WO2020208755A1 - 駆動制御装置および鉄道車両用駆動装置 - Google Patents

駆動制御装置および鉄道車両用駆動装置 Download PDF

Info

Publication number
WO2020208755A1
WO2020208755A1 PCT/JP2019/015692 JP2019015692W WO2020208755A1 WO 2020208755 A1 WO2020208755 A1 WO 2020208755A1 JP 2019015692 W JP2019015692 W JP 2019015692W WO 2020208755 A1 WO2020208755 A1 WO 2020208755A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
excited generator
internal combustion
combustion engine
generator
Prior art date
Application number
PCT/JP2019/015692
Other languages
English (en)
French (fr)
Inventor
大場 友裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021513098A priority Critical patent/JP7183396B2/ja
Priority to DE112019007190.4T priority patent/DE112019007190T5/de
Priority to PCT/JP2019/015692 priority patent/WO2020208755A1/ja
Priority to US17/601,601 priority patent/US20220177011A1/en
Publication of WO2020208755A1 publication Critical patent/WO2020208755A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C7/00Other locomotives or motor railcars characterised by the type of motive power plant used; Locomotives or motor railcars with two or more different kinds or types of motive power
    • B61C7/04Locomotives or motor railcars with two or more different kinds or types of engines, e.g. steam and IC engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/20DC electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor

Definitions

  • the present invention relates to a drive control device and a drive device for a railway vehicle.
  • Patent Document 1 There are types of vehicle drive devices that drive railway vehicles that use generators and electric motors.
  • An example of this type of vehicle drive device is disclosed in Patent Document 1.
  • the vehicle drive device disclosed in Patent Document 1 includes an internal combustion engine, an induction generator driven by the internal combustion engine, a power converter that drives the induction electric motor using the electric power generated by the induction generator, and a secondary. It is equipped with a power storage device including a battery.
  • a power storage device including a battery.
  • the induction generator In order for the induction generator to generate electricity driven by the internal combustion engine, it is necessary to supply electric power to the induction generator to excite the induction generator.
  • the DC power supplied from the power storage device is converted into AC power by the power converter and supplied to the induction generator.
  • the induction generator is excited, the induction generator driven by the internal combustion engine generates electric power, and the generated electric power is supplied to the power converter. Then, the power converter converts the electric power supplied from the induction generator into the electric power for driving the induction motor, and supplies the converted electric power to the induction motor. As a result, the induction motor is driven and the propulsive force of the railway vehicle is obtained.
  • the power storage device includes a charge / discharge control device that controls the charge / discharge of the secondary battery, a monitoring device that monitors whether or not an overvoltage of the secondary battery has occurred, and a secondary battery, a charge / discharge control device, and a monitoring device. It is necessary to provide a housing or the like for accommodating the device, which causes a problem that the device becomes large.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small drive control device and a drive device for a railway vehicle.
  • the drive control device of the present invention includes a self-excited generator, a separately-excited generator, a first power conversion unit, and a capacitor.
  • the self-excited generator is connected to an internal combustion engine and driven by the internal combustion engine to generate electric power and output the generated electric power.
  • the separately excited generator is connected to the internal combustion engine, and in the excited state, is driven by the internal combustion engine to generate electric power and output the generated electric power.
  • the first power converter converts the power supplied from the separately excited generator via the primary terminal into DC power and outputs it from the secondary terminal, or converts the DC power supplied via the secondary terminal to another. It is converted into electric power to be supplied to the exciter and output from the primary terminal.
  • the capacitor is connected between the secondary terminals of the first power converter.
  • the output terminal of the self-excited generator is connected to a capacitor.
  • the output terminal of the self-excited generator is connected to the capacitor connected between the secondary terminals of the first power conversion unit.
  • the first power conversion unit converts the DC power supplied from the capacitor to which the output terminal of the self-excited generator is connected via the secondary terminal into the power for supplying to the separately-excited generator and primary. Output from the terminal.
  • the separately excited generator is excited by being supplied with electric power from the first electric power conversion unit.
  • the drive control device can be miniaturized.
  • a block diagram showing a configuration of a railroad vehicle drive device according to a first embodiment of the present invention A timing chart showing the operation of the excitation processing of the separately excited generator performed by the railway vehicle drive device according to the first embodiment.
  • a block diagram showing a configuration of a railroad vehicle drive device according to a second embodiment of the present invention A timing chart showing the operation of the excitation processing of the separately excited generator performed by the railway vehicle drive device according to the second embodiment.
  • a block diagram showing a configuration of a railroad vehicle drive device according to a third embodiment of the present invention A timing chart showing the operation of the excitation processing of the separately excited generator performed by the railway vehicle drive device according to the third embodiment.
  • FIG. 1 shows a drive device for a railway vehicle that drives a railway vehicle using a generator and an electric motor.
  • the drive device for a railroad vehicle (hereinafter referred to as a drive device) 1 includes an internal combustion engine 2 which is a power source, an internal combustion engine control unit 3 which controls the internal combustion engine 2, and a speed sensor 4 which detects the rotation speed of the internal combustion engine 2.
  • the drive control device 10 that supplies the electric power generated by being driven by the internal combustion engine 2 to the electric motor 5, and the electric motor 5 that is driven by the electric power supplied from the drive control device 10 to generate the propulsive force of the railway vehicle. To be equipped.
  • the internal combustion engine 2 is composed of a diesel engine, a gasoline engine, and the like. Further, the internal combustion engine 2 includes a starter motor. The output shaft of the internal combustion engine 2 is connected to each input shaft of the self-excited generator 11 and the separately-excited generator 12 included in the drive control device 10. As a result, the internal combustion engine 2 rotates to drive each of the self-excited generator 11 and the separately excited generator 12 to generate electricity.
  • a start command signal S1 is supplied to the internal combustion engine control unit 3 from a start switch provided in a driver's cab (not shown), and an operation command signal S2 is supplied from a master controller provided in the driver's cab.
  • the start command signal S1 is a signal instructing the start of the internal combustion engine 2.
  • the start command signal S1 is set to the L (Low) level
  • the start command signal S1 is set to the H (High) level.
  • the operation command signal S2 is a signal indicating a power running notch instructing the acceleration of the railway vehicle, a brake notch instructing the deceleration of the railway vehicle, and the like.
  • the internal combustion engine control unit 3 starts the internal combustion engine 2 when the start command signal S1 reaches the H level. Specifically, when the start command signal S1 reaches the H level, the internal combustion engine control unit 3 sends a control signal to the starter motor to start the starter motor. When the rotational force of the starter motor is transmitted to the internal combustion engine 2, the internal combustion engine 2 starts. After the internal combustion engine 2 is started, the internal combustion engine control unit 3 sets the actual rotation speed of the internal combustion engine 2 acquired from the speed sensor 4 as the target rotation speed based on the target rotation speed corresponding to the power running notch indicated by the operation command signal S2. The internal combustion engine 2 is controlled so as to approach. The internal combustion engine control unit 3 holds in advance the value of the target rotation speed corresponding to each power running notch.
  • the speed sensor 4 includes a PG (Pulse Generator) attached to the internal combustion engine 2. Then, the speed sensor 4 calculates the rotation speed of the internal combustion engine 2 from the pulse signal output by the PG, and outputs a signal indicating the rotation speed of the internal combustion engine 2. Specifically, the speed sensor 4 counts the rise of the pulse signal at a fixed time interval, and calculates the rotation speed of the internal combustion engine 2 from the number of pulses at a fixed time.
  • PG Pulse Generator
  • the electric motor 5 is composed of a three-phase induction motor, and is driven by AC power output from the main inverter 14 described later of the drive control device 10 to rotate.
  • the electric motor 5 is connected to the axle via, for example, a joint, and transmits a rotational force to the axle.
  • the drive control device 10 is driven by the internal combustion engine 2 to generate DC power and outputs the generated DC power to the self-excited generator 11, and is driven by the internal combustion engine 2 to rotate to generate AC power. It is provided with a separately excited generator 12 that generates electricity and outputs the generated AC power.
  • the drive control device 10 further includes a first power conversion unit 13 that converts AC power supplied from the separately excited generator 12 via the primary terminal into DC power and outputs DC power from the secondary terminal, and a first power. Between the main inverter 14 that converts DC power supplied from the conversion unit 13 via the primary terminal into three-phase AC power and outputs the three-phase AC power from the secondary terminal, and the secondary terminal of the first power conversion unit 13. A capacitor C1 connected to is provided.
  • the drive control device 10 further includes a first control unit 15 that controls the first power conversion unit 13, and an inverter control unit 16 that controls the main inverter 14. Further, the drive control device 10 is connected to the primary terminal of the first power conversion unit 13, and the phase currents of each of the U phase, V phase, and W phase flowing through the circuit between the separately excited generator 12 and the first power conversion unit 13.
  • the current measuring unit CT1 for measuring the value of the above, the current measuring unit CT2 for measuring the value of each phase current of the U phase, V phase, and W phase flowing from the main inverter 14 to the electric motor 5, and the capacitor C1 are connected in parallel.
  • a voltage measuring unit VT1 for measuring the value of the voltage between terminals of the capacitor C1 is provided.
  • the self-excited generator 11 is composed of a DC generator.
  • the input shaft of the self-excited generator 11 is connected to the output shaft of the internal combustion engine 2.
  • the self-excited generator 11 When driven by the internal combustion engine 2, the self-excited generator 11 generates DC power and outputs the generated DC power.
  • the output terminals of the self-excited generator 11 are connected to both ends of the capacitor C1. Therefore, in a state where the separately excited generator 12 is not excited and is not generating power, the self-excited generator 11 outputs DC power to charge the capacitor C1.
  • the power generation capacity of the self-excited generator 11 is smaller than the power generation capacity of the separately excited generator 12.
  • the separately excited generator 12 is excited by the electric power supplied from the first electric power conversion unit 13. Further, the input shaft of the separately excited generator 12 is connected to the output shaft of the internal combustion engine 2. When the separately excited generator 12 is driven by the internal combustion engine 2 in the excited state, it generates AC power and outputs the generated AC power.
  • the primary terminal of the first power conversion unit 13 is connected to the separately excited generator 12, and the secondary terminal is connected to the main inverter 14.
  • the first power conversion unit 13 operates according to the control of the first control unit 15.
  • the first power conversion unit 13 converts the DC power supplied from the capacitor C1 charged immediately after the start of the internal combustion engine 2 into AC power via its secondary terminal, and from the primary terminal to the separately excited generator. It supplies to 12 and excites the separately excited generator 12.
  • the separately excited generator 12 starts power generation due to the rotation of the internal combustion engine 2.
  • the first power conversion unit 13 converts the AC power supplied from the separately excited generator 12 via the primary terminal into DC power after the power generation of the separately excited generator 12 is started according to the control of the first control unit 15. Then, DC power is supplied to the main inverter 14 from the secondary terminal.
  • the main inverter 14 converts the DC power output from the secondary terminal by the first power conversion unit 13 into three-phase AC power and outputs it to the electric motor 5 under the control of the inverter control unit 16. As a result, the electric motor 5 is driven by the three-phase AC power output from the main inverter 14 and rotates.
  • the main inverter 14 is composed of a VVVF (Variable Voltage Variable Frequency) inverter.
  • the speed sensor 17 includes a PG attached to the electric motor 5. Similar to the speed sensor 4, the speed sensor 17 calculates the rotation speed of the electric motor 5 from the pulse signal output by the PG, and outputs a signal indicating the rotation speed of the electric motor 5.
  • a start command signal S1 and an operation command signal S2 are supplied to the first control unit 15. Further, the first control unit 15 acquires the voltage between the terminals of the capacitor C1 from the voltage measurement unit VT1. Further, the first control unit 15 acquires the values of the phase currents of the U phase, the V phase, and the W phase flowing through the circuit between the separately excited generator 12 and the first power conversion unit 13 from the current measuring unit CT1. The first control unit 15 outputs a switching control signal S3 that controls on / off timing of a plurality of switching elements of the first power conversion unit 13 in accordance with the start command signal S1 and the operation command signal S2.
  • the first control unit 15 converts the first power conversion unit 13 into AC power from the DC power supplied from the capacitor C1 charged with the DC power generated by the self-excited generator 11. It operates as a Direct Current (direct current) -AC (Alternating Current: alternating current) converter or an AC-DC converter that converts alternating current power supplied from the separately excited generator 12 into direct current power.
  • Direct Current direct current
  • AC Alternating Current: alternating current
  • the first control unit 15 stops the first power conversion unit 13 when the start command signal S1 is at the L level and the operation command signal S2 indicates a brake command. Further, the first control unit 15 controls the first power conversion unit 13 when the start command signal S1 is at the H level and the voltage between the terminals of the capacitor C1 reaches the threshold voltage EFC1. Then, the first control unit 15 converts the DC power supplied from the capacitor C1 charged by the DC power generated by the self-excited generator 11 into AC power to the first power conversion unit 13, and causes the separately excited generator. 12 is supplied. As a result, the separately excited generator 12 is excited.
  • the threshold voltage EFC1 is set to a voltage capable of exciting the separately excited generator 12. The first control unit 15 holds the threshold voltage EFC1 in advance.
  • the first control unit 15 determines whether or not the amplitude of the phase current measured by the current measuring unit CT1 is equal to or greater than the threshold amplitude.
  • the threshold amplitude is set to a value smaller than the possible value of the amplitude of the current output by the excited separately excited generator 12. Further, the first control unit 15 holds the value of the threshold amplitude in advance.
  • the first control unit 15 determines the output voltage and the operation command of the separately excited generator 12. Based on the target voltage corresponding to the power line notch indicated by the signal S2, the on / off timing of the plurality of switching elements of the first power conversion unit 13 is controlled in order to bring the output voltage of the first power conversion unit 13 closer to the target voltage. ..
  • the first control unit 15 holds in advance the value of the target voltage corresponding to each power running notch.
  • the operation command signal S2 is supplied to the inverter control unit 16. Further, the inverter control unit 16 acquires the rotation speed of the electric motor 5 from the speed sensor 17. Further, the inverter control unit 16 acquires the value of the phase current flowing through the electric motor 5 from the current measurement unit CT2. Then, the inverter control unit 16 transmits a switching control signal S4 that controls on / off timing of a plurality of switching elements of the main inverter 14 according to the operation command signal S2, the rotation speed of the electric motor 5, and the phase current flowing through the electric motor 5. Output.
  • the inverter control unit 16 calculates the target torque of the electric motor 5 from the power running notch indicated by the operation command signal S2 and the rotation speed of the electric motor 5 acquired from the speed sensor 17. Further, the inverter control unit 16 calculates the actual torque of the electric motor 5 from the value of the phase current measured by the current measurement unit CT2. Then, the inverter control unit 16 controls a plurality of switching elements of the main inverter 14 in order to bring the actual torque of the electric motor 5 closer to the target torque.
  • the start command signal S1 is at the L level
  • the operation command signal S2 indicates the brake notch B1.
  • the rotation speed of the internal combustion engine 2 when stopped is set to RPM0.
  • the self-excited generator 11 is stopped when the internal combustion engine 2 is stopped.
  • the capacitor C1 is in a discharged state when the internal combustion engine 2 is stopped, and the voltage between the terminals of the discharged capacitor C1 is defined as the voltage EFC0.
  • FIG. 2F when the internal combustion engine 2 is stopped, the separately excited generator 12 is stopped.
  • the timing at which the start command signal S1 changes from the L level to the H level is set as the time T1.
  • the internal combustion engine control unit 3 starts the internal combustion engine 2 in response to the start command signal S1 changing from the L level to the H level at time T1.
  • the rotation speed of the internal combustion engine 2 starts to increase from the rotation speed RPM0.
  • the rotation speed of the internal combustion engine 2 reaches the rotation speed RPM1.
  • the rotation speed RPM1 is defined as the rotation speed of the internal combustion engine 2 in a state where the internal combustion engine 2 is started and the operation command signal S2 indicates a brake notch.
  • the self-excited generator 11 driven by the internal combustion engine 2 starts power generation as the rotation speed of the internal combustion engine 2 increases.
  • a current flows from the self-excited generator 11 to the capacitor C1 to charge the capacitor C1.
  • the capacitor C1 is charged by the electric power generated by the self-excited generator 11, and the inter-terminal voltage EFC of the capacitor C1 starts to rise from the voltage EFC 0.
  • the separately excited generator 12 since the separately excited generator 12 is not excited, it does not start power generation even if it is driven by the internal combustion engine 2.
  • the first control unit 15 monitors the inter-terminal voltage of the capacitor C1 by the output signal of the voltage measuring unit VT1. As shown in FIG. 2 (E), the inter-terminal voltage EFC is the threshold voltage EFC1 at time T2. Is determined to have reached.
  • the first control unit 15 determines that the inter-terminal voltage EFC of the capacitor C1 has reached the threshold voltage EFC 1, it starts on / off control of a plurality of switching elements of the first power conversion unit 13 to perform the first power conversion.
  • the DC power supplied from the capacitor C1 is converted into AC power by the unit 13 and supplied to the separately excited generator 12. As a result, as shown by the solid arrow A2 in FIG.
  • a current flows from the first power conversion unit 13 to the separately excited generator 12, and the separately excited generator 12 is excited. Then, as shown in FIG. 2F, when the separately excited generator 12 is excited at time T2, the separately excited generator 12 driven by the internal combustion engine 2 starts power generation. After that, the separately excited generator 12 supplies the generated AC power to the first power conversion unit 13.
  • the first control unit 15 monitors the amplitude of the current flowing between the separately excited generator 12 and the first power conversion unit 13 by the output signal of the current measurement unit CT1.
  • the amplitude of the phase current measured by the current measuring unit CT1 becomes equal to or greater than the threshold amplitude.
  • the first control unit 15 determines that the phase current amplitude measured by the current measurement unit CT1 is equal to or greater than the threshold amplitude, the first control unit 15 controls a plurality of switching elements of the first power conversion unit 13 to control the first power conversion unit.
  • the AC power supplied from the separately excited generator 12 is converted into DC power and supplied to the main inverter 14.
  • the power running notch is input from the master controller and the operation command signal S2 indicates the power running notch N1.
  • This timing is set to time T3.
  • the internal combustion engine control unit 3 controls the internal combustion engine 2 so that the rotation speed of the internal combustion engine 2 approaches the rotation speed RPM2 corresponding to the power running notch N1, and as shown in FIG. 2C, the internal combustion engine 2 is controlled.
  • the rotation speed is increased to the rotation speed RPM2.
  • the rotation speeds of the self-excited generator 11 and the separately excited generator 12 also increase, and the output voltage thereof also increases.
  • the first control unit 15 brings the output voltage of the first power conversion unit 13 closer to the voltage EFC2, for example, 600V, which is a constant voltage corresponding to the power line notch N1, in response to the operation command signal S2 indicating the power line notch N1.
  • the on / off of the plurality of switching elements of the first power conversion unit 13 is controlled.
  • the first control unit 15 calculates the output voltage of the separately excited generator 12 from the rotation speed of the internal combustion engine 2 acquired from the speed sensor 4 and the value of the phase current acquired from the current measuring unit CT1.
  • the first control unit 15 brings the output voltage of the first power conversion unit 13 closer to the target voltage. , The flow rate of a plurality of switching elements of the first power conversion unit 13 is controlled.
  • the inverter control unit 16 calculates the actual torque of the electric motor 5 from the value of the phase current flowing through the electric motor 5 acquired from the current measurement unit CT2. Then, the inverter control unit 16 controls on / off of a plurality of switching elements of the main inverter 14 so that the actual torque approaches the target torque corresponding to the power running notch N1. As a result, after the time T3, the electric motor 5 is driven in response to the operation command signal S2, and the power of the railway vehicle is obtained. The inverter control unit 16 holds in advance the value of the target torque corresponding to each power running notch.
  • the DC power supplied from the capacitor C1 charged by the power generated by the self-excited generator 11 is converted into AC power by the first power conversion unit 13.
  • the separately excited generator 12 is excited by converting and supplying AC power to the separately excited generator 12. Therefore, it is not necessary to provide a power storage device for exciting the separately excited generator 12.
  • the drive control device 10 and the drive device 1 can be miniaturized.
  • the power generation capacity of the self-excited generator 11 is made smaller than the power generation capacity of the separately excited generator 12, the self-excited generator 11 starts from a small generator capable of obtaining power for exciting the separately excited generator 12. It is configurable. As a result, the drive control device 10 and the drive device 1 can be further miniaturized.
  • the circuit configuration of the drive control device 10 is arbitrary as long as the capacitor C1 can be charged with the electric power generated by the self-excited generator 11 and the separately excited generator 12 can be excited with the electric power supplied from the capacitor C1.
  • the drive control device 20 according to the second embodiment shown in FIG. 4 has a contactor Q1 having one end connected to one output terminal of the self-excited generator 11 and one end connected to the other end of the contactor Q1.
  • a resistor R1 whose end is connected to one end of the capacitor C1 and a contactor control unit 18 for controlling the contactor Q1 are further provided.
  • the structure of the drive control device 20 is the same as that of the drive control device 10 except for the contactor Q1, the resistor R1, and the contactor control unit 18.
  • the contactor Q1 is composed of a DC electromagnetic contactor.
  • the contactor Q1 is controlled by the contactor control unit 18.
  • the contactor control unit 18 throws in the contactor Q1, one end and the other end of the contactor Q1 are connected to each other.
  • the self-excited generator 11 and the resistor R1 are electrically connected to each other.
  • the capacitor C1 is charged with the electric power generated by the self-excited generator 11. Since the resistor R1 is provided, the inrush current is suppressed from flowing through the capacitor C1 when the contactor Q1 is turned on.
  • the contactor control unit 18 opens the contactor Q1, one end and the other end of the contactor Q1 are insulated. As a result, the resistor R1 is electrically disconnected from the self-excited generator 11.
  • the contactor control unit 18 sends a contactor control signal S5 to the contactor Q1 to turn on or open the contactor Q1.
  • the contactor control unit 18 acquires the actual rotation speed of the internal combustion engine 2 from the speed sensor 4. Then, when the actual rotation speed of the internal combustion engine 2 reaches the threshold rotation speed, the contactor control unit 18 turns on the contactor Q1.
  • the threshold rotation speed is set to, for example, the rotation speed of the internal combustion engine 2 when the internal combustion engine 2 starts and is driven by the internal combustion engine 2 to start generating power from the self-excited generator 11.
  • the contactor control unit 18 acquires the voltage EFC between the terminals of the capacitor C1 from the voltage measuring unit VT1. Then, after the contactor Q1 is turned on, the contactor control unit 18 determines that the inter-terminal voltage EFC of the capacitor C1 becomes equal to or higher than the threshold voltage EFC1 which is a voltage capable of exciting the separately excited generator 12. Open Q1. As a result, it is suppressed that the power output by the self-excited generator 11 becomes a disturbance of the output of the first power conversion unit 13 that converts the AC power generated by the separately-excited generator 12 into DC power and outputs it. ..
  • FIG. 5C the internal combustion engine control unit 3 starts the internal combustion engine 2 in response to the start command signal S1 changing from the L level to the H level at time T1.
  • the rotation speed of the internal combustion engine 2 starts to increase from the rotation speed RPM0.
  • the self-excited generator 11 driven by the internal combustion engine 2 starts power generation as the rotation speed of the internal combustion engine 2 increases. Further, as shown in FIG.
  • the first control unit 15 controls the on / off of the plurality of switching elements of the first power conversion unit 13. Is started, and the first power conversion unit 13 converts the DC power supplied from the capacitor C1 into AC power and supplies it to the separately excited generator 12.
  • a current flows from the first power conversion unit 13 to the separately excited generator 12, and the separately excited generator 12 is excited.
  • FIG. 5 (F) when the separately excited generator 12 is excited at time T2, the separately excited generator 12 driven by the internal combustion engine 2 starts power generation. After that, the separately excited generator 12 supplies the generated AC power to the first power conversion unit 13.
  • the contactor control unit 18 opens the contactor Q1 as shown in FIG. 5 (G). Subsequent operations are the same as in the first embodiment.
  • the DC power supplied from the capacitor C1 charged by the power generated by the self-excited generator 11 is converted into AC power by the first power conversion unit 13.
  • the separately excited generator 12 is excited by converting and supplying AC power to the separately excited generator 12. Therefore, it is not necessary to provide a power storage device for exciting the separately excited generator 12.
  • the drive control device 20 and the drive device 1 can be miniaturized.
  • the power generation capacity of the self-excited generator 11 is made smaller than the power generation capacity of the separately excited generator 12, the self-excited generator 11 starts from a small generator capable of obtaining power for exciting the separately excited generator 12. It is configurable. As a result, the drive control device 20 and the drive device 1 can be further miniaturized.
  • the circuit configuration of the drive control devices 10 and 20 is arbitrary as long as it is a circuit that charges the capacitor C1 with the electric power generated by the self-excited generator 11 and excites the separately excited generator 12 with the electric power supplied from the capacitor C1.
  • the drive control device 30 according to the third embodiment shown in FIG. 7 includes a self-excited generator 21. Further, in the drive control device 30, in addition to the configuration of the drive control device 20, the primary terminal is connected to the self-excited generator 21, one of the secondary terminals is connected to one end of the contactor Q1, and the drive control device 30 is supplied from the self-excited generator 21.
  • a second power conversion unit 22 that converts the AC power to be generated into DC power and outputs DC power, and a second control unit 23 that controls the second power conversion unit 22 are further provided.
  • the structure of the drive control device 30 is the same as that of the drive control device 20 except for the self-excited generator 21, the second power conversion unit 22, and the second control unit 23.
  • the self-excited generator 21 is composed of an alternator.
  • the input shaft of the self-excited generator 21 is connected to the output shaft of the internal combustion engine 2.
  • the self-excited generator 21 When driven by the internal combustion engine 2, the self-excited generator 21 generates AC power and outputs the generated AC power.
  • the output terminal of the self-excited generator 21 is connected to the primary terminal of the second power conversion unit 22.
  • the second power conversion unit 22 converts the AC power supplied from the self-excited generator 21 via the primary terminal into DC power and outputs it from the secondary terminal.
  • the capacitor C1 is charged by the power output by the second power conversion unit 22.
  • the second control unit 23 sends the switching control signal S6 to the second power conversion unit 22, and controls the on / off timing of the plurality of switching elements of the second power conversion unit 22. Specifically, the second control unit 23 acquires the actual rotation speed of the internal combustion engine 2 from the speed sensor 4. Then, when the actual rotation speed of the internal combustion engine 2 reaches the threshold rotation speed, the second control unit 23 controls the on / off timing of the plurality of switching elements of the second power conversion unit 22 to perform the second power conversion.
  • the unit 22 starts the power conversion process of converting the AC power supplied from the primary terminal into DC power.
  • the threshold rotation speed is set to, for example, the rotation speed of the internal combustion engine 2 when the internal combustion engine 2 starts and is driven by the internal combustion engine 2 to start generating power from the self-excited generator 11.
  • the second control unit 23 acquires the voltage EFC between the terminals of the capacitor C1 from the voltage measurement unit VT1. Then, when the inter-terminal voltage EFC of the capacitor C1 becomes equal to or higher than the threshold voltage EFC1, the second control unit 23 outputs a switching control signal S6 that turns off the plurality of switching elements of the second power conversion unit 22, and outputs the second power. The conversion unit 22 is stopped.
  • FIG. 8 (A)-(G) is the same as FIG. 5 (A)-(G).
  • the start command signal S1 changes from L level to H level.
  • the internal combustion engine control unit 3 starts the internal combustion engine 2 in response to the start command signal S1 changing from the L level to the H level at the time T1.
  • the rotation speed of the internal combustion engine 2 starts to increase from the rotation speed RPM0.
  • the self-excited generator 21 starts power generation as the rotation speed of the internal combustion engine 2 increases.
  • a current flows from the self-excited generator 21 to the second power conversion unit 22.
  • the second control unit 23 sets the plurality of switching elements of the second power conversion unit 22 at time T1.
  • the on / off timing control is started, and the second power conversion unit 22 converts the AC power generated by the self-excited generator 21 into DC power.
  • the contactor control unit 18 turns on the contactor Q1 at time T1.
  • a current flows from the second power conversion unit 22 to the capacitor C1 to charge the capacitor C1.
  • the capacitor C1 is charged by the electric power generated by the self-excited generator 11, and the inter-terminal voltage EFC of the capacitor C1 starts to rise from the voltage EFC 0.
  • the separately excited generator 12 since the separately excited generator 12 is not excited, it does not start power generation even if it is driven by the internal combustion engine 2.
  • the first control unit 15 controls the on / off of the plurality of switching elements of the first power conversion unit 13. Is started, and the first power conversion unit 13 converts the DC power supplied from the capacitor C1 into AC power and supplies it to the separately excited generator 12.
  • a current flows from the first power conversion unit 13 to the separately excited generator 12, and the separately excited generator 12 is excited.
  • FIG. 8 (F) when the separately excited generator 12 is excited at time T2, the separately excited generator 12 driven by the internal combustion engine 2 starts power generation. After that, the separately excited generator 12 supplies the generated AC power to the first power conversion unit 13.
  • the second control unit 23 turns off the plurality of switching elements of the second power conversion unit 22, and the second control unit 23 turns off the plurality of switching elements. 2
  • the power conversion unit 22 is stopped.
  • the contactor control unit 18 opens the contactor Q1. It is preferable to open the contactor Q1 after stopping the second power conversion unit 22.
  • the contactor control unit 18 may acquire the switching control signal S6, detect that the second control unit 23 has stopped the second power conversion unit 22, and then open the contactor Q1. Subsequent operations are the same as in the first embodiment.
  • the drive control device 30 converts the DC power supplied from the capacitor C1 charged by the power generated by the self-excited generator 21 composed of the AC motor into the first power conversion.
  • the separately excited generator 12 is excited by converting it into AC power in the unit 13 and supplying the AC power to the separately excited generator 12. Therefore, it is not necessary to provide a power storage device for exciting the separately excited generator 12.
  • the self-excited generator 21 can be configured from a small generator capable of obtaining electric power for exciting the separately excited generator 12. As a result, the drive control device 30 and the drive device 1 can be miniaturized.
  • the present invention is not limited to the above-described embodiment.
  • the circuit configuration of the drive control devices 10, 20 and 30 described above is an example, and the circuit configuration of the drive control devices 10, 20 and 30 is separately excited power generation by the electric power generated by the self-excited generator 11 or the self-excited generator 21. Any configuration is used as long as it excites the machine 12.
  • the drive control device 30 can be configured not to include the contactor Q1 like the drive control device 10.
  • the device to which the drive device 1 supplies electric power in other words, the load connected to the secondary terminal of the main inverter 14 is not limited to the electric motor 5, and may be an in-vehicle device such as an air conditioner device or a lighting device.
  • the main inverter 14 may be composed of a CVCF (Constant Voltage Constant Frequency) inverter.
  • CVCF Constant Voltage Constant Frequency
  • the self-excited generator 11 or the self-excited generator 21 and the capacitor C1 are electrically connected, or the capacitor C1 is connected to the self-excited generator 11 or the self-excited generator 11. Any element that is electrically disconnected from the generator 21 can be provided.
  • the drive control device 30 may include a diode bridge for full-wave rectification of the AC power output by the self-excited generator 21 instead of the second power conversion unit 22.
  • the control by the first control unit 15 is not limited to the above example.
  • the first control unit 15 may feed back the output current of the first power conversion unit 13 to adjust a plurality of switching elements of the first power conversion unit 13.
  • the control by the inverter control unit 16 is not limited to the above example.
  • the drive control devices 10, 20, and 30 do not include the speed sensor 17, and the inverter control unit 16 may acquire the rotation speed of the electric motor 5 from the ATC (Automatic Train Control). Then, the inverter control unit 16 may perform sensorless vector control for estimating the rotation speed of the electric motor 5.
  • the control by the contactor control unit 18 is not limited to the above example.
  • the contactor control unit 18 may turn on the contactor Q1 after a predetermined time has elapsed after the actual rotation speed of the internal combustion engine 2 reaches the threshold rotation speed.
  • the contactor control unit 18 may acquire the start command signal S1 and turn on the contactor Q1 after a predetermined time has elapsed after the start command signal S1 reaches the H level.
  • the contactor control unit 18 may open the contactor Q1 when the inter-terminal voltage EFC of the capacitor C1 continues to be equal to or higher than the threshold voltage EFC1 for a predetermined time or longer.
  • the current measuring units CT1 and CT2 have described the case of detecting the phase currents of each of the U phase, the V phase, and the W phase, it is sufficient to detect the phase currents of at least two phases of the U phase, the V phase, and the W phase.
  • the drive control devices 10, 20, and 30 control the clutch and the clutch that mechanically connect the internal combustion engine 2 and the self-excited generator 11 or mechanically disconnect the self-excited generator 11 from the internal combustion engine 2.
  • a clutch control unit may be further provided. In this case, the clutch control unit acquires the phase current measured by the current measurement unit CT1, and when the amplitude of the phase current exceeds the threshold current, the clutch is so as to mechanically disconnect the internal combustion engine 2 and the self-excited generator 11. Should be controlled. After that, when the internal combustion engine 2 is stopped and then restarted, the clutch control unit may control the clutch so as to mechanically connect the internal combustion engine 2 and the self-excited generator 11.
  • 1 Drive device for railway vehicles 2 Internal engine, 3 Internal engine control unit, 4,17 Speed sensor, 5 Electric motor, 10, 20, 30 Drive control device, 11,21 Self-excited generator, 12 Other-excited generator, 13 1st power conversion unit, 14 main inverter, 15 1st control unit, 16 inverter control unit, 18 contactor control unit, 22 2nd power conversion unit, 23 2nd control unit, B1 brake notch, C1 condenser, CT1, CT2 Current measuring unit, EFC terminal voltage, EFC0, EFC2 voltage, EFC1 threshold voltage, N1 power line notch, Q1 contactor, R1 resistance, RPM0, RPM1, RPM2 rotation speed, S1 start command signal, S2 operation command signal, S3, S4 , S6 switching control signal, S5 contactor control signal, VT1 voltage measuring unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

駆動制御装置(10)は、内燃機関(2)に駆動されると電力を発電して出力する自励発電機(11)と、励磁された状態で、内燃機関(2)に駆動されると電力を発電して出力する他励発電機(12)と、を備える。駆動制御装置(10)はさらに、他励発電機(12)から一次端子を介して供給される電力を直流電力に変換して二次端子から出力し、または、二次端子を介して供給される直流電力を他励発電機(12)に供給するための電力に変換して一次端子から出力する第1電力変換部(13)と、第1電力変換部(13)の二次端子の間に接続されるコンデンサ(C1)と、を備える。

Description

駆動制御装置および鉄道車両用駆動装置
 この発明は、駆動制御装置および鉄道車両用駆動装置に関する。
 鉄道車両を駆動する車両用駆動装置には、発電機および電動機を使用するタイプのものがある。この種の車両用駆動装置の一例が、特許文献1に開示されている。特許文献1に開示される車両用駆動装置は、内燃機関と、内燃機関に駆動される誘導発電機と、誘導発電機が発電した電力を用いて誘導電動機を駆動する電力変換器と、二次電池を含む蓄電装置とを備える。内燃機関に駆動されて誘導発電機が発電するためには、誘導発電機に電力を供給して、誘導発電機を励磁する必要がある。この車両用駆動装置では、蓄電装置から供給される直流電力を、電力変換器によって交流電力に変換して誘導発電機に供給する。これによって誘導発電機が励磁され、内燃機関に駆動された誘導発電機が電力を発電し、電力変換器に発電された電力が供給される。そして、電力変換器は、誘導発電機から供給される電力を、誘導電動機を駆動するための電力に変換し、変換した電力を誘導電動機に供給する。この結果、誘導電動機が駆動され、鉄道車両の推進力が得られる。
特開2008-49811号公報
 蓄電装置は、二次電池の充放電を制御する充放電制御装置、二次電池の過電圧が生じているか否かを監視する監視装置、ならびに、二次電池、充放電制御装置、および監視装置を収容する筐体等を備える必要があり、装置が大きくなるという課題がある。
 本発明は上述の事情に鑑みてなされたものであり、小型の駆動制御装置および鉄道車両用駆動装置を提供することを目的とする。
 上記目的を達成するために、本発明の駆動制御装置は、自励発電機と、他励発電機と、第1電力変換部と、コンデンサとを備える。自励発電機は、内燃機関に連結され、内燃機関に駆動されて、電力を発電し、発電した電力を出力する。他励発電機は、内燃機関に連結され、励磁された状態で、内燃機関に駆動されて、電力を発電し、発電した電力を出力する。第1電力変換部は、他励発電機から一次端子を介して供給される電力を直流電力に変換して二次端子から出力し、または、二次端子を介して供給される直流電力を他励発電機に供給するための電力に変換して一次端子から出力する。コンデンサは、第1電力変換部の二次端子の間に接続される。自励発電機の出力端子は、コンデンサに接続される。
 本発明によれば、第1電力変換部の二次端子の間に接続されるコンデンサに、自励発電機の出力端子が接続される。これにより、第1電力変換部は、自励発電機の出力端子が接続されたコンデンサから二次端子を介して供給される直流電力を他励発電機に供給するための電力に変換して一次端子から出力する。そして、他励発電機は、第1電力変換部から電力を供給されて励磁される。この結果、他励発電機を励磁するための電力を供給する蓄電装置を設ける必要がない。このため、駆動制御装置の小型化が可能となる。
本発明の実施の形態1に係る鉄道車両用駆動装置の構成を示すブロック図 実施の形態1に係る鉄道車両用駆動装置が行う他励発電機の励磁処理の動作を示すタイミングチャート 実施の形態1に係る鉄道車両用駆動装置における電流の流れの一例を示す図 本発明の実施の形態2に係る鉄道車両用駆動装置の構成を示すブロック図 実施の形態2に係る鉄道車両用駆動装置が行う他励発電機の励磁処理の動作を示すタイミングチャート 実施の形態2に係る鉄道車両用駆動装置における電流の流れの一例を示す図 本発明の実施の形態3に係る鉄道車両用駆動装置の構成を示すブロック図 実施の形態3に係る鉄道車両用駆動装置が行う他励発電機の励磁処理の動作を示すタイミングチャート 実施の形態1に係る鉄道車両用駆動装置における電流の流れの一例を示す図
 以下、本発明の実施の形態に係る駆動制御装置および鉄道車両用駆動装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。
 (実施の形態1)
 発電機および電動機を使用して鉄道車両を駆動する鉄道車両用駆動装置を図1に示す。鉄道車両用駆動装置(以下、駆動装置という)1は、動力源である内燃機関2と、内燃機関2を制御する内燃機関制御部3と、内燃機関2の回転数を検出する速度センサ4と、内燃機関2に駆動されることで発電した電力を電動機5に供給する駆動制御装置10と、駆動制御装置10から供給される電力によって駆動され、鉄道車両の推進力を発生させる電動機5と、を備える。
 内燃機関2は、ディーゼルエンジン、ガソリンエンジン等から構成される。また内燃機関2は、セルモータを備える。内燃機関2の出力軸は、駆動制御装置10が備える後述の自励発電機11および他励発電機12のそれぞれの入力軸に接続されている。これにより、内燃機関2は、回転することで、自励発電機11および他励発電機12のそれぞれを駆動して発電させる。
 内燃機関制御部3には、図示しない運転台に設けられた始動スイッチから始動指令信号S1が供給され、運転台に設けられたマスターコントローラから運転指令信号S2が供給される。始動指令信号S1は、内燃機関2の始動を指示する信号である。内燃機関2を停止させておく場合、始動指令信号S1はL(Low)レベルであり、内燃機関2を始動する場合、始動指令信号S1はH(High)レベルにされる。また、運転指令信号S2は、鉄道車両の加速度を指示する力行ノッチ、鉄道車両の減速度を指示するブレーキノッチ等を示す信号とする。
 内燃機関制御部3は、始動指令信号S1がHレベルになると、内燃機関2を始動する。詳細には、内燃機関制御部3は、始動指令信号S1がHレベルになると、セルモータに制御信号を送り、セルモータを始動させる。セルモータの回転力が内燃機関2に伝達されると、内燃機関2が始動する。
 また内燃機関制御部3は、内燃機関2の始動後は、運転指令信号S2が示す力行ノッチに対応する目標回転数に基づき、速度センサ4から取得した内燃機関2の実回転数を目標回転数に近づけるように、内燃機関2を制御する。なお内燃機関制御部3は、各力行ノッチに対応する目標回転数の値を予め保持している。
 速度センサ4は、内燃機関2に取り付けられたPG(Pulse Generator:パルスジェネレーター)を備える。そして、速度センサ4は、PGが出力するパルス信号から内燃機関2の回転数を算出し、内燃機関2の回転数を示す信号を出力する。具体的には、速度センサ4は、一定の時間間隔でパルス信号の立ち上がりをカウントし、一定の時間でのパルス数から内燃機関2の回転数を算出する。
 電動機5は、三相誘導電動機から構成され、駆動制御装置10が有する後述の主インバータ14が出力する交流電力で駆動されて回転する。電動機5は、例えば、継手を介して車軸に連結されており、車軸に回転力を伝達する。
 駆動制御装置10は、内燃機関2に駆動されて回転することで直流電力を発電し、発電した直流電力を出力する自励発電機11と、内燃機関2に駆動されて回転することで交流電力を発電し、発電した交流電力を出力する他励発電機12と、を備える。駆動制御装置10はさらに、他励発電機12から一次端子を介して供給される交流電力を直流電力に変換し、二次端子から直流電力を出力する第1電力変換部13と、第1電力変換部13から一次端子を介して供給される直流電力を三相交流電力に変換し、三相交流電力を二次端子から出力する主インバータ14と、第1電力変換部13の二次端子間に接続されるコンデンサC1と、を備える。
 また駆動制御装置10は、第1電力変換部13を制御する第1制御部15と、主インバータ14を制御するインバータ制御部16と、をさらに備える。さらに駆動制御装置10は、第1電力変換部13の一次端子に接続され、他励発電機12と第1電力変換部13の間の回路を流れるU相、V相、W相それぞれの相電流の値を測定する電流測定部CT1と、主インバータ14から電動機5に流れるU相、V相、W相それぞれの相電流の値を測定する電流測定部CT2と、コンデンサC1に並列に接続され、コンデンサC1の端子間電圧の値を測定する電圧測定部VT1と、を備える。
 自励発電機11は、直流発電機から構成される。自励発電機11の入力軸は、内燃機関2の出力軸に連結されている。自励発電機11は、内燃機関2に駆動されると、直流電力を発電し、発電した直流電力を出力する。自励発電機11の出力端子は、コンデンサC1の両端に接続される。このため、他励発電機12が励磁されておらず、発電していない状態では、自励発電機11が直流電力を出力することで、コンデンサC1を充電する。
 好ましくは、自励発電機11の発電容量は、他励発電機12の発電容量より小さい。
 他励発電機12は、第1電力変換部13から供給される電力で励磁される。また他励発電機12の入力軸は、内燃機関2の出力軸に連結されている。他励発電機12は、励磁された状態で、内燃機関2に駆動されると、交流電力を発電し、発電した交流電力を出力する。
 第1電力変換部13は、その一次端子が他励発電機12に、二次端子が主インバータ14に接続されている。第1電力変換部13は、第1制御部15の制御に従って動作する。第1電力変換部13は、内燃機関2の始動直後に充電されたコンデンサC1から、その二次端子を介して供給される直流電力を交流電力に変換して、その一次端子から他励発電機12に供給し、他励発電機12を励磁する。他励発電機12が励磁されると、内燃機関2の回転により、他励発電機12が発電を開始する。また、第1電力変換部13は、第1制御部15の制御に従って、他励発電機12の発電開始後に、他励発電機12から一次端子を介して供給される交流電力を直流電力に変換して、その二次端子から、主インバータ14に直流電力を供給する。
 主インバータ14は、インバータ制御部16の制御に従って、第1電力変換部13が二次端子から出力する直流電力を三相交流電力に変換して、電動機5に出力する。これにより、電動機5は、主インバータ14が出力する三相交流電力で駆動されて回転する。なお主インバータ14は、VVVF(Variable Voltage Variable Frequency:可変電圧可変周波数)インバータから構成される。
 速度センサ17は、電動機5に取り付けられたPGを備える。なお速度センサ17は、速度センサ4と同様に、PGが出力するパルス信号から電動機5の回転数を算出し、電動機5の回転数を示す信号を出力する。
 第1制御部15には、始動指令信号S1および運転指令信号S2が供給される。また第1制御部15は、電圧測定部VT1から、コンデンサC1の端子間電圧を取得する。さらに第1制御部15は、電流測定部CT1から、他励発電機12と第1電力変換部13の間の回路を流れるU相、V相、W相それぞれの相電流の値を取得する。
 第1制御部15は、始動指令信号S1および運転指令信号S2に従って、第1電力変換部13の複数のスイッチング素子のオン・オフのタイミングを制御するスイッチング制御信号S3を出力する。具体的には、第1制御部15は、第1電力変換部13を、自励発電機11が発電した直流電力で充電されたコンデンサC1から供給される直流電力を交流電力に変換するDC(Direct Current:直流)-AC(Alternating Current:交流)コンバータ、または、他励発電機12から供給される交流電力を直流電力に変換するAC-DCコンバータとして動作させる。
 具体的に説明すると、第1制御部15は、始動指令信号S1がLレベルであって、運転指令信号S2がブレーキ指令を示すときには、第1電力変換部13を停止させる。
 また、第1制御部15は、始動指令信号S1がHレベルで、且つ、コンデンサC1の端子間電圧が、閾値電圧EFC1に達すると、第1電力変換部13を制御する。そして第1制御部15は、第1電力変換部13に、自励発電機11が発電した直流電力で充電されたコンデンサC1から供給される直流電力を交流電力に変換して、他励発電機12に供給させる。この結果、他励発電機12が励磁される。なお閾値電圧EFC1を、他励発電機12を励磁することが可能となる電圧とする。第1制御部15は、閾値電圧EFC1を予め保持している。
 第1制御部15は、電流測定部CT1が測定した相電流の振幅が閾値振幅以上であるか否かを判別する。電流測定部CT1が測定した相電流の振幅が閾値振幅である場合、他励発電機12が励磁されたとみなすことができる。なお閾値振幅は、励磁された他励発電機12が出力する電流の振幅が取り得る値より小さい値に設定される。また第1制御部15は、閾値振幅の値を予め保持している。
 そして、第1制御部15は、電流測定部CT1が測定した相電流の振幅が閾値以上であって、運転指令信号S2が力行ノッチを示す場合に、他励発電機12の出力電圧および運転指令信号S2が示す力行ノッチに対応する目標電圧に基づき、第1電力変換部13の出力電圧を目標電圧に近づけるため、第1電力変換部13の複数のスイッチング素子のオン・オフのタイミングを制御する。なお第1制御部15は、各力行ノッチに対応する目標電圧の値を予め保持している。
 インバータ制御部16には、運転指令信号S2が供給される。またインバータ制御部16は、速度センサ17から電動機5の回転数を取得する。さらにインバータ制御部16は、電流測定部CT2から、電動機5に流れる相電流の値を取得する。そして、インバータ制御部16は、運転指令信号S2と電動機5の回転数と電動機5に流れる相電流とに従って、主インバータ14の複数のスイッチング素子のオン・オフのタイミングを制御するスイッチング制御信号S4を出力する。
 具体的には、インバータ制御部16は、運転指令信号S2が示す力行ノッチおよび速度センサ17から取得した電動機5の回転数から、電動機5の目標トルクを算出する。また、インバータ制御部16は、電流測定部CT2が測定した相電流の値から電動機5の実トルクを算出する。そして、インバータ制御部16は、電動機5の実トルクを目標トルクに近づけるため、主インバータ14の複数のスイッチング素子を制御する。
 次に、上記構成を有する駆動装置1の動作を図2(A)-(F)のタイミングチャートを参照して説明する。
 内燃機関2の停止時は、図2(A),(B)に示すように、始動指令信号S1はLレベルであり、運転指令信号S2は、ブレーキノッチB1を示す。図2(C)に示すように、内燃機関2の停止時の回転数をRPM0とする。図2(D)に示すように、内燃機関2の停止時は、自励発電機11は、停止している。図2(E)に示すように、内燃機関2の停止時にコンデンサC1は放電された状態であり、放電された状態のコンデンサC1の端子間電圧を電圧EFC0とする。図2(F)に示すように、内燃機関2の停止時は、他励発電機12は停止している。以降、始動指令信号S1がLレベルからHレベルになるタイミングを時刻T1とする。
 図2(C)に示すように、始動指令信号S1が時刻T1においてLレベルからHレベルになったことに応答して、内燃機関制御部3は、内燃機関2を始動する。この結果、内燃機関2の回転数が回転数RPM0から上昇し始める。その後、内燃機関2の回転数は回転数RPM1に到達する。なお回転数RPM1を、内燃機関2が始動されていて、運転指令信号S2がブレーキノッチを示している状態での内燃機関2の回転数とする。
 また図2(D)に示すように、内燃機関2の回転数の上昇に伴って、内燃機関2に駆動される自励発電機11が発電を開始する。この結果、図3に実線の矢印A1で示すように、自励発電機11から、コンデンサC1に電流が流れ、コンデンサC1が充電される。そして、図2(E)に示すように、自励発電機11が発電した電力によってコンデンサC1が充電され、コンデンサC1の端子間電圧EFCが電圧EFC0から上昇し始める。図2(F)に示すように、他励発電機12は励磁されていないため、内燃機関2に駆動されても、発電を開始しない。
 第1制御部15は、電圧測定部VT1の出力信号により、コンデンサC1の端子間電圧をモニタしており、図2(E)に示すように、時刻T2において、端子間電圧EFCが閾値電圧EFC1に到達したと判別する。第1制御部15は、コンデンサC1の端子間電圧EFCが閾値電圧EFC1に到達したと判別すると、第1電力変換部13の複数のスイッチング素子のオン・オフの制御を開始し、第1電力変換部13に、コンデンサC1から供給される直流電力を交流電力に変換して、他励発電機12に供給させる。この結果、図3に実線の矢印A2で示すように、第1電力変換部13から他励発電機12に電流が流れ、他励発電機12が励磁される。そして、図2(F)に示すように、時刻T2において、他励発電機12が励磁されると、内燃機関2に駆動される他励発電機12は、発電を開始する。その後、他励発電機12は、発電した交流電力を第1電力変換部13に供給する。
 また第1制御部15は、電流測定部CT1の出力信号により、他励発電機12と第1電力変換部13との間に流れる電流の振幅をモニタしている。時刻T2において他励発電機12が励磁されると、電流測定部CT1が測定した相電流の振幅は、閾値振幅以上となる。第1制御部15は、電流測定部CT1が測定した相電流の振幅が閾値振幅以上であると判別した場合、第1電力変換部13の複数のスイッチング素子を制御して、第1電力変換部13に、他励発電機12から供給される交流電力を直流電力に変換して、主インバータ14に供給させる。
 その後、マスターコントローラから力行ノッチが入力され、運転指令信号S2が力行ノッチN1を示すとする。なお、このタイミングを時刻T3とする。時刻T3以降、内燃機関制御部3は、内燃機関2の回転数を力行ノッチN1に対応する回転数RPM2に近づけるように、内燃機関2を制御し、図2(C)に示すように、その回転数を回転数RPM2まで上昇させる。内燃機関2の回転数の上昇に伴い、自励発電機11および他励発電機12の回転数も上昇し、その出力電圧も上昇する。
 また、第1制御部15は、力行ノッチN1を示す運転指令信号S2に応答して、第1電力変換部13の出力電圧を力行ノッチN1に応じた一定電圧である電圧EFC2、例えば600Vに近づけるように、第1電力変換部13の複数のスイッチング素子のオン・オフを制御する。詳細には、第1制御部15は、速度センサ4から取得した内燃機関2の回転数および電流測定部CT1から取得した相電流の値から、他励発電機12の出力電圧を算出する。そして、他励発電機12の出力電圧および運転指令信号S2が示す力行ノッチに対応する目標電圧に基づき、第1制御部15は、第1電力変換部13の出力電圧を目標電圧に近づけるように、第1電力変換部13の複数のスイッチング素子の通流率を制御する。
 また、インバータ制御部16は、電流測定部CT2から取得した、電動機5に流れる相電流の値から、電動機5の実トルクを算出する。そして、インバータ制御部16は、実トルクを、力行ノッチN1に応じた目標トルクに近づけるように、主インバータ14の複数のスイッチング素子のオン・オフを制御する。これにより、時刻T3以降、運転指令信号S2に応答して、電動機5が駆動され、鉄道車両の動力が得られる。なおインバータ制御部16は、各力行ノッチに応じた目標トルクの値を予め保持している。
 以上説明したとおり、本実施の形態1に係る駆動制御装置10は、自励発電機11が発電した電力によって充電されたコンデンサC1から供給される直流電力を第1電力変換部13で交流電力に変換し、交流電力を他励発電機12に供給することで、他励発電機12を励磁する。このため、他励発電機12を励磁するための蓄電装置を設ける必要がない。これにより、駆動制御装置10および駆動装置1の小型化が可能となる。
 自励発電機11の発電容量を他励発電機12の発電容量より小さくする場合、自励発電機11は、他励発電機12を励磁するための電力が得られる程度の小型の発電機から構成可能である。これにより、駆動制御装置10および駆動装置1の更なる小型化が可能となる。
 (実施の形態2)
 駆動制御装置10の回路構成は、自励発電機11が発電した電力でコンデンサC1を充電し、コンデンサC1から供給される電力で他励発電機12を励磁できれば、任意である。図4に示す実施の形態2に係る駆動制御装置20は、一端が自励発電機11の一方の出力端子に接続される接触器Q1と、一端が接触器Q1の他端に接続され、他端がコンデンサC1の一端に接続される抵抗R1と、接触器Q1を制御する接触器制御部18と、をさらに備える。駆動制御装置20の構造は、接触器Q1と、抵抗R1と、接触器制御部18とを除いて、駆動制御装置10の構造と同じである。
 接触器Q1は、直流電磁接触器から構成される。また接触器Q1は、接触器制御部18によって制御される。
 接触器制御部18が接触器Q1を投入すると、接触器Q1の一端と他端は互いに接続される。この結果、自励発電機11と抵抗R1は互いに電気的に接続される。そして、コンデンサC1は、自励発電機11が発電した電力で充電される。なお抵抗R1が設けられていることで、接触器Q1の投入時に、コンデンサC1に突入電流が流れることが抑制される。
 また接触器制御部18が接触器Q1を開放すると、接触器Q1の一端と他端は絶縁される。この結果、抵抗R1は、自励発電機11から電気的に切り離される。
 接触器制御部18は、接触器制御信号S5を接触器Q1に送り、接触器Q1を投入または開放する。なお接触器制御部18は、速度センサ4から内燃機関2の実回転数を取得する。そして、接触器制御部18は、内燃機関2の実回転数が閾値回転数に到達すると、接触器Q1を投入する。なお閾値回転数は、例えば、内燃機関2が始動し、内燃機関2に駆動されて自励発電機11が発電し始める際の内燃機関2の回転数に設定される。
 また接触器制御部18は、電圧測定部VT1からコンデンサC1の端子間電圧EFCを取得する。そして、接触器制御部18は、接触器Q1の投入後、コンデンサC1の端子間電圧EFCが、他励発電機12を励磁することが可能となる電圧である閾値電圧EFC1以上となると、接触器Q1を開放する。この結果、自励発電機11が出力する電力が、他励発電機12が発電した交流電力を直流電力に変換して出力する第1電力変換部13の出力の外乱となることが抑制される。
 次に、上記構成を有する駆動装置1の動作を図5(A)-(G)のタイミングチャートを参照して説明する。図5(A)-(F)は、図2(A)-(F)と同様である。図2と同様に、時刻T1において、始動指令信号S1が、LレベルからHレベルになる。
 図5(C)に示すように、始動指令信号S1が時刻T1においてLレベルからHレベルになったことに応答して、内燃機関制御部3は、内燃機関2を始動する。この結果、内燃機関2の回転数が回転数RPM0から上昇し始める。そして、図5(D)に示すように、内燃機関2の回転数の上昇に伴って、内燃機関2に駆動される自励発電機11が発電を開始する。また図5(G)に示すように、自励発電機11が発電した電力でコンデンサC1を充電するため、接触器制御部18は、時刻T1において、接触器Q1を投入する。この結果、図6に実線の矢印A3で示すように、自励発電機11から、接触器Q1を通って、コンデンサC1に電流が流れ、コンデンサC1が充電される。そして図5(E)に示すように、自励発電機11が発電した電力によってコンデンサC1が充電され、コンデンサC1の端子間電圧EFCが電圧EFC0から上昇し始める。図5(F)に示すように、他励発電機12は励磁されていないため、内燃機関2に駆動されても、発電を開始しない。
 図5(E)に示すように、時刻T2において、端子間電圧EFCが閾値電圧EFC1に到達すると、第1制御部15は、第1電力変換部13の複数のスイッチング素子のオン・オフの制御を開始し、第1電力変換部13に、コンデンサC1から供給される直流電力を交流電力に変換して、他励発電機12に供給させる。この結果、図6に実線の矢印A4で示すように、第1電力変換部13から他励発電機12に電流が流れ、他励発電機12が励磁される。そして、図5(F)に示すように、時刻T2において、他励発電機12が励磁されると、内燃機関2に駆動される他励発電機12は、発電を開始する。その後、他励発電機12は、発電した交流電力を第1電力変換部13に供給する。
 また時刻T2において、端子間電圧EFCが閾値電圧EFC1に到達すると、図5(G)に示すように、接触器制御部18は、接触器Q1を開放する。後続の動作は、実施の形態1と同様である。
 以上説明したとおり、本実施の形態2に係る駆動制御装置20は、自励発電機11が発電した電力によって充電されたコンデンサC1から供給される直流電力を第1電力変換部13で交流電力に変換し、交流電力を他励発電機12に供給することで、他励発電機12を励磁する。このため、他励発電機12を励磁するための蓄電装置を設ける必要がない。これにより、駆動制御装置20および駆動装置1の小型化が可能となる。
 自励発電機11の発電容量を他励発電機12の発電容量より小さくする場合、自励発電機11は、他励発電機12を励磁するための電力が得られる程度の小型の発電機から構成可能である。これにより、駆動制御装置20および駆動装置1の更なる小型化が可能となる。
 (実施の形態3)
 駆動制御装置10,20の回路構成は、自励発電機11が発電した電力でコンデンサC1を充電し、コンデンサC1から供給される電力で他励発電機12を励磁する回路であれば、任意である。図7に示す実施の形態3に係る駆動制御装置30は、自励発電機21を備える。また駆動制御装置30は、駆動制御装置20の構成に加え、一次端子が自励発電機21に接続され、二次端子の一方が接触器Q1の一端に接続され、自励発電機21から供給される交流電力を直流電力に変換して直流電力を出力する第2電力変換部22と、第2電力変換部22を制御する第2制御部23と、をさらに備える。駆動制御装置30の構造は、自励発電機21と、第2電力変換部22と、第2制御部23とを除いて、駆動制御装置20の構造と同じである。
 自励発電機21は、交流発電機から構成される。自励発電機21の入力軸は、内燃機関2の出力軸に連結されている。自励発電機21は、内燃機関2に駆動されると、交流電力を発電し、発電した交流電力を出力する。自励発電機21の出力端子は、第2電力変換部22の一次端子に接続される。
 第2電力変換部22は、一次端子を介して自励発電機21から供給される交流電力を直流電力に変換し、二次端子から出力する。第2電力変換部22が出力する電力によって、コンデンサC1が充電される。
 第2制御部23は、スイッチング制御信号S6を第2電力変換部22に送り、第2電力変換部22の複数のスイッチング素子のオン・オフのタイミングを制御する。具体的には、第2制御部23は、速度センサ4から内燃機関2の実回転数を取得する。そして、第2制御部23は、内燃機関2の実回転数が閾値回転数に到達すると、第2電力変換部22の複数のスイッチング素子のオン・オフのタイミングを制御して、第2電力変換部22に、一次端子から供給された交流電力を直流電力に変換させる電力変換の処理を開始させる。なお閾値回転数は、例えば、内燃機関2が始動し、内燃機関2に駆動されて自励発電機11が発電し始める際の内燃機関2の回転数に設定される。
 また第2制御部23は、電圧測定部VT1からコンデンサC1の端子間電圧EFCを取得する。そして、第2制御部23は、コンデンサC1の端子間電圧EFCが閾値電圧EFC1以上となると、第2電力変換部22の複数のスイッチング素子をオフにするスイッチング制御信号S6を出力し、第2電力変換部22を停止させる。
 次に、上記構成を有する駆動装置1の動作を図8(A)-(H)のタイミングチャートを参照して説明する。図8(A)-(G)は、図5(A)-(G)と同様である。図5と同様に、時刻T1において、始動指令信号S1が、LレベルからHレベルになる。
 図8(C)に示すように、始動指令信号S1が時刻T1においてLレベルからHレベルになったことに応答して、内燃機関制御部3は、内燃機関2を始動する。この結果、内燃機関2の回転数が回転数RPM0から上昇し始める。そして、図8(D)に示すように、内燃機関2の回転数の上昇に伴って、自励発電機21が発電を開始する。この結果、図9に実線の矢印A5で示すように、自励発電機21から第2電力変換部22に電流が流れる。
 図8(H)に示すように、自励発電機11が発電した電力でコンデンサC1を充電するため、第2制御部23は、時刻T1において、第2電力変換部22の複数のスイッチング素子のオン・オフのタイミングの制御を開始し、第2電力変換部22に、自励発電機21が発電した交流電力を直流電力に変換させる。また図8(G)に示すように、接触器制御部18は、時刻T1において、接触器Q1を投入する。この結果、図9に実線の矢印A6で示すように、第2電力変換部22からコンデンサC1に電流が流れ、コンデンサC1が充電される。そして、図8(E)に示すように、自励発電機11が発電した電力によってコンデンサC1が充電され、コンデンサC1の端子間電圧EFCが電圧EFC0から上昇し始める。図8(F)に示すように、他励発電機12は励磁されていないため、内燃機関2に駆動されても、発電を開始しない。
 図8(E)に示すように、時刻T2において、端子間電圧EFCが閾値電圧EFC1に到達すると、第1制御部15は、第1電力変換部13の複数のスイッチング素子のオン・オフの制御を開始し、第1電力変換部13に、コンデンサC1から供給される直流電力を交流電力に変換して、他励発電機12に供給させる。この結果、図9に実線の矢印A7で示すように、第1電力変換部13から他励発電機12に電流が流れ、他励発電機12が励磁される。そして、図8(F)に示すように、時刻T2において、他励発電機12が励磁されると、内燃機関2に駆動される他励発電機12は、発電を開始する。その後、他励発電機12は、発電した交流電力を第1電力変換部13に供給する。
 また時刻T2において、端子間電圧EFCが閾値電圧EFC1に到達すると、図8(H)に示すように、第2制御部23は、第2電力変換部22の複数のスイッチング素子をオフにし、第2電力変換部22を停止させる。また図8(G)に示すように、時刻T2において、接触器制御部18は、接触器Q1を開放する。
 なお第2電力変換部22を停止させてから、接触器Q1を開放することが好ましい。この場合、接触器制御部18は、スイッチング制御信号S6を取得し、第2制御部23が第2電力変換部22を停止させたことを検出してから、接触器Q1を開放すればよい。
 後続の動作は、実施の形態1と同様である。
 以上説明したとおり、本実施の形態3に係る駆動制御装置30は、交流電動機から構成される自励発電機21が発電した電力によって充電されたコンデンサC1から供給される直流電力を第1電力変換部13で交流電力に変換し、交流電力を他励発電機12に供給することで、他励発電機12を励磁する。このため、他励発電機12を励磁するための蓄電装置を設ける必要がない。また自励発電機21は、他励発電機12を励磁するための電力が得られる程度の小型の発電機から構成可能である。これにより、駆動制御装置30および駆動装置1の小型化が可能である。
 本発明は、上述の実施の形態に限られない。上述の駆動制御装置10,20,30の回路構成は一例であり、駆動制御装置10,20,30の回路構成は、自励発電機11または自励発電機21が発電した電力で他励発電機12を励磁する構成であれば、任意である。
 一例として、駆動制御装置30を、駆動制御装置10と同様に、接触器Q1を備えない構成とすることができる。
 また駆動装置1が電力を供給する機器、換言すれば、主インバータ14の二次端子に接続される負荷は、電動機5に限られず、空調機器、照明機器等の車載機器でもよい。この場合、主インバータ14は、CVCF(Constant Voltage Constant Frequency:定電圧定周波数)インバータから構成されればよい。
 また駆動制御装置20,30は、接触器Q1に代えて、自励発電機11または自励発電機21とコンデンサC1とを電気的に接続、または、コンデンサC1を自励発電機11または自励発電機21から電気的に切り離す任意の素子を備えることができる。
 また駆動制御装置30は、第2電力変換部22に代えて、自励発電機21が出力する交流電力を全波整流するダイオードブリッジを備えてもよい。
 第1制御部15による制御は上述の例に限られない。一例として、第1制御部15は、第1電力変換部13の出力電流をフィードバックして、第1電力変換部13の複数のスイッチング素子を調節してもよい。またインバータ制御部16による制御は上述の例に限られない。駆動制御装置10,20,30は、速度センサ17を備えず、インバータ制御部16は、ATC(Automatic Train Control:自動列車制御装置)から電動機5の回転数を取得してもよい。そして、インバータ制御部16は、電動機5の回転速度を推定するセンサレスベクトル制御を行ってもよい。
 接触器制御部18による制御は上述の例に限られない。一例として、接触器制御部18は、内燃機関2の実回転数が閾値回転数に到達してから、定められた時間が経過した後に、接触器Q1を投入してもよい。あるいは、接触器制御部18は、始動指令信号S1を取得し、始動指令信号S1がHレベルになってから定められた時間が経過した後に、接触器Q1を投入してもよい。
 また他の一例として、接触器制御部18は、コンデンサC1の端子間電圧EFCが、閾値電圧EFC1以上である時間が定められた時間以上継続した場合に、接触器Q1を開放してもよい。
 電流測定部CT1,CT2はU相、V相、W相それぞれの相電流を検出する場合を説明したが、U相、V相、W相のうち少なくとも2相の相電流を検出すればよい。
 駆動制御装置10,20,30は、内燃機関2と自励発電機11とを機械的に接続し、または、自励発電機11を内燃機関2から機械的に切り離すクラッチと、クラッチを制御するクラッチ制御部と、をさらに備えてもよい。この場合、クラッチ制御部は、電流測定部CT1が測定した相電流を取得し、相電流の振幅が閾値電流以上となると、内燃機関2と自励発電機11とを機械的に切り離すようにクラッチを制御すればよい。その後、内燃機関2が停止した後に再び始動すると、クラッチ制御部は、内燃機関2と自励発電機11とを機械的に接続するようにクラッチを制御すればよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 1 鉄道車両用駆動装置、2 内燃機関、3 内燃機関制御部、4,17 速度センサ、5 電動機、10,20,30 駆動制御装置、11,21 自励発電機、12 他励発電機、13 第1電力変換部、14 主インバータ、15 第1制御部、16 インバータ制御部、18 接触器制御部、22 第2電力変換部、23 第2制御部、B1 ブレーキノッチ、C1 コンデンサ、CT1,CT2 電流測定部、EFC 端子間電圧、EFC0,EFC2 電圧、EFC1 閾値電圧、N1 力行ノッチ、Q1 接触器、R1 抵抗、RPM0,RPM1,RPM2 回転数、S1 始動指令信号、S2 運転指令信号、S3,S4,S6 スイッチング制御信号、S5 接触器制御信号、VT1 電圧測定部。

Claims (8)

  1.  内燃機関に連結され、前記内燃機関に駆動されて、電力を発電し、発電した電力を出力する自励発電機と、
     前記内燃機関に連結され、励磁された状態で、前記内燃機関に駆動されて、電力を発電し、発電した電力を出力する他励発電機と、
     前記他励発電機から一次端子を介して供給される電力を直流電力に変換して二次端子から出力し、または、前記二次端子を介して供給される直流電力を前記他励発電機に供給するための電力に変換して前記一次端子から出力する第1電力変換部と、
     前記第1電力変換部の前記二次端子の間に接続されるコンデンサと、
     を備え、
     前記自励発電機の出力端子は、前記コンデンサに接続される、
     駆動制御装置。
  2.  前記第1電力変換部が有するスイッチング素子を制御する第1制御部をさらに備え、
     前記第1制御部が前記スイッチング素子を制御することで、前記第1電力変換部は、前記自励発電機が出力する電力によって充電された前記コンデンサから前記二次端子を介して供給される直流電力を前記他励発電機に供給するための電力に変換して前記一次端子から前記他励発電機に供給し、
     前記他励発電機が前記第1電力変換部から電力を供給されて励磁された後に、前記第1制御部が前記スイッチング素子を制御することで、前記第1電力変換部は、前記他励発電機から前記一次端子を介して供給される電力を直流電力に変換して前記二次端子から出力する、
     請求項1に記載の駆動制御装置。
  3.  前記自励発電機の発電容量は、前記他励発電機の発電容量より小さい、
     請求項1または2に記載の駆動制御装置。
  4.  一端が前記自励発電機に接続され、他端が前記コンデンサに接続される接触器と、
     前記接触器を制御する接触器制御部と、をさらに備え、
     前記接触器制御部は、前記内燃機関の始動後に、前記接触器を投入する、
     請求項1から3のいずれか1項に記載の駆動制御装置。
  5.  前記接触器制御部は、前記コンデンサの端子間電圧が閾値電圧以上の場合に、前記接触器を開放する、
     請求項4に記載の駆動制御装置。
  6.  前記自励発電機は、前記内燃機関に連結し、前記内燃機関に駆動されると、直流電力を発電し、発電した直流電力を出力する直流発電機から構成される、
     請求項1から5のいずれか1項に記載の駆動制御装置。
  7.  前記自励発電機は、前記内燃機関に連結し、前記内燃機関に駆動されると、交流電力を発電し、発電した交流電力を出力する交流発電機から構成され、
     前記自励発電機から供給される交流電力を直流電力に変換し、変換した直流電力を前記コンデンサに供給する第2電力変換部をさらに備える、
     請求項1から5のいずれか1項に記載の駆動制御装置。
  8.  内燃機関と、
     請求項1から7のいずれか1項に記載の駆動制御装置と、
     前記駆動制御装置が有するコンデンサが一次端子の間に接続され、前記コンデンサから前記一次端子を介して供給される直流電力を負荷に供給するための電力に変換し、変換した電力を二次端子から前記負荷に供給する主インバータと、
     を備える鉄道車両用駆動装置。
PCT/JP2019/015692 2019-04-10 2019-04-10 駆動制御装置および鉄道車両用駆動装置 WO2020208755A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021513098A JP7183396B2 (ja) 2019-04-10 2019-04-10 駆動制御装置および鉄道車両用駆動装置
DE112019007190.4T DE112019007190T5 (de) 2019-04-10 2019-04-10 Antriebssteuervorrichtung und Antriebsvorrichtung für Bahnfahrzeug
PCT/JP2019/015692 WO2020208755A1 (ja) 2019-04-10 2019-04-10 駆動制御装置および鉄道車両用駆動装置
US17/601,601 US20220177011A1 (en) 2019-04-10 2019-04-10 Drive control device and drive device for railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015692 WO2020208755A1 (ja) 2019-04-10 2019-04-10 駆動制御装置および鉄道車両用駆動装置

Publications (1)

Publication Number Publication Date
WO2020208755A1 true WO2020208755A1 (ja) 2020-10-15

Family

ID=72751145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015692 WO2020208755A1 (ja) 2019-04-10 2019-04-10 駆動制御装置および鉄道車両用駆動装置

Country Status (4)

Country Link
US (1) US20220177011A1 (ja)
JP (1) JP7183396B2 (ja)
DE (1) DE112019007190T5 (ja)
WO (1) WO2020208755A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295605A (ja) * 1988-05-24 1989-11-29 Toshiba Corp トロリーバスの非常走行用電源装置
JPH0374200A (ja) * 1989-08-14 1991-03-28 Nippon Electric Ind Co Ltd 予備発電装置
JPH0851798A (ja) * 1994-08-09 1996-02-20 Nippondenso Co Ltd 車両用発電機の制御装置
JP2008543674A (ja) * 2005-06-22 2008-12-04 シーメンス ヴィディーオー オートモーティヴ コーポレイション ハイブリッド車に好適な発電システム
JP2018149882A (ja) * 2017-03-10 2018-09-27 日立建機株式会社 電気駆動式ダンプトラック

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854429B2 (ja) 2006-08-24 2012-01-18 株式会社日立製作所 ハイブリッド鉄道車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295605A (ja) * 1988-05-24 1989-11-29 Toshiba Corp トロリーバスの非常走行用電源装置
JPH0374200A (ja) * 1989-08-14 1991-03-28 Nippon Electric Ind Co Ltd 予備発電装置
JPH0851798A (ja) * 1994-08-09 1996-02-20 Nippondenso Co Ltd 車両用発電機の制御装置
JP2008543674A (ja) * 2005-06-22 2008-12-04 シーメンス ヴィディーオー オートモーティヴ コーポレイション ハイブリッド車に好適な発電システム
JP2018149882A (ja) * 2017-03-10 2018-09-27 日立建機株式会社 電気駆動式ダンプトラック

Also Published As

Publication number Publication date
US20220177011A1 (en) 2022-06-09
JP7183396B2 (ja) 2022-12-05
DE112019007190T5 (de) 2022-03-31
JPWO2020208755A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
US9496810B2 (en) Method and apparatus for controlling an electric machine
US5698905A (en) Hybrid propulsion system for a motor vehicle and a method of operating the hybrid propulsion system
JP3776348B2 (ja) 車両用電源装置
US8143824B2 (en) Regenerating braking system including synchronous motor with field excitation and control method thereof
JP5653534B2 (ja) 電動車両の制御装置
US5714851A (en) Serial hybrid drive arrangement for a motor vehicle
EP1138539A2 (en) Control device for permanent magnet motor serving as both engine starter and generator in motor vehicle
JP4236870B2 (ja) 車両用回転電機の制御装置および制御法
JP6399048B2 (ja) 車両
US20110227341A1 (en) Method and device for monitoring the start time of a heat engine of a vehicle
JP2014011828A (ja) 鉄道車両の駆動装置
US7372222B2 (en) Control device for motor-driven 4WD vehicle and related control method
US7329960B1 (en) System and method for propelling a large land-based vehicle using a dual function brushless dynamoelectric machine
CN112334374B (zh) 驱动控制装置及铁路车辆用驱动装置
WO2020208755A1 (ja) 駆動制御装置および鉄道車両用駆動装置
JP6677176B2 (ja) 電力変換回路の制御装置、回転電機ユニット
WO2014006686A1 (ja) 車両用交流発電機の制御装置
JP3519035B2 (ja) 車両用充電発電装置
JPS6115535A (ja) オルタネ−タの発電制御システム
WO2022059106A1 (ja) 電力変換装置および駆動制御装置
US11489475B2 (en) Power conversion apparatus
JP3323039B2 (ja) 車載用電力変換装置
JPH04207908A (ja) リターダ装置の放電制御装置
JP4055497B2 (ja) 多相モータ駆動用インバータシステム、その異常検出方法および異常検出プログラム
JPH0925864A (ja) 車両電源用キャパシタの充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513098

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19923945

Country of ref document: EP

Kind code of ref document: A1