WO2020217742A1 - 膜電極接合体、電気化学デバイスおよび電気化学システム - Google Patents

膜電極接合体、電気化学デバイスおよび電気化学システム Download PDF

Info

Publication number
WO2020217742A1
WO2020217742A1 PCT/JP2020/010040 JP2020010040W WO2020217742A1 WO 2020217742 A1 WO2020217742 A1 WO 2020217742A1 JP 2020010040 W JP2020010040 W JP 2020010040W WO 2020217742 A1 WO2020217742 A1 WO 2020217742A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
membrane
membrane electrode
electrolyte
electrode
Prior art date
Application number
PCT/JP2020/010040
Other languages
English (en)
French (fr)
Inventor
尾沼 重徳
智宏 黒羽
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080007992.4A priority Critical patent/CN113260737A/zh
Priority to JP2021515859A priority patent/JP7442071B2/ja
Priority to EP20796410.7A priority patent/EP3960907A4/en
Publication of WO2020217742A1 publication Critical patent/WO2020217742A1/ja
Priority to US17/467,314 priority patent/US20210399325A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • C25B13/07Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to membrane electrode assemblies, electrochemical devices and electrochemical systems.
  • an electrochemical device including a membrane electrode assembly using an electrolyte membrane made of a solid oxide
  • a solid oxide fuel cell for example, a solid oxide fuel cell, a water electrolysis cell, and a steam electrolysis cell
  • Oxide ion (O 2- ) conductors typified by stabilized zirconia are widely used as the solid electrolyte of the electrochemical device. The lower the temperature of the oxide ion conductor, the lower the ion conductivity. Therefore, for example, in a solid oxide fuel cell using stabilized zirconia as a solid electrolyte, an operating temperature of 700 ° C. or higher is desirable.
  • Non-Patent Document 1 a palladium (Pd) -containing lanthanum strontium cobalt iron compound is used as an air electrode capable of lowering the operating temperature, and a reaction between the two is prevented from proceeding due to contact between the electrolyte and the air electrode.
  • Ce 0.9 Gd 0.1 O 1.95 as the reaction prevention layer
  • zirconia with 8 mol% itria (Y 2 O 3 ) added as the electrolyte membrane
  • a mixture of nickel (Ni) and zirconia with itria added as the fuel electrode.
  • An electrochemical cell is constructed using the body cermet, and an electrochemical cell is provided having a solid electrolyte layer laminate that supplements the activity at 600 ° C. to 800 ° C., that is, a membrane electrode junction that combines an air electrode and an electrolyte membrane. The device is disclosed.
  • the electrochemical device using the conventional membrane electrode assembly has insufficient power generation efficiency at a low temperature of 600 ° C. or lower.
  • a membrane electrode assembly or the like capable of improving power generation efficiency is provided.
  • the membrane electrode assembly includes an electrolyte membrane containing a solid electrolyte and a first electrode bonded to the electrolyte membrane, and the solid electrolyte is composed of the composition formula (1): BaZr 1-x. It is a compound represented by M x O 3- ⁇ , and in the composition formula (1), M is selected from the group consisting of Sc, Er, Ho, Dy, Gd, Y, In, Tm, Yb, and Lu. It is at least one element to be used and satisfies 0 ⁇ x ⁇ 1 and 0 ⁇ ⁇ 0.5, and the first electrode contains a lanthanum strontium cobalt iron-palladium composite oxide.
  • the electrochemical device includes the membrane electrode assembly and the second electrode, and the electrolyte membrane is arranged between the first electrode and the second electrode.
  • the electrochemical system in one aspect of the present disclosure includes the above-mentioned electrochemical device.
  • the membrane electrode assembly and the like according to the present disclosure can improve the power generation efficiency.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the membrane electrode assembly according to the first embodiment.
  • FIG. 2 is a diagram showing a table of properties of BZM containing various dopants.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the battery according to the second embodiment.
  • FIG. 4 is a diagram showing a table of materials used and measurement results of ohmic resistance and reaction resistance at 600 ° C. for the evaluation membrane electrode assembly in Examples and Comparative Examples 1 to 3.
  • FIG. 5 is a diagram showing a table showing the materials used for the evaluation membrane electrode assemblies in Examples and Comparative Examples 1 to 3, and the measurement results of the voltage between terminals, ohmic resistance, and reaction resistance at each temperature.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the membrane electrode assembly according to the first embodiment.
  • FIG. 2 is a diagram showing a table of properties of BZM containing various dopants.
  • FIG. 3 is a cross-sectional view schematic
  • FIG. 6 is a diagram showing an example of the AC impedance measurement result by a call call plot.
  • FIG. 7A is a diagram showing the current-voltage performance of the evaluation membrane electrode assembly in Example 1 and Comparative Example 1 at 600 ° C.
  • FIG. 7B is a diagram showing the current-voltage performance of the evaluation membrane electrode assembly in Example 1 and Comparative Example 1 at 500 ° C.
  • the air electrode is provided with a lanthanum strontium cobalt iron-palladium compound (hereinafter referred to as “LSCFPd”), and the electrolyte membrane is provided with yttria-added zirconia (hereinafter referred to as "YSZ”) which is an oxide ion conductive solid electrolyte.
  • LSCFPd lanthanum strontium cobalt iron-palladium compound
  • YSZ yttria-added zirconia
  • the present inventors have studied a membrane electrode assembly that has high ionic conductivity at low temperatures, as opposed to the conventional membrane electrode assembly disclosed in Non-Patent Document 1. As a result, the following findings were obtained. That is, as disclosed in Non-Patent Document 1, the present inventors have a solid electrolyte such as YSZ, which is an oxide ion conductor, or Ce 0.9 Gd 0.1 O 1.95.
  • a membrane electrode assembly equipped with ceria (CeO 2 ) hereinafter referred to as “GDC”) in which is replaced with gadlinear (Gd 2 O 3 ) is used for an electrochemical device (for example, a fuel cell)
  • GDC ceria
  • Gd 2 O 3 gadlinear
  • lanthanum strontium is used as an air electrode.
  • Finding that the terminal voltage at an external current of 0 A is the same when a cobalt iron compound (hereinafter referred to as "LSCF”) is used and when LSCFPd, which is more active than
  • BZY yttrium-added barium zirconate
  • BZYb solid electrolyte in which yttrium constituting BZY is replaced with itterbium
  • LSC lanthanum strontium cobalt compound
  • the membrane electrode assembly used in the electrochemical device is represented by an air electrode made of a lanthanum strontium cobalt iron compound (hereinafter referred to as "LSCF") and BaZr 1-x M x O 3- ⁇ .
  • LSCF lanthanum strontium cobalt iron compound
  • BaZr 1-x M x O 3- ⁇ the membrane electrode assembly used in the electrochemical device.
  • the present inventors have made a proton conductor represented by BaZr 1-x M x O 3- ⁇ (where 0 ⁇ x ⁇ 1 and 0 ⁇ ⁇ 0.5 are satisfied) as an electrolyte membrane.
  • the air electrode composed of LSCF and BaZr 1-x M x O 3- ⁇
  • the terminal voltage at an external current of 0 A is improved, and even at an external current of 0 A or more, the terminal voltage is large, and the power generation efficiency can be improved even at a low temperature of 600 ° C. or lower. I found.
  • the membrane electrode assembly in combination with the electrolyte membrane made of the solid electrolyte represented by is a combination of the air electrode made of LSCF and the electrolyte membrane made of BZM at 600 ° C. lower than 700 ° C. and 500 ° C. lower than 700 ° C. This is considered to be because the reaction resistance component at the air electrode generated between the air electrode, the electrolyte membrane and the gas can be reduced as compared with the membrane electrode assembly.
  • the current due to the proton (hereinafter referred to as "proton current”) is referred to as the current due to the Hall (hereinafter referred to as “Hall current”). ”Cannot be ignored. Therefore, when the external current is 0A, the proton current and the Hall current have the same value, and the proton current is flowing, so that the power generation state is substantially established and the theoretical electromotive force deviates from the theoretical electromotive force. In the power generation state, the reaction resistance component and the reaction activity at the air electrode change depending on the combination of the electrolyte composed of BZM and the air electrode.
  • LSCFPd Since LSCFPd has a higher reaction activity than LSCF as an air electrode, the voltage between terminals at an external current of 0 A becomes large, and the voltage between terminals also becomes large at an external current of 0 A or more. This is considered to improve the power generation performance of the entire membrane electrode assembly.
  • the reaction of the following formula (A) proceeds at the air electrode.
  • BZM which is a proton-conducting solid electrolyte
  • LSCF air electrode
  • the reaction of the following formula (A) is a three-phase interface. (That is, the interface between the electrolyte (BZM), the air electrode (LSCF), and air) is considered to proceed only. That is, the reaction of the following formula (A) proceeds at the three-phase interface between BZM in which protons are present, an air electrode serving as a reaction catalyst, and air.
  • the reaction of the following formula (B) proceeds at the air electrode.
  • YSZ or GDC which is an oxide ion conductive solid electrolyte
  • no proton is involved in the reaction of the following formula (B) regardless of whether LSCF or LSCFPd is used as the air electrode. Therefore, it proceeds at the two-phase interface (that is, the interface between the air electrode and air).
  • the reaction of the following formula (B) proceeds in the oxide ion conductive solid electrolyte, and the proton conductive solid electrolyte has the above formula.
  • the reaction of (A) proceeds.
  • the membrane electrode assembly includes an electrolyte membrane containing a solid electrolyte and a first electrode bonded to the electrolyte membrane, and the solid electrolyte is composed of the composition formula (1): BaZr 1-. It is a compound represented by x M x O 3- ⁇ , and in the composition formula (1), M is from the group consisting of Sc, Er, Ho, Dy, Gd, Y, In, Tm, Yb, and Lu. It is at least one element to be selected and satisfies 0 ⁇ x ⁇ 1 and 0 ⁇ ⁇ 0.5, and the first electrode contains a lanthanum strontium cobalt iron-palladium composite oxide.
  • the reaction resistance between the first electrode, the electrolyte membrane, and the gas phase of air can be reduced, and as a result, the reaction resistance of the entire membrane electrode assembly is reduced, and the product is used as an electric device.
  • the voltage between terminals at an external current of 0 A is improved, and the voltage between terminals at an external current of 0 A or more is also improved. Therefore, it can be used in a state where the external current and the voltage between terminals are high, and the power generation efficiency can be improved.
  • the solid electrolyte may be at least one element selected from the group consisting of Y, Tm, Yb, and Lu in the composition formula (1).
  • the solid electrolyte may satisfy 0.05 ⁇ x ⁇ 0.3 in the composition formula (1).
  • composition formula (1) when 0.05 ⁇ x is satisfied, the performance of the solid electrolyte is improved, and when x ⁇ 0.3 is satisfied, the crystal stability of the solid electrolyte is improved. Therefore, when 0.05 ⁇ x ⁇ 0.3 is satisfied in the composition formula (1), it is possible to improve the performance of the solid electrolyte and the durability stability at the same time.
  • the solid electrolyte may be at least one element selected from the group consisting of Lu and Yb in the composition formula (1).
  • the proton conductivity of the solid electrolyte tends to be high, and further, when mixed and fired with a compound containing Ni, impurities that cause a decrease in durability to carbon dioxide gas are less likely to be generated. Therefore, it is possible to improve both the performance of the power generation efficiency and the reliability.
  • the performance of the solid electrolyte, the durability against carbon dioxide gas, and the crystal stability are compatible. Therefore, power generation efficiency, reliability and durability stability can be improved.
  • the lanthanum strontium cobalt iron palladium complex oxide composition formula (2) a compound represented by La 1-m Sr m Co y Fe z Pd 1-y-z O 3- ⁇ , wherein In the composition formula (2), 0 ⁇ m ⁇ 0.5, 0.1 ⁇ y ⁇ 0.9, 0.1 ⁇ z ⁇ 0.9, y + z ⁇ 1, and 0 ⁇ ⁇ ⁇ 0.5 are satisfied. May be good.
  • the performance of the first electrode is improved, and m ⁇ 0.5, y ⁇ .
  • the durability of the first electrode is improved. Therefore, in the composition formula (2), the performance and durability of the first electrode are satisfied by satisfying 0 ⁇ m ⁇ 0.5, 0.1 ⁇ y ⁇ 0.9, and 0.1 ⁇ z ⁇ 0.9. It is compatible with sex.
  • the magnitude of the overall reaction resistance of the membrane electrode assembly is reduced, and the voltage between terminals at an external current of 0 A when used as an electrical device is also improved. Therefore, it can be used in a state where the external current and the voltage between terminals are high, and the power generation efficiency can be improved.
  • the lanthanum strontium cobalt iron-palladium composite oxide may satisfy 0.01 ⁇ 1-yz ⁇ 0.05 in the composition formula (2).
  • composition formula (2) when 0.01 ⁇ 1-yz is satisfied, the activity of the first electrode as an electrode is improved, and 1-yz ⁇ 0.05 is satisfied. In this case, the crystal stability of the first electrode is improved. Therefore, in the composition formula (2), by satisfying 0.01 ⁇ 1-yz ⁇ 0.05, it is possible to improve the performance of the air electrode and the durability stability at the same time.
  • the electrochemical device includes the membrane electrode assembly and the second electrode, and the electrolyte membrane is arranged between the first electrode and the second electrode. ..
  • the electrochemical device since the electrochemical device includes the membrane electrode assembly and the second electrode, the resistance is small, the voltage between terminals at an external current of 0 A is improved, and the voltage between terminals at an external current of 0 A or more is improved. .. Therefore, it can be used in a state where the external current and the voltage between terminals are high, and the power generation efficiency is improved.
  • the electrochemical system includes the above-mentioned electrochemical device.
  • the electrochemical system may further include a temperature control unit.
  • the temperature control unit controls the operating temperature of the electrochemical device to be 600 ° C. or lower.
  • the electrochemical system is provided with the membrane electrode assembly, it is possible to realize an electrochemical system with improved power generation efficiency even at an operating temperature of 600 ° C. or lower.
  • each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the membrane electrode assembly 10 according to the first embodiment.
  • FIG. 1 shows a cross section of the membrane electrode assembly 10 when cut in the thickness direction.
  • the membrane electrode assembly 10 includes an electrolyte membrane 11 containing a solid electrolyte and an air electrode 12 bonded to the electrolyte membrane 11. That is, the membrane electrode assembly 10 has a structure in which the electrolyte membrane 11 and the air electrode 12 are laminated.
  • the air electrode 12 is an example of the first electrode.
  • the electrolyte membrane 11 contains a solid electrolyte having proton conductivity.
  • the solid electrolyte is a compound (BZM) represented by the composition formula (1): BaZr 1-x M x O 3- ⁇ .
  • M is at least one element selected from the group consisting of Sc, Er, Ho, Dy, Gd, Y, In, Tm, Yb, and Lu, and 0 ⁇ x. ⁇ 1 is satisfied. In the following, M may be referred to as a dopant.
  • the value of ⁇ satisfies 0 ⁇ ⁇ 0.5. In the composition formula (1), the larger the value of x, the easier it is for the performance of the solid electrolyte to improve.
  • the proton conductivity of BZM containing a dopant at 600 ° C. is described. BZM tends to have reduced durability against carbon dioxide due to the formation of the impurity BaM 2 NiO 5 .
  • "-" of the result of conductivity means that there is no measurement data.
  • M (dopant) is preferably at least one element selected from the group consisting of Y, Tm, Yb, and Lu from the viewpoint of proton conductivity.
  • M is at least one element selected from the group consisting of Lu and Yb from the viewpoint of proton conductivity and the fact that impurities are unlikely to be generated when mixed and fired with a compound containing Ni. I hope there is.
  • the value of ⁇ satisfies 0 ⁇ ⁇ 0.5.
  • BZM has proton conductivity as described above.
  • BZM has a proton conductivity of about 0.011 S / cm at 600 ° C., for example, when the element M is Yb and the molar ratio of Zr to Yb is 8: 2.
  • the electrolyte membrane 11 constituting the battery 100 may be made as thin as possible in order to reduce the ohmic resistance (that is, IR resistance) of the electrolyte membrane 11.
  • the air electrode 12 is composed of an oxide ion / electron mixed conductor material containing a lanthanum strontium cobalt iron-palladium composite oxide (LSCFPd). Since LSCFPd contains Pd, it is possible that not only the conductivity of oxide ions and electrons but also the conductivity of protons is imparted.
  • the air electrode 12 may be composed of only LSCFPd, or may be a combination of LSCFPd and another oxide ion / electron mixed conductor material. Furthermore, for example, the air electrode 12 may include an electrolyte material (eg, BZM).
  • the air electrode 12 When the air electrode 12 is used as an air electrode of a solid oxide fuel cell, for example, a reaction that electrochemically reduces oxygen in the gas phase occurs. Therefore, the air electrode 12 may be a porous body in order to secure the diffusion path of oxygen and promote the reaction. When the air electrode 12 is a porous body, for example, it may be a porous body having a porosity of 20% by volume or more and 50% by volume or less.
  • LSCFPd is Composition formula (2): is represented by La 1-m Sr m Co y Fe z Pd 1-y-z O 3- ⁇ , in the composition formula (2), 0 ⁇ m ⁇ 0.5,0.1 ⁇ y It is preferable that the compound satisfies ⁇ 0.9, 0.1 ⁇ z ⁇ 0.9, y + z ⁇ 1 and 0 ⁇ ⁇ ⁇ 0.5.
  • is 0, and when the membrane electrode assembly 10 is used, it may fluctuate in the range of 0 or more and 0.5 or less.
  • the membrane electrode assembly 10 according to the first embodiment has a configuration in which the above-mentioned air electrode 12 is laminated on one side of the above-mentioned electrolyte membrane 11, the reaction resistance generated in the membrane electrode assembly 10 is reduced. Can be done. Therefore, it is possible to improve the power generation efficiency of the electrochemical device using the membrane electrode assembly 10.
  • the electrochemical device according to the second embodiment includes the membrane electrode assembly according to the first embodiment.
  • the electrochemical device according to the second embodiment includes a second electrode.
  • the electrolyte membrane is arranged between the first electrode and the second electrode.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the battery 100 according to the second embodiment.
  • FIG. 3 shows a cross section of the film-shaped battery 100 when cut in the thickness direction.
  • the battery 100 according to the second embodiment includes the membrane electrode assembly 10 according to the first embodiment and the fuel electrode 13.
  • the electrolyte membrane 11 is arranged between the air electrode 12 and the fuel electrode 13.
  • the fuel electrode 13 is an example of the second electrode.
  • the membrane electrode assembly 10 is the same as the membrane electrode assembly 10 according to the first embodiment, the description thereof will be omitted.
  • the fuel electrode 13 is BaZr 1-x M x O 3- ⁇ (M is one or more elements selected from Lu, Tm, Y, Yb and In, and 0 ⁇ x ⁇ 1, 0 ⁇ ⁇ .
  • a compound having proton conductivity represented by the composition formula (satisfying 0.5) and Ni may be contained.
  • the fuel electrode 13 is preferably a cermet of a mixture of Ni and BZM which is a solid electrolyte of the electrolyte membrane 11.
  • the structure is such that the electrolyte membrane 11 is laminated on the fuel pole 13, but the electrolyte membrane 11 is formed between the fuel pole 13 and the electrolyte membrane 11 with an ionic conductive material different from that of the electrolyte membrane 11. Another layer may be formed.
  • the fuel electrode 13 When the fuel electrode 13 is used as, for example, the fuel electrode of a solid oxide fuel cell, the reaction of oxidizing hydrogen in the gas phase to protons occurs at the fuel electrode 13. Therefore, the fuel electrode 13 is formed as a conjugate of Ni having electron conductivity and hydrogen oxidation activity and the above-mentioned compound having proton conductivity in order to promote the oxidation reaction from hydrogen to proton. May be good. Further, the fuel electrode 13 may be a porous body in order to secure a diffusion path for gaseous hydrogen. When the fuel electrode 13 is a porous body, for example, it may be a porous body having a porosity of 20% by volume or more and 50% by volume or less.
  • the battery 100 provided with the membrane electrode assembly 10 when used, for example, in a solid oxide fuel cell, air is applied to one side surface of the electrolyte membrane 11 where the air electrode 12 is provided, and the air electrode 12 is provided. A gas containing hydrogen is supplied to the other surface on which the above-mentioned is not provided to generate electricity. Therefore, when the electrochemical device is a solid oxide fuel cell, the electrolyte membrane 11 needs to be gas tight.
  • the battery 100 according to the second embodiment has a configuration in which the air electrode 12, the electrolyte membrane 11, and the fuel electrode 13 are laminated in this order, air is the same as in the first embodiment.
  • the reaction resistance of the membrane electrode assembly 10 composed of the pole 12 and the electrolyte membrane 11 can be reduced, and the power generation efficiency is improved.
  • the electrochemical device according to the second embodiment can be used for applications such as a gas sensor, a hydrogen pump, or an electrochemical device such as a water electrolyzer, in addition to a battery.
  • a gas sensor such as a hydrogen sensor
  • an electrochemical device such as a water electrolyzer
  • the battery 100 according to the second embodiment When the battery 100 according to the second embodiment is used as a fuel cell, for example, it is used as the following electrochemical system.
  • raw materials such as hydrocarbon gas supplied from the outside through the raw material supply route are supplied to the reformer.
  • the reformer reforms the supplied raw material to generate hydrogen-containing gas.
  • the hydrogen-containing gas generated by the reformer is supplied to the fuel electrode 13 of the battery 100 through the gas supply path.
  • the oxidant gas supplied from the outside is supplied to the air electrode 12 through another gas supply path.
  • the battery 100 generates electricity by an electrochemical reaction between hydrogen in the supplied hydrogen-containing gas and oxygen in the oxidant gas. Since such a fuel cell electrochemical system includes the battery 100 according to the second embodiment, high power generation efficiency can be realized.
  • the electrochemical system using the electrochemical device according to the second embodiment may further include a temperature control unit.
  • the temperature control unit controls the operating temperature of the electrochemical device to be 600 ° C. or lower. Since such an electrochemical system includes the membrane electrode assembly according to the first embodiment, high power generation efficiency can be realized even at 600 ° C. or lower. Insulation can also be reduced by operating the electrochemical device at a lower temperature. As a result, it is possible to realize miniaturization and cost reduction of the electrochemical device.
  • the evaluation membrane electrode assembly has a structure similar to that of the battery 100 shown in FIG.
  • a slurry of the air electrode material used in Example 1 and Comparative Examples 1 to 3 was prepared for the laminate of the electrolyte membrane and the fuel electrode, respectively. Then, by screen printing, the slurry of the above-mentioned air electrode material was applied to the surface of the electrolyte membrane of the laminate opposite to the fuel electrode. The coating area of the air electrode material was 0.79 cm 2 ( ⁇ 10 mm). The laminate coated with the air electrode material was fired at 950 ° C. for 2 hours in an air atmosphere to bake the air electrode on the electrolyte membrane. In this way, an evaluation membrane electrode assembly was obtained.
  • the electrolyte membrane, air electrode, and fuel electrode of the obtained evaluation membrane electrode assembly had thicknesses of 13 ⁇ m, 10 ⁇ m, and 0.6 mm, respectively.
  • the operation of reducing NiO to Ni before power generation is performed at 700 ° C. for 4 hours or more.
  • the mixture of the fuel electrode NiO and BZM at the time of production is combined with Ni and BZM having a predetermined porosity (that is, 20% by volume or more and 50% by volume or less) at the time of power generation after reduction. Becomes a cermet.
  • FIG. 4 is a diagram showing a table showing the materials used for the evaluation membrane electrode assemblies in Examples and Comparative Examples 1 to 3, and the measurement results of ohmic resistance and reaction resistance at 600 ° C.
  • FIG. 5 shows a table of the materials used for the evaluation membrane electrode assemblies in Examples and Comparative Examples 1 to 3, and the measurement results of the terminal voltage, ohmic resistance, and reaction resistance at an external current of 0 A at each temperature. ing.
  • the voltage between terminals, ohmic resistance, and reaction resistance at an external current of 0 A are values that are indicators of power generation performance. The higher the voltage during use, the better the power generation efficiency of the battery. Therefore, the voltage between terminals at an external current of 0 A is an index for improving power generation efficiency as the voltage increases.
  • the ohmic resistance and the reaction resistance are indicators for improving the power generation efficiency by lowering the resistance.
  • the LSCFPd used in Example 1 and Comparative Example 2 is La 0.6 Sr 0.4 Co 0.38 Fe as shown in FIG. 0.57 Pd 0.05 O 3- ⁇ (0 ⁇ ⁇ ⁇ 0.5) was used as a typical composition.
  • the LSCF used in Comparative Example 1 and Comparative Example 3 La 0.6 Sr 0.4 Co 0.4 Fe 0.6 O 3- ⁇ was used as a typical composition, as shown in FIG.
  • BaZr 0.8 Yb 0.2 O 2.90 is a typical composition as shown in FIG. Using. As for YSZ used in Comparative Example 2 and Comparative Example 2, as shown in FIG. 4, [ZrO 2 ] 0.92 [Y 2 O 3 ] 0.08 was used as a typical composition.
  • Example 1 As the fuel electrode used in Example 1 and Comparative Examples 1 to 3, a cermet of nickel and a solid electrolyte constituting a solid electrolyte membrane was used.
  • BZYb which is an electrolyte membrane
  • a green sheet for fuel electrodes will be described.
  • BZYb is a powder Ba (NO 3) 2 (manufactured by Kanto Kagaku) and ZrO (NO 3) 2 ⁇ 2H 2 O ( manufactured by Kanto Chemical), Yb (NO 3) 3 ⁇ xH 2 O It was prepared by the citric acid complex method as a starting material by adding powders (manufactured by high-purity chemical). Specifically, first, each powder weighed in a predetermined distribution was dissolved in distilled water, and the obtained aqueous solution was stirred.
  • aqueous solution 1.5 equal amounts of citric acid monohydrate (manufactured by Kanto Chemical Co., Inc.) and 1.5 equal amounts of ethylenediaminetetraacetic acid (EDTA) (manufactured by Kanto Chemical Co., Inc.) were added to the aqueous solution with respect to the metal cations contained in the aqueous solution. .. Then, the aqueous solution was stirred at 90 ° C. Subsequently, the aqueous solution was adjusted to pH 7 using aqueous ammonia (28%) (manufactured by Kanto Chemical Co., Inc.). After adjusting the pH, the solvent was removed by heating to 95 ° C. to 240 ° C. using a hot stirrer.
  • citric acid monohydrate manufactured by Kanto Chemical Co., Inc.
  • EDTA ethylenediaminetetraacetic acid
  • BaZr 0.8 Yb 0.2 O 3 (BZYb) electrolyte material powder, polyvinyl butyral as a resin, butylbenzyl phthalate as a plasticizer, butyl acetate as a solvent, and 1-butanol are kneaded and then tape cast. I got a green sheet at.
  • a method of manufacturing the fuel electrode 13 of FIG. 3 in Example 1 and Comparative Example 1 using BZYb and NiO will be described.
  • electrolyte material powder, NiO powder, polyvinyl butyral as a resin, butylbenzyl phthalate as a plasticizer, butyl acetate as a solvent, and 1-butanol are kneaded, and then the fuel electrode green is used by the tape casting method. I got a sheet.
  • Example 1 and Comparative Example 1 using BZYb a method for producing a laminate of a fuel electrode and an electrolyte membrane in Example 1 and Comparative Example 1 using BZYb.
  • the green sheet of the obtained fuel electrode was cut to a predetermined size on the assumption that the linear shrinkage rate was 22% so as to form a square (4-C3: chamfered at a corner of 3 mm) with a side of 20 mm after firing.
  • a plurality of cut green sheets were laminated.
  • the obtained electrolyte membrane was laminated on a green sheet.
  • the green sheet on which the electrolyte membrane was superposed was hot-pressed under 50 MPa. In this way, a laminate was obtained.
  • the obtained laminate was fired at 1475 ° C. for 2 hours in an air atmosphere.
  • a square half cell (4-C3: chamfered at a corner of 3 mm) having a side of 20 mm was prepared as a laminate of the fuel electrode and the electrolyte membrane.
  • BZYb was confirmed to be a single phase by X-ray diffraction (hereinafter, may be referred to as XRD).
  • ICP inductively coupled plasma
  • XRF fluorescent X-ray analysis method
  • the laminate of the fuel electrode and the electrolyte membrane in Comparative Example 2 and Comparative Example 3 using YSZ will be described.
  • an AEB-2.0 fuel electrode supporting electrolyte half cell ⁇ 20 manufactured by Nexeris ( ⁇ 20 mm) was used as the laminate of the fuel electrode and the electrolyte membrane using YSZ.
  • the fuel electrode is composed of a mixture of NiO and YSZ, and the electrolyte membrane YSZ has a thickness of 7 to 10 ⁇ m.
  • a GDC layer of 3 to 5 ⁇ m exists on the installation side of the air electrode of the electrolyte membrane as a reaction prevention layer.
  • LSCF6446 La 0.6 Sr 0.4 Co 0.38 Fe 0.57 Pd 0.05 O 3- ⁇
  • Pd the material of the air electrode used in Example 1 and Comparative Example 2.
  • La 2 O 3 , SrO, Co 3 O 4 and Fe 2 O 3 (all manufactured by Kanto Chemical Co., Inc.) and citric acid were added to pure water for reaction, and further mixed with a dinitrodiamine Pd nitric acid solution. In this way, a reaction solution was obtained. The obtained reaction solution was dried at 130 ° C.
  • the citric acid contained in the reaction solution after drying was decomposed by heating in an electric furnace. Then, the main firing was performed at 1200 ° C. under an atmospheric atmosphere. In this way, LSCFPd powder was obtained.
  • the obtained LSCFPd was confirmed to be single phase by XRD. By using ICP and XRF, it was confirmed that the difference between the composition ratio of LSCFPd and the target composition ratio was 1% or less.
  • LSCF6446 (LSCF: La 0.6 Sr 0.4 Co 0.4 Fe 0.6 O 3- ⁇ ), which is the material of the air electrode used in Comparative Example 1 and Comparative Example 3, will be described. ..
  • La 2 O 3 , SrO, Co 3 O 4 and Fe 2 O 3 (all manufactured by Kanto Chemical Co., Inc.) and citric acid were added to pure water and reacted, and the reaction solution was dried at 130 ° C.
  • the citric acid contained in the reaction solution after drying was decomposed by heating in an electric furnace, and then the main firing was performed at 1200 ° C. in an air atmosphere.
  • the obtained LSCF was confirmed to be single phase by XRD. Using ICP and XRF, it was confirmed that the deviation between the composition ratio of LSCF and the target composition ratio was 1% or less. Further, the LSCF powder and the pickle in which alcohol and ether were mixed were mixed in a predetermined weight ratio. In this way, the mixture was obtained.
  • the obtained mixture was kneaded with a rotation / revolution mixer. In this way, the paste of the air electrode material used in Comparative Example 1 and Comparative Example 3 was prepared.
  • the resistance of the evaluation membrane electrode assembly was measured by the AC impedance method.
  • a 1287 type manufactured by Solartron was used, and AC was applied with an amplitude of 10 mV with respect to the voltage between terminals at an external current of 0 A, and the frequency was changed from 100 kHz to 0.01 Hz, and AC was applied in FIGS. 4 and 5. It was carried out under the temperature conditions shown in.
  • FIG. 6 shows an example of the AC impedance measurement result by a call call plot.
  • FIG. 6 schematically shows the breakdown of the resistance component by the AC impedance measurement. As shown in FIG.
  • the call call plot for an arc drawn in the range where the frequency is from about 10 kHz to 0.01 Hz, the intersection of the arc and the real axis (Z') on the high frequency side becomes the ohmic resistance, and the string formed by the arc and the real axis.
  • the reaction resistance is the length of, that is, the length of two intersections where the arc cuts the real axis.
  • the results of the ohmic resistance and reaction resistance obtained by the measurement are shown in FIGS. 4 and 5.
  • FIG. 7A shows the current-voltage performance of the evaluation membrane electrode assembly in Example 1 and Comparative Example 1 at 600 ° C.
  • FIG. 7B shows the current-voltage performance of the evaluation membrane electrode assembly in Example 1 and Comparative Example 1 at 500 ° C.
  • Example 1 As shown in FIG. 5, in the evaluation membrane electrode assembly of Example 1 provided with an air electrode using LSCFPd, the voltage between terminals at an external current of 0 A at 600 ° C. was 0.96 V. In the evaluation membrane electrode assembly of Comparative Example 1 having the same electrolyte membrane as in Example 1 and having an LSCF air electrode, the voltage between terminals at an external current of 0 A at 600 ° C. was 0.92 V. The evaluation membrane electrode assembly of Example 1 has a higher voltage between terminals at an external current of 0 A as compared with Comparative Example 1, which is a good result.
  • the ohmic resistance at 600 ° C. are each 0.36Omucm 2 and 0.37Omucm 2, a comparable value.
  • the reaction resistance of Example 1 is 0.79 ⁇ cm 2
  • the reaction resistance of Comparative Example 1 is 1.2 ⁇ cm 2 .
  • the evaluation membrane electrode assembly of Example 1 has a significantly lower reaction resistance than Comparative Example 1, which is a good result. Further, the same tendency is observed even at a lower temperature of 500 ° C., and the evaluation membrane electrode assembly of Example 1 has a higher voltage between terminals and a lower reaction resistance than that of Comparative Example 1.
  • the evaluation membrane electrode assembly of Example 1 is more suitable than the evaluation membrane electrode assembly of Comparative Example 1 as a membrane electrode assembly using a proton conductor. It is considered that the reason why the difference between the terminal voltage and the reaction resistance occurs in the membrane electrode assembly using the proton conductors of Example 1 and Comparative Example 1 is that the reaction of the above formula (A) proceeds. Details are as described above.
  • the graph shows that the temperature is 500 ° C. or 600 ° C.
  • the line of the evaluation membrane electrode assembly of Example 1 changes from the line of Comparative Example 1 to the upper side in the figure. That is, the evaluation membrane electrode assembly of Example 1 has a higher voltage than Comparative Example 1 under any current density conditions, and has good performance.
  • the evaluation membrane electrode assembly of Example 1 and the evaluation membrane electrode assembly of Comparative Example 2 and Comparative Example 3 using YSZ, which is an oxide ion conductor, as the electrolyte membrane were 0.96 V, 1.13 V and 1.13 V, respectively.
  • the evaluation membrane electrode assembly of Example 1 has a lower voltage between terminals at an external current of 0 A than that of Comparative Example 2 and Comparative Example 3.
  • the ohmic resistances of the evaluation membrane electrode assemblies of Example 1, Comparative Example 2 and Comparative Example 3 are 0.36 ⁇ cm 2 , 2.0 ⁇ cm 2 and 2.0 ⁇ cm 2 , respectively.
  • the reaction resistances of the evaluation membrane electrode assemblies of Example 1, Comparative Example 2 and Comparative Example 3 are 0.79 ⁇ cm 2 , 4.0 ⁇ cm 2 and 5.0 ⁇ cm 2 , respectively.
  • the evaluation membrane electrode assembly of Example 1 has significantly lower ohmic resistance and reaction resistance than Comparative Example 2 and Comparative Example 3. Therefore, the evaluation membrane electrode assembly of Example 1 has a lower voltage between terminals at an external current of 0 A than that of Comparative Example 2 and Comparative Example 3, but has significantly lower ohmic resistance and reaction resistance. As a result, in the evaluation membrane electrode assembly of Example 1, the voltage between terminals is less likely to decrease than in Comparative Example 2 and Comparative Example 3 even if the current becomes large.
  • the evaluation membrane electrode assembly of Example 1 draws out a larger current than that of Comparative Example 2 and Comparative Example 3. And the performance is good. That is, by using the air electrode and the electrolyte membrane of Example 1, the membrane electrode assembly has improved power generation performance at a low temperature of 600 ° C. or lower as compared with the membrane electrode assembly using the oxide ion conductive electrolyte membrane. Is obtained.
  • the membrane electrode assembly 10 according to the present disclosure can be used for applications such as fuel cells, gas sensors, hydrogen pumps, and electrochemical devices such as water electrolyzers.
  • the membrane electrode assembly according to the present disclosure can be used for an electrochemical device such as a fuel cell, a gas sensor, a hydrogen pump, or a water electrolyzer.
  • Membrane electrode assembly 11 Electrolyte membrane 12 Air electrode 13 Fuel electrode 100 Battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本開示の膜電極接合体は、固体電解質を含む電解質膜と、前記電解質膜に接合された第1電極と、を備え、前記固体電解質は、組成式(1):BaZr1-x3-γにより表される化合物であり、前記組成式(1)において、Mが、Sc、Er、Ho、Dy、Gd、Y、In、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であり、かつ、0<x<1および0<γ<0.5を満たし、前記第1電極は、ランタンストロンチウムコバルト鉄パラジウム複合酸化物を含む。

Description

膜電極接合体、電気化学デバイスおよび電気化学システム
 本開示は、膜電極接合体、電気化学デバイスおよび電気化学システムに関する。
 固体酸化物からなる固体電解質を用いた電解質膜を含む膜電極接合体を備える電気化学デバイスとして、例えば、固体酸化物形燃料電池、水電解セル、および水蒸気電解セルが知られている。上記電気化学デバイスの固体電解質には、安定化ジルコニアに代表される酸化物イオン(O2-)伝導体が広く用いられている。酸化物イオン伝導体は、低温ほどイオン導電率が低下する。このため、例えば、安定化ジルコニアを固体電解質に用いた固体酸化物形燃料電池では、700℃以上の動作温度が望ましい。
 しかし、固体酸化物形燃料電池など、固体酸化物からなる固体電解質を用いた電気化学デバイスにおいて、その動作温度の高温化に伴い、断熱材の高性能化、または、断熱材厚みの増大、による高コスト化、および、構造部材に使用する金属材料に高価な特殊耐熱金属が必要となるなど、システム全体のコストが上昇する課題がある。また、高温作動により、起動および停止の際、構成部材の熱膨張の違いによってクラックが生じ易くなる等のシステムの信頼性低下、および、起動時間ならびにエネルギーの増大、も課題である。そのため、固体酸化物からなる固体電解質を用いた電気化学デバイスの動作温度の低温化は、その実用化において大きな目標の一つとなっている。
 非特許文献1では、動作温度の低温化を図ることができる空気極としてパラジウム(Pd)含有ランタンストロンチウムコバルト鉄化合物、電解質と空気極との接触で進行する二者間の反応を防止するための反応防止層としてCe0.9Gd0.11.95、電解質膜として8mol%イットリア(Y)添加のジルコニア、および、燃料極としてニッケル(Ni)とイットリア添加のジルコニアとの混合体であるサーメット、を用いて電気化学セルが構成され、600℃~800℃での活性を補う固体電解質層積層体、すなわち、空気極と電解質膜とを組み合わせた膜電極接合体を備える電気化学デバイスが開示されている。
 しかしながら、従来の膜電極接合体を用いた電気化学デバイスでは、600℃以下の低温での発電効率が不十分である。
 そこで、本開示では、発電効率を向上させることができる膜電極接合体等を提供する。
 本開示の一態様における膜電極接合体は、固体電解質を含む電解質膜と、前記電解質膜に接合された第1電極と、を備え、前記固体電解質は、組成式(1):BaZr1-x3-γにより表される化合物であり、前記組成式(1)において、Mが、Sc、Er、Ho、Dy、Gd、Y、In、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であり、かつ、0<x<1および0<γ<0.5を満たし、前記第1電極は、ランタンストロンチウムコバルト鉄パラジウム複合酸化物を含む。
 本開示の一態様における電気化学デバイスは、上記膜電極接合体と、第2電極と、を備え、前記電解質膜は、前記第1電極と前記第2電極との間に配置される。
 本開示の一態様における電気化学システムは、上記電気化学デバイスを備える。
 本開示に係る膜電極接合体等は、発電効率を向上させることができる。
図1は、実施の形態1に係る膜電極接合体の構成を模式的に示す断面図である。 図2は、各種のドーパントを含むBZMの性質の表を示す図である。 図3は、実施の形態2に係る電池の構成を模式的に示す断面図である。 図4は、実施例および比較例1~3における評価用膜電極接合体の、使用材料、および、600℃でのオーミック抵抗ならびに反応抵抗の測定結果の表を示す図である。 図5は、実施例および比較例1~3における評価用膜電極接合体の、使用材料、および、各温度での端子間電圧、オーミック抵抗ならびに反応抵抗の測定結果の表を示す図である。 図6は、交流インピーダンス測定結果の一例をコールコールプロットによって示す図である。 図7Aは、600℃での実施例1および比較例1における評価用膜電極接合体の電流-電圧性能を示す図である。 図7Bは、500℃での実施例1および比較例1における評価用膜電極接合体の電流-電圧性能を示す図である。
 (本開示の一態様を得るに至った経緯)
 空気極としてランタンストロンチウムコバルト鉄パラジウム化合物(以下、「LSCFPd」と称する)と、電解質膜として酸化物イオン伝導性の固体電解質であるイットリア添加のジルコニア(以下、「YSZ」と称する)と、を備える膜電極接合体を、600℃程度で用いた場合、固体電解質のイオン伝導が固体電解質の電子伝導に対して、圧倒的に大きくなる。このため、膜電極接合体を備える電気デバイスの外部取出し電流(以下、「外部電流」と称する)が0A時の端子間電圧は、ネルンストの式から求められる電圧にほぼ一致する。
 具体的には、本発明者らは、非特許文献1に開示された従来の膜電極接合体に対して、低温で高イオン導電率となる膜電極接合体について検討を行った。その結果、以下の知見を得た。すなわち、本発明者らは、非特許文献1に開示されているように、固体電解質に酸化物イオン伝導体であるYSZ、または、Ce0.9Gd0.11.95などの一部をガドリニア(Gd)で置換したセリア(CeO)(以下、「GDC」と称する)を備える膜電極接合体を電気化学デバイス(例えば、燃料電池)に用いる場合、空気極にランタンストロンチウムコバルト鉄化合物(以下、「LSCF」と称する)を用いた場合と、空気極にLSCFよりも高活性なLSCFPdを用いた場合と、を比べて、外部電流0Aにおける端子間電圧は同じである知見を得た。
 一方で、固体電解質として、イットリウム添加のジルコン酸バリウム(以下、「BZY」と称する)、または、BZYを構成するイットリウムをイッテルビウムに置換した固体電解質(以下、「BZYb」と称する)と、空気極としてランタンストロンチウムコバルト化合物(以下、「LSC」と称する)からなるカソード電極層とを備えた、500℃~800℃で作動するプロトン伝導性を有する固体電解質を用いた膜電極接合体が提案されている。BZYおよびBZYbに代表されるプロトン(H)伝導体を固体電解質に用いた膜電極接合体では、固体電解質中のプロトン導電率に対し、ホール導電率が無視できない程度に大きい。そのため、外部電流0Aにおける、膜電極接合体を用いた電気デバイスの端子間電圧は、ネルンストの式から算出される理論電圧との差異が発生し、理論電圧よりも低くなる。ここで、発電に高活性の空気極材料を用いると、外部電流0Aにおける交換電流密度が向上する。これにより、外部電流0A時の端子間電圧が向上し、端子間電圧向上により発電効率も向上する。ひいては、外部電流0A以上においても、端子間電圧が向上し、発電効率も向上する。
 このように、プロトン伝導性を有する固体電解質を用いた膜電極接合体の発電効率を向上させるため、外部電流0A時の端子間電圧を向上する膜電極接合体の実現が望まれる。
 具体的には、電気化学デバイスに用いられる膜電極接合体が、ランタンストロンチウムコバルト鉄化合物(以下、「LSCF」と称する)からなる空気極と、BaZr1-x3-γで表される固体電解質からなる電解質膜とを組み合わせた構成の場合、外部電流0Aにおける端子間電圧が低く、ひいては外部電流0A以上においても、十分に高い端子間電圧および発電効率が得られないという課題を見出した。そこで、本発明者らは、さらに外部電流0Aにおける端子間電圧を高くし、高い発電効率が得られる電極と電解質膜との組合せについて検討し、本開示に至った。
 すなわち、本発明者らは、BaZr1-x3-γ(ここで、0<x<1および、0<γ<0.5が満たされる)で表されるプロトン伝導体を電解質膜に用い、LSCFを構成するコバルトと鉄のサイトの一部をパラジウムで置換したLSCFPdを空気極に用いた膜電極接合体では、LSCFからなる空気極とBaZr1-x3-γからなる電解質との膜電極接合体に比べ、外部電流0Aにおける端子間電圧が向上し、ひいては外部電流0A以上においても、端子間電圧が大きくなり、600℃以下の低温でも発電効率を高めることができることを見出した。
 これは、LSCFPdからなる空気極と、組成式がBaZr1-x3-γ(ここで、0<x<1および0<γ<0.5を満たす、以下「BZM」と称する)で表される固体電解質からなる電解質膜とを組合せた膜電極接合体は、700℃より低温の600℃、更に低温の500℃において、LSCFからなる空気極とBZMからなる電解質膜とを組合せた膜電極接合体よりも、空気極と電解質膜とガスとの間に生じる空気極での反応抵抗成分を低減させることができるためと考えられる。
 さらに、電解質として用いられるBZMがプロトン伝導体であるとともにホール伝導体でもあるため、発電状態では、プロトンによる電流(以下「プロトン電流」と称する)に対し、ホールによる電流(以下「ホール電流」と称する)が無視できなくなる。そのため、外部電流0Aにおいて、プロトン電流とホール電流とが同一値となり、プロトン電流が流れているため、実質的に発電状態となり、理論起電力からずれることになる。発電状態においては、BZMからなる電解質と空気極との組み合わせにより、空気極での反応抵抗成分および反応活性が変化する。空気極として、LSCFよりもLSCFPdが高反応活性であるため、外部電流0Aにおける端子間電圧が大きくなり、ひいては外部電流0A以上においても、端子間電圧が大きくなる。これにより、膜電極接合体全体の発電性能が向上すると考えられる。
 プロトン伝導性の固体電解質を用いた場合、空気極では、下記の式(A)の反応が進行する。プロトン伝導性の固体電解質であるBZMを電解質膜に用い、LSCFを空気極に用いた場合には、空気極中をプロトンがほとんど伝播しないため、下記の式(A)の反応が、三相界面(すなわち、電解質(BZM)と、空気極(LSCF)と、空気との界面)でのみ進行すると考えられる。つまり、プロトンが存在するBZMと反応触媒となる空気極と空気との三相界面で、下記の式(A)の反応が進行する。それに対して、Pdは水素透過能、および水素吸着能が高いため、プロトン伝導性の固体電解質であるBZMを電解質膜に用い、LSCFPdを空気極に用いた場合には、下記の式(A)の反応が、二相界面(すなわち、空気極(LSCFPd)と、空気との界面)においても進行する可能性が高い。つまり、LSCFPdを空気極に用いた場合には、空気極中をプロトンが伝播し、空気極中にプロトンが存在できるため、二相界面で広範囲にわたって下記の式(A)の反応が進行する可能性がある。このため、LSCFPdを空気極に用いた場合には、反応抵抗成分を大幅に低減させることができていると考えられる。
 2H + 1/2O + 2e→ HO ・・・(A)
 なお、酸化物イオン伝導性のYSZまたはGDCを電解質膜に用いた場合には、600℃の低温での電子伝導性が低いため、発電状態において酸化物イオンによる電流がほぼすべてとなるため、外部電流0Aにおける端子間電圧は、空気極の活性によって変化しない。
 酸化物イオン伝導性の固体電解質を用いた場合、空気極では、下記の式(B)の反応が進行する。酸化物イオン伝導性の固体電解質であるYSZまたはGDCを電解質膜に用いた場合には、空気極としてLSCFおよびLSCFPdのいずれを用いても、下記の式(B)の反応は、プロトンが関与しないため、二相界面(すなわち、空気極と空気との界面)で進行する。同様に空気極としてLSCFPdまたはLSCFを用いた場合であっても、酸化物イオン伝導性の固体電解質は、下記の式(B)の反応が進行し、プロトン伝導性の固体電解質は、上記の式(A)の反応が進行する。つまり、酸化物イオンの反応が進行する下記の式(B)の反応は、プロトンが反応に寄与しないために、空気極としてLSCFおよびLSCFPdのいずれを用いても、二相界面で進行したと考えられる。このため、酸化物イオン伝導性の固体電解質を用いた場合、空気極として高反応活性であるLSCFPdを用いた場合にも、プロトン伝導性固体電解質BZMおよび空気極LSCFPdとの比較において、反応抵抗成分が大きくは低減しないと考えられる。
 1/2O + 2e → O2- ・・・(B)
 上記の知見は、これまで明らかにされていなかったものであり、新規の課題を発見し、顕著な作用効果を奏する新規な技術的特徴を有するものである。本開示では、具体的には以下に示す態様を提供する。
 (本開示の概要)
 本開示の一態様に係る膜電極接合体は、固体電解質を含む電解質膜と、前記電解質膜に接合された第1電極と、を備え、前記固体電解質は、組成式(1):BaZr1-x3-γにより表される化合物であり、前記組成式(1)において、Mが、Sc、Er、Ho、Dy、Gd、Y、In、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であり、かつ、0<x<1および0<γ<0.5を満たし、前記第1電極は、ランタンストロンチウムコバルト鉄パラジウム複合酸化物を含む。
 これにより、第1電極と、電解質膜と、空気の気相との間における反応抵抗を低減させることができ、結果的に、膜電極接合体全体の反応抵抗が低下し、電気デバイスとして用いた場合の外部電流0Aにおける端子間電圧が向上し、ひいては外部電流0A以上における端子間電圧も向上する。よって、外部電流および端子間電圧が高い状態で使用でき、発電効率を向上させることができる。
 また、例えば、前記固体電解質は、前記組成式(1)において、Mが、Y、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であってもよい。
 これにより、固体電解質のプロトン導電率が高くなりやすい。よって、膜電極接合体の抵抗が低下し、発電効率を向上させることができる。
 また、例えば、前記固体電解質は、前記組成式(1)において、0.05<x<0.3、を満たしてもよい。
 これにより、組成式(1)において、0.05<xが満たされる場合、固体電解質の性能が向上し、また、x<0.3が満たされる場合、固体電解質の結晶安定性が向上する。したがって、組成式(1)において、0.05<x<0.3が満たされることにより、固体電解質の性能向上、および、耐久安定性向上を両立できる。
 また、例えば、前記固体電解質は、前記組成式(1)において、Mが、LuおよびYbからなる群より選択される少なくとも1種の元素であってもよい。
 これにより、固体電解質のプロトン導電率が高くなりやすく、さらに、Niを含む化合物と混合焼成した場合に、炭酸ガスへの耐久性低下の原因となる不純物が生成しにくくなる。よって、発電効率の性能向上、および、信頼性向上を両立できる。
 また、例えば、前記固体電解質は、前記組成式(1)において、Mが、Ybであり、かつ、x=0.2、を満たしてもよい。
 これにより、固体電解質の性能、炭酸ガスへの耐久性および結晶安定性が両立される。よって、発電効率、信頼性および耐久安定性を向上させることができる。
 また、例えば、前記ランタンストロンチウムコバルト鉄パラジウム複合酸化物は、組成式(2):La1-mSrCoFePd1-y-z3-δにより表される化合物であり、前記組成式(2)において、0≦m≦0.5、0.1≦y≦0.9、0.1≦z≦0.9、y+z<1、および0≦δ≦0.5を満たしてもよい。
 これにより、組成式(2)において、0≦m、0.1≦y、およびz≦0.9が満たされる場合、第1電極の性能が向上し、また、m≦0.5、y≦0.9、および0.1≦zが満たされる場合、第1電極の耐久性が向上する。したがって、組成式(2)において、0≦m≦0.5、0.1≦y≦0.9、および0.1≦z≦0.9が満たされることにより、第1電極の性能と耐久性とが両立できる。
 そのため、膜電極接合体の全体の反応抵抗の大きさが低減し、電気デバイスとして用いた場合の外部電流0Aにおける端子間電圧も向上する。よって、外部電流および端子間電圧が高い状態で使用できるようになり、発電効率を向上させることができる。
 また、例えば、前記ランタンストロンチウムコバルト鉄パラジウム複合酸化物は、前記組成式(2)において、0.01≦1-y-z≦0.05、を満たしてもよい。
 これにより、組成式(2)において、0.01≦1-y-zが満たされる場合、第1電極の電極としての活性が向上し、また、1-y-z≦0.05が満たされる場合、第1電極の結晶安定性が向上する。したがって、組成式(2)において、0.01≦1-y-z≦0.05が満たされることにより、空気極の性能向上、および、耐久安定性向上を両立できる。
 また、例えば、前記ランタンストロンチウムコバルト鉄パラジウム複合酸化物は、前記組成式(2)において、m=0.4、y=0.38、および、z=0.57、を満たしてもよい。
 これにより、第1電極の性能および耐久性がさらに向上する。よって、膜電極接合体全体の抵抗が低減し、耐久安定性も向上する。
 また、本開示の一態様に係る電気化学デバイスは、上記膜電極接合体と、第2電極と、を備え、前記電解質膜は、前記第1電極と前記第2電極との間に配置される。
 これにより、上記膜電極接合体と第2電極とを備えた電気化学デバイスとなるため、抵抗が小さく、外部電流0Aにおける端子間電圧が向上し、ひいては外部電流0A以上における端子間電圧が向上する。よって、外部電流および端子間電圧が高い状態で使用でき、発電効率が向上する。
 また、本開示の一態様に係る電気化学システムは、上記電気化学デバイスを備える。
 これにより、上記電気デバイスを備える電気化学システムであるため、発電効率が向上した電気化学システムが実現できる。
 また、前記電気化学システムは、温度制御部をさらに備えてもよい。前記温度制御部は、前記電気化学デバイスの作動温度が600℃以下となるように制御する。
 これにより、上記膜電極接合体を備えた電気化学システムであるため、600℃以下の動作温度でも発電効率が向上した電気化学システムが実現できる。
 以下、本開示の実施の形態が、図面を参照しながら説明される。
 なお、以下で説明される実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。なお、本明細書における「厚み方向」とは、電極および電解質膜が積層される方向である。
 (実施の形態1)
 図1は、実施の形態1に係る膜電極接合体10の構成を模式的に示す断面図である。図1には、膜状の膜電極接合体10の厚み方向に切断した場合の断面が示されている。図1に示されるように、膜電極接合体10は、固体電解質を含む電解質膜11と、電解質膜11に接合された空気極12とを備える。つまり、膜電極接合体10は、電解質膜11と空気極12とが積層された構造を有する。本明細書において、空気極12は、第1電極の一例である。
 電解質膜11は、上述のように、プロトン伝導性を有する固体電解質を含む。固体電解質は、組成式(1):BaZr1-x3-γで表される化合物(BZM)である。組成式(1)において、Mは、Sc、Er、Ho、Dy、Gd、Y、In、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であり、かつ、0<x<1を満たす。以下では、Mをドーパントと称する場合がある。また、組成式(1)において、γの値は、0<γ<0.5を満たす。組成式(1)において、xの値が大きくなると固体電解質の性能が向上しやすい。また組成式(1)において、xの値が小さくなると固体電解質の結晶構造が安定になりやすい。固体電解質の性能向上および耐久安定性向上を両立する観点から、固体電解質は、組成式(1)において、0.05<x<0.3を満たすとよく、更にはx=0.2を満たすとよい。
 図2は、x=0.20で各種のドーパントを含むBZMの性質の表を示す図である。具体的に、図2には、ドーパントのイオン半径が小さい順に並べられ、各ドーパントを含むBZMとNiOとを混合焼成した場合に不純物であるBaMNiOを生成したか否か、および、各ドーパントを含むBZMの600℃でのプロトン導電率が記載されている。BZMは、不純物BaMNiOの生成により、炭酸ガスへの耐久性が低下しやすい。なお、導電率の結果の「-」は、測定データが無いことを意味する。組成式(1)において、M(ドーパント)は、プロトン導電率の観点から、Y、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であるとよい。プロトン導電率、および、Niを含む化合物と混合焼成した場合に不純物が生成しにくい観点から、組成式(1)において、Mは、LuおよびYbからなる群より選択される少なくとも1種の元素であるとよい。
 上記のような組成式(1)となる固体電解質としては、例えばMがYbであり、x=0.2であるBaZr0.8Yb0.23-γであるとよい。これにより、発電効率および耐久性が向上した膜電極接合体10が得られやすい。なお、γの値は、0<γ<0.5を満たす。
 BZMは、上述のように、プロトン伝導性を有する。BZMは、例えば、元素MがYbであり、ZrとYbとのモル比率が8:2の場合には、600℃でおよそ0.011S/cmのプロトン導電率を有する。なお、電池100を構成する電解質膜11は、当該電解質膜11のオーミック抵抗(すなわち、IR抵抗)の低減を図るために、できるだけ薄膜化してもよい。
 空気極12は、ランタンストロンチウムコバルト鉄パラジウム複合酸化物(LSCFPd)を含む酸化物イオン・電子混合伝導体材料を用いて構成される。LSCFPdは、Pdを含むため、酸化物イオンおよび電子の伝導性以外に、更にプロトンの伝導性も付与されている可能性もある。空気極12は、LSCFPdのみで構成されてもよく、LSCFPdと他の酸化物イオン・電子混合伝導体材料とを組み合わせた構成であってもよい。さらには、例えば、空気極12は、電解質材料(例えば、BZM)を含んでいてもよい。
 空気極12は、例えば、固体酸化物形燃料電池の空気極として用いられる場合、気相中の酸素を電気化学的に還元する反応が生じる。このため、空気極12は、酸素の拡散経路を確保し、反応を促進するために、多孔体であってもよい。空気極12が多孔体である場合、例えば、気孔率が20体積%以上50体積%以下の多孔体であってもよい。
 LSCFPdは、
 組成式(2):La1-mSrCoFePd1-y-z3-δにより表され、組成式(2)において、0≦m≦0.5、0.1≦y≦0.9、0.1≦z≦0.9、y+z<1および0≦δ≦0.5を満たす化合物であるとよい。組成式(2)において基本的な組成では、δは0であり、膜電極接合体10が使用される際に0以上0.5以下程度の範囲で変動する可能性がある。組成式(2)において、1-y-zの値が大きくなると電極としての活性が向上しやすく、1-y-zの値が小さくなるとLSCFPdの結晶構造が安定になりやすい。LSCFPdの、結晶安定性および電極としての活性の高さを両立する観点から、LSCFPdは、組成式(2)において、0.01≦1-y-z≦0.05、を満たすとよく、更にはm=0.4、y=0.38、および、z=0.57、を満たすとよい。また、LSCFPdは、組成式(2)において、1-y-z=0.05、0.19≦y≦0.38、および、0.57≦zを≦0.76を満たしてもよく、1-y-z=0.01、0.19≦y≦0.40、および、0.57≦zを≦0.79を満たしてもよい。
 実施の形態1に係る膜電極接合体10は、上記した空気極12を、上記した電解質膜11の一方側に積層させた構成であるため、膜電極接合体10に生じる反応抵抗を低減させることができる。このため、膜電極接合体10を用いた電気化学デバイスの発電効率の向上を図ることができる。
 (実施の形態2)
 以下では、実施の形態2について図面を参照しながら説明する。なお、以下の実施の形態2の説明において、実施の形態1との相違点を中心に説明し、全ての図を通じて同一または対応する構成部材には同一の参照符号を付して、その説明については省略する場合がある。
 実施の形態2に係る電気化学デバイスは、実施の形態1に係る膜電極接合体を含む。
 実施の形態2に係る電気化学デバイスは、第2電極を備える。電解質膜は、第1電極と第2電極との間に配置される。
 上記構成によると、発電効率を高めた電気化学デバイスを実現できる。
 以下、電気化学デバイスの一例として、電池の具体例が説明される。
 図3は、実施の形態2に係る電池100の構成を模式的に示す断面図である。図3には、膜状の電池100の厚み方向に切断した場合の断面が示されている。実施の形態2に係る電池100は、実施の形態1に係る膜電極接合体10と、燃料極13と、を備える。
 図3に示されるように、電解質膜11は、空気極12と燃料極13との間に配置される。本明細書において、燃料極13は、第2電極の一例である。
 膜電極接合体10は、実施の形態1に係る膜電極接合体10と同じであるため、説明は省略する。
 燃料極13は、BaZr1-x3-γ(MがLu、Tm、Y、YbおよびInから選ばれる1種類以上の元素であり、かつ、0<x<1、0<γ<0.5を満たす)の組成式で表されるプロトン伝導性を有する化合物と、Niとを含んでもよい。
 燃料極13は、Niと電解質膜11の固体電解質であるBZMとの混合物のサーメットであるとよい。
 なお、図3においては、燃料極13上に電解質膜11が積層された構造であるが、燃料極13と電解質膜11との間に、電解質膜11とは異なるイオン伝導性材料で形成された別の層が形成されていてもよい。
 燃料極13が、例えば、固体酸化物形燃料電池の燃料極として用いられる場合、燃料極13では、気相中の水素をプロトンに酸化する反応が生じる。このため、燃料極13は、水素からプロトンへの酸化反応を促進するために、電子伝導性および水素の酸化活性を有するNiと、上記したプロトン伝導性を有する化合物との接合体として形成されてもよい。また、気体の水素の拡散経路を確保するため、燃料極13は多孔体であってもよい。燃料極13が多孔体である場合、例えば、気孔率が20体積%以上50体積%以下の多孔体であってもよい。
 また、膜電極接合体10を備えた電池100が、例えば固体酸化物形燃料電池に用いられる場合、電解質膜11の、空気極12が設けられている一方側の面に空気を、空気極12が設けられていない他方側の面に水素を含むガスをそれぞれ供給して発電する構成となる。そのため、電気化学デバイスが固体酸化物形燃料電池である場合、電解質膜11は、ガスタイトである必要がある。
 以上のように、実施の形態2に係る電池100は、空気極12と、電解質膜11と、燃料極13とを、この順番で積層させた構成を有するため、実施の形態1と同様に空気極12と電解質膜11とからなる膜電極接合体10の反応抵抗を低減でき、発電効率が向上する。
 また、実施の形態2に係る電気化学デバイスは、電池以外にも、ガスセンサ、水素ポンプ、または水電解装置等の電気化学デバイス等の用途に用いることができる。これにより、実施の形態1に係る膜電極接合体を備えるため、膜電極接合体での反応抵抗が低減し、それぞれ、センサ感度、ポンプ能力または電解能力が向上した電気デバイスが実現される。
 実施の形態2に係る電池100を燃料電池に用いる場合には、例えば、次のような電気化学システムとして使用する。まず、原料供給経路を通じて外部から供給された炭化水素ガスなどの原料が改質器に供給される。改質器は、供給された原料を改質し、水素含有ガスを生成する。改質器で生成された水素含有ガスは、ガス供給経路を通じて電池100の燃料極13に供給される。また、外部から供給された酸化剤ガスが別のガス供給経路を通じて空気極12に供給される。これにより、電池100は、供給された水素含有ガス中の水素と酸化剤ガス中の酸素との電気化学反応により発電する。このような燃料電池の電気化学システムは、実施の形態2に係る電池100を備えるため、高い発電効率を実現できる。
 また、実施の形態2に係る電気化学デバイスを用いた電気化学システムは、温度制御部をさらに備えてもよい。温度制御部は、電気化学デバイスの作動温度が600℃以下となるように制御する。このような電気化学システムは、実施の形態1に係る膜電極接合体を備えるため、600℃以下であっても、高い発電効率を実現できる。また、電気化学デバイスをより低温で作動させることにより、断熱材を削減することができる。これにより、電気化学デバイスの小型化および低コスト化を実現できる。
 (実施例)
 以下、実施例にて本開示に係る膜電極接合体および電気デバイスを具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。
 [評価用膜電極接合体の製造]
 以下、実施例1および比較例1~3における評価用膜電極接合体の製造方法について説明する。評価用膜電極接合体は、図3に示される電池100と同様の構造を備える。
 電解質膜および燃料極の積層体に対し、実施例1および比較例1~3において用いる空気極材料のスラリーをそれぞれ準備した。そして、スクリーン印刷によって、上述した空気極材料のスラリーを、積層体の電解質膜における燃料極と反対側の面に塗布した。空気極材料の塗布面積は0.79cm(Φ10mm)とした。空気極材料を塗布した積層体を、950℃で2時間、大気雰囲気のもと、焼成することで、空気極を電解質膜に焼き付けた。このようにして、評価用膜電極接合体を得た。得られた評価用膜電極接合体の電解質膜、空気極および燃料極は、それぞれ13μm、10μm、0.6mmの厚みを有していた。燃料極において、発電前にNiOをNiに還元する操作を700℃で4時間以上行う。このようにすることで、作製時の燃料極NiOとBZMの混合物を、還元後の発電時において、所定の気孔率(すはわち、20体積%以上50体積%以下)のNiとBZMとのサーメットとなる。
 図4は、実施例および比較例1~3における評価用膜電極接合体の、使用材料、および、600℃でのオーミック抵抗ならびに反応抵抗の測定結果の表を示す図である。図5は、実施例および比較例1~3における評価用膜電極接合体の、使用材料、および、各温度での外部電流0Aにおける端子間電圧、オーミック抵抗ならびに反応抵抗の測定結果の表を示している。外部電流0Aにおける端子間電圧、オーミック抵抗ならびに反応抵抗は、発電性能の指標となる値である。使用時の電圧が高く保てるほど電池の発電効率が向上する。よって、外部電流0Aにおける端子間電圧は、高くなることで発電効率が向上する指標である。また、使用時の電流が大きくなると、抵抗値が大きいほど端子間電圧が低下しやすい。したがって、オーミック抵抗および反応抵抗は、低くなることで、発電効率が向上する指標である。
 空気極を構成する酸化物イオン・電子混合伝導体材料に関して、実施例1および比較例2に用いられるLSCFPdについては、図4に示すように、La0.6Sr0.4Co0.38Fe0.57Pd0.053-δ(0≦δ≦0.5)を代表的な組成として用いた。比較例1および比較例3に用いられるLSCFについては、図4に示すように、La0.6Sr0.4Co0.4Fe0.63-δを代表的な組成として用いた。
 また、電解質膜を構成する固体電解質に関して、実施例1および比較例1に用いられるBZYbについては、図4に示すように、BaZr0.8Yb0.22.90を代表的な組成として用いた。比較例2および比較例2に用いられるYSZについては、図4に示すように、[ZrO0.92[Y0.08を代表的な組成として用いた。
 また、実施例1および比較例1~3に用いられる燃料極については、ニッケルと固体電解質膜を構成する固体電解質とのサーメットを用いた。
 [電解質膜および空気極の材料ならびに積層体の製造]
 上述の電解質膜および空気極を構成する材料である、LSCFPd(Pd入りLSCF6446)、LSCF(LSCF6446)、BZYbおよびYSZ、ならびに、燃料極と電解質膜との積層体の製造方法について説明する。
 まず、電解質膜となるBZYbおよび燃料極のグリーンシートの製造方法について説明する。
 プロトン伝導体材料であるBZYbは、Ba(NO(関東化学製)およびZrO(NO・2HO(関東化学製)の粉末に、Yb(NO・xHO(高純度化学製)の粉末をそれぞれ加えて出発原料として、クエン酸錯体法により作製した。具体的には、まず、所定の配分に秤量した各粉末を蒸留水に溶解させ、得られた水溶液を攪拌した。そして、水溶液に含まれる金属カチオンに対し1.5等量のクエン酸一水和物(関東化学製)および1.5等量のエチレンジアミン四酢酸(EDTA)(関東化学製)を水溶液に加えた。その後、水溶液を90℃で攪拌した。続いて、アンモニア水(28%)(関東化学製)を用いて、水溶液をpH7に調整した。pH調整後、ホットスターラーを用いて、95℃~240℃に加熱して溶媒を除去た。このようにして、固形物を得た。得られた固形物を乳鉢粉砕した後、約400℃で脱脂した。脱脂後、得られた粉末を円柱状にプレス成型して900℃で10時間、大気雰囲気のもと、仮焼した。仮焼後、粗粉砕した粉末を、プラスチック容器にジルコニア製ボールとともに入れ、さらにエタノールを加えて4日間以上ボールミルにより粉砕した。ボールミルによる粉砕後、ランプ乾燥によって溶媒を除去した。これにより、BaZr0.8Yb0.2(BZYb)電解質材料粉末を得た。得られたBaZr0.8Yb0.2(BZYb)電解質材料粉末、樹脂としてポリビニルブチラール、可塑剤としてブチルベンジルフタレート、溶剤として酢酸ブチル、および、1-ブタノールを混錬後、テープキャスト法にてグリーンシートを得た。次に、BZYbおよびNiOを用いた実施例1および比較例1における図3の燃料極13の製造方法について説明する。得られたBaZr0.8Yb0.2(BZYb)電解質材料粉末とNiO粉末(住友金属鉱山製)とを、重量比で、NiO:BZYb=80:20(すなわち、NiとBZYbとの体積比率が69:31)となるように秤量した。グリーンシートの作製のため、電解質材料粉末、NiO粉末、樹脂としてポリビニルブチラール、可塑剤としてブチルベンジルフタレート、溶剤として酢酸ブチル、および、1-ブタノールを混錬後、テープキャスト法にて燃料極のグリーンシートを得た。
 次に、BZYbを用いた実施例1および比較例1における燃料極と電解質膜との積層体の製造方法について説明する。得られた燃料極のグリーンシートを焼成後に1辺20mmの正方形(4-C3:角部3mm面取り)となるよう線収縮率を22%と想定し、グリーンシートを所定寸法にカットした。次いで、カットされたグリーンシートを複数枚、積層した。得られた電解質膜をグリーンシートに重ねて積層した。その後、電解質膜の重ねられたグリーンシートを50MPaのもと、ホットプレスした。このようにして、積層体を得た。得られた積層体を1475℃で2時間、大気雰囲気のもと、焼成した。燃料極と電解質膜との積層体として1辺20mmの正方形(4-C3:角部3mm面取り)のハーフセルを作製した。BZYbは、X線回折法(以下、XRDと記載することがある)にて、単一相であることを確認した。なお、誘導結合プラズマ(以下、ICPと記載することがある)発光分光分析法、および蛍光X線分析法(以下、XRFと記載することがある)を用いることで、BZYbの組成比(すなわち、仕込比をもとにした組成比)と目的の組成比(すなわち、実測をもとにした組成比)との差分が、1%以下であることを確認した。
 次に、YSZを用いた比較例2および比較例3における燃料極と電解質膜との積層体について説明する。YSZを用いた燃料極と電解質膜との積層体には、Φ20mmのNexceris(ネクスセリス)社製のAEB-2.0燃料極支持電解質ハーフセルΦ20を用いた。用いた燃料極支持電解質ハーフセルにおいて、燃料極は、NiOとYSZとの混合物から構成され、電解質膜YSZは7~10μmの厚みである。また、用いた燃料極支持電解質ハーフセルには、反応防止層として電解質膜の空気極の設置側にGDC層が3~5μm存在する。
 次に、空気極材料の製造方法について説明する。
 実施例1および比較例2に用いた空気極の材料であるPd入LSCF6446(LSCFPd:La0.6Sr0.4Co0.38Fe0.57Pd0.053-δ)の製造方法について説明する。まず、La、SrO、CoおよびFe(いずれも関東化学製)とクエン酸とを純水に添加して反応させ、さらにジニトロジアミンPd硝酸溶液と混合した。このようにして、反応溶液を得た。得られた反応溶液を130℃で乾燥した。
 乾燥後の反応溶液に含まれるクエン酸を電気炉にて加熱することで分解した。その後、1200℃にて、大気雰囲気のもと本焼成を行った。このようにして、LSCFPd粉末を得た。得られたLSCFPdは、XRDにて、単一相であることを確認した。ICP、およびXRFを用いることで、LSCFPdの組成比と目的の組成比との差分が1%以下であることを確認した。
 さらに、LSCFPd粉末および、アルコールとエーテルとを混合したピヒクルと所定重量比で混合した。このようにして、混合物を得た。得られた混合物を自転・公転ミキサーで混錬した。このようにして、実施例1および比較例2に用いる空気極材料のペーストを作製した。
 次に、比較例1および比較例3に用いた空気極の材料であるLSCF6446(LSCF:La0.6Sr0.4Co0.4Fe0.63-δ)の製造方法について説明する。
 まず、La、SrO、CoおよびFe(いずれも関東化学製)とクエン酸とを純水に添加して反応させ、反応溶液を130℃で乾燥した。乾燥後の反応溶液に含まれるクエン酸を電気炉にて加熱することにより分解し、その後1200℃にて、大気雰囲気のもと本焼成を行った。得られたLSCFは、XRDにて、単一相であることを確認した。ICP、およびXRFを用いて、LSCFの組成比と目的の組成比とのズレが1%以下であることを確認した。さらに、LSCF粉末および、アルコールとエーテルとを混合したピヒクルを所定重量比で混合した。このようにして、混合物を得た。得られた混合物を自転・公転ミキサーで混錬した。このようにして、比較例1および比較例3に用いる空気極材料のペーストを作製した。
 [評価用膜電極接合体の抵抗および端子間電圧の測定]
 評価用膜電極接合体の抵抗は、交流インピーダンス法によって測定した。交流インピーダンス測定は、ソーラートロン社製1287型を用いて、外部電流0Aにおける端子間電圧に対し、10mVの振幅で、周波数を100kHzから0.01Hzまで変えて交流を印加し、図4および図5に示される温度条件で実施した。図6は、交流インピーダンス測定結果の一例をコールコールプロットによって示す。図6では、交流インピーダンス測定による抵抗成分の内訳を模式的に示している。図6に示されるように、インピーダンスZ(=Z´+jZ´´)の実数成分Z´を横軸にとり、虚数成分Z´´を縦軸にとって示したコールコールプロットによって、交流インピーダンス測定の結果を図示することができる。コールコールプロットにおいて、周波数がおよそ10kHzから0.01Hzとなる範囲で描かれる円弧について、円弧と実数軸(Z´)との高周波数側の交点がオーミック抵抗となり、円弧と実数軸とが成す弦の長さ、つまり円弧が実数軸を切る2つの交点の長さが反応抵抗となる。測定により得られたオーミック抵抗および反応抵抗の結果を、図4および図5に示す。
 評価用膜電極接合体における空気極と燃料極との端子間電圧は、空気極に湿潤空気を、燃料極に湿潤水素ガスをそれぞれ接触させ、図5に示される温度条件で外部電流値を変化させながら測定した。測定した外部電流0Aにおける端子間電圧の結果を図5に示す。また、実施例1および比較例1における評価用膜電極接合体の電流-電圧性能の測定結果を図7Aおよび図7Bに示す。図7Aは、600℃での実施例1および比較例1における評価用膜電極接合体の電流-電圧性能を示す。図7Bは、500℃での実施例1および比較例1における評価用膜電極接合体の電流-電圧性能を示す。
 図5に示されるように、LSCFPdを用いた空気極を備える実施例1の評価用膜電極接合体では、600℃での外部電流0Aにおける端子間電圧が0.96Vであった。実施例1と同じ電解質膜を備え、LSCF空気極を備える比較例1の評価用膜電極接合体では、600℃での外部電流0Aにおける端子間電圧が0.92Vであった。実施例1の評価用膜電極接合体は、比較例1と比べて外部電流0Aにおける端子間電圧が高く、良好な結果である。また、実施例1および比較例1の評価用膜電極接合体において、600℃でのオーミック抵抗は、それぞれ0.36Ωcmおよび0.37Ωcmであり、同程度の値である。一方、600℃において、実施例1の反応抵抗が0.79Ωcmであるのに対し、比較例1の反応抵抗が1.2Ωcmである。実施例1の評価用膜電極接合体は、比較例1と比べて反応抵抗も顕著に低く、良好な結果である。また、さらに低温の500℃においても、同様の傾向であり、実施例1の評価用膜電極接合体は、比較例1と比べて端子間電圧が高く、反応抵抗が低い。よって、実施例1の評価用膜電極接合体は、プロトン伝導体を用いた膜電極接合体として、比較例1の評価用膜電極接合体よりも適している。実施例1および比較例1のプロトン伝導体を用いた膜電極接合体において、端子間電圧および反応抵抗に差が発生した理由としては、上記式(A)の反応が進行するためと考えられる。詳細は上述した通りである。
 図7Aおよび図7Bに示されるように、横軸に電流密度をとり、縦軸に端子間電圧をとった電流-電圧性能のグラフでは、500℃および600℃のいずれの場合であっても、実施例1の評価用膜電極接合体の線が比較例1の線よりも図中の上側を推移している。つまり、実施例1の評価用膜電極接合体は、どのような電流密度の条件であっても比較例1よりも電圧が高く、良好な性能である。
 また、図5に示されるように、実施例1の評価用膜電極接合体、および、電解質膜として酸化物イオン伝導体であるYSZを用いた比較例2ならびに比較例3の評価用膜電極接合体、600℃での外部電流0Aにおける端子間電圧は、それぞれ0.96V、1.13Vおよび1.13Vであった。実施例1の評価用膜電極接合体は、比較例2および比較例3よりも外部電流0Aにおける端子間電圧が低い。しかしながら、実施例1、比較例2および比較例3の評価用膜電極接合体のオーミック抵抗は、それぞれ0.36Ωcm、2.0Ωcmおよび2.0Ωcmである。また、実施例1、比較例2および比較例3の評価用膜電極接合体の反応抵抗は、それぞれ0.79Ωcm、4.0Ωcmおよび5.0Ωcmである。実施例1の評価用膜電極接合体は、比較例2および比較例3よりもオーミック抵抗および反応抵抗が大幅に低い。そのため、実施例1の評価用膜電極接合体は、比較例2および比較例3よりも外部電流0Aにおける端子間電圧が低いものの、オーミック抵抗および反応抵抗が大幅に低い。結果、実施例1の評価用膜電極接合体は、比較例2および比較例3よりも、仮に電流が大きくなっても端子間電圧が低下しにくい。よって、実際の使用に適した端子間電圧として、0.8V程度で使用する場合には、実施例1の評価用膜電極接合体は、比較例2および比較例3よりも大きな電流を取り出すことができ、性能が良好である。つまり、実施例1の空気極および電解質膜を用いることで、酸化物イオン伝導性の電解質膜を用いた膜電極接合体よりも、600℃以下の低温での発電性能が向上した膜電極接合体が得られる。
 また、実施例1と比較例1との比較のように、BZYbを電解質膜に用い、空気極をLSCFから高活性なLSCFPdに変えた場合には、反応抵抗が34%低下している。一方で、比較例2と比較例3との比較のように、YSZを電解質膜に用い、空気極をLSCFからLSCFPdに変えた場合には、反応抵抗が20%しか低下しない。これは、プロトン伝導体であるBZYbを用いた場合には、上記式(A)の反応が進行するのに対して、酸化物イオン伝導体であるYSZを用いた場合には、上記式(B)の反応が進行すると考えられ、詳細は上述した通りである。
 本開示に係る膜電極接合体10は、燃料電池、ガスセンサ、水素ポンプ、または水電解装置等の電気化学デバイス等の用途に用いることができる。
 上記説明から、当業者にとっては、本開示が多くの改良や他の実施形態を含むことは明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
 本開示に係る膜電極接合体は、燃料電池、ガスセンサ、水素ポンプ、または水電解装置等の電気化学デバイスに用いることができる。
 10 膜電極接合体
 11 電解質膜
 12 空気極
 13 燃料極
 100 電池

Claims (11)

  1.  固体電解質を含む電解質膜と、前記電解質膜に接合された第1電極と、を備え、
     前記固体電解質は、
     組成式(1):BaZr1-x3-γ
     により表される化合物であり、
     前記組成式(1)において、Mが、Sc、Er、Ho、Dy、Gd、Y、In、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素であり、かつ、0<x<1および0<γ<0.5を満たし、
     前記第1電極は、ランタンストロンチウムコバルト鉄パラジウム複合酸化物を含む、
     膜電極接合体。
  2.  前記固体電解質は、前記組成式(1)において、Mが、Y、Tm、Yb、およびLuからなる群より選択される少なくとも1種の元素である、
     請求項1に記載の膜電極接合体。
  3.  前記固体電解質は、前記組成式(1)において、0.05<x<0.3、を満たす、
     請求項1または2に記載の膜電極接合体。
  4.  前記固体電解質は、前記組成式(1)において、Mが、LuおよびYbからなる群より選択される少なくとも1種の元素である、
     請求項1から3のいずれか1項に記載の膜電極接合体。
  5.  前記固体電解質は、前記組成式(1)において、Mが、Ybであり、かつ、x=0.2、を満たす、
     請求項1から4のいずれか1項に記載の膜電極接合体。
  6.  前記ランタンストロンチウムコバルト鉄パラジウム複合酸化物は、
     組成式(2):La1-mSrCoFePd1-y-z3-δ
     により表される化合物であり、
     前記組成式(2)において、0≦m≦0.5、0.1≦y≦0.9、0.1≦z≦0.9、y+z<1、および0≦δ≦0.5を満たす、
     請求項1から5のいずれか1項に記載の膜電極接合体。
  7.  前記ランタンストロンチウムコバルト鉄パラジウム複合酸化物は、前記組成式(2)において、0.01≦1-y-z≦0.05、を満たす、
     請求項6に記載の膜電極接合体。
  8.  前記ランタンストロンチウムコバルト鉄パラジウム複合酸化物は、前記組成式(2)において、m=0.4、y=0.38、および、z=0.57、を満たす、
     請求項6または7に記載の膜電極接合体。
  9.  請求項1から8のいずれか1項に記載の膜電極接合体と、
     第2電極と、を備え、
     前記電解質膜は、前記第1電極と前記第2電極との間に配置される、
     電気化学デバイス。
  10.  請求項9に記載の電気化学デバイスを備える、
     電気化学システム。
  11.  温度制御部をさらに備え、
     前記温度制御部は、前記電気化学デバイスの作動温度が600℃以下となるように制御する、
     請求項10に記載の電気化学システム。
PCT/JP2020/010040 2019-04-26 2020-03-09 膜電極接合体、電気化学デバイスおよび電気化学システム WO2020217742A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080007992.4A CN113260737A (zh) 2019-04-26 2020-03-09 膜电极接合体、电化学装置和电化学***
JP2021515859A JP7442071B2 (ja) 2019-04-26 2020-03-09 膜電極接合体、電気化学デバイスおよび電気化学システム
EP20796410.7A EP3960907A4 (en) 2019-04-26 2020-03-09 MEMBRANE ELECTRODE, ELECTROCHEMICAL DEVICE AND ELECTROCHEMICAL SYSTEM ASSEMBLY
US17/467,314 US20210399325A1 (en) 2019-04-26 2021-09-06 Membrane electrode assembly, electrochemical device, and electrochemical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086176 2019-04-26
JP2019086176 2019-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/467,314 Continuation US20210399325A1 (en) 2019-04-26 2021-09-06 Membrane electrode assembly, electrochemical device, and electrochemical system

Publications (1)

Publication Number Publication Date
WO2020217742A1 true WO2020217742A1 (ja) 2020-10-29

Family

ID=72942431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010040 WO2020217742A1 (ja) 2019-04-26 2020-03-09 膜電極接合体、電気化学デバイスおよび電気化学システム

Country Status (5)

Country Link
US (1) US20210399325A1 (ja)
EP (1) EP3960907A4 (ja)
JP (1) JP7442071B2 (ja)
CN (1) CN113260737A (ja)
WO (1) WO2020217742A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198175A3 (de) * 2021-12-16 2023-08-16 Forschungszentrum Jülich GmbH Trägergestützter elektrolyt, verfahren zu seiner herstellung und seine verwendung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227070A (ja) * 2011-04-22 2012-11-15 National Institute For Materials Science 中低温で動作する固体酸化物燃料電池用複合カソード材料、固体酸化物燃料電池用複合カソード及び固体酸化物燃料電池用電解質−複合カソード構造体の製造方法
JP2013239321A (ja) * 2012-05-15 2013-11-28 Sumitomo Electric Ind Ltd 固体電解質積層体、固体電解質積層体の製造方法及び燃料電池
JP2016105375A (ja) * 2014-12-01 2016-06-09 住友電気工業株式会社 セル構造体、電解質膜−電極接合体、および、燃料電池
WO2017104806A1 (ja) * 2015-12-18 2017-06-22 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
JP2017188439A (ja) * 2016-04-04 2017-10-12 パナソニック株式会社 膜電極接合体および固体酸化物形燃料電池
JP2018139180A (ja) * 2017-02-24 2018-09-06 住友電気工業株式会社 固体電解質部材の製造方法
WO2018230247A1 (ja) * 2017-06-15 2018-12-20 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ512568A (en) 1999-10-08 2003-09-26 Global Thermoelectric Inc Composite electrodes for solid state electrochemical devices
US20180037508A1 (en) * 2015-03-30 2018-02-08 Sumitomo Electric Industries, Ltd. Proton conductor, solid electrolyte layer for fuel cell, cell structure, and fuel cell including the same
CN105406081A (zh) * 2015-12-25 2016-03-16 苏州格瑞动力电源科技有限公司 一种锂离子电池正极浆料的制备方法
US10826075B2 (en) * 2016-04-19 2020-11-03 Panasonic Intellectual Property Management Co., Ltd. Membrane electrode assembly of electrochemical device, membrane electrode assembly of fuel cell, fuel cell, membrane electrode assembly of electrochemical hydrogen pump, electrochemical hydrogen pump, membrane electrode assembly of hydrogen sensor, and hydrogen sensor
JP7002036B2 (ja) * 2016-11-17 2022-01-20 パナソニックIpマネジメント株式会社 膜電極接合体および固体酸化物形燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227070A (ja) * 2011-04-22 2012-11-15 National Institute For Materials Science 中低温で動作する固体酸化物燃料電池用複合カソード材料、固体酸化物燃料電池用複合カソード及び固体酸化物燃料電池用電解質−複合カソード構造体の製造方法
JP2013239321A (ja) * 2012-05-15 2013-11-28 Sumitomo Electric Ind Ltd 固体電解質積層体、固体電解質積層体の製造方法及び燃料電池
JP2016105375A (ja) * 2014-12-01 2016-06-09 住友電気工業株式会社 セル構造体、電解質膜−電極接合体、および、燃料電池
WO2017104806A1 (ja) * 2015-12-18 2017-06-22 住友電気工業株式会社 プロトン伝導体、セル構造体およびこれらの製造方法、燃料電池ならびに水電解装置
JP2017188439A (ja) * 2016-04-04 2017-10-12 パナソニック株式会社 膜電極接合体および固体酸化物形燃料電池
JP2018139180A (ja) * 2017-02-24 2018-09-06 住友電気工業株式会社 固体電解質部材の製造方法
WO2018230247A1 (ja) * 2017-06-15 2018-12-20 住友電気工業株式会社 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3960907A4
SHAOLI GUO: "B-Site Metal (Pd, Pt, Ag, Cu, Zn, Ni) Promoted La1-xSrxCo1-yFeyO3-δ Perovskite Oxides as Cathodes for IT-SOFCs", CATALYSTS, MDPI, vol. 5, 2015, pages 366 - 391

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198175A3 (de) * 2021-12-16 2023-08-16 Forschungszentrum Jülich GmbH Trägergestützter elektrolyt, verfahren zu seiner herstellung und seine verwendung

Also Published As

Publication number Publication date
EP3960907A1 (en) 2022-03-02
US20210399325A1 (en) 2021-12-23
JPWO2020217742A1 (ja) 2020-10-29
EP3960907A4 (en) 2022-06-15
JP7442071B2 (ja) 2024-03-04
CN113260737A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
US9799909B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
EP3229298B1 (en) Membrane electrode assembly and solid oxide fuel cell
AU2011209829B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
US9252447B2 (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
TWI688154B (zh) 具有對固態氧化物燃料電池之退化有改善抗性之固態氧化物燃料電池陰極組合物
US20130224627A1 (en) Scandium-doped bzcy electrolytes
JP2018085329A (ja) 膜電極接合体および固体酸化物形燃料電池
EP3229304B1 (en) Membrane electrode assembly and solid oxide fuel cell
WO2020217742A1 (ja) 膜電極接合体、電気化学デバイスおよび電気化学システム
KR101330173B1 (ko) 고체 산화물 연료전지용 캐소드와 그 제조 방법 및 이 캐소드를 포함하는 연료전지
JP2011210623A (ja) 固体電解質型燃料電池の発電膜及びこれを備える固体電解質型燃料電池
JP2000251533A (ja) 酸化物イオン混合伝導体とその用途
US20210408569A1 (en) Membrane electrode assembly, solid oxide fuel cell, and electrochemical device
JP7367271B1 (ja) 膜電極接合体、電気化学セルおよび燃料電池システム
WO2023210202A1 (ja) 膜電極接合体、電気化学セルおよび燃料電池システム
KR20200073804A (ko) 페로브스카이트 구조를 가지는 대칭형 고체 산화물 연료전지, 그 제조 방법 및 대칭형 고체 산화물 수전해 셀
JP7202172B2 (ja) 燃料極および固体酸化物形電気化学セル
KR102091454B1 (ko) 고체 산화물 연료전지용 캐소드 소재, 그를 포함하는 고체 산화물 연료전지
US20230006234A1 (en) Proton conductor, electrolyte membrane, membrane electrode assembly, electrochemical cell and fuel cell stack
KR101180058B1 (ko) 고체산화물 연료전지용 이중 페롭스카이트계 전기연결재 재료 및 그 응용 방법
KR20110037716A (ko) 고체산화물 전해질, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
Shimada et al. Improved durability of protonic ceramic fuel cells with BaZr0. 8Yb0. 2O3–δ electrolyte by introducing porous BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3–δ buffer interlayer
KR20160097630A (ko) 산화물 입자, 이를 포함하는 전극 및 상기 전극을 포함하는 연료전지
JP2023146437A (ja) 電気化学セル用電極および電気化学セル
WO2024057006A1 (en) Electrochemical cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020796410

Country of ref document: EP

Effective date: 20211126