WO2020213317A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2020213317A1
WO2020213317A1 PCT/JP2020/011015 JP2020011015W WO2020213317A1 WO 2020213317 A1 WO2020213317 A1 WO 2020213317A1 JP 2020011015 W JP2020011015 W JP 2020011015W WO 2020213317 A1 WO2020213317 A1 WO 2020213317A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
semiconductor element
phase
power conversion
lower arm
Prior art date
Application number
PCT/JP2020/011015
Other languages
French (fr)
Japanese (ja)
Inventor
龍二 栗原
光一 八幡
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2021514831A priority Critical patent/JP7167319B2/en
Priority to DE112020001279.4T priority patent/DE112020001279T5/en
Priority to CN202080028774.9A priority patent/CN113711479A/en
Publication of WO2020213317A1 publication Critical patent/WO2020213317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • the present invention relates to a power conversion device.
  • the power conversion device has a semiconductor element that converts DC power into AC power.
  • a semiconductor element an IGBT (Insulated Gate Bipolar Transistor) or the like is used.
  • a semiconductor element that switches a high voltage and a large current generates heat due to switching loss or the like. Therefore, a temperature detecting element such as a temperature sensitive diode is arranged in the vicinity of the semiconductor element to detect the temperature of the semiconductor element, and the semiconductor element is controlled so as not to exceed the allowable temperature.
  • the power conversion device uses two semiconductor elements in each phase of the UVW phase, for a total of six semiconductor elements, and requires a plurality of temperature detectors for the semiconductor elements in each phase.
  • Patent Document 1 describes a power conversion device including a temperature-sensitive diode that detects the temperature of one IGBT and estimates the temperature of a semiconductor element that does not detect the temperature by calculation processing.
  • Patent Document 1 has a problem that complicated calculation processing for estimating the temperature is required.
  • the power conversion device comprises a power conversion circuit unit having a plurality of semiconductor elements that convert DC power into a plurality of phases of AC power, and the semiconductor element corresponding to any one of the plurality of phases of AC power.
  • a temperature detecting unit for detecting the temperature is provided, and the semiconductor element for detecting the temperature by the temperature detecting unit is driven so that heat generation due to switching loss is larger than that of other semiconductor elements that do not detect the temperature.
  • the temperature detection unit is minimized, and complicated calculation processing for estimating the temperature is not required.
  • FIG. 1 is a circuit configuration diagram of the power conversion device 1.
  • the power conversion device 1 is composed of a circuit having a semiconductor element for converting a direct current into an alternating current.
  • the power conversion device 1 uses the battery 2 as a power source, and controls the drive of the motor 3 by switching the semiconductor element on and off and passing a desired current. Then, the DC power and the AC power are converted between the battery 2 and the motor 3.
  • the battery 2 and the power converter 1 are connected via a relay 4. Further, the upper control unit 5 is connected to the power conversion device 1.
  • the power conversion device 1 includes a power conversion circuit unit 10 that performs power conversion, a capacitor 11 for smoothing a direct current, a drive power supply unit 12, a drive circuit unit 13, a temperature detection unit 14, and a control unit 15. To be equipped. Power is supplied to the control unit 15 from the external power source 6.
  • the power conversion circuit unit 10 has a UVW phase upper and lower arm series circuit.
  • the U-phase upper and lower arm series circuit includes a U-phase upper arm semiconductor element Tuu and a U-phase upper arm diode Du, and a U-phase lower arm semiconductor element Tu and a U-phase lower arm diode Dul.
  • the V-phase upper and lower arm series circuit includes a V-phase upper arm semiconductor element Tv and a V-phase upper arm diode Dvu, and a V-phase lower arm semiconductor element Tvr and a V-phase lower arm diode Dvl.
  • the W-phase upper and lower arm series circuit includes a W-phase upper arm semiconductor element Twoo and a W-phase upper arm diode Dwoo, and a W-phase lower arm semiconductor element Twl and a W-phase lower arm diode Dwl.
  • the drive power supply unit 12 is connected to the positive electrode bus bar P and the negative electrode bus bar N to supply power, and incorporates a DC-AC converter, a transformer, and an AC-DC converter, and is a power supply voltage of a drive circuit that drives semiconductor elements of each phase. Outputs Vuu, Vvu, Vwoo, Vul, Vvl, and Vwl.
  • the drive circuit unit 13 includes a drive circuit Guu to which a power supply voltage Vuu is supplied to control the U-phase upper arm semiconductor element Tuu on and off, and a drive circuit Gvu to which a power supply voltage Vvu is supplied to control the V-phase upper arm semiconductor element Tvu on and off. It is provided with a drive circuit Gwoo to which a power supply voltage Vu is supplied and controls on / off of the W phase upper arm semiconductor element Twoo.
  • a drive circuit Gul to which a power supply voltage Vul is supplied to control the U-phase lower arm semiconductor element Tul on and off, a drive circuit Gvl to which a power supply voltage Vvl is supplied to control the V-phase lower arm semiconductor element Tvl on and off, and a power supply voltage Vwl are provided. It is provided with a drive circuit Gwl that controls the on / off control of the W-phase lower arm semiconductor element Twl that is supplied.
  • the temperature detection unit 14 includes a temperature detection circuit 141 that detects the temperature based on the temperature sensitive diode Td.
  • the temperature sensitive diode Td is arranged in the vicinity of the U-phase lower arm semiconductor element Tul, and the temperature sensitive diode is not arranged in the vicinity of the other semiconductor elements.
  • the control unit 15 includes a microcomputer 151, and a current value supplied to the motor 3 detected by the current sensor 16 is input, and in response to a command value from the upper control unit 5, the drive circuit Guu to the drive circuit Gwl. Output the drive signal. Further, the temperature detected by the temperature detection unit 14 is input to the control unit 15, and the control unit 15 controls the semiconductor element so as not to exceed the allowable temperature.
  • FIG. 2 is a circuit diagram showing a main part of the drive circuit unit 13. As shown in FIG. 2, a temperature sensitive diode Td is arranged in the vicinity of the U-phase lower arm semiconductor element Tul.
  • the temperature detection unit 14 includes a temperature detection circuit 141 that detects the temperature based on the temperature sensitive diode Td, and the detected temperature is input to the microcomputer 151.
  • the drive signal is output from the microcomputer 151 to the drive circuit Gul.
  • the drive circuit Gul includes a gate control circuit 131, an on-side gate resistance Rg1, an off-side gate resistance Rg2, and a gate-emitter capacitor Cge. Further, the power supply voltage Vul is supplied from the drive power supply unit 12 to the gate control circuit 131 and the temperature detection circuit 141 as a drive power supply.
  • the gate control circuit 131 turns on the U-phase lower arm semiconductor element Tul by outputting an on-signal to the on-side gate resistor Rg1 in response to a drive signal input from the microcomputer 151.
  • the gate control circuit 131 outputs a zero potential to the off-side gate resistor Rg2.
  • FIG. 2 shows the drive circuit Gul that drives the U-phase lower arm semiconductor element Tul
  • the drive circuits Guu and Gv to Gwl of the other phases have the same configuration.
  • the resistance values of the on-side gate resistance Rg1 and the off-side gate resistance Rg2 of the drive circuit Gul are different from the resistance values of the drive circuits Guu and Gv to Gwl of the other phases.
  • the capacitances of the capacitors Cge in each phase are all the same value.
  • the switching characteristics of the U-phase lower arm semiconductor element Tul are determined by the gate resistance composed of the on-side gate resistance Rg1 and the off-side gate resistance Rg2. Increasing the resistance value of the gate resistor increases the switching loss of the U-phase lower arm semiconductor element Tul, but decreases the peak of the surge voltage generated by switching. Normally, the resistance value of the gate resistor is set so that the switching loss is minimized within the range where the surge voltage does not exceed the rated voltage of the semiconductor element. In the present embodiment, the resistance value of the gate resistor that determines the switching characteristics of the U-phase lower arm semiconductor element Tul whose temperature is detected by the temperature detection unit 14 is switched from the gate resistance that determines the switching characteristics of another semiconductor element that does not detect the temperature.
  • the switching loss of the temperature-detecting phase is set so that the minimum value of the temperature of the phase to be temperature-detected is larger than the maximum value of the temperature of the phase to be temperature-detected.
  • Structural cooling efficiency, semiconductor element characteristics, and temperature detection circuit characteristics can be considered as factors that cause variations in temperature detection. Therefore, for example, when the temperature variation is ⁇ 10%, the switching loss of the phase for detecting the temperature is increased so that the temperature rise becomes + 20% or more.
  • 3 (A) and 3 (B) are graphs showing the relationship between the motor current, the temperature, and the loss when this embodiment is applied.
  • the horizontal axis shows the motor current and the vertical axis shows the temperature.
  • the gate resistance of the U-phase lower arm semiconductor element Tul is increased so that the temperature is higher than that of the semiconductor element of the other phase, the temperature is higher than that of the other phase, for example, the W phase.
  • the difference in temperature increases in proportion to the magnitude of the motor current.
  • the horizontal axis shows the motor current and the vertical axis shows the loss.
  • the gate resistance of the U-phase lower arm semiconductor element Tul is increased so that the temperature is higher than that of the semiconductor element of the other phase, the loss is higher than that of the other phase, for example, the W phase.
  • the difference in loss increases in proportion to the magnitude of the motor current.
  • the capacitance of the capacitor Cge of the phase that detects the temperature is set to a capacitance larger than the capacitance of the other phase that does not detect the temperature. That is, the capacitance of the capacitor Cge is increased so that the temperature of the U-phase lower arm semiconductor element Tul is higher than that of the semiconductor element of the other phase, thereby intentionally creating a phase with increased switching loss and adjusting the temperature of that phase.
  • the resistance value of the gate resistance of each phase is the same value.
  • the switching loss of the temperature-detecting phase is set so that the minimum value of the temperature of the phase to be temperature-detected is larger than the maximum value of the temperature of the phase to be temperature-detected.
  • Structural cooling efficiency, semiconductor element characteristics, and temperature detection circuit characteristics can be considered as factors that cause variations in temperature detection. Therefore, for example, when the temperature variation is ⁇ 10%, the switching loss of the phase for detecting the temperature is increased so that the temperature rise becomes + 20% or more.
  • the power supply voltage Vul supplied from the drive power supply unit 12 shown in FIG. 1 to the drive circuit Gul is set to a voltage lower than the power supply voltages Vuu, Vvu, Vwoo, Vvl, and Vwl supplied to the other drive circuits. ..
  • the switching loss using the gate resistor composed of the on-side gate resistor Rg1 and the off-side gate resistor Rg2 increases. That is, the U-phase lower arm semiconductor element Tul is driven with a low voltage so that the temperature of the U-phase lower arm semiconductor element Tul is higher than that of the semiconductor element of the other phase, thereby intentionally creating a phase in which the switching loss is increased. Detect temperature.
  • the resistance value of the gate resistance of each phase and the capacitance of the capacitor Cge are all the same value.
  • the switching loss of the temperature-detecting phase is set so that the minimum value of the temperature of the phase to be temperature-detected is larger than the maximum value of the temperature of the phase to be temperature-detected.
  • Structural cooling efficiency, semiconductor element characteristics, and temperature detection circuit characteristics can be considered as factors that cause variations in temperature detection. Therefore, for example, when the temperature variation is ⁇ 10%, the switching loss of the phase for detecting the temperature is increased so that the temperature rise becomes + 20% or more.
  • the power conversion device 1 includes a power conversion circuit unit 10 having a plurality of semiconductor elements that convert DC power into a plurality of phases of AC power, and a semiconductor element corresponding to any one of the plurality of phases of AC power.
  • a temperature detection unit 14 for detecting temperature is provided, and a semiconductor element for detecting temperature by the temperature detection unit 14 is driven so that heat generation due to switching loss is larger than that of other semiconductor elements that do not detect temperature. As a result, the temperature detection unit is minimized, and complicated calculation processing for estimating the temperature is not required.
  • the present invention can be implemented by modifying the first to third embodiments described above as follows. (1) In each embodiment, the example of detecting the temperature in a specific one phase has been described, but the temperature may be detected in a specific plurality of phases. In this case, control is performed so that the permissible temperature is not exceeded based on the temperature at which the detected temperature is higher.
  • the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A temperature-sensitive diode Td is arranged in the vicinity of a U-phase lower arm semiconductor element Tul. A gate control circuit 131 outputs an on-signal to an on-side gate resistor Rg1 in response to a driving signal input by a microcomputer 151, to turn on the U-phase lower arm semiconductor element Tul. A switching characteristic of the U-phase lower arm semiconductor element Tul is determined by gate resistance constituted by two resistors of the on-side gate resistance Rg1 and an off-side gate resistor Rg2. A resistance value of the gate resistance determining the switching characteristic of the U-phase lower arm semiconductor element Tul that detects temperature by a temperature detecting unit 14 is determined to a value at which heat generation by switching loss becomes larger than the gate resistance that determines switching characteristics of other semiconductor elements which do not detect temperature.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
 電力変換装置は、直流電力を交流電力に変換する半導体素子を有する。半導体素子として、IGBT(Insulated Gate Bipolar Transistor)等が用いられている。高電圧大電流をスイッチングする半導体素子はスイッチング損失等により発熱する。このため、半導体素子の近傍に感温ダイオード等の温度検出素子を配置して半導体素子の温度を検出し、半導体素子が許容温度を超えないように制御している。電力変換装置には、例えば3相モータを駆動する場合は、UVW相の各相で2個、合計6個の半導体素子が使用されており、各相の半導体素子の温度検出部も複数必要となる。
 特許文献1には、1つのIGBTの温度を検出する感温ダイオードを備え、温度を検出していない半導体素子の温度を計算処理によって推定する電力変換装置が記載されている。
The power conversion device has a semiconductor element that converts DC power into AC power. As a semiconductor element, an IGBT (Insulated Gate Bipolar Transistor) or the like is used. A semiconductor element that switches a high voltage and a large current generates heat due to switching loss or the like. Therefore, a temperature detecting element such as a temperature sensitive diode is arranged in the vicinity of the semiconductor element to detect the temperature of the semiconductor element, and the semiconductor element is controlled so as not to exceed the allowable temperature. For example, when driving a three-phase motor, the power conversion device uses two semiconductor elements in each phase of the UVW phase, for a total of six semiconductor elements, and requires a plurality of temperature detectors for the semiconductor elements in each phase. Become.
Patent Document 1 describes a power conversion device including a temperature-sensitive diode that detects the temperature of one IGBT and estimates the temperature of a semiconductor element that does not detect the temperature by calculation processing.
特開2012-186968号公報Japanese Unexamined Patent Publication No. 2012-1869668
 特許文献1に記載の装置では、温度を推定するための複雑な計算処理等が必要になる課題があった。 The apparatus described in Patent Document 1 has a problem that complicated calculation processing for estimating the temperature is required.
 本発明による電力変換装置は、直流電力を複数相の交流電力に変換する複数の半導体素子を有する電力変換回路部と、前記複数相の交流電力のうちいずれかの相に対応する前記半導体素子の温度を検出する温度検出部と、を備え、前記温度検出部で温度を検出する前記半導体素子を、温度を検出しない他の前記半導体素子よりスイッチング損失による発熱が大きくなるように駆動する。 The power conversion device according to the present invention comprises a power conversion circuit unit having a plurality of semiconductor elements that convert DC power into a plurality of phases of AC power, and the semiconductor element corresponding to any one of the plurality of phases of AC power. A temperature detecting unit for detecting the temperature is provided, and the semiconductor element for detecting the temperature by the temperature detecting unit is driven so that heat generation due to switching loss is larger than that of other semiconductor elements that do not detect the temperature.
 本発明によれば、温度検出部を必要最小限にして、温度を推定するための複雑な計算処理等も不要になる。 According to the present invention, the temperature detection unit is minimized, and complicated calculation processing for estimating the temperature is not required.
電力変換装置の回路構成図である。It is a circuit block diagram of the power conversion device. 駆動回路部の要部を示す回路図である。It is a circuit diagram which shows the main part of the drive circuit part. (A)(B)モータ電流と温度および損失の関係を示すグラフである。(A) (B) It is a graph which shows the relationship between a motor current, a temperature and a loss.
[第1の実施形態]
 図1は、電力変換装置1の回路構成図である。
 電力変換装置1は、直流電流を交流電流に変換するための半導体素子を有する回路で構成される。電力変換装置1は、バッテリ2を動力源とし、半導体素子のオン、オフを切り変えて所望の電流を流すことでモータ3の駆動を制御する。そして、バッテリ2とモータ3の間で直流電力と交流電力の変換を行う。バッテリ2と電力変換装置1はリレー4を介して接続される。また、電力変換装置1には、上位制御部5が接続される。
[First Embodiment]
FIG. 1 is a circuit configuration diagram of the power conversion device 1.
The power conversion device 1 is composed of a circuit having a semiconductor element for converting a direct current into an alternating current. The power conversion device 1 uses the battery 2 as a power source, and controls the drive of the motor 3 by switching the semiconductor element on and off and passing a desired current. Then, the DC power and the AC power are converted between the battery 2 and the motor 3. The battery 2 and the power converter 1 are connected via a relay 4. Further, the upper control unit 5 is connected to the power conversion device 1.
 電力変換装置1は、電力変換を行う電力変換回路部10と、直流電流を平滑化するためのコンデンサ11と、駆動電源部12と、駆動回路部13と、温度検出部14と、制御部15を備える。制御部15には外部電源6から電力が供給される。 The power conversion device 1 includes a power conversion circuit unit 10 that performs power conversion, a capacitor 11 for smoothing a direct current, a drive power supply unit 12, a drive circuit unit 13, a temperature detection unit 14, and a control unit 15. To be equipped. Power is supplied to the control unit 15 from the external power source 6.
 電力変換回路部10は、UVW相の上下アーム直列回路を有する。U相上下アーム直列回路は、U相上アーム半導体素子Tuu及びU相上アームダイオードDuuと、U相下アーム半導体素子Tul及びU相下アームダイオードDulと、よりなる。V相上下アーム直列回路は、V相上アーム半導体素子Tvu及びV相上アームダイオードDvuと、V相下アーム半導体素子Tvl及びV相下アームダイオードDvlと、よりなる。W相上下アーム直列回路は、W相上アーム半導体素子Twu及びW相上アームダイオードDwuと、W相下アーム半導体素子Twl及びW相下アームダイオードDwlと、よりなる。 The power conversion circuit unit 10 has a UVW phase upper and lower arm series circuit. The U-phase upper and lower arm series circuit includes a U-phase upper arm semiconductor element Tuu and a U-phase upper arm diode Du, and a U-phase lower arm semiconductor element Tu and a U-phase lower arm diode Dul. The V-phase upper and lower arm series circuit includes a V-phase upper arm semiconductor element Tv and a V-phase upper arm diode Dvu, and a V-phase lower arm semiconductor element Tvr and a V-phase lower arm diode Dvl. The W-phase upper and lower arm series circuit includes a W-phase upper arm semiconductor element Twoo and a W-phase upper arm diode Dwoo, and a W-phase lower arm semiconductor element Twl and a W-phase lower arm diode Dwl.
 駆動電源部12は、正極バスバーPおよび負極バスバーNに接続されて電力が供給され、DC-ACコンバータ、トランス、AC-DCコンバータを内蔵し、各相の半導体素子を駆動する駆動回路の電源電圧Vuu、Vvu、Vwu、Vul、Vvl、Vwlを出力する。 The drive power supply unit 12 is connected to the positive electrode bus bar P and the negative electrode bus bar N to supply power, and incorporates a DC-AC converter, a transformer, and an AC-DC converter, and is a power supply voltage of a drive circuit that drives semiconductor elements of each phase. Outputs Vuu, Vvu, Vwoo, Vul, Vvl, and Vwl.
 駆動回路部13は、電源電圧Vuuが供給されU相上アーム半導体素子Tuuをオンオフ制御する駆動回路Guuと、電源電圧Vvuが供給されV相上アーム半導体素子Tvuをオンオフ制御する駆動回路Gvuと、電源電圧Vwuが供給されW相上アーム半導体素子Twuをオンオフ制御する駆動回路Gwuとを備える。さらに、電源電圧Vulが供給されU相下アーム半導体素子Tulをオンオフ制御する駆動回路Gulと、電源電圧Vvlが供給されV相下アーム半導体素子Tvlをオンオフ制御する駆動回路Gvlと、電源電圧Vwlが供給されW相下アーム半導体素子Twlをオンオフ制御する駆動回路Gwlとを備える。 The drive circuit unit 13 includes a drive circuit Guu to which a power supply voltage Vuu is supplied to control the U-phase upper arm semiconductor element Tuu on and off, and a drive circuit Gvu to which a power supply voltage Vvu is supplied to control the V-phase upper arm semiconductor element Tvu on and off. It is provided with a drive circuit Gwoo to which a power supply voltage Vu is supplied and controls on / off of the W phase upper arm semiconductor element Twoo. Further, a drive circuit Gul to which a power supply voltage Vul is supplied to control the U-phase lower arm semiconductor element Tul on and off, a drive circuit Gvl to which a power supply voltage Vvl is supplied to control the V-phase lower arm semiconductor element Tvl on and off, and a power supply voltage Vwl are provided. It is provided with a drive circuit Gwl that controls the on / off control of the W-phase lower arm semiconductor element Twl that is supplied.
 温度検出部14は、感温ダイオードTdに基づいて温度を検出する温度検出回路141を備える。本実施形態では、感温ダイオードTdはU相下アーム半導体素子Tulの近傍に配置され、その他の半導体素子の近傍には感温ダイオードは配置されていない。 The temperature detection unit 14 includes a temperature detection circuit 141 that detects the temperature based on the temperature sensitive diode Td. In the present embodiment, the temperature sensitive diode Td is arranged in the vicinity of the U-phase lower arm semiconductor element Tul, and the temperature sensitive diode is not arranged in the vicinity of the other semiconductor elements.
 制御部15は、マイコン151を備え、電流センサ16により検知されたモータ3に供給される電流値が入力され、上位制御部5からの指令値に応答して、駆動回路Guu~駆動回路Gwlへ駆動信号を出力する。また、制御部15には、温度検出部14で検出された温度が入力され、制御部15は、半導体素子が許容温度を超えないように制御する。 The control unit 15 includes a microcomputer 151, and a current value supplied to the motor 3 detected by the current sensor 16 is input, and in response to a command value from the upper control unit 5, the drive circuit Guu to the drive circuit Gwl. Output the drive signal. Further, the temperature detected by the temperature detection unit 14 is input to the control unit 15, and the control unit 15 controls the semiconductor element so as not to exceed the allowable temperature.
 図2は、駆動回路部13の要部を示す回路図である。
 図2に示すように、U相下アーム半導体素子Tulの近傍に感温ダイオードTdが配置されている。温度検出部14は、感温ダイオードTdに基づいて温度を検出する温度検出回路141を備え、検出された温度はマイコン151へ入力される。
FIG. 2 is a circuit diagram showing a main part of the drive circuit unit 13.
As shown in FIG. 2, a temperature sensitive diode Td is arranged in the vicinity of the U-phase lower arm semiconductor element Tul. The temperature detection unit 14 includes a temperature detection circuit 141 that detects the temperature based on the temperature sensitive diode Td, and the detected temperature is input to the microcomputer 151.
 マイコン151より駆動信号が駆動回路Gulへ出力される。駆動回路Gulは、ゲート制御回路131、オン側ゲート抵抗Rg1、オフ側ゲート抵抗Rg2、ゲート-エミッタ間のコンデンサCgeを備える。また、駆動電源部12より電源電圧Vulがゲート制御回路131および温度検出回路141へ駆動用電源として供給される。 The drive signal is output from the microcomputer 151 to the drive circuit Gul. The drive circuit Gul includes a gate control circuit 131, an on-side gate resistance Rg1, an off-side gate resistance Rg2, and a gate-emitter capacitor Cge. Further, the power supply voltage Vul is supplied from the drive power supply unit 12 to the gate control circuit 131 and the temperature detection circuit 141 as a drive power supply.
 ゲート制御回路131は、マイコン151より入力された駆動信号に応答してオン信号をオン側ゲート抵抗Rg1へ出力することにより、U相下アーム半導体素子Tulをオンにする。なお、ゲート制御回路131は、オフ側ゲート抵抗Rg2へゼロ電位を出力している。 The gate control circuit 131 turns on the U-phase lower arm semiconductor element Tul by outputting an on-signal to the on-side gate resistor Rg1 in response to a drive signal input from the microcomputer 151. The gate control circuit 131 outputs a zero potential to the off-side gate resistor Rg2.
 なお、図2ではU相下アーム半導体素子Tulを駆動する駆動回路Gulを示したが、他の相の駆動回路Guu、Gvu~Gwlも同様な構成である。但し、本実施形態では、後述するように駆動回路Gulのオン側ゲート抵抗Rg1およびオフ側ゲート抵抗Rg2の抵抗値が他の相の駆動回路Guu、Gvu~Gwlの抵抗値とは異なる。なお、各相のコンデンサCgeの容量は全て同一の値である。 Although FIG. 2 shows the drive circuit Gul that drives the U-phase lower arm semiconductor element Tul, the drive circuits Guu and Gv to Gwl of the other phases have the same configuration. However, in the present embodiment, as will be described later, the resistance values of the on-side gate resistance Rg1 and the off-side gate resistance Rg2 of the drive circuit Gul are different from the resistance values of the drive circuits Guu and Gv to Gwl of the other phases. The capacitances of the capacitors Cge in each phase are all the same value.
 U相下アーム半導体素子Tulのスイッチング特性はオン側ゲート抵抗Rg1とオフ側ゲート抵抗Rg2の2つで構成されるゲート抵抗で決まる。ゲート抵抗の抵抗値を大きくするとU相下アーム半導体素子Tulのスイッチング損失は増大するが、スイッチングにより発生するサージ電圧のピークは減少する。通常、ゲート抵抗の抵抗値はサージ電圧が半導体素子の定格電圧を超えない範囲でスイッチング損失が最小となるように設定される。本実施形態では、温度検出部14で温度を検出するU相下アーム半導体素子Tulのスイッチング特性を定めるゲート抵抗の抵抗値を、温度を検出しない他の半導体素子のスイッチング特性を定めるゲート抵抗よりスイッチング損失による発熱が大きくなる値に定める。すなわち、U相下アーム半導体素子Tulを他相の半導体素子より温度が高くなるようにゲート抵抗を大きくし、これにより、スイッチング損失を増大させた相を意図的に作りその相の温度を検出する。 The switching characteristics of the U-phase lower arm semiconductor element Tul are determined by the gate resistance composed of the on-side gate resistance Rg1 and the off-side gate resistance Rg2. Increasing the resistance value of the gate resistor increases the switching loss of the U-phase lower arm semiconductor element Tul, but decreases the peak of the surge voltage generated by switching. Normally, the resistance value of the gate resistor is set so that the switching loss is minimized within the range where the surge voltage does not exceed the rated voltage of the semiconductor element. In the present embodiment, the resistance value of the gate resistor that determines the switching characteristics of the U-phase lower arm semiconductor element Tul whose temperature is detected by the temperature detection unit 14 is switched from the gate resistance that determines the switching characteristics of another semiconductor element that does not detect the temperature. Set to a value that increases heat generation due to loss. That is, the gate resistance of the U-phase lower arm semiconductor element Tul is increased so that the temperature is higher than that of the semiconductor element of the other phase, thereby intentionally creating a phase with increased switching loss and detecting the temperature of that phase. ..
 温度検出のばらつきを考慮して、温度検出する相の温度の最小値が、温度検出しない相の温度の最大値より大きくなるように、温度検出する相のスイッチング損失を設定する。
温度検出のばらつき要因として構造的な冷却効率、半導体素子の特性、温度検出回路の特性が考えられる。そこで、例えば、温度ばらつきが±10%の場合には温度上昇が+20%以上となるように温度を検出する相のスイッチング損失を増大させる。
Considering the variation in temperature detection, the switching loss of the temperature-detecting phase is set so that the minimum value of the temperature of the phase to be temperature-detected is larger than the maximum value of the temperature of the phase to be temperature-detected.
Structural cooling efficiency, semiconductor element characteristics, and temperature detection circuit characteristics can be considered as factors that cause variations in temperature detection. Therefore, for example, when the temperature variation is ± 10%, the switching loss of the phase for detecting the temperature is increased so that the temperature rise becomes + 20% or more.
 図3(A)、図3(B)は、本実施形態を適用した場合のモータ電流と温度および損失の関係を示すグラフである。 3 (A) and 3 (B) are graphs showing the relationship between the motor current, the temperature, and the loss when this embodiment is applied.
 図3(A)は、横軸にモータ電流を、縦軸に温度を示す。U相下アーム半導体素子Tulを他相の半導体素子より温度が高くなるようにゲート抵抗を大きくした場合、他相、例えばW相よりも、温度が高くなっている。その温度の差はモータ電流の大きさに比例して大きくなる。 In FIG. 3A, the horizontal axis shows the motor current and the vertical axis shows the temperature. When the gate resistance of the U-phase lower arm semiconductor element Tul is increased so that the temperature is higher than that of the semiconductor element of the other phase, the temperature is higher than that of the other phase, for example, the W phase. The difference in temperature increases in proportion to the magnitude of the motor current.
 図3(B)は、横軸にモータ電流を、縦軸に損失を示す。U相下アーム半導体素子Tulを他相の半導体素子より温度が高くなるようにゲート抵抗を大きくした場合、他相、例えばW相よりも、損失が高くなっている。その損失の差はモータ電流の大きさに比例して大きくなる。 In FIG. 3B, the horizontal axis shows the motor current and the vertical axis shows the loss. When the gate resistance of the U-phase lower arm semiconductor element Tul is increased so that the temperature is higher than that of the semiconductor element of the other phase, the loss is higher than that of the other phase, for example, the W phase. The difference in loss increases in proportion to the magnitude of the motor current.
 本実施形態によれば、特定の相の半導体素子の温度を検出することにより、その他の相の半導体素子を含む過温度保護について信頼性を維持しながら低コストで実現できる。 According to this embodiment, by detecting the temperature of the semiconductor element of a specific phase, it is possible to realize the overtemperature protection including the semiconductor element of the other phase at low cost while maintaining the reliability.
[第2の実施形態]
 次に、第2の実施形態について説明する。図1に示す電力変換装置の回路構成図、図2に示す駆動回路および温度検出部の回路構成図、図3に示すU相V相の温度と損失を示すグラフは、本実施形態でも同様である。
[Second Embodiment]
Next, the second embodiment will be described. The circuit configuration diagram of the power conversion device shown in FIG. 1, the circuit configuration diagram of the drive circuit and the temperature detection unit shown in FIG. 2, and the graph showing the temperature and loss of the U phase and V phase shown in FIG. 3 are the same in the present embodiment. is there.
 本実施形態では、図2に示すゲート-エミッタ間のコンデンサCgeについて、温度を検出する相のコンデンサCgeの容量を、温度を検出しない他の相の容量より大きな容量に設定する。すなわち、U相下アーム半導体素子Tulを他相の半導体素子より温度が高くなるようにコンデンサCgeの容量を大きくし、これにより、スイッチング損失を増大させた相を意図的に作りその相の温度を検出する。なお、各相のゲート抵抗の抵抗値は全て同一の値である。 In the present embodiment, for the gate-emitter capacitor Cge shown in FIG. 2, the capacitance of the capacitor Cge of the phase that detects the temperature is set to a capacitance larger than the capacitance of the other phase that does not detect the temperature. That is, the capacitance of the capacitor Cge is increased so that the temperature of the U-phase lower arm semiconductor element Tul is higher than that of the semiconductor element of the other phase, thereby intentionally creating a phase with increased switching loss and adjusting the temperature of that phase. To detect. The resistance value of the gate resistance of each phase is the same value.
 温度検出のばらつきを考慮して、温度検出する相の温度の最小値が、温度検出しない相の温度の最大値より大きくなるように、温度検出する相のスイッチング損失を設定する。
温度検出のばらつき要因として構造的な冷却効率、半導体素子の特性、温度検出回路の特性が考えられる。そこで、例えば、温度ばらつきが±10%の場合には温度上昇が+20%以上となるように温度を検出する相のスイッチング損失を増大させる。
Considering the variation in temperature detection, the switching loss of the temperature-detecting phase is set so that the minimum value of the temperature of the phase to be temperature-detected is larger than the maximum value of the temperature of the phase to be temperature-detected.
Structural cooling efficiency, semiconductor element characteristics, and temperature detection circuit characteristics can be considered as factors that cause variations in temperature detection. Therefore, for example, when the temperature variation is ± 10%, the switching loss of the phase for detecting the temperature is increased so that the temperature rise becomes + 20% or more.
 本実施形態によれば、特定の相の半導体素子の温度を検出することにより、その他の相の半導体素子を含む過温度保護について信頼性を維持しながら低コストで実現できる。 According to this embodiment, by detecting the temperature of the semiconductor element of a specific phase, it is possible to realize the overtemperature protection including the semiconductor element of the other phase at low cost while maintaining the reliability.
[第3の実施形態]
 次に、第3の実施形態について説明する。図1に示す電力変換装置の回路構成図、図2に示す駆動回路および温度検出部の回路構成図、図3に示すU相V相の温度と損失を示すグラフは、本実施形態でも同様である。
[Third Embodiment]
Next, a third embodiment will be described. The circuit configuration diagram of the power conversion device shown in FIG. 1, the circuit configuration diagram of the drive circuit and the temperature detection unit shown in FIG. 2, and the graph showing the temperature and loss of the U phase and V phase shown in FIG. 3 are the same in the present embodiment. is there.
 本実施形態では、図1に示す駆動電源部12から駆動回路Gulへ供給される電源電圧Vulを、他の駆動回路へ供給される電源電圧Vuu、Vvu、Vwu、Vvl、Vwlより低い電圧にする。電圧を下げることにより、オン側ゲート抵抗Rg1とオフ側ゲート抵抗Rg2で構成されるゲート抵抗を用いたスイッチング損失が増える。すなわち、U相下アーム半導体素子Tulを他相の半導体素子より温度が高くなるように駆動回路Gulを低い電圧で駆動し、これにより、スイッチング損失を増大させた相を意図的に作りその相の温度を検出する。なお、各相のゲート抵抗の抵抗値、コンデンサCgeの容量は全て同一の値である。 In the present embodiment, the power supply voltage Vul supplied from the drive power supply unit 12 shown in FIG. 1 to the drive circuit Gul is set to a voltage lower than the power supply voltages Vuu, Vvu, Vwoo, Vvl, and Vwl supplied to the other drive circuits. .. By lowering the voltage, the switching loss using the gate resistor composed of the on-side gate resistor Rg1 and the off-side gate resistor Rg2 increases. That is, the U-phase lower arm semiconductor element Tul is driven with a low voltage so that the temperature of the U-phase lower arm semiconductor element Tul is higher than that of the semiconductor element of the other phase, thereby intentionally creating a phase in which the switching loss is increased. Detect temperature. The resistance value of the gate resistance of each phase and the capacitance of the capacitor Cge are all the same value.
 温度検出のばらつきを考慮して、温度検出する相の温度の最小値が、温度検出しない相の温度の最大値より大きくなるように、温度検出する相のスイッチング損失を設定する。
温度検出のばらつき要因として構造的な冷却効率、半導体素子の特性、温度検出回路の特性が考えられる。そこで、例えば、温度ばらつきが±10%の場合には温度上昇が+20%以上となるように温度を検出する相のスイッチング損失を増大させる。
Considering the variation in temperature detection, the switching loss of the temperature-detecting phase is set so that the minimum value of the temperature of the phase to be temperature-detected is larger than the maximum value of the temperature of the phase to be temperature-detected.
Structural cooling efficiency, semiconductor element characteristics, and temperature detection circuit characteristics can be considered as factors that cause variations in temperature detection. Therefore, for example, when the temperature variation is ± 10%, the switching loss of the phase for detecting the temperature is increased so that the temperature rise becomes + 20% or more.
 本実施形態によれば、特定の相の半導体素子の温度を検出することにより、その他の相の半導体素子を含む過温度保護について信頼性を維持しながら低コストで実現できる。 According to this embodiment, by detecting the temperature of the semiconductor element of a specific phase, it is possible to realize the overtemperature protection including the semiconductor element of the other phase at low cost while maintaining the reliability.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置1は、直流電力を複数相の交流電力に変換する複数の半導体素子を有する電力変換回路部10と、複数相の交流電力のうちいずれかの相に対応する半導体素子の温度を検出する温度検出部14と、を備え、温度検出部14で温度を検出する半導体素子を、温度を検出しない他の半導体素子よりスイッチング損失による発熱が大きくなるように駆動する。これにより、温度検出部を必要最小限にして、温度を推定するための複雑な計算処理等も不要になる。
According to the embodiment described above, the following effects can be obtained.
(1) The power conversion device 1 includes a power conversion circuit unit 10 having a plurality of semiconductor elements that convert DC power into a plurality of phases of AC power, and a semiconductor element corresponding to any one of the plurality of phases of AC power. A temperature detection unit 14 for detecting temperature is provided, and a semiconductor element for detecting temperature by the temperature detection unit 14 is driven so that heat generation due to switching loss is larger than that of other semiconductor elements that do not detect temperature. As a result, the temperature detection unit is minimized, and complicated calculation processing for estimating the temperature is not required.
(変形例)
 本発明は、以上説明した第1乃至第3の実施形態を次のように変形して実施することができる。
(1)各実施形態では特定の1相で温度を検出する例で説明したが、特定の複数相で温度を検出するようにしてもよい。この場合は、検出した温度が高い方の温度に基づいて、許容温度を超えないように制御する。
(Modification example)
The present invention can be implemented by modifying the first to third embodiments described above as follows.
(1) In each embodiment, the example of detecting the temperature in a specific one phase has been described, but the temperature may be detected in a specific plurality of phases. In this case, control is performed so that the permissible temperature is not exceeded based on the temperature at which the detected temperature is higher.
(2)各実施形態の電力変換回路部は、UVW相の三相の例で説明したが、三相に限らず複数相にも適用できる。 (2) Although the power conversion circuit unit of each embodiment has been described with the example of three phases of UVW phase, it can be applied not only to three phases but also to a plurality of phases.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a plurality of modified examples.
1 電力変換装置
2 バッテリ
3 モータ
4 リレー
5 上位制御部
6 外部電源
10 電力変換回路部
11 コンデンサ
12 駆動電源部
13 駆動回路部
14 温度検出部
15 制御部
16 電流センサ
131 ゲート制御回路
141 温度検出回路
151 マイコン
Tuu U相上アーム半導体素子
Tul U相下アーム半導体素子
Tvu V相上アーム半導体素子
Tvl V相下アーム半導体素子
Twu W相上アーム半導体素子
Twl W相下アーム半導体素子
Duu U相上アームダイオード
Dul U相下アームダイオード
Dvu V相上アームダイオード
Dvl V相下アームダイオード
Dwu W相上アームダイオード
Dwl W相下アームダイオード
Cge ゲート-エミッタ間のコンデンサ
Td 感温ダイオード
Rg1 オン側ゲート抵抗
Rg2 オフ側ゲート抵抗
Guu、Gvu、Gwu、Gul、Gvl、Gwl 駆動回路
1 Power converter 2 Battery 3 Motor 4 Relay 5 Upper control unit 6 External power supply 10 Power conversion circuit unit 11 Condenser 12 Drive power supply unit 13 Drive circuit unit 14 Temperature detection unit 15 Control unit 16 Current sensor 131 Gate control circuit 141 Temperature detection circuit 151 Microcomputer Tuu U phase upper arm semiconductor element Tul U phase lower arm semiconductor element Tv V phase upper arm semiconductor element Tvl V phase lower arm semiconductor element Tw W phase upper arm semiconductor element Twl W phase lower arm semiconductor element Du U phase upper arm diode Dul U phase lower arm diode Dv V phase upper arm diode Dvl V phase lower arm diode Dwoo W phase upper arm diode Dwl W phase lower arm diode Cge Gate-emitter capacitor Td Temperature sensitive diode Rg1 On side gate resistance Rg2 Off side gate Diode Guu, Gvu, Gwoo, Gul, Gvl, Gwl Drive circuit

Claims (4)

  1.  直流電力を複数相の交流電力に変換する複数の半導体素子を有する電力変換回路部と、
     前記複数相の交流電力のうちいずれかの相に対応する前記半導体素子の温度を検出する温度検出部と、を備え、
     前記温度検出部で温度を検出する前記半導体素子を、温度を検出しない他の前記半導体素子よりスイッチング損失による発熱が大きくなるように駆動する電力変換装置。
    A power conversion circuit unit having a plurality of semiconductor elements that convert DC power into multi-phase AC power,
    A temperature detection unit for detecting the temperature of the semiconductor element corresponding to any one of the plurality of phases of AC power is provided.
    A power conversion device that drives a semiconductor element whose temperature is detected by the temperature detection unit so that heat generation due to switching loss is larger than that of other semiconductor elements that do not detect temperature.
  2.  請求項1に記載の電力変換装置において、
     前記温度検出部で温度を検出する前記半導体素子のスイッチング特性を定めるゲート抵抗を、温度を検出しない他の前記半導体素子のスイッチング特性を定めるゲート抵抗よりスイッチング損失による発熱が大きくなる値に定める電力変換装置。
    In the power conversion device according to claim 1,
    Power conversion that defines the gate resistance that determines the switching characteristics of the semiconductor element whose temperature is detected by the temperature detection unit to a value that generates more heat due to switching loss than the gate resistance that determines the switching characteristics of other semiconductor elements that do not detect temperature. apparatus.
  3.  請求項1に記載の電力変換装置において、
     前記温度検出部で温度を検出する前記半導体素子のゲート-エミッタ間の容量を、温度を検出しない他の前記半導体素子のゲート-エミッタ間の容量よりスイッチング損失が大きくなる値に定める電力変換装置。
    In the power conversion device according to claim 1,
    A power conversion device that sets the capacitance between the gate and emitter of the semiconductor element whose temperature is detected by the temperature detection unit to a value at which the switching loss is larger than the capacitance between the gate and emitter of the other semiconductor element that does not detect the temperature.
  4.  請求項1に記載の電力変換装置において、
     前記温度検出部で温度を検出する前記半導体素子の駆動回路に対する駆動電圧を、温度を検出しない他の前記半導体素子の駆動回路に対する駆動電圧より低い値に定める電力変換装置。
    In the power conversion device according to claim 1,
    A power conversion device that sets a drive voltage for a drive circuit of the semiconductor element whose temperature is detected by the temperature detection unit to a value lower than a drive voltage for a drive circuit of another semiconductor element that does not detect the temperature.
PCT/JP2020/011015 2019-04-17 2020-03-13 Power conversion device WO2020213317A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021514831A JP7167319B2 (en) 2019-04-17 2020-03-13 power converter
DE112020001279.4T DE112020001279T5 (en) 2019-04-17 2020-03-13 Power converter
CN202080028774.9A CN113711479A (en) 2019-04-17 2020-03-13 Power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078469 2019-04-17
JP2019-078469 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213317A1 true WO2020213317A1 (en) 2020-10-22

Family

ID=72836818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011015 WO2020213317A1 (en) 2019-04-17 2020-03-13 Power conversion device

Country Status (4)

Country Link
JP (1) JP7167319B2 (en)
CN (1) CN113711479A (en)
DE (1) DE112020001279T5 (en)
WO (1) WO2020213317A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206345A (en) * 2007-02-21 2008-09-04 Denso Corp Power converter
WO2017168951A1 (en) * 2016-03-29 2017-10-05 三菱電機株式会社 Overheat protection control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482694B2 (en) 2011-03-08 2014-05-07 株式会社デンソー Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206345A (en) * 2007-02-21 2008-09-04 Denso Corp Power converter
WO2017168951A1 (en) * 2016-03-29 2017-10-05 三菱電機株式会社 Overheat protection control device

Also Published As

Publication number Publication date
DE112020001279T5 (en) 2021-12-02
JPWO2020213317A1 (en) 2020-10-22
CN113711479A (en) 2021-11-26
JP7167319B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
US6678180B2 (en) Power semiconductor module
KR101198566B1 (en) Polyphase inverter, control method therefor, blower, and polyphase current output system
JP5487746B2 (en) IGBT overcurrent protection circuit with reverse breakdown voltage
JP5627700B2 (en) Power converter
JPWO2015056571A1 (en) Power conversion device and power conversion method
JP6331925B2 (en) Matrix converter, power generation system, and power conversion method
US20190190403A1 (en) System-connected inverter device and method for operating same
US10727729B2 (en) Power converter
JP2019033556A (en) Gate driving device and power conversion device
JP5768934B2 (en) Power converter
JP6384316B2 (en) Power converter and control method of power converter
JP4706130B2 (en) Gate drive circuit for power semiconductor device
JP2015033149A (en) Drive unit of semiconductor element and power conversion device using the same
RU2632916C1 (en) Switching device, power conversion device, engine exciter, air pump, compressor, air conditioner, fridge and freezer
JP2002262580A (en) Inverter circuit
JP7051008B2 (en) Parallel drive device and power converter
WO2020213317A1 (en) Power conversion device
JP2018007502A (en) Power conversion device, air conditioner and control method for power conversion device
JP6157599B2 (en) Power conversion apparatus, motor drive apparatus including the same, blower including the same, compressor, air conditioner including them, refrigerator, and refrigerator
JP6136720B2 (en) Switching control device
JP5895704B2 (en) Power converter
US8760890B2 (en) Current source inverter
JP2022039105A (en) Semiconductor module
JP2017070179A (en) Control method for inverter device
KR101946369B1 (en) Power transforming apparatus and air conditioner including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514831

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20791087

Country of ref document: EP

Kind code of ref document: A1