WO2020208391A1 - Control method and control device for internal combustion engine - Google Patents

Control method and control device for internal combustion engine Download PDF

Info

Publication number
WO2020208391A1
WO2020208391A1 PCT/IB2019/000415 IB2019000415W WO2020208391A1 WO 2020208391 A1 WO2020208391 A1 WO 2020208391A1 IB 2019000415 W IB2019000415 W IB 2019000415W WO 2020208391 A1 WO2020208391 A1 WO 2020208391A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
variable
compressor
intake
Prior art date
Application number
PCT/IB2019/000415
Other languages
French (fr)
Japanese (ja)
Inventor
木村容康
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to JP2021513014A priority Critical patent/JP7173301B2/en
Priority to PCT/IB2019/000415 priority patent/WO2020208391A1/en
Publication of WO2020208391A1 publication Critical patent/WO2020208391A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control method and a control device for an internal combustion engine in which a turbocharger compressor has a variable capacity in a hybrid vehicle.
  • Patent Document 1 discloses a hybrid vehicle having an internal combustion engine and an electric motor as a driving drive source for traveling.
  • the electric motor when a predetermined condition for motorizing the internal combustion engine is satisfied, the electric motor motors the internal combustion engine to a target rotation speed, which is a target rotation speed during operation of the internal combustion engine.
  • Patent Document 2 discloses a turbocharger in which a variable capacity compressor whose capacity can be changed is provided in the intake system, which is arranged between the intake system and the exhaust system. Patent Document 2 does not disclose that the variable displacement compressor is controlled when the internal combustion engine is motorized.
  • the present invention has been made in view of such problems, and provides a control method and a control device for an internal combustion engine capable of suppressing a temporary deterioration of the exhaust composition immediately after the operation of the internal combustion engine. is there.
  • the present invention relates to a method for controlling an internal combustion engine in which a turbocharger compressor has a variable capacity in a hybrid vehicle.
  • the internal combustion engine is motorized to a target rotation speed by a power generation motor generator, and the motor is used.
  • the flow control means located on the downstream side of the variable displacement compressor reduces and corrects the amount of intake air flowing from the intake system to the exhaust system, and controls the variable capacitance compressor to a small capacity.
  • oxygen in intake air is less likely to accumulate in the exhaust catalyst during motoring of the internal combustion engine, and temporary deterioration of the exhaust composition immediately after the operation of the internal combustion engine can be suppressed.
  • FIG. 1 schematically shows the configuration of the series hybrid vehicle 1 of one embodiment.
  • the series hybrid vehicle 1 includes a power generation motor generator 2 that mainly operates as a generator, an internal combustion engine 3 that is used as a power generation internal combustion engine that drives the power generation motor generator 2 in response to a power generation request, and mainly a motor.
  • a traveling motor generator 5 that operates as a motor to drive the drive wheels 4 and 4, a battery 6 that temporarily stores the generated electric power, and an inverter device that performs power conversion between the battery 6 and the motor generators 2 and 5. 7 and are configured.
  • the power generation motor generator 2 is connected to the internal combustion engine 3 via a speed reducer 8 having various gears and the like.
  • the electric power obtained by driving the power generation motor generator 2 by the internal combustion engine 3 is stored in the battery 6 via the inverter device 7.
  • the traveling motor generator 5 is connected to the drive shaft 10 for the drive wheels 4 and 4 via a speed reducer 9 composed of various gears and the like.
  • the traveling motor generator 5 is driven and controlled via the inverter device 7 using the electric power of the battery 6.
  • the electric power at the time of regeneration of the traveling motor generator 5 is also stored in the battery 6 via the inverter device 7.
  • the inverter device 7 includes an inverter for the power generation motor generator 2 and an inverter for the traveling motor generator 5.
  • the inverter device 7 is controlled by a vehicle-side controller 11 that controls the running of the vehicle. That is, the operations of the motor generators 2 and 5 are controlled through the control of the inverter device 7 by the vehicle side controller 11. Signals such as the accelerator opening degree, the vehicle speed, and the amount of brake operation of the vehicle are input to the vehicle side controller 11, and signals indicating the charging state (so-called SOC) of the battery 6 are input.
  • SOC charging state
  • the charging state (SOC) is detected based on the terminal voltage of the battery 6 and the like.
  • the internal combustion engine 3 is controlled by the engine controller 12.
  • the engine controller 12 and the vehicle side controller 11 are connected to each other via the in-vehicle network 13 and exchange signals with each other.
  • the internal combustion engine 3 that drives the power generation motor generator 2 is operated via the engine controller 12 in response to a power generation request from the vehicle side including the state of charge (SOC) of the battery 6. That is, when the engine controller 12 receives a power generation request from the vehicle side controller 11 according to the accelerator pedal opening degree, the vehicle speed, or the like of the vehicle, the internal combustion engine 3 is controlled according to the power generation request.
  • the vehicle-side controller 11 and the engine controller 12 may be integrated as one controller.
  • FIG. 2 is a configuration explanatory diagram showing the system configuration of the internal combustion engine 3.
  • the internal combustion engine 3 is an in-cylinder direct injection type internal combustion engine having four cylinders 14, and a fuel injection valve (not shown) and a spark plug 15 for injecting fuel into the cylinder 14 are provided for each cylinder 14. There is.
  • the injection amount and injection timing of the fuel injection valve and the ignition timing of the spark plug 15 are controlled by a control signal from the engine controller 12.
  • Each cylinder 14 has an intake port 16 that is opened and closed by a pair of intake valves (not shown) and an exhaust port 17 that is opened and closed by a pair of exhaust valves (not shown).
  • the opening / closing timing of the intake valve and the exhaust valve is controlled by a variable valve timing mechanism (VTC) provided on the intake side and the exhaust side, respectively, which are not shown.
  • VTC variable valve timing mechanism
  • the internal combustion engine 3 includes a turbocharger 18 as a supercharger.
  • An intake passage 19 and an exhaust passage 20 are connected to the internal combustion engine 3.
  • a throttle valve 21 for controlling the amount of intake air is provided in the intake passage 19 connected to the intake port 16.
  • the throttle valve 21 has an actuator such as an electric motor, and its opening degree is controlled by a control signal from the engine controller 12.
  • a variable displacement compressor 18a of the turbocharger 18 is interposed on the upstream side of the throttle valve 21 of the intake passage 19.
  • the variable displacement compressor 18a is provided with a variable mechanism 22 having an actuator such as an electric motor, and by controlling the variable mechanism 22, the passage area on the inlet side of the variable capacitance compressor 18a is expanded or reduced. The capacity of the variable displacement compressor 18a is changed.
  • variable capacitance compressor 18a is trimmed (the square of the inlet diameter of the variable capacitance compressor 18a divided by the square of the outer diameter (outer diameter of the compressor wheel) of the variable capacitance compressor 18a) under the control of the variable mechanism 22).
  • Variable mechanism 22 the signal of the intake air quantity Q A to be described later is transmitted to the engine controller 12 is controlled by a signal of the signal and the intake air temperature T A of intake air pressure P A.
  • an air flow meter (flow rate detecting means) 23 is provided for detecting an intake air quantity Q A. Signal of the intake air quantity Q A detected by the air flow meter 23 are sent to the engine controller 12. Further, on the downstream side of the variable capacity compressor 18a of the intake passage 19, and upstream of the throttle valve 21 detects the intake air pressure P A and the intake air temperature T A of intake air compressed by the variable displacement compressor 18a A T-MAP sensor (pressure detecting means, temperature detecting means) 24 is provided. Signal of the signal and the intake air temperature T A of the detected intake air pressure P A by T-MAP sensor 24 is sent to the engine controller 12. Further, an intercooler 25 for cooling the intake air compressed by the variable displacement compressor 18a is provided on the downstream side of the throttle valve 21 of the intake passage 19.
  • An exhaust catalyst 26 made of a three-way catalyst is provided in the exhaust passage 20 connected to the exhaust port 17.
  • a turbine 18b of a turbocharger 18 is provided on the upstream side of the exhaust passage 20 with respect to the exhaust catalyst 26.
  • the exhaust passage 20 is provided with an exhaust bypass passage 27 that bypasses the turbine 18b and connects the upstream side and the downstream side of the turbine 18b.
  • the downstream end of the exhaust bypass passage 27 is connected to the exhaust passage 20 at a position upstream of the exhaust catalyst 26.
  • the exhaust bypass passage 27 is provided with an electric wastegate valve 28 that adjusts the amount of exhaust gas guided to the turbine 18b.
  • the opening degree of the wastegate valve 28 is controlled by a control signal from the engine controller 12.
  • An air-fuel ratio sensor 29 for detecting the air-fuel ratio of exhaust gas is provided on the downstream side of the exhaust passage 20 from the turbine 18b and on the upstream side of the exhaust catalyst 26. The air-fuel ratio detected by the air-fuel ratio sensor 29 is transmitted to the engine controller 12.
  • variable displacement compressor 18a is executed when the internal combustion engine 3 is motorized to a predetermined target rotation speed by the power generation motor generator 2 when the internal combustion engine 3 is started. Capacity feedback control will be described.
  • This time chart shows the engine rotation speed N, the opening degree of the throttle valve (THV) 21, the opening degree of the waist gate valve (WGV) 28, and the variable valve timing mechanism during the motoring of the internal combustion engine 3 from the start request.
  • an intake valve closing timing by (VTC) shows the intake air pressure P a on the downstream side of the variable capacity compressor 18a, and the intake air quantity Q a, a change in the magnitude of the trim of the variable capacity compressor 18a.
  • the exhaust valve closing timing may be controlled. Further, both the intake valve closing timing and the exhaust valve closing timing may be controlled.
  • the internal combustion motor generator 2 uses the power generation motor generator 2 to move the internal combustion engine to a predetermined target rotation speed.
  • the motoring of the engine 3 is started.
  • the engine speed N increases from zero toward a predetermined target speed
  • the intake air fresh air
  • the intake air pressure P A detected by T-MAP sensor 24, and the intake air quantity Q A detected by the air flow meter 23 starts to increase.
  • the intake air passes through the air-fuel ratio sensor 29 provided in the exhaust passage 20 and flows into the exhaust catalyst 26.
  • the state of intake air that is, fresh air flowing through the air-fuel ratio sensor 29 during the motoring of the internal combustion engine 3 may be learned.
  • the air-fuel ratio using the actually learned intake air state as a reference for calculating the air-fuel ratio, and it is possible to reduce the error between the target air-fuel ratio and the actual air-fuel ratio of the internal combustion engine 3.
  • the flow rate limiting mechanism (flow rate limiting means) provided on the downstream side of the variable capacitance compressor 18a, that is, the throttle valve 21, the waist gate valve 28, and the variable valve timing, substantially at the same time as the start of motoring.
  • the operation of the mechanism is started. More specifically, the opening degree of the throttle valve 21 is reduced, the opening degree of the wastegate valve 28 is reduced, and the intake valve closing timing is prematurely closed by the variable valve timing mechanism. As a result, the intake air flowing into the exhaust catalyst 26 is reduced.
  • the operation of the variable mechanism 22 narrows the passage area on the inlet side of the variable capacitance compressor 18a to reduce the trim to some extent.
  • variable capacitance compressor 18a is controlled to a somewhat small capacitance by the operation of the variable mechanism 22.
  • the opening degree of the throttle valve 21 and the wastegate valve 28 and the intake valve closing timing by the variable valve timing mechanism are maintained at predetermined target values.
  • the throttle valve 21, wastegate valve 28 and variable valve timing mechanism is not always necessary to operate all three for limiting the intake air quantity Q A, one of any of a throttle valve 21 or 2 One may be activated.
  • variable capacity compressor 18a starts the feedback control of the capacity of the variable capacity compressor 18a. More specifically, excessively high intake air pressure P A relative intake air quantity Q A, that is, if the pressure difference between an upstream side and a downstream side of the variable capacity compressor 18a is excessively large, the variable capacity compressor 18a The air flow separates from the impeller, causing a surge. In the feedback control of the capacity of the variable capacity compressor 18a on the basis of the intake air quantity Q A and the intake pressure P A, to reduce the trim variable capacity compressor 18a to the extent that the surge does not occur.
  • the intake pressure P A when the intake pressure P A is high relative to the amount of intake air Q A, changes the capacitance of the variable capacitance compressor 18a to a smaller volume to the extent that the surge does not occur.
  • the feedback control is performed by driving the variable mechanism 22 by referring to a map (not shown) indicating for example the correlation between the trim of the intake air quantity Q A and the intake pressure P A and the variable displacement compressor 18a.
  • Intake air pressure P A and the intake air amount Q A is, for example, vary according to factors such as disturbance, for each such variation occurs, the trim is changed by feedback control of the capacity of the variable capacity compressor 18a.
  • the intake air pressure P A of the variable capacity compressor 18a downstream with the operation of a throttle valve 21 is increased, determine the trim as a reference of the variable capacity compressor 18a according to the intake air pressure P A, the intake pressure P A
  • the trim of the variable displacement compressor 18a may be reduced as the pressure increases.
  • using the intake air temperature T A detected by T-MAP sensor 24 may perform feedback control of the capacity of the variable capacity compressor 18a .
  • the higher the intake air temperature T A to reduce the trim variable capacity compressor 18a.
  • the intake pressure P A instead of performing the feedback control of the displacement of the variable displacement compressor 18a using the intake air quantity Q A and the intake air temperature T A, a throttle valve 21, upon actuation of the wastegate valve 28 and variable valve timing mechanism
  • the trim of the variable displacement compressor 18a may be changed to a trim having a predetermined size smaller than that when the flow rate is not limited by the throttle valve 21 or the like.
  • the trim of the variable displacement compressor 18a may be changed to the minimum trim that can be controlled by the variable mechanism 22. That is, the capacitance of the variable displacement compressor 18a may be changed to the minimum capacitance that can be controlled by the variable mechanism 22.
  • step S1 the engine controller 12 determines whether or not there is a start request for the internal combustion engine 3.
  • the start request include a decrease in the charging state (SOC) and a power generation request due to a power load. The determination of the start request is repeated.
  • step S1 If there is a start request in step S1, the process proceeds to step S2, and the motoring of the internal combustion engine 3 is started by the power generation motor generator 2. As a result, the engine speed N increases from zero toward a predetermined target speed, and the intake air flows from the intake passage 19 to the exhaust passage 20.
  • step S3 the throttle valve (THV) 21, the wastegate valve (WGV) 28, and the variable valve timing mechanism (VTC) are operated by the control signal output from the engine controller 12. That is, the opening degrees of the throttle valve 21 and the wastegate valve 28 are reduced, and the intake valve is closed early by the variable valve timing mechanism. As a result, the amount of intake air flowing from the intake passage 19 to the exhaust passage 20 is reduced and corrected. Therefore, at the downstream side of the variable capacity compressor 18a, the intake pressure P A rises.
  • step S5 the sensed intake air pressure P A by T-MAP sensor 24, for detecting an intake air quantity Q A by the air flow meter 23.
  • step S6 After detection of the intake pressure P A and the intake air quantity Q A, in step S6, with reference to the map above showing the correlation between the trim of the intake pressure P A and the intake air quantity Q A and the variable displacement compressor 18a,
  • the capacitance of the variable displacement compressor 18a is feedback-controlled. This feedback control, to reduce the trim as a variable capacity compressor 18a intake pressure P A is increased relative to the intake air quantity Q A. As a result, the flow velocity of the intake air taken into the variable displacement compressor 18a increases, so that the surge is suppressed.
  • step S7 fuel is injected into each cylinder 14 and the mixed gas of air and fuel is ignited to start the internal combustion engine 3.
  • step S1 if there is no start request, the flow is terminated without going through steps S2 to S7.
  • the opening degrees of the throttle valve 21 and the wastegate valve 28 are narrowed during the motoring of the internal combustion engine 3, and the timing of closing the intake valve is prematurely closed by the variable valve timing mechanism. Will be done. Therefore, the flow of intake air is restricted on the downstream side of the variable displacement compressor 18a, and the amount of intake air flowing into the exhaust catalyst 26 is reduced. As a result, oxygen in the intake air is less likely to be deposited on the exhaust catalyst 26. Therefore, the catalyst performance immediately after the operation of the internal combustion engine is less likely to be deteriorated, and the temperature of the exhaust catalyst is less likely to be lowered. Therefore, temporary deterioration of the exhaust composition can be suppressed.
  • an internal combustion engine is cranked by a starter motor and then ignited and burned like a general internal combustion engine, it takes a relatively long time for the combustion state of the internal combustion engine to stabilize.
  • the combustion state of the internal combustion engine 3 can be stabilized in a short time.
  • variable displacement compressor 18a when the throttle valve 21 or the like is operated to reduce and correct the amount of intake air on the downstream side of the variable capacitance compressor 18a, the variable displacement compressor 18a is controlled to a small capacitance by the variable mechanism 22. That is, by limiting the flow of intake by the throttle valve 21 or the like, the variable intake air pressure P A on the downstream side of the displacement compressor 18a is increased, as a result, the pressure difference between the upstream side and the downstream side of the variable capacity compressor 18a is growing. As a result, the air flow is separated from the impeller of the variable displacement compressor 18a, and a surge is generated.
  • the pressure difference between the upstream side and the downstream side of the variable capacitance compressor 18a is reduced by reducing the passage area at the inlet of the variable displacement compressor 18a in accordance with the reduction correction of the amount of intake air. To make it smaller. Therefore, it is possible to suppress the surge of the variable displacement compressor 18a due to the separation of the air flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

According to the present invention, in a hybrid vehicle (1), a turbocharger (18) has a variable capacity compressor (18a) interposed in an intake passage (19). The capacitance of the variable capacity compressor (18a) is changed by changing a passage area of an inlet of the variable capacity compressor (18a) by means of a variable mechanism (22). In the feedback control of the capacitance of the variable capacity compressor (18a), when an internal combustion engine (3) is required to start, the internal combustion engine (3) is motored to a target rotation speed by a power generation motor generator (2), and during this motoring, the amount of intake air flowing from the intake passage (19) to an exhaust passage (20) is reduced and corrected by a throttle valve (21), a wastegate valve (28), and a variable valve timing mechanism (VTC). Then, the variable capacity compressor (18a) is controlled to a small capacitance by the variable mechanism (22).

Description

内燃機関の制御方法および制御装置Internal combustion engine control method and control device
 本発明は、ハイブリッド車両において、ターボチャージャのコンプレッサが可変容量である内燃機関の制御方法および制御装置に関する。 The present invention relates to a control method and a control device for an internal combustion engine in which a turbocharger compressor has a variable capacity in a hybrid vehicle.
 特許文献1には、走行用駆動源として内燃機関および電動機を有したハイブリッド車両が開示されている。このハイブリッド車両では、内燃機関をモータリングするための所定の条件が成立したときに、電動機は、内燃機関の運転時に目標となる回転数である目標回転数まで内燃機関をモータリングしている。 Patent Document 1 discloses a hybrid vehicle having an internal combustion engine and an electric motor as a driving drive source for traveling. In this hybrid vehicle, when a predetermined condition for motorizing the internal combustion engine is satisfied, the electric motor motors the internal combustion engine to a target rotation speed, which is a target rotation speed during operation of the internal combustion engine.
 特許文献2は、吸気系と排気系との間に配置され、容量を変更可能な可変容量コンプレッサが吸気系に設けられたターボチャージャを開示している。なお、特許文献2は、内燃機関のモータリング時に可変容量コンプレッサを制御することは開示していない。 Patent Document 2 discloses a turbocharger in which a variable capacity compressor whose capacity can be changed is provided in the intake system, which is arranged between the intake system and the exhaust system. Patent Document 2 does not disclose that the variable displacement compressor is controlled when the internal combustion engine is motorized.
 特許文献1のように内燃機関のモータリングを実施すると、排気系に設けられた排気触媒に、吸気が大量に流入し、該吸気中の酸素が排気触媒に蓄積する。このため、内燃機関の運転直後の触媒性能が低下し、排気触媒の温度も低下することから、排気組成が一時的に悪化する虞があった。 When the motoring of the internal combustion engine is carried out as in Patent Document 1, a large amount of intake air flows into the exhaust catalyst provided in the exhaust system, and oxygen in the intake air accumulates in the exhaust catalyst. For this reason, the catalyst performance immediately after the operation of the internal combustion engine is lowered, and the temperature of the exhaust catalyst is also lowered, so that the exhaust composition may be temporarily deteriorated.
 本発明はこのような課題に着目してなされたものであり、内燃機関の運転直後における排気組成の一時的な悪化を抑制することが可能な内燃機関の制御方法および制御装置を提供するものである。 The present invention has been made in view of such problems, and provides a control method and a control device for an internal combustion engine capable of suppressing a temporary deterioration of the exhaust composition immediately after the operation of the internal combustion engine. is there.
特開2013−203324号公報Japanese Unexamined Patent Publication No. 2013-203324 特開2006−112323号公報Japanese Unexamined Patent Publication No. 2006-12323
 本発明は、ハイブリッド車両において、ターボチャージャのコンプレッサが可変容量である内燃機関の制御方法に関し、始動要求があったときに、発電用モータジェネレータによって内燃機関を目標回転数までモータリングし、該モータリング中に、可変容量コンプレッサの下流側に位置する流量制御手段によって、吸気系から排気系へと通流する吸気の量を減少補正し、可変容量コンプレッサを小容量に制御する。 The present invention relates to a method for controlling an internal combustion engine in which a turbocharger compressor has a variable capacity in a hybrid vehicle. When a start request is made, the internal combustion engine is motorized to a target rotation speed by a power generation motor generator, and the motor is used. During the ring, the flow control means located on the downstream side of the variable displacement compressor reduces and corrects the amount of intake air flowing from the intake system to the exhaust system, and controls the variable capacitance compressor to a small capacity.
 本発明によれば、内燃機関のモータリング中に吸気中の酸素が排気触媒に蓄積し難くなり、内燃機関の運転直後における排気組成の一時的な悪化を抑制することができる。 According to the present invention, oxygen in intake air is less likely to accumulate in the exhaust catalyst during motoring of the internal combustion engine, and temporary deterioration of the exhaust composition immediately after the operation of the internal combustion engine can be suppressed.
一実施例のシリーズハイブリッド車両の構成説明図である。It is a block diagram of the series hybrid vehicle of one Example. 内燃機関の構成説明図である。It is a block diagram of an internal combustion engine. 一実施例の可変容量コンプレッサの容量のフィードバック制御を示すタイムチャートである。It is a time chart which shows the feedback control of the capacity of the variable capacity compressor of one Example. 一実施例の可変容量コンプレッサの容量のフィードバック制御を示すフローチャートである。It is a flowchart which shows the feedback control of the capacity of the variable capacity compressor of one Example.
 以下、図面を参照しながら本発明の一実施例について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、一実施例のシリーズハイブリッド車両1の構成を概略的に示している。このシリーズハイブリッド車両1は、主に発電機として動作する発電用モータジェネレータ2と、この発電用モータジェネレータ2を発電要求に応じて駆動する発電用内燃機関として用いられる内燃機関3と、主にモータとして動作して駆動輪4,4を駆動する走行用モータジェネレータ5と、発電した電力を一時的に蓄えるバッテリ6と、該バッテリ6とモータジェネレータ2,5との間で電力変換を行うインバータ装置7と、を備えて構成されている。発電用モータジェネレータ2は、種々のギア等を有する減速機8を介して内燃機関3に接続されている。内燃機関3が発電用モータジェネレータ2を駆動することによって得られた電力は、インバータ装置7を介してバッテリ6に蓄えられる。走行用モータジェネレータ5は、種々のギア等から構成される減速機9を介して、駆動輪4,4用の駆動シャフト10に接続されている。走行用モータジェネレータ5は、バッテリ6の電力を用いてインバータ装置7を介して駆動制御される。走行用モータジェネレータ5の回生時の電力は、やはりインバータ装置7を介してバッテリ6に蓄えられる。なお、インバータ装置7は、発電用モータジェネレータ2用のインバータと走行用モータジェネレータ5用のインバータとを含んで構成されている。 FIG. 1 schematically shows the configuration of the series hybrid vehicle 1 of one embodiment. The series hybrid vehicle 1 includes a power generation motor generator 2 that mainly operates as a generator, an internal combustion engine 3 that is used as a power generation internal combustion engine that drives the power generation motor generator 2 in response to a power generation request, and mainly a motor. A traveling motor generator 5 that operates as a motor to drive the drive wheels 4 and 4, a battery 6 that temporarily stores the generated electric power, and an inverter device that performs power conversion between the battery 6 and the motor generators 2 and 5. 7 and are configured. The power generation motor generator 2 is connected to the internal combustion engine 3 via a speed reducer 8 having various gears and the like. The electric power obtained by driving the power generation motor generator 2 by the internal combustion engine 3 is stored in the battery 6 via the inverter device 7. The traveling motor generator 5 is connected to the drive shaft 10 for the drive wheels 4 and 4 via a speed reducer 9 composed of various gears and the like. The traveling motor generator 5 is driven and controlled via the inverter device 7 using the electric power of the battery 6. The electric power at the time of regeneration of the traveling motor generator 5 is also stored in the battery 6 via the inverter device 7. The inverter device 7 includes an inverter for the power generation motor generator 2 and an inverter for the traveling motor generator 5.
 インバータ装置7は、車両の走行を司る車両側コントローラ11によって制御される。つまり、車両側コントローラ11によるインバータ装置7の制御を介してモータジェネレータ2,5の動作が制御される。車両側コントローラ11には、車両のアクセル開度や車速、ブレーキ操作量等の信号が入力され、かつバッテリ6の充電状態(いわゆるSOC)を示す信号が入力されている。なお、充電状態(SOC)は、バッテリ6の端子電圧等に基づいて検出される。 The inverter device 7 is controlled by a vehicle-side controller 11 that controls the running of the vehicle. That is, the operations of the motor generators 2 and 5 are controlled through the control of the inverter device 7 by the vehicle side controller 11. Signals such as the accelerator opening degree, the vehicle speed, and the amount of brake operation of the vehicle are input to the vehicle side controller 11, and signals indicating the charging state (so-called SOC) of the battery 6 are input. The charging state (SOC) is detected based on the terminal voltage of the battery 6 and the like.
 また、内燃機関3は、エンジンコントローラ12によって制御される。このエンジンコントローラ12と車両側コントローラ11とは車両内ネットワーク13を介して接続されており、互いの信号の授受を行っている。発電用モータジェネレータ2を駆動する内燃機関3は、エンジンコントローラ12を介して、バッテリ6の充電状態(SOC)等を含む車両側からの発電要求に応じて運転される。つまり、車両のアクセルペダル開度や車速等に応じて車両側コントローラ11からエンジンコントローラ12が発電要求を受けると、その発電要求に応じて内燃機関3が制御される。なお、車両側コントローラ11とエンジンコントローラ12とが一つのコントローラとして統合された構成であっても良い。 Further, the internal combustion engine 3 is controlled by the engine controller 12. The engine controller 12 and the vehicle side controller 11 are connected to each other via the in-vehicle network 13 and exchange signals with each other. The internal combustion engine 3 that drives the power generation motor generator 2 is operated via the engine controller 12 in response to a power generation request from the vehicle side including the state of charge (SOC) of the battery 6. That is, when the engine controller 12 receives a power generation request from the vehicle side controller 11 according to the accelerator pedal opening degree, the vehicle speed, or the like of the vehicle, the internal combustion engine 3 is controlled according to the power generation request. The vehicle-side controller 11 and the engine controller 12 may be integrated as one controller.
 図2は、内燃機関3のシステム構成を示した構成説明図である。この内燃機関3は、4つの気筒14を有した筒内直噴型内燃機関であって、気筒14内に燃料を噴射する図示せぬ燃料噴射弁と点火プラグ15が気筒14毎に設けられている。上記燃料噴射弁の噴射量および噴射時期、並びに点火プラグ15の点火時期は、エンジンコントローラ12からの制御信号によって制御される。各気筒14は、図示せぬ一対の吸気弁によって開閉作動される吸気ポート16と、図示せぬ一対の排気弁によって開閉作動される排気ポート17とを有している。吸気弁および排気弁の開閉時期は、吸気側および排気側にそれぞれ設けられた図示せぬ可変バルブタイミング機構(VTC)によって制御される。また、内燃機関3は、過給機としてターボチャージャ18を備えている。 FIG. 2 is a configuration explanatory diagram showing the system configuration of the internal combustion engine 3. The internal combustion engine 3 is an in-cylinder direct injection type internal combustion engine having four cylinders 14, and a fuel injection valve (not shown) and a spark plug 15 for injecting fuel into the cylinder 14 are provided for each cylinder 14. There is. The injection amount and injection timing of the fuel injection valve and the ignition timing of the spark plug 15 are controlled by a control signal from the engine controller 12. Each cylinder 14 has an intake port 16 that is opened and closed by a pair of intake valves (not shown) and an exhaust port 17 that is opened and closed by a pair of exhaust valves (not shown). The opening / closing timing of the intake valve and the exhaust valve is controlled by a variable valve timing mechanism (VTC) provided on the intake side and the exhaust side, respectively, which are not shown. Further, the internal combustion engine 3 includes a turbocharger 18 as a supercharger.
 内燃機関3には、吸気通路19と排気通路20とが接続されている。 An intake passage 19 and an exhaust passage 20 are connected to the internal combustion engine 3.
 吸気ポート16に接続される吸気通路19には、吸入空気量を制御するスロットルバルブ21が設けられている。このスロットルバルブ21は、例えば電動モータ等のアクチュエータを有しており、エンジンコントローラ12からの制御信号によって、その開度が制御されている。吸気通路19のスロットルバルブ21よりも上流側には、ターボチャージャ18の可変容量コンプレッサ18aが介装されている。可変容量コンプレッサ18aには、例えば電動モータ等のアクチュエータを有した可変機構22が設けられており、この可変機構22の制御によって可変容量コンプレッサ18aの入口側の通路面積を拡大または縮小することで、可変容量コンプレッサ18aの容量を変更する。つまり、可変容量コンプレッサ18aは、可変機構22の制御によって、トリム(可変容量コンプレッサ18aの入口径の2乗を可変容量コンプレッサ18aの外径(コンプレッサホイールの外径)の2乗で除算したもの)の大小で示される容量を変更する。可変機構22は、エンジンコントローラ12へ送信される後述する吸入空気量Qの信号、吸気圧力Pの信号や吸気温度Tの信号によって制御される。 A throttle valve 21 for controlling the amount of intake air is provided in the intake passage 19 connected to the intake port 16. The throttle valve 21 has an actuator such as an electric motor, and its opening degree is controlled by a control signal from the engine controller 12. A variable displacement compressor 18a of the turbocharger 18 is interposed on the upstream side of the throttle valve 21 of the intake passage 19. The variable displacement compressor 18a is provided with a variable mechanism 22 having an actuator such as an electric motor, and by controlling the variable mechanism 22, the passage area on the inlet side of the variable capacitance compressor 18a is expanded or reduced. The capacity of the variable displacement compressor 18a is changed. That is, the variable capacitance compressor 18a is trimmed (the square of the inlet diameter of the variable capacitance compressor 18a divided by the square of the outer diameter (outer diameter of the compressor wheel) of the variable capacitance compressor 18a) under the control of the variable mechanism 22). Change the capacity indicated by the size of. Variable mechanism 22, the signal of the intake air quantity Q A to be described later is transmitted to the engine controller 12 is controlled by a signal of the signal and the intake air temperature T A of intake air pressure P A.
 また、吸気通路19の可変容量コンプレッサ18aよりも上流側には、吸入空気量Qを検出するエアフロメータ(流量検出手段)23が設けられている。エアフローメータ23によって検出された吸入空気量Qの信号は、エンジンコントローラ12へ送信される。また、吸気通路19の可変容量コンプレッサ18aよりも下流側で、かつスロットルバルブ21よりも上流側には、可変容量コンプレッサ18aにより圧縮された吸入空気の吸気圧力Pおよび吸気温度Tを検出するT−MAPセンサ(圧力検出手段、温度検出手段)24が設けられている。T−MAPセンサ24によって検出された吸気圧力Pの信号および吸気温度Tの信号は、エンジンコントローラ12へ送信される。また、吸気通路19のスロットルバルブ21よりも下流側には、可変容量コンプレッサ18aにより圧縮された吸入空気を冷却するインタークーラ25が設けられている。 Further, on the upstream side of the variable capacity compressor 18a of the intake passage 19, an air flow meter (flow rate detecting means) 23 is provided for detecting an intake air quantity Q A. Signal of the intake air quantity Q A detected by the air flow meter 23 are sent to the engine controller 12. Further, on the downstream side of the variable capacity compressor 18a of the intake passage 19, and upstream of the throttle valve 21 detects the intake air pressure P A and the intake air temperature T A of intake air compressed by the variable displacement compressor 18a A T-MAP sensor (pressure detecting means, temperature detecting means) 24 is provided. Signal of the signal and the intake air temperature T A of the detected intake air pressure P A by T-MAP sensor 24 is sent to the engine controller 12. Further, an intercooler 25 for cooling the intake air compressed by the variable displacement compressor 18a is provided on the downstream side of the throttle valve 21 of the intake passage 19.
 排気ポート17に接続される排気通路20には、三元触媒からなる排気触媒26が設けられている。排気通路20の排気触媒26よりも上流側には、ターボチャージャ18のタービン18bが設けられている。さらに、排気通路20には、タービン18bを迂回してタービン18bの上流側と下流側とを接続する排気バイパス通路27が設けられている。排気バイパス通路27の下流側端部は、排気触媒26よりも上流側の位置で排気通路20に接続されている。 An exhaust catalyst 26 made of a three-way catalyst is provided in the exhaust passage 20 connected to the exhaust port 17. A turbine 18b of a turbocharger 18 is provided on the upstream side of the exhaust passage 20 with respect to the exhaust catalyst 26. Further, the exhaust passage 20 is provided with an exhaust bypass passage 27 that bypasses the turbine 18b and connects the upstream side and the downstream side of the turbine 18b. The downstream end of the exhaust bypass passage 27 is connected to the exhaust passage 20 at a position upstream of the exhaust catalyst 26.
 排気バイパス通路27には、タービン18bへ導かれる排気量を調整する電動のウエストゲートバルブ28が設けられている。ウエストゲートバルブ28の開度は、エンジンコントローラ12からの制御信号によって制御される。 The exhaust bypass passage 27 is provided with an electric wastegate valve 28 that adjusts the amount of exhaust gas guided to the turbine 18b. The opening degree of the wastegate valve 28 is controlled by a control signal from the engine controller 12.
 排気通路20のタービン18bよりも下流側で、かつ排気触媒26よりも上流側には、排気の空燃比を検出する空燃比センサ29が設けられている。空燃比センサ29によって検出された空燃比は、エンジンコントローラ12へ送信される。 An air-fuel ratio sensor 29 for detecting the air-fuel ratio of exhaust gas is provided on the downstream side of the exhaust passage 20 from the turbine 18b and on the upstream side of the exhaust catalyst 26. The air-fuel ratio detected by the air-fuel ratio sensor 29 is transmitted to the engine controller 12.
 次に、図3のタイムチャートを参照して、内燃機関3の始動に際して発電用モータジェネレータ2によって所定の目標回転数まで内燃機関3のモータリングを行うときに実施される、可変容量コンプレッサ18aの容量のフィードバック制御を説明する。このタイムチャートは、始動要求から内燃機関3のモータリング中における、機関回転数Nと、スロットルバルブ(THV)21の開度と、ウエストゲートバルブ(WGV)28の開度と、可変バルブタイミング機構(VTC)による吸気弁閉時期と、可変容量コンプレッサ18aの下流側の吸気圧力Pと、吸入空気量Qと、可変容量コンプレッサ18aのトリムの大きさの変化を示している。なお、可変バルブタイミング機構(VTC)により吸気弁閉時期を制御する代わりに、排気弁閉時期を制御しても良い。また、吸気弁閉時期および排気弁閉時期の双方を制御するようにしても良い。 Next, referring to the time chart of FIG. 3, the variable displacement compressor 18a is executed when the internal combustion engine 3 is motorized to a predetermined target rotation speed by the power generation motor generator 2 when the internal combustion engine 3 is started. Capacity feedback control will be described. This time chart shows the engine rotation speed N, the opening degree of the throttle valve (THV) 21, the opening degree of the waist gate valve (WGV) 28, and the variable valve timing mechanism during the motoring of the internal combustion engine 3 from the start request. an intake valve closing timing by (VTC), and shows the intake air pressure P a on the downstream side of the variable capacity compressor 18a, and the intake air quantity Q a, a change in the magnitude of the trim of the variable capacity compressor 18a. Instead of controlling the intake valve closing timing by the variable valve timing mechanism (VTC), the exhaust valve closing timing may be controlled. Further, both the intake valve closing timing and the exhaust valve closing timing may be controlled.
 時間t1において、例えば充電状態(SOC)の低下による発電要求が生じ、内燃機関3のモータリングの開始の基準となるフラグが立つと、発電用モータジェネレータ2によって所定の目標回転数へ向けて内燃機関3のモータリングを開始する。これにより、機関回転数Nがゼロから所定の目標回転数へ向かって増加し、吸気(新気)が吸気通路19から排気通路20へ通流する。そして、この吸気の通流に伴い、T−MAPセンサ24によって検出される吸気圧力Pと、エアフロメータ23によって検出される吸入空気量Qとが増加し始める。また、吸気は、排気通路20に設けられた空燃比センサ29を通過し、排気触媒26に流入する。 At time t1, for example, when a power generation request occurs due to a decrease in the charging state (SOC) and a flag that serves as a reference for starting motoring of the internal combustion engine 3 is set, the internal combustion motor generator 2 uses the power generation motor generator 2 to move the internal combustion engine to a predetermined target rotation speed. The motoring of the engine 3 is started. As a result, the engine speed N increases from zero toward a predetermined target speed, and the intake air (fresh air) flows from the intake passage 19 to the exhaust passage 20. Along with the flow of the intake, the intake air pressure P A detected by T-MAP sensor 24, and the intake air quantity Q A detected by the air flow meter 23 starts to increase. Further, the intake air passes through the air-fuel ratio sensor 29 provided in the exhaust passage 20 and flows into the exhaust catalyst 26.
 なお、内燃機関3のモータリング中に空燃比センサ29に流れる吸気つまり新気の状態を学習するようにしても良い。これにより、実際に学習した吸気の状態を空燃比の算出の基準とした空燃比制御が可能となり、内燃機関3の目標空燃比と実空燃比との誤差を小さくすることができる。 It should be noted that the state of intake air, that is, fresh air flowing through the air-fuel ratio sensor 29 during the motoring of the internal combustion engine 3 may be learned. As a result, it becomes possible to control the air-fuel ratio using the actually learned intake air state as a reference for calculating the air-fuel ratio, and it is possible to reduce the error between the target air-fuel ratio and the actual air-fuel ratio of the internal combustion engine 3.
 さらに、時間t1では、モータリングの開始と実質的に同時に、可変容量コンプレッサ18aよりも下流側に設けられた流量制限機構(流量制限手段)、つまりスロットルバルブ21、ウエストゲートバルブ28および可変バルブタイミング機構の作動を開始する。より詳細には、スロットルバルブ21の開度を小さくし、ウエストゲートバルブ28の開度を小さくし、さらに、可変バルブタイミング機構により吸気弁閉時期を早閉じにする。これにより、排気触媒26に流入する吸気が減少する。スロットルバルブ21、ウエストゲートバルブ28および可変バルブタイミング機構の作動を開始したら、可変機構22の動作により、可変容量コンプレッサ18aの入口側の通路面積を狭くしてトリムをある程度小さくする。つまり、可変機構22の動作により、可変容量コンプレッサ18aをある程度小さい容量に制御する。スロットルバルブ21およびウエストゲートバルブ28の開度および可変バルブタイミング機構による吸気弁閉時期は、所定の目標値に維持される。なお、スロットルバルブ21、ウエストゲートバルブ28および可変バルブタイミング機構は、吸入空気量Qの制限のために必ずしも3つ全てを作動する必要はなく、スロットルバルブ21等のうち任意の1つまたは2つを作動するようにしても良い。 Further, at time t1, the flow rate limiting mechanism (flow rate limiting means) provided on the downstream side of the variable capacitance compressor 18a, that is, the throttle valve 21, the waist gate valve 28, and the variable valve timing, substantially at the same time as the start of motoring. The operation of the mechanism is started. More specifically, the opening degree of the throttle valve 21 is reduced, the opening degree of the wastegate valve 28 is reduced, and the intake valve closing timing is prematurely closed by the variable valve timing mechanism. As a result, the intake air flowing into the exhaust catalyst 26 is reduced. After starting the operation of the throttle valve 21, the wastegate valve 28, and the variable valve timing mechanism, the operation of the variable mechanism 22 narrows the passage area on the inlet side of the variable capacitance compressor 18a to reduce the trim to some extent. That is, the variable capacitance compressor 18a is controlled to a somewhat small capacitance by the operation of the variable mechanism 22. The opening degree of the throttle valve 21 and the wastegate valve 28 and the intake valve closing timing by the variable valve timing mechanism are maintained at predetermined target values. Incidentally, the throttle valve 21, wastegate valve 28 and variable valve timing mechanism is not always necessary to operate all three for limiting the intake air quantity Q A, one of any of a throttle valve 21 or 2 One may be activated.
 次に、時間t1から僅かに遅れた時間t2において、吸気圧力Pおよび吸入空気量Qに基づいて、可変容量コンプレッサ18aの容量のフィードバック制御を開始する。より詳細には、吸入空気量Qに対して吸気圧力Pが過度に高い、つまり可変容量コンプレッサ18aの上流側と下流側との圧力差が過度に大きい場合には、可変容量コンプレッサ18aのインペラから空気流が剥離し、サージが生じる。可変容量コンプレッサ18aの容量のフィードバック制御では、吸入空気量Qおよび吸気圧力Pに基づいて、サージが生じない程度に可変容量コンプレッサ18aのトリムを小さくする。つまり、吸入空気量Qに対して吸気圧力Pが高い場合には、サージが生じない程度に可変容量コンプレッサ18aの容量をより小さい容量に変更する。このフィードバック制御は、例えば吸入空気量Qおよび吸気圧力Pと可変容量コンプレッサ18aのトリムとの相関関係を示す図示せぬマップを参照して可変機構22を駆動することにより行われる。吸気圧力Pおよび吸入空気量Qは、例えば外乱等の要因により変動しており、このような変動が生じる毎に、可変容量コンプレッサ18aの容量のフィードバック制御によってトリムが変更される。また、スロットルバルブ21等の作動に伴い可変容量コンプレッサ18a下流側の吸気圧力Pが上昇するから、吸気圧力Pに応じて可変容量コンプレッサ18aの基準となるトリムを決定し、吸気圧力Pが高くなるほど可変容量コンプレッサ18aのトリムを小さくするようにしても良い。 Then, at time t2, slightly later than the time t1, based on the intake air pressure P A and the intake air quantity Q A, starts the feedback control of the capacity of the variable capacity compressor 18a. More specifically, excessively high intake air pressure P A relative intake air quantity Q A, that is, if the pressure difference between an upstream side and a downstream side of the variable capacity compressor 18a is excessively large, the variable capacity compressor 18a The air flow separates from the impeller, causing a surge. In the feedback control of the capacity of the variable capacity compressor 18a on the basis of the intake air quantity Q A and the intake pressure P A, to reduce the trim variable capacity compressor 18a to the extent that the surge does not occur. That is, when the intake pressure P A is high relative to the amount of intake air Q A, changes the capacitance of the variable capacitance compressor 18a to a smaller volume to the extent that the surge does not occur. The feedback control is performed by driving the variable mechanism 22 by referring to a map (not shown) indicating for example the correlation between the trim of the intake air quantity Q A and the intake pressure P A and the variable displacement compressor 18a. Intake air pressure P A and the intake air amount Q A is, for example, vary according to factors such as disturbance, for each such variation occurs, the trim is changed by feedback control of the capacity of the variable capacity compressor 18a. Further, since the intake air pressure P A of the variable capacity compressor 18a downstream with the operation of a throttle valve 21 is increased, determine the trim as a reference of the variable capacity compressor 18a according to the intake air pressure P A, the intake pressure P A The trim of the variable displacement compressor 18a may be reduced as the pressure increases.
 また、吸気圧力Pや吸入空気量Qを用いる代わりに、T−MAPセンサ24によって検出される吸気温度Tを用いて、可変容量コンプレッサ18aの容量のフィードバック制御を行うようにしても良い。この場合には、吸気温度Tが高いほど、可変容量コンプレッサ18aのトリムを小さくする。 Also, instead of using the intake air pressure P A and the intake air quantity Q A, using the intake air temperature T A detected by T-MAP sensor 24 may perform feedback control of the capacity of the variable capacity compressor 18a .. In this case, the higher the intake air temperature T A, to reduce the trim variable capacity compressor 18a.
 さらに、吸気圧力P、吸入空気量Qや吸気温度Tを用いて可変容量コンプレッサ18aの容量のフィードバック制御を行う代わりに、スロットルバルブ21、ウエストゲートバルブ28および可変バルブタイミング機構の作動時に、可変容量コンプレッサ18aのトリムを、スロットルバルブ21等による流量制限を行っていないときよりも小さい所定の大きさのトリムに変更しても良い。また、所定の大きさのトリムに変更する代わりに、可変容量コンプレッサ18aのトリムを、可変機構22によって制御可能な最小のトリムに変更しても良い。つまり、可変容量コンプレッサ18aの容量を可変機構22によって制御可能な最小の容量に変更しても良い。 Furthermore, the intake pressure P A, instead of performing the feedback control of the displacement of the variable displacement compressor 18a using the intake air quantity Q A and the intake air temperature T A, a throttle valve 21, upon actuation of the wastegate valve 28 and variable valve timing mechanism The trim of the variable displacement compressor 18a may be changed to a trim having a predetermined size smaller than that when the flow rate is not limited by the throttle valve 21 or the like. Further, instead of changing to a trim of a predetermined size, the trim of the variable displacement compressor 18a may be changed to the minimum trim that can be controlled by the variable mechanism 22. That is, the capacitance of the variable displacement compressor 18a may be changed to the minimum capacitance that can be controlled by the variable mechanism 22.
 そして、図3には図示していないがフィードバック制御開始後、機関回転数Nが目標回転数に到達した後の適宜な時期に、各気筒14内に燃料を噴射し、かつ点火することで、内燃機関3の始動が行われる。 Then, although not shown in FIG. 3, fuel is injected into each cylinder 14 and ignited at an appropriate time after the start of feedback control and after the engine speed N reaches the target speed. The internal combustion engine 3 is started.
 次に、図4のフローチャートを参照して、内燃機関3のモータリング中の可変容量コンプレッサ18aの容量のフィードバック制御を説明する。ステップS1において、エンジンコントローラ12は、内燃機関3の始動要求があるか否かを判定する。ここで、上記始動要求としては、充電状態(SOC)の低下や、電力負荷による発電要求等が挙げられる。この始動要求の判定は、繰り返し行われている。 Next, the feedback control of the capacity of the variable displacement compressor 18a during the motoring of the internal combustion engine 3 will be described with reference to the flowchart of FIG. In step S1, the engine controller 12 determines whether or not there is a start request for the internal combustion engine 3. Here, examples of the start request include a decrease in the charging state (SOC) and a power generation request due to a power load. The determination of the start request is repeated.
 ステップS1において始動要求がある場合には、ステップS2に進み、発電用モータジェネレータ2によって内燃機関3のモータリングを開始する。これにより、機関回転数Nがゼロから所定の目標回転数に向けて増加し、吸気が吸気通路19から排気通路20へ通流する。 If there is a start request in step S1, the process proceeds to step S2, and the motoring of the internal combustion engine 3 is started by the power generation motor generator 2. As a result, the engine speed N increases from zero toward a predetermined target speed, and the intake air flows from the intake passage 19 to the exhaust passage 20.
 そして、ステップS3において、エンジンコントローラ12から出力された制御信号によって、スロットルバルブ(THV)21、ウエストゲートバルブ(WGV)28および可変バルブタイミング機構(VTC)を作動する。つまり、スロットルバルブ21およびウエストゲートバルブ28の開度を絞り、可変バルブタイミング機構により吸気弁を早閉じにする。これにより、吸気通路19から排気通路20へ通流する吸気の量が減少補正される。このため、可変容量コンプレッサ18aの下流側において、吸気圧力Pが上昇する。 Then, in step S3, the throttle valve (THV) 21, the wastegate valve (WGV) 28, and the variable valve timing mechanism (VTC) are operated by the control signal output from the engine controller 12. That is, the opening degrees of the throttle valve 21 and the wastegate valve 28 are reduced, and the intake valve is closed early by the variable valve timing mechanism. As a result, the amount of intake air flowing from the intake passage 19 to the exhaust passage 20 is reduced and corrected. Therefore, at the downstream side of the variable capacity compressor 18a, the intake pressure P A rises.
 次に、ステップS4において、エンジンコントローラ12から出力された制御信号によって、可変機構22を動作し、可変容量コンプレッサ18aのトリムをある程度小さく変更する。 Next, in step S4, the variable mechanism 22 is operated by the control signal output from the engine controller 12, and the trim of the variable capacitance compressor 18a is changed to some extent.
 そして、ステップS5において、T−MAPセンサ24によって吸気圧力Pを検出し、エアフロメータ23によって吸入空気量Qを検出する。 Then, in step S5, the sensed intake air pressure P A by T-MAP sensor 24, for detecting an intake air quantity Q A by the air flow meter 23.
 吸気圧力Pおよび吸入空気量Qの検出後には、ステップS6において、吸気圧力Pおよび吸入空気量Qと可変容量コンプレッサ18aのトリムとの相関関係を示す上述のマップを参照して、可変容量コンプレッサ18aの容量のフィードバック制御を行う。このフィードバック制御では、吸入空気量Qに対して吸気圧力Pが大きくなるほど可変容量コンプレッサ18aのトリムを小さくする。これにより、可変容量コンプレッサ18aに取り込まれる吸入空気の流速が上昇するため、サージが抑制される。 After detection of the intake pressure P A and the intake air quantity Q A, in step S6, with reference to the map above showing the correlation between the trim of the intake pressure P A and the intake air quantity Q A and the variable displacement compressor 18a, The capacitance of the variable displacement compressor 18a is feedback-controlled. This feedback control, to reduce the trim as a variable capacity compressor 18a intake pressure P A is increased relative to the intake air quantity Q A. As a result, the flow velocity of the intake air taken into the variable displacement compressor 18a increases, so that the surge is suppressed.
 上記フィードバック制御の開始後、ステップS7において、各気筒14内に燃料を噴射し、空気と燃料との混合気体に点火することで、内燃機関3を始動する。 After the start of the feedback control, in step S7, fuel is injected into each cylinder 14 and the mixed gas of air and fuel is ignited to start the internal combustion engine 3.
 また、ステップS1において、始動要求が無い場合には、ステップS2~S7を経由せずに、フローを終了する。 Further, in step S1, if there is no start request, the flow is terminated without going through steps S2 to S7.
 上記のように、本実施例では、内燃機関3のモータリング中に、スロットルバルブ21およびウエストゲートバルブ28の開度が絞られ、さらに、可変バルブタイミング機構により吸気弁を閉じるタイミングが早閉じにされる。このため、吸気の流れが可変容量コンプレッサ18aの下流側において制限され、排気触媒26へ流入する吸気の量が減少する。これにより、吸気中の酸素が排気触媒26に堆積し難くなる。このため、内燃機関の運転直後の触媒性能の低下が生じ難くなり、排気触媒の温度の低下も生じ難くなる。従って、排気組成の一時的な悪化を抑制することができる。 As described above, in the present embodiment, the opening degrees of the throttle valve 21 and the wastegate valve 28 are narrowed during the motoring of the internal combustion engine 3, and the timing of closing the intake valve is prematurely closed by the variable valve timing mechanism. Will be done. Therefore, the flow of intake air is restricted on the downstream side of the variable displacement compressor 18a, and the amount of intake air flowing into the exhaust catalyst 26 is reduced. As a result, oxygen in the intake air is less likely to be deposited on the exhaust catalyst 26. Therefore, the catalyst performance immediately after the operation of the internal combustion engine is less likely to be deteriorated, and the temperature of the exhaust catalyst is less likely to be lowered. Therefore, temporary deterioration of the exhaust composition can be suppressed.
 また、本実施例では、発電用モータジェネレータ2によって所定の目標回転数まで内燃機関3をモータリングした後に、燃料噴射および点火を行い、内燃機関3を始動する。 Further, in this embodiment, after the internal combustion engine 3 is motorized to a predetermined target rotation speed by the power generation motor generator 2, fuel injection and ignition are performed to start the internal combustion engine 3.
 仮に、一般的な内燃機関のように、例えばスターターモータにより内燃機関をクランキングした後に点火し燃焼を行うようにすると、内燃機関の燃焼状態が安定するまでに比較的長い時間がかかってしまう。 If, for example, an internal combustion engine is cranked by a starter motor and then ignited and burned like a general internal combustion engine, it takes a relatively long time for the combustion state of the internal combustion engine to stabilize.
 しかし、本実施例のように目標回転数までモータリングした状態で内燃機関3を始動することにより、短時間で内燃機関3の燃焼状態を安定させることができる。 However, by starting the internal combustion engine 3 in a state of being motorized to the target rotation speed as in the present embodiment, the combustion state of the internal combustion engine 3 can be stabilized in a short time.
 また、本実施例では、スロットルバルブ21等を作動して可変容量コンプレッサ18aの下流側の吸気の量を減少補正するときに、可変容量コンプレッサ18aが可変機構22によって小さい容量に制御される。すなわち、スロットルバルブ21等により吸気の流れを制限すると、可変容量コンプレッサ18aの下流側の吸気圧力Pが上昇し、この結果、可変容量コンプレッサ18aの上流側と下流側との間の圧力差が大きくなる。これにより、可変容量コンプレッサ18aのインペラから空気流が剥離し、サージが生じてしまう。このサージを抑制するために、本実施例では、吸気の量の減少補正に伴って可変容量コンプレッサ18aの入口の通路面積を小さくすることで、可変容量コンプレッサ18aの上流側と下流側の圧力差を小さくする。従って、空気流の剥離による可変容量コンプレッサ18aのサージを抑制することができる。 Further, in this embodiment, when the throttle valve 21 or the like is operated to reduce and correct the amount of intake air on the downstream side of the variable capacitance compressor 18a, the variable displacement compressor 18a is controlled to a small capacitance by the variable mechanism 22. That is, by limiting the flow of intake by the throttle valve 21 or the like, the variable intake air pressure P A on the downstream side of the displacement compressor 18a is increased, as a result, the pressure difference between the upstream side and the downstream side of the variable capacity compressor 18a is growing. As a result, the air flow is separated from the impeller of the variable displacement compressor 18a, and a surge is generated. In order to suppress this surge, in this embodiment, the pressure difference between the upstream side and the downstream side of the variable capacitance compressor 18a is reduced by reducing the passage area at the inlet of the variable displacement compressor 18a in accordance with the reduction correction of the amount of intake air. To make it smaller. Therefore, it is possible to suppress the surge of the variable displacement compressor 18a due to the separation of the air flow.

Claims (6)

  1.  可変容量コンプレッサを用いたターボチャージャを有する内燃機関によって発電用モータジェネレータを発電し、この発電による電力で走行用モータジェネレータを駆動して走行するハイブリッド車両における、内燃機関の制御方法であって、
     始動要求があったときに、前記発電用モータジェネレータによって内燃機関を目標回転数までモータリングし、
     前記モータリング中に、前記可変容量コンプレッサの下流側に位置する流量制限手段によって、吸気系から排気系へと通流する吸気の量を減少補正し、
     前記可変容量コンプレッサを小容量に制御する、内燃機関の制御方法。
    A method for controlling an internal combustion engine in a hybrid vehicle in which a motor generator for power generation is generated by an internal combustion engine having a turbocharger using a variable displacement compressor, and the driving motor generator is driven by the electric power generated by the power generation.
    When there is a start request, the internal combustion engine is motorized to the target rotation speed by the power generation motor generator.
    During the motoring, the amount of intake air flowing from the intake system to the exhaust system is reduced and corrected by the flow rate limiting means located on the downstream side of the variable displacement compressor.
    A method for controlling an internal combustion engine, which controls the variable displacement compressor to a small capacity.
  2.  前記可変容量コンプレッサの上流側に設けられた流量検出手段によって、前記可変容量コンプレッサを通過する吸入空気量を検出し、
     前記可変容量コンプレッサの下流側に設けられた圧力検出手段によって、前記可変容量コンプレッサの下流側の吸気圧力を検出し、
     前記吸入空気量および前記吸気圧力に基づいて前記可変容量コンプレッサを小容量に制御する、請求項1に記載の内燃機関の制御方法。
    The flow rate detecting means provided on the upstream side of the variable displacement compressor detects the amount of intake air passing through the variable capacitance compressor.
    The pressure detecting means provided on the downstream side of the variable displacement compressor detects the intake pressure on the downstream side of the variable capacitance compressor.
    The method for controlling an internal combustion engine according to claim 1, wherein the variable displacement compressor is controlled to a small capacity based on the intake air amount and the intake pressure.
  3.  前記可変容量コンプレッサの下流側に設けられた温度検出手段によって、前記可変容量コンプレッサの下流側の吸気温度を検出し、
     前記吸気温度が高いほど前記可変容量コンプレッサの容量が小さくなるように前記可変容量コンプレッサを制御する、請求項1に記載の内燃機関の制御方法。
    The temperature detecting means provided on the downstream side of the variable displacement compressor detects the intake air temperature on the downstream side of the variable capacitance compressor.
    The method for controlling an internal combustion engine according to claim 1, wherein the variable capacity compressor is controlled so that the capacity of the variable capacity compressor becomes smaller as the intake air temperature is higher.
  4.  前記可変容量コンプレッサの容量を、制御可能な最小の容量に制御する、請求項1~3のいずれかに記載の内燃機関の制御方法。 The method for controlling an internal combustion engine according to any one of claims 1 to 3, wherein the capacity of the variable displacement compressor is controlled to the minimum controllable capacity.
  5.  前記モータリング中に、前記排気系に設けられた空燃比センサによって、前記吸気系から前記排気系へ通流する吸気の学習を行う、請求項1~4のいずれかに記載の内燃機関の制御方法。 The control of an internal combustion engine according to any one of claims 1 to 4, wherein during the motoring, the air-fuel ratio sensor provided in the exhaust system learns the intake air flowing from the intake system to the exhaust system. Method.
  6.  内燃機関によって発電用モータジェネレータを発電し、この発電による電力で走行用モータジェネレータを駆動して走行するハイブリッド車両において、吸気系と排気系との間に配置され、容量を変更可能な可変容量コンプレッサが前記吸気系に設けられたターボチャージャと、前記容量を変更する可変機構と、前記可変容量コンプレッサの下流側に位置する流量制限機構と、を有した内燃機関の制御装置であって、
     始動要求があったときに前記発電用モータジェネレータによって内燃機関を目標回転数までモータリングし、該モータリング中に、前記吸気系から前記排気系へ通流する吸気の量を前記流量制限機構によって減少補正し、前記可変容量コンプレッサを前記可変機構によって小容量に制御する、内燃機関の制御装置。
    In a hybrid vehicle in which a motor generator for power generation is generated by an internal combustion engine and the motor generator for driving is driven by the power generated by this power generation, the variable capacity compressor is arranged between the intake system and the exhaust system and the capacity can be changed. Is an internal combustion engine control device having a turbocharger provided in the intake system, a variable mechanism for changing the capacity, and a flow rate limiting mechanism located on the downstream side of the variable capacity compressor.
    When a start request is made, the internal combustion engine is motorized to a target rotation speed by the power generation motor generator, and the amount of intake air flowing from the intake system to the exhaust system during the motoring is determined by the flow rate limiting mechanism. A control device for an internal combustion engine that corrects a decrease and controls the variable capacity compressor to a small capacity by the variable mechanism.
PCT/IB2019/000415 2019-04-12 2019-04-12 Control method and control device for internal combustion engine WO2020208391A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021513014A JP7173301B2 (en) 2019-04-12 2019-04-12 CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
PCT/IB2019/000415 WO2020208391A1 (en) 2019-04-12 2019-04-12 Control method and control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000415 WO2020208391A1 (en) 2019-04-12 2019-04-12 Control method and control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2020208391A1 true WO2020208391A1 (en) 2020-10-15

Family

ID=72751116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000415 WO2020208391A1 (en) 2019-04-12 2019-04-12 Control method and control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP7173301B2 (en)
WO (1) WO2020208391A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014071A (en) * 2008-07-04 2010-01-21 Toyota Motor Corp Engine start control device for hybrid system
JP2010162920A (en) * 2009-01-13 2010-07-29 Toyota Motor Corp Control device for hybrid vehicle
JP2010168916A (en) * 2009-01-20 2010-08-05 Otics Corp Compressor for supercharger
JP2010531957A (en) * 2007-06-26 2010-09-30 ボーグワーナー・インコーポレーテッド Variable capacity turbocharger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531957A (en) * 2007-06-26 2010-09-30 ボーグワーナー・インコーポレーテッド Variable capacity turbocharger
JP2010014071A (en) * 2008-07-04 2010-01-21 Toyota Motor Corp Engine start control device for hybrid system
JP2010162920A (en) * 2009-01-13 2010-07-29 Toyota Motor Corp Control device for hybrid vehicle
JP2010168916A (en) * 2009-01-20 2010-08-05 Otics Corp Compressor for supercharger

Also Published As

Publication number Publication date
JPWO2020208391A1 (en) 2020-10-15
JP7173301B2 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
US7047740B2 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
US8813493B2 (en) Supercharger control device for an internal combustion engine
JP4631598B2 (en) Supercharging pressure control device
CN107575315B (en) Vehicle control device
JP2015150974A (en) Hybrid vehicle control device
JP4893514B2 (en) Control device for an internal combustion engine with a supercharger
JP2020164007A (en) Hybrid vehicle
EP1574691B1 (en) Control apparatus and control method for gasoline engine with an adjustable nozzle mechanism turbocharger
US20210316715A1 (en) Engine unit and hybrid vehicle including engine unit
JP4086005B2 (en) Warm-up control method of low compression ratio engine in diesel hybrid vehicle
JP2007291961A (en) Control device of internal combustion engine with centrifugal compressor
JP2019100237A (en) Controller of wastegate valve
JP2007112331A (en) Exhaust emission control method and device for diesel engine
JP2018159271A (en) Control method of internal combustion engine and control device of internal combustion engine
WO2020208391A1 (en) Control method and control device for internal combustion engine
KR101905569B1 (en) Method and appratus for controlling mhsg of mild hybrid electric vehicle
JP7026217B2 (en) Control device and control method
JP2019100215A (en) Controller of wastegate valve
JP7105414B2 (en) HYBRID VEHICLE CONTROL METHOD AND HYBRID VEHICLE CONTROL DEVICE
JP7087440B2 (en) Vehicle control unit
CN111417772B (en) Method and device for controlling internal combustion engine for vehicle
JP7115632B2 (en) CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006046297A (en) Controller for hybrid vehicle
JP7360804B2 (en) Vehicle control method and vehicle
JP7486904B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924445

Country of ref document: EP

Kind code of ref document: A1