WO2020209605A1 - Floating-type offshore wind power generation system - Google Patents

Floating-type offshore wind power generation system Download PDF

Info

Publication number
WO2020209605A1
WO2020209605A1 PCT/KR2020/004761 KR2020004761W WO2020209605A1 WO 2020209605 A1 WO2020209605 A1 WO 2020209605A1 KR 2020004761 W KR2020004761 W KR 2020004761W WO 2020209605 A1 WO2020209605 A1 WO 2020209605A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
floating
power generation
airfoil
variable
Prior art date
Application number
PCT/KR2020/004761
Other languages
French (fr)
Korean (ko)
Inventor
장대현
Original Assignee
장대현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장대현 filed Critical 장대현
Publication of WO2020209605A1 publication Critical patent/WO2020209605A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/507Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers with mooring turrets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2209/00Energy supply or activating means
    • B63B2209/20Energy supply or activating means wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a floating offshore power generation system, and more specifically, in generating power using an offshore wind power generation system floating on the sea, so that lift can be controlled by adjusting the angle of the blade connected to the rotating rotor. By doing so, it is possible to maximize wind power generation efficiency by applying a greater rotational force to the blades using the lift force that is varied by adjusting the angle of the blade, and the variable blade also allows the blade length to be maximized to increase the output. It relates to an offshore wind power generation system.
  • offshore wind power refers to a power generation method in which a wind turbine is installed in a water body such as a sea or a lake, and the kinetic energy of the wind blowing there is converted into mechanical energy by a rotating blade to obtain electricity. .
  • this wind power generation technology has a relatively high wind quality with a relatively constant wind direction, so its utilization rate is high, but the economy is sharply deteriorated due to the high facility costs such as floating bodies and submarine power lines due to deep sea installation.
  • the kinetic energy can be increased to be proportional to the square and to the cube of the wind speed.
  • the present invention is to solve the above-described problem, and is a wind power generation technology that maximizes the blade length and dramatically minimizes the weight. It is intended to provide a floating offshore wind power generation system that can maximize wind power generation efficiency.
  • a floating offshore wind power generation system includes a floating body floating on the water surface; And a wind power generation module provided on the upper side of the floating body and having a rotor rotating by the kinetic energy of the wind, wherein the rotor includes a rotor hub and at least one variable blade installed in an outer direction of the rotor, As the variable blade is provided to enable angle adjustment, a change in the rotation speed of the rotor is adjusted by adjusting the angle of the variable blade.
  • the floating body includes at least three or more floating pillars arranged in a triangular structure; A variable wave direction installed in the center under the water surface of the floating column; A truss structure connecting the floating pillars to each other; A turret provided in the truss structure; A mooring rope connected to the turret; And a submarine power line connected to the turret.
  • the wind power generation module further comprises a main tower standing upright on the floating body and a generator connected to the rotor hub, and further comprising a power generation module provided above the main tower, wherein the rotor extends from the rotor hub.
  • One or more connecting pipes, and a fixed blade to which an angle is fixed to and coupled to the connection pipe may be further provided, and the variable blade may be connected to an end portion of the connection pipe.
  • the rotor further includes a shaft hub spaced apart from the rotor hub and located on the rotation axis, and a rotor shaft connecting the shaft hub and the rotor hub, and the wind power generation module further includes an airfoil auxiliary tower supporting the shaft hub. It includes, and the airfoil auxiliary tower may be positioned so that a side edge region faces a direction in which the wind blows based on an upright state.
  • variable airfoil auxiliary tower In a partial area of the airfoil auxiliary tower, a variable airfoil auxiliary tower is provided to increase the lift generated in the side edge area of the airfoil auxiliary tower based on an upright state, and the angle of the variable airfoil auxiliary tower is left or right. Can be changed.
  • the wind has a constant direction because there are few obstacles to the kinetic energy of the wind at sea compared to the wind speed that has a cubic effect on kinetic energy and land. It is in the spotlight because it can solve civil complaints and environmental problems, as well as the utilization rate that increases power generation with excellent wind quality, but the high facility costs associated with deep-sea installation sharply degrade economic feasibility.
  • the floating offshore wind power generation system using the kinetic energy of the wind has the advantage of maximizing economic efficiency by generating electricity proportional to the square of the blade length and the cube of the wind speed.
  • the lift generated in the side edge area provided in the airfoil auxiliary tower and the airfoil auxiliary tower to adequately handle this load is increased.
  • variable airfoil auxiliary tower which is an airfoil structure to be used
  • the floating body itself is directed toward the wind blowing direction around the turret so that the rotor can always see the wind in front. It has the advantage of increasing power production efficiency.
  • a variable wave direction may be installed under the central water surface of the floating body.
  • the direction of the ocean current is similar to the wind direction on the sea to a certain part of the sea depth, and this flow energy allows the rotor to always look directly at the wind like a variable airfoil auxiliary tower, thereby improving power production efficiency. Raise.
  • the wave direction variable angle 112a has a large effect with a small area compared to the variable airfoil auxiliary tower (130a). You can pay.
  • FIG. 1 is a view showing the overall configuration of a floating offshore wind power system 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the floating body 110 shown in FIG. 1 in more detail.
  • FIG. 4 is a view showing in more detail the airfoil auxiliary tower 130 shown in FIG.
  • variable airfoil auxiliary tower (130a) shown in FIG. 5 is a view showing a cross-section of the variable airfoil auxiliary tower (130a) shown in FIG.
  • FIG. 1 is a view showing the overall configuration of a floating offshore wind power generation system 100 according to an embodiment of the present invention
  • FIG. 2 is a view showing the floating body 110 shown in FIG. 1 in more detail
  • 3 is a view showing in more detail the wind power module 120 shown in FIG. 1
  • FIG. 4 is a view showing the airfoil auxiliary tower 130 shown in FIG. 1 in more detail.
  • the floating offshore wind power generation system 100 may be largely configured to include a floating body 110 and a wind power module 120. In addition, in one embodiment, it may further include an airfoil auxiliary tower 130.
  • the floating body 110 serves to provide buoyancy so that the floating offshore wind power system 100 does not sink by being floated on the sea. This floating body 110 will be described through FIG. 2.
  • the floating body 110 is at least three or more floating pillars 111 having a triangular structure, a truss structure 112 connecting each of the floating pillars 111 to each other, from one side of the truss structure 112 It may be configured to include a turret 113 provided in a protruding shape, a mooring rope 114 connected to the turret 113 and extending to the sea, and a submarine power line 115.
  • the floating pillar 111 actively adjusts the center of gravity to control the posture so that the floating offshore wind power generation system 100 does not lean to one side or collapse by filling or draining water therein.
  • the truss structure 112 refers to a connection structure that connects each of the floating pillars 111 to each other, and serves to support and support each floating pillar 111 so that it is not damaged by strong waves, storms, wind speeds, etc. at sea. do. At this time, a variable wave direction 112a is provided below the central depth of the truss structure 112.
  • the direction of the wave direction variable 112a flows similarly to the wind direction on the sea to a certain part of the sea depth, and by using this flow energy, the rotor always looks at the wind in front, like the variable airfoil auxiliary tower 130a.
  • the wave direction variable angle 112a has a large effect with a small area compared to the variable airfoil auxiliary tower (130a). You can pay.
  • a turret 113 is provided to protrude outward.
  • the turret 113 is the mooring rope 114 and the submarine power line 115 when the floating body 110 rotates around the turret 113 in a direction to receive the kinetic energy of the wind as much as possible, the mooring rope 114 and The submarine power line 115 serves to maintain the position so that the floating body 110 does not move away from the current position or drift away from the current position while maintaining it to be fixed without rotating.
  • the floating body 110 rotates around the turret 113, the mooring rope 114 is caught under the truss structure 112 and can interfere with the rotational movement, so this part is the floating body 110 It has a structure that can smoothly rotate by moving it to the center.
  • each of the connection pipes 123c may be configured to include variable and fixed blades 123a and 123b.
  • the main tower 121 serves to support the load of the power generation module 122, the rotor 123, the connection pipe (123c), the variable and fixed blades (123a, 123b) and the rotor support (123g), and the length is limited. It doesn't work.
  • the height of the main tower 121 is formed longer than the sum of the variable and fixed blades 123a and 123b and the connection pipe 123c.
  • a generator 122a for converting the rotational force of the rotor 123 into electrical energy is built into the power generation module 122, and at least two or more connecting pipes 123c are connected to the rotor 123.
  • the rotor 123 connects the rotor hub 123d and the shaft hub 123f located spaced apart on the rotation axis with the rotor hub 123d through the rotor shaft 123e, and the variable and fixed blades 123a and 123b and
  • a rotor support 123g for supporting the wind load due to the kinetic energy of the wind is configured by connecting the connecting pipe 123c and the rotor shaft 123e to the connecting pipe 123c.
  • the shaft hub 123f may be connected to the airfoil auxiliary tower 130 to be described later.
  • the power generation module 122 is composed of several generators (122a) are directly connected.
  • a generator suitable for it is developed and installed to convert mechanical energy into electrical energy.
  • newly developing and installing a single large generator has the advantage of reducing the load of the power generation module 122, but a large development cost occurs.
  • the present invention has a structure that can sufficiently bear the load of the power generation module 122, in order to solve this problem, one or more commercially available generators are directly connected and installed according to the required output of the generator, thereby greatly reducing the cost. I can.
  • connection pipe 123c has a circular pipe shape. This will be described in more detail with reference to FIG. 3.
  • connection pipe (123c) is a variable blade (123a) located at the outer end of the connection pipe (123c), and a fixed blade (123b) provided between the rotor hub (122d) and the variable blade (123a). Consists of including.
  • variable blade 123a means a rotating blade having an airfoil structure whose angle is adjusted through rotation in one direction, and the kinetic energy of the wind applied to the variable blade 123a is appropriately adjusted by adjusting the angle of the variable blade 123a. It minimizes mechanical failure due to a rapid increase in the rotor rotation speed, while ensuring maximum efficiency.
  • the fixed blade 123b refers to a rotating blade having an airfoil structure in which the connecting pipe 123c is twisted in a certain direction along the rotation axis, not a structure in which the angle is adjusted through rotation.
  • the present invention may further include an airfoil auxiliary tower 130 for supporting the rotor 123 and automatically rotating the floating body 110 along the airflow. This will be described in more detail with reference to FIG. 4.
  • the airfoil auxiliary tower 130 is upright on the upper side of the floating body 110, and a part of the static and dynamic load of the wind power generation module 120 is concentrated on the shaft hub 123e, so that this load can be adequately handled.
  • cross-section is formed in a shape corresponding to the cross-section of the plane wing of left and right symmetry.
  • the airfoil auxiliary tower 130 is formed in a shape that generates lift like a cross section of an airplane wing whose cross section is symmetrical. Therefore, even when the wind blows toward the side of the airfoil auxiliary tower 130, the floating body 110 connected to the lower side of the airfoil auxiliary tower 130 by the airflow formed around the airfoil auxiliary tower 130 is It naturally rotates around the turret 113.
  • the floating body 110 Since the floating body 110 is not fixed on the sea, the floating body 110 can freely rotate around the turret 113.
  • the floating body 110 naturally rotates around the turret 113 by the lift generated by the airfoil auxiliary tower 130, and accordingly, the front of the airfoil auxiliary tower 130 exactly matches the direction in which the wind blows. Is done.
  • the structure of the airfoil auxiliary tower 130 has the advantage of allowing the floating offshore wind power generation system 100 to always face the direction and the front of the wind.
  • a tower 130a is provided.
  • variable airfoil auxiliary tower (130a) when the variable airfoil auxiliary tower (130a) is bent to one side (for example, counterclockwise), wind resistance is generated by the variable airfoil auxiliary tower (130a), and the floating body 110 is in the opposite direction (for example, clockwise). Direction).
  • variable airfoil auxiliary tower 130a directly changes the direction of the floating body 110 so that the wind power generation module 120 always faces the direction in which the wind blows and to the front.
  • variable airfoil auxiliary tower 130a a cross-section of the variable airfoil auxiliary tower 130a is as follows.
  • variable airfoil auxiliary tower (130a) shown in FIG. 5 is a view showing a cross-section of the variable airfoil auxiliary tower (130a) shown in FIG.
  • variable airfoil auxiliary tower 130a is formed in a shape in which the cross section generates a lift force like the cross section of an airplane wing. Therefore, even when the wind blows toward the side of the variable airfoil auxiliary tower (130a), the floating body connected to the lower side of the variable airfoil auxiliary tower (130a) by the airflow formed around the variable airfoil auxiliary tower (130a) 110) naturally rotates around the turret 113.
  • variable airfoil auxiliary tower 130a Since the floating body 110 is not fixed on the sea but can rotate freely, the floating body 110 naturally rotates around the turret 113 by the lift generated by the variable airfoil auxiliary tower 130a. Accordingly, the front of the variable airfoil auxiliary tower 130a can be controlled to be exactly the same as the direction in which the wind blows.
  • variable airfoil auxiliary tower (130a) has the advantage that the floating offshore wind power generation system 100 can always face the direction and the front of the wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

A floating-type offshore wind power generation system according to the present invention comprises: floating bodies floating on the surface of water; and a wind power generation module which is provided on the upper sides of the floating bodies and which has a rotor rotated by the kinetic energy of wind, wherein the rotor has a rotor hub, and one or more variable blades provided in the outward direction of the rotor, and the variable blades are provided so that the angles thereof can be adjusted, thereby allowing a change in the rotational speed of the rotor to be controlled by means of the angle adjustment of the variable blades.

Description

부유식 해상풍력발전 시스템Floating offshore wind power system
본 발명은 부유식 해상발전 시스템에 관한 것으로서, 보다 구체적으로는, 해상에 부유된 해상풍력발전 시스템을 이용하여 전력을 생산함에 있어, 회전 로터와 연결된 블레이드의 각도 조절을 통해 양력을 제어할 수 있도록 함으로써, 블레이드의 각도 조절에 의해 가변되는 양력을 이용하여 블레이드에 더욱 큰 회전력을 가함으로써 풍력발전 효율을 극대화시킬 수 있고, 또한 가변블레이드는 블레이드 길이를 최대한 늘릴 수 있도록 하여 출력을 상승시킬 수 있는 부유식 해상풍력발전 시스템에 관한 것이다.The present invention relates to a floating offshore power generation system, and more specifically, in generating power using an offshore wind power generation system floating on the sea, so that lift can be controlled by adjusting the angle of the blade connected to the rotating rotor. By doing so, it is possible to maximize wind power generation efficiency by applying a greater rotational force to the blades using the lift force that is varied by adjusting the angle of the blade, and the variable blade also allows the blade length to be maximized to increase the output. It relates to an offshore wind power generation system.
일반적으로, 해상풍력발전(Offshore wind power)은 풍력터빈을 해상 및 호수와 같은 수역에 설치하여, 그 곳에서 부는 바람의 운동에너지를 회전날개에 의한 기계에너지로 변환하여 전기를 얻는 발전방식을 말한다.In general, offshore wind power refers to a power generation method in which a wind turbine is installed in a water body such as a sea or a lake, and the kinetic energy of the wind blowing there is converted into mechanical energy by a rotating blade to obtain electricity. .
육상풍력발전의 발달로 인하여 풍력터빈이 대형화 됨에 따라, 설치 장소의 한계가 드러나게 되었고 터빈의 대형화로 인한 소음문제, 설치 및 운반문제, 시각적인 경관 등이 문제로 야기되었다. 따라서 이러한 육상풍력발전의 문제점을 해소하기 위한 해결책으로 해상풍력발전이 고안되었다.As wind turbines became larger due to the development of onshore wind power generation, the limitations of installation sites were revealed, and problems such as noise problems, installation and transportation problems, and visual scenery due to the enlargement of the turbines were caused. Therefore, offshore wind power generation has been devised as a solution to solve the problems of such onshore wind power generation.
최근에는 수심 40 ~ 900[m] 심해에도 설치가 가능한 부유식 해상풍력발전 시스템이 각광받고 있다.In recent years, floating offshore wind power generation systems that can be installed even in the depths of 40 to 900 [m] are in the spotlight.
하지만, 이 풍력발전 기술은 타 발전 기술에 비해, 비교적 일정한 풍향으로 풍질이 우수하여 이용률은 높으나, 심해 설치에 따른 부유체와 해저전력선 등 시설비가 높아 경제성이 급격히 떨어진다. However, compared to other power generation technologies, this wind power generation technology has a relatively high wind quality with a relatively constant wind direction, so its utilization rate is high, but the economy is sharply deteriorated due to the high facility costs such as floating bodies and submarine power lines due to deep sea installation.
따라서, 경제성을 극대화하기 위해서, 종래의 블레이드(회전 날개) 크기 및 길이를 늘리는 방식이 매우 효과적이다.Therefore, in order to maximize economic efficiency, a method of increasing the size and length of a conventional blade (rotating blade) is very effective.
종래 블레이드 길이(R)와 블레이드 중량(M)의 관계는 대략 M = 0.5 * R2.53로 나타낼 수 있다. 이것은 블레이드 중량이 블레이드 길이에 대해 지수함수적으로 증가하는 것을 보여 주며, 블레이드의 공급가격은 중량에 비례하므로 결국 급격하게 시설비가 증가하게 된다.The relationship between the conventional blade length (R) and the blade weight (M) can be represented by approximately M = 0.5 * R 2.53 . This shows that the blade weight increases exponentially with respect to the blade length, and the supply price of the blade is proportional to the weight, resulting in a rapid increase in facility cost.
또한 바람의 운동에너지(E)에 영향을 주는 공기중량(m)과 바람속도(V)의 사이에 관계식은 E = ½ * m * V2 이며, 이 식으로부터 E ∝ R2, V3의 식이 유도된다. 즉, 바람의 운동에너지는 블레이드 길이 제곱에 비례하고, 풍속의 세제곱에 비례한다.Also, the relation between the air weight (m) and the wind speed (V) that affects the kinetic energy of the wind (E) is E = ½ * m * V 2 , and from this equation, the equations of E ∝ R 2 and V 3 are Is induced. That is, the kinetic energy of the wind is proportional to the square of the blade length and is proportional to the cube of the wind speed.
따라서 바람의 운동에너지로부터 발전 효율을 극대화하기 위해서는 블레이드 길이를 늘릴수록 제곱에 비례하고 바람속도 세제곱에 비례하도록 운동에너지를 증가시킬 수 있다.Therefore, in order to maximize the power generation efficiency from the kinetic energy of the wind, as the blade length is increased, the kinetic energy can be increased to be proportional to the square and to the cube of the wind speed.
하지만, 그에 비해서 블레이드 공급가격에 직접적인 영향을 주는 블레이드의 자체 중량은 지수함수적으로 증가하는 문제와 그 블레이드들의 중량을 지탱하기 위한 타워 또한 거대해지며 설치가 복잡해지고 시설비등이 급격하게 증가하는 문제점을 가지고 있었다.However, compared to that, the blade's own weight, which directly affects the blade supply price, increases exponentially, and the tower to support the weight of the blades also becomes huge, complicating installation, and rapidly increasing the cost of facilities. I had.
따라서, 현재는 블레이드 길이를 최대화하면서도 전체적인 중량을 획기적으로 최소화하여 발전 효율을 극대화할 수 있는 풍력발전 기술이 필요한 실정이다.Accordingly, there is a need for a wind power generation technology capable of maximizing power generation efficiency by maximizing the blade length and dramatically minimizing the overall weight.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 블레이드 길이를 최대화 하면서도 중량을 획기적으로 최소화하는 풍력발전 기술로 블레이드 길이 제곱에 비례하고 풍속의 세제곱에 비례하는 바람의 운동에너지가 블레이드에 더욱 큰 회전력을 가함으로써 풍력발전 효율을 극대화시킬 수 있도록 하는 부유식 해상풍력발전 시스템을 제공하고자 한다.The present invention is to solve the above-described problem, and is a wind power generation technology that maximizes the blade length and dramatically minimizes the weight. It is intended to provide a floating offshore wind power generation system that can maximize wind power generation efficiency.
본 발명의 일 측면에 따른 부유식 해상풍력발전 시스템은, 수면에 부유되는 부유체; 및 바람의 운동에너지에 의해 회전하는 로터를 구비하고 상기 부유체의 상측에 마련되는 풍력발전모듈을 포함하며, 상기 로터는 로터 허브와, 상기 로터의 외측 방향으로 설치된 하나 이상의 가변블레이드를 구비하며, 상기 가변블레이드는 각도 조절이 가능하도록 마련됨에 따라 상기 가변블레이드의 각도 조절에 의해 상기 로터의 회전속도 변화가 조절되는 것을 특징으로 한다.A floating offshore wind power generation system according to an aspect of the present invention includes a floating body floating on the water surface; And a wind power generation module provided on the upper side of the floating body and having a rotor rotating by the kinetic energy of the wind, wherein the rotor includes a rotor hub and at least one variable blade installed in an outer direction of the rotor, As the variable blade is provided to enable angle adjustment, a change in the rotation speed of the rotor is adjusted by adjusting the angle of the variable blade.
상기 부유체는, 삼각형 구조로 배치되는 적어도 3개 이상의 부유기둥; 상기 부유기둥의 수면 아래 중심부에 설치되는 파향가변타; 상기 부유기둥을 서로 연결하는 트러스(truss) 구조체; 상기 트러스 구조체에서 마련되는 터렛(turret); 상기 터렛과 연결되는 계류로프(mooring rope); 및 상기 터렛과 연결되는 해저 전력선을 포함할 수 있다.The floating body includes at least three or more floating pillars arranged in a triangular structure; A variable wave direction installed in the center under the water surface of the floating column; A truss structure connecting the floating pillars to each other; A turret provided in the truss structure; A mooring rope connected to the turret; And a submarine power line connected to the turret.
상기 풍력발전모듈은, 상기 부유체에 직립되는 주타워와, 상기 로터 허브와 연결되는 발전기를 구비하고 상기 주타워의 상부에 마련되는 발전모듈을 더 포함하며, 상기 로터는 상기 로터 허브로부터 연장되는 하나 이상의 연결 파이프와, 상기 연결 파이프에 각도가 고정되어서 결합되는 고정블레이드를 더 구비하며, 상기 가변블레이드는 상기 연결 파이프의 말단부에 연결될 수 있다.The wind power generation module further comprises a main tower standing upright on the floating body and a generator connected to the rotor hub, and further comprising a power generation module provided above the main tower, wherein the rotor extends from the rotor hub. One or more connecting pipes, and a fixed blade to which an angle is fixed to and coupled to the connection pipe may be further provided, and the variable blade may be connected to an end portion of the connection pipe.
상기 로터는 상기 로터 허브와 회전축선 상에서 이격되어서 위치하는 축허브와, 상기 축허브와 상기 로터 허브를 연결하는 로터축을 더 구비하며, 상기 풍력발전모듈은 상기 축허브를 지지하는 익형보조타워를 더 포함하며, 상기 익형보조타워는 직립된 상태를 기준으로 측면 모서리 영역이 바람이 불어오는 방향을 향하도록 위치할 수 있다.The rotor further includes a shaft hub spaced apart from the rotor hub and located on the rotation axis, and a rotor shaft connecting the shaft hub and the rotor hub, and the wind power generation module further includes an airfoil auxiliary tower supporting the shaft hub. It includes, and the airfoil auxiliary tower may be positioned so that a side edge region faces a direction in which the wind blows based on an upright state.
상기 익형보조타워의 일부 영역에는, 직립된 상태를 기준으로 상기 익형보조타워의 측면 모서리 영역에 발생되는 양력을 증가시키기 위한 가변익형보조타워가 마련되며, 상기 가변익형보조타워의 각도가 좌측 또는 우측으로 변경될 수 있다.In a partial area of the airfoil auxiliary tower, a variable airfoil auxiliary tower is provided to increase the lift generated in the side edge area of the airfoil auxiliary tower based on an upright state, and the angle of the variable airfoil auxiliary tower is left or right. Can be changed.
본 발명의 일 측면에 따르면, 해상풍력발전 시스템이 심해일수록 운동에너지에 세제곱에 비례하는 영향을 주는 바람속도와 육상과 비교해서 해상에는 바람의 운동에너지에 대한 장애물이 거의 없어 바람이 일정한 방향성을 갖는 우수한 풍질로 전력생산을 높여주는 이용률과 민원 및 환경 문제를 해결할 수 있어 각광을 받고 있으나, 심해 설치에 따르는 높은 시설비등은 급격히 경제성을 떨어뜨린다.According to an aspect of the present invention, as the offshore wind power generation system is deeper, the wind has a constant direction because there are few obstacles to the kinetic energy of the wind at sea compared to the wind speed that has a cubic effect on kinetic energy and land. It is in the spotlight because it can solve civil complaints and environmental problems, as well as the utilization rate that increases power generation with excellent wind quality, but the high facility costs associated with deep-sea installation sharply degrade economic feasibility.
따라서 현재는 블레이드 길이를 최대화하면서도 전체적인 중량을 획기적으로 최소화하게 되면 바람의 운동에너지를 이용한 부유식 해상풍력발전 시스템은 블레이드 길이 제곱, 바람 속도 세제곱에 비례하는 전력생산으로 경제성을 극대화시킬 수 있는 장점을 가진다. 또한 본 발명의 일 측면에 따르면, 풍력발전모듈의 정적동적 하중의 일부분이 축허브에 집중되므로 이 하중을 적절하게 감당하기 위한 익형보조타워와 익형보조타워에 마련된 측면 모서리 영역에 발생되는 양력을 증가시키기 위한 익형 구조인 가변익형보조타워는 각도가 좌측 또는 우측으로 변경됨에 따라, 상기 부유체 자체가 터렛을 중심으로 바람이 불어오는 방향을 향하도록 하여 로터가 항시 바람을 정면으로 바라볼 수 있도록 하여 전력생산 효율을 높이는 장점을 가진다. 또한 이와 같은 효과를 가속시키기 위해서 부유체의 중심 수면 하부에는 파향가변타가 설치 될 수 있다.Therefore, if the blade length is maximized and the overall weight is drastically minimized, the floating offshore wind power generation system using the kinetic energy of the wind has the advantage of maximizing economic efficiency by generating electricity proportional to the square of the blade length and the cube of the wind speed. Have. In addition, according to an aspect of the present invention, since a part of the static and dynamic load of the wind power generation module is concentrated on the shaft hub, the lift generated in the side edge area provided in the airfoil auxiliary tower and the airfoil auxiliary tower to adequately handle this load is increased. As the angle of the variable airfoil auxiliary tower, which is an airfoil structure to be used, is changed to the left or right, the floating body itself is directed toward the wind blowing direction around the turret so that the rotor can always see the wind in front. It has the advantage of increasing power production efficiency. In addition, in order to accelerate this effect, a variable wave direction may be installed under the central water surface of the floating body.
파향가변타는 일반적으로 해류의 방향성은 해수심 일정 부분까지 해상의 풍향과 유사하게 흐르고, 이 유동 에너지를 이용하여 가변익형보조타워와 같이 로터가 항시 바람을 정면으로 바라볼 수 있도록 하여 전력생산 효율을 높인다. 특히, 공기밀도가 약1.225[㎏/㎥]에 비해 해수밀도가 약1,020[㎏/㎥]인 것을 감안하면 파향가변타(112a)는 가변익형보조타워(130a)에 비해 적은 면적으로도 큰 효과를 낼 수 있다.In general, the direction of the ocean current is similar to the wind direction on the sea to a certain part of the sea depth, and this flow energy allows the rotor to always look directly at the wind like a variable airfoil auxiliary tower, thereby improving power production efficiency. Raise. In particular, considering that the seawater density is about 1,020 [kg/㎥] compared to the air density of about 1.225[㎏/㎥], the wave direction variable angle 112a has a large effect with a small area compared to the variable airfoil auxiliary tower (130a). You can pay.
도 1은 본 발명의 일 실시예에 따른 부유식 해상풍력발전 시스템(100)의 전체적인 구성을 도시한 도면이다.1 is a view showing the overall configuration of a floating offshore wind power system 100 according to an embodiment of the present invention.
도 2는 도 1에 도시된 부유체(110)를 보다 구체적으로 도시한 도면이다.FIG. 2 is a diagram illustrating the floating body 110 shown in FIG. 1 in more detail.
도 3은 도 1에 도시된 풍력발전모듈(120)을 보다 구체적으로 도시한 도면이다.3 is a view showing the wind power module 120 shown in FIG. 1 in more detail.
도 4는 도 1에 도시된 익형보조타워(130)를 보다 구체적으로 도시한 도면이다.4 is a view showing in more detail the airfoil auxiliary tower 130 shown in FIG.
도 5는 도 4에 도시된 가변익형보조타워(130a)의 단면을 도시한 도면이다.5 is a view showing a cross-section of the variable airfoil auxiliary tower (130a) shown in FIG.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, a preferred embodiment is presented to aid the understanding of the present invention. However, the following examples are provided for easier understanding of the present invention, and the contents of the present invention are not limited by the examples.
도 1은 본 발명의 일 실시예에 따른 부유식 해상풍력발전 시스템(100)의 전체적인 구성을 도시한 도면이고, 도 2는 도 1에 도시된 부유체(110)를 보다 구체적으로 도시한 도면이며, 도 3은 도 1에 도시된 풍력발전모듈(120)을 보다 구체적으로 도시한 도면이고, 도 4는 도 1에 도시된 익형보조타워(130)를 보다 구체적으로 도시한 도면이다.FIG. 1 is a view showing the overall configuration of a floating offshore wind power generation system 100 according to an embodiment of the present invention, and FIG. 2 is a view showing the floating body 110 shown in FIG. 1 in more detail. 3 is a view showing in more detail the wind power module 120 shown in FIG. 1, and FIG. 4 is a view showing the airfoil auxiliary tower 130 shown in FIG. 1 in more detail.
도 1 내지 도 4를 살펴보면, 본 발명의 일 실시예에 따른 부유식 해상풍력발전 시스템(100)은 크게 부유체(110) 및 풍력발전모듈(120)을 포함하여 구성될 수 있다. 또한, 일 실시예에서는 추가적으로 익형보조타워(130)를 더 포함할 수 있다.1 to 4, the floating offshore wind power generation system 100 according to an embodiment of the present invention may be largely configured to include a floating body 110 and a wind power module 120. In addition, in one embodiment, it may further include an airfoil auxiliary tower 130.
먼저, 부유체(110)는 해상에서 부유되어 부유식 해상풍력발전 시스템(100)이 가라앉지 않도록 부력을 제공하는 역할을 한다. 이러한 부유체(110)는 도 2를 통해 살펴보기로 한다.First, the floating body 110 serves to provide buoyancy so that the floating offshore wind power system 100 does not sink by being floated on the sea. This floating body 110 will be described through FIG. 2.
도 2를 살펴보면, 부유체(110)는 삼각형 구조를 가지는 적어도 3개 이상의 부유기둥(111), 각각의 부유기둥(111)을 서로 연결하는 트러스구조체(112), 트러스구조체(112)의 일측에서 돌출된 형태로 마련되는 터렛(turret, 113), 터렛(113)과 연결되어 해상으로 늘어지는 계류로프(mooring rope, 114) 및 해저전력선(115)을 포함하여 구성될 수 있다.Referring to Figure 2, the floating body 110 is at least three or more floating pillars 111 having a triangular structure, a truss structure 112 connecting each of the floating pillars 111 to each other, from one side of the truss structure 112 It may be configured to include a turret 113 provided in a protruding shape, a mooring rope 114 connected to the turret 113 and extending to the sea, and a submarine power line 115.
부유기둥(111)은 내부에 물을 충수하거나 배수함으로써 부유식 해상풍력발전 시스템(100)이 해상에서 한쪽으로 치우치거나 쓰러지지 않도록, 능동적으로 무게중심을 맞추어 자세를 제어하는 역할을 한다.The floating pillar 111 actively adjusts the center of gravity to control the posture so that the floating offshore wind power generation system 100 does not lean to one side or collapse by filling or draining water therein.
이때 적어도 3개 이상의 부유기둥(111)이 삼각형 형태로 형성됨으로써, 부유식 해상풍력발전 시스템(100)이 한쪽으로 치우쳐지거나 쓰러지지 않도록 한다. 부유기둥(111)의 하측에서 풍력발전모듈(120)의 불규칙한 풍하중에 따른 거동 및 부유체(110)의 불규칙한 수면 파력로부터 오는 파하중에 따른 거동은 모두 부유체(110)의 불규칙한 거동들을 형성하게 되는데, 에너지를 투입하지 않고 물의 항력을 효과적으로 이용하여 수동적으로 감쇠시키는 역할을 하는 수항력판(111a)이 각각 설치된다.At this time, at least three or more floating pillars 111 are formed in a triangular shape, so that the floating offshore wind power generation system 100 is not biased or collapsed. The behavior according to the irregular wind load of the wind power module 120 at the lower side of the floating column 111 and the behavior according to the wave load coming from the irregular surface wave force of the floating body 110 form irregular behaviors of the floating body 110. , Water drag plates 111a, which serve to passively attenuate by effectively using the drag of water without inputting energy, are installed, respectively.
트러스구조체(112)는 각각의 부유기둥(111)을 서로 연결하는 연결 구조체를 의미하며, 해상에서 강한 파도, 풍랑, 풍속 등에 의해 파손되지 않도록 각각의 부유기둥(111)을 지지하고 지탱하는 역할을 한다. 이때, 트러스구조체(112)의 중심 수심 하부에는 파향가변타(112a)가 마련된다.The truss structure 112 refers to a connection structure that connects each of the floating pillars 111 to each other, and serves to support and support each floating pillar 111 so that it is not damaged by strong waves, storms, wind speeds, etc. at sea. do. At this time, a variable wave direction 112a is provided below the central depth of the truss structure 112.
파향가변타(112a)는 일반적으로 해류의 방향성은 해수심 일정 부분까지 해상의 풍향과 유사하게 흐르고, 이 유동 에너지를 이용하여 가변익형보조타워(130a)와 같이 로터가 항시 바람을 정면으로 바라볼 수 있도록 하여 전력생산 효율을 높인다. 특히, 공기밀도가 약1.225[㎏/㎥]에 비해 해수밀도가 약1,020[㎏/㎥]인 것을 감안하면 파향가변타(112a)는 가변익형보조타워(130a)에 비해 적은 면적으로도 큰 효과를 낼 수 있다.In general, the direction of the wave direction variable 112a flows similarly to the wind direction on the sea to a certain part of the sea depth, and by using this flow energy, the rotor always looks at the wind in front, like the variable airfoil auxiliary tower 130a. To increase power production efficiency. In particular, considering that the seawater density is about 1,020 [kg/㎥] compared to the air density of about 1.225[㎏/㎥], the wave direction variable angle 112a has a large effect with a small area compared to the variable airfoil auxiliary tower (130a). You can pay.
트러스구조체(112)의 일측에는 외측 방향으로 터렛(113)이 돌출되어 마련된다.At one side of the truss structure 112, a turret 113 is provided to protrude outward.
터렛(113)은 계류로프(114) 및 해저 전력선(115)을 바람의 운동에너지를 최대한 받기 위한 방향으로 부유체(110)가 터렛(113)을 중심으로 회전할 때, 계류로프(114) 및 해저 전력선(115)은 회전하지 않고 고정될 수 있도록 유지하면서도 부유체(110)가 해류에 의해 떠내려가거나 현 위치에서 크게 벗어나지 않도록 위치를 유지하는 역할을 한다.The turret 113 is the mooring rope 114 and the submarine power line 115 when the floating body 110 rotates around the turret 113 in a direction to receive the kinetic energy of the wind as much as possible, the mooring rope 114 and The submarine power line 115 serves to maintain the position so that the floating body 110 does not move away from the current position or drift away from the current position while maintaining it to be fixed without rotating.
이때, 계류로프(114)은 일측이 해저면에 고정되기 때문에 부유식 해상풍력발전 시스템(100)이 현 위치에서 터렛(113)을 중심으로 회전하거나 어느 정도 반경에 대해서는 이동할 수 있지만, 현 위치를 크게 벗어나거나 떠내려가지 않도록 하는 역할을 한다.At this time, since one side of the mooring rope 114 is fixed to the sea floor, the floating offshore wind power system 100 can rotate around the turret 113 at the current position or move about a radius to some extent, but the current position It plays a role in preventing it from moving away or drifting away.
또한, 터렛(113)을 중심으로 부유체(110)가 회전할 때, 계류로프(114)가 트러스구조체(112)의 하부에 걸려 회전운동을 방해할 수 있기 때문에 이 부분은 부유체(110) 중심부로 이동시켜 회전운동을 원할하게 할 수 있는 구조를 가진다.In addition, when the floating body 110 rotates around the turret 113, the mooring rope 114 is caught under the truss structure 112 and can interfere with the rotational movement, so this part is the floating body 110 It has a structure that can smoothly rotate by moving it to the center.
다시 도 1로 돌아와서, 풍력발전모듈(120)은 부유기둥(111)의 상측에 마련되며, 정면으로 불어오는 바람의 운동에너지를 가변 및 고정블레이드(123a, 123b)에 의해 로터 및 로터허브(123, 123d)를 회전시켜 기계에너지로 변환시키고 이것과 직결된 발전기(122a)에 의해서 전기에너지로 변환하여 전력을 생산한다. 이에 관해서는 도 3을 통해 보다 구체적으로 살펴보기로 한다.Returning to FIG. 1 again, the wind power generation module 120 is provided on the upper side of the floating column 111, and the kinetic energy of the wind blowing in the front is variable and the rotor and the rotor hub 123 are variable and fixed blades 123a, 123b. , 123d) is rotated to convert it into mechanical energy, and it is converted into electrical energy by a generator 122a directly connected thereto to produce electric power. This will be described in more detail with reference to FIG. 3.
도 3을 살펴보면, 풍력발전모듈(120)은 3개의 부유기둥(111) 중 어느 하나의 부유기둥(111)에 직립되는 주타워(121), 주타워(121)의 상부에 마련되는 발전모듈(122), 발전모듈(122)과 회전이 가능하도록 마련된 로터(123)와 연결되는 하나 이상의 연결 파이프(123c)를 포함한다.Referring to FIG. 3, the wind power generation module 120 includes a main tower 121 that is upright on any one of the three floating columns 111, and a power generation module provided on the top of the main tower 121 ( 122), and one or more connection pipes 123c connected to the power generation module 122 and the rotor 123 provided to be rotatable.
또한, 각각의 연결 파이프(123c)는 가변 및 고정블레이드(123a, 123b)를 포함하여 구성될 수 있다. 주타워(121)는 발전모듈(122), 로터(123), 연결 파이프(123c), 가변 및 고정블레이드(123a, 123b) 및 로터지지대(123g)의 하중을 지탱하는 역할을 하며, 길이는 제한되지 않는다. 주타워(121)의 높이는 가변 및 고정 블레이드(123a, 123b) 및 연결 파이프(123c)를 더한 길이보다 길게 형성된다.In addition, each of the connection pipes 123c may be configured to include variable and fixed blades 123a and 123b. The main tower 121 serves to support the load of the power generation module 122, the rotor 123, the connection pipe (123c), the variable and fixed blades (123a, 123b) and the rotor support (123g), and the length is limited. It doesn't work. The height of the main tower 121 is formed longer than the sum of the variable and fixed blades 123a and 123b and the connection pipe 123c.
발전모듈(122)의 내부에는 로터(123)의 회전력을 전기에너지로 변환하는 발전기(122a)가 내장되며, 로터(123)에는 적어도 2개 이상의 연결 파이프(123c)가 연결된다. 이때, 로터(123)는 로터 허브(123d)와 회전축선 상에서 이격되어서 위치하는 축허브(123f)를 로터축(123e)으로 로터 허브(123d)와 연결하고 가변 및 고정블레이드(123a, 123b) 및 연결 파이프(123c)에 바람의 운동에너지로 인한 풍하중을 지지하기 위한 로터지지대(123g)가 연결 파이프(123c)와 로터축(123e)을 연결하여 구성된다. 축허브(123f)는 후술되는 익형보조타워(130)와 연결될 수 있다.A generator 122a for converting the rotational force of the rotor 123 into electrical energy is built into the power generation module 122, and at least two or more connecting pipes 123c are connected to the rotor 123. At this time, the rotor 123 connects the rotor hub 123d and the shaft hub 123f located spaced apart on the rotation axis with the rotor hub 123d through the rotor shaft 123e, and the variable and fixed blades 123a and 123b and A rotor support 123g for supporting the wind load due to the kinetic energy of the wind is configured by connecting the connecting pipe 123c and the rotor shaft 123e to the connecting pipe 123c. The shaft hub 123f may be connected to the airfoil auxiliary tower 130 to be described later.
발전모듈(122)는 여러 개의 발전기(122a)가 직결되어 구성되어 있다. 일반적으로 풍력발전 시스템이 대형화 될수록 그에 맞는 발전기가 개발되어서 설치되어 기계에너지에서 전기에너지로 변환하는 역할을 한다. 하지만, 단일 대형 발전기를 신규로 개발 설치하는 것은 발전모듈(122)의 하중을 줄이는 장점은 있으나 많은 개발비용이 발생하게 된다. 본 발명은 발전모듈(122)의 하중을 충분히 감당할 수 있는 구조가 되므로, 이러한 문제점을 해결하기 위해서 발전기의 요구 출력에 맞게 상용기성품의 발전기를 1개 이상 직결해서 설치하여 그에 대한 비용을 크게 절감할 수 있다.The power generation module 122 is composed of several generators (122a) are directly connected. In general, as the wind power generation system becomes larger, a generator suitable for it is developed and installed to convert mechanical energy into electrical energy. However, newly developing and installing a single large generator has the advantage of reducing the load of the power generation module 122, but a large development cost occurs. Since the present invention has a structure that can sufficiently bear the load of the power generation module 122, in order to solve this problem, one or more commercially available generators are directly connected and installed according to the required output of the generator, thereby greatly reducing the cost. I can.
연결 파이프(123c)는 원형의 파이프 형태이다. 이에 관해서는 도 3을 통해 보다 구체적으로 살펴보기로 한다.The connection pipe 123c has a circular pipe shape. This will be described in more detail with reference to FIG. 3.
도 3을 살펴보면, 연결 파이프(123c)는 연결 파이프(123c)의 바깥쪽 말단부에 위치되는 가변 블레이드(123a)와, 로터 허브(122d)와 가변블레이드(123a) 사이에 마련되는 고정블레이드(123b)를 포함하여 구성된다.Referring to Figure 3, the connection pipe (123c) is a variable blade (123a) located at the outer end of the connection pipe (123c), and a fixed blade (123b) provided between the rotor hub (122d) and the variable blade (123a). Consists of including.
가변블레이드(123a)는 일측 방향으로 회전을 통해 각도가 조절되는 익형 구조를 가지는 회전 날개를 의미하며, 가변블레이드(123a)의 각도 조절에 의해 가변블레이드(123a)에 가해지는 바람의 운동에너지를 적절하게 제어함으로서 급격한 로터 회전 속도 증가에 따른 기계적 고장을 최소화 하면서도 효율은 최대한 확보하게 한다.The variable blade 123a means a rotating blade having an airfoil structure whose angle is adjusted through rotation in one direction, and the kinetic energy of the wind applied to the variable blade 123a is appropriately adjusted by adjusting the angle of the variable blade 123a. It minimizes mechanical failure due to a rapid increase in the rotor rotation speed, while ensuring maximum efficiency.
고정블레이드(123b)는 가변블레이드(123a)와는 달리 회전을 통해 각도가 조절되는 구조가 아닌 연결 파이프(123c)를 회전축으로 일정한 방향으로 틀어진 상태로 고정된 익형 구조를 가지는 회전 날개를 의미한다.Unlike the variable blade 123a, the fixed blade 123b refers to a rotating blade having an airfoil structure in which the connecting pipe 123c is twisted in a certain direction along the rotation axis, not a structure in which the angle is adjusted through rotation.
따라서, 고정블레이드(123b)에는 항시 일정한 양력이 가해지게 된다.Therefore, a constant lift force is always applied to the fixed blade 123b.
다시 도 1로 돌아와서, 본원발명은 로터(123)를 지지하며 부유체(110)가 기류를 따라 자동으로 회전되기 위한 익형보조타워(130)를 더 포함할 수 있다. 이에 관해서는 도 4를 통해 보다 구체적으로 살펴보기로 한다.Returning to FIG. 1, the present invention may further include an airfoil auxiliary tower 130 for supporting the rotor 123 and automatically rotating the floating body 110 along the airflow. This will be described in more detail with reference to FIG. 4.
도 4를 살펴보면, 익형보조타워(130)는 부유체(110)의 상측에 직립되며 풍력발전모듈(120)의 정적동적 하중의 일부분이 축허브(123e)에 집중되므로 이 하중을 적절하게 감당하기 위해서 존재한다. 4, the airfoil auxiliary tower 130 is upright on the upper side of the floating body 110, and a part of the static and dynamic load of the wind power generation module 120 is concentrated on the shaft hub 123e, so that this load can be adequately handled. Exists for
그리고 그 단면은 좌우 대칭의 비행기 날개의 단면과 상응하는 형태로 형성된다.And the cross-section is formed in a shape corresponding to the cross-section of the plane wing of left and right symmetry.
보다 구체적으로, 익형보조타워(130)는 그 단면이 좌우 대칭이 되는 비행기 날개의 단면과 같이 양력을 발생시키는 형태로 형성된다. 따라서, 익형보조타워(130)의 정면이 아닌 측면을 향해 바람이 불어올 경우에도 익형보조타워(130) 주위에 형성되는 기류에 의해 익형보조타워(130)의 하측과 연결된 부유체(110)가 터렛(113)을 중심으로 자연스럽게 회전하게 된다.More specifically, the airfoil auxiliary tower 130 is formed in a shape that generates lift like a cross section of an airplane wing whose cross section is symmetrical. Therefore, even when the wind blows toward the side of the airfoil auxiliary tower 130, the floating body 110 connected to the lower side of the airfoil auxiliary tower 130 by the airflow formed around the airfoil auxiliary tower 130 is It naturally rotates around the turret 113.
부유체(110)는 해상에 고정되지 않았기 때문에, 부유체(110)가 터렛(113)을 중심으로 자유롭게 회전이 가능하다.Since the floating body 110 is not fixed on the sea, the floating body 110 can freely rotate around the turret 113.
익형보조타워(130)에 의해 발생되는 양력에 의해 부유체(110)는 터렛(113)을 중심으로 자연스럽게 회전하게 되고, 그에 따라 익형보조타워(130)의 정면은 바람이 불어오는 방향과 정확히 일치하게 된다.The floating body 110 naturally rotates around the turret 113 by the lift generated by the airfoil auxiliary tower 130, and accordingly, the front of the airfoil auxiliary tower 130 exactly matches the direction in which the wind blows. Is done.
즉, 이러한 익형보조타워(130)의 구조는 항시 부유식 해상풍력발전 시스템(100)이 바람이 불어오는 방향과 정면을 향할 수 있도록 하는 장점을 가지게 된다.That is, the structure of the airfoil auxiliary tower 130 has the advantage of allowing the floating offshore wind power generation system 100 to always face the direction and the front of the wind.
이때, 익형보조타워(130)의 하측부와 상측부는 고정된 반면, 중심부의 일부 영역은 익형보조타워(130)가 직립된 상태를 기준으로 측면 모서리 영역에 발생되는 양력을 증가시키기 위한 가변익형보조타워(130a)가 마련된다.At this time, while the lower and upper portions of the airfoil auxiliary tower 130 are fixed, a part of the center portion of the airfoil auxiliary tower 130 is a variable airfoil auxiliary to increase the lift generated in the side edge regions based on the state in which the airfoil auxiliary tower 130 is upright. A tower 130a is provided.
가변익형보조타워(130a)는 앞서 살펴본 가변블레이드(123a)와 마찬가지로 좌우측으로 회전하면서 각도가 조절되는데, 이는 익형보조타워(130) 주위에 형성되는 기류에 의한 양력이 보다 극대화되도록 하기 위함이다. 즉, 가변익형보조타워(130a)이 일측(예컨대, 시계방향)으로 꺾이는 경우에는 가변익형보조타워(130a)에 의한 바람 저항이 발생되면서 부유체(110)는 그에 반하여 반대 방향(예컨대, 반시계방향)으로 회전하게 된다.The variable airfoil auxiliary tower (130a) is rotated to the left and right, like the variable blade (123a) discussed above, the angle is adjusted, this is to maximize the lift due to the airflow formed around the airfoil auxiliary tower (130). That is, when the variable airfoil auxiliary tower (130a) is bent to one side (for example, clockwise), wind resistance is generated by the variable airfoil auxiliary tower (130a), and the floating body 110 is in the opposite direction (for example, counterclockwise). Direction).
반대로, 가변익형보조타워(130a)이 일측(예컨대, 반시계방향)으로 꺾이는 경우에는 가변익형보조타워(130a)에 의한 바람 저항이 발생되면서 부유체(110)는 그에 반하여 반대 방향(예컨대, 시계방향)으로 회전하게 된다.Conversely, when the variable airfoil auxiliary tower (130a) is bent to one side (for example, counterclockwise), wind resistance is generated by the variable airfoil auxiliary tower (130a), and the floating body 110 is in the opposite direction (for example, clockwise). Direction).
즉, 가변익형보조타워(130a)은 부유체(110)의 방향을 직접적으로 변경시킴으로써 풍력발전모듈(120)이 항시 바람이 불어오는 방향과 정면을 향하도록 하는 장점을 가지게 된다.That is, the variable airfoil auxiliary tower 130a directly changes the direction of the floating body 110 so that the wind power generation module 120 always faces the direction in which the wind blows and to the front.
이때, 가변익형보조타워(130a)의 단면을 도 5를 통해 살펴보면 다음과 같다.In this case, a cross-section of the variable airfoil auxiliary tower 130a is as follows.
도 5는 도 4에 도시된 가변익형보조타워(130a)의 단면을 도시한 도면이다.5 is a view showing a cross-section of the variable airfoil auxiliary tower (130a) shown in FIG.
도 5를 살펴보면, 가변익형보조타워(130a)는 그 단면이 비행기 날개의 단면과 같이 양력을 발생시키는 형태로 형성된다. 따라서, 가변익형보조타워(130a)의 정면이 아닌 측면을 향해 바람이 불어올 경우에도 가변익형보조타워(130a) 주위에 형성되는 기류에 의해 가변익형보조타워(130a)의 하측과 연결된 부유체(110)가 터렛(113)을 중심으로 자연스럽게 회전하게 된다.Referring to FIG. 5, the variable airfoil auxiliary tower 130a is formed in a shape in which the cross section generates a lift force like the cross section of an airplane wing. Therefore, even when the wind blows toward the side of the variable airfoil auxiliary tower (130a), the floating body connected to the lower side of the variable airfoil auxiliary tower (130a) by the airflow formed around the variable airfoil auxiliary tower (130a) 110) naturally rotates around the turret 113.
부유체(110)는 해상에 고정된 것이 아닌, 자유롭게 회전이 가능하기 때문에, 가변익형보조타워(130a)에 의해 발생되는 양력에 의해 부유체(110)는 터렛(113)을 중심으로 자연스럽게 회전하게 되고, 그에 따라 가변익형보조타워(130a)의 정면은 바람이 불어오는 방향과 정확히 일치하게 제어를 할 수 있게 된다.Since the floating body 110 is not fixed on the sea but can rotate freely, the floating body 110 naturally rotates around the turret 113 by the lift generated by the variable airfoil auxiliary tower 130a. Accordingly, the front of the variable airfoil auxiliary tower 130a can be controlled to be exactly the same as the direction in which the wind blows.
즉, 이러한 가변익형보조타워(130a)의 구조는 항시 부유식 해상풍력발전 시스템(100)이 바람이 불어오는 방향과 정면을 향할 수 있도록 하는 장점을 가지게 된다.That is, the structure of the variable airfoil auxiliary tower (130a) has the advantage that the floating offshore wind power generation system 100 can always face the direction and the front of the wind.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention within the scope not departing from the spirit and scope of the present invention described in the following claims. You will understand that you can.

Claims (5)

  1. 수면에 부유되는 부유체; 및A floating body floating on the water surface; And
    바람의 운동에너지에 의해 회전하는 로터를 구비하고 상기 부유체의 상측에 마련되는 풍력발전모듈;을 포함하며,Includes; a wind power generation module provided on the upper side of the floating body and having a rotor rotating by the kinetic energy of the wind,
    상기 로터는 로터 허브와, 상기 로터의 외측 방향으로 설치된 하나 이상의 가변블레이드를 구비하며,The rotor includes a rotor hub and one or more variable blades installed in an outer direction of the rotor,
    상기 가변블레이드는 각도 조절이 가능하도록 마련됨에 따라 상기 가변블레이드의 각도 조절에 의해 상기 로터의 회전속도 변화가 조절되는 것을 특징으로 하는, 부유식 해상풍력발전 시스템.As the variable blade is provided to enable angle adjustment, a change in the rotational speed of the rotor is adjusted by adjusting the angle of the variable blade.
  2. 제1항에 있어서,The method of claim 1,
    상기 부유체는,The floating body,
    삼각형 구조로 배치되는 적어도 3개 이상의 부유기둥;At least three or more floating pillars arranged in a triangular structure;
    상기 부유기둥의 수면 아래 중심부에 설치되는 파향가변타;A variable wave direction installed in the center under the water surface of the floating column;
    상기 부유기둥을 서로 연결하는 트러스(truss) 구조체;A truss structure connecting the floating pillars to each other;
    상기 트러스 구조체에서 마련되는 터렛(turret);A turret provided in the truss structure;
    상기 터렛과 연결되는 계류로프(mooring rope); 및A mooring rope connected to the turret; And
    상기 터렛과 연결되는 해저 전력선;을 포함하는 것을 특징으로 하는, 부유식 해상풍력발전 시스템.A floating offshore wind power generation system comprising; a submarine power line connected to the turret.
  3. 제1항에 있어서,The method of claim 1,
    상기 풍력발전모듈은, 상기 부유체에 직립되는 주타워와, 상기 로터 허브와 연결되는 발전기를 구비하고 상기 주타워의 상부에 마련되는 발전모듈을 더 포함하며,The wind power generation module further includes a power generation module provided above the main tower and having a main tower standing upright on the floating body and a generator connected to the rotor hub,
    상기 로터는 상기 로터 허브로부터 연장되는 하나 이상의 연결 파이프와, 상기 연결 파이프에 각도가 고정되어서 결합되는 고정블레이드를 더 구비하며,The rotor further includes at least one connecting pipe extending from the rotor hub, and a fixed blade coupled to the connecting pipe by fixing an angle,
    상기 가변블레이드는 상기 연결 파이프의 말단부에 연결되는, 부유식 해상풍력발전 시스템.The variable blade is connected to the end of the connection pipe, floating offshore wind power generation system.
  4. 제3항에 있어서,The method of claim 3,
    상기 로터는, 상기 로터 허브와 회전축선 상에서 이격되어서 위치하는 축허브와, 상기 축허브와 상기 로터 허브를 연결하는 로터축을 더 구비하며,The rotor further includes a shaft hub spaced apart from the rotor hub and located on a rotation axis, and a rotor shaft connecting the shaft hub and the rotor hub,
    상기 풍력발전모듈은 상기 축허브를 지지하는 익형보조타워를 더 포함하며,The wind power generation module further includes an airfoil auxiliary tower supporting the shaft hub,
    상기 익형보조타워는 직립된 상태를 기준으로 측면 모서리 영역이 바람이 불어오는 방향을 향하도록 위치됨에 따라, 상기 익형보조타워를 향해 불어오는 방향에 의해 상기 익형보조타워에 양력이 발생되면서 상기 부유체가 바람이 불어오는 방향을 향하도록 회전하여 위치가 이동되는 것을 특징으로 하는, 부유식 해상풍력발전 시스템.As the airfoil auxiliary tower is positioned so that the side edge region faces the direction of the wind blowing on the basis of the upright state, lift is generated in the airfoil auxiliary tower by the direction blowing toward the airfoil auxiliary tower, and the floating body is A floating offshore wind power generation system, characterized in that the position is moved by rotating to face the direction in which the wind blows.
  5. 제4항에 있어서,The method of claim 4,
    상기 익형보조타워의 일부 영역에는,In some areas of the airfoil auxiliary tower,
    직립된 상태를 기준으로 상기 익형보조타워의 측면 모서리 영역에 발생되는 양력을 증가시키기 위한 가변익형보조타워;가 마련되며,A variable airfoil auxiliary tower for increasing the lift generated in the side edge area of the airfoil auxiliary tower based on the upright state is provided,
    상기 가변익형보조타워의 각도가 좌측 또는 우측으로 변경됨에 따라 상기 부유체가 바람이 불어오는 방향을 향하도록 회전하여 위치가 이동되는 것을 특징으로 하는, 부유식 해상풍력발전 시스템.As the angle of the variable airfoil auxiliary tower is changed to the left or right, the floating body is rotated to face the direction in which the wind blows, and the position is moved.
PCT/KR2020/004761 2019-04-12 2020-04-08 Floating-type offshore wind power generation system WO2020209605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190042937A KR102134996B1 (en) 2019-04-12 2019-04-12 Floating offshore wind power system
KR10-2019-0042937 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020209605A1 true WO2020209605A1 (en) 2020-10-15

Family

ID=71839672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004761 WO2020209605A1 (en) 2019-04-12 2020-04-08 Floating-type offshore wind power generation system

Country Status (2)

Country Link
KR (1) KR102134996B1 (en)
WO (1) WO2020209605A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148462A (en) * 2021-08-04 2022-03-08 中国华能集团清洁能源技术研究院有限公司 Semi-submersible floating platform and eccentric fan system based on single point mooring
WO2022086329A1 (en) * 2020-10-20 2022-04-28 Gustomsc B.V. Wind turbine offshore support structure
WO2023093148A1 (en) * 2021-11-29 2023-06-01 上海船舶研究设计院(中国船舶集团有限公司第六〇四研究院) Semi-submersible-type offshore floating platform having three columns

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407061B1 (en) 2020-09-17 2022-06-10 유장욱 Offshore wind power generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006539A1 (en) * 2007-11-19 2011-01-13 Windsea As Floating Wind Power Apparatus
US8629570B1 (en) * 2009-04-08 2014-01-14 Kamen George Kamenov Wind turbine blades with reinforcing, supporting and stabilizing components and enlarged swept area
JP2014137063A (en) * 2013-01-15 2014-07-28 Envision Energy Denmark Aps Partial pitch wind turbine with floating foundation
KR101620900B1 (en) * 2014-10-10 2016-05-13 한국에너지기술연구원 Sea floating wind generating deice with tidal adaptation
KR101754863B1 (en) * 2016-07-15 2017-07-06 울산대학교 산학협력단 Wind turbine with adjustable blades structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108445B2 (en) 2013-03-13 2017-04-05 戸田建設株式会社 Floating offshore wind power generation facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006539A1 (en) * 2007-11-19 2011-01-13 Windsea As Floating Wind Power Apparatus
US8629570B1 (en) * 2009-04-08 2014-01-14 Kamen George Kamenov Wind turbine blades with reinforcing, supporting and stabilizing components and enlarged swept area
JP2014137063A (en) * 2013-01-15 2014-07-28 Envision Energy Denmark Aps Partial pitch wind turbine with floating foundation
KR101620900B1 (en) * 2014-10-10 2016-05-13 한국에너지기술연구원 Sea floating wind generating deice with tidal adaptation
KR101754863B1 (en) * 2016-07-15 2017-07-06 울산대학교 산학협력단 Wind turbine with adjustable blades structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022086329A1 (en) * 2020-10-20 2022-04-28 Gustomsc B.V. Wind turbine offshore support structure
NL2026717B1 (en) * 2020-10-20 2022-06-16 Gustomsc B V Wind turbine offshore support structure
CN114148462A (en) * 2021-08-04 2022-03-08 中国华能集团清洁能源技术研究院有限公司 Semi-submersible floating platform and eccentric fan system based on single point mooring
WO2023093148A1 (en) * 2021-11-29 2023-06-01 上海船舶研究设计院(中国船舶集团有限公司第六〇四研究院) Semi-submersible-type offshore floating platform having three columns

Also Published As

Publication number Publication date
KR102134996B1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020209605A1 (en) Floating-type offshore wind power generation system
JP4123936B2 (en) Floating offshore wind power generation facility
JP2021510793A (en) Multi-wind turbines for wind and solar power and floating platforms that self-align against the wind supporting solar, and how to build them
CN103328815B (en) System and method for being produced electricl energy from the flowing current of fluid
JP6297576B2 (en) Method and system for wave energy conversion
JP2017521597A (en) Raft for wind power generation / rotation / semi-submersible wind power generation and its construction method
US8439641B2 (en) Flow driven engine
JP2004176626A (en) Offshore wind power generation facility
WO2016135800A1 (en) Power generation system
WO2019101106A1 (en) Power device for increasing low flow rate
WO1994009272A1 (en) Combined wind and wave power generator
JP2001241374A (en) Water surface wind power generator installation method, and device thereof
WO2019190387A1 (en) A floating vertical axis wind turbine with peripheral water turbine assemblies and a method of operating such
JP2023106292A (en) Floating body of ocean wind power generator
JP2006183648A (en) Hydrodynamic force power-generating device
CN111997841B (en) Floating type fan generator set
CN110435839B (en) Floating type radar wind measurement mobile platform anti-rolling foundation bearing platform of offshore wind and light storage power generation system
JP2002130113A (en) Marine wind power generating device
RU2722760C1 (en) Sailing power plant converting flow energy of two media
KR101840705B1 (en) Multiple vertical axis tidal generators and combined power generation using it
CN112761882A (en) Floating platform for generating electricity by combining wind energy and ocean current energy
KR101774217B1 (en) Multi-rotor installed on boat using auxiliary boats
Shimizu et al. Development and Demonstration test for Floating Type Ocean Current Turbine System conducted in KUROSHIO CURRENT
KR101700749B1 (en) Offshore power generation plant with arrangement structure for reducing interference of wake
CN217074735U (en) Floating platform and multi-fan power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787796

Country of ref document: EP

Kind code of ref document: A1