WO2020215992A1 - 一种频谱分配方法和装置 - Google Patents

一种频谱分配方法和装置 Download PDF

Info

Publication number
WO2020215992A1
WO2020215992A1 PCT/CN2020/081814 CN2020081814W WO2020215992A1 WO 2020215992 A1 WO2020215992 A1 WO 2020215992A1 CN 2020081814 W CN2020081814 W CN 2020081814W WO 2020215992 A1 WO2020215992 A1 WO 2020215992A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
target
type
slice
spectrum slice
Prior art date
Application number
PCT/CN2020/081814
Other languages
English (en)
French (fr)
Inventor
刘鎏
王宇飞
李光志
乔光毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20796371.1A priority Critical patent/EP3952323B1/en
Publication of WO2020215992A1 publication Critical patent/WO2020215992A1/zh
Priority to US17/508,432 priority patent/US11825248B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1682Allocation of channels according to the instantaneous demands of the users, e.g. concentrated multiplexers, statistical multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0064Admission Control
    • H04J2203/0067Resource management and allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for spectrum allocation.
  • optical fiber communication technology With the continuous development of communication technology, optical fiber communication technology, one of the current mainstream wired communication technologies, has the advantages of large transmission spectrum bandwidth, large communication capacity and strong anti-electromagnetic interference capabilities, and its application range has become more and more extensive.
  • optical fiber assumes an important responsibility for output transmission between two network nodes.
  • the available transmission bandwidth is usually relatively large.
  • the current mainstream approach is to use wavelength division multiplexing on the light to improve the utilization of the transmission bandwidth of the fiber. Specifically, the available transmission bandwidth of the optical fiber is divided into multiple sub-channels with smaller bandwidth capacity, and each sub-channel corresponds to a wavelength.
  • the flexible grid optical network technology is the division of spectrum resources in the optical layer based on the idea of wavelength division multiplexing.
  • spectrum resources are usually allocated for a certain service according to the first priority matching principle. That is, after each service comes, it will traverse the entire spectrum in a certain order to search for spectrum resources available for the service.
  • the optical fiber network needs to strictly abide by the principle of "wavelength consistency" during data transmission, that is, when a certain service requests data transmission on a certain fiber channel in the optical fiber network, it must be required
  • the wavelength allocated on each optical fiber link on the optical fiber channel is the same, that is, the spectrum requirements allocated on each optical fiber link are consistent.
  • the embodiments of the present application provide a spectrum allocation method and device, which can reduce the spectrum fragmentation rate of an optical fiber network, and can improve the spectrum resource utilization rate and throughput of the optical fiber network.
  • an embodiment of the present application provides a spectrum allocation method.
  • the above-mentioned optical layer spectrum resource is composed of N consecutive frequency slots.
  • the target spectrum slice is determined in the above N frequency slots according to the above transmission bandwidth granularity G1.
  • the target spectrum slice is composed of N1 continuous frequency slots, and the target spectrum slice includes at least G1 continuous free frequency slots.
  • G1 consecutive free frequency slots included in the target spectrum slice are allocated to the target service.
  • the target spectrum slice is used to allocate spectrum resources for the target service based on the spectrum slice.
  • One service corresponds to one spectrum slice, which can reduce the spectrum fragmentation caused by the interleaved allocation of spectrum resources for services with different transmission bandwidth granularities, making the process of spectrum resource allocation more reasonable, and improving the utilization of spectrum resources of the optical fiber network. Improve the throughput of the optical fiber network.
  • N2 consecutive idle frequency slots are searched in the foregoing N consecutive frequency slots, the foregoing N2 consecutive idle frequency slots are determined as the target spectrum slice.
  • N2 is an integer multiple of the foregoing transmission bandwidth granularity G1, and N2 is less than N.
  • any first-type spectrum slice including G1 consecutive idle frequency slots is searched in the N frequency slots, then any one including G1 consecutive idle frequency slots is searched.
  • the first type of spectrum slice of the frequency slot is determined as the target spectrum slice.
  • the number N2 of frequency slots included in the first-type spectrum slice is an integer multiple of the transmission bandwidth granularity G1. If none of the first-type spectrum slices including G1 consecutive idle frequency slots can be searched in the N frequency slots, then the second-type spectrum slices are searched in the N frequency slots. If any second-type spectrum slice including G1 continuous idle frequency slots is searched, any second-type spectrum slice including G1 continuous idle frequency slots is determined as the target spectrum slice.
  • the second type of spectrum slice includes a type A spectrum slice and/or a type B spectrum slice
  • the number N3 of frequency slots included in the type B spectrum slice is an integer multiple of the transmission bandwidth granularity G2, and G2 is not equal to G1 .
  • the number of frequency slots included in the type A spectrum slice includes N2 and/or N3, and the type A spectrum slice may be occupied by at least two services with different transmission bandwidth granularity.
  • the first type of spectrum slice cannot be searched in the above N frequency slots, or the searched one or more first type of spectrum slices do not include G1 continuous free frequency slots in each of the first type of spectrum slices, Then, the second type of spectrum slice is searched in the above N frequency slots. If any second-type spectrum slice in the searched one or more second-type spectrum slices includes G1 continuous idle frequency slots, then any second-type spectrum slice described above is determined as the target spectrum slice.
  • the first type of spectrum slice associated with the transmission bandwidth granularity G1 of the target service is more likely to have spectrum resources available for the target service, and the allocation of spectrum resources for the target service in the first type of spectrum slice can effectively avoid Because of the occurrence of spectrum fragmentation, priority is given to searching for spectrum resources required by the target service in the first type of spectrum slices, which can increase the rate of spectrum allocation, reduce the rate of spectrum fragmentation of optical fiber networks, and improve the spectrum utilization of optical fiber networks.
  • the second type of spectrum slice includes the type A spectrum slice and the type B spectrum slice
  • if one or more of the type A spectrum is searched in the above N consecutive frequency slots
  • any type A spectrum slice in the slice contains G1 continuous free frequency slots
  • any one of the above type A spectrum slices is determined as the target spectrum slice. If the above-mentioned type A spectrum slice cannot be searched in the above-mentioned N consecutive frequency slots, or the searched one or more type A spectrum slices in each type A spectrum slice does not contain G1 continuous free frequency slots , Then search the above-mentioned type B spectrum slice in the above-mentioned N consecutive frequency slots.
  • any type B spectrum slice in the searched one or more type B spectrum slices contains G1 continuous free frequency slots, then any type B spectrum slice described above is determined as the target spectrum slice.
  • the search method combining the type A spectrum slice and the type B spectrum slice can make the network device have a greater probability to determine the target spectrum slice from N consecutive frequency slots, which can improve the efficiency of spectrum resource allocation. At the same time, this method can also make reasonable use of the spectrum cutting spectrum allocation process with free spectrum resources, and can improve the utilization rate of the spectrum resources of the optical fiber network.
  • the type B spectrum slice cannot be searched in the above N consecutive frequency slots, or the searched one or more type B spectrum slices are not in each type B spectrum slice.
  • the above N2 continuous free frequency slots are determined as the target spectrum slice.
  • the second type of spectrum slice includes the type A spectrum slice and the type B spectrum slice
  • any type A spectrum slice in the slice contains G1 continuous free frequency slots, and any type A spectrum slice described above is determined as the target spectrum slice.
  • the above-mentioned type A spectrum slice cannot be searched in the above N consecutive frequency slots, or the searched one or more type A spectrum slices do not include G1 continuous free frequency slots in each type A spectrum slice , Then search the above-mentioned type B spectrum slice in the above-mentioned N consecutive frequency slots.
  • the spectrum occupancy information of each target type B spectrum slice is obtained from the above M2
  • the target spectrum slice is determined from the target class B spectrum slices.
  • the target type B spectrum slice is a type B spectrum slice containing G1 continuous gap frequency slots
  • the target fiber channel includes L optical fiber links
  • the spectrum occupancy information of any target type B spectrum slice is used to characterize any of the foregoing. Occupancy status of all frequency slots included in a target class B spectrum slice on each optical fiber link in the above L optical fiber links.
  • the foregoing M1 target type B spectrum slices include a first target type B spectrum slice and a second target type B spectrum slice.
  • the second fragmentation rate corresponding to the slice is used to characterize the number of spectrum fragments contained in any target type B spectrum slice.
  • the second target type B spectrum slice is determined to be the target spectrum slice; if it is determined that the first fragmentation rate is less than the second fragmentation rate, the first fragmentation rate is determined A target type B spectrum slice is determined as the target spectrum slice.
  • the average utilization rate of all frequency slots in the first target type B spectrum slice on the foregoing optical fiber links is calculated according to the foregoing first spectrum occupancy information. If it is determined that the foregoing average value is greater than or equal to the preset threshold average value, it is determined that the foregoing first fragment rate is empty. If it is determined that the average value is less than the preset threshold average value, the total amount of fragments of the first target type B spectrum slice on the target fiber channel is calculated according to the first spectrum occupancy information.
  • the ratio is determined as the first fragmentation rate corresponding to the first slice.
  • the ratio is less than the preset ratio threshold, it is determined that the first fragment rate is empty.
  • the following operations are performed on any fiber link i of the first target type B spectrum slice in each fiber link in the target fiber channel:
  • the occupancy status of the first target type B spectrum slice on the optical fiber link i included in the spectrum occupancy information determines one or more frequency slots in the first target type B spectrum slice that are not occupied by the optical fiber link i Piece.
  • the number of frequency slots included in the target frequency slot block is smaller than the transmission bandwidth granularity G1.
  • the total amount of fragments of the first target type B spectrum slice on the target fiber channel is determined according to the amount of fragments of the first target type B spectrum slice on the optical fiber links.
  • the average value of the utilization rate of all frequency slots in the second target type B spectrum slice on the foregoing optical fiber links is calculated according to the foregoing second spectrum occupancy information. If it is determined that the foregoing average value is greater than or equal to the preset threshold average value, it is determined that the foregoing second fragment rate is empty. If it is determined that the average value is less than the preset threshold average value, the total amount of fragments of the second target type B spectrum slice on the target fiber channel is calculated according to the second spectrum occupancy information.
  • the ratio is determined as the second fragmentation rate corresponding to the second slice.
  • the ratio is less than the preset ratio threshold, it is determined that the second fragment rate is empty.
  • the following operations are performed on any fiber link i of the first target type B spectrum slice in each fiber link in the target fiber channel:
  • the occupancy of the second target type B spectrum slice on the optical fiber link i included in the spectrum occupancy information determines one or more frequency slots in the second target type B spectrum slice that are not occupied by the optical fiber link i Piece.
  • the number of frequency slots contained in the target frequency slot block is smaller than the transmission bandwidth granularity G1; the second target type B spectrum slice is determined according to the amount of fragments of the second target type B spectrum slice on each of the optical fiber links The total amount of debris on the above target Fibre Channel.
  • the second type of spectrum slice includes the type A spectrum slice and the type B spectrum slice
  • any type A spectrum slice in the slice contains G1 continuous free frequency slots, and any type A spectrum slice described above is determined as the target spectrum slice.
  • the searched one or more type A spectrum slices do not include G1 continuous free frequency slots in each type A spectrum slice Acquire the spectrum occupancy information corresponding to the foregoing N consecutive frequency slots, and determine the plane utilization rate of the foregoing N consecutive frequency slots according to the foregoing spectrum occupancy information.
  • the target optical fiber channel includes L optical fiber links
  • the third spectrum occupancy information is used to indicate the occupation status of each of the N frequency slots on each optical fiber link in the L optical fiber links.
  • the utilization ratio is the ratio of the idle frequency slots and the occupied frequency slots among the above N consecutive frequency slots. If the above-mentioned plane utilization rate is greater than the preset plane utilization rate threshold, the above-mentioned type B spectrum slices are searched in the above-mentioned N consecutive frequency slots, and if the searched one or more type B spectrum slices are in any type B spectrum slice If G1 consecutive free frequency slots are included, any of the above-mentioned type B spectrum slices is determined as the target spectrum slice. If the Type B spectrum slice containing G1 modest free frequency slots cannot be searched, when N2 continuous free frequency slots are searched in the above N continuous frequency slots, the above N2 continuous free frequency slots Determined as the target spectrum slice.
  • the plane utilization rate is less than or equal to the preset plane utilization rate threshold, then N2 consecutive free frequency slots are searched in the N consecutive frequency slots, and when the above N consecutive frequency slots are When the aforementioned N2 continuous free frequency slots are searched in the frequency slots, the aforementioned N2 continuous free frequency slots are determined as the target spectrum slice.
  • the type B spectrum slice is searched in the N consecutive frequency slots. If any type B spectrum slice in the searched one or more type B spectrum slices contains G1 continuous free frequency slots, then any type B spectrum slice described above is determined as the target spectrum slice.
  • an embodiment of the present application provides a spectrum allocation device.
  • the device includes a unit for executing the spectrum allocation method provided by any one of the possible implementations of the first aspect. Therefore, it can also implement the first aspect.
  • an embodiment of the present application provides an electronic device.
  • the electronic device includes a processor and a memory, and the processor and the memory are connected to each other.
  • the above-mentioned memory is used to store a computer program
  • the above-mentioned computer program includes program instructions
  • the above-mentioned processor is configured to call the above-mentioned program instructions to execute the spectrum allocation method provided by the first aspect, and can also implement the spectrum allocation provided by the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer can execute any one of the possibilities in the first aspect.
  • the spectrum allocation method provided by the implementation manner of the above can also achieve the beneficial effects of the spectrum allocation method provided in the first aspect.
  • the embodiments of the present application provide a computer program product containing instructions.
  • the computer can execute the spectrum allocation method provided in the first aspect, and can also implement the spectrum allocation method provided in the first aspect.
  • the beneficial effects of the proposed spectrum allocation method are provided in the fifth aspect.
  • the spectrum fragmentation rate of the optical fiber network can be reduced, and the spectrum resource utilization rate and throughput of the optical fiber network can be improved.
  • FIG. 1 is a schematic structural diagram of an optical fiber network provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the optical layer spectrum resource structure provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a spectrum slice distribution provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a spectrum allocation method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of method 1 for determining target spectrum slices according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of spectrum fragment distribution provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a second method for determining target spectrum slices according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a spectrum allocation device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an optical fiber network provided by an embodiment of the present application.
  • the optical fiber network shown in FIG. 1 includes 8 network nodes, such as node 1, node 2, node 3, node 4, node 5, node 6, node 7 and node 8.
  • the channel between each node is called a fiber link.
  • Optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link L4 are shown in FIG.
  • optical fiber network accesses a service
  • its related network equipment will first allocate one or more optical fiber channels that can be used for data resource transmission, as shown in Figure 1 by optical fiber link L1, optical fiber link L2, and optical fiber link.
  • Fibre Channel L composed of link L3 and fibre link L4.
  • the foregoing network device may specifically be a path calculation element (PCE) or a controller module in an optical fiber network, which is not limited here.
  • PCE path calculation element
  • the network equipment allocates a fiber channel for a certain service, it needs to allocate available spectrum resources for the service for each fiber link in the fiber channel corresponding to the service.
  • the optical fiber network needs to strictly abide by the principle of "wavelength consistency" when transmitting data resources, that is, when a certain service requests data transmission on a certain fiber channel in the optical fiber network ,
  • the spectrum allocated on each optical fiber link needs to be consistent.
  • FIG. 2 is a schematic diagram of the optical layer spectrum resource structure provided by an embodiment of the present application.
  • the available spectrum resources are certain.
  • network equipment needs to divide the available spectrum resources corresponding to each optical fiber link in the optical fiber network into N sub-channels with the same spectrum bandwidth through flexible grid optical network technology.
  • Each sub-channel is called a frequency.
  • Slot or spectrum grid.
  • one frequency slot can occupy a 12.5Ghz spectrum bandwidth.
  • the network equipment After the network equipment determines the fiber channel for a certain business, it will allocate spectrum resources for the business based on the frequency slot allocation unit under the premise of following the wavelength consistency criterion. That is, the network equipment will allocate one or more continuous frequency slots for the service for each optical fiber link in the optical fiber channel corresponding to the service.
  • the network equipment After the network equipment determines the fiber channel for a certain service, it will be based on the first priority matching principle and according to the transmission bandwidth granularity T of the service (that is, the number of frequency slots that the fiber channel corresponding to the service needs to use) Starting from the frequency slot N1, search for T consecutive free frequency slots for the service. As long as T consecutive free frequency slots are searched, the T consecutive free frequency slots are immediately allocated to the service.
  • the optical fiber channel corresponding to the service includes optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link L4.
  • the network equipment will first extract the three frequency slots of frequency slot 1, frequency slot 2, and frequency slot 3, and then determine in turn that these three frequency slots are in the optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link. Whether all L4 is unoccupied. If the network equipment determines that these three frequency slots are not occupied on the optical fiber link L1, the optical link L2, the optical link L3, and the optical link L4, the frequency slot 1, the frequency slot 2, and the frequency slot 3 Three consecutive frequency slots are allocated to the above services.
  • the network device determines that any one or more of the three frequency slots is occupied on the optical fiber link L1, the optical link L2, the optical link L3, or the optical link L4, the network device will continue from the above N Three frequency slots of frequency slot 2, frequency slot 3, and frequency slot 4 are extracted from the frequency slots of, and the above judgment operation is repeated. By analogy, until the frequency slot N-2, frequency slot N-1 and frequency slot N are determined.
  • Such an optical layer spectrum allocation method does not fully consider the rationality of the allocated spectrum resources, and cannot actively avoid the generation of spectrum fragments. Especially when there are multiple services with different transmission bandwidth granularities at the same time, the probability of spectrum fragments becomes even greater. Therefore, the spectrum resource utilization rate of the optical fiber network is low, and the throughput is small.
  • the transmission bandwidth granularity involved in the embodiments of this application is determined by the transmission bandwidth required by a certain service and the bandwidth of each frequency slot in the optical layer spectrum resource corresponding to the service, and is mainly used to refer to the service required for data transmission.
  • the number of occupied frequency slots For example, suppose the network device determines that the transmission bandwidth required by the service it receives is 50Ghz, and each frequency slot in the optical layer spectrum resource processed based on the flexible grid technology occupies 12.5Ghz bandwidth, then the network device can determine the corresponding service
  • the transmission bandwidth granularity is 4.
  • the spectrum slice described in the embodiment of this application is a spectrum range divided in optical layer spectrum resources based on the transmission bandwidth granularity corresponding to the service after the network device receives a service with a certain transmission bandwidth granularity for the first time.
  • One or more continuous frequency slots can be included in the spectrum range.
  • the first type of spectrum slice described in the implementation of this application refers to the network device dividing the above-mentioned N consecutive frequency slots after receiving the service of the transmission bandwidth granularity G1 for the first time (the target service is used instead of the description below) Slices of the spectrum.
  • the frequency slots included in the first type of spectrum slice are only occupied by services with the transmission bandwidth granularity G1.
  • the first type of spectrum slice is associated with the transmission bandwidth granularity G1, that is, the number of frequency slots included in the first type of spectrum slice is the product N2 of the transmission bandwidth granularity G1 of the target service and a positive integer R.
  • FIG. 3 together is a schematic diagram of a spectrum slice distribution provided by an embodiment of the present application.
  • the first type of spectrum slice corresponding to the target service should contain 6 frequency slots, as shown in Figure 3 for the first type of spectrum slice (including There are 6 frequency slots from frequency slot 1 to frequency slot 6) or the second type 1 spectrum slice (including 6 frequency slots from frequency slot 8 to frequency slot 13).
  • the second type of spectrum slice described in the embodiments of the present application refers to other types of spectrum slices included in the foregoing N consecutive frequency slots except for the foregoing first type of spectrum slice.
  • the foregoing second type of spectrum slices may include type A spectrum slices and/or type B spectrum slices.
  • the foregoing Type A spectrum slices are spectrum slices that can be occupied by at least two services with different transmission bandwidth granularity.
  • the number of frequency slots included can be N2 or N3. For example, suppose there is a first-type spectrum slice D1 in the above N consecutive frequency slots, and the corresponding transmission granularity is 4.
  • the foregoing Type B spectrum slices are spectrum slices determined by the network device in the foregoing N frequency slots based on a transmission bandwidth granularity G2 other than the transmission bandwidth granularity G1 corresponding to the target service.
  • the number N3 of frequency slots included in the type B slice spectrum slice is the product of the transmission bandwidth granularity G2 and a positive integer R, and G2 is not equal to G1.
  • the above-mentioned type B spectrum slices have only been occupied by services with a transmission bandwidth granularity of G2.
  • the transmission bandwidth granularity of the target service is 3 and the positive integer R is 2, please refer to Figure 3 together.
  • Figure 3 shows that the target service contains 6 frequency slots (including frequency slot 16 to frequency slot 21).
  • Class A spectrum slices contains 6 frequency slots (including frequency slot 16 to frequency slot 21).
  • FIG. 3 also shows a Class B spectrum slice containing 8 frequency slots (including frequency slot 23 to frequency slot 30) corresponding to the target service.
  • the number of frequency slots 8 included in the type B spectrum slice is the product of positive integers 2 and 4. It can be seen from the definition of the first type of spectrum slice mentioned above that, from another perspective, the type B spectrum slice can also be a transmission bandwidth The first type of spectrum slice corresponding to the service of granularity 4.
  • FIG. 4 is a schematic flowchart of a spectrum allocation method provided by an embodiment of the present application.
  • the target fiber channel involved in this embodiment includes a fiber link L1, a fiber link L2, a fiber link L3, and a fiber link L4.
  • the spectrum allocation method includes the following.
  • the network device may first analyze the transmission bandwidth granularity G1 required by the target service from the request signal corresponding to the target service.
  • the network device can also parse the source point corresponding to the target service (that is, the start node of the target fiber channel used in the optical fiber network by the data resource corresponding to the target service) and the sink point (that is, the target corresponding to the target service) from the above request signal. The last node of Fibre Channel).
  • the network device can determine one or more target fiber channels for the target business according to the transmission bandwidth granularity G1 of the target service and the source and sink points of the target fiber channel, combined with commonly used path finding algorithms.
  • the aforementioned target fiber channel specifically includes one or more fiber links.
  • the network device may determine multiple target fiber channels for the target service, but the process of the network device allocating spectrum resources for each target fiber channel of the multiple target fiber channels is the same. Therefore, this embodiment Only describes the process of network equipment allocating spectrum resources for a target fiber channel of the target service. Specifically, in conjunction with the optical fiber network shown in FIG. 1, this embodiment uses the optical fiber channel L including optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link L4 as the target optical fiber channel pair network of the target service. The spectrum allocation process of the equipment is explained and described in detail.
  • the network device can also obtain the optical layer spectrum resource corresponding to the target fiber channel.
  • the optical layer spectrum resource is preset.
  • the optical layer spectrum resource includes N continuous frequency slots, and the spectrum bandwidth of each frequency slot in the above N continuous frequency slots is the same.
  • the sequence of each frequency slot in the above N consecutive frequency slots is determined by the communication light wavelength corresponding to each frequency slot. For example, an arrangement order is arranged in the order of communication light wavelengths from small to large (the first arrangement order is used below to replace the description), that is, frequency slot 1 to frequency slot N.
  • Another arrangement order is arranged in the order of communication light wavelengths from largest to smallest (the second arrangement order is used below to replace the description), that is, frequency slot N to frequency slot 1. It can be understood that the above-mentioned first arrangement order or second arrangement order is only an optional arrangement order in this solution, and does not have a limiting effect.
  • the embodiments of the present application are described by taking the foregoing first arrangement sequence as an example.
  • S12 Determine a target spectrum slice including G1 consecutive idle frequency slots in the N frequency slots according to the transmission bandwidth granularity G1.
  • the network device may first determine the target spectrum slice in the aforementioned N consecutive frequency slots based on the aforementioned transmission bandwidth granularity.
  • the above-mentioned target spectrum slice may be composed of N1 continuous frequency slots.
  • the target spectrum slice (that is, the above N1 continuous frequency slots) should include at least G1 continuous idle frequency slots.
  • the above-mentioned idle frequency slots refer to frequency slots in which the optical fiber link L1, the optical fiber link L2, the optical fiber link L3, and the optical fiber link L4 are all in an idle state.
  • N is greater than N1, and N1 is greater than or equal to G1.
  • the network device may determine the target spectrum slice in the aforementioned N consecutive frequency slots through the following two target spectrum slice determination methods.
  • FIG. 5 is a schematic flowchart of the target spectrum slice determination method one provided by an embodiment of the present application. As shown in FIG. 5, the target spectrum slice determination method one mainly includes the following content.
  • S1211 Search for the first-type spectrum slice in N consecutive frequency slots.
  • the network device may first search for the first-type spectrum slice in the foregoing N consecutive frequency slots through any one of the following two first-type spectrum slice search methods.
  • the first type of spectrum slice search method 1 is the first type of spectrum slice search method 1:
  • the network device may first select a frequency slot Ni among the N-G1+1 frequency slots that are arranged first in the aforementioned N frequency slots.
  • the network device may randomly select a frequency slot Ni among the above N-G1+1 frequency slots, or may sequentially select frequency slots Ni among the above N-G1+1 frequency slots according to the above-mentioned first arrangement sequence.
  • the place is not limited.
  • the network device can randomly select spectrum 3 and then frequency slot 2.
  • the network device can also select frequency slot 1 and then frequency slot 2 according to the first arrangement order, and so on. .
  • the network device can extract the set of identification information corresponding to the aforementioned N consecutive frequency slots from the storage device connected to it.
  • the foregoing identification information set includes N identification information, and one frequency slot corresponds to one identification information.
  • the identification information corresponding to any frequency slot i in each of the above-mentioned frequency slots is used to indicate the type of the spectrum slice to which the frequency slot i belongs and the sequence of the spectrum slice to which it belongs in this type of spectrum slice.
  • the format of the identification information corresponding to the frequency slot i may specifically be [category, sequence number].
  • the category parameter in the above identification information is used to indicate the category of the spectrum slice to which frequency slot i belongs
  • the above sequence number parameter is used to indicate the sequence of the spectrum slice to which frequency slot i belongs in the same spectrum slice (generally, a certain spectrum slice They are arranged in the same spectrum slice according to the above-mentioned first arrangement order).
  • the identification information corresponding to frequency slot 1 is [first type, 1]
  • the first-type spectrum slice to which the frequency slot 1 belongs is the first of one or more first-type spectrum slices included in the N frequency slots.
  • the network device can extract the identification information corresponding to each frequency slot in the G1 continuous frequency slots with the frequency slot Ni as the first frequency slot from the above identification information set. After the network device obtains the identification information corresponding to each frequency slot in the G1 continuous frequency slots with frequency slot Ni as the first frequency slot, it can judge whether the G1 continuous frequency slots are uniform according to the identification information corresponding to each frequency slot. They belong to the same first-class spectrum slice. If the network device determines that the aforementioned G1 continuous frequency slots belong to the same first-type spectrum slice, it can continue to obtain identification information corresponding to multiple frequency slots adjacent to the aforementioned G1 continuous frequency slots, and determine these frequencies one by one.
  • the network device can determine that it has searched for a first-type spectrum slice in the N frequency slots. If the network equipment determines that the aforementioned G1 consecutive frequency slots do not belong to the same first type of spectrum slice, it can reselect one of the aforementioned N-G1+1 frequency slots except for the aforementioned frequency slot Ni. Frequency slot Nj.
  • the network device can extract the identification information corresponding to each frequency slot in the G1 consecutive frequency slots with frequency slot Nj as the first frequency slot from the identification information set, and repeat the judgment operation as described above to determine whether it is from A first-type spectrum slice is searched in the above N frequency slots.
  • the network device will always re-select a new starting frequency slot and perform the same judgment operation until it finds a first type of spectrum slice or traverses the above N-G1+1 frequency slots. Until the first type of spectrum slice.
  • the transmission bandwidth granularity of the target service is 3, and the preset reference bandwidth is 2.
  • the network device can determine that the first type of spectrum slice corresponding to the target service should contain 6 frequency slots.
  • the network device can first select frequency slot 1 as the starting frequency slot among the N-3 frequency slots in the top order, and obtain the corresponding three frequency slots of frequency slot 1, frequency slot 2, and frequency slot 3 from the identification information set.
  • the identification information is [first type, 1]
  • the identification information corresponding to frequency slot 2 is [first type, 1]
  • the identification information corresponding to frequency slot 3 is [first type, 1] .
  • the network equipment detects that the identification information corresponding to the three frequency slots of frequency slot 1, frequency slot 2 and frequency slot 3 is the same, it can be determined that frequency slot 1, frequency slot 2 and frequency slot 3 belong to the first category.
  • Spectrum slice it can be determined that the first type 1 spectrum slice exists in the above-mentioned N consecutive frequency slots. Then, the network device can detect frequency slots adjacent to frequency slot 3 until the remaining 3 frequency slots of the first type 1 spectrum slice are found. Finally, the network device can determine that there is a first type of spectrum slice in the above N consecutive frequency slots, and the first type of spectrum slice includes frequency slot 1, frequency slot 2, frequency slot 3, and frequency slot 4. , Frequency slot 5, frequency slot 6 these 6 frequency slots.
  • the first type of spectrum slice search method 2 is the first type of spectrum slice search method 2:
  • the network device may also first extract the slice distribution information corresponding to the foregoing N consecutive frequency slots from the storage device connected to it.
  • the slice distribution information is used to indicate the distribution of spectrum slices in the N consecutive frequency slots.
  • the slice distribution information may specifically indicate that there are several first-type spectrum slices in the N consecutive frequency slots, and which frequency slots each first-type spectrum slice contains.
  • the slice distribution information may indicate that the N consecutive frequency slots include the first type 1 spectrum slice, and frequency slots 1 to 6 belong to the first type 1 spectrum slice.
  • the network device can directly find the first type 1 spectrum slice from the N consecutive frequency slots according to the slice distribution information.
  • the network device may search for G1 consecutive free frequency slots in the first type 1 spectrum slice. Specifically, the network device may obtain the spectrum occupancy information corresponding to the foregoing N consecutive frequency slots. The aforementioned spectrum occupancy information is used to characterize the occupancy of the aforementioned N consecutive frequency slots on each optical fiber link in the optical fiber network. Then, the network device can select G1 continuous frequency slots in the first type 1 spectrum slice, and determine each of the G1 continuous frequency slots according to the spectrum occupancy information corresponding to the N continuous frequency slots. Whether the frequency gap is not occupied on the optical fiber link L1, the optical fiber link L2, the optical fiber link L3, and the optical fiber link L4.
  • the network equipment determines that the above-mentioned frequency slots are not occupied on the optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link L4, it can determine that there are G1 continuous slices in the first type 1 spectrum slice.
  • the above-mentioned first type 1 spectrum slice can be determined as the target spectrum slice. If the network device determines that any one or more of the above-mentioned frequency slots is occupied on the optical fiber link L1, the optical link L2, the optical link L3 or the optical link L4, the network device can be New G1 continuous frequency slots are re-selected from the similar spectrum slice, and it is continued to determine whether the G1 continuous frequency slots are idle frequency slots. The specific process is as above, and will not be repeated here.
  • the network device may determine whether there are G1 consecutive free frequency slots in the second type 1 spectrum slice. If G1 consecutive free frequency slots are determined in the searched second first-type spectrum slice, the network device may determine the second first-type spectrum slice as the target spectrum slice.
  • the first type of spectrum slice associated with the transmission bandwidth granularity of the target service is more likely to have spectrum resources available for the target service, and allocating spectrum resources for the target service in the first type of spectrum slice can effectively avoid spectrum Fragmentation occurs. Therefore, prioritizing the search for the spectrum resources required by the target service in the first type of spectrum slice can increase the rate of spectrum allocation, reduce the spectrum fragmentation rate of the optical fiber network, and increase the spectrum utilization rate of the optical fiber network.
  • the network device searches for the first type of spectrum slice in N consecutive frequency slots, and determines the first type of spectrum slice that contains G1 consecutive free frequency slots as the target spectrum slice.
  • Example description it is taken as an example for the network device to search through the first type of spectrum slice search method.
  • the transmission bandwidth granularity of the target service is 3
  • the preset reference bandwidth is 2
  • the N consecutive frequency slots include the first type 1 spectrum slice and the second type 1 spectrum slice.
  • the first type 1 spectrum slice includes 6 frequency slots from frequency slot 1 to frequency slot 6
  • the second type 1 spectrum slice includes 6 frequency slots from frequency slot 8 to frequency slot 13.
  • the network device After searching for the first type 1 spectrum slice, the network device can first select the three frequency slots of frequency slot 1, frequency slot 2, and frequency slot 3, and then according to the spectrum occupancy information corresponding to the N consecutive frequency slots Determine whether spectrum 1, frequency slot 2 and frequency slot 3 are occupied on optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link L4. It can be seen from Figure 3 that the network equipment can finally determine that frequency slot 1 and frequency slot 2 are occupied on fiber link L1, fiber link L3, and fiber link L4, frequency slot 1, frequency slot 2, and frequency slot 3. Already occupied on the fiber link L2.
  • the network equipment can select the three frequency slots of frequency slot 2, frequency slot 3, and frequency slot 4, and then continue to determine that the three frequency slots of frequency slot 2, frequency slot 3 and frequency slot 4 are in the optical fiber link L1, Whether link L2, optical fiber link L3, and optical fiber link L4 are not occupied.
  • the network equipment determines that the three frequency slots of frequency slot 2, frequency slot 3, and frequency slot 4 are also occupied in fiber link L1, fiber link L2, fiber link L3 and fiber link L4, you can continue to select frequency slot 3.
  • Three frequency slots, frequency slot 4 and frequency slot 5 and perform the same judgment operation as above.
  • the network device can search for the first type of spectrum slices other than the first type of spectrum slice in the above N frequency slots.
  • the specific search process can be See the process of searching for the first type of spectrum slice described above, which will not be repeated here.
  • the network device searches for the second type 1 spectrum slice shown in Figure 3, it can continue to determine whether there are 3 consecutive free frequency slots in the second type 1 spectrum slice.
  • the network device can determine that these three frequency slots are in the optical fiber link L1, Optical fiber link L2, optical fiber link L3, and optical fiber link L4 are not occupied. Therefore, the network device may determine that the second type of first spectrum slice includes 3 consecutive free frequency slots, and may determine the second type of first spectrum slice as the target spectrum slice.
  • the network device can search for the second type of spectrum slice in the above N consecutive frequency slots.
  • the second-type spectrum slice may be determined as the target spectrum slice.
  • the following are examples of the three implementation scenarios where the second type of spectrum slice includes type A spectrum slice, the second type of spectrum slice includes type B spectrum slice, and the second type of spectrum slice includes type A spectrum slice and type B spectrum slice.
  • the network device searches for the second type of spectrum slices from N consecutive frequency slots, and determines the process of determining the second type of spectrum slices including G1 consecutive idle frequency slots as the target spectrum slices and describes in detail.
  • the network device may search for the foregoing Type A spectrum slice in the foregoing N consecutive frequency slots.
  • the process of the network device searching for type A spectrum slices in N consecutive frequency slots may refer to the process of searching for the first type spectrum slices in N consecutive frequency slots by the network device described above, which will not be described this time.
  • the network device searches for the first type A spectrum slice in N consecutive frequency slots, it can judge whether the first type A spectrum slice contains G1 consecutive slices according to the spectrum occupancy information corresponding to the N consecutive frequency slots Free spectrum.
  • the process for the network equipment to determine whether there are G1 continuous free frequency slots in the first type A spectrum slice can be referred to the network equipment described above to determine whether the first type 1 spectrum slice contains G1 continuous free frequency slots. The process will not be repeated here.
  • the network device determines that there are G1 consecutive free frequency slots in the first type A spectrum slice, it can determine the first type A spectrum slice as the target spectrum slice. If the network equipment determines that there are no G1 consecutive free frequency slots in the first type A spectrum slice, it can search for the second type A spectrum slice in the above N consecutive frequency slots, and continue to determine the second one Whether there are G1 consecutive free frequency slots in the A spectrum slice.
  • the network device can repeat the above operations until it finds a type A spectrum slice containing G1 consecutive free frequency slots in the N frequency slots or traverses all the frequency slots and still fails to find an A containing G1 consecutive free frequency slots. Up to the class spectrum slice.
  • the network device may search for the foregoing type A spectrum slice in the foregoing N consecutive frequency slots. After the network device searches for a type A spectrum slice containing 6 frequency slots from frequency slot 16 to frequency slot 21, it can search for 3 consecutive free frequency slots in the 6 frequency slots from frequency slot 16 to frequency slot 21.
  • the network device may determine the type A spectrum slice as the target spectrum slice.
  • Class A spectrum slices provide spectrum resources for services with different transmission bandwidth granularities, allowing multiple services with different transmission bandwidth granularities to share the same spectrum slice, which can avoid the spectrum caused by fewer services with a certain transmission bandwidth granularity
  • the waste of resources can improve the utilization of spectrum resources of the optical fiber network.
  • the network device may search for the foregoing Type B spectrum slices in the foregoing N consecutive frequency slots.
  • the process of the network device searching for type B spectrum slices in N consecutive frequency slots can refer to the process of searching the first type of spectrum slices in N consecutive frequency slots by the network device described above, which will not be described this time.
  • the network device may determine whether G1 continuous free frequency slots are included in the type B spectrum slice after each type B spectrum slice is searched for.
  • the process for the network equipment to determine whether there are G1 continuous free frequency slots in the type B spectrum slice can be referred to the above-mentioned process for the network equipment to determine whether the first type 1 spectrum slice contains G1 continuous free frequency slots. I will not repeat it here.
  • the network device searches for G1 consecutive free frequency slots in the searched B-type spectrum slice, it can determine the B-type spectrum slice as the target spectrum slice.
  • the network device can repeat the above operations until it finds a Type B spectrum slice containing G1 consecutive free frequency slots in the N frequency slots or it traverses all frequency slots and still fails to find a B containing G1 consecutive free frequency slots. Up to the class spectrum slice.
  • the network device can search for the above B in the above N consecutive frequency slots.
  • Class spectrum slice After the network device searches for a Type B spectrum slice that includes 8 frequency slots from frequency slot 23 to frequency slot 30, it can search for 3 consecutive free frequency slots in the 8 frequency slots from frequency slot 23 to frequency slot 30.
  • the network device may determine the type B spectrum slice as the target spectrum slice.
  • the network device may first search for multiple Class B spectrum slices included in N consecutive frequency slots. It is assumed that the network device has searched for M1 Class B spectrum slices, and M1 is greater than or Equal to 2. Then, the network device can search for all M2 target class B spectrum slices included in the M1 class B spectrum slices that it has searched.
  • the target type B spectrum slice is a type B spectrum slice containing at least G1 consecutive free frequency slots, and M2 is less than or equal to M1.
  • the network device can extract the spectrum occupancy information corresponding to the N consecutive frequency slots from the storage device connected to it, and then determine the M2 B spectrum slices according to the spectrum occupancy information corresponding to the N consecutive frequency slots.
  • the spectrum occupancy information corresponding to each target type B spectrum slice is determined, and the fragment rate corresponding to each target type B spectrum slice is determined according to the spectrum occupation information corresponding to each target type B spectrum slice and the transmission bandwidth granularity G1 of the target service.
  • the fragment rate corresponding to each target class B spectrum slice is used to characterize the number of spectrum fragments contained in the target class B spectrum slice.
  • the network device can select the target class B spectrum slice with the smallest fragmentation rate among the target class B spectrum slices, and determine the target class B spectrum slice as the target spectrum slice.
  • the process of determining the target spectrum slice by the network device from multiple target class B spectrum slices is exemplarily described. It is assumed that the above two target class B spectrum slices are the first target class B spectrum slice and the second target class B spectrum slice.
  • the network device may determine the first spectrum occupancy information corresponding to the first target type B spectrum slice and the second spectrum occupancy information corresponding to the second target type B spectrum slice according to the spectrum occupancy information corresponding to the N consecutive frequency slots.
  • the foregoing first spectrum occupancy information is used to characterize the occupancy of the G2 frequency slots included in the first target type B spectrum slice on the optical fiber link L1, the optical link L2, the optical link L3, and the optical link L4.
  • the second spectrum occupancy information is used to characterize the occupancy of the G2 frequency slots contained in the second target type B spectrum slice on the optical fiber link L1, the optical link L2, the optical link L3, and the optical link L4. Then, the network device may calculate the first fragmentation rate corresponding to the first target type B spectrum slice according to the transmission bandwidth granularity G1 and the first spectrum occupancy information, and calculate the foregoing fragmentation rate according to the transmission bandwidth granularity G1 and the second spectrum occupancy information. The second fragment rate corresponding to the second target type B spectrum slice. In the following, a process in which the network device calculates the first fragmentation rate corresponding to the first target type B spectrum slice according to the transmission bandwidth granularity G1 and the first spectrum occupancy information is taken as an example.
  • the network device can first calculate the utilization rate of the G2 frequency slots in the first target type B spectrum slice on the optical fiber link L1, optical fiber link L2, optical fiber link L3, and optical fiber link L4 according to the first spectrum occupancy information. Mean. Specifically, the network device can determine the number C1 of the frequency slots occupied by the optical fiber link L1 among the G2 frequency slots according to the first spectrum occupancy information, and combine the number C1 of the frequency slots occupied by the optical fiber link L1 with The ratio C1/G2 of the total number of frequency slots G2 is determined as the utilization rate of the first target type B spectrum slice on the optical fiber link L1, which is assumed to be T1 here.
  • the network equipment can use the same method to calculate the utilization rate of the first target type B spectrum slice on the optical fiber link L2, the optical fiber link L3, and the optical fiber link L4, which are assumed to be T2, T3, and T4.
  • the network device may determine the average value of T1, T2, T3, and T4 as the average value of the utilization rate of the first target type B spectrum slice on each optical fiber link. Then, the network device can obtain the preset threshold average value.
  • the foregoing preset threshold average value may be an empirical average value obtained through multiple spectrum allocation experiments.
  • the network device determines that the above average value is greater than or equal to the preset threshold average value, it can be determined that the first fragmentation rate is empty, that is, the first target type B spectrum slice does not have a corresponding first fragmentation rate.
  • the network device may also indicate that the first target type B spectrum slice cannot be determined as the target spectrum slice.
  • the network device may continue to count the total amount of fragments of the first target type B spectrum slice on the target fiber channel according to the foregoing first spectrum occupancy information. Specifically, the network device may first determine one or more of the G2 frequency slots that are not occupied by the optical fiber link L1 according to the occupancy of the G2 frequency slots on the optical fiber link L1 included in the first spectrum occupancy information Frequency slot block. Then, count the number of target frequency slot blocks that may be included in the above one or more frequency slot blocks, and determine the number of target frequency slot blocks as the fragments of the first target type B spectrum slice on the optical fiber link L1 the amount.
  • the target spectrum block is a frequency slot block that contains a number of frequency slots smaller than the transmission bandwidth granularity G1.
  • FIG. 6 is a schematic diagram of fragmentation statistics provided by an embodiment of the present application.
  • the 12 frequency slots from frequency slot 1 to frequency slot 12 constitute a first target type B spectrum slice of the target service, and the transmission bandwidth granularity of the target service is 3.
  • the network equipment can be determined on the optical fiber link L1 by the first spectrum occupancy information.
  • frequency slot 1 and frequency slot 2 are occupied, frequency slot 3 and frequency slot 4 are free, and frequency slot 5 and frequency Slot 6 is occupied, and frequency slot 7 to frequency slot 12 are free.
  • the network device can determine the first frequency slot block composed of frequency slot 3 and frequency slot 4 and the first frequency slot block composed of frequency slot 7 to frequency slot 12 in the first target class B spectrum slice. Two frequency slot blocks.
  • the network device can detect that the number of frequency slots contained in the first frequency slot block is less than 3, and the number of frequency slots contained in the second frequency slot block is greater than 3. Therefore, the network device can determine that the above-mentioned first frequency slot block is a target
  • the frequency slot block that is, the amount of fragments on the optical fiber link L1 in the first target type B spectrum slice is 1.
  • the network device can also calculate the amount of fragments of the first target type B spectrum slice on the optical fiber link L2, the optical fiber link L3, and the optical fiber link L4 according to the first spectrum occupancy information. Then, the network device may determine the total amount of fragments of the first target type B spectrum slice on the target optical fiber channel according to the amount of fragments of the first target type B spectrum slice on each of the optical fiber links. Finally, the network device may calculate the ratio of the total amount of fragments to the number N2 of frequency slots included in the first target type B spectrum slice and obtain a preset ratio threshold. If the network device determines that the ratio is less than the aforementioned preset ratio threshold, the ratio may be determined as the corresponding first fragmentation rate of the first target type B spectrum slice.
  • the network device determines that the ratio is greater than or equal to the preset ratio threshold, it can be determined that the first fragment rate of the first target type B spectrum slice is empty, that is, the first target type B spectrum slice does not have a corresponding first fragment rate. Further, the network device may also indicate that the first target type B spectrum slice cannot be determined as the target spectrum slice. In the same way, the process of calculating the second fragmentation rate of the second target type B spectrum slice by the network device according to the second spectrum occupancy information and the transmission bandwidth granularity G1 may refer to the calculation of the first target type B spectrum slice of the first target fragment rate described above The process is not repeated here.
  • the network device calculates the first fragmentation rate of the first target type B spectrum slice and the second fragmentation rate of the second target type B spectrum slice, if the network device determines that the first fragmentation rate is less than or equal to the second fragmentation rate, then The first target type B spectrum slice may be determined as the target spectrum slice, and if the network device determines that the first fragmentation rate is greater than the second fragmentation rate, the second target type B spectrum slice may be determined as the target spectrum slice.
  • the network device can still use the same method as above to calculate the fragmentation rate corresponding to each target class B spectrum slice, and determine the target class B spectrum slice with the smallest fragmentation rate as the target spectrum slice. The specific process is not here. Repeat.
  • the determined target spectrum slice fragments can be reduced, and the optical layer spectrum can be further reduced Fragmentation rate of resources, thereby improving the utilization of spectrum resources of optical fiber networks.
  • the network device may preferentially search for a type A spectrum slice containing G1 consecutive idle frequency slots in the N consecutive frequency slots, and determine it as the target spectrum slice.
  • a type A spectrum slice containing G1 consecutive idle frequency slots in the N consecutive frequency slots For the specific process, please refer to the process of searching for type A spectrum slices containing G1 continuous free frequency slots and determining them as the target spectrum slices described above, which will not be repeated here. Only when the network device cannot search for a type A spectrum slice containing G1 consecutive free frequency slots in the N consecutive frequency slots, the network device will search for the G1 consecutive free frequency slots in the N consecutive frequency slots.
  • the class B spectrum slice is determined as the target spectrum slice. For example, please refer to Figure 3 together.
  • the network device may search for the foregoing type A spectrum slice in the foregoing N consecutive frequency slots. After the network device searches for a type A spectrum slice containing 6 frequency slots from frequency slot 16 to frequency slot 21, it can search for 3 consecutive free frequency slots in the 6 frequency slots from frequency slot 16 to frequency slot 21.
  • the network device may search for type B spectrum slices in N consecutive free frequency slots. After the network device searches for a Type B spectrum slice that includes 8 frequency slots from frequency slot 23 to frequency slot 30, it can search for 3 consecutive free frequency slots in the 8 frequency slots from frequency slot 23 to frequency slot 30.
  • the network equipment selects the three frequency slots of frequency slot 27, frequency slot 28, and frequency slot 29, it can be determined that these three frequency slots are in fiber link L1, fiber link L2, fiber link L3, and fiber link. None of L4 is occupied. At this time, the network device can determine the type B spectrum slice as the target spectrum slice.
  • the search method combining the type A spectrum slice and the type B spectrum slice can make the network device have a greater probability to determine the target spectrum slice from N consecutive frequency slots, which can improve the efficiency of spectrum resource allocation.
  • this method can also make reasonable use of the spectrum cutting spectrum allocation process with free spectrum resources, and can improve the utilization rate of the spectrum resources of the optical fiber network.
  • step S1215 when the network device has traversed all frequency slots and still fails to find a type A spectrum slice containing G1 consecutive free frequency slots, it can be used in N consecutive frequency slots Searches for N2 consecutive free frequency slots.
  • the above-mentioned N2 consecutive idle frequency slots are not included in any one spectrum slice included in the N consecutive frequency slots.
  • the specific search process please refer to the foregoing process of searching for G1 continuous free frequency slots in the first type of spectrum slice by the network device, which will not be repeated this time. If the network device finds N2 consecutive idle frequency slots in the N consecutive frequency slots, it can determine the aforementioned N2 consecutive idle frequency slots as the target spectrum slice. For example, please refer to Fig. 3.
  • a network device When a network device searches for 6 consecutive free frequency slots from frequency slot 31 to frequency slot 36 in N consecutive frequency slots, it can use the 6 consecutive free frequency slots Determined as the target spectrum slice. It can be understood here that these N2 continuous free frequency slots also constitute the first type of spectrum slice corresponding to the service of the transmission bandwidth granularity G1. The network device is determining the above N2 continuous free frequency slots as the target spectrum slice.
  • the identification information of each free frequency slot in the N2 consecutive free frequency slots can also be updated, or the above-mentioned slice distribution information can be updated, so that when the next service of transmission bandwidth granularity G1 arrives, the network device can Based on the updated identification information or updated slice distribution information of each idle frequency slot in the N2 consecutive idle frequency slots, it is determined that the N2 consecutive idle frequency slots are a first-type spectrum slice corresponding to the service.
  • the network device when the network device has traversed all frequency slots and still fails to find a Type B spectrum slice containing G1 consecutive free frequency slots, it can search for N2 consecutive frequency slots in N consecutive frequency slots. Free frequency slots.
  • the above-mentioned N2 consecutive idle frequency slots are not included in any one spectrum slice included in the N consecutive frequency slots.
  • the network device searches for N2 continuous free frequency slots in the N continuous frequency slots, it can determine the aforementioned N2 continuous free spectrum as the target spectrum slice. For example, please refer to Fig. 3.
  • a network device When a network device searches for 6 consecutive free frequency slots from frequency slot 31 to frequency slot 36 in N consecutive frequency slots, it can use the 6 consecutive free frequency slots Determined as the target spectrum slice. It can be understood here that the N2 continuous free frequency slots also constitute the first type of spectrum slice corresponding to the service of the transmission bandwidth granularity G1.
  • the network device determines the above N2 continuous free spectrum as the target spectrum slice and also The identification information of each idle frequency slot in the N2 consecutive idle frequency slots needs to be updated, so that when the next transmission bandwidth granularity G1 service arrives, it can be updated based on the idle frequency slots in the N2 consecutive idle frequency slots.
  • the identification information of determines that the N2 consecutive idle frequency slots are a first-type spectrum slice corresponding to the service.
  • the network device when the network device has traversed all frequency slots and still fails to find a Type B spectrum slice containing G1 continuous free frequency slots, it can search for N2 continuous frequency slots in N continuous frequency slots. Free frequency slots and determine them as target spectrum slices.
  • the network device searches for N2 consecutive free frequency slots in N consecutive frequency slots and determines them as the target spectrum slice, which will not be repeated here.
  • Target spectrum slice determination method 2
  • FIG. 7 is a schematic flowchart of the second method for determining target spectrum provided by an embodiment of the present application.
  • the second method for determining the target spectrum slice involved in the embodiment of the present application is implemented based on the scenario that the second type of spectrum slice includes both the type A spectrum slice and the type B spectrum slice. It can be seen from Figure 7 that the target spectrum mode two mainly includes the following content.
  • the first-type spectrum slice including G1 consecutive idle frequency slots is searched, the first-type spectrum slice may be determined as the target spectrum slice.
  • the type A spectrum slice may be determined as the target spectrum slice.
  • the specific implementation process can refer to the steps S1211 and S1212 described in the target spectrum determination method.
  • the network equipment searches for the first type of spectrum slices and searches the searched data containing G1 consecutive free frequency slots.
  • the process of determining the first type of spectrum slice as the target spectrum slice will not be repeated here.
  • step S1223 and step 1224 the specific implementation process can refer to step S1213 and step S1214 in the target spectrum determination method.
  • the network device searches for type A spectrum slices and will search for the A that contains G1 consecutive free frequency slots. The process of determining the class spectrum slice as the target spectrum slice will not be repeated here.
  • the network device can connect to it
  • the spectrum occupancy information corresponding to the N consecutive frequency slots is extracted from the storage device, and the plane utilization rate corresponding to the N consecutive frequency slots is calculated according to the spectrum occupancy information corresponding to the N consecutive frequency slots.
  • the above-mentioned plane utilization is used to characterize the occupation of N consecutive frequency slots by the optical fiber link included in the target optical fiber channel.
  • the network device can determine the number K of free frequency slots in the above N continuous frequency slots according to the spectrum occupancy information corresponding to the N continuous frequency slots, and calculate the ratio K of the number of free frequency slots K to N. /N is determined as the plane utilization rate corresponding to N consecutive frequency slots.
  • the network device may first obtain a preset plane utilization threshold, and the plane utilization threshold may be an empirical value obtained from multiple spectrum allocation experiments using the spectrum allocation method described in this embodiment.
  • the network device may search for N2 consecutive free frequency slots in the N consecutive frequency slots.
  • the specific search process refer to the process in which the network device searches for N2 consecutive free frequency slots in the N consecutive frequency slots described in step S1215 in the target spectrum slice determination method 1, which will not be repeated here.
  • step S1227 specifically, after the network device determines that it has searched for N2 consecutive idle frequency slots in N consecutive frequency slots, it may determine the N consecutive idle frequency slots as the target spectrum slice.
  • the network device may determine the N consecutive idle frequency slots as the target spectrum slice.
  • the specific process refer to the process of determining N consecutive free frequency slots as target spectrum slices described in step S1215 in the target spectrum slice determination method 1, which will not be repeated here.
  • step S1228 specifically, if the network device cannot search for N2 continuous free frequency slots in the N continuous frequency slots, it can search for the B type including G1 continuous free frequency slots in the N continuous frequency slots.
  • the spectrum slice is determined as the target spectrum slice.
  • step S1213 and step S1214 in the first method of determining target spectrum slices. Searching for type B spectrum slices containing G1 continuous free frequency slots in N consecutive frequency slots and determining them as the target spectrum The slicing process will not be repeated here.
  • the network device may first search for type B spectrum slices including G1 consecutive free frequency slots in the N consecutive frequency slots.
  • the specific process refer to the process of searching for type B spectrum slices including G1 consecutive idle frequency slots in the N consecutive idle frequency slots described in step S1213 in the target spectrum slice determination method 1, which will not be repeated here.
  • the type B spectrum slice may be determined as the target spectrum slice.
  • the specific process refer to the process of determining the type B spectrum slice including G1 continuous free frequency slots as the target spectrum slice described in step S1214 in the target spectrum slice determination method 1, which will not be repeated here.
  • step S1231 if the network device cannot search for a Type B spectrum slice containing G1 continuous free frequency slots in the N continuous frequency slots, it can search for N2 continuous free frequency slots in the N continuous frequency slots. , And determine it as the target spectrum slice.
  • the network device can search for N2 continuous free frequency slots in N continuous frequency slots described in step S1215 in the target spectrum slice determination method 1, and determine the searched N2 continuous free frequency slots as the target The process of spectrum slicing will not be repeated here.
  • the network device after the network device obtains the transmission bandwidth granularity G1 corresponding to the target service, it can also obtain the preset transmission bandwidth granularity threshold Gt, where the transmission bandwidth granularity threshold Gt can be multiple spectrum allocation experiments Experience points gained.
  • the network device determines that the transmission bandwidth granularity G1 is less than or equal to the transmission bandwidth granularity threshold Gt, the network device can operate in the aforementioned N consecutive frequency slots according to the first arrangement sequence described above (that is, from frequency slot 1 to frequency slot N) Determine the target spectrum slice in.
  • the network device can determine in the above-mentioned N consecutive frequency slots according to the second arrangement sequence described above (that is, from frequency slot N to frequency slot 1) Get the target spectrum slice.
  • the target spectrum slices are determined from N consecutive frequency slots in a different arrangement order, which can make the target spectrum slices determined for services with the same or similar transmission bandwidth granularity relatively concentrated, which can effectively avoid
  • the waste of spectrum resources caused by the scattered distribution of slices in N consecutive frequency slots can improve the utilization of spectrum resources of the optical fiber network.
  • S13 Allocate the G1 continuous idle frequency slots included in the target spectrum slice to the foregoing target service.
  • the G1 continuous free frequency slots contained in the target spectrum slice can be allocated to the target service for data corresponding to the target service.
  • the resource is used on the target Fibre Channel.
  • the network device may slice the target spectrum according to the search order used in the process of determining the target spectrum slice in the N frequency slots
  • the top-ranked G1 free frequency spectrum in the free frequency slots contained in is allocated to the target service.
  • the type B spectrum slice may be Converted to class A spectrum slices.
  • the network device may update the identification information corresponding to each frequency slot contained in the type B spectrum slice, or the network device may update the slice distribution information corresponding to the N frequency slots, so that the type B spectrum The slice is converted into a type A spectrum slice.
  • the target spectrum slice is used to allocate spectrum resources for the target service based on the spectrum slice.
  • One service corresponds to one spectrum slice, which can reduce the spectrum fragmentation caused by the interleaved allocation of spectrum resources for services with different transmission bandwidth granularities, making the process of spectrum resource allocation more reasonable, and improving the utilization of spectrum resources of the optical fiber network. Improve the throughput of the optical fiber network.
  • FIG. 8 is a schematic structural diagram of a spectrum allocation device provided by an embodiment of the present application.
  • the device includes:
  • the obtaining unit 10 is configured to obtain the transmission bandwidth granularity G1 of the target service and the optical layer spectrum resource of the target fiber channel corresponding to the target service.
  • the optical layer spectrum resource is composed of N continuous frequency slots, and the spectrum bandwidth of each frequency slot in the N continuous frequency slots is the same.
  • the target spectrum slice determination unit 20 is configured to determine the target spectrum slice in the N frequency slots according to the transmission bandwidth granularity G1 acquired by the acquisition unit 10, where the target spectrum slice is composed of N1 continuous frequency slots, and The target spectrum slice includes at least G1 consecutive free frequency slots, N is greater than N1, and N1 is greater than or equal to G1;
  • the allocation unit 30 is configured to allocate the G1 consecutive free frequency slots included in the target spectrum slice obtained by the target spectrum slice determination unit 20 to the target service.
  • the above-mentioned target spectrum slice determination unit 20 is configured to:
  • N2 continuous free frequency slots are searched in the above N continuous frequency slots, the above N2 continuous free frequency slots are determined as the target spectrum slice, where N2 is the product of the transmission bandwidth granularity G1 and the positive integer R , N2 is less than N.
  • the above-mentioned target spectrum slice determination unit 20 is configured to:
  • any one of the above-mentioned one or more first-type spectrum slices is determined as the target spectrum slice.
  • the number of frequency slots included in the first type of spectrum slice is the product N2 of the transmission bandwidth granularity G1 and the positive integer R. If the first type of spectrum slice cannot be searched in the above N frequency slots, or the searched one or more first type of spectrum slices do not include G1 continuous free frequency slots in each of the first type of spectrum slices, Then, the second type of spectrum slice is searched in the above N frequency slots.
  • any second-type spectrum slice in the searched one or more second-type spectrum slices includes G1 continuous idle frequency slots, then any second-type spectrum slice described above is determined as the target spectrum slice.
  • the above-mentioned second type of spectrum slice includes type A spectrum slice and/or type B spectrum slice.
  • the number N3 of frequency slots included in the above-mentioned type B spectrum slice is the product of the transmission bandwidth granularity G2 and a positive integer R, and G2 is not equal to G1.
  • the number of frequency slots included in the type A spectrum slice includes N2 and/or N3, and the type A spectrum slice is occupied by at least two services with different transmission bandwidth granularity.
  • the target spectrum slice determination unit 20 is configured to:
  • any type A spectrum slice of one or more of the type A spectrum slices searched in the above N consecutive frequency slots contains G1 continuous free frequency slots
  • any one of the type A spectrum slices is determined as Target spectrum slice.
  • the above-mentioned type A spectrum slice cannot be searched in the above N consecutive frequency slots, or the searched one or more type A spectrum slices do not include G1 continuous free frequency slots in each type A spectrum slice , Then search the above-mentioned type B spectrum slice in the above-mentioned N consecutive frequency slots. If any type B spectrum slice in the searched one or more type B spectrum slices contains G1 continuous free frequency slots, then any type B spectrum slice described above is determined as the target spectrum slice.
  • the aforementioned target spectrum slice determination unit 20 is further configured to:
  • the foregoing N2 consecutive idle frequency slots are determined as the target spectrum slice.
  • the target spectrum slice determining unit 20 is further configured to:
  • any type A spectrum slice of one or more of the type A spectrum slices searched in the above N consecutive frequency slots contains G1 continuous free frequency slots
  • any one of the type A spectrum slices is determined as Target spectrum slice.
  • the above-mentioned type A spectrum slice cannot be searched in the above N consecutive frequency slots, or the searched one or more type A spectrum slices do not include G1 continuous free frequency slots in each type A spectrum slice , Then search the above-mentioned type B spectrum slice in the above-mentioned N consecutive frequency slots.
  • M1 of the above type B spectrum slices are searched, and M2 target type B spectrum slices are determined from the searched M1 type B spectrum slices, the spectrum occupancy information of each target type B spectrum slice is obtained from the above M2
  • the target spectrum slice is determined from the target class B spectrum slices.
  • the above-mentioned target type B spectrum slice is a type B spectrum slice including G1 continuous gap frequency slots.
  • the above-mentioned target optical fiber channel includes L optical fiber links, and the spectrum occupancy information of any target type B spectrum slice is used to characterize all frequency slots included in any of the above-mentioned target type B spectrum slices in each optical fiber chain in the above L optical fiber links Occupation on the road.
  • the aforementioned M1 target type B spectrum slices include a first target type B spectrum slice and a second target type B spectrum slice
  • the target spectrum slice determining unit 20 is configured to:
  • the second target type B spectrum slice is determined as the target spectrum slice, and if the first fragmentation rate is less than the second fragmentation rate, the first target The type B spectrum slice is determined as the target spectrum slice.
  • the above-mentioned target spectrum slice determination unit 20 is configured to:
  • the ratio of the total amount of fragments of the first target type B spectrum slice on the target fiber channel to the number of frequency slots contained in the first target type B spectrum slice is greater than or equal to the preset ratio threshold, the ratio Determine the first fragmentation rate corresponding to the first slice. When the ratio is less than the preset ratio threshold, it is determined that the first fragment rate is empty.
  • the above-mentioned target spectrum slice determination unit 20 is configured to:
  • the occupancy of the first target type B spectrum slice on the optical fiber link i included in the first spectrum occupancy information determine one of the first target type B spectrum slices that is not occupied by the optical fiber link i or Multiple frequency slot blocks. Count the number of target frequency slot blocks included in the one or more frequency slot blocks, and determine the number of target frequency slot blocks as the fragments of the first target type B spectrum slice on the optical fiber link i The number of frequency slots included in the target frequency slot block is smaller than the transmission bandwidth granularity G1.
  • the total amount of fragments of the first target type B spectrum slice on the target fiber channel is determined according to the amount of fragments of the first target type B spectrum slice on the optical fiber links.
  • the above-mentioned target spectrum slice determination unit 20 is configured to:
  • the total amount of fragments of the second target type B spectrum slice on the target fiber channel is calculated according to the second spectrum occupancy information.
  • the ratio of the total amount of fragments of the second target type B spectrum slice on the target fiber channel to the number of frequency slots contained in the second target type B spectrum slice is greater than or equal to the preset ratio threshold, the ratio Determine the second fragmentation rate corresponding to the second slice.
  • the ratio is less than the preset ratio threshold, it is determined that the second fragment rate is empty.
  • the above-mentioned target spectrum slice determination unit 20 is configured to:
  • the occupancy of the second target type B spectrum slice on the optical fiber link i included in the second spectrum occupancy information determine one of the second target type B spectrum slices that is not occupied by the optical fiber link i or Multiple frequency slot blocks. Count the number of target frequency slot blocks included in the one or more frequency slot blocks, and determine the number of target frequency slot blocks as the fragments of the second target type B spectrum slice on the optical fiber link i The number of frequency slots included in the target frequency slot block is smaller than the transmission bandwidth granularity G1.
  • the total amount of fragments of the second target type B spectrum slice on the target fiber channel is determined according to the amount of fragments of the second target type B spectrum slice on the optical fiber links.
  • the obtaining unit 10 may obtain the transmission bandwidth granularity G1 of the target service and the optical layer spectrum resource of the target fiber channel corresponding to the target service.
  • the foregoing optical layer spectrum resource is composed of N consecutive frequency slots, and the bandwidth of each frequency slot in the foregoing N consecutive frequency slots is the same.
  • the target spectrum determining unit 20 may determine the target spectrum slice in the aforementioned N frequency slots according to the transmission bandwidth granularity G1 acquired by the acquiring unit 10.
  • the target spectrum slice is composed of N1 continuous frequency slots, and the target spectrum slice includes at least G1 continuous free frequency slots.
  • the process of determining the target spectrum slice in N frequency slots according to the transmission bandwidth granularity G1 by the target spectrum determining unit 20 can refer to the process of determining the target spectrum slice from N frequency slots described in step S12 in the first embodiment, here I won't repeat it.
  • the allocating unit 30 may allocate the G1 consecutive free frequency slots contained in the target spectrum slice determined by the target spectrum slice determining unit 20 to the above-mentioned target service.
  • the target spectrum slice is used to allocate spectrum resources for the target service based on the spectrum slice.
  • One service corresponds to one spectrum slice, which can reduce the spectrum fragmentation caused by the interleaved allocation of spectrum resources for services with different transmission bandwidth granularities, making the process of spectrum resource allocation more reasonable, and improving the utilization of spectrum resources of the optical fiber network. Improve the throughput of the optical fiber network.
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device provided in the embodiment of the present application includes a processor 901, a memory 902, and a bus system 903.
  • the aforementioned processor 901 and memory 902 are connected through a bus system 903.
  • the aforementioned memory 902 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
  • the memory 902 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 9. Of course, the memory can also be set to multiple as required.
  • the memory 902 may also be a memory in the processor 901, which is not limited here.
  • the memory 902 stores the following elements, executable modules or data structures, or their subsets, or their extended sets:
  • Operating instructions including various operating instructions, used to implement various operations.
  • Operating system including various system programs, used to implement various basic services and process hardware-based tasks.
  • the aforementioned processor 901 controls the operation of the electronic device, and the processor 901 may be one or more central processing units (CPU).
  • the processor 901 may be a single-core CPU or a multi-core CPU.
  • bus system 903 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 903 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 903 in FIG. 9.
  • FIG. 9 is only schematically drawn.
  • the data relocation monitoring method disclosed in the embodiment of the present application may be applied to the processor 901 or implemented by the processor 901.
  • the processor 901 may be an integrated circuit chip with signal processing capability.
  • An embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions When the instructions are run on a computer, the spectrum allocation described in the first embodiment can be implemented. method.
  • the foregoing computer-readable storage medium may be the internal storage unit of the spectrum allocation device described in the second embodiment.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned monitoring device, such as a plug-in hard disk equipped on the above-mentioned spectrum allocation device, a smart media card (SMC), or a secure digital (SD) card. , Flash card, etc.
  • the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned monitoring device and an external storage device.
  • the aforementioned computer-readable storage medium is used to store the aforementioned computer program and other programs and data required by the aforementioned monitoring device.
  • the aforementioned computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical discs and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种频谱分配方法和装置,该方法包括:获取目标业务的传输带宽粒度G1和目标业务对应的目标光纤通道的光层频谱资源。这里,上述光层频谱资源包括N个连续的频隙,上述N个连续的频隙中各频隙的频谱带宽相同。根据上述传输带宽粒度G1在上述N个频隙中确定出目标频谱切片。这里,上述目标频谱切片包括N1个连续的频隙,上述目标频谱切片至少包括G1个连续的空闲频隙。将上述目标频谱切片中包含的G1个连续的空闲频隙分配给上述目标业务。采用本申请实施例,可提升光纤网络的频谱资源的利用率。

Description

一种频谱分配方法和装置
本申请要求于2019年4月23日提交中国专利局、申请号为CN 201910338235.4、发明名称为“一种频谱分配方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种频谱分配方法和装置。
背景技术
随着通信技术的不断发展,作为当前主流的有线通信技术之一的光纤通信技术,因具备传输频谱带宽大、通信容量大和抗电磁干扰能力强等优点,其应用范围变得越来越广泛。在基于光纤通信技术形成的光网络中,光纤承担了两个网络节点之间输出传输的重要职责。对于某一根光纤而言,其可利用的传输带宽通常比较大,当前主流的做法是在光线上采用波分复用的方式来提升光纤的传输带宽的利用率。具体就是将光纤可利用的传输带宽划分成多个带宽容量更小的子通道,每个子信道对应一个波长。当有多个业务通过该光纤传输数据时,就为每个业务单独分配一个或者多个波长通道(即分配一定范围的频谱资源),从而提升了光纤的传输带宽的利用率。例如,灵活栅格光网络技术既是基于波分复用的思想实现的光层频谱资源的划分。
现有技术中,在基于灵活栅格光网络技术的前提下,通常按照第一优先匹配原则为某一业务分配频谱资源。即每来一个业务后,会按照一定的顺序遍历整个频谱范围搜索可供该业务使用的频谱资源。当前,由于光纤网络固有的硬件限制,使得光纤网络在进行数据传输时需要严格遵守“波长一致性”原则,即当某一业务请求在光纤网络中某一光纤通道上进行数据传输时,必须要求该光纤通道上的每一条光纤链路上分配的波长相同,即每一条光纤链路上分配的频谱要求一致。这就会使得尽管在光纤网络中的所有光纤链路上都可用频谱资源,但是由于需要严格遵守波长一致性原则,这就会导致某些光纤链路上的可用频谱资源无法被使用,形成了频谱碎片。当前,由于基于第一优先匹配原则为业务分配频谱资源的方法仅仅是将其找到的第一个可用的频谱资源分配给该业务,并为考虑是否存在其他更加合理的频谱资源以供分配使用,从而使得在为传输带宽要求不同的多个业务分配频谱时极易产生频谱碎片,从而造成光纤网络的频谱资源的浪费,降低了光纤网络的吞吐量。
发明内容
本申请实施例提供一种频谱分配方法和装置,可降低光纤网络的频谱碎片率,可提升光纤网络的频谱资源利用率和吞吐量。
第一方面,本申请实施例提供的一种频谱分配方法。首先,获取目标业务的传输带宽 粒度G1和上述目标业务对应的目标光纤通道的光层频谱资源。这里,上述光层频谱资源由N个连续的频隙组成。然后再根据上述传输带宽粒度G1在上述N个频隙中确定出目标频谱切片。这里,上述目标频谱切片由N1个连续的频隙构成,上述目标频谱切片至少包括G1个连续的空闲频隙。最后,将上述目标频谱切片中包含的G1个连续的空闲频隙分配给上述目标业务。
在本申请实施例中,在获取到目标业务的传输带宽粒度G1和目标业务对应的N个频隙后,根据目标业务的传输带宽粒度G1在上述N个频隙中搜索到或者生成目标业务对应的目标频谱切片,进而以频谱切片为基本范围为目标业务分配频谱资源。一个业务对应一个频谱切片,这样可减少为不同传输带宽粒度的业务穿插式分配频谱资源而产生的频谱碎片,使得频谱资源分配过程变得更加合理,提升了光纤网络的频谱资源的利用率,也提高了光纤网络的吞吐量。
在一种可行的实施方式中,若在上述N个连续的频隙中搜索到N2个连续的空闲频隙,则将上述N2个连续的空闲频隙确定为目标频谱切片。这里,N2为上述传输带宽粒度G1的整数倍,N2小于N。
在一种可行的实施方式中,若在所述N个频隙中搜索到任一包含G1个连续的空闲频隙的第一类频谱切片内,则将所述任一包含G1个连续的空闲频隙的第一类频谱切片确定为目标频谱切片。这里,所述第一类频谱切片中包含的频隙的个数N2为所述传输带宽粒度G1的整数倍。若在所述N个频隙中搜索不到所述任一包含G1个连续的空闲频隙第一类频谱切片,则在所述N个频隙中搜索所述第二类频谱切片。若搜索到任一包含G1个连续的空闲频隙的第二类频谱片,则将所述任一包含G1个连续的空闲频隙的第二类频谱切片确定为目标频谱切片。这里,所述第二类频谱切片包括A类频谱切片和/或B类频谱切片,所述B类频谱切片中包含的频隙的个数N3为传输带宽粒度G2的整数倍,G2不等于G1。所述A类频谱切片中包含的频隙的个数包括N2和/或N3,并且所述A类频谱切片至少可以被两种传输带宽粒度不同的业务占用。换句话说,就是若在上述N个频隙中搜索到一个或者多个第一类频谱切片,并且检测到上述一个或者多个第一类频谱切片中任一第一类频谱切片内包含G1个连续的空闲频隙,则将上述任一第一类频谱切片确定为目标频谱切片。若在上述N个频隙中搜索不到第一类频谱切片,或者,搜索到的一个或者多个第一类频谱切片中各个第一类频谱切片内均不包含G1个连续的空闲频隙,则在上述N个频隙中搜索上述第二类频谱切片。若搜索到的一个或者多个第二类频谱切片中任一第二类频谱片中包含G1个连续的空闲频隙,则将上述任一第二类频谱切片确定为目标频谱切片。因为与目标业务的传输带宽粒度G1相关联的第一类频谱切片中更大可能会存在可供目标业务使用的频谱资源,并且在第一类频谱切片中为目标业务分配频谱资源可有效的避免频谱碎片的产生,所以,优先在第一类频谱切片中搜索目标业务需求的频谱资源,可提升频谱分配的速率,也可降低光纤网络的频谱碎片率,提升光纤网络的频谱利用率。
在一种可行的实施方式中,当上述第二类频谱切片包括A类频谱切片和上述B类频谱切片时,若在上述N个连续的频隙中搜索到的一个或者多个上述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,则将上述任一A类频谱切片确定为目标频谱切片。若在上述N个连续的频隙中搜索不到上述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在上述N个连续的频隙中搜索上述B类频谱切片。若搜索到的一个或者多个B类频谱切片中任一B类 频谱切片内包含G1个连续的空闲频隙,则将上述任一B类频谱切片确定为目标频谱切片。通过A类频谱切片和B类频谱切片相结合的搜索方式,可使得网络设备能有更大的概率从N个连续的频隙中确定出目标频谱切片,可提升频谱资源分配的效率。同时,这种方式也可使得具备空闲频谱资源的频谱切频谱分配过程中能得到合理的利用,可提升光纤网络的频谱资源的利用率。
在一种可行的实施方式中,若在上述N个连续的频隙中搜索不到上述B类频谱切片,或者,搜索到的一个或者多个B类频谱切片中各个B类频谱切片内均不包含G1个连续的空闲频隙,则当在上述N个连续的频隙中搜索到N2个连续的空闲频隙时,将上述N2个连续的空闲频隙确定为目标频谱切片。
在一种可行的实施方式中,当上述第二类频谱切片包括A类频谱切片和上述B类频谱切片时,若在上述N个连续的频隙中搜索到的一个或者多个上述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙,则将上述任一A类频谱切片确定为目标频谱切片。当在上述N个连续的频隙中搜索不到上述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在上述N个连续的频隙中搜索上述B类频谱切片。当搜索到M1个上述B类频谱切片,并且在搜索到的M1个上述B类频谱切片中确定出M2个目标B类频谱切片时,则基于各目标B类频谱切片的频谱占用信息从上述M2个目标B类频谱切片中确定出目标频谱切片。这里,上述目标B类频谱切片为包含G1个连续的空隙频隙的B类频谱切片,上述目标光纤通道包括L条光纤链路,任一目标B类频谱切片的频谱占用信息用于表征上述任一目标B类频谱切片内包含的所有频隙在上述L条光纤链路内各光纤链路上的占用情况。
在一种可行的实施方式中,上述M1个目标B类频谱切片包括第一目标B类频谱切片和第二目标B类频谱切片。先获取上述第一目标B类频谱切片对应的第一频谱占用信息和上述第二目标B类频谱切片对应的第二频谱占用信息。基于上述传输带宽粒度G1和上述第一频谱占用信息计算上述第一目标B类频谱切片对应的第一碎片率,基于上述传输带宽粒度G1和上述第二频谱占用信息计算上述第二目标B类频谱切片对应的第二碎片率。这里,任一碎片率用于表征任一目标B类频谱切片内包含的频谱碎片的数量。若确定上述第一碎片率大于或者等于上述第二碎片率,则将上述第二目标B类频谱切片确定为目标频谱切片,若确定上述第一碎片率小于上述第二碎片率,则将上述第一目标B类频谱切片确定为目标频谱切片。通过预先搜索出N个频隙中存在的多个目标B类频谱切片,再选择碎片率最小的目标B类频谱切片作为目标频谱切片,可使得确定出的目标频谱切片碎片量小,可进一步减少光层频谱资源的碎片率,从而提升光纤网络的频谱资源的利用率。
在一种可行的实施方式中,根据上述第一频谱占用信息计算上述第一目标B类频谱切片内的所有频隙在上述各光纤链路上的利用率的均值。若确定上述均值大于或者等于预设门限均值,则确定上述第一碎片率为空。若确定上述均值小于预设门限均值,则根据上述第一频谱占用信息统计上述第一目标B类频谱切片在上述目标光纤通道上的碎片总量。当确定上述第一目标B类频谱切片在上述目标光纤通道上的碎片总量与上述第一目标B类频谱切片内包含的频隙的个数的比值大于或者等于预设比例阈值时,将上述比值确定为上述第一切片对应的第一碎片率。当确定上述比值小于预设比例阈值时,确定上述第一碎片率为空。
在一种可行的实施方式中,根据上述第一频谱占用信息对第一目标B类频谱切片在上 述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:根据上述第一频谱占用信息中包括的上述第一目标B类频谱切片在上述光纤链路i上的占用情况确定出上述第一目标B类频谱切片中未被上述光纤链路i占用的一个或者多个频隙块。统计出上述一个或者多个频隙块中包含的目标频隙块的个数,并将上述目标频隙块的个数确定为上述第一目标B类频谱切片在上述光纤链路i上的碎片量。这里,上述目标频隙块包含的频隙的个数小于上述传输带宽粒度G1。
根据上述第一目标B类频谱切片在上述各光纤链路上的碎片量确定出上述第一目标B类频谱切片在上述目标光纤通道上的碎片总量。
在一种可行的实施方式中,根据上述第二频谱占用信息计算上述第二目标B类频谱切片内的所有频隙在上述各光纤链路上的利用率的均值。若确定上述均值大于或者等于预设门限均值,则确定上述第二碎片率为空。若确定上述均值小于预设门限均值,则根据上述第二频谱占用信息统计上述第二目标B类频谱切片在上述目标光纤通道上的碎片总量。当确定上述第二目标B类频谱切片在上述目标光纤通道上的碎片总量与上述第二目标B类频谱切片内包含的频隙的个数的比值大于或者等于预设比例阈值时,将上述比值确定为上述第二切片对应的第二碎片率。当确定上述比值小于预设比例阈值时,确定上述第二碎片率为空。
在一种可行的实施方式中,根据上述第二频谱占用信息对第一目标B类频谱切片在上述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:根据上述第二频谱占用信息中包括的上述第二目标B类频谱切片在上述光纤链路i上的占用情况确定出上述第二目标B类频谱切片中未被上述光纤链路i占用的一个或者多个频隙块。统计出上述一个或者多个频隙块中包含的目标频隙块的个数,并将上述目标频隙块的个数确定为上述第二目标B类频谱切片在上述光纤链路i上的碎片量。这里,上述目标频隙块包含的频隙的个数小于上述传输带宽粒度G1;根据上述第二目标B类频谱切片在上述各光纤链路上的碎片量确定出上述第二目标B类频谱切片在上述目标光纤通道上的碎片总量。
在一种可行的实施方式中,当上述第二类频谱切片包括A类频谱切片和上述B类频谱切片时,若在上述N个连续的频隙中搜索到的一个或者多个上述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙,则将上述任一A类频谱切片确定为目标频谱切片。当在上述N个连续的频隙中搜索不到上述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,获取上述N个连续的频隙对应的频谱占用信息,根据上述频谱占用信息确定上述N个连续的频隙的平面利用率。这里,上述目标光纤通道包括L条光纤链路,上述第三频谱占用信息用于指示上述N个频隙中各频隙在上述L条光纤链路内各光纤链路上的占用情况,上述平面利用率为上述N个连续的频隙中空闲频隙和被占用频隙的比值。若上述平面利用率大于预设平面利用率阈值,则在上述N个连续的频隙中搜索上述B类频谱切片,若搜索到的一个或者多个B类频谱切片中任一B类频谱切片内包含G1个连续的空闲频隙,则将上述任一B类频谱切片确定为目标频谱切片。若搜索不到包含G1个了谦虚的空闲频隙的B类频谱切片,则当在上述N个连续的频隙中搜索到N2个连续的空闲频隙时,将上述N2个连续的空闲频隙确定为目标频谱切片。
在一种可行的实施方式中,若上述平面利用率小于或者等于预设平面利用率阈值,则在上述N个连续的频隙中搜索N2个连续的空闲频隙,当在上述N个连续的频隙中搜索到 上述N2个连续的空闲频隙时,将上述N2个连续的空闲频隙确定为目标频谱切片。当在上述N个连续的频隙中搜索不到上述N2个连续的空闲频隙时,则在上述N个连续的频隙中搜索上述B类频谱切片。若搜索到的一个或者多个B类频谱切片中任一B类频谱切片内包含G1个连续的空闲频隙,则将上述任一B类频谱切片确定为目标频谱切片。
第二方面,本申请实施例提供了一种频谱分配的装置,该装置包括用于执行上述第一方面的任意一种可能的实现方式所提供的频谱分配方法的单元,因此也能是实现第一方面提供的频谱分配方法所具备的有益效果(或者优点)。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器和存储器,上述处理器和存储器相互连接。其中,上述存储器用于存储计算机程序,上述计算机程序包括程序指令,上述处理器被配置用于调用上述程序指令执行上述第一方面提供的频谱分配方法,也能实现上述第一方面提供的频谱分配方法所具备的有益效果。
第四方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第一方面中任意一种可能的实现方式所提供的频谱分配方法,也能实现第一方面提供的频谱分配方法所具备的有益效果。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面提供的频谱分配方法,也能实现第一方面提供的频谱分配方法所具备的有益效果。
通过实施本申请实施例,可降低光纤网络的频谱碎片率,可提升光纤网络的频谱资源利用率和吞吐量。
附图说明
图1是本申请实施例提供的一种光纤网络的结构示意图;
图2是本申请实施例提供的光层频谱资源构成示意图;
图3是本申请实施例提供的一种频谱切片分布示意图
图4是本申请实施例提供的一种频谱分配方法的流程示意图;
图5是本申请实施例提供的目标频谱切片确定方式一的流程示意图;
图6是本申请实施例提供的频谱碎片分布示意图;
图7是本申请实施例提供的目标频谱切片确定方式二的流程示意图;
图8是本申请实施例提供的频谱分配装置的结构示意图;
图9是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为了便于对本申请技术方案的理解,下面先对光纤网络的结构和为光纤网络中的业务分配频谱的过程进行简述。
光纤网络是利用光波在光导纤维(以下简称为光纤)中传输其接入的业务所请求传输 的数据资源。请参见图1,图1是本申请实施例提供的一种光纤网络的结构示意图。图1所示的光纤网络内包含8个网络节点,如节点1、节点2、节点3、节点4、节点5、节点6、节点7和节点8。每个节点之间的通道称为一条光纤链路。如图1中所示的光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4。光纤网络在接入一个业务后,其相关的网络设备会首先为该业务分配好一条或者多条可用于数据资源传输的光纤通道,如图1中由光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4组成的光纤通道L。这里,上述网络设备具体可为光纤网络中的路径计算单元(path computation element,PCE)或者控制器模块等,此处不作限定。网络设备在为某一业务分配好光纤通道后,就需要为该业务分配可用的频谱资源,以供该业务对应的光纤通道中的每条光纤链路使用。实际应用中,由于光纤网络固有的硬件限制,使得光纤网络在进行数据资源传输时需要严格遵守“波长一致性”原则,即当某一业务请求在光纤网络中某一光纤通道上进行数据传输时,每一条光纤链路上分配的频谱需要一致。
这里,需要说明的是,本申请提供的频谱分配方法是基于灵活栅格光网络技术实现的。请参见图2,图2是本申请实施例提供的光层频谱资源构成示意图。对于某一个光纤网络而言,其可利用频谱资源是一定的。在进行频谱资源分配之前,网络设备需通过灵活栅格光网络技术将光纤网络中每条光纤链路对应的可利用频谱资源等分成N个频谱带宽相同的子通道,每个子通道称为一个频隙(或者频谱栅格)。如图2中的频隙1、频隙2直至频隙N。这里,具体实现中,一个频隙可占用12.5Ghz的频谱带宽。网络设备为某一业务确定好光纤通道后,会在遵循波长一致性准则的前提下,以频隙为基础分配单位为业务分配频谱资源。即网络设备会为该业务分配一个或者多个连续的频隙,以供该业务对应的光纤通道中每条光纤链路使用。在实际使用中,网络设备为某一业务确定好光纤通道后,会基于第一优先匹配原则,根据该业务的传输带宽粒度T(即该业务对应的光纤通道需要使用的频隙的个数)从频隙N1处开始搜索T个连续的空闲频隙以供该业务使用。只要搜索到T个连续的空闲频隙,则立刻将该T个连续的空闲频隙分配给该业务。例如,假设该业务需求的传输带宽粒度为3,该业务对应的光纤通道包括光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4。网络设备首先会提取出频隙1、频隙2和频隙3这三个频隙,然后依次判断这三个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上是否均未被占用。若网络设备确定这三个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上均未被占用,则可将频隙1、频隙2和频隙3这三个连续的频隙分配给上述业务。若网络设备确定这三个频隙中的任意一个或者多个在光纤链路L1、光纤链路L2、光纤链路L3或光纤链路L4上被占用,则网络设备会再从上述N个连续的频隙中提取出频隙2、频隙3和频隙4这三个频隙,并重复上述判断操作。依次类推,直至判断到频隙N-2、频隙N-1和频隙N为止。这样的光层频谱的分配方法由于未充分考虑分配的频谱资源的合理性,无法主动避免频谱碎片的产生,尤其是同时存在多个传输带宽粒度不同的业务时,频谱碎片产生的机率变得更大,从而使得光纤网络的频谱资源利用率低、吞吐量小。
下面,为了方便对本申请方案的理解,首先对本申请实施例中涉及到的一些概念进行介绍。
1、传输带宽粒度
本申请实施例中所涉及的传输带宽粒度是由某一业务所需要的传输带宽和该业务对应的光层频谱资源中各频隙的带宽决定,主要用于指代该业务进行数据传输所需要占用的 频隙的个数。例如,假设网络设备确定其接收到的业务需要的传输带宽为50Ghz,基于灵活栅格技术处理后的光层频谱资源中每个频隙占用12.5Ghz的带宽,则网络设备可确定该业务对应的传输带宽粒度为4。
2、频谱切片
本申请实施例所描述的频谱切片是网络设备在第一次接收到某一种传输带宽粒度的业务后,基于该业务对应的传输带宽粒度在光层频谱资源中划分出的一个频谱范围,这个频谱范围内可包含一个或者多个连续的频隙。
3、第一类频谱切片
本申请实施中所描述的第一类频谱切片指代的是网络设备在第一次接收到传输带宽粒度G1的业务(下文以目标业务代替描述)后在上述N个连续的频隙中划分出的频谱切片。并且,该第一类频谱切片中包含的频隙仅被传输带宽粒度G1的业务占用过。该第一类频谱切片与传输带宽粒度G1相关联,即该一类频谱切片中包含的频隙个数为目标业务的传输带宽粒度G1和正整数R的乘积N2。例如,请一并参见图3,图3是本申请实施例提供的一种频谱切片分布示意图。假设目标业务的传输带宽粒度为3,正整数R为2,则目标业务对应的第一类频谱切片中应包含6个频隙,如图3中的第一个第一类频谱切片(包括了频隙1到频隙6共6个频隙)或者第二个第一类频谱切片(包括了频隙8到频隙13这6个频隙)。
4、第二类频谱切片
本申请实施例中所描述的第二类频谱切片指代的是上述N个连续的频隙中包含的除上述第一类频谱切片以外的其他类频谱切片。这里,上述第二类频谱切片可包括A类频谱切片和/或B类频谱切片。上述A类频谱切片为至少可以被两种传输带宽粒度不同的业务占用的频谱切片。其包含的频隙的个数可以为N2,也可以为N3。例如,假设上述N个连续的频隙中存在一个第一类频谱切片D1,其对应的传输粒度为4。当网络设备接收到一个传输带宽粒度为5的业务,并将第一类频谱切片D1中包含的空闲频隙分配给传输带宽粒度为5的业务,则第一类频谱切片D1会自动转换成上述A类频谱切片。因此,可以理解到的是,A类频谱切片中包含的频隙的个数不唯一。上述B类频谱切片为网络设备基于除目标业务对应的传输带宽粒度G1以外的传输带宽粒度G2在上述N个频隙中确定出的频谱切片。B类切片频谱切片中包含的频隙的个数N3为传输带宽粒度G2和正整数R的乘积,G2不等于G1。并且,上述B类频谱切片仅被传输带宽粒度G2的业务占用过。例如,假设目标业务的传输带宽粒度为3,正整数R为2,请一并参见图3,图3中示出了目标业务对应的包含有6个频隙(包括频隙16到频隙21)的A类频谱切片。同时,图3中还示出了目标业务对应的包含有8个频隙(包括频隙23到频隙30)的B类频谱切片。该B类频谱切片中包括的频隙个数8为正整数2与4的乘积,则由上述第一类频谱切片的定义可知,换个角度来说的话,该B类频谱切片也可为传输带宽粒度4的业务对应的第一类频谱切片。
实施例一
为解决由于频谱资源分配的不合理导致的光纤网络的频谱资源利用率低的问题,本申请提供了一种频谱分配方法。请参见图4,图4是本申请实施例提供的一种频谱分配方法的流程示意图。这里,需要说明的是,在本申请实施例中,将以网络设备为执行主体进行描述。在本实施例中所涉及到的目标光纤通道包括光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4。
如图4所示,该频谱分配方法包括以下内容。
S11,获取目标业务的传输带宽粒度G1和目标业务对应的包括N个频隙的光层频谱资源。
在一些实施方式中,网络设备在接收到目标业务后,可先从目标业务对应的请求信号中解析出目标业务所要求的传输带宽粒度G1。网络设备还可从上述请求信号中解析出该目标业务对应的源点(即目标业务对应的数据资源在光纤网络中使用的目标光纤通道的起始节点)和宿点(即目标业务对应的目标光纤通道的最后一个节点)。然后,网络设备可根据目标业务的传输带宽粒度G1和目标光纤通道的源点和宿点,再结合常用的寻路算法为目标业务确定出一条或者多条目标光纤通道。这里,上述目标光纤通道中具体包括了一条或者多条光纤链路。
需要说明的是,网络设备可能会为目标业务确定出多条目标光纤通道,但是网络设备为上述多条目标光纤通道中每一条目标光纤通道分配频谱资源的过程是相同的,因此,本实施例中仅描述了网络设备为目标业务的一条目标光纤通道分配频谱资源的过程。具体的,结合图1所示的光纤网络,本实施例将以包括光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4的光纤通道L作为目标业务的目标光纤通道对网络设备的频谱分配过程进行详细说明和描述。
网络设备在获取到目标业务的传输带宽粒度和目标光纤通道后,还可获取与目标光纤通道对应的光层频谱资源。这里,该光层频谱资源是预先设定的。可以一并参见图2,该光层频谱资源包括N个连续的频隙的,上述N个连续的频隙中各频隙的频谱带宽是相同的。需要说明的是,在本实施例中,上述N个连续的频隙中各频隙的排列顺序由各频隙对应的通信光波长确定。例如,一种排列顺序为按照通信光波长从小到大的顺序排列(下文以第一排列顺序代替描述),即频隙1至频隙N。另一种排列顺序为按照通信光波长从大到小的顺序排列(下文以第二排列顺序代替描述),即频隙N至频隙1。可以理解到的是,上述第一排列顺序或者第二排列顺序仅为本方案中可选的排列顺序,不具备限定作用。本申请实施例以上述第一排列顺序为例进行描述。
S12,根据上述传输带宽粒度G1在上述N个频隙中确定出包含G1个连续的空闲频隙的目标频谱切片。
在一些实施方式中,网络设备在获取到目标业务对应的传输带宽G1和上述N个连续的频隙后,可先基于上述传输带宽粒度在上述N个连续的频隙中确定出目标频谱切片。这里,上述目标频谱切片可由N1个连续的频隙构成。上述目标频谱切片(即上述N1个连续的频隙)中至少应包含G1个连续的空闲频隙。上述空闲频隙指代的是在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4均处于空闲状态的频隙。这里,N大于N1,N1大于或者等于G1。
在一种实施方式中,网络设备可通过以下两种目标频谱切片确定方式在上述N个连续的频隙中确定出目标频谱切片。
目标频谱切片确定方式一:
请一并参见图5,图5是本申请实施例提供的目标频谱切片确定方式一的流程示意图,由图5可知,目标频谱切片确定方式一主要包括以下内容。
S1211,在N个连续的频隙中搜索第一类频谱切片。
S1212,若搜索到包含G1个连续的空闲频隙的第一类频谱切片,则将该第一类频谱切 片确定为目标频谱切片。
S1213,若搜索不到包含G1个连续的空闲频隙的频谱切片,则在上述N个连续的频隙中搜索第二类频谱切片。
S1214,若搜索到包含G1个连续的空闲频隙的第二类频谱切片,则将该第二类频谱切片确定为目标频谱切片。
S1215,若搜索不到包含G1个连续的空闲频谱的第二类频谱切片,则当在上述N个连续的频隙中搜索到N2个连续的空闲频隙时,将该N2个连续的空闲频隙确定为目标频谱切片。
对于上述步骤S1211,具体实现中,网络设备可通过以下两种第一类频谱切片搜索方式中的任意一种先在上述N个连续的频隙中搜索第一类频谱切片。
第一类频谱切片搜索方式一:
网络设备可先在上述N个频隙内排列顺序靠前的N-G1+1个频隙中选择出一个频隙Ni。这里,网络设备可随机在上述N-G1+1个频隙中选择出一个频隙Ni,也可按照上述第一排列顺序在上述N-G1+1个频隙中依次选择频隙Ni,此处不作限定。例如,请一并参见图3,网络设备可随机选择出频谱3,再随机选择出频隙2,网络设备也可按照第一排列顺序先选择频隙1,再选择频隙2,以此类推。然后,网络设备可从与其相连接存储设备中提取出上述N个连续的频隙对应的标识信息集合。其中,上述标识信息集合种包括N个标识信息,一个频隙对应一个标识信息。这里,上述各个频隙中任一频隙i对应的标识信息用于指示该频隙i所属的频谱切片的类别以及其所属的频谱切片在这一类频谱切片中的排列顺序。实际应用中,频隙i对应的标识信息的格式具体可为[类别,排列序号]。上述标识信息中的类别参量用于指示频隙i所属的频谱切片的类别,上述排列序号参量用于指示频隙i所属的频谱切片在同一频谱切片中的排列顺序(一般的,某一个频谱切片在其同一频谱切片中按照上述第一排列顺序排列)。例如,假设频隙1对应的标识信息为[第一类,1],即表示频隙1属于上述N个频隙中存在的某一个第一类频谱切片。并且,按照上述第一排列顺序,频隙1所属的第一类频谱切片是N个频隙中包含的一个或者多个第一类频谱切片中的第一个。
然后,网络设备可从上述标识信息集合种提取出以频隙Ni为首个频隙的G1个连续的频隙中各个频隙对应的标识信息。网络设备在获取到上述以频隙Ni为首个频隙的G1个连续的频隙中各个频隙对应的标识信息后,可根据各个频隙对应的标识信息判断该G1个连续的频隙是否均属于同一个第一类频谱切片。若网络设备确定上述G1个连续的频隙均属于同一个第一类频谱切片,则可继续获取与上述G1个连续的频隙相邻的多个频隙对应的标识信息,并逐个判断这些频隙是否和频隙Ni属于同一个第一类频谱切片,直至在上述N个频隙中将频隙Ni所属的第一类频谱切片所包含的所有频隙均确定出来为止。此时,网络设备可确定其在N个频隙中搜索出一个第一类频谱切片。若网络设备确定上述G1个连续的频隙不属于同一第一类频谱切片,则可在上述N-G1+1个频隙中除上述频隙Ni以外的N-G1个频隙中重新选择一个频隙Nj。然后网络设备可从标识信息集合中提取出以频隙Nj为首个频隙的G1个连续的频隙中各个频隙对应的标识信息,并重复执行如上所述的判断操作,从而确定其是否从上述N个频隙中搜索到了一个第一类频谱切片。依次类推,网络设备会一直重新选择一个新的起始频隙并执行相同的判断操作,直至搜索到一个第一类频谱切片或者遍历完上述N-G1+1个频隙仍为搜索到一个第一类频谱切片为止。
例如,请一并参见图3。假设目标业务的传输带宽粒度是3,预设的基准频宽是2。网络设备在获取到目标业务的传输带宽粒度和预设的基准频宽后,可确定目标业务对应的第一类频谱切片内应包含6个频隙。网络设备可先在排序靠前的N-3个频隙中选择频隙1作为起始频隙,并从标识信息集合中获取频隙1、频隙2和频隙3这三个频隙对应的标识信息。这里,假设频隙1对应的标识信息为[第一类,1],频隙2对应的标识信息为[第一类,1],频隙3对应的标识信息为[第一类,1]。当网络设备检测到频隙1、频隙2和频隙3这三个频隙对应的标识信息相同时,则可确定频隙1、频隙2和频隙3均属于第一个第一类频谱切片,即可确定上述N个连续的频隙中存在第一个第一类频谱切片。然后,网络设备可对频隙3相邻的频隙进行检测,直至将第一个第一类频谱切片剩余的3个频隙找出为止。最终,网络设备可确定上述N个连续的频隙中存在第一个第一类频谱切片,该第一个第一类频谱切片中包含频隙1、频隙2和频隙3、频隙4、频隙5、频隙6这6个频隙。
第一类频谱切片搜索方式二:
网络设备也可先从与其相连接存储设备中提取出上述N个连续的频隙对应的切片分布信息。这里,上述切片分布信息用于指示上述N个连续的频隙中频谱切片的分布情况。例如,上述切片分布信息可具体指示上述N个连续的频隙中存在几个第一类频谱切片,每个第一类频谱切片又包含了哪几个频隙。比如,结合图3,上述切片分布信息可指示该N个连续的频隙中包含第一个第一类频谱切片,频隙1到频隙6属于该第一个第一类频谱切片。网络设备在获取到上述切片分布信息后,即可直接根据上述切片分布信息从上述N个连续的频隙中找到第一个第一类频谱切片。
对于上述步骤S1212,网络设备在上述N个连续的频隙中找到第一个第一类频谱切片后,可在第一个第一类频谱切片中搜索G1个连续的空闲频隙。具体的,网络设备可获取到上述N个连续的频隙对应的频谱占用信息。上述频谱占用信息用于表征上述N个连续的频隙在光纤网络内各条光纤链路上的占用情况。然后,网络设备可在上述第一个第一类频谱切片中选择G1个连续的频隙,并根据上述N个连续的频隙对应的频谱占用信息确定出上述G1个连续的频隙中的各个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上是否均未被占用。若网络设备确定上述各个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上均未被占用,则可确定第一个第一类频谱切片中存在G1个连续的空闲频隙,可将上述第一个第一类频谱切片确定为目标频谱切片。若网络设备确定上述各个频隙中任意一个或多个频隙在光纤链路L1、光纤链路L2、光纤链路L3或光纤链路L4上被占用,则网络设备可在第一个第一类频谱切片中重新选择出新的G1个连续的频隙,并继续判断该G1个连续的频隙是否为空闲频隙,具体过程如上,此处便不再赘述。直到网络设备在第一个第一类频谱切片中找到G1个连续的空闲频隙或者遍历完第一个第一类频谱切片所有的频隙仍然未找到G1个连续的空闲频隙为止。若网络设备在上述第一个第一类频谱切片中搜索不到G1个连续的空闲频隙,则网络设备可在上述N个连续的频隙中继续搜索第二个第一类频谱切片。若网络设备搜索到第二个第一类频谱切片,则继续判断第二个第一类频谱切片中是否存在G1个连续的空闲频隙。若在搜索到的第二个第一类频谱切片中确定出G1个连续的空闲频隙,则网络设备可将该第二个第一类频谱切片确定为目标频谱切片。因为与目标业务的传输带宽粒度相关联的第一类频谱切片中更大可能会存在可供目标业务使用的频谱资源,并且在第一类频谱切片中为目标业务分配频谱资源可有效的避免频谱碎片的产生,所以,优先在第一类频谱切片中搜索目标业务需求的频谱资源, 可提升频谱分配的速率,也可降低光纤网络的频谱碎片率,提升光纤网络的频谱利用率。
下面将结合图3,对网络设备在N个连续的频隙中搜索第一类频谱切片,并将检测到包含G1个连续的空闲频隙的第一类频谱切片确定为目标频谱切片的过程进行举例描述。这里以网络设备通过上述第一类频谱切片搜索方式一为例。结合图3,假设目标业务的传输带宽粒度是3,预设的基准频宽是2,N个连续的频隙中包含第一个第一类频谱切片和第二个第一类频谱切片。第一个第一类频谱切片包含频隙1至频隙6这6个频隙,第二个第一类频谱切片包含频隙8至频隙13这6个频隙。网络设备在搜索到上述第一个第一类频谱切片后,可先挑选出频隙1、频隙2和频隙3这三个频隙,然后根据N个连续的频隙对应的频谱占用信息判断频谱1、频隙2和频隙3在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上是否被占用。由图3可知,网络设备最终可以确定出频隙1、频隙2在光纤链路L1、光纤链路L3和光纤链路L4上均已被占用,频隙1、频隙2和频隙3在光纤链路L2上已被占用。然后,网络设备可选择出频隙2、频隙3和频隙4这三个频隙,再继续判断频隙2、频隙3和频隙4这三个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4是否均未被占用。当网络设备确定频隙2、频隙3和频隙4这三个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4也被占用时,可继续选择频隙3、频隙4和频隙5这三个频隙,并执行和上述相同的判断操作。直至当网络设备选择出频隙4、频隙5和频隙6这是三个频隙,并确定出频隙4和频隙5在光纤连续L3上被占用后,则可确定第一个第一类频谱切片中不存在3个连续的空闲频隙时,网络设备可在上述N个频隙中搜索出第一个第一类频谱切片以外的其他的第一类频谱切片,具体搜索过程可参见前文所述的搜索第一类频谱切片的过程,此处便不再赘述。当网络设备搜索到图3所示的第二个第一类频谱切片时,可继续判断该第二个第一类频谱切片中是否存在3个连续的空闲频隙,具体过程可参见前文所述的判断第一个第一类频谱切片中是否存在3个连续的空闲频隙的过程,此处便不再赘述。结合图3可知,网络设备在选择出第二个频谱切片中包括的频隙12、频隙13和频隙14这3个频隙后,可确定出这3个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上均未被占用。因此,网络设备可确定上述第二个第一类频谱切片中包括3个连续的空闲频隙,可将第二个第一类频谱切片确定为目标频谱切片。
对于上述步骤S1213和步骤S1214,若网络设备在上述N个连续的频隙中搜索不到第一类频谱切片,或者,网络设备搜索到的一个或者多个第一类频谱切片中均不包含G1个连续的空闲频隙,则网络设备可在上述N个连续的频隙中搜索第二类频谱切片。当网络设备搜索到包含G1个连续的空闲频隙的第二类频谱切片时,可将该第二类频谱切片确定为目标频谱切片。下面分别以第二类频谱切片包括A类频谱切片、第二类频谱切片包括B类频谱切片以及第二类频谱切片包括A类频谱切片和B类频谱切片为这三种实施场景为例,对网络设备从N个连续的频隙中搜索第二类频谱切片,并将包含G1个连续的空闲频隙的第二类频谱切片确定为目标频谱切片的过程进行详细描述。
实施场景一(第二类频谱切片中包括A类频谱切片):
若网络设备在上述N个连续的频隙中搜索不到第一类频谱切片,或者,网络设备搜索到的一个或者多个第一类频谱切片中均不包含G1个连续的空闲频隙,则网络设备可在上述N个连续的频隙中搜索上述A类频谱切片。网络设备在N个连续的频隙中搜索A类频谱切片的过程可参见前文叙述的网络设备在N个连续的频隙中搜索第一类频谱切片的过程, 此次便不再叙述。当网络设备在N个连续的频隙中搜索到第一个A类频谱切片时,可根据N个连续的频隙对应的频谱占用信息判断上述第一个A类频谱切片中是否包含G1个连续的空闲频谱。网络设备判断第一个A类频谱切片中是否存在G1个连续的空闲频隙的过程可参见前文所述的网络设备判断第一个第一类频谱切片中是否包含G1个连续的空闲频隙的过程,此处便不再赘述。当网络设备确定出上述第一个A类频谱切片中存在G1个连续的空闲频隙,则可将第一个A类频谱切片确定为目标频谱切片。若网络设备确定出上述第一个A类频谱切片中不存在G1个连续的空闲频隙,则可在上述N个连续的频隙中搜索第二个A类频谱切片,并继续判断第二个A类频谱切片中是否存在G1个连续的空闲频隙。网络设备可重复上述操作,直至在N个频隙中找到包含有G1个连续的空闲频隙的A类频谱切片或者遍历完所有的频隙仍未找到包含有G1个连续的空闲频隙的A类频谱切片为止。
例如,请一并参见图3,当网络设备在上述N个连续的频隙中搜索不到包含G1个连续的空闲频隙的第一类频谱切片时(即假设图3中的第一个第一类频谱切片和第二个第一类频谱切片中均不包含3个连续的空闲频隙),则网络设备可在上述N个连续的频隙中搜索上述A类频谱切片。当网络设备搜索到包含有频隙16到频隙21这6个频隙的A类频谱切片后,可在频隙16到频隙21这6个频隙中搜索3个连续的空闲频隙。当网络设备选择出频隙19、频隙20和频隙21这3个频隙后,可确定出这3个频隙在纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上均未被占用。因此,网络设备可将该A类频谱切片确定为目标频谱切片。
通过A类频谱切片为不同传输带宽粒度的业务提供频谱资源,可使得多个不同传输带宽粒度的业务能够共享同一个频谱切片,这样可以避免因为某一种传输带宽粒度的业务较少造成的频谱资源浪费,可以提升光纤网络的频谱资源的利用率。
实施场景二(第二类频谱切片中包括B类频谱切片):
若网络设备在上述N个连续的频隙中搜索不到第一类频谱切片,或者,网络设备搜索到的一个或者多个第一类频谱切片中均不包含G1个连续的空闲频隙,则网络设备可在上述N个连续的频隙中搜索上述B类频谱切片。网络设备在N个连续的频隙中搜索B类频谱切片的过程可参见前文叙述的网络设备在N个连续的频隙中搜索第一类频谱切片的过程,此次便不再叙述。
在一种具体的实现方式中,网络设备可以在每搜索到一个B类频谱切片后,判断该B类频谱切片内是否包含G1个连续的空闲频隙。网络设备判断B类频谱切片中是否存在G1个连续的空闲频隙的过程可参见前文所述的网络设备判断第一个第一类频谱切片中是否包含G1个连续的空闲频隙的过程,此处便不再赘述。若网络设备在其搜索到的B类频谱切片中搜索到G1个连续的空闲频隙,即可将该B类频谱切片确定为目标频谱切片。网络设备可重复上述操作,直至在N个频隙中找到包含有G1个连续的空闲频隙的B类频谱切片或者遍历完所有的频隙仍未找到包含有G1个连续的空闲频隙的B类频谱切片为止。
例如,请一并参见图3,当网络设备在上述N个连续的频隙中搜索不到包含G1个连续的空闲频隙的第一类频谱切片时(即假设图3中的第一个第一类频谱切片和第二个第一类频谱切片中均不包含3个连续的空闲频隙,且不存在A类频谱切片),则网络设备可在上述N个连续的频隙中搜索上述B类频谱切片。当网络设备搜索到包含有频隙23到频隙30这8个频隙的B类频谱切片后,可在频隙23到频隙30这8个频隙中搜索3个连续的空闲频隙。当网络设备选择出频隙27、频隙28和频隙29这3个频隙后,可确定出这3个频隙 在纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上均未被占用。因此,网络设备可将该B类频谱切片确定为目标频谱切片。
在另一种具体的实现方式中,网络设备可先将N个连续的频隙中包括的多个B类频谱切片均搜索出来,这里假设网络设备搜索到M1个B类频谱切片,M1大于或者等于2。然后,网络设备可在其搜索到的M1个B类频谱切片中包括的M2个目标B类频谱切片均搜索出来。这里,上述目标B类频谱切片为至少包含G1个连续的空闲频隙的B类频谱切片,M2小于或者等于M1。然后,网络设备可从与其相连接的存储设备中提取出N个连续的频隙对应的频谱占用信息,然后根据N个连续的频隙对应的频谱占用信息确定出上述M2个B个频谱切片中各目标B类频谱切片对应的频谱占用信息,并根据各目标B类频谱切片对应的频谱占用信息和目标业务的传输带宽粒度G1确定出上述各目标B类频谱切片对应的碎片率。每个目标B类频谱切片对应的碎片率用于表征该目标B类频谱切片内包含的频谱碎片的数量。最后,网络设备可在各目标B类频谱切片中选择出碎片率最小的目标B类频谱切片,并将该目标B类频谱切片确定为目标频谱切片。
下面以M1个B类频谱切片中包括2个目标B类频谱切片这一场景为例,对网络设备从多个目标B类频谱切片确定出目标频谱切片的过程进行示例性的描述。假设上述2个目标B类频谱切片为第一目标B类频谱切片和第二目标B类频谱切片。网络设备可根据N个连续的频隙对应的频谱占用信息确定出上述第一目标B类频谱切片对应的第一频谱占用信息和上述第二目标B类频谱切片对应的第二频谱占用信息。这里,上述第一频谱占用信息用于表征第一目标B类频谱切片中包含的G2个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上的占用情况。第二频谱占用信息用于表征第二目标B类频谱切片中包含的G2个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上的占用情况。然后,网络设备可根据上述传输带宽粒度G1和上述第一频谱占用信息计算上述第一目标B类频谱切片对应的第一碎片率,并根据上述传输带宽粒度G1和上述第二频谱占用信息计算上述第二目标B类频谱切片对应的第二碎片率。下面以网络设备根据上述传输带宽粒度G1和上述第一频谱占用信息计算上述第一目标B类频谱切片对应的第一碎片率的过程为例。网络设备可先根据第一频谱占用信息计算上述第一目标B类频谱切片内的G2个频隙在光纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上的利用率的均值。具体的,网络设备可根据第一频谱占用信息确定出上述G2个频隙中被光纤链路L1占用的频隙的个数C1,并将被光纤链路L1占用的频隙的个数C1与频隙总个数G2的比值C1/G2确定为第一目标B类频谱切片在光纤链路L1上的利用率,这里假设为T1。同理,网络设备可采用同样的方法计算出第一目标B类频谱切片在光纤链路L2、光纤链路L3和光纤链路L4上的利用率,这里假设为T2、T3和T4,最后,网络设备可将T1、T2、T3和T4的均值确定为第一目标B类频谱切片在各光纤链路上的利用率的均值。然后,网络设备可获取预设门限均值。这里,上述预设门限均值可为通过多次频谱分配实验获得的经验均值。当网络设备确定上述均值大于或者等于预设门限均值,则可确定第一碎片率为空,即第一目标B类频谱切片不存在对应的第一碎片率。并且,网络设备还可指示上述第一目标B类频谱切片不可被确定为目标频谱切片。
若网络设备确定均值小于上述预设门限均值,则可继续根据上述第一频谱占用信息统计第一目标B类频谱切片在目标光纤通道上的碎片总量。具体的,网络设备可先根据第一频谱占用信息中包括的上述G2个频隙在光纤链路L1上的占用情况确定出上述G2个频隙 中未被光纤链路L1占用的一个或者多个频隙块。然后,再统计上述一个或者多个频隙块中可能包括的目标频隙块的个数,并将目标频隙块的个数确定为第一目标B类频谱切片在光纤链路L1上的碎片量。这里,上述目标频谱块为包含的频隙个数小于上述传输带宽粒度G1的频隙块。例如,请一并参见图6,图6是本申请实施例提供的碎片量统计示意图。在图6中,假设频隙1至频隙12这12个频隙构成了目标业务的一个第一目标B类频谱切片,目标业务的传输带宽粒度为3。网络设备可由第一频谱占用信息确定在光纤链路L1上,该第一目标B类频谱切片中的频隙1和频隙2被占用,频隙3和频隙4空闲,频隙5和频隙6被占用,频隙7到频隙12空闲。因此,网络设备可在该第一目标B类频谱切片中确定出由频隙3和频隙4构成的第一频隙块和由频隙7到频隙12这6个频隙块构成的第二频隙块。网络设备可检测到第一频隙块中包含的频隙个数小于3,第二频隙块中包含的频隙个数大于3,所以,网络设备可确定上述第一频隙块为一个目标频隙块,即在该第一目标B类频谱切片在光纤链路L1上的碎片量为1。同理,网络设备还可根据第一频谱占用信息统计出第一目标B类频谱切片在光纤链路L2、光纤链路L3和光纤链路L4上的碎片量。然后,网络设备可根据第一目标B类频谱切片在上述各光纤链路上的碎片量确定出上述第一目标B类频谱切片在目标光纤通道上的碎片总量。最后,网络设备可计算出上述碎片总量与第一目标B类频谱切片中包含的频隙个数N2的比值并获取预设比例阈值。若网络设备确定出该比值小于上述预设比例阈值,则可将该比值确定为第一目标B类频谱切片的对应的第一碎片率。若网络设备确定出该比值大于或者等于预设比例阈值,则可确定第一目标B类频谱切片的第一碎片率为空,即第一目标B类频谱切片不存在对应的第一碎片率。进一步的,网络设备还可指示第一目标B类频谱切片不可被确定为目标频谱切片。同理,网络设备根据第二频谱占用信息和传输带宽粒度G1计算第二目标B类频谱切片的第二碎片率的过程可参见上文描述的计算第一目标B类频谱切片的第一碎片率的过程,此处便不再赘述。当网络设备计算出第一目标B类频谱切片的第一碎片率和第二目标B类频谱切片的第二碎片率后,若网络设备确定出第一碎片率小于或者等于第二碎片率,则可将上述第一目标B类频谱切片确定为目标频谱切片,若网络设备确定出第一碎片率大于第二碎片率,则可将上述第二目标B类频谱切片确定为目标频谱切片。这里需要说明的是,上文仅描述了N个连续的频隙中存在两个目标B类频谱切片的情况,但可以理解到的,当存在三个或者更多个目标B类频谱切片的情形时,网络设备仍然可采用与上文相同的方法计算出各个目标B类频谱切片对应的碎片率,并将碎片率最小的目标B类频谱切片确定为目标频谱切片,具体过程此处便不再赘述。
通过预先搜索出N个频隙中存在的多个目标B类频谱切片,再选择碎片率最小的频谱切片作为目标频谱切片,可使得确定出的目标频谱切片碎片量小,可进一步减少光层频谱资源的碎片率,从而提升光纤网络的频谱资源的利用率。
实施场景三(第二类频谱切片中同时包括A类频谱切片和B类频谱切片):
网络设备可优先在N个连续频隙中搜索包含G1个连续的空闲频隙的A类频谱切片,并将其确定为目标频谱切片。具体过程可参见前文叙述的搜索包含G1个连续的空闲频隙的A类频谱切片,并将其确定为目标频谱切片的过程,此处便不再赘述。只有当网络设备在N个连续频隙中搜索不到包含G1个连续的空闲频隙的A类频谱切片时,网络设备才会在N个连续频隙中搜索包含G1个连续的空闲频隙的B类频谱切片,并将其确定为目标频谱切片。例如,请一并参见图3,当网络设备在上述N个连续的频隙中搜索不到包含G1个 连续的空闲频隙的第一类频谱切片时(即假设图3中的第一个第一类频谱切片和第二个第一类频谱切片中均不包含3个连续的空闲频隙),则网络设备可在上述N个连续的频隙中搜索上述A类频谱切片。当网络设备搜索到包含有频隙16到频隙21这6个频隙的A类频谱切片后,可在频隙16到频隙21这6个频隙中搜索3个连续的空闲频隙。当网络设备确定频隙16到频隙21这6个频隙装中不包含3个连续的空闲频隙(这里假设图3中的A类频谱切片中不包含3个连续的空闲频隙),并且在N个连续的频隙中也无法搜索到其他A类频谱切片时,网络设备可在给N个连续的空闲频隙中搜索B类频谱切片。当网络设备搜索到包含有频隙23到频隙30这8个频隙的B类频谱切片后,可在频隙23到频隙30这8个频隙中搜索3个连续的空闲频隙。当网络设备选择出频隙27、频隙28和频隙29这3个频隙后,可确定出这3个频隙在纤链路L1、光纤链路L2、光纤链路L3和光纤链路L4上均未被占用。此时,网络设备即可将该B类频谱切片确定为目标频谱切片。
通过A类频谱切片和B类频谱切片相结合的搜索方式,可使得网络设备能有更大的概率从N个连续的频隙中确定出目标频谱切片,可提升频谱资源分配的效率。同时,这种方式也可使得具备空闲频谱资源的频谱切频谱分配过程中能得到合理的利用,可提升光纤网络的频谱资源的利用率。
对于上述步骤S1215,进一步的,结合上述实施场景一,当网络设备遍历完所有的频隙仍未找到包含有G1个连续的空闲频隙的A类频谱切片时,可在N个连续的频隙中搜索N2个连续的空闲频隙。这里,上述N2个连续的空闲频隙不包含于N个连续的频隙中包含的任意一个频谱切片。具体搜索过程可参见前文所述网络设备在第一类频谱切片中搜索G1个连续的空闲频隙的过程,此次便不再赘述。若网络设备在N个连续的频隙中搜索到N2个连续的空闲频隙,则可将上述N2个连续的空闲频隙确定为目标频谱切片。例如,请一并参见如3,当网络设备在N个连续的频隙中搜索到频隙31到频隙36这6个连续的空闲频隙后,即可将该6个连续的空闲频隙确定为目标频谱切片。这里可以理解到的是,这N2个连续的空闲频隙也构成了传输带宽粒度G1的业务对应的第一类频谱切片,网络设备在将上述N2个连续的空闲频隙确定为目标频谱切片的同时,还可以对这N2个连续的空闲频隙中各空闲频隙的标识信息进行更新,或者,对上述切片分布信息进行更新,以使得下一个传输带宽粒度G1的业务到来时,网络设备可基于N2个连续的空闲频隙中各空闲频隙更新后的标识信息或者更新后的切片分布信息确定出该N2个连续的空闲频隙为该业务对应的一个第一类频谱切片。
或者,结合上述实施场景二,当网络设备遍历完所有的频隙仍未找到包含有G1个连续的空闲频隙的B类频谱切片时,可在N个连续的频隙中搜索N2个连续的空闲频隙。这里,上述N2个连续的空闲频隙不包含于N个连续的频隙中包含的任意一个频谱切片。具体搜索过程可参见前文所述网络设备在第一类频谱切片中搜索G1个连续的空闲频隙的过程,此次便不再赘述。若网络设备在N个连续的频隙中搜索到N2个连续的空闲频隙,则可将上述N2个连续的空闲频谱去确定为目标频谱切片。例如,请一并参见如3,当网络设备在N个连续的频隙中搜索到频隙31到频隙36这6个连续的空闲频隙后,即可将该6个连续的空闲频隙确定为目标频谱切片。这里可以理解到的是,这N2连续的空闲频隙也构成了传输带宽粒度G1的业务对应的第一类频谱切片,网络设备在将上述N2个连续的空闲频谱去确定为目标频谱切片同时还需要对这N2个连续的空闲频隙中各空闲频隙的标识信息进行更新,以使得下一个传输带宽粒度G1的业务到来时,可基于N2个连续的空闲频隙 中各空闲频隙更新后的标识信息确定出该N2个连续的空闲频隙为该业务对应的一个第一类频谱切片。
或者,结合上述实施场景三,当网络设备遍历完所有的频隙仍未找到包含有G1个连续的空闲频隙的B类频谱切片时,可在N个连续的频隙中搜索N2个连续的空闲频隙,并将其确定成目标频谱切片。具体过程可参见前文所述网络设备在在N个连续的频隙中搜索N2个连续的空闲频隙,并将其确定成目标频谱切片的过程,此处便不再赘述。
目标频谱切片确定方式二:
请一并参见图7,图7是本申请实施例提供的目标频谱确定方式二的流程示意图。这里,本申请实施例中涉及的目标频谱切片确定方式二是基于第二类频谱切片中同时包含A类频谱切片和B类频谱切片这一场景实现的。由图7可知,目标频谱方式二主要包括以下内容。
S1221,在上述N个连续的频隙中搜索第一类频谱切片。
S1222,若搜索到包含G1个连续的空闲频隙的第一类频谱切片,则可将该第一类频谱切片确定为目标频谱切片。
S1223,若搜索不到包含G1个连续的空闲频隙的第一类频谱切片,可在上述N个频隙中搜索上述A类频谱切片。
S1224,若搜索到包含G1个连续的空闲频隙的A类频谱切片,则可将该A类频谱切片确定为目标频谱切片。
S1225,若搜索不到包含G1个连续的空闲频隙的A类频谱切片,则可获取并根据N个连续的频隙对应的频谱占用信息计算出上述N个连续的频隙对应的平面利用率。
S1226,当平面利用率小于或者等于预设利用率阈值时,在N个连续的频隙中搜索N2个连续的空闲频隙。
S1227,若在N个连续的频隙中搜索到N2个连续的空闲频隙时,则将该N2个连续的空闲频隙确定成目标频谱切片。
S1228,若搜索不到N2个连续的空闲频隙,则当搜索到包含G1个连续的空闲频隙的B类频谱切片时,将该B类频谱切片确定为目标频谱切片。
S1229,当确定上述平面利用率大于上述平面利用率阈值时,在N个连续的频隙中搜索包含G1个连续的空闲频隙的B类频谱切片。
S1230,若搜索到包含G1个连续的空闲频隙的B类频谱切片,,则将该B类频谱切片确定为目标频谱切片。
S1231,若搜索不到包含G1个连续的空闲频隙的B类频谱切片,则当搜索到N2个连续的空闲频隙时,将该N2个连续的空闲频隙确定成目标频谱切片。
对于上述步骤S1221和步骤1222,其具体实施过程可参见目标频谱确定方式一中步骤S1211和步骤S1212所描述的网络设备搜索第一类频谱切片和将搜索到的包含G1个连续的空闲频隙的第一类频谱切片确定为目标频谱切片的过程,此处便不再赘述。
对于步骤S1223和步骤1224,其具体实施过程可参见目标频谱确定方式一中步骤S1213和步骤S1214中所描述的网络设备搜索A类频谱切片和将搜索到的包含G1个连续的空闲频隙的A类频谱切片确定为目标频谱切片的过程,此处便不再赘述。
对于上述步骤S1225,若网络设备确定搜索不到A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中均不包含G1个连续的空闲频隙,则网络设备可从与其相连接的 存储设备中提取N个连续的频隙对应的频谱占用信息,并根据N个连续的频隙对应的频谱占用信息计算出上述N个连续的频隙对应的平面利用率。这里,上述平面利用率用于表征N个连续的频隙被目标光纤通道所包含的光纤链路的占用情况。具体的,网络设备可根据N个连续的频隙对应的频谱占用信息确定出上述N个连续的频隙中空闲频隙的个数K,并将空闲频隙的个数K与N的比值K/N确定为N个连续的频隙对应的平面利用率。
对于上述步骤S1226,具体的,网络设备可先获取到预设的平面利用率阈值,该平面利用率阈值可为采用本实施例所述的频谱分配方法进行多次频谱分配实验得到的经验值。当网络设备确定上述平面利用率小于或者等于上述平面利用率阈值时,网络设备可在N个连续的频隙中搜索N2个连续的空闲频隙。其具体搜索过程可参见目标频谱切片确定方式一中步骤S1215所描述的网络设备在N个连续的频隙中搜索N2个连续的空闲频隙的过程,此处便不再赘述。
对于上述步骤S1227,具体的,当网络设备确定其在N个连续的频隙中搜索到N2个连续的空闲频隙后,其可将该N个连续的空闲频隙确定为目标频谱切片。其具体过程可参见目标频谱切片确定方式一中步骤S1215中所描述的将N个连续的空闲频隙确定为目标频谱切片的过程,此处便不再赘述。
对于步骤S1228,具体的,若网络设备在N个连续的频隙中搜索不到N2个连续的空闲频隙,则可在N个连续频隙中搜索包含G1个连续的空闲频隙的B类频谱切片,并将其确定为目标频谱切片。其具体过程可参见目标频谱切片确定方式一中步骤S1213和步骤S1214中所描述的在N个连续频隙中搜索包含G1个连续的空闲频隙的B类频谱切片,并将其确定为目标频谱切片的过程,此处便不再赘述。
对于步骤S1229,具体的,当网络设备确定上述平面利用率大于上述平面利用率阈值时,网络设备可先在N个连续频隙中搜索包含G1个连续的空闲频隙的B类频谱切片。其具体过程可参见目标频谱切片确定方式一中步骤S1213所描述的在N个连续的空闲频隙中搜索包含G1个连续的空闲频隙的B类频谱切片的过程,此处便不再赘述。
对于步骤S1230,若网络设备搜索到包含G1个连续的空闲频隙的B类频谱切片,则可将该B类频谱切片确定为目标频谱切片。其具体过程可参见目标频谱切片确定方式一中步骤S1214中所描述的将包含G1个连续的空闲频隙的B类频谱切片确定为目标频谱切片的过程,此处便不再赘述。
对于步骤S1231,若网络设备在N个连续频隙中搜索不到包含G1个连续的空闲频隙的B类频谱切片时,则可在N个连续的频隙中搜索N2个连续的空闲频隙,并将其确定成目标频谱切片。其具体过程可参见目标频谱切片确定方式一中步骤S1215中所描述的在N个连续的频隙中搜索N2个连续的空闲频隙,并将搜索到的N2个连续的空闲频隙确定为目标频谱切片的过程,此处便不再赘述。
在又一种可行的实现方式中,网络设备在获取到目标业务对应的传输带宽粒度G1后,还可获取预设的传输带宽粒度阈值Gt,这里传输带宽粒度阈值Gt可为多次频谱分配实验得到的经验值。当网络设备确定传输带宽粒度G1小于或者等于传输带宽粒度阈值Gt时,网络设备可按照前文所述的第一排列顺序(即由频隙1至频隙N排列)在上述N个连续的频隙中确定出目标频谱切片。当网络设备确定传输带宽粒度G1大于传输带宽粒度阈值Gt时,网络设备可按照前文所述的第二排列顺序(即由频隙N至频隙1排列)在上述N个连续的频隙中确定出目标频谱切片。根据传输带宽粒度G1的大小按照不同的排列顺序从N 个连续的频隙中确定目标频谱切片,可使得为传输带宽粒度相同或者相近的业务确定出的目标频谱切片相对集中,可有效避免因频谱切片在N个连续的频隙中零散分布造成的频谱资源浪费的情况,可提升光纤网络的频谱资源的利用率。
S13,将目标频谱切片中包含的G1个连续的空闲频隙分配给上述目标业务。
在一些可行的实施方式中,在网络设备确定出目标业务对应的目标频谱切片后,即可将目标频谱切片中包含的G1个连续的空闲频隙分配给目标业务,以供目标业务对应的数据资源在目标光纤通道上使用。
可选的,若目标频谱切片中包含的空闲频隙的个数大于G1,则网络设备可按照其在N个频隙中确定出目标频谱切片的过程中所使用的搜索顺序,将目标频谱切片中包含的空闲频隙内排序靠前的G1个空闲频谱分配给目标业务。
可选的,当网络设备确定出的目标频谱切片为前文所述的B类频谱切片时,在其将目标频谱切片内的G1个空闲频隙分配给目标业务后,可将该B类频谱切片转换成A类频谱切片。具体的,网络设备可对该B类频谱切片中包含的各个频隙所对应的标识信息进行更新,或者,网络设备可对N个频隙对应的切片分布信息进行更新,以使得该B类频谱切片转换成A类频谱切片。
在本申请实施例中,在获取到目标业务的传输带宽粒度G1和目标业务对应的N个频隙后,根据目标业务的传输带宽粒度G1在上述N个频隙中搜索到或者生成目标业务对应的目标频谱切片,进而以频谱切片为基本范围为目标业务分配频谱资源。一个业务对应一个频谱切片,这样可减少为不同传输带宽粒度的业务穿插式分配频谱资源而产生的频谱碎片,使得频谱资源分配过程变得更加合理,提升了光纤网络的频谱资源的利用率,也提高了光纤网络的吞吐量。
实施例二
请参见图8,图8是本申请实施例提供的一种频谱分配装置的结构示意图。该装置包括:
获取单元10,用于获取目标业务的传输带宽粒度G1和上述目标业务对应的目标光纤通道的光层频谱资源。其中,上述光层频谱资源由N个连续的频隙组成,上述N个连续的频隙中各频隙的频谱带宽相同。
目标频谱切片确定单元20,用于根据上述获取单元10获取的上述传输带宽粒度G1在上述N个频隙中确定出目标频谱切片,其中,上述目标频谱切片由N1个连续的频隙构成,上述目标频谱切片至少包括G1个连续的空闲频隙,N大于N1,N1大于或者等于G1;
分配单元30,用于将上述目标频谱切片确定单元20得到的上述目标频谱切片中包含的G1个连续的空闲频隙分配给上述目标业务。
在一种可行的实施方式中,上述目标频谱切片确定单元20用于:
若在上述N个连续的频隙中搜索到N2个连续的空闲频隙,则将上述N2个连续的空闲频隙确定为目标频谱切片,其中,N2为上述传输带宽粒度G1和正整数R的乘积,N2小于N。
在一种可行的实施方式中,上述目标频谱切片确定单元20用于:
若在上述N个频隙中搜索到一个或者多个第一类频谱切片,并且检测到上述一个或者多个第一类频谱切片中任一第一类频谱切片内包含G1个连续的空闲频隙,则将上述任一第一类频谱切片确定为目标频谱切片。其中,上述第一类频谱切片中包含的频隙的个数为 上述传输带宽粒度G1和正整数R的乘积N2。若在上述N个频隙中搜索不到第一类频谱切片,或者,搜索到的一个或者多个第一类频谱切片中各个第一类频谱切片内均不包含G1个连续的空闲频隙,则在上述N个频隙中搜索上述第二类频谱切片。若搜索到的一个或者多个第二类频谱切片中任一第二类频谱片中包含G1个连续的空闲频隙,则将上述任一第二类频谱切片确定为目标频谱切片。其中,上述第二类频谱切片包括A类频谱切片和/或B类频谱切片。上述B类频谱切片中包含的频隙的个数N3为传输带宽粒度G2和正整数R的乘积,G2不等于G1。
上述A类频谱切片中包含的频隙的个数包括N2和/或N3,并且上述A类频谱切片至少被两种传输带宽粒度不同的业务占用过。
在一种可行的实施方式中,当上述第二类频谱切片包括A类频谱切片和上述B类频谱切片时,上述目标频谱切片确定单元20用于:
当在上述N个连续的频隙中搜索到的一个或者多个上述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,将上述任一A类频谱切片确定为目标频谱切片。当在上述N个连续的频隙中搜索不到上述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在上述N个连续的频隙中搜索上述B类频谱切片。若搜索到的一个或者多个B类频谱切片中任一B类频谱切片内包含G1个连续的空闲频隙,则将上述任一B类频谱切片确定为目标频谱切片。
在一种可行的实施方式中,上述目标频谱切片确定单元20还用于:
若在上述N个连续的频隙中搜索不到上述B类频谱切片,或者,搜索到的一个或者多个B类频谱切片中各个B类频谱切片内均不包含G1个连续的空闲频隙,则当在上述N个连续的频隙中搜索到N2个连续的空闲频隙时,则将上述N2个连续的空闲频隙确定为目标频谱切片。
在一种可行的实施方式中,当上述第二类频谱切片包括A类频谱切片和上述B类频谱切片时,上述目标频谱切片确定单元20还用于:
当在上述N个连续的频隙中搜索到的一个或者多个上述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,将上述任一A类频谱切片确定为目标频谱切片。当在上述N个连续的频隙中搜索不到上述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在上述N个连续的频隙中搜索上述B类频谱切片。当搜索到M1个上述B类频谱切片,并且在搜索到的M1个上述B类频谱切片中确定出M2个目标B类频谱切片时,则基于各目标B类频谱切片的频谱占用信息从上述M2个目标B类频谱切片中确定出目标频谱切片。其中,上述目标B类频谱切片为包含G1个连续的空隙频隙的B类频谱切片。上述目标光纤通道包括L条光纤链路,任一目标B类频谱切片的频谱占用信息用于表征上述任一目标B类频谱切片内包含的所有频隙在上述L条光纤链路内各光纤链路上的占用情况。
在一种可行的实施方式中,上述M1个目标B类频谱切片包括第一目标B类频谱切片和第二目标B类频谱切片,上述目标频谱切片确定单元20用于:
获取上述第一目标B类频谱切片对应的第一频谱占用信息和上述第二目标B类频谱切片对应的第二频谱占用信息。基于上述传输带宽粒度G1和上述第一频谱占用信息计算上述第一目标B类频谱切片对应的第一碎片率,基于上述传输带宽粒度G1和上述第二频谱占用信息计算上述第二目标B类频谱切片对应的第二碎片率。其中,任一碎片率用于表征 任一目标B类频谱切片内包含的频谱碎片的数量。若上述第一碎片率大于或者等于上述第二碎片率,则将上述第二目标B类频谱切片确定为目标频谱切片,若上述第一碎片率小于上述第二碎片率,则将上述第一目标B类频谱切片确定为目标频谱切片。
在一种可行的实施方式中,上述目标频谱切片确定单元20用于:
根据上述第一频谱占用信息计算上述第一目标B类频谱切片内的所有频隙在上述各光纤链路上的利用率的均值。若上述均值大于或者等于预设门限均值,则确定上述第一碎片率为空。若上述均值小于预设门限均值,则根据上述第一频谱占用信息统计上述第一目标B类频谱切片在上述目标光纤通道上的碎片总量。当上述第一目标B类频谱切片在上述目标光纤通道上的碎片总量与上述第一目标B类频谱切片内包含的频隙的个数的比值大于或者等于预设比例阈值时,将上述比值确定为上述第一切片对应的第一碎片率。当上述比值小于预设比例阈值时,确定上述第一碎片率为空。
在一种可行的实施方式中,上述目标频谱切片确定单元20用于:
根据上述第一频谱占用信息对上述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:
根据上述第一频谱占用信息中包括的上述第一目标B类频谱切片在上述光纤链路i上的占用情况确定出上述第一目标B类频谱切片中未被上述光纤链路i占用的一个或者多个频隙块。统计出上述一个或者多个频隙块中包含的目标频隙块的个数,并将上述目标频隙块的个数确定为上述第一目标B类频谱切片在上述光纤链路i上的碎片量,其中,上述目标频隙块包含的频隙的个数小于上述传输带宽粒度G1。
根据上述第一目标B类频谱切片在上述各光纤链路上的碎片量确定出上述第一目标B类频谱切片在上述目标光纤通道上的碎片总量。
在一种可行的实施方式中,上述目标频谱切片确定单元20用于:
根据上述第二频谱占用信息计算上述第二目标B类频谱切片内的所有频隙在上述各光纤链路上的利用率的均值;
若上述均值大于或者等于预设门限均值,则确定上述第二碎片率为空;
若上述均值小于预设门限均值,则根据上述第二频谱占用信息统计上述第二目标B类频谱切片在上述目标光纤通道上的碎片总量。当上述第二目标B类频谱切片在上述目标光纤通道上的碎片总量与上述第二目标B类频谱切片内包含的频隙的个数的比值大于或者等于预设比例阈值时,将上述比值确定为上述第二切片对应的第二碎片率。当上述比值小于预设比例阈值时,确定上述第二碎片率为空。
在一种可行的实施方式中,上述目标频谱切片确定单元20用于:
根据上述第二频谱占用信息对上述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:
根据上述第二频谱占用信息中包括的上述第二目标B类频谱切片在上述光纤链路i上的占用情况确定出上述第二目标B类频谱切片中未被上述光纤链路i占用的一个或者多个频隙块。统计出上述一个或者多个频隙块中包含的目标频隙块的个数,并将上述目标频隙块的个数确定为上述第二目标B类频谱切片在上述光纤链路i上的碎片量,其中,上述目标频隙块包含的频隙的个数小于上述传输带宽粒度G1。
根据上述第二目标B类频谱切片在上述各光纤链路上的碎片量确定出上述第二目标B类频谱切片在上述目标光纤通道上的碎片总量。
在一种可行的实施方式中,获取单元10可获取目标业务的传输带宽粒度G1和上述目标业务对应的目标光纤通道的光层频谱资源。这里,上述光层频谱资源由N个连续的频隙组成,上述N个连续的频隙中各频隙的带宽相同。然后,目标频谱确定单元20可根据获取单元10获取到的传输带宽粒度G1在上述N个频隙中确定出目标频谱切片。这里,上述目标频谱切片由N1个连续的频隙构成,上述目标频谱切片至少包括G1个连续的空闲频隙。目标频谱确定单元20根据传输带宽粒度G1在N个频隙中确定出目标频谱切片的过程可参见实施例一内步骤S12所描述的从N个频隙中确定出目标频谱切片的过程,此处便不再赘述。最后,分配单元30可将目标频谱切片确定单元20确定出的目标频谱切片中包含的G1个连续的空闲频隙分配给上述目标业务。
在本申请实施例中,在获取到目标业务的传输带宽粒度G1和目标业务对应的N个频隙后,根据目标业务的传输带宽粒度G1在上述N个频隙中搜索到或者生成目标业务对应的目标频谱切片,进而以频谱切片为基本范围为目标业务分配频谱资源。一个业务对应一个频谱切片,这样可减少为不同传输带宽粒度的业务穿插式分配频谱资源而产生的频谱碎片,使得频谱资源分配过程变得更加合理,提升了光纤网络的频谱资源的利用率,也提高了光纤网络的吞吐量。
请参见图9,图9是本申请实施例提供的一种电子设备的结构示意图。本申请实施例提供的电子设备包括处理器901、存储器902和总线***903。其中,上述处理器901、存储器902通过总线***903连接。
上述存储器902用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器902包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图9中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。
存储器902也可以是处理器901中的存储器,在此不做限制。
存储器902存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作***:包括各种***程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器901控制电子设备的操作,处理器901可以是一个或多个中央处理器(central processing unit,CPU)。在处理器901是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,电子设备的各个组件通过总线***903耦合在一起,其中总线***903除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图9中将各种总线都标为总线***903。为便于表示,图9中仅是示意性画出。
本申请实施例揭示的数据搬迁监测方法,可以应用于处理器901中,或者由处理器901实现。处理器901可能是一种集成电路芯片,具有信号的处理能力。
本申请的实施例中提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,可实现上述实施例一中所描述的一种频谱分配方法。
上述计算机可读存储介质可以是前述实施例二所述的频谱分配装置的内部存储单元。 上述计算机可读存储介质也可以是上述监测设备的外部存储设备,例如上述频谱分配装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述监测设备的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述监测设备所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种频谱分配方法,其特征在于,所述方法包括:
    获取目标业务的传输带宽粒度G1和所述目标业务对应的目标光纤通道的光层频谱资源,其中,所述光层频谱资源由N个连续的频隙组成,所述N个连续的频隙中各频隙的频谱带宽相同;
    根据所述传输带宽粒度G1在所述N个频隙中确定出目标频谱切片,其中,所述目标频谱切片由N1个连续的频隙构成,所述目标频谱切片至少包括G1个连续的空闲频隙,N大于N1,N1大于或者等于G1;
    将所述目标频谱切片中包含的G1个连续的空闲频隙分配给所述目标业务。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述传输带宽粒度G1在所述N个频隙中确定出目标频谱切片包括:
    若在所述N个连续的频隙中搜索到N2个连续的空闲频隙,则将所述N2个连续的空闲频隙确定为目标频谱切片,其中,N2为所述传输带宽粒度G1的整数倍,N2小于N。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述传输带宽粒度G1在所述N个频隙中确定出目标频谱切片包括:
    若在所述N个频隙中搜索到任一包含G1个连续的空闲频隙的第一类频谱切片内,则将所述任一包含G1个连续的空闲频隙的第一类频谱切片确定为目标频谱切片,其中,所述第一类频谱切片中包含的频隙的个数N2为所述传输带宽粒度G1的整数倍;
    若在所述N个频隙中搜索不到所述任一包含G1个连续的空闲频隙第一类频谱切片,则在所述N个频隙中搜索所述第二类频谱切片;
    若搜索到任一包含G1个连续的空闲频隙的第二类频谱片中,则将所述任一包含G1个连续的空闲频隙的第二类频谱切片确定为目标频谱切片;
    其中,所述第二类频谱切片包括A类频谱切片和/或B类频谱切片,所述B类频谱切片中包含的频隙的个数N3为传输带宽粒度G2的整数倍,G2不等于G1;
    所述A类频谱切片中包含的频隙的个数包括N2和/或N3,并且所述A类频谱切片至少被两种传输带宽粒度不同的业务占用过。
  4. 根据权利要求3所述的方法,其特征在于,当所述第二类频谱切片包括A类频谱切片和所述B类频谱切片时,所述若搜索到的一个或者多个第二类频谱切片中任一第二类频谱片中包含G1个连续的空闲频隙,则将所述任一第二类频谱切片确定为目标频谱切片包括:
    当在所述N个连续的频隙中搜索到的一个或者多个所述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,将所述任一A类频谱切片确定为目标频谱切片;
    若在所述N个连续的频隙中搜索不到所述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在所述N个连续的频隙中搜索所述B类频谱切片,若搜索到的一个或者多个B类频谱切片中任一B类 频谱切片内包含G1个连续的空闲频隙,则将所述任一B类频谱切片确定为目标频谱切片。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    若在所述N个连续的频隙中搜索不到所述B类频谱切片,或者,搜索到的一个或者多个B类频谱切片中各个B类频谱切片内均不包含G1个连续的空闲频隙,则当在所述N个连续的频隙中搜索到N2个连续的空闲频隙时,将所述N2个连续的空闲频隙确定为目标频谱切片。
  6. 根据权利要求3所述的方法,其特征在于,所述目标光纤通道包括L条光纤链路,当所述第二类频谱切片包括A类频谱切片和所述B类频谱切片时,所述若搜索到的一个或者多个第二类频谱切片中任一第二类频谱片中包含G1个连续的空闲频隙,则将所述任一第二类频谱切片确定为目标频谱切片包括:
    当在所述N个连续的频隙中搜索到的一个或者多个所述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,将所述任一A类频谱切片确定为目标频谱切片;
    当在所述N个连续的频隙中搜索不到所述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在所述N个连续的频隙中搜索所述B类频谱切片;
    当搜索到M1个所述B类频谱切片,并且在搜索到的M1个所述B类频谱切片中确定出M2个目标B类频谱切片时,基于各目标B类频谱切片的频谱占用信息从所述M2个目标B类频谱切片中确定出目标频谱切片,其中,所述目标B类频谱切片为包含G1个连续的空隙频隙的B类频谱切片,任一目标B类频谱切片的频谱占用信息用于表征所述任一目标B类频谱切片内包含的所有频隙在所述L条光纤链路内各光纤链路上的占用情况。
  7. 根据权利要求6所述的方法,其特征在于,所述M1个目标B类频谱切片包括第一目标B类频谱切片和第二目标B类频谱切片,所述基于各目标B类频谱切片的频谱占用信息从所述M2目标B类频谱切片中确定出目标频谱切片包括:
    获取所述第一目标B类频谱切片对应的第一频谱占用信息和所述第二目标B类频谱切片对应的第二频谱占用信息;
    基于所述传输带宽粒度G1和所述第一频谱占用信息计算所述第一目标B类频谱切片对应的第一碎片率,基于所述传输带宽粒度G1和所述第二频谱占用信息计算所述第二目标B类频谱切片对应的第二碎片率,其中,碎片率用于表征目标B类频谱切片内包含的频谱碎片的数量;
    若确定所述第一碎片率大于或者等于所述第二碎片率,则将所述第二目标B类频谱切片确定为目标频谱切片;
    若确定所述第一碎片率小于所述第二碎片率,则将所述第一目标B类频谱切片确定为目标频谱切片。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述传输带宽粒度G1和所述第一频谱占用信息计算所述第一目标B类频谱切片对应的第一碎片率包括:
    根据所述第一频谱占用信息计算所述第一目标B类频谱切片内的所有频隙在所述各光 纤链路上的利用率的均值;
    若所述均值大于或者等于预设门限均值,则确定所述第一碎片率为空;
    若所述均值小于所述预设门限均值,则根据所述第一频谱占用信息统计所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量;
    当确定所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量与所述第一目标B类频谱切片内包含的频隙的个数的比值大于或者等于预设比例阈值时,将所述比值确定为所述第一切片对应的第一碎片率;
    当确定所述比值小于所述预设比例阈值时,确定所述第一碎片率为空。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一频谱占用信息统计所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量包括:
    根据所述第一频谱占用信息对所述第一目标B类频谱切片在所述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:
    根据所述第一频谱占用信息中包括的所述第一目标B类频谱切片在所述光纤链路i上的占用情况确定出所述第一目标B类频谱切片中未被所述光纤链路i占用的一个或者多个频隙块;
    统计出所述一个或者多个频隙块中包含的目标频隙块的个数,并将所述目标频隙块的个数确定为所述第一目标B类频谱切片在所述光纤链路i上的碎片量,其中,所述目标频隙块包含的频隙的个数小于所述传输带宽粒度G1;
    根据所述第一目标B类频谱切片在所述各光纤链路上的碎片量确定出所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述基于所述传输带宽粒度G1和所述第二频谱占用信息计算所述第二目标B类频谱切片对应的第二碎片率包括:
    根据所述第二频谱占用信息计算所述第二目标B类频谱切片内的所有频隙在所述各光纤链路上的利用率的均值;
    若所述均值大于或者等于所述预设门限均值,则确定所述第二碎片率为空;
    若所述均值小于所述预设门限均值,则根据所述第二频谱占用信息统计所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量;
    当确定所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量与所述第二目标B类频谱切片内包含的频隙的个数的比值大于或者等于所述预设比例阈值时,将所述比值确定为所述第二切片对应的第二碎片率;
    当确定所述比值小于所述预设比例阈值时,确定所述第二碎片率为空。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第二频谱占用信息统计所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量包括:
    根据所述第二频谱占用信息对所述第二目标B类频谱切片在所述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:
    根据所述第二频谱占用信息中包括的所述第二目标B类频谱切片在所述光纤链路i上 的占用情况确定出所述第二目标B类频谱切片中未被所述光纤链路i占用的一个或者多个频隙块;
    统计出所述一个或者多个频隙块中包含的目标频隙块的个数,并将所述目标频隙块的个数确定为所述第二目标B类频谱切片在所述光纤链路i上的碎片量,其中,所述目标频隙块包含的频隙的个数小于所述传输带宽粒度G1;
    根据所述第二目标B类频谱切片在所述各光纤链路上的碎片量确定出所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量。
  12. 一种频谱分配装置,其特征在于,所述装置包括:
    获取单元,用于获取目标业务的传输带宽粒度G1和所述目标业务对应的目标光纤通道的光层频谱资源,其中,所述光层频谱资源由N个连续的频隙组成,所述N个连续的频隙中各频隙的频谱带宽相同;
    目标频谱切片确定单元,用于根据所述获取单元获取的所述传输带宽粒度G1在所述N个频隙中确定出目标频谱切片,其中,所述目标频谱切片由N1个连续的频隙构成,所述目标频谱切片至少包括G1个连续的空闲频隙,N大于N1,N1大于或者等于G1;
    分配单元,用于将所述目标频谱切片确定单元得到的所述目标频谱切片中包含的G1个连续的空闲频隙分配给所述目标业务。
  13. 根据权利要求12所述的装置,其特征在于,所述目标频谱切片确定单元用于:
    若在所述N个连续的频隙中搜索到N2个连续的空闲频隙,则将所述N2个连续的空闲频隙确定为目标频谱切片,其中,N2为所述传输带宽粒度G1的整数倍,N2小于N。
  14. 根据权利要求12所述的装置,其特征在于,所述目标频谱切片确定单元用于:
    若在所述N个频隙中搜索到任一包含G1个连续的空闲频隙的第一类频谱切片内,则将所述任一包含G1个连续的空闲频隙的第一类频谱切片确定为目标频谱切片,其中,所述第一类频谱切片中包含的频隙的个数N2为所述传输带宽粒度G1的整数倍;
    若在所述N个频隙中搜索不到所述任一包含G1个连续的空闲频隙第一类频谱切片,则在所述N个频隙中搜索所述第二类频谱切片;
    若搜索到任一包含G1个连续的空闲频隙的第二类频谱片中,则将所述任一包含G1个连续的空闲频隙的第二类频谱切片确定为目标频谱切片;
    其中,所述第二类频谱切片包括A类频谱切片和/或B类频谱切片,所述B类频谱切片中包含的频隙的个数N3为传输带宽粒度G2的整数倍,G2不等于G1;
    所述A类频谱切片中包含的频隙的个数包括N2和/或N3,并且所述A类频谱切片至少被两种传输带宽粒度不同的业务占用过。
  15. 根据权利要求14所述的装置,其特征在于,当所述第二类频谱切片包括A类频谱切片和所述B类频谱切片时,所述目标频谱切片确定单元用于:
    当在所述N个连续的频隙中搜索到的一个或者多个所述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,将所述任一A类频谱切片确定为目标频谱切片;
    当在所述N个连续的频隙中搜索不到所述A类频谱切片,或者,搜索到的一个或者多 个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在所述N个连续的频隙中搜索所述B类频谱切片,若搜索到的一个或者多个B类频谱切片中任一B类频谱切片内包含G1个连续的空闲频隙,则将所述任一B类频谱切片确定为目标频谱切片。
  16. 根据权利要求15所述的装置,其特征在于,所述目标频谱切片确定单元还用于:
    若在所述N个连续的频隙中搜索不到所述B类频谱切片,或者,搜索到的一个或者多个B类频谱切片中各个B类频谱切片内均不包含G1个连续的空闲频隙,则当在所述N个连续的频隙中搜索到N2个连续的空闲频隙时,则将所述N2个连续的空闲频隙确定为目标频谱切片。
  17. 根据权利要求12所述的装置,其特征在于,所述目标光纤通道包括L条光纤链路,当所述第二类频谱切片包括A类频谱切片和所述B类频谱切片时,所述目标频谱切片确定单元还用于:
    当在所述N个连续的频隙中搜索到的一个或者多个所述A类频谱切片中任一A类频谱切片内包含G1个连续的空闲频隙时,将所述任一A类频谱切片确定为目标频谱切片;
    当在所述N个连续的频隙中搜索不到所述A类频谱切片,或者,搜索到的一个或者多个A类频谱切片中各个A类频谱切片内均不包含G1个连续的空闲频隙时,则在所述N个连续的频隙中搜索所述B类频谱切片;
    当搜索到M1个所述B类频谱切片,并且在搜索到的M1个所述B类频谱切片中确定出M2个目标B类频谱切片时,则基于各目标B类频谱切片的频谱占用信息从所述M2个目标B类频谱切片中确定出目标频谱切片,其中,所述目标B类频谱切片为包含G1个连续的空隙频隙的B类频谱切片,任一目标B类频谱切片的频谱占用信息用于表征所述任一目标B类频谱切片内包含的所有频隙在所述L条光纤链路内各光纤链路上的占用情况。
  18. 根据权利要求17所述装置,其特征在于,所述M1个目标B类频谱切片包括第一目标B类频谱切片和第二目标B类频谱切片,所述目标频谱切片确定单元用于:获取所述第一目标B类频谱切片对应的第一频谱占用信息和所述第二目标B类频谱切片对应的第二频谱占用信息;
    基于所述传输带宽粒度G1和所述第一频谱占用信息计算所述第一目标B类频谱切片对应的第一碎片率,基于所述传输带宽粒度G1和所述第二频谱占用信息计算所述第二目标B类频谱切片对应的第二碎片率,其中,碎片率用于表征目标B类频谱切片内包含的频谱碎片的数量;
    若所述第一碎片率大于或者等于所述第二碎片率,则将所述第二目标B类频谱切片确定为目标频谱切片,若所述第一碎片率小于所述第二碎片率,则将所述第一目标B类频谱切片确定为目标频谱切片。
  19. 根据权利要求18所述的装置,其特征在于,所述目标频谱切片确定单元用于:
    根据所述第一频谱占用信息计算所述第一目标B类频谱切片内的所有频隙在所述各光纤链路上的利用率的均值;
    若所述均值大于或者等于预设门限均值,则确定所述第一碎片率为空;
    若所述均值小于所述预设门限均值,则根据所述第一频谱占用信息统计所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量;
    当确定所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量与所述第一目标B类频谱切片内包含的频隙的个数的比值大于或者等于预设比例阈值时,将所述比值确定为所述第一切片对应的第一碎片率;
    当确定所述比值小于所述预设比例阈值时,确定所述第一碎片率为空。
  20. 根据权利要求19所述的装置,其特征在于,所述目标频谱切片确定单元用于:
    根据所述第一频谱占用信息对所述第一目标B类频谱切片在所述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:
    根据所述第一频谱占用信息中包括的所述第一目标B类频谱切片在所述光纤链路i上的占用情况确定出所述第一目标B类频谱切片中未被所述光纤链路i占用的一个或者多个频隙块;
    统计出所述一个或者多个频隙块中包含的目标频隙块的个数,并将所述目标频隙块的个数确定为所述第一目标B类频谱切片在所述光纤链路i上的碎片量,其中,所述目标频隙块包含的频隙的个数小于所述传输带宽粒度G1;
    根据所述第一目标B类频谱切片在所述各光纤链路上的碎片量确定出所述第一目标B类频谱切片在所述目标光纤通道上的碎片总量。
  21. 根据权利要求19-20任一项所述的装置,其特征在于,所述目标频谱切片确定单元用于:
    根据所述第二频谱占用信息计算所述第二目标B类频谱切片内的所有频隙在所述各光纤链路上的利用率的均值;
    若所述均值大于或者等于所述预设门限均值,则确定所述第二碎片率为空;
    若所述均值小于所述预设门限均值,则根据所述第二频谱占用信息统计所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量;
    当确定所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量与所述第二目标B类频谱切片内包含的频隙的个数的比值大于或者等于所述预设比例阈值时,将所述比值确定为所述第二切片对应的第二碎片率;
    当确定所述比值小于所述预设比例阈值时,确定所述第二碎片率为空。
  22. 根据权利要求21所述的装置,其特征在于,所述目标频谱切片确定单元用于:
    根据所述第二频谱占用信息对所述第二目标B类频谱切片在所述目标光纤通道中各光纤链路内的任一光纤链路i执行以下操作:
    根据所述第二频谱占用信息中包括的所述第二目标B类频谱切片在所述光纤链路i上的占用情况确定出所述第二目标B类频谱切片中未被所述光纤链路i占用的一个或者多个频隙块;
    统计出所述一个或者多个频隙块中包含的目标频隙块的个数,并将所述目标频隙块的个数确定为所述第二目标B类频谱切片在所述光纤链路i上的碎片量,其中,所述目标频隙块包含的频隙的个数小于所述传输带宽粒度G1;
    根据所述第二目标B类频谱切片在所述各光纤链路上的碎片量确定出所述第二目标B类频谱切片在所述目标光纤通道上的碎片总量。
  23. 一种计算机可读存储介质,其特征在于,包括指令,所述指令在计算机上运行时,使得计算机执行如权利要求1-11任一项所述的方法。
  24. 一种电子设备,其特征在于,所述电子设备包括存储器、处理器,所述存储器用于存储程序代码,所述处理器用于调用所述存储器存储的程序代码执行如权利要求1-11任一项所述的方法。
PCT/CN2020/081814 2019-04-23 2020-03-27 一种频谱分配方法和装置 WO2020215992A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20796371.1A EP3952323B1 (en) 2019-04-23 2020-03-27 Frequency spectrum allocation method and apparatus
US17/508,432 US11825248B2 (en) 2019-04-23 2021-10-22 Spectrum allocation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338235.4 2019-04-23
CN201910338235.4A CN111836135B (zh) 2019-04-23 2019-04-23 一种频谱分配方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/508,432 Continuation US11825248B2 (en) 2019-04-23 2021-10-22 Spectrum allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2020215992A1 true WO2020215992A1 (zh) 2020-10-29

Family

ID=72912687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081814 WO2020215992A1 (zh) 2019-04-23 2020-03-27 一种频谱分配方法和装置

Country Status (4)

Country Link
US (1) US11825248B2 (zh)
EP (1) EP3952323B1 (zh)
CN (1) CN111836135B (zh)
WO (1) WO2020215992A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611405B2 (en) * 2020-08-11 2023-03-21 Microsoft Technology Licensing, Llc Efficient spectrum allocation in a multi-node optical network
CN113055767B (zh) * 2021-03-23 2022-09-13 烽火通信科技股份有限公司 一种基于灵活栅格的路由频谱分配方法与装置
CN114554323B (zh) * 2022-01-30 2024-07-09 阿里巴巴(中国)有限公司 用于光传输***的频谱调整方法及网络管理***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447623A (zh) * 2011-11-22 2012-05-09 北京邮电大学 光网络频谱资源碎片级联方法及装置
CN102546435A (zh) * 2012-02-17 2012-07-04 中兴通讯股份有限公司 一种频谱资源分配方法及装置
CN103327501A (zh) * 2013-05-17 2013-09-25 北京邮电大学 基于分布式碎片集中度的资源分配方法
WO2015106262A1 (en) * 2014-01-13 2015-07-16 Qualcomm Incorporated Configuring measurement gap groups for wireless systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9338529B2 (en) * 2011-08-23 2016-05-10 Telefonaktiebolaget L M Ericsson (Publ) Routing and bandwidth assignment for flexible grid wavelength switched optical networks
US9252912B2 (en) 2012-04-09 2016-02-02 Telefonaktiebolaget L M Ericsson (Publ) Method for routing and spectrum assignment
CN103391258B (zh) * 2013-07-03 2017-04-19 北京邮电大学 基于分布式碎片集中度的资源分配方法及装置
JPWO2015162874A1 (ja) * 2014-04-24 2017-04-13 日本電気株式会社 光ノード装置、光ネットワーク制御装置、および光ネットワーク制御方法
US10382135B2 (en) * 2014-04-24 2019-08-13 Nec Corporation Optical node device, optical network controller, and optical network control method
CN104202262B (zh) 2014-08-28 2017-08-22 北京邮电大学 频谱灵活光网络中的频谱分配方法和装置
CN104836751B (zh) * 2015-05-26 2018-05-11 重庆邮电大学 基于频谱感知的单路径业务分割-合并的光网络频谱分配方法
CN104836736B (zh) 2015-05-26 2018-03-16 重庆邮电大学 弹性光网络中基于频谱感知的能效资源分配与路径重配置方法
CN104968053A (zh) * 2015-06-19 2015-10-07 余凤莲 一种基于全频率区间自适应匹配的服务提供***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447623A (zh) * 2011-11-22 2012-05-09 北京邮电大学 光网络频谱资源碎片级联方法及装置
CN102546435A (zh) * 2012-02-17 2012-07-04 中兴通讯股份有限公司 一种频谱资源分配方法及装置
CN103327501A (zh) * 2013-05-17 2013-09-25 北京邮电大学 基于分布式碎片集中度的资源分配方法
WO2015106262A1 (en) * 2014-01-13 2015-07-16 Qualcomm Incorporated Configuring measurement gap groups for wireless systems

Also Published As

Publication number Publication date
CN111836135A (zh) 2020-10-27
EP3952323B1 (en) 2024-03-20
EP3952323A4 (en) 2022-05-25
US11825248B2 (en) 2023-11-21
EP3952323A1 (en) 2022-02-09
CN111836135B (zh) 2022-06-24
US20220070559A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2020215992A1 (zh) 一种频谱分配方法和装置
CN104836751B (zh) 基于频谱感知的单路径业务分割-合并的光网络频谱分配方法
CN105827528B (zh) 一种适用于频谱灵活光网络的路由选择方法
CN111182037B (zh) 一种虚拟网络的映射方法和装置
US10116590B2 (en) Network virtualization and resource allocation for the internet of things
US10027407B2 (en) Device and method for designing optical network
US20090016373A1 (en) Device and method for selecting time slots based on resource use state
CN110035337B (zh) 弹性光网络中基于指数划分频块的主动多流频谱分配方法
CN111010627B (zh) 应用于混合栅格光网络的路由分配方法和装置
CN113015040B (zh) 多芯弹性光网络中基于碎片和领域匹配度的资源分配方法
CN113078942B (zh) 一种基于相关光路资源感知的生存性虚拟网络映射方法
CN105634990B (zh) 基于时间频谱连续的资源预留方法、装置和处理器
CN111565340B (zh) 一种基于剩余持续时间的频谱碎片整理方法
CN103391258A (zh) 基于分布式碎片集中度的资源分配方法及装置
CN102420656B (zh) 全光网中频谱资源重构的触发方法及***
Zhu et al. Multi-dimensional resource virtualization in spectral and spatial domains for inter-datacenter optical networks
CN108616782A (zh) 一种弹性光网络中基于不相交连接组优化的频谱分配方法
Li et al. A crosstalk-and fragmentation-aware RMSCA strategy in SDM-EONs based on aligned prime-partition of spectrum resources
CN114073055B (zh) 网络控制器
Zhu et al. Service-classified routing, core, and spectrum assignment in spatial division multiplexing elastic optical networks with multicore fiber
WO2023108715A1 (zh) 数据中心的空分复用光网络专用保护频谱分配方法及***
US20230319444A1 (en) Method and system for allocating dedicated protected spectrum based on crosstalk awareness
RU2596155C2 (ru) Способ и устройство для выделения спектрального диапазона
Chen et al. Spectrum-space-divided spectrum allocation approaches in software-defined elastic optical networks
CN114363738B (zh) 面向数据中心资源感知的虚拟网络映射方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020796371

Country of ref document: EP

Effective date: 20211027