WO2020215868A1 - 显示基板及其制造方法、显示装置 - Google Patents

显示基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2020215868A1
WO2020215868A1 PCT/CN2020/076173 CN2020076173W WO2020215868A1 WO 2020215868 A1 WO2020215868 A1 WO 2020215868A1 CN 2020076173 W CN2020076173 W CN 2020076173W WO 2020215868 A1 WO2020215868 A1 WO 2020215868A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
display substrate
electroluminescent device
base substrate
Prior art date
Application number
PCT/CN2020/076173
Other languages
English (en)
French (fr)
Inventor
陈卓
尹思懿
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/266,673 priority Critical patent/US11991891B2/en
Publication of WO2020215868A1 publication Critical patent/WO2020215868A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a manufacturing method thereof, and a display device.
  • Quantum dots are artificially synthesized semiconductor nanostructures.
  • Quantum Dot Light Emitting Diodes (QLED) display devices are increasingly used in people's lives.
  • the synthesis process of quantum dots usually includes a nucleation process and a growth process.
  • the nucleation process is used to form crystal nuclei, and the particle size of the quantum dots grows during the nucleation process.
  • the growth process refers to the process by which the nucleus grows into a crystal. Isolating the nucleation process and the growth process of the quantum dots can accurately control the particle size of the quantum dots, realize the control of the half-width of the emission spectrum of the quantum dots, and further realize the control of the color gamut of the quantum dot light emitting diode display device.
  • the half-width of the emission spectrum of quantum dots can be used to characterize the distribution of the particle size of the quantum dots, and when the particle size distribution range of the quantum dots is wide, the half-width of the emission spectrum of the quantum dots is wider , The color gamut of quantum dots is narrow.
  • the half-width of the emission spectrum refers to the peak width of the emission spectrum at a height equal to half of the maximum height of the emission spectrum in the emission spectrum.
  • the embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device.
  • the technical solution is as follows:
  • a display substrate is provided, and the display substrate includes:
  • the electroluminescent device layer is configured to emit initial light of the first color, and the initial light passes through the light-absorbing layer to form target light, and the half-width of the emission spectrum of the initial light is greater than that of the target light The half-width of the emission spectrum.
  • the light absorbing layer is located on a side of the electroluminescent device layer away from the base substrate.
  • the display substrate further includes: an encapsulation structure layer located on a side of the electroluminescent device layer away from the base substrate, and the light absorption layer is located in the encapsulation structure layer.
  • the material of the light absorption layer is a light absorption material
  • the packaging structure layer is doped with the light absorption material
  • the encapsulation structure layer includes: an inorganic layer and an organic layer alternately superimposed, and the organic layer is doped with the light-absorbing material.
  • the packaging structure layer includes a plurality of sub packaging structure layers, and the light absorption layer is located between two sub packaging structure layers of the plurality of sub packaging structure layers.
  • the structure layer, the light absorption layer is located on the side of the packaging structure layer away from the base substrate.
  • the display substrate further includes: an encapsulation structure layer, and the encapsulation structure layer is located on a side of the light absorption layer away from the base substrate.
  • the light-absorbing layer is located on a side of the electroluminescent device layer close to the base substrate.
  • the material of the light-absorbing layer is a light-absorbing material
  • the display substrate further includes: a flat layer located between the base substrate and the electroluminescent device layer, and the flat layer is doped with the Light-absorbing material.
  • the light absorption layer is located on a side of the electroluminescence device layer away from the base substrate, or the light absorption layer is located between the electroluminescence device layer and the base substrate.
  • the display substrate further includes: a flat layer on a side of the base substrate close to the electroluminescent device layer, and the light absorption layer is located between the flat layer and the electroluminescent device layer .
  • the display substrate further includes: a flat layer on a side of the electroluminescent device layer close to the base substrate, and the light absorption layer is located between the flat layer and the base substrate.
  • the absorption spectrum of the light-absorbing layer is the shoulder peak of the emission spectrum of the initial light.
  • the electroluminescent device layer includes: a red light-emitting unit, and/or, a green light-emitting unit, and/or, a blue light-emitting unit;
  • the peak wavelength of the emission spectrum of the red light-emitting unit is 625 nanometers, and the half-width of the emission spectrum of the red light-emitting unit is 55 nanometers;
  • the peak wavelength of the emission spectrum of the green light-emitting unit is 525 nanometers, and the half-value width of the emission spectrum of the green light-emitting unit is 55 nanometers;
  • the peak wavelength of the emission spectrum of the blue light-emitting unit is 460 nanometers, and the half-value width of the emission spectrum of the blue light-emitting unit is 25 nanometers;
  • the wavelength of the absorption peak of the light-absorbing layer includes 500 nanometers, 550 nanometers, 600 nanometers, and 650 nanometers, and the peak width of the absorption spectrum of the light-absorbing layer is 10 nanometers.
  • the material of the light-absorbing layer is a light-absorbing material
  • the light-absorbing material is at least one of a modified anthocyanin and a modified anthocyanin
  • the modified anthocyanin is to modify the absorption peak of the anthocyanin
  • the modified anthocyanin is obtained by modifying the absorption peak of the anthocyanin.
  • the electroluminescent device layer includes an indium phosphide quantum dot light emitting diode layer or an organic light emitting diode layer.
  • a method for manufacturing a display substrate includes:
  • the electroluminescent device layer is configured to emit initial light of the first color, and the initial light passes through the light-absorbing layer to form target light, and the half-width of the emission spectrum of the initial light is greater than that of the target light The half-width of the emission spectrum.
  • the forming the electroluminescent device layer and the light absorption layer on the base substrate includes any one of the following:
  • the absorption spectrum of the light-absorbing layer is the shoulder peak of the emission spectrum of the initial light.
  • a display device in another aspect, includes the display substrate according to any one of the first aspects.
  • FIG. 1 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of still another display substrate provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of still another display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of the emission spectra of the red light emitting unit, the green light emitting unit, and the blue light emitting unit of the electroluminescent device layer provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of the absorption spectrum of a light-absorbing layer provided by an embodiment of the present disclosure
  • FIG. 7 is a spectrum diagram of red light, green light, and blue light emitted from a display substrate provided by an embodiment of the present disclosure
  • FIG. 8 is a method flowchart of another method for manufacturing a display substrate according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a structure after forming a flat layer on a base substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a structure provided by an embodiment of the present disclosure after forming an electroluminescent device layer on a base substrate with a flat layer.
  • cadmium-based quantum dots are gradually replaced by cadmium-free quantum dots.
  • cadmium-based quantum dots are replaced by indium phosphide (InP) quantum dots.
  • Cadmium-based quantum dots are quantum dots containing metallic cadmium in the material. Among them, the metallic cadmium is a heavy metal, which easily causes environmental pollution.
  • InP quantum dots are quantum dots that use InP instead of cadmium in the material.
  • the synthesis process of quantum dots usually includes a nucleation process and a growth process. Separating the nucleation process from the growth process can accurately control the particle size of the quantum dots, and then control the half-width of the emission spectrum of the quantum dots.
  • the particle size distribution of multiple quantum dots emitting light of the same color can be represented by the half-width of the emission spectrum of the multiple quantum dots.
  • the half-width of the emission spectrum of the plurality of quantum dots is larger.
  • the particle size distribution range of InP quantum dots is larger than that of cadmium-based quantum dots.
  • the particle size distribution range of quantum dots is wide, and the half-width of the emission spectrum of InP quantum dots is much larger than that of cadmium-based quantum dots. When the half-width of the emission spectrum of the quantum dots is wider, the color gamut of the quantum dots is narrow (that is, the color purity is lower).
  • the color gamut of the InP quantum dot light-emitting diode display device is much smaller than that of the cadmium-based display device.
  • the color gamut of a QLED display device Quantum dots are QLED display devices with cadmium-based quantum dots).
  • the color gamut of the InP QLED display device is less than 69% (United States) National Television Standards Committee (NTSC) color gamut, and the color gamut of the cadmium-based QLED display device is >100% NTSC color gamut.
  • the embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device.
  • the display substrate may be an InP quantum dot display substrate or an organic light emitting diode display substrate.
  • the display substrate includes a base substrate, an electroluminescence device layer on the base substrate, and a light absorption layer on the light exit side of the electroluminescence device layer.
  • the emission spectrum of the electroluminescence device layer is relatively broad, and the light absorption layer can absorb part of the light emitted by the electroluminescence device layer to reduce the half-width of the emission spectrum of at least one color of the electroluminescence device layer, so that
  • the display substrate has a wide color gamut. Please refer to the description of the following embodiments for the detailed solution of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a display substrate 1 provided by an embodiment of the present disclosure.
  • the display substrate 1 includes: a base substrate 11, an electroluminescent device layer 12 on the base substrate 11, and a light absorption layer 13 on the light exit side of the electroluminescent device layer 12.
  • the electroluminescent device layer 12 is configured to emit initial light of the first color.
  • the initial light of the first color passes through the light-absorbing layer 13 to form a target light of the first color, and the half width of the emission spectrum of the initial light of the first color is greater than the half width of the emission spectrum of the target light of the first color.
  • the first electroluminescent device layer 12 can emit initial light of one or more colors.
  • the first electroluminescent device layer 12 may be a film layer dedicated to emitting initial light of the first color.
  • the first electroluminescent device layer 12 may be a film layer capable of emitting initial light of multiple colors, and the first color is any one of the multiple colors.
  • the half-value width of the emission spectrum of the initial light of the first color may be greater than the target width threshold.
  • the light absorption effect of the light absorbing layer has a significant effect on improving the color gamut of the display substrate.
  • the target width threshold can be determined according to application requirements.
  • the target width threshold may be 54 nanometers (nm), 50 nm, 57 nm, or 60 nm.
  • the light-emitting side of the electroluminescent device layer has a light-absorbing layer
  • the electroluminescent device layer is configured to emit initial light of the first color, and the initial light of the first color passes through After the light-absorbing layer, the target light of the first color is formed, so that the half-width of the emission spectrum of the target light of the first color is smaller than the half-width of the emission spectrum of the initial light of the first color, so that the display substrate has a wider color area.
  • the material of the light-absorbing layer 13 may be a light-absorbing material with a specific absorption peak.
  • the light-absorbing material with a specific absorption peak may be an organic dye.
  • the light-absorbing material may be at least one of modified anthocyanins and modified anthocyanins, the modified anthocyanins are obtained by modifying the absorption peak of the anthocyanins, and the modified anthocyanins are The absorption peak is modified.
  • Modified anthocyanins and modified anthocyanins are both rigid skeleton organic dyes, and their absorption spectrum has a narrow peak width, which can effectively ensure the light extraction efficiency of the display substrate.
  • the electroluminescent device layer 12 may include an InP quantum dot light-emitting diode layer.
  • the peak width of the emission spectrum of the InP quantum dot light-emitting diode layer is relatively narrow. Therefore, when the light-absorbing material is modified anthocyanins and modified At least one of the anthocyanins can prevent the light-absorbing layer from excessively absorbing the light emitted by the electroluminescent device layer 12, thereby avoiding the influence of the light-absorbing layer on the light extraction efficiency of the display substrate.
  • the display substrate may be a top emission display substrate or a bottom emission display substrate.
  • the light-absorbing layer since the light-absorbing layer needs to absorb the light emitted by the electroluminescent device layer, the light-absorbing layer may be located on the light exit side of the electroluminescent device layer.
  • the light absorption layer may be located on the side of the electroluminescent device layer away from the base substrate.
  • a light-absorbing material can be doped into the film on the side of the electroluminescent device layer away from the base substrate, so that the film has both the original function of the film and the light-absorbing function.
  • the film layer is also called a light-absorbing layer.
  • a light absorbing layer may be separately provided on the side of the electroluminescent device layer away from the base substrate.
  • the light absorption layer may be located between the electroluminescent device layer and the base substrate.
  • the film layer between the electroluminescent device layer and the base substrate can be doped with a light-absorbing material, so that the film layer has both the original function of the film layer and the light-absorbing function.
  • the film layer is also called For the light-absorbing layer.
  • a light absorbing layer may be separately provided between the electroluminescent device layer and the base substrate.
  • the manufacturing process of this implementation is relatively simple.
  • the film layer doped with the light-absorbing material may be an organic film layer. In this case, the process difficulty of the implementation manner can be reduced.
  • the display substrate is a top emission display substrate, and the light absorption layer is separately arranged on the side of the electroluminescent device layer away from the base substrate.
  • FIG. 1 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure in the first case.
  • the display substrate 1 includes a base substrate 11, a flat layer 15 located on the base substrate 11, an electroluminescent device layer 12 located on the side of the flat layer 15 away from the base substrate 11, and located on the electroluminescent device.
  • the packaging structure layer 14 is used to prevent oxygen and moisture from penetrating into the display area of the display substrate to ensure the normal use of the display function of the display substrate.
  • the light absorption layer 13 is a separate film layer, that is, the light absorption layer 13 is a film layer formed by coating a light absorption material on the side of the electroluminescent device layer 12 away from the base substrate 11.
  • the material of the light-absorbing layer 13 may also include transparent glue.
  • the light-absorbing material can be mixed with a transparent glue to obtain a mixed material, and the mixed material can be coated on the side of the electroluminescent device layer 12 away from the base substrate 11 to form the light-absorbing layer 13.
  • the package structure layer 14 may be located on the side of the electroluminescent device layer 12 away from the base substrate 11, and the light absorption layer 13 may be located on the side of the package structure layer 14 away from the base substrate 11.
  • the light absorbing layer 13 can be formed by coating the mixed material on the side of the packaging structure layer 14 away from the base substrate 11.
  • the package structure layer 14 may include: multiple sub package structure layers 14.
  • the light absorption layer 13 may be located between two sub-package structure layers 14 of the plurality of sub-package structure layers 14.
  • the multiple sub-encapsulation structure layers 14 may be alternately superimposed inorganic layers and organic layers. In this case, the light absorption layer 13 may be located between one inorganic layer and one organic layer of the multiple sub-encapsulation structure layers 14.
  • the implementation of the light absorption layer 13 can be referred to the first In this case, the above two implementation methods are not repeated here.
  • the display substrate is a top-emitting display substrate
  • the film layer on the side of the electroluminescent device layer away from the base substrate is doped with light-absorbing material, and the film layer doped with light-absorbing material is also called a light-absorbing layer.
  • FIG. 2 is a schematic structural diagram of another display substrate 1 provided by an embodiment of the present disclosure in the second case.
  • the display substrate 1 includes: a base substrate 11, a flat layer 15 on the base substrate 11, an electroluminescent device layer 12 on the side of the flat layer 15 away from the base substrate 11, and The electroluminescent device layer 12 is away from the packaging structure layer 14 on the side of the base substrate 11, and the light absorption layer may be located in the packaging structure layer 14.
  • the packaging structure layer 14 may be doped with a light-absorbing material, so that the light-absorbing layer can be located in the packaging structure layer 14.
  • the light-absorbing material is an organic material
  • the light-absorbing material may be doped in the organic film layer.
  • the encapsulation structure layer 14 is a Thin Film Encapsulation (TFE) layer, it includes an inorganic layer and an organic layer that are alternately stacked.
  • the organic layer in the encapsulation structure layer 14 may be doped with light-absorbing materials. That is, the organic layer not only has the original function of the organic layer, but also has the function of light absorption.
  • the organic layer doped with a light-absorbing material is also called a light-absorbing layer.
  • the encapsulation structure layer 14 may include an inorganic layer 141, an organic layer 142, and an inorganic layer 143 stacked in sequence.
  • the organic layer 142 is doped with a light-absorbing material so that the organic layer 142 has a light-absorbing effect. That is, the organic layer 142 is also called a light-absorbing layer.
  • the implementation of the light absorption layer 13 can be referred to the second The achievable way in this situation will not be repeated here.
  • the third case the display substrate is a bottom emission display substrate, and the light absorption layer is separately arranged between the electroluminescent device layer and the base substrate.
  • FIG. 3 is a schematic structural diagram of still another display substrate 1 provided by an embodiment of the present disclosure in the third case.
  • the display substrate 1 includes a base substrate 11, and a flat layer is located on the base substrate 11. 15.
  • the light-absorbing layer 13 located on the side of the flat layer 15 away from the base substrate 11, the electroluminescent device layer 12 located on the side of the light-absorbing layer 13 away from the base substrate 11, and the electroluminescent device layer 12 located away from the base substrate 11
  • the light absorption layer 13 is a separate film layer, that is, the light absorption layer 13 is a film layer formed by coating a light absorption material on a base substrate 11.
  • the material of the light-absorbing layer 13 may also include transparent glue.
  • the light-absorbing material and the transparent glue may be mixed to obtain a mixed material, and then the mixed material may be coated on the base substrate 11 to form the light-absorbing layer 13.
  • the light absorption layer 13 may be located on the side of the flat layer 15 close to the base substrate 11, and the flat layer 15 is located on the side of the electroluminescent device layer 12 close to the base substrate 11. At this time, the light absorbing layer 13 can be formed by coating the mixed material on one side of the base substrate 11.
  • the display substrate when the display substrate also includes other film layers located between the base substrate 11 and the electroluminescent device layer 12, the implementation of the light absorption layer 13 can be referred to the third The above two implementation methods in the situation are not repeated here.
  • the display substrate is a bottom emission display substrate
  • the film layer between the electroluminescent device layer and the base substrate is doped with light-absorbing material, and the film layer doped with the light-absorbing material is also called the light-absorbing layer.
  • FIG. 4 is a schematic structural diagram of still another display substrate 1 provided by an embodiment of the present disclosure in the fourth case.
  • the display substrate 1 includes a base substrate 11, a flat layer 15 located on the base substrate 11, an electroluminescent device layer 12 located on the side of the flat layer 15 away from the base substrate 11, and the flat layer 15 It is doped with a light-absorbing material, so that the flat layer 15 has both the original function of the flat layer 15 and the light-absorbing function, that is, the flat layer is also called a light-absorbing layer.
  • the material of the flat layer 15 may be resin (Resin), so in some scenarios, the flat layer 15 is also called a resin layer.
  • the display substrate when the display substrate also includes other film layers located between the electroluminescent device layer 12 and the base substrate 11, the implementation of the light absorption layer 13 can be referred to the fourth type accordingly. The implementation methods in this situation will not be repeated here.
  • the display substrate 1 may include a base substrate 11 and a flat layer laminated on the base substrate 11 in sequence. 15.
  • the display substrate 1 in the first case and the third case further includes a separately provided light-absorbing layer 13, and the packaging structure layer 14 of the display substrate 1 in the second case is doped with light-absorbing material.
  • the flat layer 15 of the display substrate 1 is doped with a light-absorbing material.
  • the packaging structure layer 14 in the display substrate 1 in the four cases may be a thin film packaging layer or a packaging cover plate.
  • the film layer on the light-exit side of the electroluminescent device layer (for example, the encapsulation structure layer 14 or the flat layer 15 described above) can be doped with light-absorbing materials
  • the film layer doped with a light-absorbing material is used as a light-absorbing layer, so that there is no need to separately provide a light-absorbing layer, which simplifies the structure of the display substrate and reduces the process difficulty of manufacturing the display substrate.
  • the electroluminescent device layer 12 may include: a first electrode layer 121 and a hole injection layer that are sequentially stacked in a direction away from the base substrate 11.
  • the material of the first electrode layer 121 may be indium tin oxide (Indium Tin Oxide, ITO).
  • the material of the hole injection layer 122 may be a hole injection material, such as tetrafluorotetracyanoquinodimethane.
  • the material of the hole transport layer 123 may be a hole transport material, such as PEDOT/PSS (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate).
  • the material of the electroluminescent device layer 124 may be an InP quantum dot material or an organic light-emitting material.
  • the material of the electron transport layer 125 may be zinc oxide (ZnO) nanoparticles.
  • the material of the electron injection layer 126 may be an electron injection material, such as coumarin 545T.
  • the material of the second electrode layer 127 may be aluminum (Al), silver (Ag), or an alloy of silver and magnesium (Mg/Ag).
  • the display substrate 1 may be an Organic Light-Emitting Diode (OLED) display substrate or a QLED display substrate.
  • the QLED display substrate may be, for example, an InP QLED display substrate, that is, a QLED display substrate in which the quantum dots are InP quantum dots.
  • the electroluminescent device layer 12 may include a red light emitting unit, and/or a green light emitting unit, and/or a blue light emitting unit (not shown in FIGS. 1 to 4).
  • the peak wavelength of the emission spectrum of the red light-emitting unit is 625 nm, and its half-value width is 55 nm, and/or the peak wavelength of the green light-emitting unit
  • the peak wavelength of the emission spectrum is 525 nm and its half-value width is 55 nm, and/or the peak wavelength of the emission spectrum of the blue light-emitting unit is 460 nm and its half-value width is 25 nm.
  • the light-absorbing layer in the embodiments of the present disclosure (such as the light-absorbing layer 13 in FIGS. 1 and 3, the organic layer 142 in FIG. 2 or the flat layer in FIG. 4)
  • the wavelength of the absorption peak of layer 15 may include 500 nm, 550 nm, 600 nm, and 650 nm.
  • the light absorption layer is used to absorb light of target wavelengths in the emission spectra of the red and green light-emitting units.
  • the difference between the target wavelength of the partial light of the first color absorbed by the light-absorbing layer and the peak wavelength of the emission spectrum when the initial light of the first color is not absorbed may be greater than the target difference threshold.
  • the absorption spectrum of the light absorption layer 13 is the shoulder of the emission spectrum of the initial light of the first color.
  • the target difference threshold may be determined according to application requirements.
  • the target difference threshold may include 15 nm, 20 nm, and/or 25 nm.
  • the wavelength of the absorption peak of the light absorbing layer 13 includes: 500 nm, 550 nm, 600 nm, and 650 nm, in order to make the absorption spectrum of the light absorbing layer 13 the shoulder peak of the emission spectrum of the initial light of the first color, the absorption of the light absorbing layer 13 The peak width of the spectrum can be 10 nm.
  • the small twists that are not peak-shaped appear on the peak of the curve, and the shape is similar to the shoulder, which is called the acromion.
  • the appearance of the shoulder peak indicates that the compound represented by this chromatographic peak is impure and contains a small amount of impurities. Therefore, when the absorption spectrum of the light absorbing layer 13 is the shoulder peak of the emission spectrum of the initial light of the first color, the light absorbed by the light absorbing layer is the light with lower luminous intensity among the initial light of the first color.
  • the light-emitting efficiency (also called luminous efficiency) of the display substrate depends on the peak emission spectrum of the electroluminescent device layer, it can be determined that the light-absorbing layer has a small influence on the light-emitting efficiency of the display substrate, and can effectively ensure the light-emitting efficiency of the display substrate.
  • the embodiment of the present disclosure takes the display substrate 1 as an InP QLED display substrate, and the light absorbing layer absorbs light of the target wavelength in the emission spectrum of the electroluminescent device layer 12 as an example with reference to FIGS. 5 to 7.
  • 5 is a schematic diagram of the emission spectra of the red light-emitting unit, the green light-emitting unit and the blue light-emitting unit of the electroluminescent device layer 12 provided by an embodiment of the present disclosure, and FIG.
  • FIG. 6 is a schematic view of the absorption spectrum of the light-absorbing layer provided by an embodiment of the present disclosure 7 is the red light emitted from the display substrate 1 (that is, the light emitted by the red light-emitting unit and absorbed by the absorption layer), the green light (that is, the light emitted by the green light-emitting unit and absorbed by the absorption layer) and The spectrum of blue light (that is, the light emitted by the blue light-emitting unit and absorbed by the absorption layer).
  • the abscissa represents the wavelength in nm
  • the ordinate represents the light intensity in the unit of candela.
  • the peak wavelength of the emission spectrum R of the red light-emitting unit is 625 nm
  • the half-width of the emission spectrum of the red light-emitting unit is 55 nanometers
  • the peak wavelength of the emission spectrum G of the green light-emitting unit is 525 nm
  • the peak wavelength of the emission spectrum G of the green light-emitting unit is 525 nm.
  • the half-width of the emission spectrum is 55 nanometers
  • the peak wavelength of the emission spectrum B of the blue light-emitting unit is 460 nm
  • the half-width of the emission spectrum of the blue light-emitting unit is 25 nanometers.
  • the wavelength of the absorption peak of the light-absorbing layer includes 500 nm, 550 nm, 600 nm, and 650 nm.
  • the target difference threshold is 20nm and the peak width of the absorption spectrum of the light-absorbing layer is 10nm
  • the wavelength The light outside 605nm ⁇ 645nm is absorbed by the light absorption layer.
  • emission spectrum G the light outside 505nm ⁇ 545nm is absorbed by the light absorption layer.
  • the half-peak width of the emission spectrum R of the red light-emitting unit becomes 40 nm (as shown in the spectrum R1 in FIG. 7), the peak width of the spectrum R1 of the red light emitted from the display substrate 1 is narrow, and the emission spectrum G of the green light-emitting unit
  • the half-peak width of the G1 is 40 nm (as shown in the spectrum G1 in FIG. 7), and the peak width of the G1 spectrum of the green light emitted from the display substrate 1 is relatively narrow. Accordingly, it can be determined that the color gamut of the display substrate is improved.
  • the embodiments of the present disclosure draw the absorption spectrum of the light-absorbing layer upside down, that is, the positive direction of the ordinate in FIG. 6 is opposite to the positive direction of the ordinate in FIG. 5.
  • the light-absorbing material of the light-absorbing layer can be considered as a mixed material formed by mixing materials with different absorption peaks.
  • the wavelength of the absorption peak of the light-absorbing layer includes 500nm, 550nm, 600nm, and 650nm
  • the light-absorbing material of the light-absorbing layer is a mixture of four light-absorbing materials with absorption peak wavelengths of 500nm, 550nm, 600nm, and 650nm.
  • Mixed material Since light emitting units of different colors have different target wavelengths in their emission spectra, each of the light absorbing materials of the light absorbing layer only absorbs light emitted by light emitting units of one color.
  • the absorption material with a wavelength of 600 nm corresponding to the absorption peak only absorbs the target wavelength light of the emission spectrum of the red light-emitting unit, but does not absorb the light emitted by the green light-emitting unit and the light emitted by the blue light-emitting unit.
  • the light-absorbing layer can be coated as a whole layer without patterning, which simplifies the manufacturing process of the light-absorbing layer and reduces the manufacturing cost.
  • the display substrate 1 may be a self-luminous display substrate, that is, the light-emitting units in the electroluminescent device layer 12 are all self-luminous units.
  • the above-mentioned light-absorbing layer can be used in accordance with the usage mode of the color filter (CF) of the color-filter-on-array (COA) substrate, that is, the light emitted by different color light-emitting units is different The effect of absorption to reduce the half-width of the emission spectrum of light of different colors.
  • the display substrate 1 because each material in the light-absorbing material only absorbs the light emitted by the light-emitting unit of one color, the material that absorbs the light of a certain color will not affect the light of other colors, so it can effectively ensure the light output of the display substrate 1 effectiveness. It can be obtained through experiments that the display substrate 1 provided by the embodiments of the present disclosure loses about 10% of the light emitted by the electroluminescent device layer 12, and it can be seen that the display substrate 1 causes relatively small loss of light. Therefore, the implementation of the present disclosure The display substrate 1 provided in the example has higher light extraction efficiency.
  • the above-mentioned base substrate 11 may be a display backplane
  • the display backplane may be a low temperature polysilicon (LTPS) backplane or an oxide backplane.
  • the display backplane may include a glass substrate (or flexible substrate) and a thin film transistor (TFT) on the glass substrate (or flexible substrate).
  • TFT thin film transistor
  • a hydrophobic pixel defining layer of 1 to 2 microns can be used to ensure the effect of defining pixel units.
  • the TFT on the LTPS backplane is LTPS TFT.
  • the TFT in the oxide backplane is an oxide TFT.
  • related technologies which are not repeated in the embodiments of the present disclosure.
  • the light-emitting side of the electroluminescent device layer has a light-absorbing layer
  • the electroluminescent device layer is configured to emit initial light of the first color, and the initial light of the first color passes through After the light-absorbing layer, the target light of the first color is formed, so that the half-width of the emission spectrum of the target light of the first color is smaller than the half-width of the emission spectrum of the initial light of the first color, so that the display substrate has a wider color area.
  • the light-emitting efficiency (also called luminous efficiency) of the display substrate depends on the peak of the emission spectrum of the electroluminescent device layer, and in the embodiments of the present disclosure, the light-absorbing layer absorbs the lower luminous intensity in the emission spectrum of the electroluminescent device layer. Therefore, the light-absorbing layer has little effect on the light-emitting efficiency of the display substrate.
  • the display substrate provided by the embodiment of the present disclosure may be applied to the following method.
  • An embodiment of the present disclosure provides a method for manufacturing a display substrate, and the method can be used to manufacture the display substrate provided by the above-mentioned embodiments.
  • the method includes:
  • An electroluminescence device layer and a light absorption layer are formed on the base substrate, and the light absorption layer is located on the light exit side of the electroluminescence device layer.
  • the electroluminescent device layer is configured to emit initial light of the first color, the initial light of the first color forms the target light of the first color after passing through the light-absorbing layer, and the half width of the emission spectrum of the initial light of the first color is greater than The half-width of the emission spectrum of the target light of the first color.
  • the light-emitting side of the electroluminescent device layer has a light-absorbing layer, and the electroluminescent device layer is configured to emit the first color
  • the initial light of the first color after passing through the light-absorbing layer, forms the target light of the first color, so that the half-width of the emission spectrum of the target light of the first color is smaller than the half-peak of the emission spectrum of the first color of the initial light Wide, so that the display substrate has a wider color gamut.
  • the light-absorbing layer may be located on the side of the electroluminescent device layer away from the base substrate.
  • forming the electroluminescent device layer and the light absorption layer on the base substrate includes: forming the electroluminescence device layer on the base substrate, and forming the light absorption layer on the base substrate on which the electroluminescence device layer is formed.
  • the light-absorbing layer is located on the side of the electroluminescent device layer close to the base substrate.
  • forming the electroluminescent device layer and the light absorption layer on the base substrate includes: forming a light absorption layer on the base substrate, and forming the electroluminescence device layer on the base substrate on which the light absorption layer is formed.
  • forming the electroluminescent device layer and the light-absorbing layer on the base substrate includes: forming the electroluminescent device layer on the base substrate; An encapsulation structure layer is formed on the base substrate of the electroluminescence device layer, and the light absorption layer is located in the encapsulation structure layer.
  • the packaging structure layer is doped with a light-absorbing material, and the light-absorbing material is a material of the light-absorbing layer.
  • the material of the light-absorbing layer is a light-absorbing material
  • forming the packaging structure layer on the base substrate on which the electroluminescent device layer is formed includes: forming alternately superimposed inorganic layers on the base substrate on which the electroluminescent device layer is formed And the organic layer, the organic layer is doped with light-absorbing material.
  • forming the package structure layer on the base substrate on which the electroluminescent device layer is formed includes: sequentially forming one or more sub-packages on the base substrate on which the electroluminescent device layer is formed Structure layer, forming a light-absorbing layer on a base substrate on which the one or more sub-package structure layers are formed, and forming one or more sub-package structure layers on the base substrate on which the light-absorbing layer is formed to obtain multiple sub-package structure layers
  • the encapsulation structure layer, and the light absorption layer is located between two sub-encapsulation structure layers of the plurality of sub-encapsulation structure layers.
  • the multiple sub-package structure layers include inorganic layers and organic layers alternately superimposed.
  • forming the electroluminescent device layer and the light-absorbing layer on the base substrate includes: An electroluminescent device layer is formed thereon, an encapsulation structure layer is formed on the base substrate on which the electroluminescence device layer is formed, and a light absorption layer is formed on the base substrate on which the encapsulation structure layer is formed.
  • forming the electroluminescent device layer and the light-absorbing layer on the base substrate includes: An electroluminescent device layer is formed thereon, a light absorption layer is formed on the base substrate on which the electroluminescence device layer is formed, and an encapsulation structure layer is formed on the base substrate on which the light absorption layer is formed.
  • the material of the light-absorbing layer is a light-absorbing material
  • the electroluminescent device layer and the light-absorbing layer are formed on the base substrate, including :
  • a flat layer material doped with a light-absorbing material is used to form a flat layer on a base substrate; an electroluminescent device layer is formed on a base substrate with a flat layer.
  • the flat layer has a light-absorbing effect, so the flat layer is also called a light-absorbing layer.
  • forming the electroluminescent device layer and the light-absorbing layer on the base substrate includes: forming a flat layer on the base substrate Layer, forming a light-absorbing layer on a base substrate with a flat layer formed, and forming an electroluminescent device layer on a base substrate with a light-absorbing layer.
  • forming the electroluminescent device layer and the light-absorbing layer on the base substrate includes: forming a light-absorbing layer on the base substrate Layer, a flat layer is formed on a base substrate with a light absorption layer, and an electroluminescent device layer is formed on a base substrate with a flat layer.
  • the selection of the light-absorbing material may satisfy that the absorption spectrum of the light-absorbing layer is the shoulder of the emission spectrum of the initial light of the first color.
  • the electroluminescent device layer includes a red light emitting unit, a green light emitting unit, and a blue light emitting unit
  • the peak wavelength of the emission spectrum of the red light emitting unit is 625 nanometers
  • the half width of the emission spectrum of the red light emitting unit is 55 nanometers
  • the peak wavelength of the emission spectrum of the green light-emitting unit is 525 nanometers
  • the half-width of the emission spectrum of the green light-emitting unit is 55 nanometers
  • the peak wavelength of the emission spectrum of the blue light-emitting unit is 460 nanometers.
  • the selection of light-absorbing materials should satisfy: the wavelength of the absorption peak of the light-absorbing layer includes: 500 nanometers, 550 nanometers, 600 nanometers and 650 nanometers, and the peak width of the absorption spectrum of the light-absorbing layer is 10 nanometers.
  • the light-absorbing material may be at least one of a modified anthocyanin and a modified anthocyanin, the modified anthocyanin is obtained by modifying the absorption peak of the anthocyanin, and the modified anthocyanin is a modified anthocyanin.
  • Penicillin is obtained by modifying the absorption peak.
  • the electroluminescent device layer may be an indium phosphide quantum dot light emitting diode layer or an organic light emitting diode layer.
  • FIG. 8 shows a method flow chart of another method for manufacturing a display substrate provided by an embodiment of the present disclosure.
  • the method may be used for manufacturing the display substrate 1 shown in any one of FIGS. 1 to 4. As shown in Figure 8, the method includes the following steps:
  • Step 101 Form a flat layer on a base substrate.
  • FIG. 9 shows a schematic structural diagram after a flat layer 15 is formed on a base substrate 11 provided by an embodiment of the present disclosure.
  • the base substrate 11 may be a display backplane, and the display backplane may be a low temperature poly-silicon (LTPS) backplane or an oxide backplane.
  • the display backplane may include a glass substrate (or flexible substrate) and TFTs on the glass substrate (or flexible substrate).
  • the TFT of the LTPS backplane is an LTPS TFT
  • the TFT in the oxide backplane is an oxide TFT.
  • the flat layer 15 may be located on the side of the base substrate 11 with the TFT.
  • the material of the flat layer 1 5 may be resin.
  • the manufacturing method of the display substrate provided by the embodiment of the present disclosure can be used to manufacture the display substrate 1 shown in any one of FIGS. 1 to 4.
  • the flat layer 15 is doped with light-absorbing material
  • the flat layer 15 is not doped with light-absorbing materials. According to whether the flat layer 15 is doped with a light-absorbing material, forming the flat layer 15 on the base substrate 11 may include the following two cases.
  • the first case a layer of resin can be deposited on the base substrate 11 as the flat layer 15 by means of deposition, coating, or sputtering. At this time, the first case can be applied to manufacturing the flat layer 15 in the display substrate 1 shown in any one of FIGS. 1 to 3.
  • the second case First, the light-absorbing material and the resin can be mixed to obtain a mixed material, and then a layer of the mixed material can be deposited on the base substrate 11 by means of deposition, coating or sputtering, etc., to obtain a flat layer doped with the light-absorbing material 15. Since the light-absorbing material in the flat layer 15 can absorb light, the flat layer 15 is also called a light-absorbing layer.
  • the light-absorbing material is a mixed material formed by mixing light-absorbing materials with different absorption peaks corresponding to wavelengths. This second case can be applied to manufacturing the flat layer 15 in the display substrate 1 shown in FIG. 4.
  • Step 102 forming an electroluminescent device layer on the base substrate on which the flat layer is formed.
  • FIG. 10 shows a schematic structural diagram after forming an electroluminescent device layer 12 on a base substrate 11 formed with a flat layer 15 provided by an embodiment of the present disclosure.
  • the electroluminescent device layer 12 is located on the side of the flat layer 15 away from the base substrate 11.
  • the electroluminescent device layer 12 may include: a first electrode layer 121, a hole injection layer 122, a hole transport layer 123, an electroluminescence device layer 124, an electron transport layer 125, which are sequentially stacked in a direction away from the base substrate 11.
  • the material of the first electrode layer 121 may be ITO.
  • the material of the hole injection layer 122 may be a hole injection material, such as tetrafluorotetracyanoquinodimethane.
  • the material of the hole transport layer 123 may be a hole transport material, such as PEDOT/PSS.
  • the material of the electroluminescent device layer 124 may be an InP quantum dot material.
  • the material of the electron transport layer 125 may be an electron transport material, such as ZnO nanoparticles.
  • the material of the electron injection layer 126 may be an electron injection material, such as coumarin 545T, and the material of the second electrode layer 127 may be Al, Ag, or Mg/Ag.
  • forming the electroluminescent device layer 12 on the base substrate 11 on which the flat layer 15 is formed may include the following steps:
  • Step (1) by magnetron sputtering, thermal evaporation or plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition, PECVD) and other processes, deposit a layer of ITO on the base substrate 11 on which the flat layer 15 is formed, The ITO material layer is obtained, and the ITO material layer is processed through another patterning process to obtain the first electrode layer 121.
  • PECVD plasma enhanced chemical vapor deposition
  • Step (2) Print a hole injection material solution on the base substrate 11 on which the first electrode layer 121 is formed through an inkjet printing process, and perform a drying process to obtain the hole injection layer 122.
  • step (3) the hole transport material solution is printed on the base substrate 11 on which the hole injection layer 122 is formed through an inkjet printing process, and the hole transport material solution is dried to obtain the hole transport layer 123.
  • Step (4) printing an InP quantum dot material solution on the base substrate 11 on which the hole transport layer 123 is formed through an inkjet printing process, and performing a drying process to obtain an electroluminescent device layer 124.
  • Step (5) through an evaporation process, on the base substrate 11 on which the electroluminescent device layer 124 is formed, an electron transport material is evaporated to obtain an electron transport layer 125.
  • Step (6) by an evaporation process, on the base substrate 11 on which the electron transport layer 125 is formed, an electron injection material is evaporated to obtain the electron injection layer 126.
  • Step (7) by magnetron sputtering, thermal evaporation or PECVD and other processes, deposit a layer of Al on the base substrate 11 on which the electron injection layer 126 is formed to obtain an Al material layer, and then apply a patterning process to the Al material The layer is processed to obtain the second electrode layer 127.
  • Step 103 forming a packaging structure layer on the base substrate on which the electroluminescent device layer is formed.
  • the packaging structure layer may be a thin film packaging layer or a packaging cover plate.
  • the packaging structure layer may include an inorganic layer and an organic layer alternately superimposed, the material of the inorganic layer may be silicon oxide (SiOx), and the material of the organic layer may be polyimide (Polyimide). , PI).
  • the embodiments of the present disclosure are described by taking the packaging structure layer as a thin film packaging layer as an example, and FIG. 2 may be a schematic diagram after the packaging structure layer is formed on the base substrate on which the electroluminescent device layer is formed. The following is an example of manufacturing the packaging structure layer 14 in FIG. 2.
  • forming the packaging structure layer 14 on the base substrate 11 on which the electroluminescent device layer 12 is formed may include:
  • Step (1) Depositing a layer of SiOx on the base substrate 11 on which the electroluminescent device layer 12 is formed by means of deposition, coating or sputtering to obtain the inorganic layer 141.
  • Step (2) Mix the light-absorbing material with the organic material to obtain the mixed material, and deposit a layer of the mixed material on the base substrate 11 on which the inorganic layer 141 is formed by means of deposition, coating or sputtering to obtain the organic layer 142 .
  • step (3) a layer of SiOx is deposited on the base substrate 11 on which the organic layer 142 is formed by means of deposition, coating or sputtering to obtain the inorganic layer 143.
  • this step 103 is described by manufacturing the packaging structure layer 14 in FIG. 2 as an example.
  • the packaging structure layer 14 in FIG. 1, FIG. 3, and FIG. 4 are all thin-film packaging layers, manufacturing FIG. 1
  • the process of packaging structure layer 14 in FIG. 3 and FIG. 4 can refer to the process of manufacturing packaging structure layer 14 in FIG. 2.
  • the difference is that when the packaging structure layer 14 in FIGS. 1, 3, and 4 is manufactured, when the organic layer is formed, only organic materials need to be deposited, instead of mixing light-absorbing materials with organic materials.
  • the display substrate 1 shown in FIG. 1 is a top-emission display substrate, which includes a light-absorbing layer 13 on the side of the electroluminescent device layer 12 away from the base substrate 11, so the manufacturing process shown in FIG. Before step 103, the above method further includes: forming a light-absorbing layer 13 on the base substrate 11 on which the electroluminescent device layer 12 is formed.
  • a layer of light-absorbing material can be deposited as the light-absorbing layer 13 on the base substrate 11 on which the electroluminescent device layer 12 is formed by means of deposition, coating or sputtering.
  • the display substrate 1 shown in FIG. 3 is a bottom emission display substrate, which includes a light-absorbing layer 13 between the electroluminescent device layer 12 and the base substrate 11. Therefore, when the display substrate shown in FIG. Before step 102, the above method further includes: forming a light absorption layer 13 on the base substrate on which the flat layer 15 is formed.
  • a layer of light-absorbing material may be deposited as the light-absorbing layer 13 on the base substrate 11 on which the flat layer 15 is formed by means of deposition, coating or sputtering.
  • the patterning process involved includes photoresist coating, exposure, development, etching, and photoresist stripping.
  • Processing the material layer (such as the ITO material layer) through a patterning process includes: coating a layer of photoresist on the material layer (such as the ITO material layer) to form a photoresist layer, and using a mask to process the photoresist layer Exposure makes the photoresist layer form a fully exposed area and a non-exposed area, and then uses a development process to completely remove the photoresist in the fully exposed area, and all the photoresist in the non-exposed area is retained, and then an etching process is used to The area corresponding to the fully exposed area on the material layer (such as the ITO material layer) is etched, and finally the photoresist in the non-exposed area is stripped to obtain the corresponding structure (such as the first electrode layer).
  • the photoresist is a positive photoresist as an example.
  • the process of one patterning process can refer to the description in this paragraph, and the embodiments of the present disclosure will not be omitted here. Repeat.
  • the light-emitting side of the electroluminescent device layer has a light-absorbing layer, and the electroluminescent device layer is configured to emit the first color
  • the initial light of the first color after passing through the light-absorbing layer, forms the target light of the first color, so that the half-width of the emission spectrum of the target light of the first color is smaller than the half-peak of the emission spectrum of the first color of the initial light Wide, so that the display substrate has a wider color gamut.
  • the light absorbing layer absorbs light with a lower luminous intensity in the emission spectrum of the electroluminescent device layer, so the light absorption The layer has little effect on the light extraction efficiency of the display substrate.
  • An embodiment of the present disclosure also provides a display device, which includes: the display substrate provided by the above device embodiment.
  • the display device may be an InP quantum dot light emitting diode display device or an organic light emitting diode display device.
  • the display device may be a touch screen, a display, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, or a navigator product or component that uses InP quantum dot light-emitting diodes or organic light-emitting diodes to emit light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请是关于一种显示基板及其制造方法、显示装置,属于显示技术领域。显示基板包括:衬底基板,设置在衬底基板上的电致发光器件层,以及,设置在电致发光器件层的出光侧的吸光层,电致发光器件层被配置为发出第一颜色的初始光线,初始光线经过吸收光层后形成目标光线,初始光线的发射光谱的半峰宽大于目标光线的发射光谱的半峰宽。本申请使得显示装置具有更广的色域。

Description

显示基板及其制造方法、显示装置
本申请要求于2019年04月23日提交的申请号为201910327425.6、发明名称为“显示基板及其制造方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,特别涉及一种显示基板及其制造方法、显示装置。
背景技术
量子点是一种人工合成的半导体纳米结构。目前量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示装置越来越多的应用在人们的生活中。量子点的合成过程通常包括成核过程和生长过程。成核过程用于形成晶核,量子点的粒径在成核过程中增长。生长过程指的是晶核长大成晶体的过程。将量子点的成核过程与生长过程隔离,可以精确控制量子点的粒径,实现对量子点的发射光谱的半峰宽的控制,进而实现对量子点发光二极管显示装置的色域的控制。
其中,量子点的发射光谱的半峰宽的宽度可以用于表征量子点的粒径的分布情况,且当量子点的粒径分布范围较宽时,量子点的发射光谱的半峰宽较宽,量子点的色域较窄。发射光谱的半峰宽指的是在该发射光谱中高度等于该发射光谱的最大高度的一半处该发射光谱的峰宽度。
发明内容
本公开实施例提供了一种显示基板及其制造方法、显示装置。所述技术方案如下:
一方面,提供一种显示基板,所述显示基板包括:
衬底基板,位于所述衬底基板上的电致发光器件层,以及,位于所述电致发光器件层的出光侧的吸光层;
其中,所述电致发光器件层被配置为发出第一颜色的初始光线,所述初始光线经过所述吸光层后形成目标光线,所述初始光线的发射光谱的半峰宽大于所述目标光线的发射光谱的半峰宽。
可选的,所述吸光层位于所述电致发光器件层远离所述衬底基板的一侧。
可选的,所述显示基板还包括:位于所述电致发光器件层远离所述衬底基板一侧的封装结构层,所述吸光层位于所述封装结构层中。
可选的,所述吸光层的材料为吸光材料,所述封装结构层中掺杂有所述吸光材料。
可选的,所述封装结构层包括:交替叠加的无机层和有机层,所述有机层中掺杂有所述吸光材料。
可选的,所述封装结构层包括:多个子封装结构层,所述吸光层位于所述多个子封装结构层中两个子封装结构层之间。
可选的,结构层,所述吸光层位于所述封装结构层远离所述衬底基板的一侧。
可选的,所述显示基板还包括:封装结构层,所述封装结构层位于所述吸光层远离所述衬底基板的一侧。
可选的,所述吸光层位于所述电致发光器件层靠近所述衬底基板的一侧。
可选的,所述吸光层的材料为吸光材料,所述显示基板还包括:位于所述衬底基板与所述电致发光器件层之间平坦层,所述平坦层中掺杂有所述吸光材料。
可选的,所述吸光层位于所述电致发光器件层远离所述衬底基板的一侧,或者,所述吸光层位于所述电致发光器件层与所述衬底基板之间。
可选的,所述显示基板还包括:位于所述衬底基板靠近所述电致发光器件层一侧的平坦层,所述吸光层位于所述平坦层与所述电致发光器件层之间。
可选的,所述显示基板还包括:位于所述电致发光器件层靠近所述衬底基板一侧的平坦层,所述吸光层位于所述平坦层与所述衬底基板之间。
可选的,所述吸光层的吸收光谱为所述初始光线的发射光谱的肩峰。
可选的,所述电致发光器件层包括:红色发光单元,和/或,绿色发光单元,和/或,蓝色发光单元;
所述红色发光单元的发射光谱的峰值波长为625纳米,所述红色发光单元 的发射光谱的半峰宽为55纳米;
和/或,所述绿色发光单元的发射光谱的峰值波长为525纳米,所述绿色发光单元的发射光谱的半峰宽为55纳米;
和/或,所述蓝色发光单元的发射光谱的峰值波长为460纳米,所述蓝色发光单元的发射光谱的半峰宽为25纳米;
所述吸光层的吸收峰的波长包括:500纳米、550纳米、600纳米和650纳米,所述吸光层的吸收光谱的峰宽为10纳米。
可选的,所述吸光层的材料为吸光材料,所述吸光材料为改性花色苷和改性花青素中的至少一种,所述改性花色苷是对花色苷进行吸收峰改性处理得到的,所述改性花青素是对花青素进行吸收峰改性处理得到的。
可选的,所述电致发光器件层包括磷化铟量子点发光二极管层或者有机发光二极管层。
另一方面,提供一种显示基板的制造方法,所述方法包括:
在衬底基板上形成电致发光器件层和吸光层,所述吸光层位于所述电致发光器件层的出光侧;
其中,所述电致发光器件层被配置为发出第一颜色的初始光线,所述初始光线经过所述吸光层后形成目标光线,所述初始光线的发射光谱的半峰宽大于所述目标光线的发射光谱的半峰宽。
可选的,所述在衬底基板上形成电致发光器件层和吸光层包括以下任一种:
在所述衬底基板上形成所述电致发光器件层,在形成有所述电致发光器件层的衬底基板上形成所述吸光层;
以及,在所述衬底基板上形成所述吸光层,在形成有所述吸光层的衬底基板上形成所述电致发光器件层。
可选的,所述吸光层的吸收光谱为所述初始光线的发射光谱的肩峰。
再一方面,提供一种显示装置,所述显示装置包括:上述第一方面任一所述的显示基板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开的实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种显示基板的结构示意图;
图2是本公开实施例提供的另一种显示基板的结构示意图;
图3是本公开实施例提供的再一种显示基板的结构示意图;
图4是本公开实施例提供的再一种显示基板的结构示意图;
图5是本公开实施例提供的电致发光器件层的红色发光单元、绿色发光单元和蓝色发光单元的发射光谱的示意图;
图6是本公开实施例提供的吸光层的吸收光谱的示意图;
图7是本公开实施例提供的从显示基板射出的红色光线、绿色光线和蓝色光线的光谱图;
图8是本公开实施例提供的另一种显示基板的制造方法的方法流程图;
图9是本公开实施例提供的一种在衬底基板上形成平坦层后的结构示意图;
图10是本公开实施例提供的一种在形成有平坦层的衬底基板上形成电致发光器件层后的结构示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
随着量子点技术的不断发展和环保意识的加强,镉系量子点逐渐被无镉量子点取代,例如,镉系量子点被磷化铟(InP)量子点取代。镉系量子点是材料中含有金属镉的量子点。其中,金属镉是一种重金属,容易造成环境污染。InP量子点是一种在材料中采用InP代替金属镉的量子点。
量子点的合成过程通常包括成核过程和生长过程。将成核过程与生长过程隔离,可以精确控制量子点的粒径,进而控制量子点的发射光谱的半峰宽。其中,发出同一种颜色的光的多个量子点的粒径分布情况可以通过该多个量子点的发射光谱的半峰宽表示。并且,当多个量子点的粒径分布范围较宽时,该多个量子点的发射光谱的半峰宽较大。
但是,InP量子点的成核过程与生长过程难以有效隔离,导致InP量子点的粒径的控制精度不如对镉系量子点的粒径的控制精度,InP量子点的粒径分布范围比镉系量子点的粒径分布范围宽,InP量子点的发射光谱的半峰宽远大于镉系量子点的发射光谱的半峰宽。由于当量子点的发射光谱的半峰宽较宽时,量子点发光的色域较窄(也即是颜色的纯度较低),因此,InP量子点发光二极管显示装置的色域远小于镉系QLED显示装置(量子点为镉系量子点的QLED显示装置)的色域。其中,通过实验得到:InP QLED显示装置的色域<69%(美国)国家电视标准委员会(National Television Standards Committee,NTSC)色域,而镉系QLED显示装置的色域>100%NTSC色域。
本公开实施例提供了一种显示基板及其制造方法、显示装置,该显示基板可以是InP量子点显示基板或有机发光二极管显示基板。该显示基板包括衬底基板,位于衬底基板上的电致发光器件层,以及,位于电致发光器件层的出光侧的吸光层。电致发光器件层的发射光谱较宽,而吸光层可以吸收电致发光器件层发出的部分光线,以减小电致发光器件层的至少一种颜色的光线的发射光谱的半峰宽,使显示基板具有较广的色域。本公开的详细方案请参考下述实施例的描述。
图1是本公开实施例提供的一种显示基板1的结构示意图。如图1所示,该显示基板1包括:衬底基板11,位于衬底基板11上的电致发光器件层12,以及,位于电致发光器件层12的出光侧的吸光层13。
其中,电致发光器件层12被配置为发出第一颜色的初始光线。该第一颜色的初始光线经过吸光层13后形成第一颜色的目标光线,且该第一颜色的初始光线的发射光谱的半峰宽大于改第一颜色的目标光线的发射光谱的半峰宽。
可选的,该第一电致发光器件层12可以发出一种或多种颜色的初始光线。例如,该第一电致发光器件层12可以为专用于发出第一颜色的初始光线的膜层。 或者,该第一电致发光器件层12可以为能够发出多种颜色的初始光线的膜层,且第一颜色为该多种颜色中的任一种。
并且,第一颜色的初始光线的发射光谱的半峰宽可以大于目标宽度阈值,此时,吸光层的吸光作用对显示基板色域的提升效果较为显著。该目标宽度阈值可以根据应用需求确定。示例地,目标宽度阈值可以为54纳米(nm)、50nm、57nm或60nm。
综上所述,本公开实施例提供的显示基板,电致发光器件层的出光侧具有吸光层,电致发光器件层被配置为发出第一颜色的初始光线,该第一颜色的初始光线经过吸光层后形成第一颜色的目标光线,使得第一颜色的目标光线的发射光谱的半峰宽小于第一颜色的初始光线的发射光谱的半峰宽,从而使得该显示基板具有更广的色域。
可选的,吸光层13的材料可以为具有特定的吸收峰的吸光材料。且该具有特定吸收峰的吸光材料可以为有机染料。示例的,该吸光材料可以为改性花色苷和改性花青素中的至少一种,改性花色苷是对花色苷进行吸收峰改性处理得到的,改性花青素是对花青素进行吸收峰改性处理得到的。改性花色苷和改性花青素均为刚性骨架有机染料,其吸收光谱的峰宽较窄,这样能够有效保证显示基板的出光效率。
在本公开实施例中,电致发光器件层12可以包括InP量子点发光二极管层,InP量子点发光二极管层的发射光谱的峰宽较窄,因此,当吸光材料为改性花色苷和改性花青素中的至少一种时,可以避免吸光层对电致发光器件层12发射出的光线过度吸收,从而避免吸光层对显示基板的出光效率的影响。
在本公开实施例中,显示基板可以为顶发射显示基板或底发射显示基板。此时,由于吸光层需要吸收电致发光器件层发射出的光线,因此吸光层可以位于电致发光器件层的出光侧。
可选地,当显示基板为顶发射显示基板时,吸光层可以位于电致发光器件层远离衬底基板的一侧。在一种可实现方式中,可以在电致发光器件层远离衬底基板的一侧的膜层中掺杂吸光材料,使得该膜层既具有该膜层原本的功能又具有吸光的功能,此时,该膜层也称为吸光层。或者,可以在电致发光器件层远离衬底基板的一侧单独设置吸光层。
当显示基板为底发射显示基板时,吸光层可以位于电致发光器件层与衬底 基板之间。其中,可以在电致发光器件层与衬底基板之间的膜层中掺杂吸光材料,使得该膜层既具有该膜层原本的功能又具有吸光的功能,此时,该膜层也称为吸光层。或者,可以在电致发光器件层与衬底基板之间单独设置吸光层。
需要说明的是,当通过在膜层中掺杂吸光材料以形成吸光层时,由于该实现方式无需在显示基板中新增膜层,使得该实现方式的制造工艺较简单。并且,在该实现方式中,若吸光材料为有机材料,该被掺杂吸光材料的膜层可以为有机膜层,此时能够减小该实现方式的工艺难度。
下面以吸光层的以下四种情况为例,对本公开实施例的方案进行说明。
第一种情况:显示基板为顶发射显示基板,吸光层单独设置在电致发光器件层远离衬底基板的一侧。
图1为该第一种情况下,本公开实施例提供的一种显示基板的结构示意图。如图1所示,显示基板1包括衬底基板11,位于衬底基板11上的平坦层15,位于平坦层15远离衬底基板11一侧的电致发光器件层12,位于电致发光器件层12远离衬底基板11一侧的吸光层13,以及位于吸光层13远离衬底基板11一侧的封装结构层14。其中,该封装结构层14用于防止氧气和湿气渗透到显示基板的显示区域,以保证显示基板显示功能的正常使用。在该图1中,吸光层13为单独设置的膜层,也即是,该吸光层13是在电致发光器件层12远离衬底基板11的一侧涂覆吸光材料形成的膜层。
对于该第一种情况,吸光层13的材料还可以包括透明胶材。在制造吸光层13时,可以将吸光材料与透明胶材混合得到混合材料,并在电致发光器件层12远离衬底基板11的一侧涂覆该混合材料,从而形成吸光层13。
或者,封装结构层14可以位于电致发光器件层12远离衬底基板11的一侧,吸光层13位于封装结构层14远离衬底基板11的一侧。此时,可以通过将混合材料涂覆在封装结构层14远离衬底基板11的一侧,以形成吸光层13。
又或者,封装结构层14可以包括:多个子封装结构层14。此时,吸光层13可以位于该多个子封装结构层14中两个子封装结构层14之间。该多个子封装结构层14可以为交替叠加的无机层和有机层,此时,吸光层13可以位于该多个子封装结构层14中的一个无机层和一个有机层之间。
需要说明的是,除封装结构层14外,当显示基板还包括位于电致发光器件层12远离衬底基板11一侧的其他膜层时,该吸光层13的实现方式可以相应参 考该第一种情况中的上述两种可实现方式,此处不再赘述。
第二种情况:显示基板为顶发射显示基板,电致发光器件层远离衬底基板的一侧的膜层中掺杂有吸光材料,该掺杂有吸光材料的膜层也称为吸光层。
示例的,图2是该第二种情况下,本公开实施例提供的另一种显示基板1的结构示意图。如图2所示,该显示基板1包括:衬底基板11,位于衬底基板11上的平坦层15,位于平坦层15远离衬底基板11一侧的电致发光器件层12,以及位于电致发光器件层12远离衬底基板11一侧的封装结构层14,吸光层可以位于封装结构层14中。
可选的,封装结构层14中可以掺杂有吸光材料,以使得吸光层可以位于封装结构层14中。并且,当吸光材料为有机材料时,为了降低吸光层的实现难度,该吸光材料可以掺杂在有机膜层中。例如,当封装结构层14为薄膜封装(Thin Film Encapsulation,TFE)层时,其包括交替叠加的无机层和有机层,此时,封装结构层14中的有机层中可以掺杂有吸光材料,即该有机层既具有该有机层原有的功能,又具有吸光的功能。相应的,该掺杂有吸光材料的有机层也称为吸光层。示例的,如图2所示,该封装结构层14可以包括依次层叠的无机层141、有机层142和无机层143,有机层142中掺杂有吸光材料,以使得该有机层142具有吸光作用,即该有机层142也称为吸光层。
需要说明的是,除封装结构层14外,当显示基板还包括位于电致发光器件层12远离衬底基板11一侧的其他膜层时,该吸光层13的实现方式可以相应参考该第二种情况中的可实现方式,此处不再赘述。
第三种情况:显示基板为底发射显示基板,吸光层单独设置在电致发光器件层与衬底基板之间。
图3是该第三种情况下,本公开实施例提供的再一种显示基板1的结构示意图,如图3所示,显示基板1包括衬底基板11,位于衬底基板11上的平坦层15,位于平坦层15远离衬底基板11一侧的吸光层13,位于吸光层13远离衬底基板11一侧的电致发光器件层12,以及位于电致发光器件层12远离衬底基板11一侧的封装结构层14。在该图3中,吸光层13为单独设置的膜层,也即是,该吸光层13是在衬底基板11上涂覆吸光材料形成的膜层。
对于该第三种情况,吸光层13的材料还可以包括透明胶材。在制造吸光层13时,可以将吸光材料与透明胶材混合得到混合材料后,在衬底基板11上涂覆 该混合材料,从而形成吸光层13。
或者,吸光层13可以位于平坦层15靠近衬底基板11的一侧,平坦层15位于电致发光器件层12靠近衬底基板11的一侧。此时,可以通过将混合材料涂覆在衬底基板11的一侧,以形成吸光层13。
需要说明的是,除平坦层15外,当显示基板还包括位于衬底基板11和电致发光器件层12之间的其他膜层时,该吸光层13的实现方式可以相应参考该第三种情况中的上述两种可实现方式,此处不再赘述。
第四种情况:显示基板为底发射显示基板,电致发光器件层与衬底基板之间的膜层中掺杂吸光材料,该掺杂有吸光材料的膜层也称为吸光层。
示例的,图4是该第四种情况下,本公开实施例提供的再一种显示基板1的结构示意图。如图4所示,显示基板1包括衬底基板11,位于衬底基板11上的平坦层15,位于平坦层15远离衬底基板11一侧的电致发光器件层12,该平坦层15中掺杂有吸光材料,以使得该平坦层15既具有该平坦层15原有的功能,又具有吸光的功能,即该平坦层也称为吸光层。可选的,平坦层15的材质可以为树脂(Resin),因此在一些场景中,平坦层15又被称为树脂层。
需要说明的是,除平坦层15外,当显示基板还包括位于电致发光器件层12与衬底基板11之间的其他膜层时,该吸光层13的实现方式可以相应参考该第四种情况中的可实现方式,此处不再赘述。
需要说明的是,如图1至图4所示,对于上述四种可能的情况,无论哪种情况,显示基板1均可以包括衬底基板11,以及依次层叠在衬底基板11上的平坦层15、电致发光器件层12和封装结构层14。不同的是,第一种情况和第三种情况中的显示基板1还包括单独设置的吸光层13,第二种情况中的显示基板1的封装结构层14中掺杂有吸光材料,第四种情况中的显示基板1的平坦层15中掺杂有吸光材料。其中,该四种情况中的显示基板1中的封装结构层14均可以是薄膜封装层或封装盖板。
还需要说明的是,对于上述第二种情况和第四种情况,由于可以在电致发光器件层的出光侧的膜层(例如上述封装结构层14或平坦层15)中掺杂吸光材料,以将掺杂有吸光材料的该膜层作为吸光层,使得无需单独设置吸光层,简化了显示基板的结构,降低了制造该显示基板的工艺难度。
可选的,如图1至图4所示,在本公开实施例中,电致发光器件层12可以 包括:沿远离衬底基板11的方向依次叠加的第一电极层121、空穴注入层(hole injection layer,HIL)122、空穴传输层(hole transport layer,HTL)123、发光层(Emission layer,EML)124、电子传输层(electron transport layer,ETL)125、电子注入层(electron injection layer,EIL)126和第二电极层127。其中,第一电极层121的材料可以为氧化铟锡(Indium Tin Oxide,ITO)。空穴注入层122的材料可以为空穴注入材料,例如四氟四氰基醌二甲烷。空穴传输层123的材料可以为空穴传输材料,例如PEDOT/PSS(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)。电致发光器件层124的材料可以为InP量子点材料或有机发光材料。电子传输层125的材料可以为氧化锌(ZnO)纳米粒子。电子注入层126的材料可以为电子注入材料,例如香豆素545T。第二电极层127的材料可以为铝(Al)、银(Ag)或者银和镁的合金(Mg/Ag)。
在本公开实施例中,显示基板1可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示基板或QLED显示基板。该QLED显示基板例如可以是InP QLED显示基板,即量子点为InP量子点的QLED显示基板。在显示基板1中,电致发光器件层12可以包括:红色发光单元,和/或,绿色发光单元,和/或,蓝色发光单元(图1至图4中均未示出)。当显示基板1是InP QLED显示基板(也即是发光单元为InP QLED发光单元)时,红色发光单元的发射光谱的峰值波长为625nm,其半峰宽为55nm,和/或,绿色发光单元的发射光谱的峰值波长为525nm,其半峰宽为55nm,和/或,蓝色发光单元的发射光谱的峰值波长为460nm,其半峰宽为25nm。以目标宽度阈值为54nm,目标差值阈值为20nm为例,本公开实施例中的吸光层(例如图1和图3中的吸光层13,图2中的有机层142或图4中的平坦层15)的吸收峰的波长可以包括500nm、550nm、600nm和650nm,此时,吸光层用于吸收红色和绿色发光单元的发射光谱中目标波长的光线。
并且,被吸光层吸收的第一颜色的部分光线的目标波长与第一颜色的初始光线未被吸收时发射光谱的峰值波长的差值,可以大于目标差值阈值。此时,吸光层13的吸收光谱为第一颜色的初始光线的发射光谱的肩峰。
可选的,该目标差值阈值可以根据应用需求确定。例如,该目标差值阈值可以包括15nm、20nm和/或25nm。又例如,当吸光层13的吸收峰的波长包括:500nm、550nm、600nm和650nm时,为使吸光层13的吸收光谱为第一颜色的 初始光线的发射光谱的肩峰,吸光层13的吸收光谱的峰宽可以为10nm。
其中,在曲线的峰上出现的不成峰形的小曲折,形状类似肩膀,其称为肩峰。肩峰的出现说明此色谱峰代表的化合物不纯,其中含有少量杂质。因此,当吸光层13的吸收光谱为第一颜色的初始光线的发射光谱的肩峰时,吸光层吸收的光线为该第一颜色的初始光线中发光强度较小的光线。由于显示基板的出光效率(也称发光效率)取决于电致发光器件层的发射光谱的峰值,因此,可以确定吸光层对显示基板出光效率的影响较小,能够有效保证显示基板的出光效率。
示例的,本公开实施例以显示基板1是InP QLED显示基板,结合图5至图7对吸光层吸收电致发光器件层12的发射光谱中目标波长的光线为例进行说明。图5是本公开实施例提供的电致发光器件层12的红色发光单元、绿色发光单元和蓝色发光单元的发射光谱的示意图,图6是本公开实施例提供的吸光层的吸收光谱的示意图,图7是从显示基板1射出的红色光线(也即是红色发光单元发出且被吸收层吸收后的光线)、绿色光线(也即是绿色发光单元发出且被吸收层吸收后的光线)和蓝色光线的光谱图(也即是蓝色发光单元发出且被吸收层吸收后的光线)。其中,图5至图7中,横坐标表示波长,单位为nm,纵坐标表示光强度,单位为坎德拉。如图5所示,红色发光单元的发射光谱R的峰值波长为625nm,红色发光单元的发射光谱的半峰宽为55纳米,绿色发光单元的发射光谱G的峰值波长为525nm,绿色发光单元的发射光谱的半峰宽为55纳米,蓝色发光单元的发射光谱B的峰值波长为460nm,蓝色发光单元的发射光谱的半峰宽为25纳米。如图6所示,吸光层的吸收峰的波长包括500nm、550nm、600nm和650nm。结合图5至图7,假设目标差值阈值为20nm,吸光层的吸收光谱的峰宽为10nm,则当电致发光器件层12发射出的光线穿过吸光层时,对于发射光谱R,波长处于605nm~645nm之外的光线被吸光层吸收,对于发射光谱G,波长处于505nm~545nm之外的光线被吸光层吸收。因此红色发光单元的发射光谱R的半峰宽变为40nm(如图7所示的光谱R1),从显示基板1射出的红色光线的光谱R1的峰宽较窄,绿色发光单元的发射光谱G的半峰宽变为40nm(如图7所示的光谱G1),从显示基板1射出的绿色光线的光谱G1的峰宽较窄,相应的,可以确定提升了显示基板的色域。需要说明的是,本公开实施例为了便于读者观看,对吸光层的吸收光谱进行倒立绘制,也即是,图6中 纵坐标的正方向与图5中纵坐标的正方向相反。
需要说明的是,吸光层的吸光材料可以认为是由具有不同吸收峰的材料混合而成的混合材料。例如,当吸光层的吸收峰的波长包括500nm、550nm、600nm和650nm,可以认为吸光层的吸光材料是由吸收峰的波长分别为500nm、550nm、600nm和650nm的四种吸光材料混合而成的混合材料。由于不同颜色的发光单元的发射光谱的目标波长的光线不同,因此吸光层的吸光材料中,混合的每种材料仅吸收一种颜色的发光单元发射的光线。例如,吸收峰对应的波长为600nm的吸收材料仅吸收红色发光单元的发射光谱的目标波长光线,而不吸收绿色发光单元发射的光线和蓝色发光单元发射的光线。这样,吸光层可以整层涂覆,无需图案化,简化了吸光层的制造工艺,降低了制造成本。
可选地,在本公开实施例中,该显示基板1可以为自发光显示基板,即电致发光器件层12中的发光单元均为自发光单元。此时,上述吸光层可以按照色彩滤光阵列(Color-filter on Array,COA)基板的彩色滤光层(Color filter,CF)的使用方式进行使用,即针对不同颜色发光单元发出的光实现不同效果的吸收,以减小不同颜色的光线的发射光谱的半峰宽。且由于吸光材料中的每种材料仅吸收一种颜色的发光单元发射的光线,吸收某一种颜色的光线的材料不会对其他颜色的光线产生影响,因此,能够有效保证显示基板1的出光效率。通过实验可以得到,本公开实施例提供的显示基板1对电致发光器件层12发射出的光线的损失约为10%,可知该显示基板1所造成光线的损失较小,因此,本公开实施例提供的显示基板1的出光效率较高。
在本公开实施例中,上述衬底基板11可以是显示背板,该显示背板可以为低温多晶硅(Low Temperature Poly-silicon,LTPS)背板或氧化物背板。该显示背板可以包括玻璃基板(或柔性基板)以及位于玻璃基板(或柔性基板)上的薄膜晶体管(Thin Film Transistor,TFT)。且制造LTPS背板的过程中可以使用1至2微米的疏水的像素界定层,以保证对像素单元的界定效果。其中,在LTPS背板的TFT为LTPS TFT。氧化物背板中的TFT为氧化物TFT。且显示背板的具体结构可以参考相关技术,本公开实施例在此不再赘述。
综上所述,本公开实施例提供的显示基板,电致发光器件层的出光侧具有吸光层,电致发光器件层被配置为发出第一颜色的初始光线,该第一颜色的初始光线经过吸光层后形成第一颜色的目标光线,使得第一颜色的目标光线的发 射光谱的半峰宽小于第一颜色的初始光线的发射光谱的半峰宽,从而使得该显示基板具有更广的色域。并且,由于显示基板的出光效率(也称发光效率)取决于电致发光器件层的发射光谱的峰值,而本公开实施例中,吸光层吸收电致发光器件层的发射光谱中发光强度较小的光线,因此该吸光层对显示基板的出光效率影响较小。
本公开实施例提供的显示基板可以应用于下文的方法,本公开实施例中显示基板的制造方法和制造原理可以参见下文各实施例中的描述。
本公开实施例提供的一种显示基板的制造方法,该方法可以用于制造上述实施例提供的显示基板。该方法包括:
在衬底基板上形成电致发光器件层和吸光层,吸光层位于电致发光器件层的出光侧。
其中,电致发光器件层被配置为发出第一颜色的初始光线,第一颜色的初始光线经过吸光层后形成第一颜色的目标光线,第一颜色的初始光线的发射光谱的半峰宽大于第一颜色的目标光线的发射光谱的半峰宽。
综上所述,本公开实施例提供的显示基板的制造方法,在该方法制造的显示基板中,电致发光器件层的出光侧具有吸光层,电致发光器件层被配置为发出第一颜色的初始光线,该第一颜色的初始光线经过吸光层后形成第一颜色的目标光线,使得第一颜色的目标光线的发射光谱的半峰宽小于第一颜色的初始光线的发射光谱的半峰宽,从而使得该显示基板具有更广的色域。
可选的,吸光层可以位于电致发光器件层远离衬底基板的一侧。相应的,在衬底基板上形成电致发光器件层和吸光层包括:在衬底基板上形成电致发光器件层,在形成有电致发光器件层的衬底基板上形成吸光层。或者,吸光层位于电致发光器件层靠近衬底基板的一侧。相应的,在衬底基板上形成电致发光器件层和吸光层包括:在衬底基板上形成吸光层,在形成有吸光层的衬底基板上形成电致发光器件层。
当吸光层位于电致发光器件层远离衬底基板的一侧时,在衬底基板上形成电致发光器件层和吸光层,包括:在衬底基板上形成电致发光器件层;在形成有电致发光器件层的衬底基板上形成封装结构层,且吸光层位于封装结构层中。
在一种可实现方式中,封装结构层中掺杂有吸光材料,该吸光材料为吸光 层的材料。
示例的,吸光层的材料为吸光材料,在形成有电致发光器件层的衬底基板上形成封装结构层,包括:在形成有电致发光器件层的衬底基板上形成交替叠加的无机层和有机层,有机层中掺杂有吸光材料。
在另一种可实现方式中,在形成有电致发光器件层的衬底基板上形成封装结构层,包括:在形成有电致发光器件层的衬底基板上,依次形成一个或多个子封装结构层,在形成有该一个或多个子封装结构层的衬底基板上形成吸光层,在形成有该吸光层的衬底基板上形成一个或多个子封装结构层,得到包括多个子封装结构层的封装结构层,且吸光层位于所述多个子封装结构层中两个子封装结构层之间。其中,多个子封装结构层包括交替叠加的无机层和有机层。
或者,当吸光层位于电致发光器件层远离衬底基板的一侧,且显示基板还包括封装结构层时,在衬底基板上形成电致发光器件层和吸光层,包括:在衬底基板上形成电致发光器件层,在形成有电致发光器件层的衬底基板上形成封装结构层,在形成有封装结构层的衬底基板上形成吸光层。
或者,当吸光层位于电致发光器件层远离衬底基板的一侧,且显示基板还包括封装结构层时,在衬底基板上形成电致发光器件层和吸光层,包括:在衬底基板上形成电致发光器件层,在形成有电致发光器件层的衬底基板上形成吸光层,在形成有吸光层的衬底基板上形成封装结构层。
当吸光层位于电致发光器件层靠近衬底基板的一侧,且显示基板还包括平坦层时,吸光层的材料为吸光材料,在衬底基板上形成电致发光器件层和吸光层,包括:采用掺杂有吸光材料的平坦层材料,在衬底基板上形成平坦层;在形成有平坦层的衬底基板上形成电致发光器件层。该平坦层具有吸光作用,因此,该平坦层也称吸光层。
当吸光层位于电致发光器件层靠近衬底基板的一侧,且显示基板还包括平坦层时,在衬底基板上形成电致发光器件层和吸光层,包括:在衬底基板上形成平坦层,在形成有平坦层的衬底基板上形成吸光层,在形成有吸光层的衬底基板上形成电致发光器件层。
当吸光层位于电致发光器件层靠近衬底基板的一侧,且显示基板还包括平坦层时,在衬底基板上形成电致发光器件层和吸光层,包括:在衬底基板上形成吸光层,在形成有吸光层的衬底基板上形成平坦层,在形成有平坦层的衬底 基板上形成电致发光器件层。
并且,吸光材料的选材可以满足:吸光层的吸收光谱为第一颜色的初始光线的发射光谱的肩峰。示例的,当电致发光器件层包括:红色发光单元、绿色发光单元和蓝色发光单元,红色发光单元的发射光谱的峰值波长为625纳米,红色发光单元的发射光谱的半峰宽为55纳米,绿色发光单元的发射光谱的峰值波长为525纳米,绿色发光单元的发射光谱的半峰宽为55纳米,蓝色发光单元的发射光谱的峰值波长为460纳米,蓝色发光单元的发射光谱的半峰宽为25纳米时,吸光材料的额选材应满足:吸光层的吸收峰的波长包括:500纳米、550纳米、600纳米和650纳米,吸光层的吸收光谱的峰宽为10纳米。
例如,吸光材料可以为为改性花色苷和改性花青素中的至少一种,该改性花色苷是对花色苷进行吸收峰改性处理得到的,该改性花青素是对花青素进行吸收峰改性处理得到的。
进一步的,电致发光器件层可以为磷化铟量子点发光二极管层或者有机发光二极管层。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图8示出了本公开实施例提供的另一种显示基板的制造方法的方法流程图,该方法可以用于制造图1至图4任一所示的显示基板1。如图8所示,该方法包括如下步骤:
步骤101、在衬底基板上形成平坦层。
如图9所示,其示出了本公开实施例提供的一种在衬底基板11上形成平坦层15后的结构示意图。其中,衬底基板11可以是显示背板,该显示背板可以为低温多晶硅(Low Temperature Poly-silicon,LTPS)背板或氧化物背板。该显示背板可以包括玻璃基板(或柔性基板)以及位于玻璃基板(或柔性基板)上的TFT。LTPS背板的TFT为LTPS TFT,氧化物背板中的TFT为氧化物TFT。并且,平坦层15可以位于衬底基板11具有TFT的一侧。可选的,平坦层1 5的材料可以为树脂。
本公开实施例提供的显示基板的制造方法可以用于制造图1至图4任一所示的显示基板1,在图4所示的显示基板1中,平坦层15中掺杂有吸光材料, 在图1至图3所示的显示基板1中,平坦层15中未掺杂有吸光材料。根据平坦层15是否掺杂有吸光材料,在衬底基板11上形成平坦层15可以包括以下两种情况。
第一种情况:可以通过沉积、涂覆或者溅射等方式在衬底基板11上沉积一层树脂作为平坦层15。此时,该第一种情况可以适用于制造图1至图3任一所示的显示基板1中的平坦层15。
第二种情况:首先可以将吸光材料和树脂混合得到混合材料,然后通过沉积、涂覆或者溅射等方式在衬底基板11上沉积一层该混合材料,得到掺杂有吸光材料的平坦层15。由于平坦层15中的吸光材料可以吸收光线,因此平坦层15也称为吸光层。此时,在该第二种情况中,吸光材料是由吸收峰对应波长不同的吸光材料混合而成的混合材料。该第二种情况可以适用于制造图4所示的显示基板1中的平坦层15。
步骤102、在形成有平坦层的衬底基板上形成电致发光器件层。
示例的,如图10所示,其示出了本公开实施例提供的一种在形成有平坦层15的衬底基板11上形成电致发光器件层12后的结构示意图。电致发光器件层12位于平坦层15远离衬底基板11的一侧。电致发光器件层12可以包括:沿远离衬底基板11的方向依次叠加的第一电极层121、空穴注入层122、空穴传输层123、电致发光器件层124、电子传输层125、电子注入层126和第二电极层127。第一电极层121的材料可以为ITO。空穴注入层122的材料可以为空穴注入材料,例如四氟四氰基醌二甲烷。空穴传输层123的材料可以为空穴传输材料,例如PEDOT/PSS。电致发光器件层124的材料可以为InP量子点材料。电子传输层125的材料可以为电子传输材料,例如ZnO纳米粒子。电子注入层126的材料可以为电子注入材料,例如香豆素545T,第二电极层127的材料可以为Al、Ag或者Mg/Ag。
在一种可实现方式中,在形成有平坦层15的衬底基板11上形成电致发光器件层12可以包括如下步骤:
步骤(1)、通过磁控溅射、热蒸发或者等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)等工艺,在形成有平坦层15的衬底基板11上沉积一层ITO,得到ITO材质层,通再过一次构图工艺对ITO材质层进行处理得到第一电极层121。
步骤(2)、通过喷墨打印工艺,在形成有第一电极层121的衬底基板11上打印空穴注入材料溶液,并进行干燥处理,得到空穴注入层122。
步骤(3)、通过喷墨打印工艺,在形成有空穴注入层122的衬底基板11上打印空穴传输材料溶液,并进行干燥处理,得到空穴传输层123。
步骤(4)、通过喷墨打印工艺,在形成有空穴传输层123的衬底基板11上打印InP量子点材料溶液,并进行干燥处理,得到电致发光器件层124。
步骤(5)、通过蒸镀工艺,在形成有电致发光器件层124的衬底基板11上,蒸镀电子传输材料得到电子传输层125。
步骤(6)、通过蒸镀工艺,在形成有电子传输层125的衬底基板11上,蒸镀电子注入材料得到电子注入层126。
步骤(7)、通过磁控溅射、热蒸发或者PECVD等工艺,在形成有电子注入层126的衬底基板11上沉积一层Al,得到Al材质层,然后,通过一次构图工艺对Al材质层进行处理得到第二电极层127。
步骤103、在形成有电致发光器件层的衬底基板上形成封装结构层。
其中,封装结构层可以为薄膜封装层或者封装盖板。当封装结构层为薄膜封装层时,该封装结构层可以包括交替叠加的无机层和有机层,该无机层的材料可以为氧化硅(SiOx),有机层的材料可以为聚酰亚胺(Polyimide,PI)。可选的,本公开实施例以封装结构层为薄膜封装层为例进行说明,则图2可以为在形成有电致发光器件层的衬底基板上形成封装结构层后的示意图。下面以制造图2中的封装结构层14为例进行说明。示例地,在形成有电致发光器件层12的衬底基板11上形成封装结构层14可以包括:
步骤(1)、通过沉积、涂覆或者溅射等方式,在形成有电致发光器件层12的衬底基板11上,沉积一层SiOx得到无机层141。
步骤(2)、将吸光材料与有机材料混合得到混合材料,通过沉积、涂覆或者溅射等方式,在形成有无机层141的衬底基板11上,沉积一层该混合材料得到有机层142。
步骤(3)、通过沉积、涂覆或者溅射等方式,在形成有有机层142的衬底基板11上,沉积一层SiOx得到无机层143。
需要说明的是,该步骤103是以制造图2中的封装结构层14为例进行说明的,当图1、图3和图4中的封装结构层14均为薄膜封装层时,制造图1、图3 和图4中的封装结构层14的过程,均可以参考制造该图2的封装结构层14的过程。其中不同的是,制造图1、图3和图4中的封装结构层14时,在形成有机层时,仅需沉积有机材料即可,而无需在有机材料中混合吸光材料。
还需要说明的是,图1所示的显示基板1为顶发射显示基板,其包括位于电致发光器件层12远离衬底基板11的一侧的吸光层13,因此在制造如图1所示的显示基板时,在步骤103之前,上述方法还包括:在形成有电致发光器件层12的衬底基板11上形成吸光层13。示例的,可以通过沉积、涂覆或者溅射等方式,在形成有电致发光器件层12的衬底基板11上,沉积一层吸光材料作为吸光层13。
图3所示的显示基板1为底发射显示基板,其包括位于电致发光器件层12与衬底基板11的之间的吸光层13,因此在制造如图3所示的显示基板时,在步骤102之前,上述方法还包括:在形成有平坦层15的衬底基板上形成吸光层13。示例的,可以通过沉积、涂覆或者溅射等方式,在形成有平坦层15的衬底基板11上,沉积一层吸光材料作为吸光层13。
本公开实施例提供的显示基板的制造方法中,所涉及的一次构图工艺包括光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离。通过一次构图工艺对材质层(例如ITO材质层)进行处理包括:在材质层(例如ITO材质层)上涂覆一层光刻胶形成光刻胶层,采用掩膜版对光刻胶层进行曝光,使得光刻胶层形成完全曝光区和非曝光区,之后采用显影工艺处理,使完全曝光区的光刻胶被完全去除,非曝光区的光刻胶全部保留,再采用刻蚀工艺对材质层(例如ITO材质层)上完全曝光区对应的区域进行刻蚀,最后剥离非曝光区的光刻胶,得到相应的结构(例如第一电极层)。这里是以光刻胶为正性光刻胶为例进行说明的,当光刻胶为负性光刻胶时,一次构图工艺的过程可以参考本段的描述,本公开实施例在此不再赘述。
本公开实施例提供的显示基板的制造方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的显示基板的制造方法,在该方法制造的显示基板中,电致发光器件层的出光侧具有吸光层,电致发光器件层被配置为发 出第一颜色的初始光线,该第一颜色的初始光线经过吸光层后形成第一颜色的目标光线,使得第一颜色的目标光线的发射光谱的半峰宽小于第一颜色的初始光线的发射光谱的半峰宽,从而使得该显示基板具有更广的色域。并且,由于显示基板的出光效率取决于电致发光器件层的发射光谱的峰值,而本公开实施例中,吸光层吸收电致发光器件层的发射光谱中发光强度较小的光线,因此该吸光层对显示基板的出光效率影响较小。
本公开实施例还提供了一种显示装置,该显示装置包括:上述装置实施例提供的显示基板。该显示装置可以为InP量子点发光二极管显示装置或有机发光二极管显示装置。例如,该显示装置可以为使用InP量子点发光二极管或有机发光二极管发光的触控屏、显示器、手机、平板电脑、电视机、笔记本电脑、数码相框或导航仪产品或部件。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种显示基板,其特征在于,所述显示基板包括:
    衬底基板,位于所述衬底基板上的电致发光器件层,以及,位于所述电致发光器件层出光侧的吸光层;
    其中,所述电致发光器件层被配置为发出第一颜色的初始光线,所述初始光线经过所述吸光层后形成目标光线,所述初始光线的发射光谱的半峰宽大于所述目标光线的发射光谱的半峰宽。
  2. 根据权利要求1所述的显示基板,其特征在于,所述吸光层位于所述电致发光器件层远离所述衬底基板的一侧。
  3. 根据权利要求2所述的显示基板,其特征在于,所述显示基板还包括:位于所述电致发光器件层远离所述衬底基板一侧的封装结构层,所述吸光层位于所述封装结构层中。
  4. 根据权利要求3所述的显示基板,其特征在于,所述吸光层的材料为吸光材料,所述封装结构层中掺杂有所述吸光材料。
  5. 根据权利要求4所述的显示基板,其特征在于,所述封装结构层包括:交替叠加的无机层和有机层,所述有机层中掺杂有所述吸光材料。
  6. 根据权利要求3所述的显示基板,其特征在于,所述封装结构层包括:多个子封装结构层,所述吸光层位于所述多个子封装结构层中两个子封装结构层之间。
  7. 根据权利要求2所述的显示基板,其特征在于,所述显示基板还包括:位于所述电致发光器件层远离所述衬底基板一侧的封装结构层,所述吸光层位于所述封装结构层远离所述衬底基板的一侧。
  8. 根据权利要求2所述的显示基板,其特征在于,所述显示基板还包括:封装结构层,所述封装结构层位于所述吸光层远离所述衬底基板的一侧。
  9. 根据权利要求1所述的显示基板,其特征在于,所述吸光层位于所述电致发光器件层靠近所述衬底基板的一侧。
  10. 根据权利要求9所述的显示基板,其特征在于,所述吸光层的材料为吸光材料,所述显示基板还包括:位于所述衬底基板与所述电致发光器件层之间平坦层,所述平坦层中掺杂有所述吸光材料。
  11. 根据权利要求9所述的显示基板,其特征在于,所述显示基板还包括:位于所述衬底基板靠近所述电致发光器件层一侧的平坦层,所述吸光层位于所述平坦层与所述电致发光器件层之间。
  12. 根据权利要求9所述的显示基板,其特征在于,所述显示基板还包括:位于所述电致发光器件层靠近所述衬底基板一侧的平坦层,所述吸光层位于所述平坦层与所述衬底基板之间。
  13. 根据权利要求1至12任一所述的显示基板,其特征在于,所述吸光层的吸收光谱为所述初始光线的发射光谱的肩峰。
  14. 根据权利要求13所述的显示基板,其特征在于,
    所述电致发光器件层包括:红色发光单元,和/或,绿色发光单元,和/或,蓝色发光单元;
    所述红色发光单元的发射光谱的峰值波长为625纳米,所述红色发光单元的发射光谱的半峰宽为55纳米;
    和/或,所述绿色发光单元的发射光谱的峰值波长为525纳米,所述绿色发光单元的发射光谱的半峰宽为55纳米;
    和/或,所述蓝色发光单元的发射光谱的峰值波长为460纳米,所述蓝色发光单元的发射光谱的半峰宽为25纳米;
    所述吸光层的吸收峰的波长包括:500纳米、550纳米、600纳米和650纳米,所述吸光层的吸收光谱的峰宽为10纳米。
  15. 根据权利要求1至14任一所述的显示基板,其特征在于,所述吸光层的材料为改性花色苷和改性花青素中的至少一种,所述改性花色苷是对花色苷进行吸收峰改性处理得到的,所述改性花青素是对花青素进行吸收峰改性处理得到的。
  16. 根据权利要求1至15任一所述的显示基板,其特征在于,所述电致发光器件层包括磷化铟量子点发光二极管层或者有机发光二极管层。
  17. 一种显示基板的制造方法,其特征在于,所述方法包括:
    在衬底基板上形成电致发光器件层和吸光层,所述吸光层位于所述电致发光器件层的出光侧;
    其中,所述电致发光器件层被配置为发出第一颜色的初始光线,所述初始光线经过所述吸光层后形成目标光线,所述初始光线的发射光谱的半峰宽大于所述目标光线的发射光谱的半峰宽。
  18. 根据权利要求17所述的方法,其特征在于,所述在衬底基板上形成电致发光器件层和吸光层包括以下任一种:
    在所述衬底基板上形成所述电致发光器件层,在形成有所述电致发光器件层的衬底基板上形成所述吸光层;
    以及,在所述衬底基板上形成所述吸光层,在形成有所述吸光层的衬底基板上形成所述电致发光器件层。
  19. 根据权利要求17所述的方法,其特征在于,所述吸光层的吸收光谱为所述初始光线的发射光谱的肩峰。
  20. 一种显示装置,其特征在于,所述显示装置包括:权利要求1至16任一所述的显示基板。
PCT/CN2020/076173 2019-04-23 2020-02-21 显示基板及其制造方法、显示装置 WO2020215868A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/266,673 US11991891B2 (en) 2019-04-23 2020-02-21 Display substrate and manufacturing method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910327425.6A CN110048024B (zh) 2019-04-23 2019-04-23 显示基板及其制造方法、显示装置
CN201910327425.6 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020215868A1 true WO2020215868A1 (zh) 2020-10-29

Family

ID=67278474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076173 WO2020215868A1 (zh) 2019-04-23 2020-02-21 显示基板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11991891B2 (zh)
CN (1) CN110048024B (zh)
WO (1) WO2020215868A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048024B (zh) * 2019-04-23 2021-10-08 北京京东方技术开发有限公司 显示基板及其制造方法、显示装置
CN110690352A (zh) * 2019-09-06 2020-01-14 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111293149A (zh) * 2020-02-20 2020-06-16 京东方科技集团股份有限公司 有机电致发光显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066259A1 (en) * 2007-09-11 2009-03-12 Young-In Hwang Organic light emitting diode device and method for manufacturing the same
CN103258965A (zh) * 2013-04-27 2013-08-21 四川虹视显示技术有限公司 一种顶发光oled器件的薄膜封装结构及其制备方法
CN105932038A (zh) * 2016-05-23 2016-09-07 深圳市华星光电技术有限公司 Woled显示装置
CN108780167A (zh) * 2016-03-18 2018-11-09 日东电工株式会社 光学构件、以及使用该光学构件的背光单元及液晶显示装置
CN110048024A (zh) * 2019-04-23 2019-07-23 北京京东方技术开发有限公司 显示基板及其制造方法、显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739167B (zh) * 2016-05-06 2021-01-26 京东方科技集团股份有限公司 一种彩膜、基板及显示装置
US20170338290A1 (en) 2016-05-23 2017-11-23 Shenzhen China Star Optoelectronics Technology Co. Ltd. Woled display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066259A1 (en) * 2007-09-11 2009-03-12 Young-In Hwang Organic light emitting diode device and method for manufacturing the same
CN103258965A (zh) * 2013-04-27 2013-08-21 四川虹视显示技术有限公司 一种顶发光oled器件的薄膜封装结构及其制备方法
CN108780167A (zh) * 2016-03-18 2018-11-09 日东电工株式会社 光学构件、以及使用该光学构件的背光单元及液晶显示装置
CN105932038A (zh) * 2016-05-23 2016-09-07 深圳市华星光电技术有限公司 Woled显示装置
CN110048024A (zh) * 2019-04-23 2019-07-23 北京京东方技术开发有限公司 显示基板及其制造方法、显示装置

Also Published As

Publication number Publication date
US11991891B2 (en) 2024-05-21
CN110048024A (zh) 2019-07-23
CN110048024B (zh) 2021-10-08
US20210305527A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020215868A1 (zh) 显示基板及其制造方法、显示装置
US9379344B2 (en) Display panel and display device
KR102093628B1 (ko) 유기전계 발광소자 및 이의 제조 방법
US8476622B2 (en) Active matrix organic light emitting diode
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2020001061A1 (zh) 显示基板及制造方法、显示装置
KR20150133184A (ko) 표시 장치 및 그 제조 방법 및 전자 기기
US20220285455A1 (en) Display panel, manufacturing method thereof and display device
WO2020164528A1 (zh) 显示基板及其制备方法、显示装置
CN109830515B (zh) 一种显示面板及显示装置
WO2021164599A1 (zh) 有机电致发光显示面板及其制备方法、显示装置
WO2020206773A1 (zh) 有机发光二极管器件及其制作方法
WO2020207433A1 (zh) 显示基板及其制作方法、显示装置
US11552134B2 (en) Light emitting diode with microcavities and different reflective layers and fabricating method thereof, display substrate, and display apparatus
WO2021017106A1 (zh) 阵列基板及采用该阵列基板的制备方法、显示装置
CN113314682A (zh) 一种显示面板及其制备方法、电子设备
US10249686B2 (en) Organic light-emitting device and method of manufacturing the same
CN110462870B (zh) 显示基板、制造显示基板的方法和显示设备
WO2021072966A1 (zh) 显示面板和显示面板的制作方法
WO2020098722A1 (zh) 一种全彩化显示模块及其制作方法
WO2020220551A1 (zh) 显示面板及其制作方法、显示模组
CN216145621U (zh) 显示面板及显示装置
US20230021056A1 (en) Method of patterning light emitting layer, and method of manufacturing light-emitting diode device
US11968852B2 (en) Light-emitting device and method of manufacturing the same, light-emitting substrate and method of manufacturing the same, and light-emitting apparatus
US8872170B2 (en) Image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796427

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20796427

Country of ref document: EP

Kind code of ref document: A1