WO2020207220A1 - 加热组件及其空调 - Google Patents

加热组件及其空调 Download PDF

Info

Publication number
WO2020207220A1
WO2020207220A1 PCT/CN2020/080047 CN2020080047W WO2020207220A1 WO 2020207220 A1 WO2020207220 A1 WO 2020207220A1 CN 2020080047 W CN2020080047 W CN 2020080047W WO 2020207220 A1 WO2020207220 A1 WO 2020207220A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
electromagnetic coil
heat exchanger
heating assembly
coil disk
Prior art date
Application number
PCT/CN2020/080047
Other languages
English (en)
French (fr)
Inventor
吴多德
易腾达
张豪
占磊
刘树清
罗彬�
杨坤
刘源
王鹏
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920468934.6U external-priority patent/CN209857239U/zh
Priority claimed from CN201910277489.XA external-priority patent/CN109974130B/zh
Priority claimed from CN201920476549.6U external-priority patent/CN209857241U/zh
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to DK20786904.1T priority Critical patent/DK3926244T3/da
Priority to EP20786904.1A priority patent/EP3926244B1/en
Publication of WO2020207220A1 publication Critical patent/WO2020207220A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/46Component arrangements in separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0042Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger

Definitions

  • This application relates to the field of household appliances, and specifically to a heating assembly and an air conditioner.
  • the embodiments of the present application are expected to provide a heating assembly that has high disassembly and assembly efficiency, good heating effect, low production cost, high safety, and good heat transfer effect.
  • the application also proposes an air conditioner with heating components.
  • the heating assembly includes a refrigerant heat exchanger, an electromagnetic heating element assembly, a heat transfer plate and a support plate, and a refrigerant passage is defined in the refrigerant heat exchanger, and the electromagnetic heating
  • the body assembly is arranged on one side of the refrigerant heat exchanger
  • the electromagnetic heating body assembly includes an electromagnetic coil disk and can heat the refrigerant in the refrigerant passage
  • the heat transfer plate is arranged on the refrigerant heat exchanger and the Between the electromagnetic heating element components, the supporting plate is arranged on the other side of the refrigerant heat exchanger.
  • the support plate can facilitate rapid disassembly and assembly of the heating assembly and external equipment, and the disassembly and assembly efficiency is high.
  • the electromagnetic coil disk can generate heat. After the electromagnetic coil disk generates heat, the refrigerant in the refrigerant heat exchanger can be heated. The heating effect is good.
  • the electromagnetic coil disk has a simple structure, which is convenient for manufacturing and can save production costs. , The electromagnetic coil disk does not come into contact with the refrigerant, the safety is high, and the refrigerant has a good sealing effect.
  • the heat generated by the electromagnetic coil disk can be better transferred to the refrigerant, thereby rapidly increasing the temperature of the refrigerant, which is conducive to the rapid heating of the downstream by the refrigerant, and the heat transfer effect is good.
  • heating assembly according to the present application may also have the following additional technical features:
  • the electromagnetic heating element assembly further includes a coil disk cover, the coil disk cover defines a mounting slot with one end open, the electromagnetic coil disk is arranged in the mounting slot, and the electromagnetic coil disk is formed by The installation groove is exposed and arranged toward the heat transfer plate.
  • one of the electromagnetic coil disk and the mounting slot is provided with a through hole and the other is provided with a fixing post, and the electromagnetic coil disk passes through the through hole through the first connector and is connected to The fixed columns are connected.
  • the electromagnetic coil disk is provided with a plurality of lugs in the circumferential direction, each lug is provided with the through hole, and the mounting groove is provided with a plurality of and the plurality of lugs.
  • the ears correspond to the fixed posts one by one.
  • the electromagnetic coil disk is substantially rectangular, the four corners of the electromagnetic coil disk are respectively provided with the lugs, and the corresponding positions in the mounting groove are provided with the four fixing posts.
  • the electromagnetic heating element assembly further includes a first heat insulating member, and the first heat insulating member is arranged in the installation groove and is arranged closer to the heat transfer plate relative to the electromagnetic coil disk.
  • a limit structure is provided in the installation groove to limit the position of the first heat insulation member in the installation groove.
  • the limiting structure includes a first limiting member and a second limiting member that are spaced apart on the inner side wall of the installation groove in the depth direction of the installation groove, and an edge of the first heat insulating member Positioned between the first limiting member and the second limiting member.
  • each of the first limiting member and the second limiting member includes a plurality of them and is arranged at intervals on the inner side wall of the installation groove.
  • the limiting structure includes: a third limiting member, the third limiting member is arranged adjacent to at least one side in the length direction of the coil coil cover, and the length of the first heat insulating member is At least one end is matched with the third limiting member.
  • connection terminals are provided on the outer cover of the coil disc, and the solenoid coil outlet ends of the electromagnetic coil disc are connected to the connection terminals.
  • a positioning groove is provided on the outer cover of the coil disk, the wiring terminal is positioned in the positioning groove, and the wiring terminal is fixed in the positioning groove through a second connecting member.
  • an extension portion is provided on the coil disk housing, the extension portion is provided on the outer wall of the coil disk housing and extends in a direction away from the refrigerant heat exchanger, and the positioning groove is formed in the Mentioned on the extension.
  • the predetermined gap H there is a predetermined gap H between the heat transfer plate and the electromagnetic coil disk, and the predetermined gap H ranges from 1 mm to 20 mm.
  • the projected overlapping area of the heat transfer plate and the electromagnetic coil disk is greater than half of the area of the electromagnetic coil disk.
  • the heat transfer plate and the refrigerant heat exchanger are detachably connected.
  • solder or solder fins are provided between the heat transfer plate and the refrigerant heat exchanger and are connected by welding.
  • a thermal conductive agent layer is provided between the heat transfer plate and the refrigerant heat exchanger.
  • a second heat insulating member is further provided between the refrigerant heat exchanger and the supporting plate, and the second heat insulating member is compressed between the refrigerant heat exchanger and the supporting plate.
  • the second heat insulation member is provided with a clearance hole
  • the refrigerant heat exchanger is connected to the support plate through a third connecting member
  • the third connecting member passes through the clearance hole. hole.
  • the supporting plate is provided with a card slot
  • the refrigerant heat exchanger is provided with a hook
  • the card hook is fitted in the card slot
  • the heating assembly further includes: a fuse and/or a temperature sensor, the fuse is arranged on a side wall of the refrigerant heat exchanger where the flow of the refrigerant is large, and the fuse can be disconnected
  • the electromagnetic coil disk is electrically connected to the main circuit
  • the temperature sensor is arranged on the refrigerant heat exchanger or the heat transfer plate to detect the temperature of the refrigerant heat exchanger or the heat transfer plate
  • the temperature sensor is electrically connected with the electromagnetic coil disk to control the working state of the electromagnetic coil disk.
  • the temperature sensor is arranged on the heat transfer plate, and on the projection of the electromagnetic coil disk toward the heat transfer plate, the temperature sensor is located in the electromagnetic blind zone of the electromagnetic coil disk or
  • the electromagnetic coil disc includes a disc body and an electromagnetic coil arranged on the disc body, the electromagnetic coil is in a ring shape, and the middle of the electromagnetic coil has a non-winding zone, and the non-winding
  • the manufacturing zone constitutes the electromagnetic blind zone, and there is a preset loop line between the outer ring and the inner loop of the electromagnetic coil, and the preset loop line is the same distance from the outer loop and the inner loop, wherein the high magnetic field
  • the intensity zone is defined by the area between the outer ring of the electromagnetic coil and the preset loop line, and the position of the temperature detecting element on the heat transfer plate is in line with the outer ring of the electromagnetic coil and the preset loop. Set the corresponding setting of the area between the loops.
  • the refrigerant heat exchanger includes: a microchannel heat exchanger, an inlet pipe and an outlet pipe, the microchannel heat exchanger defines the refrigerant passage, and the inlet pipe is arranged in the microchannel One end of the length of the heat exchanger is communicated with the refrigerant channel, and the discharge pipe is arranged at the other end of the length of the microchannel heat exchanger and communicates with the refrigerant channel.
  • This application also proposes an air conditioner with the heating assembly of the above-mentioned embodiment.
  • the air conditioner according to the embodiment of the second aspect of the present application includes a casing, a compressor, a fan, an outdoor heat exchanger, and a heating assembly.
  • the casing is provided with a middle partition, and the middle partition divides the inner space of the casing. Separate into a first chamber and a second chamber, the compressor is arranged in the first chamber, the fan is arranged in the second chamber, and at least a part of the heat exchanger is arranged corresponding to the fan ,
  • the heating component is arranged on the middle partition and the refrigerant channel is communicated with the exhaust port of the compressor.
  • the refrigerant can be quickly heated during the refrigerant flowing from the compressor to the condenser, and the heat of the refrigerant can be quickly increased, thereby quickly heating the room.
  • the heating has good heating effect and can meet the needs of users.
  • Figure 1 is an exploded view of a heating assembly according to an embodiment of the present application
  • Figure 2 is an exploded view from another angle of the heating assembly according to the embodiment of the present application.
  • Fig. 3 is an exploded view of the electromagnetic coil disk of the heating assembly according to the embodiment of the present application.
  • Figure 4 is a front view of a heating assembly according to an embodiment of the present application.
  • Figure 5 is a left side view of a heating assembly according to an embodiment of the present application.
  • Fig. 6 is a right side view of the heating assembly according to the embodiment of the present application.
  • Figure 7 is a bottom view of a heating assembly according to an embodiment of the present application.
  • Figure 8 is a top view of a heating assembly according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • Electromagnetic heating element assembly 21: electromagnetic coil plate; 211: lug; 2111: through hole; 212: electromagnetic coil outlet end; 213: electromagnetic coil; 22: coil plate cover; 23: mounting slot; 231: fixed post 24: Limiting structure; 241: First limiting member; 242: Second limiting member; 243: Third limiting member; 25: Extension part; 251: Positioning slot; 26: Terminal block; 27: First Insulation
  • 1000 air conditioner; 200: shell; 300: middle partition; 400: compressor; 500: fan; 600: outdoor heat exchanger.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the heating assembly 100 according to the embodiment of the present application will be described below with reference to FIGS. 1 to 9.
  • the heating assembly 100 includes a block refrigerant heat exchanger 1, an electromagnetic heating element assembly 2, a heat transfer plate 3, and a support plate 4.
  • the refrigerant heat exchanger 1 defines a refrigerant passage (not shown in the figure), and the refrigerant can flow in the refrigerant passage to transfer heat.
  • the electromagnetic heating element assembly 2 is arranged on the side of the refrigerant heat exchanger 1.
  • the electromagnetic heating element assembly 2 includes an electromagnetic coil disk 21 and can heat the refrigerant in the refrigerant channel.
  • the electromagnetic coil disk 21 can generate heat, so as to The refrigerant in the channel is heated.
  • the electromagnetic coil disk 21 can be electrically connected to an external power source, the electromagnetic coil disk 21 can generate heat after being energized, and the heat generated by the electromagnetic coil disk 21 can be transferred to the refrigerant heat exchanger 1, thereby affecting the heat in the refrigerant heat exchanger 1.
  • the refrigerant heats up quickly. After the refrigerant absorbs the heat, it can transfer the heat to the downstream to quickly increase the temperature of the downstream environment.
  • the downstream here refers to the position where the refrigerant flows later in the direction of the refrigerant flow.
  • the electromagnetic coil disk 21 can be wound by the electromagnetic coil 213, which has a simple structure, good heating effect, convenient production and manufacturing, and can save production costs. At the same time, the electromagnetic coil disk 21 does not come into contact with the refrigerant, which has high safety and is also beneficial to improve The sealing effect of the refrigerant.
  • the heat transfer plate 3 is arranged between the refrigerant heat exchanger 1 and the electromagnetic heating element assembly 2, so that the heat generated by the electromagnetic coil disk 21 can be transferred to the heat transfer plate 3, and the heat transfer of the heat transfer plate 3 High efficiency, it can better transfer the heat generated by the electromagnetic coil disk 21 to the refrigerant heat exchanger 1, so as to better heat the refrigerant in the refrigerant passage, so that the refrigerant can obtain a higher temperature, thereby improving the downstream The temperature of the environment.
  • the support plate 4 is arranged on the other side of the refrigerant heat exchanger 1.
  • the support plate 4 can be matched with external equipment to facilitate the installation of the heating assembly 100 on the external equipment.
  • the support plate 4 can improve the relationship between the heating assembly 100 and the external equipment. The efficiency of disassembly and assembly.
  • the support plate 4 can facilitate quick assembly and disassembly of the heating assembly 100 and external equipment, and the assembly and disassembly efficiency is high.
  • the electromagnetic coil disk 21 can generate heat. After the electromagnetic coil disk 21 generates heat, the refrigerant in the refrigerant heat exchanger 1 can be heated. The heating effect is good.
  • the electromagnetic coil disk 21 has a simple structure and is convenient for manufacturing. , The production cost can be saved, the electromagnetic coil disk 21 does not contact the refrigerant, the safety is high, and the refrigerant sealing effect is good.
  • the heat transfer plate 3 the heat generated by the electromagnetic coil disk 21 can be better transferred to the refrigerant, thereby rapidly increasing the temperature of the refrigerant, which is beneficial for the refrigerant to heat up downstream quickly, and the heat transfer effect is good.
  • the electromagnetic heating element assembly 2 further includes a coil disk housing 22.
  • the coil disk housing 22 defines a mounting slot 23 with one end open, and the electromagnetic coil disk 21 is arranged in the mounting slot 23 , The electromagnetic coil disk 21 is exposed from the installation slot 23 and is set toward the heat transfer plate 3.
  • the opening of the coil disk cover 22 opens toward the heat transfer plate 3
  • the electromagnetic coil disk 21 is disposed in the installation slot 23, and the electromagnetic coil disk 21 is located between the coil disk cover 22 and the heat transfer plate 3.
  • one of the electromagnetic coil disk 21 and the mounting slot 23 is provided with a through hole 2111 and the other is provided with a fixing post 231, and the electromagnetic coil disk 21 passes through the first connector (not shown in the figure)
  • the through hole 2111 is connected to the fixing post 231.
  • the solenoid disk 21 is provided with a through hole 2111
  • the mounting slot 23 is provided with a fixing post 231.
  • the solenoid disk 21 is provided with a fixing post 231, and the mounting slot 23 is provided with a through hole. ⁇ 2111.
  • the first connecting member can be fitted with the fixing post 231, so as to install the electromagnetic coil disk 21 in the mounting slot 23.
  • the fixing post 231 can be arranged between the wall surface of the electromagnetic coil disc 21 facing the coil disc cover 22 and the bottom wall of the mounting groove 23, and the fixing post 231 can connect the electromagnetic coil disc 21 to the mounting groove 23.
  • the bottom wall of 23 is separated, thereby preventing the electromagnetic coil disk 21 and the mounting groove 23 from being worn out during the assembly process, thereby damaging the electromagnetic heating element assembly 2.
  • an internal thread may be formed in the fixing post 231, and an external thread is formed on the first connecting piece.
  • the first connecting piece can be threadedly fitted with the fixing post 231 after passing through the through hole 2111, so that the electromagnetic coil disc 21 and The coil disk outer cover 22 has a better matching effect.
  • a plurality of lugs 211 are provided in the circumferential direction of the electromagnetic coil disc 21, each lug 211 is provided with a through hole 2111, and the mounting groove 23 is provided with a plurality of The fixing posts 231 correspond to the plurality of lugs 211 one-to-one.
  • the electromagnetic coil disk 21 has a plurality of lugs 211 in the circumferential direction.
  • the through holes 2111 can be formed on the lugs 211, which can facilitate the processing of the through holes 2111. The processing of the through holes 2111 on the lugs 211 can reduce the The production difficulty of hole 2111 saves production cost.
  • each lug 211 correspond to the multiple fixing posts 231 one-to-one, and the multiple lugs 211 and the multiple fixing posts 231 can better fix the electromagnetic coil disk 21 in the mounting slot 23.
  • each lug 211 may be formed with a through hole 2111, and each lug 211 and the fixing post 231 may be fixedly connected by a first connecting member.
  • each lug A plurality of through holes 2111 may be formed on the 211, a plurality of internal threads are formed on the fixing post 231, and a plurality of first connecting members may pass through the plurality of through holes 2111 to fit with the plurality of internal threads.
  • the electromagnetic coil disk 21 is roughly rectangular, the four corners of the electromagnetic coil disk 21 are respectively provided with lugs 211, and the corresponding positions in the mounting groove 23 are provided with four fixing ⁇ 231. That is, the electromagnetic coil disk 21 is provided with four lugs 211, each of the four lugs 211 is formed with a through hole 2111, and the four through holes 2111 are respectively passed through the four first connecting members. Afterwards, the four first connecting members are respectively matched with the four fixing posts 231 to fix the electromagnetic coil disk 21 in the mounting slot 23. As a result, the electromagnetic coil disk 21 is stably installed in the installation groove 23.
  • the electromagnetic heating element assembly 2 further includes a first heat insulating member 27, which is arranged in the mounting groove 23 and is closer to the electromagnetic coil plate 21.
  • Hot plate 3 settings That is to say, the first heat insulator 27 is provided in the installation groove 23, and further, the first heat insulator 27 is provided on the side of the electromagnetic coil disk 21 facing the heat transfer plate 3, so that the first heat insulator 27
  • the electromagnetic coil disc 21 can be sealed in the installation slot 23.
  • the first heat insulation member 27 can cooperate with the installation slot 23 to a certain extent and protect the electromagnetic coil disc 21, prevent the electromagnetic coil disc 21 from being damaged, and can extend the length of the electromagnetic coil disc 21. Service life.
  • the first heat insulation member 27 is provided between the heat transfer plate 3 and the electromagnetic coil disk 21.
  • the first heat insulation member 27 can prevent the heat transfer plate 3 from receiving the heat transfer of the electromagnetic coil disk 21, and the heat transfer plate 3 is The coil disk 21 radiates heat, thereby affecting the heat generation of the electromagnetic coil disk 21, thereby reducing the heating effect of the electromagnetic coil disk 21 on the refrigerant.
  • the first heat insulation member 27 can also heat the heat transfer plate 3 to prevent heat loss of the heat transfer plate 3, which is beneficial to improve the heat transfer effect of the heat transfer plate 3 to the refrigerant.
  • a limiting structure 24 is provided in the installation groove 23 to limit the position of the first heat insulation member 27 in the installation groove 23.
  • the limiting structure 24 can prevent the first heat insulator 27 from moving relative to the installation groove 23 after the first heat insulator 27 is installed in the installation groove 23, and the first heat insulator 27 moves relative to the installation groove 23 It is easy to cause the first heat insulator 27 and the parts adjacent to the first heat insulator 27 in the installation groove 23 to be worn, thereby damaging the first heat insulator 27 and the parts, and affecting the heating effect of the electromagnetic heating element assembly 2.
  • the limiting structure 24 includes a first limiting member 241 and a second limiting member 242 spaced apart on the inner side wall of the mounting groove 23 along the depth direction of the mounting groove 23, and the edge of the first heat insulating member 27 is positioned Between the first limiting member 241 and the second limiting member 242.
  • the depth direction here refers to the direction in which the installation groove 23 faces the first heat insulation member 27.
  • the first heat insulating member 27 is provided between the first limiting member 241 and the second limiting member 242, and the first limiting member 241 and the second limiting member 242 can limit the The movement of an insulating member 27 in the depth direction.
  • the depth direction of the mounting groove 23 is the left and right direction in Figure 1.
  • the first limiting member 241 is positioned in the first On the left side of the thermal insulation member 27, the second limiting member 242 is on the right side of the first thermal insulation member 27.
  • the peripheral wall of the first limiting member 241 facing the left side is formed with an inclined surface, During the mating process of the first thermal insulation member 27 and the first limiting member 241, the first thermal insulation member 27 can move along the inclined surface, which can facilitate the cooperation of the first thermal insulation member 27 and the first limiting member 241 .
  • the first limiting member 241 and the second limiting member 242 both include a plurality and are respectively arranged at intervals on the inner side wall of the installation groove 23.
  • the first thermal insulation member 27 can be better limited, and the resistance of the limiting structure 24 to the first thermal insulation member 27 can be improved. Limiting effect and high reliability.
  • the number of the first limiting member 241 may be equal to the number of the second limiting member 242, and in other examples, the number of the first limiting member 241 may be equal to the number of the second limiting member 242.
  • the number of the first limiting member 241 is greater than the number of the second limiting member 242, or the number of the first limiting member 241 is smaller than the number of the second limiting member 242.
  • the number and position of the first limiting member 241 and the second limiting member 242 may also have other layout methods, which are not limited here.
  • the limiting structure 24 includes a third limiting member 243, the third limiting member 243 is disposed adjacent to at least one side of the length of the coil coil cover 22, and the first heat insulating member At least one end of the length direction of the 27 is matched with the third limiting member 243.
  • the length direction of the coil disk cover 22 here refers to the vertical direction as shown in FIG. 1.
  • the third limiting member 243 is disposed adjacent to the upper side of the coil disk housing 22, and the third limiting member 243 cooperates with the upper end of the first heat insulating member 27 to restrict the first heat insulating member 27 relative to the coil disk housing 22 moves upwards.
  • the third limiting member 243 is disposed adjacent to the lower side of the coil disk cover 22, and the third limiting member 243 cooperates with the lower end of the first heat insulating member 27 to restrict the A heat insulating member 27 moves downward relative to the coil disk cover 22.
  • a third limiting member 243 is provided adjacent to the upper end and the lower end of the coil disk cover 22, and the third limiting member 243 can restrict the third limiting member 243.
  • a heat insulator 27 moves up and down relative to the coil disk cover 22.
  • a connecting terminal 26 is provided on the outer cover of the coil disc 22, and the electromagnetic coil outlet end 212 of the electromagnetic coil disc 21 is connected to the connecting terminal 26.
  • the connecting terminal 26 can be better matched with the external circuit, thereby facilitating the electrical connection between the outlet end 212 of the electromagnetic coil and the external circuit.
  • a positioning groove 251 is provided on the coil disk cover 22, the connecting terminal 26 is positioned in the positioning groove 251, and the connecting terminal is fixed in the positioning groove 251 through the second connecting member. That is to say, the connection terminal 26 can be detached from the coil disc cover 22, which can facilitate the connection between the connection terminal 26 and the outlet end 212 of the electromagnetic coil, and also facilitate the connection between the connection terminal 26 and the external circuit.
  • the connecting terminal 26 can be connected with the positioning slot 251. Through the positioning slot 251, the connecting terminal 26 can be quickly installed on the coil reel cover 22. At the same time, the positioning slot 251 can also restrict the connection between the connecting terminal 26 and the coil reel cover 22. mobile.
  • connection terminal 26 can be fixed in the positioning groove 251 to prevent the connection terminal 26 from falling out of the positioning groove 251, and the reliability is high.
  • the connection terminal 26 can be better limited, and the limiting effect is good.
  • the coil disk housing 22 is provided with an extension 25, which is provided on the outer wall of the coil disk housing 22 and extends in a direction away from the refrigerant heat exchanger 1, and is positioned
  • the groove 251 is formed on the extension part 25. Therefore, by providing the extension part 25, the processing of the positioning groove 251 can be facilitated, the difficulty of the processing technology of the positioning groove 251 can be reduced, and the production cost can be saved.
  • the extension part 25 is provided on the outer wall of the coil disk cover 22 and faces away from The refrigerant heat exchanger 1 extends in the direction, that is, the extension 25 is provided on the outer wall of the coil disk housing 22.
  • the positioning groove 251 is formed on the outer wall of the coil disk housing 22, which can facilitate the connection terminal 26 and the positioning groove 251 The mating connection can improve the assembly efficiency of the terminal 26 and the positioning slot 251.
  • the predetermined gap H there is a predetermined gap H between the heat transfer plate 3 and the electromagnetic coil disk 21, and the predetermined gap H ranges from 1 mm to 20 mm. That is, the distance between the heat transfer plate 3 and the electromagnetic coil disk 21 is 1 mm to 20 mm. When the distance between the heat transfer plate 3 and the electromagnetic coil disc 21 is 1 mm to 20 mm, the heat radiation of the electromagnetic coil disc 21 by the heat transfer plate 3 can be better reduced, thereby facilitating the heat generation of the electromagnetic coil disc 21.
  • the projected overlapping area of the heat transfer plate 3 and the electromagnetic coil disk 21 is greater than half of the area of the electromagnetic coil disk 21.
  • the projection direction here refers to the left-right direction as shown in FIG. 1.
  • the projection of the heat transfer plate 3 in the left-right direction completely coincides with the projection of the electromagnetic coil disk 21. Therefore, the projection area of the heat transfer plate 3 in the left-right direction is larger than that of the electromagnetic coil disk 21 in the left-right direction.
  • Half of the projected area in other examples, a part of the projection of the heat transfer plate 3 in the left-right direction coincides with the projection of the electromagnetic coil disk 21 in the left-right direction.
  • the upper end area of the projection of the heat transfer plate 3 in the left-right direction coincides with the projection of the electromagnetic coil disk 21 in the left-right direction, or the lower end area of the projection of the heat transfer plate 3 in the left-right direction coincides with the electromagnetic coil disk 21
  • the projections in the left and right directions coincide.
  • the area where the projection of the heat transfer plate 3 and the electromagnetic coil disk 21 overlap can also be other situations, which are not limited here.
  • the heat transfer plate 3 and the refrigerant heat exchanger 1 are detachably connected.
  • both the heat transfer plate 3 and the refrigerant heat exchanger 1 can be provided with screw holes, and the heat transfer plate 3 and the refrigerant heat exchanger 1 can be fixed together by screws.
  • the heat transfer plate 3 and the refrigerant exchange The heat exchangers 1 can also be connected by other connection methods, such as snap connection, rivet connection, etc., which are not limited here.
  • solder or solder fins are provided between the heat transfer plate 3 and the refrigerant heat exchanger 1 and are connected by welding. Therefore, the connection between the heat transfer plate 3 and the refrigerant heat exchanger 1 can be made more stable, and the consistency between the heat transfer plate 3 and the refrigerant heat exchanger 1 is better.
  • a thermal conductive agent layer is provided between the heat transfer plate 3 and the refrigerant heat exchanger 1.
  • the heat transfer agent layer can better transfer the heat on the heat transfer plate 3 to the refrigerant heat exchanger 1, so as to better heat the refrigerant in the refrigerant heat exchanger 1, and the heat transfer effect is good.
  • the thermally conductive agent layer can be composed of a thermally conductive silicone grease layer or a thermally conductive adhesive tape, which is not limited here.
  • a second heat insulating member 5 is also provided between the refrigerant heat exchanger 1 and the support plate 4, and the second heat insulating member 5 is pressed against the refrigerant heat exchanger 1 and Between the support plates 4. Therefore, the second heat insulator 5 can reduce the flow of heat from the refrigerant heat exchanger 1 toward the support plate 4, and can prevent the heat in the refrigerant heat exchanger 1 from being transferred to the support plate 4 and then lost from the support plate 4, thereby causing Loss of heat.
  • a relief hole 51 is provided on the second heat insulation member 5, the refrigerant heat exchanger 1 is connected to the support plate 4 through a third connecting piece, and the third connecting piece passes through the relief hole 51.
  • the second heat insulation member 5 can be fixed on the support plate 4 through the third connecting member.
  • the refrigerant heat exchanger 1 may be provided with a fixing hole, and the third connecting member may pass through the fixing hole and the relief hole 51 in sequence and then be connected to the support plate 4, so that the refrigerant heat exchanger 1 and the second partition The thermal element 5 and the support plate 4 are connected together.
  • the third connecting member may be a screw or a rivet, which is not limited here.
  • the supporting plate 4 is provided with a card slot 41, and the refrigerant heat exchanger 1 is provided with a card hook 14, and the card hook 14 is fitted in the card slot 41. That is to say, through the cooperation of the card slot 41 and the card hook 14, the refrigerant heat exchanger 1 and the support plate 4 can be matched and connected. Furthermore, during the process of the card slot 41 and the card hook 14, the card hook 14 can follow The inner wall surface of the locking groove 41 slides, and the stability is good, which is beneficial to the quick matching of the locking groove 41 and the hook 14.
  • the heating assembly 100 further includes a fuse 6 and/or a temperature sensor 7.
  • the heating assembly 100 includes a fuse 6, in other examples, the heating assembly 100 includes a temperature sensor 7, and in still other examples, the heating assembly 100 includes a fuse 6 and a temperature sensor 7.
  • the fuse 6 is provided on the side wall surface of the refrigerant heat exchanger 1. In the left-right direction as shown in FIGS. 1 and 2, the fuse 6 can be provided on the front side wall surface of the refrigerant heat exchanger 1, and the fuse 6 is also It can be arranged on the rear side wall surface of the refrigerant heat exchanger 1.
  • the fuse 6 can disconnect the electrical connection between the electromagnetic coil disk 21 and the main circuit, that is, when the temperature on the refrigerant heat exchanger 1 rises to a certain level, the fuse 6 can disconnect the electromagnetic coil disk 21 and the main circuit.
  • the electrical connection between the electromagnetic coil disc 21 causes the electromagnetic coil disc 21 to be de-energized and the electromagnetic coil disc 21 stops generating heat.
  • the temperature sensor 7 is arranged on the refrigerant heat exchanger 1 or the heat transfer plate 3 to detect the temperature of the refrigerant heat exchanger 1 or the heat transfer plate 3, and the temperature sensor 7 is electrically connected with the electromagnetic coil plate 21 to control the working state of the electromagnetic coil plate 21 .
  • the temperature sensor 7 is provided on the refrigerant heat exchanger 1 to detect the temperature of the refrigerant heat exchanger 1, and in other examples, the temperature sensor 7 is provided on the heat transfer plate 3 to detect the temperature of the heat transfer plate 3 .
  • the electromagnetic coil disk 21 may be composed of an electromagnetic coil 213, which may be formed by winding multiple sections of enameled wire. The temperature sensor 7 can control the amount of heat generated by the electromagnetic coil disk 21 by detecting the temperature.
  • the temperature detected by the temperature sensor 7 when the temperature detected by the temperature sensor 7 is low, multiple sections of enameled wire are energized to generate higher heat. As the temperature data detected by the temperature sensor 7 gradually rises, the temperature sensor 7 controls the electromagnetic coil plate 21, and the disconnected part The enameled wire, thereby reducing the heat generated by the electromagnetic coil disk 21, thereby saving power. Furthermore, when the temperature detected by the temperature sensor 7 is relatively high, the temperature sensor 7 can control the electromagnetic coil disk 21 to power off.
  • the application is not limited to this, and the electromagnetic coil 213 can also be formed by winding a piece of enameled wire.
  • the temperature sensor 7 is provided on the heat transfer plate 3, and on the projection of the electromagnetic coil disk 21 toward the heat transfer plate 3, the temperature sensor 7 is located in the electromagnetic blind zone or high magnetic field intensity zone of the electromagnetic coil disk 21, Further, as shown in FIG. 3, the electromagnetic coil disk 21 includes a disk body and an electromagnetic coil 213 arranged on the disk body.
  • the electromagnetic coil 213 has a ring shape, and the middle of the electromagnetic coil 213 has a non-winding area, which is composed of a non-winding area.
  • the electromagnetic blind zone there is a preset loop line between the outer loop and the inner loop of the electromagnetic coil 213, and the distance between the preset loop line and the outer loop is equal to the distance between the preset loop line and the inner loop, and the high magnetic field strength area is formed by the outer loop of the electromagnetic coil 213 The area between and the preset loop is defined.
  • the temperature sensor 7 is located in the electromagnetic blind zone of the electromagnetic coil disk 21. Therefore, the temperature sensor 7 is not affected by the magnetic field generated by the electromagnetic coil disk 21, thereby facilitating the temperature sensor 7 to detect temperature. In other examples, the temperature sensor 7 is located in the high magnetic field area of the electromagnetic coil disc 21. It should be noted that the high magnetic field area of the electromagnetic coil disc 21 can generate a higher temperature, and the temperature sensor 7 can better detect the electromagnetic field. The coil disk 21 generates a higher temperature after being energized.
  • the refrigerant heat exchanger 1 includes a microchannel heat exchanger 11, an inlet pipe 12, and an outlet pipe 13.
  • the microchannel heat exchanger 11 defines a refrigerant passage, and the inlet pipe 12 is arranged in the microchannel heat exchanger 11 One end of the length is communicated with the refrigerant channel, and the discharge pipe 13 is provided at the other end of the length of the microchannel heat exchanger 11 and communicates with the refrigerant channel.
  • the refrigerant can enter the refrigerant passage from the inlet pipe 12, the refrigerant can be heated in the refrigerant passage, and the heated refrigerant can flow from the refrigerant passage to the discharge pipe 13, and then flow downstream from the discharge pipe 13 after flowing out.
  • the refrigerant flows from one end of the refrigerant heat exchanger 1 to the other end of the refrigerant heat exchanger 1, which can facilitate the arrangement of the refrigerant passage longer, thereby facilitating the heating of the refrigerant in the refrigerant passage, and the heating effect is good.
  • the present application also proposes an air conditioner 1000 having the heating assembly 100 of the above embodiment.
  • the air conditioner 1000 includes a casing 200, a compressor 400, a fan 500, an outdoor heat exchanger 600 and a heating assembly 100.
  • the housing 200 is provided with a middle partition 300, which divides the internal space of the housing 200 into a first chamber and a second chamber.
  • the compressor 400 is arranged in the first chamber, and the fan 500 is arranged in the second chamber.
  • the fan 500 and the compressor 400 can be separated by the intermediate partition 300, which can prevent the fan 500 and the compressor 400 from interacting with each other.
  • At least a part of the outdoor heat exchanger 600 is set corresponding to the fan 500. In some examples, a part of the outdoor heat exchanger 600 is set corresponding to the fan 500. In other examples, the outdoor heat exchanger 600 is set completely corresponding to the fan 500.
  • the fan 500 can improve the heat exchange efficiency of the outdoor heat exchanger 600.
  • the heating assembly 100 is arranged on the central partition 300 and the refrigerant channel is communicated with the exhaust port of the compressor 400.
  • the exhaust port of the compressor 400 can be connected to the inlet pipe 12, and the refrigerant in the compressor 400 can flow into the inlet pipe 12 through the exhaust port, and then flow into the refrigerant passage through the inlet pipe 12.
  • the refrigerant in the refrigerant passage can be By further heating, the heated refrigerant can be discharged from the discharge pipe 13.
  • the refrigerant can be rapidly heated when the refrigerant flows from the compressor 400 to the heat exchanger, and the heat of the refrigerant can be quickly increased.
  • the indoor heating is performed locally, and the heating effect is good, which can meet the needs of users for rapid indoor heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Other Air-Conditioning Systems (AREA)
  • General Induction Heating (AREA)

Abstract

一种加热组件(100),包括:冷媒换热器(1)、电磁发热体组件(2)、传热板(3)和支撑板(4),冷媒换热器(1)内限定出冷媒通道,电磁发热体组件(2)设在冷媒换热器(1)一侧,电磁发热体组件(2)包括电磁线圈盘(21)且可加热冷媒通道内的冷媒,传热板(3)设在冷媒换热器(1)和电磁发热体组件(2)之间,支撑板(4)设在冷媒换热器(1)的另一侧。还提供了一种具有该加热组件(100)的空调(1000)。通过设有该加热组件,可在冷媒从压缩机流向冷凝器的过程中对冷媒进行快速加热,可快速地提升冷媒的热量,从而快速地对室内进行制热,制热效果好,能满足用户的使用需求。

Description

加热组件及其空调
相关申请的交叉引用
本申请基于申请号为:201920468934.6、201910277489.X、201920476549.6,申请日为2019年4月8日的中国专利申请提出,并要求上述3项中国专利申请的优先权,上述3项中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及家电领域,具体而言,涉及一种加热组件及其空调。
背景技术
在低温环境中,大部分空调器受***本身的限制,启动阶段不能快速将制冷剂热量提升,制热速度缓慢,室内温度不能快速升温,无法满足用户的需求。而相关技术中,有采用电加热的方式对冷媒直接加热,以实现室内的快速升温。具体地,将电热丝装在铜管内对冷媒直接加热以提升冷媒的加热效率,但是这种结构铜管成型制造技术复杂、电加热与铜管结合处密封性可靠性差、电加热易干烧且电加热管直接接触冷媒,使得电和冷媒没有完全隔离开,不能避免电加热干烧和线路击穿等电气安全问题。
发明内容
有鉴于此,本申请实施例期望提供一种加热组件,所述加热组件拆装效率高、加热效果好、生产成本低、安全性高、热传递效果好。
本申请还提出一种具有加热组件的空调。
根据本申请第一方面实施例的加热组件,所述加热组件包括冷媒换热器、电磁发热体组件、传热板和支撑板,所述冷媒换热器内限定出冷媒通道,所述电磁发热体组件设在所述冷媒换热器一侧,所述电磁发热体组件包括电磁线圈盘且可加热所述冷媒通道内的冷媒,所述传热板设在所述冷媒换热器和所述电磁发热体组件之间,所述支撑板设在所述冷媒换热器的另一侧。
根据本申请实施例的加热组件,通过支撑板可有利于加热组件与外部设备快速拆装,拆装效率高。通过对电磁线圈盘通电可使得电磁线圈盘产生热量,电磁线圈盘产生热量后可对冷媒换热器内的冷媒加热,加热效果好,同时电磁线圈盘结构简单,方便生产制造,可节约生产成本,电磁线圈盘不与冷媒进行接触,安全性高,冷媒的密封效果好。通过传热板,可较好地将电磁线圈盘产生的热量传递给冷媒,从而快速地提高冷媒的温 度,有利于冷媒对下游快速升温,热传递效果好。
另外,根据本申请的加热组件,还可以具有如下附加的技术特征:
在本申请中,所述电磁发热体组件还包括线圈盘外罩,所述线圈盘外罩内限定出一端敞开的安装槽,所述电磁线圈盘设在所述安装槽内,所述电磁线圈盘由所述安装槽露出且朝向所述传热板设置。
在本申请中,所述电磁线圈盘和所述安装槽中的一个上设有通孔且另一个上设有固定柱,所述电磁线圈盘通过第一连接件穿过所述通孔后与所述固定柱相连。
在本申请中,所述电磁线圈盘的周向上设有多个凸耳,每个所述凸耳上设有所述通孔,所述安装槽内设有与多个与所述多个凸耳一一对应的所述固定柱。
在本申请中,所述电磁线圈盘大致呈矩形,所述电磁线圈盘的四个拐角上分别设有所述凸耳,所述安装槽内对应位置处设有四个所述固定柱。
在本申请中,所述电磁发热体组件还包括第一隔热件,所述第一隔热件设在所述安装槽内且相对于所述电磁线圈盘更邻近所述传热板设置。
在本申请中,所述安装槽内设有限位结构以限制所述第一隔热件在所述安装槽内的位置。
在本申请中,所述限位结构包括所述安装槽的深度方向间隔开设在所述安装槽内侧壁上的第一限位件和第二限位件,所述第一隔热件的边缘定位在所述第一限位件和所述第二限位件之间。
在本申请中,所述第一限位件和所述第二限位件均包括多个且分别在所述安装槽内侧壁上间隔开布置。
在本申请中,所述限位结构包括:第三限位件,所述第三限位件邻近所述线圈盘外罩长度方向的至少一侧设置,所述第一隔热件的长度方向的至少一端与所述第三限位件配合。
在本申请中,所述线圈盘外罩上设有接线端子,所述电磁线圈盘的电磁线圈出线端连接在所述接线端子上。
在本申请中,所述线圈盘外罩上设有定位槽,所述接线端子定位在所述定位槽内,所述接线端通过第二连接件固定在所述定位槽内。
在本申请中,所述线圈盘外罩上设有延伸部,所述延伸部设在所述线圈盘外罩的外壁上且朝向远离所述冷媒换热器的方向延伸,所述定位槽形成在所述延伸部上。
在本申请中,所述传热板与所述电磁线圈盘之间具有预定间隙H,所述预定间隙H的范围为1mm~20mm。
在本申请中,所述传热板和所述电磁线圈盘的投影重合面积大于所述电磁线圈盘面积的一半。
在本申请中,所述传热板与所述冷媒换热器之间可拆卸连接。
在本申请中,所述传热板与所述冷媒换热器之间设有焊料或者焊片且焊接连接。
在本申请中,所述传热板与所述冷媒换热器之间设有导热剂层。
在本申请中,所述冷媒换热器和支撑板之间还设有第二隔热件,所述第二隔热件压紧在所述冷媒换热器和是支撑板之间。
在本申请中,所述第二隔热件上设有让位孔,所述冷媒换热器通过第三连接件连接在所述支撑板上,所述第三连接件穿过所述让位孔。
在本申请中,所述支撑板上设有卡槽,所述冷媒换热器上设有卡勾,所述卡勾配合在所述卡槽内。
在本申请中,所述加热组件还包括:熔断器和/或温度传感器,所述熔断器设在所述冷媒换热器的冷媒流量较大的一侧壁面上,所述熔断器可断开所述电磁线圈盘与主电路的电连接,所述温度传感器设在所述冷媒换热器或所述传热板上以检测所述冷媒换热器或所述传热板的温度,所述温度传感器与所述电磁线圈盘电连接以控制所述电磁线圈盘的工作状态。
在本申请中,所述温度传感器设在所述传热板上,且在所述电磁线圈盘朝向所述传热板的投影上,所述温度传感器位于所述电磁线圈盘的电磁盲区内或高磁场强度区内,其中所述电磁线圈盘包括盘体和设在所述盘体上的电磁线圈,所述电磁线圈呈环形,所述电磁线圈的中部具有非绕制区,所述非绕制区构成所述电磁盲区,所述电磁线圈的外环和内环之间具有预设环线,所述预设环线分别与所述外环和所述内环的距离相等,其中所述高磁场强度区由所述电磁线圈的外环和所述预设环线之间的区域限定出,所述温度检测件设在所述传热板上的位置与所述电磁线圈的外环和所述预设环线之间的区域对应设置。
在本申请中,所述冷媒换热器包括:微通道换热器、进入管和排出管,所述微通道换热器内限定出所述冷媒通道,所述进入管设在所述微通道换热器的长度的一端且与所述冷媒通道连通,所述排出管设在所述微通道换热器的长度的另一端且与所述冷媒通道连通。
本申请还提出一种具有上述实施例的加热组件的空调。
根据本申请第二方面实施例的空调包括壳体、压缩机、风机、室外换热器和加热组件,所述壳体内设有中隔板,所述中隔板将所述壳体的内部空间分隔成第一腔室和第二 腔室,所述压缩机设置在所述第一腔室内,所述风机设在所述第二腔室内,所述换热器的至少一部分对应所述风机设置,所述加热组件设在所述中隔板上且所述冷媒通道与所述压缩机的排气口相连通。
根据本申请实施例的空调,通过设有上述实施例的加热组件,可在冷媒从压缩机流向冷凝器的过程中对冷媒进行快速加热,可快速地提升冷媒的热量,从而快速地对室内进行制热,制热效果好,能满足用户的使用需求。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请实施例的加热组件的一个角度的***图;
图2是根据本申请实施例的加热组件的另一个角度的***图;
图3是根据本申请实施例的加热组件的电磁线圈盘的***图;
图4是根据本申请实施例的加热组件的主视图;
图5是根据本申请实施例的加热组件的左视图;
图6是根据本申请实施例的加热组件的右视图;
图7是根据本申请实施例的加热组件的仰视图;
图8是根据本申请实施例的加热组件的俯视图;
图9是根据本申请实施例的空调的结构示意图。
附图标记:
100:加热组件;
1:冷媒换热器;11:微通道换热器;12:进入管;13:排出管;14:卡钩;
2:电磁发热体组件;21:电磁线圈盘;211:凸耳;2111:通孔;212:电磁线圈出线端;213:电磁线圈;22:线圈盘外罩;23:安装槽;231:固定柱;24:限位结构;241:第一限位件;242:第二限位件;243:第三限位件;25:延伸部;251:定位槽;26:接线端子;27:第一隔热件;
3:传热板;4:支撑板;41:卡槽;
5:第二隔热件;51:让位孔;
6:熔断器;
7:温度传感器;
1000:空调;200:壳体;300:中隔板;400:压缩机;500:风机;600:室外换热 器。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面参考图1-图9描述根据本申请实施例的加热组件100。
如图1-图3所示,根据本申请实施例的加热组件100包块冷媒换热器1、电磁发热体组件2、传热板3和支撑板4。
冷媒换热器1内限定出冷媒通道(图中未示出),冷媒可在冷媒通道内流动以传递热量。
电磁发热体组件2设在冷媒换热器1一侧,电磁发热体组件2包括电磁线圈盘21且可加热冷媒通道内的冷媒,也就是说,电磁线圈盘21可产生热量,从而可以对冷媒通道内的冷媒加热。具体地,电磁线圈盘21可与外部电源进行电连接,电磁线圈盘21通电后可产生热量,电磁线圈盘21产生的热量可传递给冷媒换热器1,从而对冷媒换热器1内的冷媒快速加热。冷媒吸收热量后可将热量传递给下游,以快速地提升下游环境的温度。这里的下游指的是在冷媒流动的方向上,冷媒后流动到的位置。进一步地,电磁线圈盘21可由电磁线圈213缠绕而成,结构简单,加热效果好,方便生产制造,可节约生产成本,同时电磁线圈盘21不与冷媒进行接触,安全性高,还有利于提高冷媒 的密封效果。
在本申请中,传热板3设在冷媒换热器1和电磁发热体组件2之间,由此,电磁线圈盘21产生的热量可传递给传热板3,传热板3的传热效率高,可较好地将电磁线圈盘21产生的热量传递给冷媒换热器1,从而可更好地对冷媒通道内的冷媒进行加热,使得冷媒获得更高地温度,从而更好地提升下游环境的温度。
支撑板4设在冷媒换热器1的另一侧,支撑板4可与外部设备配合,以有利于将加热组件100安装在外部设备上,通过支撑板4可提高加热组件100与外部设备之间的拆装效率。
由此,根据本申请实施例的加热组件,通过支撑板4可有利于加热组件100与外部设备快速拆装,拆装效率高。通过对电磁线圈盘21通电可使得电磁线圈盘21产生热量,电磁线圈盘21产生热量后可对冷媒换热器1内的冷媒加热,加热效果好,同时电磁线圈盘21结构简单,方便生产制造,可节约生产成本,电磁线圈盘21不与冷媒进行接触,安全性高,冷媒的密封效果好。通过传热板3,可较好地将电磁线圈盘21产生的热量传递给冷媒,从而快速地提高冷媒的温度,有利于冷媒对下游快速升温,热传递效果好。
在本申请中,如图1和图2所示,电磁发热体组件2还包括线圈盘外罩22,线圈盘外罩22内限定出一端敞开的安装槽23,电磁线圈盘21设在安装槽23内,电磁线圈盘21由安装槽23露出且朝向传热板3设置。也就是说,线圈盘外罩22开口朝向传热板3敞开,电磁线圈盘21设在安装槽23内,且电磁线圈盘21位于线圈盘外罩22与传热板3之间。
在本申请中,电磁线圈盘21和安装槽23中的一个上设有通孔2111且另一个上设有固定柱231,电磁线圈盘21通过第一连接件(图中未示出)穿过通孔2111后与固定柱231相连。在一些示例中,电磁线圈盘21上设有通孔2111,安装槽23上设有固定柱231,在另一些示例中,电磁线圈盘21上设有固定柱231,安装槽23上设有通孔2111。第一连接件穿过通孔2111后可与固定柱231配合,从而将电磁线圈盘21安装在安装槽23内。
在本申请中,如图2所示,固定柱231可以设在电磁线圈盘21朝向线圈盘外罩22的壁面与安装槽23的底壁之间,固定柱231可将电磁线圈盘21与安装槽23的底壁隔开,由此可以防止电磁线圈盘21与安装槽23在装配过程中互相磨损,从而损坏电磁发热体组件2。
在本申请中,固定柱231内可形成有内螺纹,第一连接件上形成有外螺纹,第一连接件穿过通孔2111后可与固定柱231螺纹配合,从而使得电磁线圈盘21与线圈盘外罩 22之间具有较好的配合效果。
在本申请中,如图1和图2所示,电磁线圈盘21的周向上设有多个凸耳211,每个凸耳211上设有通孔2111,安装槽23内设有与多个与多个凸耳211一一对应的固定柱231。也就是说,电磁线圈盘21的周向上具有多个凸耳211,通孔2111可形成在凸耳211上,可有利于通孔2111的加工,在凸耳211上加工通孔2111可降低通孔2111的生产难度,节约生产成本。多个凸耳211与多个固定柱231一一对应,通过多个凸耳211与多个固定柱231,可使得电磁线圈盘21更好地固定在安装槽23内。进一步地,在一些示例中,每个凸耳211上可形成有一个通孔2111,每个凸耳211和固定柱231可通过第一连接件固定连接,在另一些示例中,每个凸耳211上可形成有多个通孔2111,固定柱231上形成由多个内螺纹,多个第一连接件可穿过多个通孔2111与多个内螺纹配合。
在本申请中,如图1和图2所示,电磁线圈盘21大致呈矩形,电磁线圈盘21的四个拐角上分别设有凸耳211,安装槽23内对应位置处设有四个固定柱231。也就是说,电磁线圈盘21上设有四个凸耳211,四个凸耳211中的每个上均形成有一个通孔2111,通过四个第一连接件分别穿过四个通孔2111后,四个第一连接件分别与四个固定柱231配合,从而将电磁线圈盘21固定在安装槽23内。由此使得电磁线圈盘21稳定地安装在安装槽23内。
在本申请中,如图1和图2所示,电磁发热体组件2还包括第一隔热件27,第一隔热件27设在安装槽23内且相对于电磁线圈盘21更邻近传热板3设置。也就是说,第一隔热件27设在安装槽23内,进一步地,第一隔热件27设在电磁线圈盘21朝向传热板3的一侧,由此,第一隔热件27可将电磁线圈盘21封堵在安装槽23内,第一隔热件27可与安装槽23配合在一定程度和保护电磁线圈盘21,防止电磁线圈盘21损伤,可延长电磁线圈盘21的使用寿命。同时,第一隔热件27设在传热板3与电磁线圈盘21之间,第一隔热件27可防止传热板3接收电磁线圈盘21的热量传递后,传热板3对电磁线圈盘21进行热辐射,从而影响电磁线圈盘21产热,进而降低电磁线圈盘21对冷媒的加热效果。另外,第一隔热件27还可对传热板3进行保温,防止传热板3热量散失,有利于提高传热板3对冷媒的热量的传递效果。
在本申请中,如图1和图2所示,安装槽23内设有限位结构24以限制第一隔热件27在安装槽23内的位置。由此,通过限位结构24,可防止第一隔热件27安装在安装槽23内后,第一隔热件27相对于安装槽23移动,第一隔热件27相对于安装槽23移动容易造成第一隔热件27与安装槽23内临近第一隔热件27的零件产生磨损,从而损伤第一隔热件27与零件,影响电磁发热体组件2的发热效果。
在本申请中,限位结构24包括沿安装槽23的深度方向间隔开设在安装槽23内侧壁上的第一限位件241和第二限位件242,第一隔热件27的边缘定位在第一限位件241和第二限位件242之间。这里的深度方向指的是安装槽23朝向第一隔热件27的方向。在安装槽23的深度方向上,第一隔热件27设在第一限位件241和第二限位件242之间,通过第一限位件241和第二限位件242可限制第一隔热件27在深度方向上的移动。
在如图1和图2所示的示例中,安装槽23的深度方向为图1中的左右方向,第一隔热件27与限位结构24配合后,第一限位件241在第一隔热件27的左侧,第二限位件242在第一隔热件27的右侧,进一步地,如图2所示,第一限位件241朝向左侧的周壁上形成有斜面,在第一隔热件27与第一限位件241配合的过程中,第一隔热件27可沿着该斜面移动,可有利于第一隔热件27与第一限位件241的配合。
在本申请中,第一限位件241和第二限位件242均包括多个且分别在安装槽23内侧壁上间隔开布置。通过多个第一限位件241和多个第二限位件242的配合,可更好地对第一隔热件27进行限位,可提高限位结构24对第一隔热件27的限位效果,可靠性高。进一步地,在一些示例中,第一限位件241的数量可以与第二限位件242的数量相等,在另一些示例中,第一限位件241的数量可以与第二限位件242的数量不等,例如,第一限位件241的数量大于第二限位件242的数量,或者,第一限位件241的数量小于第二限位件242的数量。当然,第一限位件241和第二限位件242在数量以及位置的布局上还可以具有其他的布局方式,这里不做限定。
在本申请中,如图1和图2所示,限位结构24包括第三限位件243,第三限位件243邻近线圈盘外罩22长度方向的至少一侧设置,第一隔热件27的长度方向的至少一端与第三限位件243配合。这里的线圈盘外罩22的长度方向指的是如图1所示的上下方向。在一些示例中,第三限位件243临近线圈盘外罩22的上侧设置,第三限位件243与第一隔热件27的上端配合以限制第一隔热件27相对于线圈盘外罩22朝上移动,可选地,在另一些示例中,第三限位件243临近线圈盘外罩22的下侧设置,第三限位件243与第一隔热件27的下端配合以限制第一隔热件27相对于线圈盘外罩22朝下移动,还有一些示例中,临近线圈盘外罩22的上端和下端均设有第三限位件243,通过第三限位件243可限制第一隔热件27相对于线圈盘外罩22在上下方向上的移动。
在本申请中,线圈盘外罩22上设有接线端子26,电磁线圈盘21的电磁线圈出线端212连接在接线端子26上。接线端子26可较好地与外部线路配合,从而方便电磁线圈出线端212与外部线路电连接。
在本申请中,线圈盘外罩22上设有定位槽251,接线端子26定位在定位槽251内, 接线端通过第二连接件固定在定位槽251内。也就是说,接线端子26可与线圈盘外罩22拆卸,可有利于接线端子26与电磁线圈出线端212配合连接,也有利于接线端子26与外部线路配合连接。接线端子26可与定位槽251配合连接,通过定位槽251,可使得接线端子26快速安装到线圈盘外罩22上,同时,定位槽251还可限制接线端子26与线圈盘外罩22之间的相对移动。进一步地,通过第二连接件,可将接线端子26固定在定位槽251内,防止接线端子26从定位槽251内脱落,可靠性高。有利地,通过第二连接件与定位槽251的配合,可更好地对接线端子26进行限位,限位效果好。
在本申请中,如图1和图2所示,线圈盘外罩22上设有延伸部25,延伸部25设在线圈盘外罩22的外壁上且朝向远离冷媒换热器1的方向延伸,定位槽251形成在延伸部25上。由此,通过设置延伸部25,可有利于定位槽251的加工,可降低定位槽251的加工工艺的难度,节约生产成本,同时,延伸部25设在线圈盘外罩22的外壁上且朝向远离冷媒换热器1的方向延伸,即延伸部25设在线圈盘外罩22的外壁上,换言之,定位槽251形成在线圈盘外罩22的外壁上,由此可有利于接线端子26与定位槽251的配合连接,可提高接线端子26与定位槽251的装配效率。
在本申请中,传热板3与电磁线圈盘21之间具有预定间隙H,预定间隙H的范围为1mm~20mm。也就是说,传热板3与电磁线圈盘21之间的距离为1mm~20mm。当传热板3与电磁线圈盘21之间的距离为1mm~20mm时,可较好地减少传热板3对电磁线圈盘21进行热辐射,从而有利于电磁线圈盘21产热。
在本申请中,传热板3和电磁线圈盘21的投影重合面积大于电磁线圈盘21面积的一半。这里的投影方向指的是如图1所示的左右方向。在一些示例中,传热板3在左右方向上的投影完全与电磁线圈盘21的投影重合,由此,传热板3在左右方向上的投影的面积大于电磁线圈盘21在左右方向上的投影面积的一半,在另一些示例中,传热板3在左右方向上的投影一部分与电磁线圈盘21在左右方向上的投影重合。更具体地,传热板3在左右方向上的投影的上端区域与电磁线圈盘21在左右方向上的投影重合,或者,传热板3在左右方向上的投影的下端区域与电磁线圈盘21在左右方向上的投影重合。当然,传热板3与电磁线圈盘21投影重合的区域还可以是其他的情况,这里不做限定。
在本申请中,传热板3与冷媒换热器1之间可拆卸连接。在一些示例中,传热板3与冷媒换热器1上均可设有螺钉孔,可通过螺钉将传热板3与冷媒换热器1固定在一起,当然,传热板3与冷媒换热器1之间还可以通过其他的连接方式连接,例如卡扣连接、铆钉连接等,这里不做限定。
在本申请中,传热板3与冷媒换热器1之间设有焊料或者焊片且焊接连接。由此可使得传热板3与冷媒换热器1之间连接较为稳定,传热板3与冷媒换热器1之间的一致性较好。
在本申请中,传热板3与冷媒换热器1之间设有导热剂层。通过导热剂层可较好地将传热板3上的热量传递给冷媒换热器1,从而较好地对冷媒换热器1内的冷媒加热,热量传递的效果好。可选地,导热剂层可以由导热硅脂层构成,也可以由导热胶带构成,这里不做限定。
在本申请中,如图1和图2所示,冷媒换热器1和支撑板4之间还设有第二隔热件5,第二隔热件5压紧在冷媒换热器1和是支撑板4之间。由此,通过第二隔热件5可减少热量从冷媒换热器1朝向支撑板4流动,可防止冷媒换热器1内的热量传递给支撑板4,然后从支撑板4散失,从而造成热量的损失。
在本申请中,第二隔热件5上设有让位孔51,冷媒换热器1通过第三连接件连接在支撑板4上,第三连接件穿过让位孔51。由此,通过第三连接件可将第二隔热件5固定在支撑板4上。进一步地,冷媒换热器1上可设有固定孔,第三连接件可依次穿过固定孔与让位孔51后连接在支撑板4上,从而可将冷媒换热器1、第二隔热件5和支撑板4连接在一起。可选地,第三连接件可以是螺钉或者铆钉,这里不做限定。
在本申请中,支撑板4上设有卡槽41,冷媒换热器1上设有卡勾14,卡勾14配合在卡槽41内。也就是说,通过卡槽41与卡勾14的配合,可以将冷媒换热器1与支撑板4配合连接,进一步地,卡槽41与卡勾14配合的过程中,卡勾14可沿着卡槽41的内壁面滑动,稳定性较好,有利于卡槽41与卡勾14的快速配合。
在本申请中,如图1和图2所示,加热组件100还包括熔断器6和/或温度传感器7。在一些示例中,加热组件100包括熔断器6,在另一些示例中,加热组件100包括温度传感器7,还有一些示例中,加热组件100包括熔断器6和温度传感器7。
熔断器6设在冷媒换热器1的侧壁面上,在如图1和图2所示的左右方向上,熔断器6可设在冷媒换热器1的前侧壁面上,熔断器6也可设在冷媒换热器1的后侧壁面上。熔断器6可断开电磁线圈盘21与主电路的电连接,也就是说,当冷媒换热器1上的温度上升到一定程度后,熔断器6可断开电磁线圈盘21与主电路之间的电连接,从而使得电磁线圈盘21断电,电磁线圈盘21停止产热。
温度传感器7设在冷媒换热器1或传热板3上以检测冷媒换热器1或传热板3的温度,温度传感器7与电磁线圈盘21电连接以控制电磁线圈盘21的工作状态。在一些示例中,温度传感器7设在冷媒换热器1上以检测冷媒换热器1的温度,在另一些示例中, 温度传感器7设在传热板3上以检测传热板3的温度。进一步地,电磁线圈盘21可由电磁线圈213组成,电磁线圈213可由多段漆包线盘绕而成,温度传感器7通过检测的温度,可控制电磁线圈盘21产生热量的大小。例如,温度传感器7检测到的温度较低时,多段漆包线均通电以产生较高的热量,随着温度传感器7检测的温度数据逐渐升高,温度传感器7控制电磁线圈盘21,已断开部分的漆包线,从而减少电磁线圈盘21产生的热量,进而节约电量。更进一步地,当温度传感器7检测到的温度较高时,温度传感器7可控制电磁线圈盘21断电。当然本申请并不限于此,电磁线圈213还可以由一段漆包线盘绕而成。
在本申请中,温度传感器7设在传热板3上,且在电磁线圈盘21朝向传热板3的投影上,温度传感器7位于电磁线圈盘21的电磁盲区内或高磁场强度区内,进一步地,如图3所示,电磁线圈盘21包括盘体和设在盘体上的电磁线圈213,电磁线圈213呈环形,电磁线圈213的中部具有非绕制区,为非绕制区构成电磁盲区,电磁线圈213的外环和内环之间具有预设环线,预设环线与外环的距离和预设环线与内环的距离相等,其中高磁场强度区由电磁线圈213的外环和预设环线之间的区域限定出。
在本申请中,温度传感器7位于电磁线圈盘21的电磁盲区内,由此,温度传感器7可不受电磁线圈盘21产生的磁场的影响,从而有利于温度传感器7检测温度。在另一些示例中,温度传感器7位于电磁线圈盘21的高磁场区域内,需要说明的是,电磁线圈盘21的高磁场区域内可产生较高的温度,温度传感器7可较好地检测电磁线圈盘21通电后产生的较高的温度。
在本申请中,冷媒换热器1包括微通道换热器11、进入管12和排出管13,微通道换热器11内限定出冷媒通道,进入管12设在微通道换热器11的长度的一端且与冷媒通道连通,排出管13设在微通道换热器11的长度的另一端且与冷媒通道连通。也就是说,冷媒可从进入管12进入冷媒通道,冷媒在冷媒通道内可被加热,加热后的冷媒可从冷媒通道流向排出管13,然后从排出管13流出后继续朝向下游流动。进一步地,冷媒从冷媒换热器1的一端流向冷媒换热器1的另一端,可有利于将冷媒通道设置的较长,从而有利于对冷媒通道内的冷媒进行加热,加热效果好。
本申请还提出一种具有上述实施例的加热组件100的空调1000。
如图9所示,根据本申请实施例的空调1000包括壳体200、压缩机400、风机500、室外换热器600和加热组件100。
壳体200内设有中隔板300,中隔板300将壳体200的内部空间分隔成第一腔室和第二腔室,压缩机400设置在第一腔室内,风机500设在第二腔室内,通过中隔板300 可将风机500与压缩机400隔开,可防止风机500与压缩机400之间的互相影响。
室外换热器600的至少一部分对应风机500设置,在一些示例中,室外换热器600一部分对应风机500设置,在另一些示例中,室外换热器600完全对应风机500设置。风机500可提高室外换热器600换热效率。
加热组件100设在中隔板300上且冷媒通道与压缩机400的排气口相连通。也就是说,压缩机400的排气口可与进入管12相连,压缩机400内的冷媒可通过排气口流入进入管12,然后经进入管12流入冷媒通道,冷媒在冷媒通道内可被进一步加热,被加热后的冷媒可从排出管13排出。
可以理解的是,当在寒冷环境中启动空调器对室内进行制热时,空调器在刚开始启动的过程中不能快速地将冷媒的热量进行提升,由此容易导致空调器制热效率缓慢,室内温度不能快速制热,从而不能满足用户对室内快速制热的需求。
根据本申请实施例的空调1000,通过设有上述实施例的加热组件100,可在冷媒从压缩机400流向热换器的过程中对冷媒进行快速加热,可快速地提升冷媒的热量,从而快速地对室内进行制热,制热效果好,能满足用户对室内快速制热的需求。
根据本申请实施例的空调1000的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一些实施例”、“可选地”、“进一步地”、“一些示例”或“另一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (25)

  1. 一种加热组件,其特征在于,包括:
    冷媒换热器,所述冷媒换热器内限定出冷媒通道;
    电磁发热体组件,所述电磁发热体组件设在所述冷媒换热器一侧,所述电磁发热体组件包括电磁线圈盘且可加热所述冷媒通道内的冷媒;
    传热板,所述传热板设在所述冷媒换热器和所述电磁发热体组件之间;
    支撑板,所述支撑板设在所述冷媒换热器的另一侧。
  2. 根据权利要求1所述的加热组件,其特征在于,所述电磁发热体组件还包括:
    线圈盘外罩,所述线圈盘外罩内限定出一端敞开的安装槽,所述电磁线圈盘设在所述安装槽内,所述电磁线圈盘由所述安装槽露出且朝向所述传热板设置。
  3. 根据权利要求2所述的加热组件,其特征在于,所述电磁线圈盘和所述安装槽中的一个上设有通孔且另一个上设有固定柱,所述电磁线圈盘通过第一连接件穿过所述通孔后与所述固定柱相连。
  4. 根据权利要求3所述的加热组件,其特征在于,所述电磁线圈盘的周向上设有多个凸耳,每个所述凸耳上设有所述通孔,所述安装槽内设有与多个与所述多个凸耳一一对应的所述固定柱。
  5. 根据权利要求4所述的加热组件,其特征在于,所述电磁线圈盘大致呈矩形,所述电磁线圈盘的四个拐角上分别设有所述凸耳,所述安装槽内对应位置处设有四个所述固定柱。
  6. 根据权利要求2所述的加热组件,其特征在于,所述电磁发热体组件还包括:
    第一隔热件,所述第一隔热件设在所述安装槽内且相对于所述电磁线圈盘更邻近所述传热板设置。
  7. 根据权利要求6所述的加热组件,其特征在于,所述安装槽内设有限位结构以限制所述第一隔热件在所述安装槽内的位置。
  8. 根据权利要求7所述的加热组件,其特征在于,所述限位结构包括:
    所述安装槽的深度方向间隔开设在所述安装槽内侧壁上的第一限位件和第二限位件,所述第一隔热件的边缘定位在所述第一限位件和所述第二限位件之间。
  9. 根据权利要求8所述的加热组件,其特征在于,所述第一限位件和所述第二限位件均包括多个且分别在所述安装槽内侧壁上间隔开布置。
  10. 根据权利要求7所述的加热组件,其特征在于,所述限位结构包括:第三限位件,所述第三限位件邻近所述线圈盘外罩长度方向的至少一侧设置,所述第一隔热件的长度 方向的至少一端与所述第三限位件配合。
  11. 根据权利要求2所述的加热组件,其特征在于,所述线圈盘外罩上设有接线端子,所述电磁线圈盘的电磁线圈出线端连接在所述接线端子上。
  12. 根据权利要求11所述的加热组件,其特征在于,所述线圈盘外罩上设有定位槽,所述接线端子定位在所述定位槽内,所述接线端通过第二连接件固定在所述定位槽内。
  13. 根据权利要求12所述的加热组件,其特征在于,所述线圈盘外罩上设有延伸部,所述延伸部设在所述线圈盘外罩的外壁上且朝向远离所述冷媒换热器的方向延伸,所述定位槽形成在所述延伸部上。
  14. 根据权利要求1所述的加热组件,其特征在于,所述传热板与所述电磁线圈盘之间具有预定间隙H,所述预定间隙H的范围为1mm~20mm。
  15. 根据权利要求1所述的加热组件,其特征在于,所述传热板和所述电磁线圈盘的投影重合面积大于所述电磁线圈盘面积的一半。
  16. 根据权利要求1所述的加热组件,其特征在于,所述传热板与所述冷媒换热器之间可拆卸连接。
  17. 根据权利要求1所述的加热组件,其特征在于,所述传热板与所述冷媒换热器之间设有焊料或者焊片且焊接连接。
  18. 根据权利要求1所述的加热组件,其特征在于,所述传热板与所述冷媒换热器之间设有导热剂层。
  19. 根据权利要求1所述的加热组件,其特征在于,所述冷媒换热器和支撑板之间还设有第二隔热件,所述第二隔热件压紧在所述冷媒换热器和是支撑板之间。
  20. 根据权利要求19所述的加热组件,其特征在于,所述第二隔热件上设有让位孔,所述冷媒换热器通过第三连接件连接在所述支撑板上,所述第三连接件穿过所述让位孔。
  21. 根据权利要求1所述的加热组件,其特征在于,所述支撑板上设有卡槽,所述冷媒换热器上设有卡勾,所述卡勾配合在所述卡槽内。
  22. 根据权利要求1所述的加热组件,其特征在于,还包括:
    熔断器,所述熔断器设在所述冷媒换热器的冷媒流量较大的一侧壁面上,所述熔断器可断开所述电磁线圈盘与主电路的电连接;和/或
    温度传感器,所述温度传感器设在所述冷媒换热器或所述传热板上以检测所述冷媒换热器或所述传热板的温度,所述温度传感器与所述电磁线圈盘电连接以控制所述电磁线圈盘的工作状态。
  23. 根据权利要求22所述的加热组件,其特征在于,所述温度传感器设在所述传热板上,且在所述电磁线圈盘朝向所述传热板的投影上,所述温度传感器位于所述电磁线圈盘的电磁盲区内或高磁场强度区内,
    其中所述电磁线圈盘包括盘体和设在所述盘体上的电磁线圈,所述电磁线圈呈环形,所述电磁线圈的中部具有非绕制区,所述非绕制区构成所述电磁盲区;
    所述电磁线圈的外环和内环之间具有预设环线,所述预设环线分别与所述外环和所述内环的距离相等,其中所述高磁场强度区由所述电磁线圈的外环和所述预设环线之间的区域限定出,所述温度检测件设在所述传热板上的位置与所述电磁线圈的外环和所述预设环线之间的区域对应设置。
  24. 根据权利要求1所述的加热组件,其特征在于,所述冷媒换热器包括:
    微通道换热器,所述微通道换热器内限定出所述冷媒通道;
    进入管和排出管,所述进入管设在所述微通道换热器的长度的一端且与所述冷媒通道连通,所述排出管设在所述微通道换热器的长度的另一端且与所述冷媒通道连通。
  25. 一种空调,其特征在于,包括:
    壳体,所述壳体内设有中隔板,所述中隔板将所述壳体的内部空间分隔成第一腔室和第二腔室;
    压缩机,所述压缩机设置在所述第一腔室内;
    风机和室外换热器,所述风机设在所述第二腔室内,所述换热器的至少一部分对应所述风机设置;
    根据权利要求1~24中任一项所述的加热组件,所述加热组件设在所述中隔板上且所述冷媒通道与所述压缩机的排气口相连通。
PCT/CN2020/080047 2019-04-08 2020-03-18 加热组件及其空调 WO2020207220A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK20786904.1T DK3926244T3 (da) 2019-04-08 2020-03-18 Ppvarmningsindretning og klimaanlæg med denne
EP20786904.1A EP3926244B1 (en) 2019-04-08 2020-03-18 Heating assembly and air conditioner having same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201920468934.6 2019-04-08
CN201920468934.6U CN209857239U (zh) 2019-04-08 2019-04-08 加热器组件和具有其的空调器室外机
CN201910277489.XA CN109974130B (zh) 2019-04-08 2019-04-08 加热器组件和具有其的空调器室外机
CN201910277489.X 2019-04-08
CN201920476549.6U CN209857241U (zh) 2019-04-08 2019-04-08 加热器组件和具有其的空调器室外机
CN201920476549.6 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020207220A1 true WO2020207220A1 (zh) 2020-10-15

Family

ID=72751522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080047 WO2020207220A1 (zh) 2019-04-08 2020-03-18 加热组件及其空调

Country Status (3)

Country Link
EP (1) EP3926244B1 (zh)
DK (1) DK3926244T3 (zh)
WO (1) WO2020207220A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020207240A1 (zh) * 2019-04-08 2020-10-15 广东美的暖通设备有限公司 速热模块及空调器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737941A (zh) * 2008-11-10 2010-06-16 Lg电子株式会社 制冷剂加热装置
JP2010223459A (ja) * 2009-03-19 2010-10-07 Daikin Ind Ltd 空気調和装置
CN102159907A (zh) * 2008-09-17 2011-08-17 大金工业株式会社 电磁感应加热单元及空调装置
CN202769825U (zh) * 2012-09-20 2013-03-06 珠海格力电器股份有限公司 空调器***
CN103673082A (zh) * 2012-09-20 2014-03-26 珠海格力电器股份有限公司 空调器***
JPWO2016002072A1 (ja) * 2014-07-04 2017-04-27 三菱電機株式会社 換気装置
CN107484283A (zh) * 2017-09-19 2017-12-15 青岛海信日立空调***有限公司 电加热装置、冷凝器以及空调器
CN207649034U (zh) * 2017-11-23 2018-07-24 珠海格力电器股份有限公司 加热装置及空调器
CN109974130A (zh) * 2019-04-08 2019-07-05 广东美的暖通设备有限公司 加热器组件和具有其的空调器室外机
CN209857239U (zh) * 2019-04-08 2019-12-27 广东美的暖通设备有限公司 加热器组件和具有其的空调器室外机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762950B1 (ko) * 2006-07-10 2007-10-04 (주)케이티엘 인덕션 보일러
CN108759169A (zh) * 2018-06-20 2018-11-06 广东美的暖通设备有限公司 热泵***及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102159907A (zh) * 2008-09-17 2011-08-17 大金工业株式会社 电磁感应加热单元及空调装置
CN101737941A (zh) * 2008-11-10 2010-06-16 Lg电子株式会社 制冷剂加热装置
JP2010223459A (ja) * 2009-03-19 2010-10-07 Daikin Ind Ltd 空気調和装置
CN202769825U (zh) * 2012-09-20 2013-03-06 珠海格力电器股份有限公司 空调器***
CN103673082A (zh) * 2012-09-20 2014-03-26 珠海格力电器股份有限公司 空调器***
JPWO2016002072A1 (ja) * 2014-07-04 2017-04-27 三菱電機株式会社 換気装置
CN107484283A (zh) * 2017-09-19 2017-12-15 青岛海信日立空调***有限公司 电加热装置、冷凝器以及空调器
CN207649034U (zh) * 2017-11-23 2018-07-24 珠海格力电器股份有限公司 加热装置及空调器
CN109974130A (zh) * 2019-04-08 2019-07-05 广东美的暖通设备有限公司 加热器组件和具有其的空调器室外机
CN209857239U (zh) * 2019-04-08 2019-12-27 广东美的暖通设备有限公司 加热器组件和具有其的空调器室外机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926244A4 *

Also Published As

Publication number Publication date
EP3926244A4 (en) 2022-04-06
EP3926244B1 (en) 2024-05-08
EP3926244A1 (en) 2021-12-22
DK3926244T3 (da) 2024-07-15

Similar Documents

Publication Publication Date Title
CN109959182B (zh) 制冷***以及空调器
CN203279443U (zh) 电控箱及具有该电控箱的空调器
CN109085732A (zh) 一种芯片散热装置及投影设备
EP3690345A1 (en) Heat exchange cell for a heating boiler
WO2020207220A1 (zh) 加热组件及其空调
CN209861205U (zh) 速热模块及空调器
CN209857239U (zh) 加热器组件和具有其的空调器室外机
WO2022105941A1 (zh) 一种空调器及其控制方法
CN109974130B (zh) 加热器组件和具有其的空调器室外机
CN108072117A (zh) 一种嵌入式商用空调室内机
JPWO2006054547A1 (ja) 空気調和機の室外機
CN201844255U (zh) 强制对流散热的led灯管
CN109959181B (zh) 制冷***以及空调器
JP2019531451A (ja) オイルヒータ
CN216087060U (zh) 电磁加热装置及烹饪器具
CN109982465A (zh) 速热模块及空调器
CN209861206U (zh) 速热模块及空调器
CN209014892U (zh) 一种芯片散热装置及投影设备
WO2020207240A1 (zh) 速热模块及空调器
CN207022239U (zh) 一种电磁感应加热板
CN219222834U (zh) 具有换热功能的燃烧室结构和应用其的燃气热水器
CN217131347U (zh) 一种大功率商用电磁炉散热结构
CN109268950A (zh) 散热结构、空调器
CN213207949U (zh) 一种电热炉的温控结构
CN216114392U (zh) 电控盒组件及具有其的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020786904

Country of ref document: EP

Effective date: 20210913

NENP Non-entry into the national phase

Ref country code: DE