hydroxide of 98%) were obtained.
  • each hydroxide of zirconium and ytterbium easily absorbs moisture and it is difficult to accurately weigh each concentration of the hydroxide in the obtained wet cake, each water of zirconium and ytterbium in the wet cake is difficult to measure.
  • the oxide concentration was determined as follows. That is, the concentrations of zirconium and ytterbium in the oxide residue when the wet cake was heated to 500 ° C. were obtained, and these were converted into each hydroxide, that is, Zr (OH) 4 and Yb (OH) 3. The concentration and yield of each hydroxide were determined. It was confirmed by thermogravimetric analysis that the physically adsorbed water and the hydroxyl groups were completely removed and the oxide was formed by heating the cake to 500 ° C.
  • Manufacturing example 2 Manufacture of wet cake of zirconium hydroxide
  • 84.65 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) and 1.42 L of ion-exchanged water were added to a glass beaker, and the mixture was stirred and dissolved to obtain an aqueous solution.
  • 79.98 g of sodium hydroxide manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous solution.
  • the above zirconium oxychloride aqueous solution was added to a beaker equipped with another stirrer containing 600 mL of ion-exchanged water at 45 mL / min using a tube pump, and the pH was 8.5 to 9.5.
  • the sodium hydroxide aqueous solution was added to the beaker using another tube pump.
  • the slurry was obtained by stirring for 1 hour as it was. Then, the obtained slurry was filtered, and the obtained solid substance was washed with ion-exchanged water until the electric conductivity of the filtrate became 5 ms / m or less, and 401 g of a wet cake of zirconium hydroxide (hydroxylide) was washed. A concentration of 10.42% and a yield of 97%) were obtained. The concentration and yield of the hydroxide were determined in the same manner as in Production Example 1.
  • Manufacturing example 3 Manufacture of wet cake of ytterbium hydroxide
  • 54.54 g of itterbium hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 0.70 L of ion-exchanged water were added to a glass beaker, and the mixture was stirred and dissolved to obtain an aqueous solution.
  • 20.00 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 2 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous solution.
  • the ytterbium chloride aqueous solution was added to a beaker equipped with another stirrer containing 600 mL of ion-exchanged water at 25 mL / min using a tube pump, and the sodium hydroxide aqueous solution was added to the beaker so that the pH became 9. Was added using another tube pump.
  • the slurry was obtained by stirring for 1 hour as it was.
  • the obtained slurry was filtered, and the obtained solid substance was washed with ion-exchanged water until the electric conductivity of the filtrate became 5 ms / m or less, and 155 g of a wet cake of ytterbium hydroxide (concentration of hydroxide 20). .41%, yield 98%) was obtained.
  • the concentration and yield of the hydroxide were determined in the same manner as in Production Example 1.
  • Manufacturing example 4 (Production of seed crystals of barium zirconate with ytterbium added) 65.93 g of a wet cake of a mixed hydroxide of zirconium and ytterbium obtained in Production Example 1 was dispensed into a titanium container, and further, barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added thereto. ) 37.86 g and 0.1 L of ion-exchanged water were added to and stirred to prepare a slurry.
  • the titanium container was placed in an autoclave and heated at 200 ° C. for 2 hours to cause a hydrothermal reaction between the mixed hydroxide of zirconium and ytterbium and barium hydroxide.
  • the obtained slurry was transferred to a polyethylene beaker equipped with a stirrer, a 0.2% aqueous nitric acid solution was added thereto, the pH was adjusted to 5, and the mixture was stirred as it was for 30 minutes. At this time, since the pH of the slurry increased, the pH of the slurry was readjusted to 5 by adding a 0.2% aqueous nitric acid solution again.
  • Production example 5 (Production of barium zirconate particles (1) with ytterbium added by the solid phase method) Barium carbonate 85.99 g (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), zirconium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 45.05 g and ytterbium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 17.89 g And 225 mL of ion-exchanged water and 150 mL of zirconia beads having a diameter of 1.0 mm were placed in a plastic container having a capacity of 500 mL to obtain a slurry.
  • the plastic container was installed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 180 rpm for 75 minutes to wet-pulverize the slurry. Beads were removed from the obtained slurry by sieving, and the obtained slurry was dried as it was in a dryer set at a temperature of 150 ° C. for 10 hours, and then a sample mill (SK-10, manufactured by Kyoritsu Riko Co., Ltd.). Grinded with to give a powder.
  • P-5 manufactured by Fritsch
  • the obtained powder is filled in an alumina crucible, the crucible is placed in an electric furnace (HT16 / 17 manufactured by Chugai Engineering Co., Ltd.), the temperature is raised to 1500 ° C. at 200 ° C./hour in an atmospheric atmosphere furnace, and then 1500 ° C. After that, the temperature was lowered at 200 ° C./hour.
  • the obtained fired product was pulverized with the above sample mill to obtain barium particles (1) containing ytterbium-added zirconate.
  • Example 1 Manufacture of barium zirconate particles (2) with ytterbium added
  • Step (a) 32.96 g of the wet cake of the mixed hydroxide of zirconium and ytterbium obtained in Production Example 1 was dispensed into a plastic container having a capacity of 300 mL, and 5.49 g of barium hydroxide octahydrate (Fuji Film Wako Jun) was further added thereto.
  • a first slurry was obtained by adding 0.88 g of seed crystals of ytterbium-added barium hydroxide obtained in Production Example 4 (manufactured by Yakuhin Co., Ltd.), 50 mL of ion-exchanged water, and 50 mL of zirconia beads having a diameter of 0.5 mm.
  • Step (b) The plastic container was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 30 minutes to wet-pulverize the first slurry containing a solid substance.
  • the beads were removed from the obtained slurry by a sieve to obtain a second slurry, and the second slurry was transferred to a titanium container.
  • a second slurry containing a particulate solid having an average particle diameter of 0.48 ⁇ m was obtained.
  • Step (c) Subsequently, 13.44 g of barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 0.1 L of ion-exchanged water were added to the titanium container, and the mixture was stirred to generate water heat as a third slurry. A slurry before the reaction was obtained.
  • Step (d) The titanium container containing the third slurry before the hydrothermal reaction was placed in an autoclave as it was, heated at 200 ° C. for 2 hours, and hydrothermally reacted to obtain a fourth slurry.
  • the slurry is filtered, and the obtained solid matter is washed with ion-exchanged water until the electrical conductivity of the filtrate becomes 5 ms / m or less, dried in a dryer set at a temperature of 150 ° C., and ytterbium-added zircon. Barium acid acid particles (2) were obtained.
  • Example 2 Ytterbium-added barium zirconate particles (3) were obtained in the same manner as in Example 1 except that the amount of barium hydroxide octahydrate used was changed to 41.83 g in the step (c) of Example 1. ..
  • Example 3 Ytterbium-added barium zirconate particles (4) were obtained in the same manner as in Example 1 except that the temperature of the hydrothermal reaction was changed to 150 ° C. in step (d) of Example 1.
  • Example 4 In the step (a) of Example 1, the amount of barium hydroxide octahydrate used was changed to 0.95 g, and in the step (c) of Example 1, the amount of barium hydroxide octahydrate used was changed. Itterbium-added barium hydroxide particles (5) were obtained in the same manner as in Example 1 except that the amount was changed to 17.98 g.
  • Example 5 In the step (a) of Example 1, the amount of barium hydroxide octahydrate used was changed to 9.46 g, and in the step (c) of Example 1, the amount of barium hydroxide octahydrate used was changed. Itterbium-added barium hydroxide particles (6) were obtained in the same manner as in Example 1 except that the amount was changed to 9.46 g.
  • Example 6 In step (a) of Example 1, instead of the wet cake of the mixed hydroxide of zirconium and ytterbium, 22.91 g of the wet cake of the zirconium hydroxide obtained in Production Example 2 and the ytterbium water obtained in Production Example 3 Ytterbium-added barium zirconate particles (7) were obtained in the same manner as in Example 1 except that 16.47 g of a wet cake of oxide was separated and used.
  • Example 7 Ytterbium-added barium zirconate particles (8) were prepared in the same manner as in Example 1 except that the amount of seed crystals of ytterbium-added barium zirconate used in step (a) of Example 1 was changed to 0.09 g. Obtained.
  • Example 8 Ytterbium-added barium zirconate particles (9) were prepared in the same manner as in Example 1 except that the amount of seed crystals of ytterbium-added barium zirconate used in step (a) of Example 1 was changed to 1.76 g. Obtained.
  • Example 9 In step (b) of Example 1, the slurry obtained in step (a) of Example 1 was wet-ground by operating a planetary ball mill (P-5 manufactured by Fritsch) at a rotation speed of 100 rpm for 2 minutes. Ytterbium-added barium zirconate particles (10) were obtained in the same manner as in Example 1.
  • Comparative Example 4 (Production of barium zirconate particles (14) with ytterbium added) 32.96 g of wet cake of mixed hydroxide of zirconium and ytterbium obtained in Production Example 1, 18.93 g of barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), seeds of barium zirconate containing ytterbium 0.88 g of crystals and 0.1 L of ion-exchanged water were placed in a titanium container, stirred and mixed to obtain a slurry before the hydrothermal reaction. The average particle size of the particulate solids in the slurry before the hydrothermal reaction was 11.0 ⁇ m.
  • step (d) ytterbium-added barium zirconate particles (14) were obtained in the same manner as in Example 1.
  • Step (b) The plastic container was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 30 minutes to wet-pulverize the slurry containing the solid matter. Then, the beads were removed from the obtained slurry by a sieve, and the obtained slurry was placed in a titanium container. Thus, a second slurry containing a particulate solid having an average particle diameter of 1.32 ⁇ m was obtained.
  • P-5 manufactured by Fritsch
  • Step (c) Subsequently, 0.1 L of ion-exchanged water was added to the titanium container and stirred to obtain a third slurry before the hydrothermal reaction.
  • Step (d) The titanium container containing the third slurry before the hydrothermal reaction was placed in an autoclave as it was, heated at 200 ° C. for 2 hours, and hydrothermally reacted to obtain a fourth slurry.
  • the pH-adjusted slurry is filtered, and the obtained solid matter is washed with ion-exchanged water until the electrical conductivity of the filtrate becomes 5 ms / m or less, and then in a dryer set at a temperature of 150 ° C. Drying for 10 hours gave ytterbium-added barium zirconate particles (15).
  • the characteristics of the particles (12) to (20) are shown in Tables 1 and 2.
  • Amount (number of moles) of barium used in step (a) (2) Amount (number of moles) of zirconium used in step (a) (3) Amount (number of moles) of ytterbium used in step (a) (4)
  • Molar ratio that is, Yb / (Zr + Yb) molar ratio (6)
  • Amount of seed crystals of ytterbium-added barium zirconate used in step (a) (molar of seed crystals relative to 100 mol parts of total zirconium and ytterbium used) Number of copies)
  • Amount (number of moles) of barium added in step (c) (9) Total amount (number of moles) of barium used in step (a) and step (c) (10) The molar ratio of the total amount of barium in step (c) to the total amount of zirconium and ytterbium, that is, the Ba / (Zr + Yb) molar ratio (11)
  • the ytterbium-added barium zirconate particles obtained contained seed crystals, and therefore, the Ba / (Zr + Yb) molar ratio and Yb / (Zr + Yb) molars of the obtained ytterbium-added barium zirconate particles.
  • the ratio is a composition ratio including seed crystals.
  • step (a) a first slurry containing a raw material mixture consisting of barium hydroxide, zirconium hydroxide and itterbium hydroxide was prepared. At the time of preparation, seed crystals of itterbium-added barium zirconate were present in the first slurry, and in step (b), the first slurry containing the raw material mixture was wet-ground and determined in advance. A second slurry containing a particulate solid having a predetermined average particle size is obtained, and in step (c), barium hydroxide is added to the second slurry to obtain a third slurry containing an excess of barium.
  • step (d) the third slurry was subjected to a hydrothermal reaction, and then in step (e), the fourth slurry obtained by the hydrothermal reaction was acid-treated and then washed with water.
  • the composition is uniform, does not contain heterogeneous phases, has a specific surface area of 10 m 2 / g or more, is fine, and has a crystallite size / specific surface area equivalent particle size of 0. It is possible to obtain highly crystalline itterbium-added barium zirconate particles in the range of 7. to 1.5, which is close to 1, that is, close to a single crystal.
  • the XRD pattern of the itterbium-added barium zirconate particles according to Examples 1 to 8 was qualitatively analyzed using X-ray analysis software (PDXL2.7) manufactured by Rigaku Co., Ltd. to identify the crystal phase. As a result, it was confirmed that it was a single phase because it was consistent with barium zirconate (BaZrO 3 ) (PDF number 00-006-0399).
  • ytterbium is barium zirconate. It is shown that the crystal lattice of (BaZrO 3 ) is doped.
  • the Ba / (Zr + Yb) molar ratio in the step (a) exceeds 1.2.
  • step (b) a fine pulverized product can be obtained, and as a result, ytterbium-added barium zirconate particles having a specific surface area of 10 m 2 / g or more can be obtained, but the ytterbium.
  • the added barium zirconate particles contain ytterbium compound (YbOOH) as a heterogeneous phase due to its XRD pattern.
  • YbOOH as the hetero-phase, as in the case of barium zirconate (BaZrO 3), (Ltd.) Rigaku manufactured X-ray diffraction pattern measured by diffraction (Ltd.) Rigaku Ltd. Integrated powder X-ray analysis software (PDXL2. Qualitative analysis was performed using 7) to identify the crystal phase, and it was confirmed that it was consistent with YbOOH (PDF No. 00-019-1432).
  • step (c) the amount of barium hydroxide added in step (c) was small, and when such a slurry was hydrothermally reacted in step (d), the step was the same as in Comparative Example 1.
  • step (b) a finely ground product is given, and ytterbium-added barium zirconate particles having a specific surface area of 10 m 2 / g or more are given, but the ytterbium-added barium zirconate particles are obtained from the XRD pattern. It contains ytterbium compound (YbOOH) as a heterogeneous phase.
  • YbOOH ytterbium compound
  • Comparative Example 4 the slurry of the raw material mixture obtained in the step (a) was hydrothermally reacted as it was without wet pulverization, and fine ytterbium-added barium zirconate particles were obtained as in Comparative Example 3.
  • the obtained barium particles containing ytterbium-added zirconate had low crystallinity.
  • Production Example 5 shows the production of ytterbium-added barium zirconate particles by the solid-phase method, and the obtained ytterbium-added barium zirconate particles had a small specific surface area and low crystallinity.
  • the product of the present invention is the solid phase of Production Example 5. It is understood that the open porosity is lower than that of the itterbium-added barium zirconate particles by the method, and therefore the product of the present invention can be sintered at a lower temperature than the barium particles of itterbium-added zirconate by the solid phase method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention is a method for producing ytterbium-doped barium zirconate particles represented by compositional formula (I) BaZr1-xYbxO3-δ (in the formula, x is a number that satisfies 0.1 ≤ x ≤ 0.6, and δ indicates the amount of oxygen deficiency.), wherein the method includes (a) a step for mixing seed crystals of barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and ytterbium-doped barium zirconate with water to obtain a first slurry, (b) a step for wet grinding the first slurry to obtain a second slurry containing a particulate solid having an average particle size of 3.0 μm or less, (c) a step for adding barium hydroxide to the second slurry to obtain a third slurry, (d) a step for hydrothermally reacting the third slurry to obtain a fourth slurry, and (e) a step for washing the fourth slurry with water after acid treatment to remove the excess barium hydroxide, and the Ba/(Zr + Yb) molar ratio of the slurries in step (a) and step (c) is within a predetermined range. The present invention makes it possible to obtain ytterbium-doped barium zirconate particles having a uniform composition without containing a heterogeneous phase that are also very fine and highly crystalline by a liquid-phase method suitable for industrial mass production at low cost.

Description

イッテルビウム添加ジルコン酸バリウム粒子とその製造方法Ytterbium-added barium zirconate particles and their manufacturing method
 本発明は、イッテルビウム添加ジルコン酸バリウム粒子とその製造方法に関し、詳しくは、組成が均一であり、微細で結晶性にすぐれ、開気孔率が低いイッテルビウム添加ジルコン酸バリウム粒子とその製造方法に関する。 The present invention relates to ytterbium-added barium zirconate particles and a method for producing the same, and more particularly to ytterbium-added barium zirconate particles having a uniform composition, fine particles, excellent crystallinity, and a low porosity, and a method for producing the same.
 本発明によるイッテルビウム添加ジルコン酸バリウム粒子は、上述したような特性を有するので、固体酸化物形燃料電池用電解質材料として好適に用いることができる。 Since the ytterbium-added barium zirconate particles according to the present invention have the above-mentioned characteristics, they can be suitably used as an electrolyte material for a solid oxide fuel cell.
 近年、燃料電池がクリーンなエネルギー源として注目されている。なかでも、電解質としてイオン伝導性を有する固体酸化物を用いる固体酸化物形燃料電池(以下、SOFCということがある。)は、作動温度が700~1000℃程度であって、発電効率が高く、炭化水素系燃料や一酸化炭素ガスを燃料として用いることができ、更に、排熱を利用することができる利点をも有しており、家庭用から大規模発電まで、幅広い活用が期待されており、一部、既に実用化されている。 In recent years, fuel cells have been attracting attention as a clean energy source. Among them, a solid oxide fuel cell (hereinafter, sometimes referred to as SOFC) using a solid oxide having ionic conductivity as an electrolyte has an operating temperature of about 700 to 1000 ° C. and high power generation efficiency. It can use hydrocarbon fuels and carbon monoxide gas as fuels, and has the advantage of being able to utilize waste heat, and is expected to be widely used from household use to large-scale power generation. , Some have already been put into practical use.
 このようなSOFCは、基本構造として、空気極(カソ-ド)と燃料極(アノード)との間に固体酸化物電解質層が配置されてなる燃料電池セルを有し、必要に応じて、空気極と電解質層との間に両者間の反応を防止するための反応防止層を有する。 Such an SOFC has, as a basic structure, a fuel cell in which a solid oxide electrolyte layer is arranged between an air electrode (casode) and a fuel electrode (anode), and air is required. An anti-reaction layer is provided between the electrode and the electrolyte layer to prevent a reaction between the two.
 従来、電解質層には、代表的には、例えば、イットリア安定化ジルコニアの焼結体が用いられ、空気極には、近年、SOFCを高出力化するために、電子伝導性とイオン伝導性を併せ有するABO3 構造を有するペロブスカイト型複合酸化物、例えば、(La,Sr)(Co,Fe)O3 が用いられるようになっている(例えば、特許文献1参照)。 Conventionally, for example, a sintered body of yttria-stabilized zirconia is typically used for the electrolyte layer, and in recent years, electron conductivity and ionic conductivity have been provided for the air electrode in order to increase the output of SOFC. A perovskite-type composite oxide having an ABO 3 structure, for example, (La, Sr) (Co, Fe) O 3 has been used (see, for example, Patent Document 1).
 しかし、従来のSOFCは、上述したように、作動温度が高いので、構造材料が劣化しやすいという問題を有している。 However, as described above, the conventional SOFC has a problem that the structural material is liable to deteriorate because the operating temperature is high.
 そこで、近年に至って、ジルコン酸バリウム系ペロブスカイト型複合酸化物(BZM)粉末が700℃以下の中低温で良好なプロトン伝導性を有することから、中低温作動型のSOFCの電解質材料として期待されている。 Therefore, in recent years, barium zirconate perovskite type composite oxide (BZM) powder has good proton conductivity at medium and low temperatures of 700 ° C. or lower, and is therefore expected as an electrolyte material for medium and low temperature operating SOFCs. There is.
 上記ジルコン酸バリウム系ペロブスカイト型複合酸化物(BZM)は、組成式
           BaZr1-x3-δ
で表され、ここに、Mはドープ元素、即ち、Y(イットリウム)又はYb(イッテルビウム)である。
The barium zirconate-based perovskite-type composite oxide (BZM) has a composition formula of BaZr 1-x M x O 3-δ.
Represented by, where M is a doping element, ie, Y (yttrium) or Yb (ytterbium).
 例えば、イットリウム添加ジルコン酸バリウムを固体電解質として用いるSOFCについては、ランタンストロンチウムコバルト複合酸化物(LSC)からなるカソード電極層の一方側にイットリウム添加ジルコン酸バリウムを固体電解質層として積層して固体電解質積層体を構成することが提案されている。このような固体電解質積層体を備えたSOFCは600℃以下の作動温度にて高い発電性能を有するとされている(特許文献1参照)。 For example, for SOFC using yttrium-added barium zirconate as a solid electrolyte, yttrium-added barium zirconate is laminated as a solid electrolyte layer on one side of a cathode electrode layer made of lanthanum strontium cobalt composite oxide (LSC) to laminate a solid electrolyte. It has been proposed to construct the body. SOFCs provided with such a solid electrolyte laminate are said to have high power generation performance at an operating temperature of 600 ° C. or lower (see Patent Document 1).
 このようなイットリウム添加ジルコン酸バリウムは、例えば、Ba、Zr及びYの組成比が所定の比率となるようにバリウム源(例えば、炭酸バリウム)とジルコニウム源(例えば、酸化ジルコニウム)とイットリウム源(例えば、酸化イットリウム)を混合し、湿式粉砕して均一な混合物とした後、これを焼成し、再度、湿式粉砕する固相法によって得ることができる(特許文献1参照)。 Such yttrium-added barium zirconate has, for example, a barium source (for example, barium carbonate), a zirconium source (for example, zirconium oxide), and an yttrium source (for example, so that the composition ratios of Ba, Zr, and Y have a predetermined ratio. , Yttrium oxide) is mixed and wet-ground to obtain a uniform mixture, which is then fired and wet-ground again to obtain a solid-state method (see Patent Document 1).
 しかし、このような固相法では、よく知られているように、イットリウムのようなドープ元素が偏析しやすく、また、異相も生成しやすいので、組成が均一で、しかも、微細で高結晶性である製品を得ることが困難である。 However, in such a solid-phase method, as is well known, a doping element such as yttrium is easily segregated and a heterogeneous phase is easily generated, so that the composition is uniform, and the composition is fine and highly crystalline. It is difficult to obtain a product that is.
 また、固相法によっても、得られた一次粒子を長時間、湿式粉砕することによって、破砕物として微細な粒子を得ることはできるが、一方において、上記粉砕物中に粉砕媒体に由来する不純物が増え、更に、粉砕時にバリウムが溶媒に溶出し、その後の乾燥において、粗大な炭酸バリウムが生成する問題がある。このように、得られるイットリウム添加ジルコン酸バリウムに不純物が混入すれば、プロトン伝導性に悪影響を及ぼす。 Further, also by the solid phase method, fine particles can be obtained as a crushed product by wet pulverizing the obtained primary particles for a long time, but on the other hand, impurities derived from the pulverized medium are contained in the pulverized product. In addition, there is a problem that barium elutes into a solvent during pulverization and coarse barium carbonate is produced during subsequent drying. As described above, if impurities are mixed in the obtained yttrium-added barium zirconate, the proton conductivity is adversely affected.
 近年においては、上記イットリウム添加ジルコン酸バリウムに代えて、ドープ元素としてイッテルビウムを用いたイッテルビウム添加ジルコン酸バリウムをランタンストロンチウムコバルト複合酸化物(LSC)からなるカソード電極層の一方側に積層して固体電解質積層体を構成することによって、発電効率の一層高いSOFCを得ることが提案されている(特許文献2参照)。 In recent years, instead of the yttrium-added barium zirconate, an itterbium-added barium zirconate using yttrium as a doping element is laminated on one side of a cathode electrode layer made of lanthanum strontium cobalt composite oxide (LSC) to form a solid electrolyte. It has been proposed to obtain SOFC having higher power generation efficiency by constructing a laminate (see Patent Document 2).
 このようなイッテルビウム添加ジルコン酸バリウムは、例えば、硝酸バリウムとオキシ硝酸ジルコニウムと硝酸イッテルビウムの混合水溶液に錯体形成剤としてクエン酸とエチレンジアミン四酢酸を作用させ、pH調整した後、水を除去し、得られた固形物を粉砕することによって得ることができる(特許文献2参照)。 Such ytterbium-added barium zirconate can be obtained by, for example, allowing citric acid and ethylenediaminetetraacetic acid to act as a complex-forming agent on a mixed aqueous solution of barium nitrate, zirconium oxynitrate, and ytterbium nitrate, adjusting the pH, and then removing water. It can be obtained by pulverizing the obtained solid matter (see Patent Document 2).
 上記液相法によれば、上述した固相法に比較して、ドープ元素の偏析の少ない製品を得ることができるが、原料費用が高いので、工業的な量産に適しない。 According to the liquid phase method described above, a product with less segregation of the doped element can be obtained as compared with the solid phase method described above, but the raw material cost is high, so that it is not suitable for industrial mass production.
特開2013-206703号公報Japanese Unexamined Patent Publication No. 2013-20703 特開2017-188439号公報JP-A-2017-188439
 本発明は、イッテルビウム添加ジルコン酸バリウムの製造における上述した問題を解決するためになされたものであって、異相を含まず、組成が均一であって、しかも、微細で高結晶性であり、開気孔率が低いイッテルビウム添加ジルコン酸バリウムの工業的に有利な製造方法、即ち、固相法によるよりも組成が均一であるイッテルビウム添加ジルコン酸バリウムの低廉で量産化に適する水熱法による製造方法を提供することを目的とし、更に、そのような方法によって得られる上述した特性を有するイッテルビウム添加ジルコン酸バリウムを提供することを目的とする。 The present invention has been made to solve the above-mentioned problems in the production of ytterbium-added barium zirconate, which is free of different phases, has a uniform composition, is fine and highly crystalline, and is open. An industrially advantageous method for producing ytterbium-added barium zirconate, which has a low pore ratio, that is, a method for producing ytterbium-added barium zirconate, which has a more uniform composition than the solid phase method, by a hydrothermal method, which is inexpensive and suitable for mass production. An object of the present invention is to provide a ytterbium-added barium zirconate with the above-mentioned properties obtained by such a method.
 本発明によれば、組成式(I)
           BaZr1-xYb3-δ
(式中、xは0.1≦x≦0.6を満たす数であり、δは酸素欠損量を示す。)
で表されるイッテルビウム添加ジルコン酸バリウム粒子の製造方法であって、
(a)バリウム水酸化物とジルコニウム水酸化物とイッテルビウム水酸化物とイッテルビウム添加ジルコン酸バリウムの種結晶を水と共に混合して、第1のスラリーを得る工程、
(b)上記第1のスラリーを湿式粉砕して、平均粒子径が3.0μm以下である粒子状固形物を含む第2のスラリーを得る工程、
(c)上記第2のスラリーにバリウム水酸化物を添加して、第3のスラリーを得る工程、
(d)上記第3のスラリーを水熱反応させて、第4のスラリーを得る工程、及び
(e)上記第4のスラリーを酸処理した後、水洗処理して、過剰のバリウム水酸化物を除去する工程
を含み、
 上記工程(a)において、第1のスラリーの有するBa/(Zr+Yb)モル比を0.1~1.2の範囲とし、
 上記工程(c)において、第3のスラリーの有するBa/(Zr+Yb)モル比を1.5~5.0の範囲とする、
ことを特徴とするイッテルビウム添加ジルコン酸バリウム粒子の製造方法が提供される。
According to the present invention, the composition formula (I)
BaZr 1-x Yb x O 3-δ
(In the formula, x is a number satisfying 0.1 ≤ x ≤ 0.6, and δ indicates the amount of oxygen deficiency.)
It is a method for producing barium particles containing ytterbium-added zirconate, which is represented by.
(A) A step of mixing barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and seed crystals of barium zirconate containing ytterbium with water to obtain a first slurry.
(B) A step of wet-pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 μm or less.
(C) A step of adding barium hydroxide to the second slurry to obtain a third slurry.
(D) The step of hydrothermally reacting the third slurry to obtain a fourth slurry, and (e) the fourth slurry is acid-treated and then washed with water to remove excess barium hydroxide. Including the step of removing
In the above step (a), the Ba / (Zr + Yb) molar ratio of the first slurry is set in the range of 0.1 to 1.2.
In the above step (c), the Ba / (Zr + Yb) molar ratio of the third slurry is set in the range of 1.5 to 5.0.
Provided is a method for producing ytterbium-added barium zirconate particles.
 本発明によれば、前記工程(a)において、前記第1のスラリーの含むジルコニウムとイッテルビウムの合計モル部数100モル部に対して1~20モル部の範囲でイッテルビウム添加ジルコン酸バリウム粒子の種結晶を用いることが好ましい。上記種結晶は、前記組成式(I)を有するものであることが望ましい。 According to the present invention, in the step (a), seed crystals of ytterbium-added barium zirconate particles in the range of 1 to 20 mol parts with respect to 100 mol parts of the total number of moles of zirconium and ytterbium contained in the first slurry. Is preferably used. It is desirable that the seed crystal has the composition formula (I).
 本発明によれば、上記工程(a)において、ジルコニウム水酸化物とイッテルビウム水酸化物に代えて、予め、製造したジルコニウムとイッテルビウムの混合水酸化物を用いることができる。 According to the present invention, in the above step (a), a previously produced mixed hydroxide of zirconium and ytterbium can be used instead of the zirconium hydroxide and ytterbium hydroxide.
 本発明によれば、上記水熱反応は、温度120~300℃の範囲で行うことが好ましい。 According to the present invention, the hydrothermal reaction is preferably carried out in a temperature range of 120 to 300 ° C.
 更に、本発明によれば、組成式(I)
           BaZr1-xYb3-δ
(式中、xは0.1≦x≦0.6を満たす数であり、δは酸素欠損量を示す。)
で表される単相の粒子であって、10m/g以上の比表面積を有し、0.7~1.5の範囲の結晶子径/比表面積換算粒子径を有するイッテルビウム添加ジルコン酸バリウム粒子が提供される。
Further, according to the present invention, the composition formula (I)
BaZr 1-x Yb x O 3-δ
(In the formula, x is a number satisfying 0.1 ≤ x ≤ 0.6, and δ indicates the amount of oxygen deficiency.)
Itterbium-added barium zirconate, which is a single-phase particle represented by, has a specific surface area of 10 m 2 / g or more, and has a crystallite diameter / specific surface area equivalent particle diameter in the range of 0.7 to 1.5. Particles are provided.
 尚、本発明において、前記組成式に記載されている「δ」は酸素欠損量を表し、組成や温度、雰囲気等によって異なる値をとり得るため、数値範囲を規定することに意味のない量である。 In the present invention, "δ" described in the composition formula represents the amount of oxygen deficiency and can take different values depending on the composition, temperature, atmosphere, etc., so that it is meaningless to specify the numerical range. is there.
 本発明の方法によれば、異相を含まず、組成が均一であって、微細で、結晶性にすぐれ、開気孔率が低く、従って、緻密な電解質膜を容易に形成し得るイッテルビウム添加ジルコン酸バリウム粒子を得ることができる。 According to the method of the present invention, ytterbium-added zirconate, which does not contain heterogeneous phases, has a uniform composition, is fine, has excellent crystallinity, and has a low open porosity, and thus can easily form a dense electrolyte membrane. Barium particles can be obtained.
 また、本発明の方法によって得られるイッテルビウム添加ジルコン酸バリウム粒子は、上述したような特性を有するので、固体酸化物形燃料電池用電解質材料として好適に用いることができる。 Further, since the ytterbium-added barium zirconate particles obtained by the method of the present invention have the above-mentioned characteristics, they can be suitably used as an electrolyte material for a solid oxide fuel cell.
 特に、本発明によるイッテルビウム添加ジルコン酸バリウム粒子は、組成が均一であるので、固体酸化物形燃料電池用電解質材料として用いた場合、プロトン伝導特性にすぐれ、また、固相法にて得られたイッテルビウム添加ジルコン酸バリウム粒子よりも低い温度で焼結するので、より緻密な電解質膜を得ることができ、プロトン伝導性も改善されるのみならず、電解質の製造費用を低減することができ、延いては、SOFCセルの性能の安定化や耐久性の向上に寄与することができる。 In particular, the itterbium-added barium zirconate particles according to the present invention have a uniform composition, and therefore, when used as an electrolyte material for a solid oxide fuel cell, have excellent proton conduction characteristics and can be obtained by a solid phase method. Since it is sintered at a lower temperature than the itterbium-added barium zirconate particles, a finer electrolyte membrane can be obtained, not only the proton conductivity is improved, but also the production cost of the electrolyte can be reduced. Therefore, it can contribute to stabilizing the performance of the SOFC cell and improving its durability.
本発明の実施例1と比較例2において得られたイッテルビウム添加ジルコン酸バリウム粒子のX線回折パターンを示す。The X-ray diffraction pattern of the ytterbium-added barium zirconate particles obtained in Example 1 and Comparative Example 2 of the present invention is shown.
 本発明によるイッテルビウム添加ジルコン酸バリウム粒子の製造方法は、組成式(I)
           BaZr1-xYb3-δ
(式中、xは0.1≦x≦0.6を満たす数であり、δは酸素欠損量を示す。)
で表されるイッテルビウム添加ジルコン酸バリウム粒子の製造方法であって、
(a)バリウム水酸化物とジルコニウム水酸化物とイッテルビウム水酸化物とイッテルビウム添加ジルコン酸バリウムの種結晶を水と共に混合して、第1のスラリーを得る工程、
(b)上記第1のスラリーを湿式粉砕して、平均粒子径が3.0μm以下である粒子状固形物を含む第2のスラリーを得る工程、
(c)上記第2のスラリーにバリウム水酸化物を添加して、第3のスラリーを得る工程、
(d)上記第3のスラリーを水熱反応させて、第4のスラリーを得る工程、及び
(e)上記第4のスラリーを酸処理した後、水洗処理して、過剰のバリウム水酸化物を除去する工程を含み、
 上記工程(a)において、第1のスラリーの有するBa/(Zr+Yb)モル比を0.1~1.2の範囲とし、
 上記工程(c)において、第3のスラリーの有するBa/(Zr+Yb)モル比を1.5~5.0の範囲とする、
ことを特徴とする。
The method for producing ytterbium-added barium zirconate particles according to the present invention is described in the composition formula (I).
BaZr 1-x Yb x O 3-δ
(In the formula, x is a number satisfying 0.1 ≤ x ≤ 0.6, and δ indicates the amount of oxygen deficiency.)
It is a method for producing barium particles containing ytterbium-added zirconate, which is represented by.
(A) A step of mixing barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and seed crystals of barium zirconate containing ytterbium with water to obtain a first slurry.
(B) A step of wet-pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 μm or less.
(C) A step of adding barium hydroxide to the second slurry to obtain a third slurry.
(D) The step of hydrothermally reacting the third slurry to obtain a fourth slurry, and (e) the fourth slurry is acid-treated and then washed with water to remove excess barium hydroxide. Including the step of removing
In the above step (a), the Ba / (Zr + Yb) molar ratio of the first slurry is set in the range of 0.1 to 1.2.
In the above step (c), the Ba / (Zr + Yb) molar ratio of the third slurry is set in the range of 1.5 to 5.0.
It is characterized by that.
 本発明において、工程(a)及び工程(c)におけるBa/(Zr+Yb)モル比は、それぞれの工程において用いたバリウム水酸化物、ジルコニウム水酸化物及びイッテルビウム水酸化物の量、即ち、仕込み量に基づき、一方、最終的に得られたイッテルビウム添加ジルコン酸バリウム粒子におけるBa/(Zr+Yb)モル比及びYb/(Zr+Yb)モル比は後述する分析方法に基づく。 In the present invention, the Ba / (Zr + Yb) molar ratio in the steps (a) and (c) is the amount of barium hydroxide, zirconium hydroxide and ytterbium hydroxide used in each step, that is, the amount charged. On the other hand, the Ba / (Zr + Yb) molar ratio and the Yb / (Zr + Yb) molar ratio in the finally obtained ytterbium-added barium zirconate particles are based on the analysis method described later.
 本発明によるイッテルビウム添加ジルコン酸バリウムの製造方法においては、工程(a)及び工程(c)において、それぞれ得られるスラリーの有するBa/(Zr+Yb)モル比を所定の値に調整しつつ、工程(a)から工程(c)を経てスラリーを得、このスラリーを水熱反応に供することによって、目的とする組成が均一であって、微細で結晶性にすぐれ、開気孔率の低いイッテルビウム添加ジルコン酸バリウム粒子を得ることができる。 In the method for producing barium zirconate supplemented with itterbium according to the present invention, in the steps (a) and (c), the Ba / (Zr + Yb) molar ratio of the obtained slurry is adjusted to a predetermined value, and the step (a) is performed. ) Through step (c), and subjecting this slurry to a hydrothermal reaction, barium zirconate with itterbium added, which has a uniform target composition, is fine and has excellent crystallinity, and has a low porosity. Particles can be obtained.
 本発明において、上記バリウム水酸化物としては、水酸化バリウムの無水和物、1水和物、8水和物等が挙げられる。 In the present invention, examples of the barium hydroxide include anhydrous barium hydroxide, monohydrate, and octahydrate.
 上記ジルコニウム水酸化物としては、水酸化ジルコニウムの無水和物や各種水和物の市販品を用いることができる。しかし、上記市販品は、吸水しやすく、不安定である。そこで、本発明においては、上記ジルコニウム水酸化物として、好ましくは、オキシ塩化ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム等の水溶性ジルコニウム化合物を水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ性化合物の過剰量と水中で反応させて、ほぼ定量的にジルコニウム水酸化物を生成させ、このようにして得る湿潤ケーキとしてのジルコニウム水酸化物を用いる。 As the zirconium hydroxide, commercially available products of anhydrous zirconium hydride and various hydrates can be used. However, the above-mentioned commercial product easily absorbs water and is unstable. Therefore, in the present invention, as the zirconium hydroxide, preferably, a water-soluble zirconium compound such as zirconium oxychloride, zirconium acetate or zirconium sulfate is used as an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide or aqueous ammonia. And water to produce zirconium hydroxide almost quantitatively, and the zirconium hydroxide thus obtained as a wet cake is used.
 上記イッテルビウム水酸化物としては、水酸化イッテルビウムの無水和物や各種水和物の市販品を用いることができる。しかし、上記市販品も吸水しやすく、不安定である。そこで、本発明においては、上記イッテルビウム水酸化物として、好ましくは、硫酸イッテルビウム、塩化イッテルビウム、硝酸イッテルビウム等の水溶性イッテルビウム化合物を水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ性化合物の過剰量と水中で反応させて、ほぼ定量的にイッテルビウム水酸化物を生成させ、このようにして得る湿潤ケーキとしてのイッテルビウム水酸化物を用いる。 As the above-mentioned ytterbium hydroxide, a commercially available product of an anhydrous ytterbium hydroxide or various hydrates can be used. However, the above-mentioned commercial products also easily absorb water and are unstable. Therefore, in the present invention, as the ytterbium hydroxide, preferably, a water-soluble ytterbium compound such as ytterbium sulfate, ytterbium chloride, or ytterbium nitrate is used as an excess amount of an alkaline compound such as sodium hydroxide, potassium hydroxide, or aqueous ammonia. Ytterbium hydroxide is produced as a wet cake obtained by reacting in water to form ytterbium hydroxide almost quantitatively, and ytterbium hydroxide is used as a wet cake thus obtained.
 工程(a)から工程(c)を行うことなく、バリウム水酸化物とジルコニウム水酸化物とイッテルビウム水酸化物とイッテルビウム添加ジルコン酸バリウムの種結晶粒子を水にスラリー化し、これを水熱反応に供しても、目的とするイッテルビウム添加ジルコン酸バリウム粒子を得ることができない。 The seed crystal particles of barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and ytterbium-added barium zirconate are slurried in water without performing steps (a) to (c), and this is subjected to a hydrothermal reaction. Even if it is provided, the desired ytterbium-added barium zirconate particles cannot be obtained.
 工程(a)は、バリウム水酸化物とジルコニウム水酸化物とイッテルビウム水酸化物とイッテルビウム添加ジルコン酸バリウムの種結晶を水と共に混合して、第1のスラリーを得る工程である。この第1のスラリーは、ジルコニウム水酸化物とイッテルビウム水酸化物とイッテルビウム添加ジルコン酸バリウムの種結晶を含む固形物を含み、場合によっては、上記バリウム水酸化物の水不溶部分を含むことがある。 Step (a) is a step of mixing barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and seed crystals of ytterbium-added barium zirconate with water to obtain a first slurry. This first slurry contains a solid containing zirconium hydroxide, ytterbium hydroxide, and seed crystals of ytterbium-added barium zirconate, and in some cases, may contain a water-insoluble portion of the barium hydroxide. ..
 上記ジルコニウム水酸化物とイッテルビウム水酸化物は、予め、製造したジルコニウムとイッテルビウムの混合水酸化物であってもよい。 The zirconium hydroxide and ytterbium hydroxide may be a mixed hydroxide of zirconium and ytterbium produced in advance.
 上記イッテルビウム添加ジルコン酸バリウムの種結晶としては、前記一般式(I)で表されるものであれば、いずれでもよい。 The seed crystal of the ytterbium-added barium zirconate may be any one represented by the general formula (I).
 工程(a)においては、第1のスラリーの有するBa/(Zr+Yb)モル比を0.1~1.2の範囲とする。工程(a)において、バリウム水酸化物を上記モル比が0.1よりも小さい値にて用いるときは、10m/g以上の比表面積を有するイッテルビウム添加ジルコン酸バリウム粒子を得るために、工程(b)において非常に長時間の粉砕が必要となる。その結果、得られた粉砕物に粉砕メディア由来の不純物が混入することとなり、最終的に高い品質を有するイッテルビウム添加ジルコン酸バリウム粒子を得ることができない。 In the step (a), the Ba / (Zr + Yb) molar ratio of the first slurry is in the range of 0.1 to 1.2. In step (a), when barium hydroxide is used at a value smaller than 0.1, in order to obtain ytterbium-added barium zirconate particles having a specific surface area of 10 m 2 / g or more, the step In (b), very long crushing is required. As a result, impurities derived from the pulverized media are mixed in the obtained pulverized product, and finally, ytterbium-added barium zirconate particles having high quality cannot be obtained.
 しかし、工程(a)において、バリウム水酸化物を上記モル比が1.2よりも大きい値にて用いるときは、最終的に得られるイッテルビウム添加ジルコン酸バリウム粒子が異相を含む。 However, when barium hydroxide is used in the step (a) at a value having a molar ratio greater than 1.2, the finally obtained ytterbium-added barium zirconate particles contain a heterogeneous phase.
 更に、本発明においては、より高純度で高導電性のイッテルビウム添加ジルコン酸バリウム粒子を得ることができるように、上記工程(a)において、第1のスラリーの有するYb/(Zr+Yb)モル比を0.1~0.6の範囲とすることが好ましい。上記Yb/(Zr+Yb)モル比は、工程(a)において用いたバリウム水酸化物、ジルコニウム水酸化物及びイッテルビウム水酸化物の量、即ち、仕込み量に基づく。 Further, in the present invention, in the step (a) above, the Yb / (Zr + Yb) molar ratio of the first slurry is adjusted so that ytterbium-added barium zirconate particles having higher purity and higher conductivity can be obtained. The range is preferably 0.1 to 0.6. The Yb / (Zr + Yb) molar ratio is based on the amounts of barium hydroxide, zirconium hydroxide and ytterbium hydroxide used in step (a), that is, the amount charged.
 工程(b)は、上記第1のスラリーを湿式粉砕して、平均粒子径が3.0μm以下である粒子状固形物を含む第2のスラリーを得る工程である。 Step (b) is a step of wet pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 μm or less.
 工程(b)において、得られる第2のスラリー中の粒子状固形物が3.0μmを超える平均粒子径を有するときは、目的とする微細で結晶性にすぐれるイッテルビウム添加ジルコン酸バリウム粒子を得ることができない。 In step (b), when the particulate solid in the obtained second slurry has an average particle size of more than 3.0 μm, the desired fine and highly crystalline barium zirconate titerbium-added zirconate particles are obtained. Can't.
 一方、工程(b)において、得られるスラリー中の粒子状固形物の平均粒子径の下限値は特に限定されるものではないが、通常、0.1μm程度が好ましい。工程(b)において、得られるスラリー中の粒子状固形物の平均粒子径を余りに小さいものとするときは、粉砕に不必要に長時間を要するので、工業的な製造方法としては経済性に問題が生じるほか、粉砕媒体に由来する不純物が粉砕物に混入するおそれもある。 On the other hand, in the step (b), the lower limit of the average particle size of the particulate solids in the obtained slurry is not particularly limited, but is usually preferably about 0.1 μm. In the step (b), when the average particle size of the particulate solids in the obtained slurry is made too small, it takes an unnecessarily long time for pulverization, which is economically problematic as an industrial production method. In addition to this, impurities derived from the pulverized medium may be mixed into the pulverized product.
 工程(b)における湿式粉砕には、通常、遊星ボールミルやビーズミルが用いられる。粉砕媒体は、所要の平均粒子径を考慮して、適宜の直径、例えば、0.3~3.0mm程度の直径を有するジルコニアボール等が好ましく用いられる。 A planetary ball mill or a bead mill is usually used for wet pulverization in the step (b). As the pulverization medium, zirconia balls having an appropriate diameter, for example, a diameter of about 0.3 to 3.0 mm, or the like is preferably used in consideration of the required average particle diameter.
 工程(c)は、上記工程(b)において得られた第2のスラリーにバリウム水酸化物を加えて、第3のスラリーを得る工程である。 Step (c) is a step of adding barium hydroxide to the second slurry obtained in the above step (b) to obtain a third slurry.
 工程(c)においては、上記工程(b)において得られた第2のスラリーにバリウム水酸化物を加え、第3のスラリーに過剰のバリウムを有せしめて、水熱反応のための原料混合物を得る工程である。即ち、第3のスラリーは、ジルコニウム水酸化物とイッテルビウム水酸化物と共に過剰のバリウム水酸化物を含む。ここに、第3のスラリーが過剰のバリウムを有するとは、第3のスラリーの有するジルコニウムとイッテルビウムの合計量1モル部に対して、バリウム量が1モル部を超えるという意味である。即ち、工程(c)においては、得られる第3のスラリーの有するBa/(Zr+Yb)モル比を1.5以上とすることが好ましい。 In the step (c), barium hydroxide is added to the second slurry obtained in the above step (b), and the third slurry is provided with excess barium to prepare a raw material mixture for a hydrothermal reaction. This is the process of obtaining. That is, the third slurry contains excess barium hydroxide as well as zirconium hydroxide and ytterbium hydroxide. Here, the fact that the third slurry has an excess barium means that the amount of barium exceeds 1 mol part with respect to 1 mol part of the total amount of zirconium and ytterbium contained in the third slurry. That is, in the step (c), it is preferable that the Ba / (Zr + Yb) molar ratio of the obtained third slurry is 1.5 or more.
 上記モル比が1.5よりも小さいときは、次工程である工程(d)における水熱反応において、イッテルビウムとジルコニウム、特に、イッテルビウムの一部がバリウムと十分に反応せず、得られるイッテルビウム添加ジルコン酸バリウムが異相としてイッテルビウム化合物(YbOOH)を含む。上記モル比の上限値は、必ずしも、固定されるものではないが、通常、5.0程度が好ましい。上記モル比が5.0を超えても、目的とするイッテルビウム添加ジルコン酸バリウム粒子を得ることはできるが、次工程(e)において、水熱反応によって得られる第4のスラリーを酸処理した後、水洗処理して、過剰のバリウムを除去するために、酸処理及びその後の水洗処理にそれぞれ多量の酸及び水を用いる必要があり、製造費用が嵩むこととなる。 When the molar ratio is smaller than 1.5, ytterbium and zirconium, particularly a part of ytterbium, do not sufficiently react with barium in the hydrothermal reaction in the next step (d), and ytterbium is added. Barium zirconate contains ytterbium compound (YbOOH) as a heterogeneous phase. The upper limit of the molar ratio is not necessarily fixed, but is usually preferably about 5.0. Even if the molar ratio exceeds 5.0, the desired ytterbium-added barium zirconate particles can be obtained, but in the next step (e), after the fourth slurry obtained by the hydrothermal reaction is acid-treated. In order to remove excess barium by washing with water, it is necessary to use a large amount of acid and water for the acid treatment and the subsequent washing with water, respectively, which increases the manufacturing cost.
 工程(d)は、工程(c)において得られた上記第3のスラリーを水熱反応させて、第4のスラリーを得る工程である。この水熱反応の温度は、通常、120~300℃の範囲であり、好ましくは、130~250℃の範囲であり、最も好ましくは、150~200℃の範囲である。 Step (d) is a step of hydrothermally reacting the third slurry obtained in step (c) to obtain a fourth slurry. The temperature of this hydrothermal reaction is usually in the range of 120 to 300 ° C, preferably in the range of 130 to 250 ° C, and most preferably in the range of 150 to 200 ° C.
 上記第4のスラリーは、過剰のバリウム水酸化物の存在下での水熱反応によって前記原料混合物から生成したイッテルビウム添加ジルコン酸バリウム粒子を含む。そこで、工程(e)は、上記水熱反応によって得られた第4のスラリーを酸処理した後、水洗処理する。即ち、工程(d)は、上記第4のスラリーに、例えば、硝酸のような酸を加え、得られたイッテルビウム添加ジルコン酸バリウム粒子から上記過剰のバリウム水酸化物を、例えば、硝酸バリウムのようなバリウム塩として除去する工程である。 The fourth slurry contains ytterbium-added barium zirconate particles produced from the raw material mixture by a hydrothermal reaction in the presence of excess barium hydroxide. Therefore, in the step (e), the fourth slurry obtained by the hydrothermal reaction is acid-treated and then washed with water. That is, in step (d), an acid such as nitric acid is added to the fourth slurry, and the excess barium hydroxide is added from the obtained barium particles containing itterbium-added zirconate, for example, barium nitrate. It is a step of removing as a barium salt.
 かくして、上記第4のスラリーを酸処理した後、水洗処理し、必要に応じて、ろ過、乾燥することによって、炭酸バリウムを異相として含まないイッテルビウム添加ジルコン酸バリウム粒子を得ることができる。 Thus, ytterbium-added barium zirconate particles containing barium carbonate as a heterogeneous phase can be obtained by acid-treating the fourth slurry, washing it with water, filtering and drying it, if necessary.
 上記酸処理に用いる酸は、無機酸、有機酸のいずれでもよいが、通常、硝酸、塩酸、酢酸等が好ましく用いられる。工程(d)において得られた上記反応混合物は、5程度のpHを有するように酸処理される。また、上記水洗処理には、イオン交換水や純水が好ましく用いられる。上記水洗処理は、ろ液の電気伝導率が5ms/m以下になるまで行うことが好ましい。 The acid used for the acid treatment may be either an inorganic acid or an organic acid, but usually nitric acid, hydrochloric acid, acetic acid and the like are preferably used. The reaction mixture obtained in step (d) is acid-treated so as to have a pH of about 5. Further, ion-exchanged water or pure water is preferably used for the water washing treatment. The water washing treatment is preferably carried out until the electric conductivity of the filtrate becomes 5 ms / m or less.
 本発明によれば、このようにして、前記組成式(I)で表される単相の粒子であって、10m/g以上の比表面積を有して、微細であると共に、0.7~1.5の範囲の結晶子径/比表面積換算粒子径を有して、結晶性にすぐれ、更に、低い開気孔率を有するイッテルビウム添加ジルコン酸バリウム粒子を得ることができる。このようなイッテルビウム添加ジルコン酸バリウム粒子は、容易に緻密な電解質膜を形成することができる。 According to the present invention, in this way, the single-phase particles represented by the composition formula (I) have a specific surface area of 10 m 2 / g or more, are fine, and are 0.7. Itterbium-added barium zirconate particles having a crystallite diameter / specific surface area equivalent particle diameter in the range of about 1.5, having excellent crystallinity and having a low porosity can be obtained. Such ytterbium-added barium zirconate particles can easily form a dense electrolyte membrane.
 本発明によるイッテルビウム添加ジルコン酸バリウム粒子は、好ましくは、11m/g以上、特に好ましくは、12m/g以上の比表面積を有し、微細であると共に結晶子径/比表面積換算粒子径が1に近い値である0.9~1.3の範囲の結晶子径/比表面積換算粒子径を有し、結晶性にすぐれる。一般に、粒子は結晶子径/比表面積換算粒子径が1に近い値である程、幾何学的粒子径と単結晶の大きさが近いために、高結晶性である。 The itterbium-added barium zirconate particles according to the present invention preferably have a specific surface area of 11 m 2 / g or more, particularly preferably 12 m 2 / g or more, and are fine and have a crystallite size / specific surface area conversion particle size. It has a crystallite diameter / specific surface area equivalent particle diameter in the range of 0.9 to 1.3, which is a value close to 1, and is excellent in crystallinity. In general, the closer the crystallite diameter / specific surface area conversion particle diameter is to 1, the closer the geometric particle diameter and the size of the single crystal are, and therefore the particles have higher crystallinity.
 通常、粒子における比表面積相当径は結晶子径より大きい。即ち、結晶子径/比表面積換算粒子径の値は1より小さいことが多いが、比表面積相当径は各粒子が真球状であると想定して算出されているため、粒子形状が真球でない場合は、実際の粒子形状との相違が影響し、結晶子径/比表面積換算粒子径の値が1より大きくなることがある。 Normally, the specific surface area equivalent diameter of a particle is larger than the crystallite diameter. That is, the value of the crystallite diameter / specific surface area equivalent particle diameter is often smaller than 1, but the specific surface area equivalent diameter is calculated assuming that each particle is spherical, so the particle shape is not spherical. In this case, the value of the crystallite diameter / specific surface area equivalent particle diameter may be larger than 1 due to the difference from the actual particle shape.
 また、本発明によれば、得られたイッテルビウム添加ジルコン酸バリウムのバリウム量が欠損している場合、即ち、Ba/(Zr+Yb)モル比が1よりも小さい場合、上記イッテルビウム添加ジルコン酸バリウムにバリウムを補償して、所望のBa/(Zr+Yb)モル比を有するイッテルビウム添加ジルコン酸バリウムを得ることができる。 Further, according to the present invention, when the barium amount of the obtained ytterbium-added zirconate titerium is deficient, that is, when the Ba / (Zr + Yb) molar ratio is smaller than 1, barium is added to the ytterbium-added lead zirconate titer. To compensate for this, ytterbium-added barium zirconate with the desired Ba / (Zr + Yb) molar ratio can be obtained.
 即ち、例えば、水熱反応の後、得られた反応混合物(固体)をろ過し、酸処理し、水洗して、反応混合物中、水に溶存しているバリウム水酸化物を除去した後、得られた反応生成物のBa/(Zr+Yb)モル比を分析し、次いで、所望のBa/(Zr+Yb)モル比になるように、上記反応生成物にバリウム化合物を添加剤として加えて、所望のBa/(Zr+Yb)モル比を有せしめ、これを焼結すれば、所望のBa/(Zr+Yb)モル比を有するイッテルビウム添加ジルコン酸バリウム焼結体を得ることができる。 That is, for example, after a hydrothermal reaction, the obtained reaction mixture (solid) is filtered, acid-treated, washed with water to remove barium hydroxide dissolved in water in the reaction mixture, and then obtained. The Ba / (Zr + Yb) molar ratio of the reaction product obtained was analyzed, and then a barium compound was added as an additive to the reaction product so as to obtain the desired Ba / (Zr + Yb) molar ratio, and the desired Ba was obtained. If a / (Zr + Yb) molar ratio is provided and this is sintered, an itterbium-added barium zirconate titer having a desired Ba / (Zr + Yb) molar ratio can be obtained.
  ここに、上記添加剤としては、水への溶解度が低く、更に、このように添加剤を加えた反応混合物を焼結した際に、その添加剤が熱分解しても、バリウム以外のものが焼結体中に残存しないもの、例えば、炭酸塩、有機酸塩、酸化物等が好ましく用いられる。 Here, the above-mentioned additives have low solubility in water, and even if the additive is thermally decomposed when the reaction mixture to which the additive is added is sintered, those other than barium are used. Those that do not remain in the sintered body, for example, carbonates, organic acid salts, oxides and the like are preferably used.
 従って、このような物性を有する発明によるイッテルビウム添加ジルコン酸バリウム粒子は、固体酸化物形燃料電池用電解質材料として好適に用いることができる。 Therefore, the ytterbium-added barium zirconate particles according to the invention having such physical properties can be suitably used as an electrolyte material for a solid oxide fuel cell.
 以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。尚、以下において、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。 The present invention will be described in detail with reference to Examples below, but the present invention is not limited to these Examples. In the following, unless otherwise specified, "part" means "part by mass" and "%" means "% by mass".
 また、各種の測定は以下のようにして行った。 In addition, various measurements were performed as follows.
 工程(b)における第2のスラリー中の粒子状固形物の粒度分布(比較例4を除く。)と平均粒子径
 工程(b)において得られた第2のスラリーの一部を分取して試料とし、これにヘキサメタリン酸ナトリウムを分散剤として加え、超音波ホモジナイザーで分散し、光回折・散乱法によって、即ち、レーザー回折・散乱式粒度分布計 (マイクロトラック・ベル(株))製MT-3300 EXII)を用いて、下記の条件で測定した。
Particle size distribution of particulate solids in the second slurry in step (b) (excluding Comparative Example 4) and average particle size A part of the second slurry obtained in step (b) was separated. As a sample, sodium hexametaphosphate was added as a dispersant, dispersed by an ultrasonic homogenizer, and by the light diffraction / scattering method, that is, a laser diffraction / scattering particle size distribution meter (MT-Made by Microtrac Bell Co., Ltd.). It was measured under the following conditions using 3300 EXII).
 計測モード:MT-3000
 測定上限:1408μm
 測定下限:0.021μm
 粒子屈折率:2.07
 粒子形状:非球形
 溶媒屈折率:1.333
Measurement mode: MT-3000
Upper limit of measurement: 1408 μm
Lower limit of measurement: 0.021 μm
Refractive index of particles: 2.07
Particle shape: Non-spherical Solvent refractive index: 1.333
 上記粒度分布の測定において得られた体積メジアン径(体積中位径)を平均粒子径とした。 The volume median diameter (medium volume diameter) obtained in the above particle size distribution measurement was taken as the average particle diameter.
 比較例4においては、水熱反応前のスラリーの一部を分取して試料とした以外は、上記と同様にして、測定した。 In Comparative Example 4, the measurement was carried out in the same manner as above except that a part of the slurry before the hydrothermal reaction was separated and used as a sample.
比表面積
 比表面積は、比表面積測定装置((株)マウンテック製、Macsorb HM-1220)を用いて、BET流動法により測定した。吸着ガスとして純窒素を用い、230℃で30分間保持した。
Specific surface area The specific surface area was measured by the BET flow method using a specific surface area measuring device (Macsorb HM-1220 manufactured by Mountech Co., Ltd.). Pure nitrogen was used as the adsorbed gas, and the mixture was held at 230 ° C. for 30 minutes.
X線回折パターン
 粉末X線回折パターンは、粉末X線回折装置((株)リガク製、試料水平型強力X線回折装置  RINT-TTRIIIにより下記条件で測定した。
 光学系:平行ビーム光学系(長尺スリット:PSA200/開口角度:0.057度)
 管電圧:50kV
 電流:300mA
 測定方法:平行法(連続)
 測定範囲(2θ):10~60度
 サンプリング幅:0.04度
 スキャンスピード:5度/分
X-ray diffraction pattern The powder X-ray diffraction pattern was measured by a powder X-ray diffractometer (manufactured by Rigaku Co., Ltd., sample horizontal strong X-ray diffractometer RINT-TTRIII under the following conditions.
Optical system: Parallel beam optical system (long slit: PSA200 / opening angle: 0.057 degrees)
Tube voltage: 50kV
Current: 300mA
Measurement method: Parallel method (continuous)
Measurement range (2θ): 10 to 60 degrees Sampling width: 0.04 degrees Scan speed: 5 degrees / minute
結晶子径
 上述した方法にて測定されたX線回折パターンにおけるイッテルビウム添加ジルコン酸バリウムの有するペロブスカイト相の(200)面に対する回折線の半価幅からシェラーの式を用いて結晶子径を算出した。
 結晶子径=K×λ/βcosθ
 但し、
 K=シェラー定数(=0.94)
 λ=X線の波長(Cu-Kα線 1.5418Å)
 β=半価幅(ラジアン単位)
 θ=ブラッグ(Bragg)角(回折角2θの1/2)
Crystallet diameter The crystallite diameter was calculated from the half-value width of the diffraction line with respect to the (200) plane of the perovskite phase of ytterbium-added barium zirconate in the X-ray diffraction pattern measured by the above method using Scheller's equation. ..
Crystallite diameter = K × λ / βcosθ
However,
K = Scheller constant (= 0.94)
λ = X-ray wavelength (Cu-Kα line 1.5418 Å)
β = half price range (radian unit)
θ = Bragg angle (1/2 of the diffraction angle 2θ)
比表面積換算粒子径
 上述した方法にて測定された比表面積から次の換算式を用いて比表面積換算粒子径を算出した。
 S=6/(ρ×d)
 S=比表面積
 ρ=試料粉体の密度
 d=比表面積換算粒子径
 但し、ρ(試料粉体の密度)はBaZrOの理論密度(6.17g/cm)とした。
Specific surface area equivalent particle size From the specific surface area measured by the above method, the specific surface area equivalent particle size was calculated using the following conversion formula.
S = 6 / (ρ × d)
S = specific surface area ρ = density of sample powder d = particle size converted to specific surface area However, ρ (density of sample powder) was the theoretical density of BaZrO 3 (6.17 g / cm 3 ).
イッテルビウム添加ジルコン酸バリウム粒子の波長分散型蛍光X線分析法による組成比のモル比分析
(前処理)
 白金坩堝にイッテルビウム添加ジルコン酸バリウム0.6gを秤取し、次いで、四ホウ酸リチウム(富士フィルム和光純薬(株))6gを秤取した。ビーカーに臭化カリウム(富士フィルム和光純薬(株))25gを秤量し、イオン交換水75mLを加え、ガラス棒で攪拌して溶解し、25%臭化カリウム水溶液とした。この25%臭化カリウム水溶液をマイクロピペッターで40μL分取し、イッテルビウム添加ジルコン酸バリウムと四ホウ酸リチウムを秤取した白金坩堝に加えた。白金坩堝をビード&フューズサンプラ((株)アメナテック製、TK-4100型 高周波溶融装置)に取り付けて、坩堝の内容物を1000℃で加熱溶融し、イッテルビウム添加ジルコン酸バリウムのガラスビード試料を得た。
(測定)
 上記ガラスビード試料を蛍光X線装置((株)リガク製、ZSX PrimusII)を用いて波長分散型蛍光X線分析法により各元素のモル濃度を測定し、検量線法によって、モル比を算出した。測定条件は以下のとおりである。
Molar ratio analysis of composition ratio of barium particles of ytterbium-added zirconate by wavelength dispersive X-ray fluorescence analysis (pretreatment)
0.6 g of barium zirconate containing ytterbium was weighed in a platinum crucible, and then 6 g of lithium borate (Fuji Film Wako Pure Chemical Industries, Ltd.) was weighed. 25 g of potassium bromide (Fuji Film Wako Pure Chemical Industries, Ltd.) was weighed in a beaker, 75 mL of ion-exchanged water was added, and the mixture was stirred and dissolved with a glass rod to prepare a 25% aqueous potassium bromide solution. 40 μL of this 25% potassium bromide aqueous solution was taken up with a micropipettor, and ytterbium-added barium zirconate and lithium borate were added to the weighed platinum crucible. The platinum crucible was attached to a bead & fuse sampler (TK-4100 type high frequency melting device manufactured by Amena Tech Co., Ltd.), and the contents of the crucible were heated and melted at 1000 ° C. to obtain a glass bead sample of ytterbium-added barium zirconate. ..
(Measurement)
The molar concentration of each element of the above glass bead sample was measured by a wavelength dispersive fluorescent X-ray analysis method using a fluorescent X-ray apparatus (ZSX PrimusII manufactured by Rigaku Co., Ltd.), and the molar ratio was calculated by a calibration curve method. .. The measurement conditions are as follows.
 サンプルスピン:あり
 ターゲット:Rh、50KV-60mA
Sample spin: Yes Target: Rh, 50KV-60mA
開気孔率
 ポリビニルアルコール(富士フィルム和光純薬(株))の10%水溶液100mLを用意した。実施例1~3、比較例1~5及び製造例5において得られたイッテルビウム添加ジルコン酸バリウムのそれぞれ10gを秤量し、乳鉢を用いて、上記ポリビニルアルコール水溶液1gと均一に混合して混合物を得、これを温度110℃に設定した乾燥機で1時間乾燥させた後、放冷した。次いで、得られた乾燥物を乳鉢を用いて解砕し、目開き150μmの篩いを通して、造粒粉末を得た。
Porosity 100 mL of a 10% aqueous solution of polyvinyl alcohol (Fuji Film Wako Pure Chemical Industries, Ltd.) was prepared. Weigh 10 g of each of the ytterbium-added barium zirconate obtained in Examples 1 to 3, Comparative Examples 1 to 5 and Production Example 5, and mix them uniformly with 1 g of the above polyvinyl alcohol aqueous solution using a mortar to obtain a mixture. This was dried in a dryer set at a temperature of 110 ° C. for 1 hour and then allowed to cool. Next, the obtained dried product was crushed using a mortar and passed through a sieve having an opening of 150 μm to obtain a granulated powder.
 上記造粒粉末2gを秤量し、20mmの円型金型に投入し、金型をプレス機(関西ロール(株)製)に置き、圧力1000kg/cmで1分間保持し、プレスして、ペレットを得た。 Weigh 2 g of the granulated powder, put it into a 20 mm circular mold, place the mold on a press machine (manufactured by Kansai Roll Co., Ltd.), hold it at a pressure of 1000 kg / cm 2 for 1 minute, and press it. Pellets were obtained.
 上記ペレットを真空包装袋に入れ、真空包装機((株)TOSEI製BMV-281)で真空包装し、真空包装袋を冷間静水圧成形機(エヌピーエーシステム(株)製CPP35-200)を用いて、190Mpaでプレスした。次いで、得られたペレットを真空包装袋より取り出し、電気炉(中外エンジニアリング(株)製HT16/17)にて大気雰囲気下、100℃/時の速度で500℃まで昇温し、500℃で1時間保持し、その後、100℃/時の速度で1700℃まで昇温した後、1700℃で5時間保持し、100℃/時の速度で降温して、焼結ペレットを得た。 The pellets are placed in a vacuum packaging bag, vacuum packaged with a vacuum packaging machine (BMV-281 manufactured by TOSEI Co., Ltd.), and the vacuum packaging bag is vacuum-packed with a cold hydrostatic molding machine (CPP35-200 manufactured by NPA System Co., Ltd.). It was pressed at 190 Mpa. Next, the obtained pellets are taken out from the vacuum packaging bag, heated to 500 ° C. at a rate of 100 ° C./hour in an electric furnace (HT16 / 17 manufactured by Chugai Engineering Co., Ltd.) in an air atmosphere, and 1 at 500 ° C. After holding for a time, the temperature was raised to 1700 ° C. at a rate of 100 ° C./hour, then held at 1700 ° C. for 5 hours, and the temperature was lowered at a rate of 100 ° C./hour to obtain sintered pellets.
 上記焼結ペレットを用いて、JIS-R1634:1998「ファインセラミックスの焼結体密度・開気孔率の測定方法」に準じて開気孔率を測定した。 Using the above sintered pellets, the open porosity was measured according to JIS-R1634: 1998 "Method for measuring sintered body density and open porosity of fine ceramics".
製造例1
(ジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキの製造)
 ガラスビーカーにオキシ塩化ジルコニウム8水和物(米山薬品工業(株)製)181.47gとイオン交換水3.05Lを加え、攪拌して、オキシ塩化ジルコニウムを水に溶解させて、水溶液を得た。
Manufacturing example 1
(Production of wet cake of mixed hydroxide of zirconium and ytterbium)
181.47 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) and 3.05 L of ion-exchanged water were added to a glass beaker and stirred to dissolve zirconium oxychloride in water to obtain an aqueous solution. ..
 別のガラスビーカーに塩化イッテルビウム6水和物54.54g(富士フィルム和光純薬(株)製)とイオン交換水0.70Lを加え、攪拌して、塩化イッテルビウムを水に溶解させて、水溶液を得た。上記塩化イッテルビウム水溶液とオキシ塩化ジルコニウム水溶液と混合して、混合水溶液とした。 Add 54.54 g of itterbium chloride hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 0.70 L of ion-exchanged water to another glass beaker, and stir to dissolve itterbium chloride in water to make an aqueous solution. Obtained. The ytterbium chloride aqueous solution and the zirconium oxychloride aqueous solution were mixed to prepare a mixed aqueous solution.
 次いで、ナイロン製ビーカーに水酸化ナトリウム79.98g(富士フィルム和光純薬(株)製)とイオン交換水4Lを加え、攪拌し、溶解させて、水酸化ナトリウム水溶液を得た。 Next, 79.98 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous sodium hydroxide solution.
 イオン交換水600mLを入れた別の撹拌機を備えたビーカーにチューブポンプを用いて、上記混合水溶液を45mL/分で添加すると共に、pHが8.5~9.5となるように、上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 Using a tube pump, the mixed aqueous solution is added to a beaker equipped with another stirrer containing 600 mL of ion-exchanged water at 45 mL / min, and the beaker is adjusted to have a pH of 8.5 to 9.5. The above aqueous sodium hydroxide solution was added to the mixture using another tube pump.
 添加終了後、そのまま、1時間攪拌してスラリーを得た。得られたスラリーをろ過し、得られた固形物をイオン交換水でろ液の電気伝導率が5ms/m以下になるまで水洗して、ジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキ765g(水酸化ジルコニウム濃度11.72%、水酸化イッテルビウム濃度4.12%、Zr/Ybモル比4/1、水混合水酸化物の収率98%)を得た。 After the addition was completed, the slurry was obtained by stirring for 1 hour as it was. The obtained slurry was filtered, and the obtained solid substance was washed with ion-exchanged water until the electrical conductivity of the filtrate became 5 ms / m or less, and 765 g of a wet cake of a mixed hydroxide of zirconium and ytterbium (hydroxylation) was used. A zirconium concentration of 11.72%, a ytterbium hydroxide concentration of 4.12%, a Zr / Yb molar ratio of 4/1, and a yield of an aqueous mixed hydroxide of 98%) were obtained.
 ジルコニウムとイッテルビウムの各水酸化物は吸湿しやすく、得られた湿潤ケーキ中の上記水酸化物の各濃度を正確に秤量することは困難であるので、上記湿潤ケーキ中のジルコニウムとイッテルビウムの各水酸化物の濃度は下記のようにして求めた。即ち、上記湿潤ケーキを500℃に加熱したときの酸化物残渣中のジルコニウムとイッテルビウムの各濃度を求め、これらを各水酸化物、即ち、Zr(OH)4 とYb(OH)3 に換算して、各水酸化物の濃度と収率を求めた。上記ケーキを500℃に加熱することによって、物理吸着水と水酸基が完全に除去され、酸化物が形成されることは熱重量分析にて確認した。 Since each hydroxide of zirconium and ytterbium easily absorbs moisture and it is difficult to accurately weigh each concentration of the hydroxide in the obtained wet cake, each water of zirconium and ytterbium in the wet cake is difficult to measure. The oxide concentration was determined as follows. That is, the concentrations of zirconium and ytterbium in the oxide residue when the wet cake was heated to 500 ° C. were obtained, and these were converted into each hydroxide, that is, Zr (OH) 4 and Yb (OH) 3. The concentration and yield of each hydroxide were determined. It was confirmed by thermogravimetric analysis that the physically adsorbed water and the hydroxyl groups were completely removed and the oxide was formed by heating the cake to 500 ° C.
製造例2
(ジルコニウム水酸化物の湿潤ケーキの製造)
 ガラスビーカーにオキシ塩化ジルコニウム8水和物84.65g(米山薬品工業(株)製)とイオン交換水1.42Lを加え、攪拌し、溶解させて、水溶液を得た。また、ナイロン製ビーカーに水酸化ナトリウム79.98g(富士フィルム和光純薬(株)製)とイオン交換水4Lを加え、攪拌し、溶解させて、水溶液を得た。
Manufacturing example 2
(Manufacture of wet cake of zirconium hydroxide)
84.65 g of zirconium oxychloride octahydrate (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) and 1.42 L of ion-exchanged water were added to a glass beaker, and the mixture was stirred and dissolved to obtain an aqueous solution. Further, 79.98 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 4 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous solution.
 イオン交換水600mLを入れた別の撹拌機を備えたビーカーに上記オキシ塩化ジルコニウム水溶液をチューブポンプを用いて45mL/分で添加すると共に、pHが8.5~9.5となるように、上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 The above zirconium oxychloride aqueous solution was added to a beaker equipped with another stirrer containing 600 mL of ion-exchanged water at 45 mL / min using a tube pump, and the pH was 8.5 to 9.5. The sodium hydroxide aqueous solution was added to the beaker using another tube pump.
 添加終了後、そのまま、1時間攪拌してスラリーを得た。その後、得られたスラリーをろ過し、得られた固形物をイオン交換水でろ液の電気伝導率が5ms/m以下になるまで水洗して、ジルコニウム水酸化物の湿潤ケーキ401g(水酸化物の濃度10.42%、収率97%)を得た。水酸化物の濃度と収率は製造例1におけると同様にして求めた。 After the addition was completed, the slurry was obtained by stirring for 1 hour as it was. Then, the obtained slurry was filtered, and the obtained solid substance was washed with ion-exchanged water until the electric conductivity of the filtrate became 5 ms / m or less, and 401 g of a wet cake of zirconium hydroxide (hydroxylide) was washed. A concentration of 10.42% and a yield of 97%) were obtained. The concentration and yield of the hydroxide were determined in the same manner as in Production Example 1.
製造例3
(イッテルビウム水酸化物の湿潤ケーキの製造)
 ガラス製ビーカーに塩化イッテルビウム6水和物54.54g(富士フィルム和光純薬(株)製)とイオン交換水0.70Lを加え、攪拌し、溶解させて、水溶液を得た。また、ナイロン製ビーカーに水酸化ナトリウム20.00g(富士フィルム和光純薬(株)製)とイオン交換水2Lを加え、攪拌し、溶解させて、水溶液を得た。
Manufacturing example 3
(Manufacture of wet cake of ytterbium hydroxide)
54.54 g of itterbium hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 0.70 L of ion-exchanged water were added to a glass beaker, and the mixture was stirred and dissolved to obtain an aqueous solution. Further, 20.00 g of sodium hydroxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 2 L of ion-exchanged water were added to a nylon beaker, and the mixture was stirred and dissolved to obtain an aqueous solution.
 イオン交換水600mLを入れた別の撹拌機を備えたビーカーに上記塩化イッテルビウム水溶液をチューブポンプを用いて25mL/分で添加すると共に、pHが9となるように、上記ビーカーに上記水酸化ナトリウム水溶液を別のチューブポンプを用いて添加した。 The ytterbium chloride aqueous solution was added to a beaker equipped with another stirrer containing 600 mL of ion-exchanged water at 25 mL / min using a tube pump, and the sodium hydroxide aqueous solution was added to the beaker so that the pH became 9. Was added using another tube pump.
 添加終了後、そのまま、1時間攪拌してスラリーを得た。得られたスラリーをろ過し、得られた固形物をイオン交換水でろ液の電気伝導率が5ms/m以下になるまで水洗して、イッテルビウム水酸化物の湿潤ケーキ155g(水酸化物の濃度20.41%、収率98%)を得た。水酸化物の濃度と収率は製造例1におけると同様にして求めた。 After the addition was completed, the slurry was obtained by stirring for 1 hour as it was. The obtained slurry was filtered, and the obtained solid substance was washed with ion-exchanged water until the electric conductivity of the filtrate became 5 ms / m or less, and 155 g of a wet cake of ytterbium hydroxide (concentration of hydroxide 20). .41%, yield 98%) was obtained. The concentration and yield of the hydroxide were determined in the same manner as in Production Example 1.
製造例4
(イッテルビウム添加ジルコン酸バリウムの種結晶の製造)
 製造例1で得たジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキ65.93gをチタン製容器に分取し、更に、これに水酸化バリウム8水和物(富士フィルム和光純薬(株)製)37.86gとイオン交換水0.1Lをに加え、攪拌して、スラリーとした。
Manufacturing example 4
(Production of seed crystals of barium zirconate with ytterbium added)
65.93 g of a wet cake of a mixed hydroxide of zirconium and ytterbium obtained in Production Example 1 was dispensed into a titanium container, and further, barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added thereto. ) 37.86 g and 0.1 L of ion-exchanged water were added to and stirred to prepare a slurry.
 上記チタン製容器をオートクレーブに入れ、200℃で2時間加熱して、上記ジルコニウムとイッテルビウムの混合水酸化物と水酸化バリウムを水熱反応させた。得られたスラリーを撹拌機を備えたポリエチレン製ビーカーに移し、これに0.2%硝酸水溶液を加えて、pHを5に調整し、そのまま30分間撹拌した。このとき、上記スラリーのpHが上昇したので、0.2%硝酸水溶液を再度、加えて、スラリーのpHを5に再調整した。 The titanium container was placed in an autoclave and heated at 200 ° C. for 2 hours to cause a hydrothermal reaction between the mixed hydroxide of zirconium and ytterbium and barium hydroxide. The obtained slurry was transferred to a polyethylene beaker equipped with a stirrer, a 0.2% aqueous nitric acid solution was added thereto, the pH was adjusted to 5, and the mixture was stirred as it was for 30 minutes. At this time, since the pH of the slurry increased, the pH of the slurry was readjusted to 5 by adding a 0.2% aqueous nitric acid solution again.
 このスラリーをろ過し、得られた固形物をイオン交換水でろ液の電気伝導率が5ms/m以下になるまで水洗し、かくして得られたケーキを温度150℃に設定した乾燥機で10時間乾燥して、組成式BaZr1-xYb3-δで表され、xが0.18である種結晶の粒子を得た。 This slurry is filtered, the obtained solid substance is washed with ion-exchanged water until the electric conductivity of the filtrate becomes 5 ms / m or less, and the cake thus obtained is dried in a dryer set at a temperature of 150 ° C. for 10 hours. Then, particles of a seed crystal represented by the composition formula BaZr 1-x Yb x O 3-δ and having x of 0.18 were obtained.
製造例5
(固相法によるイッテルビウム添加ジルコン酸バリウム粒子(1)の製造)
 炭酸バリウム85.99g(富士フィルム和光純薬(株)製)と酸化ジルコニウム(富士フィルム和光純薬(株)製)45.05gと酸化イッテルビウム(富士フィルム和光純薬(株)製)17.89gとイオン交換水225mLと直径1.0mmのジルコニアビーズ150mLを500mL容量のプラスチック容器に入れて、スラリーを得た。
Production example 5
(Production of barium zirconate particles (1) with ytterbium added by the solid phase method)
Barium carbonate 85.99 g (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), zirconium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 45.05 g and ytterbium oxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 17.89 g And 225 mL of ion-exchanged water and 150 mL of zirconia beads having a diameter of 1.0 mm were placed in a plastic container having a capacity of 500 mL to obtain a slurry.
 上記プラスチック容器を遊星ボールミル(フリッチュ社製P-5)に設置し、回転数180rpmで75分間稼働して、上記スラリーを湿式粉砕した。得られたスラリーからビーズを篩いにて除去し、得られたスラリーをそのまま、温度150℃に設定した乾燥機で10時間乾燥した後、サンプルミル(協立理工(株)製、SK-10)で粉砕して、粉末を得た。 The plastic container was installed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 180 rpm for 75 minutes to wet-pulverize the slurry. Beads were removed from the obtained slurry by sieving, and the obtained slurry was dried as it was in a dryer set at a temperature of 150 ° C. for 10 hours, and then a sample mill (SK-10, manufactured by Kyoritsu Riko Co., Ltd.). Grinded with to give a powder.
 得られた粉末をアルミナ製坩堝に充填し、この坩堝を電気炉(中外エンジニアリング(株)製HT16/17)に置き、大気雰囲気炉で200℃/時で1500℃まで昇温した後、1500℃で4時間保持し、その後、200℃/時で降温した。得られた焼成物を上記サンプルミルで粉砕して、イッテルビウム添加ジルコン酸バリウム粒子(1)を得た。 The obtained powder is filled in an alumina crucible, the crucible is placed in an electric furnace (HT16 / 17 manufactured by Chugai Engineering Co., Ltd.), the temperature is raised to 1500 ° C. at 200 ° C./hour in an atmospheric atmosphere furnace, and then 1500 ° C. After that, the temperature was lowered at 200 ° C./hour. The obtained fired product was pulverized with the above sample mill to obtain barium particles (1) containing ytterbium-added zirconate.
実施例1
(イッテルビウム添加ジルコン酸バリウム粒子(2)の製造)
工程(a)
 製造例1で得たジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキ32.96gを300mL容量のプラスチック容器に分取し、更に、これに水酸化バリウム8水和物5.49g(富士フィルム和光純薬(株)製)、製造例4で得たイッテルビウム添加ジルコン酸バリウムの種結晶0.88g、イオン交換水50mL及び直径0.5mmのジルコニアビーズ50mLを入れて、第1のスラリーを得た。
Example 1
(Manufacture of barium zirconate particles (2) with ytterbium added)
Step (a)
32.96 g of the wet cake of the mixed hydroxide of zirconium and ytterbium obtained in Production Example 1 was dispensed into a plastic container having a capacity of 300 mL, and 5.49 g of barium hydroxide octahydrate (Fuji Film Wako Jun) was further added thereto. A first slurry was obtained by adding 0.88 g of seed crystals of ytterbium-added barium hydroxide obtained in Production Example 4 (manufactured by Yakuhin Co., Ltd.), 50 mL of ion-exchanged water, and 50 mL of zirconia beads having a diameter of 0.5 mm.
工程(b)
 上記プラスチック容器を遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで30分間稼働して、固形物を含む第1のスラリーを湿式粉砕した。得られたスラリーからビーズを篩いにて除去して、第2のスラリーを得、この第2のスラリーをチタン製容器に移し入れた。かくして、平均粒子径0.48μmの粒子状固形物を含む第2のスラリーを得た。
Step (b)
The plastic container was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 30 minutes to wet-pulverize the first slurry containing a solid substance. The beads were removed from the obtained slurry by a sieve to obtain a second slurry, and the second slurry was transferred to a titanium container. Thus, a second slurry containing a particulate solid having an average particle diameter of 0.48 μm was obtained.
工程(c)
 続いて、上記チタン製容器に水酸化バリウム8水和物13.44g(富士フィルム和光純薬(株)製)とイオン交換水0.1Lを加え、攪拌して、第3のスラリーとして水熱反応前のスラリーを得た。
Step (c)
Subsequently, 13.44 g of barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 0.1 L of ion-exchanged water were added to the titanium container, and the mixture was stirred to generate water heat as a third slurry. A slurry before the reaction was obtained.
工程(d)
 上記水熱反応前の第3のスラリーを含むチタン製容器をそのままオートクレーブに入れ、200℃で2時間加熱し、水熱反応させて、第4のスラリーを得た。
Step (d)
The titanium container containing the third slurry before the hydrothermal reaction was placed in an autoclave as it was, heated at 200 ° C. for 2 hours, and hydrothermally reacted to obtain a fourth slurry.
工程(e)
 上記第4のスラリーを撹拌機を備えたポリエチレンビーカーに移し入れ、0.2%硝酸水溶液を加えて、上記スラリーのpHを5に調整し、そのまま30分間撹拌した。このとき、上記スラリーのpHが上昇したので、上記スラリーに再度、0.2%硝酸水溶液を加えて、pHを5に再調整した。
Process (e)
The fourth slurry was transferred to a polyethylene beaker equipped with a stirrer, a 0.2% aqueous nitric acid solution was added to adjust the pH of the slurry to 5, and the mixture was stirred as it was for 30 minutes. At this time, since the pH of the slurry increased, the pH was readjusted to 5 by adding a 0.2% nitric acid aqueous solution to the slurry again.
 この後、スラリーをろ過し、得られた固形物をイオン交換水でろ液の電気伝導率が5ms/m以下になるまで水洗した後、温度150℃に設定した乾燥機で乾燥し、イッテルビウム添加ジルコン酸バリウム粒子(2)を得た。 After that, the slurry is filtered, and the obtained solid matter is washed with ion-exchanged water until the electrical conductivity of the filtrate becomes 5 ms / m or less, dried in a dryer set at a temperature of 150 ° C., and ytterbium-added zircon. Barium acid acid particles (2) were obtained.
実施例2
 実施例1の工程(c)において、水酸化バリウム8水和物の使用量を41.83gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(3)を得た。
Example 2
Ytterbium-added barium zirconate particles (3) were obtained in the same manner as in Example 1 except that the amount of barium hydroxide octahydrate used was changed to 41.83 g in the step (c) of Example 1. ..
実施例3
 実施例1の工程(d)において、水熱反応の温度を150℃に変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(4)を得た。
Example 3
Ytterbium-added barium zirconate particles (4) were obtained in the same manner as in Example 1 except that the temperature of the hydrothermal reaction was changed to 150 ° C. in step (d) of Example 1.
実施例4
 実施例1の工程(a)において、水酸化バリウム8水和物の使用量を0.95gに変更すると共に、実施例1の工程(c)において、水酸化バリウム8水和物の使用量を17.98gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(5)を得た。
Example 4
In the step (a) of Example 1, the amount of barium hydroxide octahydrate used was changed to 0.95 g, and in the step (c) of Example 1, the amount of barium hydroxide octahydrate used was changed. Itterbium-added barium hydroxide particles (5) were obtained in the same manner as in Example 1 except that the amount was changed to 17.98 g.
実施例5
 実施例1の工程(a)において、水酸化バリウム8水和物の使用量を9.46gに変更すると共に、実施例1の工程(c)において、水酸化バリウム8水和物の使用量を9.46gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(6)を得た。
Example 5
In the step (a) of Example 1, the amount of barium hydroxide octahydrate used was changed to 9.46 g, and in the step (c) of Example 1, the amount of barium hydroxide octahydrate used was changed. Itterbium-added barium hydroxide particles (6) were obtained in the same manner as in Example 1 except that the amount was changed to 9.46 g.
実施例6
 実施例1の工程(a)において、ジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキに代えて、製造例2で得たジルコニウム水酸化物の湿潤ケーキ22.91gと製造例3で得たイッテルビウム水酸化物の湿潤ケーキ16.47gを分取して用いた以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(7)を得た。
Example 6
In step (a) of Example 1, instead of the wet cake of the mixed hydroxide of zirconium and ytterbium, 22.91 g of the wet cake of the zirconium hydroxide obtained in Production Example 2 and the ytterbium water obtained in Production Example 3 Ytterbium-added barium zirconate particles (7) were obtained in the same manner as in Example 1 except that 16.47 g of a wet cake of oxide was separated and used.
実施例7
 実施例1の工程(a)において、用いたイッテルビウム添加ジルコン酸バリウムの種晶の量を0.09gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(8)を得た。
Example 7
Ytterbium-added barium zirconate particles (8) were prepared in the same manner as in Example 1 except that the amount of seed crystals of ytterbium-added barium zirconate used in step (a) of Example 1 was changed to 0.09 g. Obtained.
実施例8
 実施例1の工程(a)において、用いたイッテルビウム添加ジルコン酸バリウムの種結晶の量を1.76gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(9)を得た。
Example 8
Ytterbium-added barium zirconate particles (9) were prepared in the same manner as in Example 1 except that the amount of seed crystals of ytterbium-added barium zirconate used in step (a) of Example 1 was changed to 1.76 g. Obtained.
実施例9
 実施例1の工程(b)において、実施例1の工程(a)で得られたスラリーを遊星ボールミル(フリッチュ社製P-5)を回転数100rpmで2分間稼働させて湿式粉砕した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(10)を得た。
Example 9
In step (b) of Example 1, the slurry obtained in step (a) of Example 1 was wet-ground by operating a planetary ball mill (P-5 manufactured by Fritsch) at a rotation speed of 100 rpm for 2 minutes. Ytterbium-added barium zirconate particles (10) were obtained in the same manner as in Example 1.
比較例1
 実施例1の工程(a)において、水酸化バリウム8水和物の使用量を14.20gに変更すると共に、実施例1の工程(c)において、水酸化バリウム8水和物の使用量を4.73gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(11)を得た。
Comparative Example 1
In the step (a) of Example 1, the amount of barium hydroxide octahydrate used was changed to 14.20 g, and in the step (c) of Example 1, the amount of barium hydroxide octahydrate used was changed. Itterbium-added barium hydroxide particles (11) were obtained in the same manner as in Example 1 except that the amount was changed to 4.73 g.
比較例2
 実施例1の工程(c)において、水酸化バリウム8水和物の使用量を3.97gに変更した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(12)を得た。
Comparative Example 2
Ytterbium-added barium zirconate particles (12) were obtained in the same manner as in Example 1 except that the amount of barium hydroxide octahydrate used was changed to 3.97 g in the step (c) of Example 1. ..
比較例3
 実施例1の工程(b)において、実施例1の工程(a)で得られたスラリーを遊星ボールミル(フリッチュ社製P-5)を回転数150rpmで4分間稼させて湿式粉砕した以外は、実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(13)を得た。
Comparative Example 3
In the step (b) of the first embodiment, except that the slurry obtained in the step (a) of the first embodiment was wet-ground with a planetary ball mill (P-5 manufactured by Fritsch) at a rotation speed of 150 rpm for 4 minutes. Ytterbium-added barium zirconate particles (13) were obtained in the same manner as in Example 1.
比較例4
(イッテルビウム添加ジルコン酸バリウム粒子(14)の製造)
 製造例1で得たジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキ32.96g、水酸化バリウム8水和物(富士フィルム和光純薬(株)製)18.93g、イッテルビウム添加ジルコン酸バリウムの種結晶0.88g及びイオン交換水0.1Lをチタン製容器に入れて、撹拌、混合して、水熱反応前のスラリーを得た。この水熱反応前のスラリー中の粒子状固形物の平均粒子径は11.0μmであった。
Comparative Example 4
(Production of barium zirconate particles (14) with ytterbium added)
32.96 g of wet cake of mixed hydroxide of zirconium and ytterbium obtained in Production Example 1, 18.93 g of barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), seeds of barium zirconate containing ytterbium 0.88 g of crystals and 0.1 L of ion-exchanged water were placed in a titanium container, stirred and mixed to obtain a slurry before the hydrothermal reaction. The average particle size of the particulate solids in the slurry before the hydrothermal reaction was 11.0 μm.
 以下、工程(d)からは実施例1と同様にして、イッテルビウム添加ジルコン酸バリウム粒子(14)を得た。 Hereinafter, from step (d), ytterbium-added barium zirconate particles (14) were obtained in the same manner as in Example 1.
比較例5
工程(a)
 製造例1で得たジルコニウムとイッテルビウムの混合水酸化物の湿潤ケーキ32.96gと水酸化バリウム8水和物18.93g(富士フィルム和光純薬株式会社製)、イオン交換水70mL及び直径0.5mmのジルコニアビーズ50mLを容量300mLのプラスチック容器に入れて、第1のスラリーを得た。
Comparative Example 5
Step (a)
32.96 g of wet cake of mixed hydroxide of zirconium and ytterbium obtained in Production Example 1 and 18.93 g of barium hydroxide octahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 70 mL of ion-exchanged water and 0. 50 mL of 5 mm zirconia beads were placed in a plastic container having a capacity of 300 mL to obtain a first slurry.
工程(b)
 上記プラスチック容器を遊星ボールミル(フリッチュ社製P-5)に設置し、回転数210rpmで30分間稼働して、上記固形物を含むスラリーを湿式粉砕した。この後、得られたスラリーからビーズを篩いにて除去し、得られたスラリーをチタン製容器に入れた。かくして、平均粒子径1.32μmの粒子状固形物を含む第2のスラリーを得た。
Step (b)
The plastic container was placed in a planetary ball mill (P-5 manufactured by Fritsch) and operated at a rotation speed of 210 rpm for 30 minutes to wet-pulverize the slurry containing the solid matter. Then, the beads were removed from the obtained slurry by a sieve, and the obtained slurry was placed in a titanium container. Thus, a second slurry containing a particulate solid having an average particle diameter of 1.32 μm was obtained.
工程(c)
 続いて、上記チタン製容器にイオン交換水0.1Lを加え、攪拌して、水熱反応前の第3のスラリーを得た。
Step (c)
Subsequently, 0.1 L of ion-exchanged water was added to the titanium container and stirred to obtain a third slurry before the hydrothermal reaction.
工程(d)
 上記水熱反応前の第3のスラリーを含むチタン製容器をそのままオートクレーブに入れ、200℃で2時間加熱し、水熱反応させて、第4のスラリーを得た。
Step (d)
The titanium container containing the third slurry before the hydrothermal reaction was placed in an autoclave as it was, heated at 200 ° C. for 2 hours, and hydrothermally reacted to obtain a fourth slurry.
工程(e)
 上記第4のスラリーを撹拌機を備えたポリエチレンビーカーに移し入れ、0.2%硝酸水溶液を加えて、上記スラリーをpH5に調整し、そのまま30分間撹拌した。このとき、pHが上昇したので、上記スラリーに再度、0.2%硝酸水溶液を加えて、pH5に再調整した。
Process (e)
The fourth slurry was transferred to a polyethylene beaker equipped with a stirrer, a 0.2% aqueous nitric acid solution was added to adjust the pH of the slurry to 5, and the slurry was stirred as it was for 30 minutes. At this time, since the pH increased, the pH was readjusted to 5 by adding a 0.2% aqueous nitric acid solution to the slurry again.
 このように、pHを再調整したスラリーをろ過し、得られた固形物をイオン交換水でろ液の電気伝導率が5ms/m以下になるまで水洗した後、温度150℃に設定した乾燥機で10時間乾燥して、イッテルビウム添加ジルコン酸バリウム粒子(15)を得た。 In this way, the pH-adjusted slurry is filtered, and the obtained solid matter is washed with ion-exchanged water until the electrical conductivity of the filtrate becomes 5 ms / m or less, and then in a dryer set at a temperature of 150 ° C. Drying for 10 hours gave ytterbium-added barium zirconate particles (15).
 上述した実施例1~9、比較例1~5及び製造例5において得られたイッテルビウム添加ジルコン酸バリウム粒子の製造における詳細な条件(1)~(11)と共に、得られたイッテルビウム添加ジルコン酸バリウム粒子の特性(12)~(20)を表1及び表2に示す。 The ytterbium-added barium zirconate obtained with detailed conditions (1) to (11) in the production of the ytterbium-added barium zirconate particles obtained in Examples 1 to 9, Comparative Examples 1 to 5 and Production Example 5 described above. The characteristics of the particles (12) to (20) are shown in Tables 1 and 2.
(1)工程(a)において用いたバリウムの量(モル数)
(2)工程(a)において用いたジルコニウムの量(モル数)
(3)工程(a)において用いたイッテルビウムの量(モル数)
(4)工程(a)において用いたバリウムのジルコニウム及びイッテルビウムの合計量に対するモル比、即ち、Ba/(Zr+Yb)モル比
(5)工程(a)において用いたイッテルビウムのジルコニウム及びイッテルビウムの合計量に対するモル比、即ち、Yb/(Zr+Yb)モル比
(6)工程(a)において用いたイッテルビウム添加ジルコン酸バリウムの種結晶の量(用いたジルコニウム及びイッテルビウムの合計モル部数100モル部に対する種結晶のモル部数)
(7)工程(a)で得られたスラリーを工程(b)において湿式粉砕した後の粒子状固体の平均粒子径(μm)(比較例4を除く。)
(8)工程(c)において追加したバリウムの量(モル数)
(9)工程(a)と工程(c)において用いたバリウムの合計量(モル数)
(10)工程(c)におけるバリウムの合計量のジルコニウム及びイッテルビウムの合計量に対するモル比、即ち、Ba/(Zr+Yb)モル比
(11)工程(d)における水熱反応の温度(℃)
(12)得られたイッテルビウム添加ジルコン酸バリウム粒子の比表面積(m/g)
(13)得られたイッテルビウム添加ジルコン酸バリウム粒子の結晶子径(nm)
(14)得られたイッテルビウム添加ジルコン酸バリウム粒子の比表面積換算粒子径(μm)
(15)得られたイッテルビウム添加ジルコン酸バリウム粒子の結晶子径/比表面積換算粒子径
(16)得られたイッテルビウム添加ジルコン酸バリウム粒子のXRDパターン
(17)得られたイッテルビウム添加ジルコン酸バリウム粒子のBa/(Zr+Yb)モル比
(18)得られたイッテルビウム添加ジルコン酸バリウム粒子のYb/(Zr+Yb)モル比
(19)得られたイッテルビウム添加ジルコン酸バリウム粒子の組成式(I)におけるxの値
(20)得られたイッテルビウム添加ジルコン酸バリウム粒子の開気孔率(%)
(1) Amount (number of moles) of barium used in step (a)
(2) Amount (number of moles) of zirconium used in step (a)
(3) Amount (number of moles) of ytterbium used in step (a)
(4) The molar ratio of barium to the total amount of zirconium and ytterbium used in step (a), that is, the Ba / (Zr + Yb) molar ratio (5) to the total amount of ytterbium zirconium and ytterbium used in step (a). Molar ratio, that is, Yb / (Zr + Yb) molar ratio (6) Amount of seed crystals of ytterbium-added barium zirconate used in step (a) (molar of seed crystals relative to 100 mol parts of total zirconium and ytterbium used) Number of copies)
(7) Average particle size (μm) of the particulate solid after wet pulverization of the slurry obtained in step (a) in step (b) (excluding Comparative Example 4).
(8) Amount (number of moles) of barium added in step (c)
(9) Total amount (number of moles) of barium used in step (a) and step (c)
(10) The molar ratio of the total amount of barium in step (c) to the total amount of zirconium and ytterbium, that is, the Ba / (Zr + Yb) molar ratio (11) The temperature (° C.) of the hydrothermal reaction in step (d).
(12) Specific surface area (m 2 / g) of the obtained barium zirconate particles containing ytterbium.
(13) Crystallet diameter (nm) of the obtained barium zirconate particles containing ytterbium.
(14) Specific surface area equivalent particle diameter (μm) of the obtained barium zirconate particles containing ytterbium.
(15) Crystalline diameter / specific surface area equivalent particle diameter of the obtained ytterbium-added barium zirconate particles (16) XRD pattern of the obtained ytterbium-added barium zirconate particles (17) Of the obtained ytterbium-added barium zirconate particles Ba / (Zr + Yb) molar ratio (18) Yb / (Zr + Yb) molar ratio of the obtained ytterbium-added barium zirconate particles (19) The value of x in the composition formula (I) of the obtained ytterbium-added barium zirconate particles (I) 20) Open pore ratio (%) of the obtained barium particles containing ytterbium-added zirconate.
 尚、表1及び表2において、得られたイッテルビウム添加ジルコン酸バリウム粒子は種結晶を含み、従って、得られたイッテルビウム添加ジルコン酸バリウム粒子のBa/(Zr+Yb)モル比及びYb/(Zr+Yb)モル比は種結晶を含む組成比である。 In Tables 1 and 2, the ytterbium-added barium zirconate particles obtained contained seed crystals, and therefore, the Ba / (Zr + Yb) molar ratio and Yb / (Zr + Yb) molars of the obtained ytterbium-added barium zirconate particles. The ratio is a composition ratio including seed crystals.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、実施例1~8によれば、工程(a)において、バリウム水酸化物とジルコニウム水酸化物とイッテルビウム水酸化物からなる原料混合物を含む第1のスラリーを調製する際に、この第1のスラリー中にイッテルビウム添加ジルコン酸バリウムの種結晶を存在させると共に、工程(b)において、上記原料混合物を含む第1のスラリーを湿式粉砕して、予め、定めた所定の平均粒子径の粒子状固形物を含む第2のスラリーを得、工程(c)において、上記第2のスラリーにバリウム水酸化物を加えて、バリウムを過剰に含む第3のスラリーを得、工程(d)において、上記第3のスラリーを水熱反応に供し、次いで、工程(e)において、上記水熱反応によって得られた第4のスラリーを酸処理した後、水洗処理して、過剰のバリウムを除去することによって、組成が均一であって、異相を含まず、10m/g以上の比表面積を有し、微細であり、更に、結晶子径/比表面積換算粒子径が0.7~1.5の範囲にあって、1に近く、即ち、単結晶に近く、高結晶性のイッテルビウム添加ジルコン酸バリウム粒子を得ることができる。 As shown in Tables 1 and 2, according to Examples 1 to 8, in step (a), a first slurry containing a raw material mixture consisting of barium hydroxide, zirconium hydroxide and itterbium hydroxide was prepared. At the time of preparation, seed crystals of itterbium-added barium zirconate were present in the first slurry, and in step (b), the first slurry containing the raw material mixture was wet-ground and determined in advance. A second slurry containing a particulate solid having a predetermined average particle size is obtained, and in step (c), barium hydroxide is added to the second slurry to obtain a third slurry containing an excess of barium. In step (d), the third slurry was subjected to a hydrothermal reaction, and then in step (e), the fourth slurry obtained by the hydrothermal reaction was acid-treated and then washed with water. By removing excess barium, the composition is uniform, does not contain heterogeneous phases, has a specific surface area of 10 m 2 / g or more, is fine, and has a crystallite size / specific surface area equivalent particle size of 0. It is possible to obtain highly crystalline itterbium-added barium zirconate particles in the range of 7. to 1.5, which is close to 1, that is, close to a single crystal.
 また、実施例1~8によるイッテルビウム添加ジルコン酸バリウム粒子は、そのXRDパターンを(株)リガク製のX線解析ソフトウェア(PDXL2.7)を用いて定性分析して、結晶相の同定を行った結果、ジルコン酸バリウム(BaZrO)(PDF番号00-006-0399)と一致したことから、単相であることを確認した。 In addition, the XRD pattern of the itterbium-added barium zirconate particles according to Examples 1 to 8 was qualitatively analyzed using X-ray analysis software (PDXL2.7) manufactured by Rigaku Co., Ltd. to identify the crystal phase. As a result, it was confirmed that it was a single phase because it was consistent with barium zirconate (BaZrO 3 ) (PDF number 00-006-0399).
 更に、実施例1~8によるイッテルビウム添加ジルコン酸バリウム粒子のXRDパターンは、上記PDF番号の00-006-0399)と比較して、低角側にシフトしていることから、イッテルビウムがジルコン酸バリウム(BaZrO)の結晶格子にドープしていることが示される。 Further, since the XRD pattern of the ytterbium-added barium zirconate particles according to Examples 1 to 8 is shifted to the lower angle side as compared with the above PDF number 00-006-0399), ytterbium is barium zirconate. It is shown that the crystal lattice of (BaZrO 3 ) is doped.
 比較例1においては、工程(a)におけるBa/(Zr+Yb)モル比が1.2を越えている。この場合、工程(b)において、微細な粉砕物を得ることができて、その結果、10m/g以上の比表面積を有するイッテルビウム添加ジルコン酸バリウム粒子を得ることができるが、しかし、そのイッテルビウム添加ジルコン酸バリウム粒子は、そのXRDパターンから、異相としてのイッテルビウム化合物(YbOOH)を含んでいる。 In Comparative Example 1, the Ba / (Zr + Yb) molar ratio in the step (a) exceeds 1.2. In this case, in step (b), a fine pulverized product can be obtained, and as a result, ytterbium-added barium zirconate particles having a specific surface area of 10 m 2 / g or more can be obtained, but the ytterbium. The added barium zirconate particles contain ytterbium compound (YbOOH) as a heterogeneous phase due to its XRD pattern.
 上記異相としてのYbOOHは、ジルコン酸バリウム(BaZrO)の場合と同様に、(株)Rigaku製のX線回折で測定した回折パターンを(株)Rigaku製の統合粉末X線解析ソフトウェア(PDXL2.7)を用いて定性分析して、結晶相の同定を行って、YbOOH(PDF番号00-019-1432)と一致することから確認した。 YbOOH as the hetero-phase, as in the case of barium zirconate (BaZrO 3), (Ltd.) Rigaku manufactured X-ray diffraction pattern measured by diffraction (Ltd.) Rigaku Ltd. Integrated powder X-ray analysis software (PDXL2. Qualitative analysis was performed using 7) to identify the crystal phase, and it was confirmed that it was consistent with YbOOH (PDF No. 00-019-1432).
 比較例2においては、工程(c)において、追加するバリウム水酸化物の量が少なく、このようなスラリーを工程(d)において水熱反応させたとき、比較例1の場合と同様に、工程(b)において、微細な粉砕物を与え、また、10m/g以上の比表面積を有するイッテルビウム添加ジルコン酸バリウム粒子を与えるが、しかし、そのイッテルビウム添加ジルコン酸バリウム粒子は、そのXRDパターンから、異相としてのイッテルビウム化合物(YbOOH)を含んでいる。 In Comparative Example 2, the amount of barium hydroxide added in step (c) was small, and when such a slurry was hydrothermally reacted in step (d), the step was the same as in Comparative Example 1. In (b), a finely ground product is given, and ytterbium-added barium zirconate particles having a specific surface area of 10 m 2 / g or more are given, but the ytterbium-added barium zirconate particles are obtained from the XRD pattern. It contains ytterbium compound (YbOOH) as a heterogeneous phase.
 比較例3においては、工程(b)におけるスラリーの湿式粉砕が十分でなく、粒子状固形物の平均粒子径を所定値以下とすることができなかったので、微細なイッテルビウム添加ジルコン酸バリウム粒子を得ることができなかった。また、得られたイッテルビウム添加ジルコン酸バリウム粒子は結晶性の低いものであった。 In Comparative Example 3, the wet pulverization of the slurry in the step (b) was not sufficient, and the average particle size of the particulate solid could not be reduced to a predetermined value or less. Therefore, fine ytterbium-added barium zirconate particles were used. I couldn't get it. The obtained barium particles containing ytterbium-added zirconate had low crystallinity.
 比較例4は、工程(a)において得られた原料混合物のスラリーを湿式粉砕することなく、そのまま、水熱反応させたものであり、比較例3におけると同じく、微細なイッテルビウム添加ジルコン酸バリウム粒子を得ることができなかった。また、得られたイッテルビウム添加ジルコン酸バリウム粒子は結晶性の低いものであった。 In Comparative Example 4, the slurry of the raw material mixture obtained in the step (a) was hydrothermally reacted as it was without wet pulverization, and fine ytterbium-added barium zirconate particles were obtained as in Comparative Example 3. Could not be obtained. The obtained barium particles containing ytterbium-added zirconate had low crystallinity.
 比較例5は、工程(a)において、原料混合物の調製に際して、イッテルビウム添加ジルコン酸バリウムの種結晶を用いなかったので、微細なイッテルビウム添加ジルコン酸バリウム粒子を得ることができず、そのうえ、得られたイッテルビウム添加ジルコン酸バリウム粒子は、そのXRDパターンから、異相としてイッテルビウム化合物(YbOOH)を含むものであった。また、得られたイッテルビウム添加ジルコン酸バリウム粒子は結晶性の低いものであった。 In Comparative Example 5, since the seed crystal of ytterbium-added barium zirconate was not used in the preparation of the raw material mixture in the step (a), fine ytterbium-added barium zirconate particles could not be obtained, and moreover, it was obtained. The ytterbium-added barium zirconate particles contained the ytterbium compound (YbOOH) as a heterogeneous phase based on its XRD pattern. The obtained barium particles containing ytterbium-added zirconate had low crystallinity.
 製造例5は、固相法によるイッテルビウム添加ジルコン酸バリウム粒子の製造を示し、得られたイッテルビウム添加ジルコン酸バリウム粒子は比表面積が小さく、しかも、結晶性の低いものであった。 Production Example 5 shows the production of ytterbium-added barium zirconate particles by the solid-phase method, and the obtained ytterbium-added barium zirconate particles had a small specific surface area and low crystallinity.
 また、実施例1による本発明品であるイッテルビウム添加ジルコン酸バリウム粒子と製造例5の固相法によるイッテルビウム添加ジルコン酸バリウム粒子の開気孔率を比較すると、本発明品は製造例5の固相法によるイッテルビウム添加ジルコン酸バリウム粒子よりも開気孔率が低く、よって、本発明品は固相法によるイッテルビウム添加ジルコン酸バリウム粒子よりも低温にて焼結することができることが理解される。
 
Further, comparing the open porosity of the itterbium-added barium zirconate particles of the present invention according to Example 1 and the barium particles of itterbium-added zirconate obtained by the solid phase method of Production Example 5, the product of the present invention is the solid phase of Production Example 5. It is understood that the open porosity is lower than that of the itterbium-added barium zirconate particles by the method, and therefore the product of the present invention can be sintered at a lower temperature than the barium particles of itterbium-added zirconate by the solid phase method.

Claims (7)

  1.  組成式(I)
               BaZr1-xYb3-δ
    (式中、xは0.1≦x≦0.6を満たす数であり、δは酸素欠損量を示す。)
    で表されるイッテルビウム添加ジルコン酸バリウム粒子の製造方法であって、
    (a)バリウム水酸化物とジルコニウム水酸化物とイッテルビウム水酸化物とイッテルビウム添加ジルコン酸バリウムの種結晶を水と共に混合して、第1のスラリーを得る工程、
    (b)上記第1のスラリーを湿式粉砕して、平均粒子径が3.0μm以下である粒子状固形物を含む第2のスラリーを得る工程、
    (c)上記第2のスラリーにバリウム水酸化物を添加して、第3のスラリーを得る工程、
    (d)上記第3のスラリーを水熱反応させて、第4のスラリーを得る工程、及び
    (e)上記第4のスラリーを酸処理した後、水洗処理して、過剰のバリウム水酸化物を除去する工程
    を含み、
     上記工程(a)において、第1のスラリーの有するBa/(Zr+Yb)モル比を0.1~1.2の範囲とし、
     上記工程(c)において、第3のスラリーの有するBa/(Zr+Yb)モル比を1.5~5.0の範囲とする、
    ことを特徴とするイッテルビウム添加ジルコン酸バリウム粒子の製造方法。
    Composition formula (I)
    BaZr 1-x Yb x O 3-δ
    (In the formula, x is a number satisfying 0.1 ≤ x ≤ 0.6, and δ indicates the amount of oxygen deficiency.)
    It is a method for producing barium particles containing ytterbium-added zirconate, which is represented by.
    (A) A step of mixing barium hydroxide, zirconium hydroxide, ytterbium hydroxide, and seed crystals of barium zirconate containing ytterbium with water to obtain a first slurry.
    (B) A step of wet-pulverizing the first slurry to obtain a second slurry containing a particulate solid having an average particle diameter of 3.0 μm or less.
    (C) A step of adding barium hydroxide to the second slurry to obtain a third slurry.
    (D) The step of hydrothermally reacting the third slurry to obtain a fourth slurry, and (e) the fourth slurry is acid-treated and then washed with water to remove excess barium hydroxide. Including the step of removing
    In the above step (a), the Ba / (Zr + Yb) molar ratio of the first slurry is set in the range of 0.1 to 1.2.
    In the above step (c), the Ba / (Zr + Yb) molar ratio of the third slurry is set in the range of 1.5 to 5.0.
    A method for producing barium particles containing ytterbium-added zirconate.
  2.  前記工程(a)において、前記第1のスラリーの含むジルコニウムとイッテルビウムの合計モル部数100モル部に対して1~20モル部の範囲で前記種結晶を用いる請求項1に記載のイッテルビウム添加ジルコン酸バリウム粒子の製造方法。 The ytterbium-added zirconate according to claim 1, wherein in the step (a), the seed crystal is used in the range of 1 to 20 mol parts with respect to 100 mol parts of the total number of moles of zirconium and ytterbium contained in the first slurry. Method for producing barium particles.
  3.  前記水熱反応を温度120~300℃の範囲で行う請求項1に記載のイッテルビウム添加ジルコン酸バリウム粒子の製造方法。 The method for producing ytterbium-added barium zirconate particles according to claim 1, wherein the hydrothermal reaction is carried out in a temperature range of 120 to 300 ° C.
  4.  前記工程(a)において、ジルコニウム水酸化物とイッテルビウム水酸化物に代えて、予め、製造したジルコニウムとイッテルビウムの混合水酸化物を用いる請求項1に記載のイッテルビウム添加ジルコン酸バリウム粒子の製造方法。 The method for producing ytterbium-added barium zirconate particles according to claim 1, wherein in the step (a), a mixed hydroxide of zirconium and ytterbium produced in advance is used instead of the zirconium hydroxide and ytterbium hydroxide.
  5.  組成式(I)
               BaZr1-xYb3-δ
    (式中、xは0.1≦x≦0.6を満たす数であり、δは酸素欠損量を示す。)
    で表される単相の粒子であって、10m/g以上の比表面積を有し、0.7~1.5の範囲の結晶子径/比表面積換算粒子径を有するイッテルビウム添加ジルコン酸バリウム粒子。
    Composition formula (I)
    BaZr 1-x Yb x O 3-δ
    (In the formula, x is a number satisfying 0.1 ≤ x ≤ 0.6, and δ indicates the amount of oxygen deficiency.)
    Itterbium-added barium zirconate, which is a single-phase particle represented by, has a specific surface area of 10 m 2 / g or more, and has a crystallite diameter / specific surface area equivalent particle diameter in the range of 0.7 to 1.5. particle.
  6.  11m/g以上の比表面積を有し、0.9~1.3の範囲の結晶子径/比表面積換算粒子径を有する請求項5に記載のイッテルビウム添加ジルコン酸バリウム粒子。 The ytterbium-added barium zirconate particles according to claim 5, which have a specific surface area of 11 m 2 / g or more and a crystallite diameter / specific surface area equivalent particle diameter in the range of 0.9 to 1.3.
  7.  12m/g以上の比表面積を有する請求項5又は6に記載のイッテルビウム添加ジルコン酸バリウム粒子。
     
     
    The ytterbium-added barium zirconate particles according to claim 5 or 6, which have a specific surface area of 12 m 2 / g or more.

PCT/JP2020/016717 2019-04-23 2020-04-16 Ytterbium-doped barium zirconate particles and method for producing same WO2020218150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020540822A JP6787537B1 (en) 2019-04-23 2020-04-16 Ytterbium-added barium zirconate particles and their manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082337 2019-04-23
JP2019-082337 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020218150A1 true WO2020218150A1 (en) 2020-10-29

Family

ID=72942284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016717 WO2020218150A1 (en) 2019-04-23 2020-04-16 Ytterbium-doped barium zirconate particles and method for producing same

Country Status (3)

Country Link
JP (1) JP6787537B1 (en)
TW (1) TWI825304B (en)
WO (1) WO2020218150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014374A (en) * 2019-07-10 2021-02-12 Dowaエレクトロニクス株式会社 Perovskite type composite oxide, and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120850A (en) * 2010-01-25 2010-06-03 Sakai Chem Ind Co Ltd Method for producing composition
WO2016157566A1 (en) * 2015-03-30 2016-10-06 住友電気工業株式会社 Proton conductor, fuel-cell solid-electrolyte layer, cell structure, and fuel cell provided with same
JP2017188439A (en) * 2016-04-04 2017-10-12 パナソニック株式会社 Membrane electrode junction body and solid oxide fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120850A (en) * 2010-01-25 2010-06-03 Sakai Chem Ind Co Ltd Method for producing composition
WO2016157566A1 (en) * 2015-03-30 2016-10-06 住友電気工業株式会社 Proton conductor, fuel-cell solid-electrolyte layer, cell structure, and fuel cell provided with same
JP2017188439A (en) * 2016-04-04 2017-10-12 パナソニック株式会社 Membrane electrode junction body and solid oxide fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS, vol. 104, no. Article number: 023505, 2008, pages 1 - 6 *
SOLID STATE IONICS, vol. 178, 2007, pages 515 - 520 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014374A (en) * 2019-07-10 2021-02-12 Dowaエレクトロニクス株式会社 Perovskite type composite oxide, and method of producing the same

Also Published As

Publication number Publication date
TW202104088A (en) 2021-02-01
JPWO2020218150A1 (en) 2021-05-06
JP6787537B1 (en) 2020-11-18
TWI825304B (en) 2023-12-11

Similar Documents

Publication Publication Date Title
US10749173B2 (en) Process for the preparation of lithium titanium spinel and its use
US10026990B2 (en) Lithium-ion conductive garnet and method of making membranes thereof
Modeshia et al. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions
Wang et al. Low‐temperature synthesis of praseodymium‐doped ceria nanopowders
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
JP7194547B2 (en) composite oxide powder
JP2012138256A (en) Air electrode material powder for solid oxide type fuel battery, and method of manufacturing the same
Bilger et al. Sol-gel synthesis of lanthanum chromite powder
JP6787537B1 (en) Ytterbium-added barium zirconate particles and their manufacturing method
TWI813749B (en) Electrolyte material for solid oxide fuel cell and method for producing the same and precursor thereof
Zhang et al. Nanocrystalline rare earth stabilized zirconia: solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties
Momin et al. Effect of 20 mol% gadolinium doping on oxide ion conductivity of ceria as electrolyte for intermediate temperature solid oxide fuel cells
JPWO2020066301A1 (en) Powder for solid oxide fuel cell air electrode and its manufacturing method
US9373863B2 (en) Barium cerate nanoparticles for use in solid oxide fuel cells
JP2020155270A (en) Powder for solid oxide fuel cell air electrode, and method for manufacturing the same
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
JP2021195273A (en) Method of producing manganese-added barium zirconate particle
US9570754B2 (en) Process for producing anode material for solid oxide fuel cell
Antić et al. Structural and optical investigation of gadolinia-doped ceria powders prepared by polymer complex solution method
JP7363227B2 (en) Zirconate-based perovskite-type composite oxide particles and their manufacturing method
Zyryanov et al. Mechanochemical synthesis, crystal structure, and electrical conductivity of Bi 2 M 0.1 V 0.9 O 5.5-x (M= V, Zn, Sc, Sb, In) and Bi 1.8 Pb 0.2 VO 5.4-x metastable solid solutions
JP6124629B2 (en) Method for producing gallate complex oxide
Athayde Synthesis and characterization of perovskite materials for production of mixed ionic and electronic conduction membranes
JP2021195274A (en) Manganese-added barium zirconate particle
CN112740445B (en) Powder for air electrode of solid oxide fuel cell and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540822

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794329

Country of ref document: EP

Kind code of ref document: A1