WO2020203920A1 - Plastic optical fiber - Google Patents

Plastic optical fiber Download PDF

Info

Publication number
WO2020203920A1
WO2020203920A1 PCT/JP2020/014369 JP2020014369W WO2020203920A1 WO 2020203920 A1 WO2020203920 A1 WO 2020203920A1 JP 2020014369 W JP2020014369 W JP 2020014369W WO 2020203920 A1 WO2020203920 A1 WO 2020203920A1
Authority
WO
WIPO (PCT)
Prior art keywords
clad
optical fiber
resin
core
plastic optical
Prior art date
Application number
PCT/JP2020/014369
Other languages
French (fr)
Japanese (ja)
Inventor
昇一 川満
木戸 章文
伸宏 福浦
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019141650A external-priority patent/JP2020166223A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2020203920A1 publication Critical patent/WO2020203920A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers

Definitions

  • the present invention relates to a plastic optical fiber.
  • the plastic optical fiber has a core in the center, which is a part for transmitting light, and a clad that covers the outer circumference of the core.
  • the core is made of a resin material having a high refractive index.
  • the clad is formed of a resin material having a lower refractive index than the resin material of the core in order to retain light in the core.
  • Patent Document 1 proposes a plastic optical fiber in which a transmission loss is reduced by reducing the amount of foreign matter in the sheath, that is, in the clad.
  • an object of the present invention is to provide a plastic optical fiber capable of increasing the numerical aperture by lowering the refractive index of the clad and, as a result, realizing a low transmission loss.
  • the present invention is a plastic optical fiber comprising a core and a clad arranged on the outer periphery of the core, wherein at least a part of the clad is made of a resin having a porous structure. provide.
  • the present invention it is possible to provide a plastic optical fiber capable of increasing the numerical aperture by further reducing the refractive index of the clad, and as a result, realizing a low transmission loss.
  • the POF of the present embodiment includes a core and a clad arranged on the outer periphery of the core. At least a part of the clad is composed of a resin having a porous structure.
  • FIGS. 1 to 3 show the cross-sectional structures of the POF examples (1st to 3rd examples) of the present embodiment, respectively.
  • the POF 10 of the first example shown in FIG. 1 includes a core 11 and a clad 12 arranged on the outer periphery of the core 11. At least a part of the clad 12 is made of a resin having a porous structure.
  • the POF 20 of the second example shown in FIG. 2 has a configuration in which the clad 12 is changed to the clad 22 having a plurality of layers in the POF 10 shown in FIG.
  • the clad 22 is composed of a first clad layer 221 arranged in contact with the core 11 and a second clad layer 222 arranged on the outer peripheral side of the first clad layer 221. It has a two-layer structure.
  • the second clad layer 222 is composed of a resin having a porous structure.
  • FIG. 2 shows an example in which the clad 22 has a two-layer structure, the number of layers included in the clad 22 is not limited to this, and three or more layers may be included.
  • the clad When the clad is composed of a plurality of layers, for example, even if the light incident on the core leaks to the clad side without being totally reflected at the interface between the core and the clad, it is located on the outer peripheral side. Since total reflection can be performed by the clad layer, light loss can be reduced.
  • the POF 30 of the third example shown in FIG. 3 has a configuration in which a coating layer 31 arranged on the outer periphery of the clad 22 is further provided with respect to the POF 20.
  • the coating layer 31 is provided to improve the mechanical strength of the POF 30.
  • the core is the area that transmits light.
  • the core has a higher index of refraction than the clad. With this configuration, the light incident in the core is trapped inside the core by the cladding and propagates in the POF.
  • the core material may be a resin having high transparency, and is not particularly limited.
  • the resin include fluororesins, acrylic resins such as methyl methacrylate, styrene resins, carbonate resins and the like. Among these, fluororesins are preferably used because low transmission loss can be realized in a wide wavelength region.
  • the fluororesin is, for example, a polymer having a fluoropolymer having a polymerizable double bond as a monomer. From the viewpoint of suppressing light absorption due to the expansion and contraction energy of the CH bond, it is desirable that the fluororesin used as the core material does not contain the CH bond. Therefore, it is preferable that the fluororesin contains substantially no hydrogen atom, and it is particularly preferable that all H of the CH bond are fluorinated. That is, it is preferable that the fluororesin does not substantially contain hydrogen atoms and is completely fluorinated.
  • the fact that the fluororesin contains substantially no hydrogen atoms means that the content ratio of hydrogen atoms in the fluororesin is 1 mol% or less.
  • the fluororesin examples include a polymer having a fluoroaliphatic ring structure.
  • a polymer having a fluorine-containing aliphatic ring structure a polymer obtained by polymerizing the fluorine-containing compound having a fluorine-containing aliphatic ring structure as a monomer is preferable. It is preferable that the fluorine-containing polymer having a fluorine-containing aliphatic ring structure also contains substantially no hydrogen atom.
  • the fluorine-containing compound having a fluorine-containing aliphatic ring structure is a fluorine-containing compound having a polymerizable double bond between a carbon atom forming a ring and a carbon atom not forming a ring, or a carbon constituting a ring. It means a fluorine-containing compound having a polymerizable double bond between two atoms.
  • Examples of the fluorine-containing compound having a polymerizable double bond between the carbon atom constituting the ring and the carbon atom not forming the ring include 1 such as perfluoro-2-methylene-4-methyl-1,3-dioxolane.
  • Fluorine-containing compounds having a 3-dioxolane structure can be mentioned.
  • fluorine-containing compound having a polymerizable double bond between the two carbon atoms constituting the ring examples include perfluoro-4-methyl-1,3-dioxol and perfluoro-4-methyl-1,3-dioxol.
  • Fluorine-containing compounds having a 1,3-dioxol structure as described above can be mentioned.
  • the fluoropolymer is a monomer compound formed by polymerization.
  • a compound represented by the following formula (1) can be mentioned.
  • each independently R ff 1 ⁇ R ff 4, a fluorine atom, .R represents a perfluoroalkyl group or a perfluoroalkyl ether group having 1 to 7 carbon atoms having 1 to 7 carbon atoms ff 1 and R ff 2 may be connected to form a ring.
  • Specific examples of the compound represented by the above formula (1) include compounds represented by the following formulas (A) to (H).
  • the fluorine-containing compound it is preferable to use a compound purified so as not to contain impurities. Purification can be achieved by known methods. In particular, among the impurities, the acid component is preferably not contained because it affects the coloring.
  • the fluorine-containing compound used as the monomer may be one kind or two or more kinds. That is, the fluororesin used in the present embodiment may be a fluoropolymer obtained by homopolymerizing one kind of fluorocompound, or by copolymerizing two or more kinds of fluoropolymers. It may be the obtained fluorine-containing copolymer.
  • the fluororesin used in the present embodiment is, for example, a fluoropolymer having the above-mentioned fluoroaliphatic ring structure (hereinafter referred to as a fluoropolymer (A)) and other fluoropolymers other than the fluoropolymer (A). It may be a fluorine-containing copolymer obtained by copolymerizing with a fluorine-containing compound. Examples of the fluorine-containing compound other than the fluorine-containing compound (A) include the following fluorine-containing compounds (B) to (D).
  • the fluorine-containing compound (B) is a fluorine-containing vinyl ether such as perfluorovinyl ether.
  • the fluorine-containing vinyl ether is represented by, for example, the following formula (2).
  • R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms.
  • the perfluoroalkyl group may have a ring structure.
  • a part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom.
  • a part of the fluorine atom in the perfluoroalkyl group may be substituted. It may be substituted with a halogen atom other than the fluorine atom.
  • the fluorine-containing compound (C) is a fluorine-containing olefin such as tetrafluoroethylene and chlorotrifluoroethylene.
  • the fluorine-containing olefin is represented by, for example, the following formula (3).
  • R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms.
  • the perfluoroalkyl group may have a ring structure.
  • a part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom.
  • a part of the fluorine atom in the perfluoroalkyl group may be substituted with a halogen atom other than the fluorine atom.
  • the fluorine-containing compound (D) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclization polymerization.
  • the fluorine-containing compound (D) is represented by, for example, the following formula (4).
  • Z represents an oxygen atom, a single bond, or -OC (R 19 R 20 ) O-
  • R 9 to R 20 are independently fluorine atoms and pars having 1 to 5 carbon atoms.
  • a part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom.
  • a part of the fluorine atom in the perfluoroalkyl group is , A halogen atom other than the fluorine atom may be substituted. A part of the fluorine atom in the perfluoroalkoxy group may be substituted with a halogen atom other than the fluorine atom.
  • S and t are independently 0 to 0 to each. It represents an integer of 5 and s + t is 1 to 6 (where Z is -OC (R 19 R 20 ) O-, s + t may be 0).
  • a fluorine-containing compound represented by the following formula (5) may be used as the fluorine-containing compound (D).
  • the structural unit represented by the following formula (5) is a case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (4).
  • R 141 , R 142 , R 151 , and R 152 each independently have a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. Represented. A part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom.
  • a part of the fluorine atom in the perfluoroalkyl group may be substituted with a halogen atom other than the fluorine atom.
  • a part of the fluorine atom in the fluoroalkoxy group may be substituted with a halogen atom other than the fluorine atom.
  • fluorine-containing compound (D) include the following compounds.
  • the fluororesin used in the present embodiment is composed of the fluoropolymer (A) and the fluoropolymers other than the fluoropolymer (A) (for example, the group consisting of the fluoropolymers (B) to (D).
  • the content of the structural unit (A) based on the fluorinated compound (A) in the fluorinated copolymer is , 20 mol% or more, more preferably 40 mol% or more, based on the total of all the constituent units in the fluorine-containing copolymer.
  • the fluorine-containing copolymer By containing 20 mol% or more of the structural unit (A), the fluorine-containing copolymer can have higher heat resistance. By containing 40 mol% or more of the structural unit (A), the fluorine-containing copolymer can have higher heat resistance, higher transparency and higher mechanical strength.
  • the fluororesin can be produced, for example, by using the fluorine-containing compound exemplified above as a monomer and polymerizing this monomer by a known method using, for example, a known polymerization initiator.
  • a known polymerization method can be used.
  • a fluororesin can be produced by radically polymerizing the fluorine-containing compound exemplified above by a conventional method.
  • a fully fluorinated fluororesin can be produced by using a fully fluorinated fluorinated compound as a monomer and further using a polymerization initiator composed of the fully fluorinated compound. ..
  • the fluororesin used in the present embodiment is a polymer having a fluoroaliphatic ring structure as described above, the polymer at the initial stage of polymerization has an unstable functional group at the terminal. There is. Therefore, in this case, it is preferable to perform a terminal stabilization treatment in which the polymer is fluorinated with fluorine after the polymer is produced.
  • the core material may appropriately contain other components such as a refractive index adjusting agent for increasing the refractive index.
  • the core has a refractive index distribution in which the refractive index changes in the radial direction.
  • a refractive index distribution can be formed, for example, by adding a refractive index adjusting agent to the fluororesin and diffusing the refractive index adjusting agent in the optical resin molded body (for example, thermal diffusion).
  • the refractive index of the core is not particularly limited as long as it is higher than the refractive index of the clad.
  • the difference between the refractive index of the core and the refractive index of the cladding is preferably larger.
  • the refractive index of the core can be 1.340 or more, preferably 1.360 or more.
  • the upper limit of the refractive index of the core is not particularly limited, but is, for example, 1.4000 or less.
  • the clad is made of a resin having a porous structure.
  • the entire clad may be made of a resin having a porous structure.
  • the refractive index of the clad is lower than that of the resin itself used as the material of the clad. Therefore, even when it is difficult to reduce the refractive index of the clad by developing the resin itself, it is possible to reduce the refractive index of the clad.
  • the difference between the refractive index of the core and the refractive index of the clad can be made larger, so that a high numerical aperture can be realized in the POF.
  • the bending loss is reduced, the effect of confining light in the core is improved, and a POF capable of realizing a low transmission loss can be realized.
  • the refractive index of the portion of the clad made of the resin having a porous structure is not particularly limited, but can be, for example, 1.310 or less, preferably 1.300 or less.
  • the lower limit of the refractive index of the portion made of the resin having a porous structure is not particularly limited, but is, for example, 1.285 or more.
  • the portion of the clad 12 having a porous structure is preferably a portion located on the outer periphery.
  • the inner peripheral portion that is, the portion closer to the core 11, for example, the portion in contact with the core 11, preferably does not have a porous structure in order to surely suppress the scattering of the light leaked to the clad side.
  • the second clad layer 222 arranged on the outer peripheral side of the first clad layer 221 arranged in contact with the core 11 . It is preferable to have a porous structure.
  • the second clad layer 222 is first so that the light leaked from the core 11 to the first clad layer 221 is surely totally reflected by the second clad layer 222 and confined in the clad 22. It is preferable to have a refractive index lower than that of the clad layer 221 of.
  • the first clad layer 221 preferably has a refractive index in the range of 1.300 to 1.322.
  • the second clad layer 222 is preferably lower than the first clad layer 221 and has a refractive index in the range of 1.290 to 1.300.
  • the clad 22 may have three or more clad layers.
  • the second clad layer 222 may be arranged at any position other than the innermost side of the clad 22, but in order to further reduce the possibility of light scattering, the second clad layer 222 may be arranged on the outer peripheral side. It is preferable to be arranged at the position of.
  • the first clad layer 221 arranged on the innermost peripheral side of the clad 22 It is preferable that the refractive index is the highest, and the clad layer arranged on the outer peripheral side has a lower refractive index.
  • the refractive index of the clad layer having a porous structure may be designed by appropriately adjusting the pore conditions such as the pore diameter and the void ratio so that the refractive index is within a desired range.
  • the first clad layer 221 in contact with the core 11 may have a porous structure, but preferably does not have a porous structure. The reason is that when the first clad layer 221 has a porous structure, the light leaking to the clad side and incident on the first clad layer 221 may be scattered. Therefore, in order to suppress the loss due to light scattering, it is preferable that the first clad layer 221 does not have a porous structure.
  • the resin used as the clad material is preferably a resin having a refractive index equal to or lower than that of the resin used as the core material.
  • the resin used as the material for the clad include a fluororesin, an acrylic resin such as methyl methacrylate, a styrene resin, and a carbonate resin.
  • the resin used as the clad material is preferably the same as the resin used as the core material.
  • the resin as the clad material is also the same fluororesin.
  • the resins used as the material of each clad layer in order to suppress the peeling between the layers may be the same type of resin. preferable.
  • the pore diameter of the pores contained in the porous structure is preferably in the range of 10 nm to 200 nm, more preferably in the range of 10 nm to 150 nm, and is 50 nm to 120 nm. It is more preferable that it is within the range.
  • the pore diameter of the pores contained in the porous structure can be determined by measuring the maximum diameter of each pore using a transmission electron microscope (TEM) image.
  • the porous structure may be realized by voids formed in the resin, or may be realized by including hollow particles in the resin. From the viewpoint that the size of the pores of the porous structure can be easily controlled within a desired range, the porous structure is preferably formed by mixing hollow particles with the resin.
  • the hollow particles mixed with the resin are preferably composed of an inorganic compound.
  • hollow silica particles can be used.
  • the hollow particles may be a mixture of the hollow silica particles and other hollow particles, or may be composed of only the hollow silica particles.
  • the particle size of the hollow particles is preferably in the range of 10 nm to 200 nm, and more preferably in the range of 50 nm to 120 nm.
  • the particle size of the hollow particles in the resin can be determined by measuring the particle size of the hollow particles using a TEM image.
  • the hollow particles are preferably contained in the range of 10% by mass to 30% by mass, more preferably in the range of 10% by mass to 25% by mass, and 15% by mass. It is more preferably contained in the range of about 25% by mass.
  • the content of hollow particles in the clad can be calculated from the ratio of the area of the clad resin portion to the area of the hollow particle portion using a TEM image.
  • a resin having a porous structure can be produced, for example, by mixing and dispersing the hollow particles in a resin as a base material.
  • the hollow particles are preferably uniformly dispersed in the resin as the base material, and are preferably dispersed in the state of primary particles without forming aggregates (that is, secondary particles). ..
  • the hollow particles are subjected to surface treatment such as hydrophobic treatment.
  • the coating layer is provided to improve the mechanical strength of the POF.
  • a material for example, polycarbonate or the like
  • various engineering plastics, cycloolefin polymer, PTFE, modified PTFE, PFA and a composition can be applied.
  • the POF of the present embodiment can be produced by using a known method for producing a POF. That is, the POF of the present embodiment can be produced by a method including a step of preparing each resin material used for a core, a clad, and the like, and a step of molding a POF using those resin materials.
  • a method for forming the POF for example, a melt spinning method can be used.
  • the POF can be formed by the melt spinning method, for example, by melting the resin material for the core, the resin material for the clad, and the resin material for the coating layer, if necessary, and composite spinning. ..
  • the porous structure of the clad is formed of, for example, hollow particles
  • a resin material for the clad in which the hollow particles are mixed with the resin as the base material is prepared.
  • the porous structure of the clad is realized by the voids formed in the resin, for example, the foaming agent is dispersed in the resin material in advance and heated at the time of forming the POF to thermally decompose the foaming agent to generate bubbles.
  • a method of generating can be used.
  • Hollow nanosilica was added so as to be 20% by mass with respect to polyperfluoro-4-methyl 1, 3 dioxolane as a fluororesin, and uniformly dispersed by a biaxial kneading extruder (kneaded product a).
  • Polyperfluoro-4-methyl 1,3 dioxolane as a fluororesin was melt-mixed with 2,4,6-triphenyltriazine as a refractive index adjuster so as to be 5% by mass (mixture b).
  • a mixture b is used as a core, a fluororesin polyperfluoro-4-methyl 1, 3 dioxolane is used as a first clad layer, a kneaded product a is used as a second clad layer, and polycarbonate is used as a coating layer.
  • a concentric four-layer fiber consisting of a core, a first clad, a second clad, and a coating layer was formed.
  • the POF of the example having the same configuration as that shown in FIG. 3 was prepared.
  • the diameter of the core was 50 ⁇ m
  • the thickness of the first clad was 70 ⁇ m
  • the thickness of the second clad was 5 ⁇ m
  • the thickness of the coating layer was 250 ⁇ m.
  • the evaluation of the POF of the example was performed by measuring the transmission loss after bending.
  • the transmission loss was measured in accordance with JIS C6823: 2010.
  • the measurement wavelength was 850 nm.
  • the bending of the POF was carried out by performing a 180-degree bending (U-shaped bending) once with a bending radius of 2.5 mm.
  • the transmission loss of the POF of the example was 0.5 dB / km or less.
  • Comparative Example POFs were prepared under the same conditions as the Example POFs, except that the second clad layer was not formed. Further, the POF of the comparative example was also evaluated by the same method as the POF of the example. The transmission loss of the POF of the comparative example was 5 dB or more.
  • the POF of the present invention can realize a low transmission loss and is suitable for high-speed communication applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

This plastic optical fiber (10) is provided with a core (11) and a clad (12) disposed at the outer periphery of the core (11). At least part of the clad (12) comprises a resin having a porous structure. For example, it is also possible that the resin having the porous structure includes hollow particles, and the porous structure is formed by the hollow particles.

Description

プラスチック光ファイバーPlastic fiber optic
 本発明は、プラスチック光ファイバーに関する。 The present invention relates to a plastic optical fiber.
 プラスチック光ファイバーは、光を伝送する部分である中心部のコアと、当該コアの外周を覆うクラッドとを備えている。コアは、高屈折率を有する樹脂材料によって形成されている。クラッドは、光をコア内に留めるために、コアの樹脂材料よりも低い屈折率を有する樹脂材料によって形成されている。 The plastic optical fiber has a core in the center, which is a part for transmitting light, and a clad that covers the outer circumference of the core. The core is made of a resin material having a high refractive index. The clad is formed of a resin material having a lower refractive index than the resin material of the core in order to retain light in the core.
 従来、プラスチック光ファイバーの伝送損失を低減するための様々な構成が検討されている。例えば、特許文献1には、鞘中、すなわちクラッド中の異物量を低減することによって伝送損失が低減された、プラスチック光ファイバーが提案されている。 Conventionally, various configurations for reducing the transmission loss of plastic optical fibers have been studied. For example, Patent Document 1 proposes a plastic optical fiber in which a transmission loss is reduced by reducing the amount of foreign matter in the sheath, that is, in the clad.
国際公開第2016/063829号International Publication No. 2016/0638229
 プラスチック光ファイバーの伝送損失をさらに低減するため手段として、光ファイバーの開口数を向上させることが考えられる。光ファイバーの開口数を高めることにより、例えば曲げ損失が低減されるので、コア内への光の閉じ込め効果が向上する。 It is conceivable to increase the numerical aperture of the optical fiber as a means for further reducing the transmission loss of the plastic optical fiber. By increasing the numerical aperture of the optical fiber, for example, bending loss is reduced, so that the effect of confining light in the core is improved.
 光ファイバーの開口数を高めるためには、クラッドの屈折率をより低くすることが求められる。従来、クラッドの屈折率を低下させるために、クラッドを構成する樹脂材料自体の屈折率を低下させることが行われていた。しかし、樹脂材料自体の屈折率を低下させることは容易ではなく、樹脂材料の開発によって、クラッドの屈折率をさらに低下させることには限界があった。 In order to increase the numerical aperture of the optical fiber, it is required to lower the refractive index of the clad. Conventionally, in order to reduce the refractive index of the clad, the refractive index of the resin material itself constituting the clad has been reduced. However, it is not easy to reduce the refractive index of the resin material itself, and there is a limit to further reducing the refractive index of the clad due to the development of the resin material.
 そこで、本発明は、クラッドの屈折率を低下させることによって開口数を高めることができ、その結果低い伝送損失を実現しうるプラスチック光ファイバーを提供することを目的とする。 Therefore, an object of the present invention is to provide a plastic optical fiber capable of increasing the numerical aperture by lowering the refractive index of the clad and, as a result, realizing a low transmission loss.
 本発明は、コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、前記クラッドの少なくとも一部が、多孔質構造を有する樹脂によって構成されている、プラスチック光ファイバーを提供する。 The present invention is a plastic optical fiber comprising a core and a clad arranged on the outer periphery of the core, wherein at least a part of the clad is made of a resin having a porous structure. provide.
 本発明によれば、クラッドの屈折率をさらに低下させることによって開口数を高めることができ、その結果低い伝送損失を実現しうるプラスチック光ファイバーを提供することができる。 According to the present invention, it is possible to provide a plastic optical fiber capable of increasing the numerical aperture by further reducing the refractive index of the clad, and as a result, realizing a low transmission loss.
図1は、本発明のプラスチック光ファイバーの断面構造の一例を示す模式図である。FIG. 1 is a schematic view showing an example of a cross-sectional structure of the plastic optical fiber of the present invention. 図2は、本発明のプラスチック光ファイバーの断面構造の別の例を示す模式図である。FIG. 2 is a schematic view showing another example of the cross-sectional structure of the plastic optical fiber of the present invention. 図3は、本発明のプラスチック光ファイバーの断面構造のさらに別の例を示す模式図である。FIG. 3 is a schematic view showing still another example of the cross-sectional structure of the plastic optical fiber of the present invention.
 本発明のプラスチック光ファイバー(以下、「POF」と記載する)の実施形態について説明する。本実施形態のPOFは、コアと、前記コアの外周に配置されたクラッドとを備える。クラッドの少なくとも一部は、多孔質構造を有する樹脂によって構成されている。 An embodiment of the plastic optical fiber of the present invention (hereinafter referred to as "POF") will be described. The POF of the present embodiment includes a core and a clad arranged on the outer periphery of the core. At least a part of the clad is composed of a resin having a porous structure.
 図1~3は、本実施形態のPOFの例(第1例~第3例)の断面構造をそれぞれ示す。 FIGS. 1 to 3 show the cross-sectional structures of the POF examples (1st to 3rd examples) of the present embodiment, respectively.
 図1に示された第1例のPOF10は、コア11と、コア11の外周に配置されたクラッド12と、を備えている。クラッド12の少なくとも一部は、多孔質構造を有する樹脂によって構成されている。 The POF 10 of the first example shown in FIG. 1 includes a core 11 and a clad 12 arranged on the outer periphery of the core 11. At least a part of the clad 12 is made of a resin having a porous structure.
 図2に示された第2例のPOF20は、図1に示されたPOF10において、クラッド12が複数の層を有するクラッド22に変更された構成を有する。なお、POF20では、クラッド22が、コア11に接して配置されている第1のクラッド層221と、第1のクラッド層221よりも外周側に配置されている第2のクラッド層222とからなる2層構造を有している。この構成の場合、例えば第2のクラッド層222が、多孔質構造を有する樹脂によって構成される。なお、図2では、クラッド22が2層構造である例が示されているが、クラッド22に含まれる層数はこれに限定されず、3層以上が含まれていてもよい。クラッドが複数の層によって構成されている場合、例えば、コアに入射した光がコアとクラッドとの界面で全反射せずにクラッド側へ漏れ出た場合であっても、より外周側に位置するクラッド層で全反射させることが可能となるので、光損失を低減できる。 The POF 20 of the second example shown in FIG. 2 has a configuration in which the clad 12 is changed to the clad 22 having a plurality of layers in the POF 10 shown in FIG. In the POF 20, the clad 22 is composed of a first clad layer 221 arranged in contact with the core 11 and a second clad layer 222 arranged on the outer peripheral side of the first clad layer 221. It has a two-layer structure. In the case of this configuration, for example, the second clad layer 222 is composed of a resin having a porous structure. Although FIG. 2 shows an example in which the clad 22 has a two-layer structure, the number of layers included in the clad 22 is not limited to this, and three or more layers may be included. When the clad is composed of a plurality of layers, for example, even if the light incident on the core leaks to the clad side without being totally reflected at the interface between the core and the clad, it is located on the outer peripheral side. Since total reflection can be performed by the clad layer, light loss can be reduced.
 図3に示された第3例のPOF30は、POF20に対して、クラッド22の外周に配置された被覆層31がさらに設けられた構成を有する。被覆層31は、POF30の機械的強度を向上させるために設けられる。 The POF 30 of the third example shown in FIG. 3 has a configuration in which a coating layer 31 arranged on the outer periphery of the clad 22 is further provided with respect to the POF 20. The coating layer 31 is provided to improve the mechanical strength of the POF 30.
 以下に、本実施形態のPOFの各構成について、より詳しく説明する。 Hereinafter, each configuration of the POF of the present embodiment will be described in more detail.
 (コア)
 コアは、光を伝送する領域である。コアは、クラッドよりも高い屈折率を有している。この構成により、コア内に入射した光は、クラッドによってコア内部に閉じ込められて、POF内を伝搬する。
(core)
The core is the area that transmits light. The core has a higher index of refraction than the clad. With this configuration, the light incident in the core is trapped inside the core by the cladding and propagates in the POF.
 コアの材料は、高い透明性を有する樹脂であればよく、特には限定されない。樹脂としては、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。これらの中でも、広い波長領域で低い伝送損失を実現可能であることから、含フッ素樹脂が好適に用いられる。 The core material may be a resin having high transparency, and is not particularly limited. Examples of the resin include fluororesins, acrylic resins such as methyl methacrylate, styrene resins, carbonate resins and the like. Among these, fluororesins are preferably used because low transmission loss can be realized in a wide wavelength region.
 含フッ素樹脂は、例えば、重合性二重結合を有する含フッ素化合物を単量体とする重合体である。C-H結合の伸縮エネルギーによる光吸収を抑制する観点から、コア材料として用いられる含フッ素樹脂は、C-H結合を含まないことが望ましい。したがって、含フッ素樹脂は、実質的に水素原子を含んでいないものが好ましく、特にすべてのC-H結合のHがフッ素化されていることが好ましい。すなわち、含フッ素樹脂は、実質的に水素原子を含まず、かつ全フッ素化されていることが好ましい。含フッ素樹脂が実質的に水素原子を含まないとは、含フッ素樹脂における水素原子の含有割合が、1モル%以下であることである。 The fluororesin is, for example, a polymer having a fluoropolymer having a polymerizable double bond as a monomer. From the viewpoint of suppressing light absorption due to the expansion and contraction energy of the CH bond, it is desirable that the fluororesin used as the core material does not contain the CH bond. Therefore, it is preferable that the fluororesin contains substantially no hydrogen atom, and it is particularly preferable that all H of the CH bond are fluorinated. That is, it is preferable that the fluororesin does not substantially contain hydrogen atoms and is completely fluorinated. The fact that the fluororesin contains substantially no hydrogen atoms means that the content ratio of hydrogen atoms in the fluororesin is 1 mol% or less.
 含フッ素樹脂として、例えば、含フッ素脂肪族環構造を有する重合体が挙げられる。含フッ素脂肪族環構造を有する重合体としては、含フッ素脂肪族環構造を有する含フッ素化合物を単量体として用い、当該単量体を重合して得られるものが好適である。含フッ素脂肪族環構造を有する含フッ素重合体も、実質的に水素原子を含まないことが好ましい。ここで、含フッ素脂肪族環構造を有する含フッ素化合物とは、環を構成する炭素原子と環を構成しない炭素原子間に重合性二重結合を有する含フッ素化合物、又は、環を構成する炭素原子2個間に重合性二重結合を有する含フッ素化合物を意味する。環を構成する炭素原子と環を構成しない炭素原子間に重合性二重結合を有する含フッ素化合物としては、例えば、パーフルオロ-2-メチレン-4-メチル-1,3-ジオキソランのような1,3-ジオキソラン構造を有する含フッ素化合物が挙げられる。環を構成する炭素原子2個間に重合性二重結合を有する含フッ素化合物としては、例えば、パーフルオロ-4-メチル-1,3-ジオキソール及びパーフルオロ-4-メチル-1,3-ジオキソールのような1,3-ジオキソール構造を有する含フッ素化合物が挙げられる。 Examples of the fluororesin include a polymer having a fluoroaliphatic ring structure. As the polymer having a fluorine-containing aliphatic ring structure, a polymer obtained by polymerizing the fluorine-containing compound having a fluorine-containing aliphatic ring structure as a monomer is preferable. It is preferable that the fluorine-containing polymer having a fluorine-containing aliphatic ring structure also contains substantially no hydrogen atom. Here, the fluorine-containing compound having a fluorine-containing aliphatic ring structure is a fluorine-containing compound having a polymerizable double bond between a carbon atom forming a ring and a carbon atom not forming a ring, or a carbon constituting a ring. It means a fluorine-containing compound having a polymerizable double bond between two atoms. Examples of the fluorine-containing compound having a polymerizable double bond between the carbon atom constituting the ring and the carbon atom not forming the ring include 1 such as perfluoro-2-methylene-4-methyl-1,3-dioxolane. , Fluorine-containing compounds having a 3-dioxolane structure can be mentioned. Examples of the fluorine-containing compound having a polymerizable double bond between the two carbon atoms constituting the ring include perfluoro-4-methyl-1,3-dioxol and perfluoro-4-methyl-1,3-dioxol. Fluorine-containing compounds having a 1,3-dioxol structure as described above can be mentioned.
 含フッ素樹脂が全フッ素化されたものであって、かつ含フッ素脂肪族環構造を有する含フッ素重合体である場合、当該含フッ素重合体を重合により形成する単量体の含フッ素化合物には、例えば下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Rff 1~Rff 4は各々独立に、フッ素原子、炭素数1~7のパーフルオロアルキル基、又は炭素数1~7のパーフルオロアルキルエーテル基を表す。Rff 1及びRff 2は連結して環を形成してもよい。)
When the fluororesin is completely fluorinated and is a fluoropolymer having a fluoroaliphatic ring structure, the fluoropolymer is a monomer compound formed by polymerization. For example, a compound represented by the following formula (1) can be mentioned.
Figure JPOXMLDOC01-appb-C000001
(In the formula (1), each independently R ff 1 ~ R ff 4, a fluorine atom, .R represents a perfluoroalkyl group or a perfluoroalkyl ether group having 1 to 7 carbon atoms having 1 to 7 carbon atoms ff 1 and R ff 2 may be connected to form a ring.)
 上記式(1)で表される化合物の具体例として、例えば下記式(A)~(H)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Specific examples of the compound represented by the above formula (1) include compounds represented by the following formulas (A) to (H).
Figure JPOXMLDOC01-appb-C000002
 含フッ素化合物としては、不純物を含まないよう精製された物を用いることが好ましい。精製は、公知の方法により実現できる。特に不純物の中でも酸成分は、着色に影響するので含まれないことが好ましい。 As the fluorine-containing compound, it is preferable to use a compound purified so as not to contain impurities. Purification can be achieved by known methods. In particular, among the impurities, the acid component is preferably not contained because it affects the coloring.
 単量体として用いられる含フッ素化合物は、1種類であってもよいし、2種類以上であってもよい。すなわち、本実施形態で用いられる含フッ素樹脂は、1種のフッ素化合物を単独重合させることによって得られる含フッ素重合体であってもよいし、2種以上の含フッ素化合物を共重合させることによって得られる含フッ素共重合体であってもよい。 The fluorine-containing compound used as the monomer may be one kind or two or more kinds. That is, the fluororesin used in the present embodiment may be a fluoropolymer obtained by homopolymerizing one kind of fluorocompound, or by copolymerizing two or more kinds of fluoropolymers. It may be the obtained fluorine-containing copolymer.
 本実施形態で用いられる含フッ素樹脂は、例えば上述の含フッ素脂肪族環構造を有する含フッ素化合物(以下、含フッ素化合物(A)と記載する)と、含フッ素化合物(A)以外の他の含フッ素化合物とを共重合させることによって得られる含フッ素共重合体であってもよい。含フッ素化合物(A)以外の他の含フッ素化合物として、例えば、以下の含フッ素化合物(B)~(D)が挙げられる。 The fluororesin used in the present embodiment is, for example, a fluoropolymer having the above-mentioned fluoroaliphatic ring structure (hereinafter referred to as a fluoropolymer (A)) and other fluoropolymers other than the fluoropolymer (A). It may be a fluorine-containing copolymer obtained by copolymerizing with a fluorine-containing compound. Examples of the fluorine-containing compound other than the fluorine-containing compound (A) include the following fluorine-containing compounds (B) to (D).
 含フッ素化合物(B)は、パーフルオロビニルエーテル等の含フッ素ビニルエーテルである。含フッ素ビニルエーテルは、例えば下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000003
(式(2)中、R1~R3は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。R4は、炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
The fluorine-containing compound (B) is a fluorine-containing vinyl ether such as perfluorovinyl ether. The fluorine-containing vinyl ether is represented by, for example, the following formula (2).
Figure JPOXMLDOC01-appb-C000003
(In the formula (2), R 1 to R 3 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms. R 4 represents a perfluoroalkyl group having 1 to 7 carbon atoms. The perfluoroalkyl group may have a ring structure. A part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom. A part of the fluorine atom in the perfluoroalkyl group may be substituted. It may be substituted with a halogen atom other than the fluorine atom.)
 含フッ素化合物(C)は、テトラフルオロエチレン及びクロロトリフルオロエチレン等の含フッ素オレフィンである。含フッ素オレフィンは、例えば下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000004
(式(3)中、R5~R8は各々独立に、フッ素原子、又は炭素数1~7のパーフルオロアルキル基を表す。パーフルオロアルキル基は、環構造を有していてもよい。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
The fluorine-containing compound (C) is a fluorine-containing olefin such as tetrafluoroethylene and chlorotrifluoroethylene. The fluorine-containing olefin is represented by, for example, the following formula (3).
Figure JPOXMLDOC01-appb-C000004
(In the formula (3), R 5 to R 8 each independently represent a fluorine atom or a perfluoroalkyl group having 1 to 7 carbon atoms. The perfluoroalkyl group may have a ring structure. A part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom. A part of the fluorine atom in the perfluoroalkyl group may be substituted with a halogen atom other than the fluorine atom.)
 含フッ素化合物(D)は、2個以上の重合性二重結合を有し、かつ環化重合し得る含フッ素化合物である。含フッ素化合物(D)は、例えば下記式(4)で表される。
Figure JPOXMLDOC01-appb-C000005
(式(4)中、Zは、酸素原子、単結合、又は-OC(R1920)O-を表し、R9~R20は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。s及びtはそれぞれ独立に0~5でかつs+tが1~6の整数(ただし、Zが-OC(R1920)O-の場合、s+tは0であってもよい)を表す。)
The fluorine-containing compound (D) is a fluorine-containing compound having two or more polymerizable double bonds and capable of cyclization polymerization. The fluorine-containing compound (D) is represented by, for example, the following formula (4).
Figure JPOXMLDOC01-appb-C000005
(In the formula (4), Z represents an oxygen atom, a single bond, or -OC (R 19 R 20 ) O-, and R 9 to R 20 are independently fluorine atoms and pars having 1 to 5 carbon atoms. Represents a fluoroalkyl group or a perfluoroalkoxy group having 1 to 5 carbon atoms. A part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom. A part of the fluorine atom in the perfluoroalkyl group is , A halogen atom other than the fluorine atom may be substituted. A part of the fluorine atom in the perfluoroalkoxy group may be substituted with a halogen atom other than the fluorine atom. S and t are independently 0 to 0 to each. It represents an integer of 5 and s + t is 1 to 6 (where Z is -OC (R 19 R 20 ) O-, s + t may be 0).
 含フッ素化合物(D)として、下記式(5)で表される含フッ素化合物が用いられてもよい。なお、下記式(5)で表される構成単位は、上記式(4)においてZが酸素原子、sが0、かつtが2の場合である。
Figure JPOXMLDOC01-appb-C000006
(式(5)中、R141、R142、R151、及びR152は各々独立に、フッ素原子、炭素数1~5のパーフルオロアルキル基、又は炭素数1~5のパーフルオロアルコキシ基を表す。フッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルキル基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。パーフルオロアルコキシ基におけるフッ素原子の一部は、フッ素原子以外のハロゲン原子で置換されていてもよい。)
As the fluorine-containing compound (D), a fluorine-containing compound represented by the following formula (5) may be used. The structural unit represented by the following formula (5) is a case where Z is an oxygen atom, s is 0, and t is 2 in the above formula (4).
Figure JPOXMLDOC01-appb-C000006
(In formula (5), R 141 , R 142 , R 151 , and R 152 each independently have a fluorine atom, a perfluoroalkyl group having 1 to 5 carbon atoms, or a perfluoroalkoxy group having 1 to 5 carbon atoms. Represented. A part of the fluorine atom may be substituted with a halogen atom other than the fluorine atom. A part of the fluorine atom in the perfluoroalkyl group may be substituted with a halogen atom other than the fluorine atom. A part of the fluorine atom in the fluoroalkoxy group may be substituted with a halogen atom other than the fluorine atom.)
 含フッ素化合物(D)の具体例として、例えば下記の化合物が挙げられる。
CF2=CFOCF2CF=CF2
CF2=CFOCF(CF3)CF=CF2
CF2=CFOCF2CF2CF=CF2
CF2=CFOCF2CF(CF3)CF=CF2
CF2=CFOCF(CF3)CF2CF=CF2
CF2=CFOCFClCF2CF=CF2
CF2=CFOCCl2CF2CF=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOC(CF32OCF=CF2
CF2=CFOCF2CF(OCF3)CF=CF2
CF2=CFCF2CF=CF2
CF2=CFCF2CF2CF=CF2
CF2=CFCF2OCF2CF=CF2
CF2=CFOCF2CFClCF=CF2
CF2=CFOCF2CF2CCl=CF2
CF2=CFOCF2CF2CF=CFCl
CF2=CFOCF2CF(CF3)CCl=CF2
CF2=CFOCF2OCF=CF2
CF2=CFOCCl2OCF=CF2
CF2=CClOCF2OCCl=CF2
Specific examples of the fluorine-containing compound (D) include the following compounds.
CF 2 = CFOCF 2 CF = CF 2
CF 2 = CFOCF (CF 3 ) CF = CF 2
CF 2 = CFOCF 2 CF 2 CF = CF 2
CF 2 = CFOCF 2 CF (CF 3 ) CF = CF 2
CF 2 = CFOCF (CF 3 ) CF 2 CF = CF 2
CF 2 = CFOCFClCF 2 CF = CF 2
CF 2 = CFOCCl 2 CF 2 CF = CF 2
CF 2 = CFOCF 2 OCF = CF 2
CF 2 = CFOC (CF 3 ) 2 OCF = CF 2
CF 2 = CFOCF 2 CF (OCF 3 ) CF = CF 2
CF 2 = CFCF 2 CF = CF 2
CF 2 = CFCF 2 CF 2 CF = CF 2
CF 2 = CFCF 2 OCF 2 CF = CF 2
CF 2 = CFOCF 2 CFClCF = CF 2
CF 2 = CFOCF 2 CF 2 CCl = CF 2
CF 2 = CFOCF 2 CF 2 CF = CFCl
CF 2 = CFOCF 2 CF (CF 3 ) CCl = CF 2
CF 2 = CFOCF 2 OCF = CF 2
CF 2 = CFOCCl 2 OCF = CF 2
CF 2 = CClOCF 2 OCCl = CF 2
 本実施形態で用いられる含フッ素樹脂が、含フッ素化合物(A)と、含フッ素化合物(A)以外の他の含フッ素化合物(例えば、上記含フッ素化合物(B)~(D)からなる群より選択される少なくとも1つ)とを共重合させることによって得られる含フッ素共重合体である場合、当該含フッ素共重合体において、含フッ素化合物(A)に基づく構成単位(A)の含有量は、当該含フッ素共重合体における全構成単位の合計に対し、20モル%以上であることが好ましく、40モル%以上であることがより好ましい。構成単位(A)が20モル%以上含まれることにより、含フッ素共重合体は、より高い耐熱性を有することができる。構成単位(A)が40モル%以上含まれることにより、含フッ素共重合体は、より高い耐熱性と、より高い透明性及び高い機械的強度を有することができる。 The fluororesin used in the present embodiment is composed of the fluoropolymer (A) and the fluoropolymers other than the fluoropolymer (A) (for example, the group consisting of the fluoropolymers (B) to (D). In the case of a fluorinated copolymer obtained by copolymerizing with at least one selected), the content of the structural unit (A) based on the fluorinated compound (A) in the fluorinated copolymer is , 20 mol% or more, more preferably 40 mol% or more, based on the total of all the constituent units in the fluorine-containing copolymer. By containing 20 mol% or more of the structural unit (A), the fluorine-containing copolymer can have higher heat resistance. By containing 40 mol% or more of the structural unit (A), the fluorine-containing copolymer can have higher heat resistance, higher transparency and higher mechanical strength.
 なお、含フッ素樹脂は、例えば、上記に例示した含フッ素化合物を単量体として用い、この単量体を例えば公知の重合開始剤等を用いて、公知の方法によって重合させることによって製造できる。重合方法としては、公知の重合方法を用いることができる。例えば、上記に例示した含フッ素化合物を常法によってラジカル重合し、含フッ素樹脂を製造できる。含フッ素化合物として全フッ素化された含フッ素化合物を単量体として用い、さらに全フッ素化された化合物からなる重合開始剤を用いることにより、全フッ素化された含フッ素樹脂を製造することができる。 The fluororesin can be produced, for example, by using the fluorine-containing compound exemplified above as a monomer and polymerizing this monomer by a known method using, for example, a known polymerization initiator. As the polymerization method, a known polymerization method can be used. For example, a fluororesin can be produced by radically polymerizing the fluorine-containing compound exemplified above by a conventional method. A fully fluorinated fluororesin can be produced by using a fully fluorinated fluorinated compound as a monomer and further using a polymerization initiator composed of the fully fluorinated compound. ..
 また、本実施形態で用いられる含フッ素樹脂が、上述したような含フッ素脂肪族環構造を有する重合体である場合、重合当初の重合体は末端に不安定な官能基を有していることがある。したがって、この場合は、重合体製造後に、重合体をフッ素でフッ素化する末端安定化処理を行うことが好ましい。 Further, when the fluororesin used in the present embodiment is a polymer having a fluoroaliphatic ring structure as described above, the polymer at the initial stage of polymerization has an unstable functional group at the terminal. There is. Therefore, in this case, it is preferable to perform a terminal stabilization treatment in which the polymer is fluorinated with fluorine after the polymer is produced.
 コア材料は、上記の樹脂に加えて、屈折率を高めるための屈折率調整剤等、他の成分を適宜含んでいてもよい。 In addition to the above resin, the core material may appropriately contain other components such as a refractive index adjusting agent for increasing the refractive index.
 本実施形態のPOFが例えば屈折率分布型である場合、コアは、径方向に対して屈折率が変化する屈折率分布を有する。このような屈折率分布は、例えば、含フッ素樹脂に屈折率調整剤を添加し、屈折率調整剤を光学樹脂成形体中で拡散(例えば、熱拡散)させることによって、形成されうる。 When the POF of the present embodiment is, for example, a refractive index distribution type, the core has a refractive index distribution in which the refractive index changes in the radial direction. Such a refractive index distribution can be formed, for example, by adding a refractive index adjusting agent to the fluororesin and diffusing the refractive index adjusting agent in the optical resin molded body (for example, thermal diffusion).
 コアの屈折率は、クラッドの屈折率よりも高ければよいため、特には限定されない。POFにおいて高い開口数を実現するためには、コアの屈折率とクラッドの屈折率との差は、より大きいことが好ましい。例えば、コアの屈折率は、1.340以上とすることができ、1.360以上であることが好ましい。コアの屈折率の上限は、特には限定されないが、例えば1.4000以下である。 The refractive index of the core is not particularly limited as long as it is higher than the refractive index of the clad. In order to achieve a high numerical aperture in the POF, the difference between the refractive index of the core and the refractive index of the cladding is preferably larger. For example, the refractive index of the core can be 1.340 or more, preferably 1.360 or more. The upper limit of the refractive index of the core is not particularly limited, but is, for example, 1.4000 or less.
 (クラッド)
 本実施形態において、クラッドは、少なくともその一部が、多孔質構造を有する樹脂によって構成されている。クラッド全体が、多孔質構造を有する樹脂によって構成されていてもよい。このように、クラッドが多孔質構造を含むことにより、クラッドの屈折率が、クラッドの材料として用いられる樹脂自体の屈折率よりも低下する。したがって、樹脂自体の開発によってクラッドの屈折率を低下させることが困難な場合であっても、クラッドの屈折率を低下させることが可能となる。これにより、コアの屈折率とクラッドの屈折率との差をより大きくすることができるので、POFにおいて高い開口数を実現できる。その結果、例えば曲げ損失が低減されてコア内への光の閉じ込め効果が向上し、低い伝送損失を実現しうるPOFが実現されうる。
(Clad)
In the present embodiment, at least a part of the clad is made of a resin having a porous structure. The entire clad may be made of a resin having a porous structure. As described above, since the clad contains a porous structure, the refractive index of the clad is lower than that of the resin itself used as the material of the clad. Therefore, even when it is difficult to reduce the refractive index of the clad by developing the resin itself, it is possible to reduce the refractive index of the clad. As a result, the difference between the refractive index of the core and the refractive index of the clad can be made larger, so that a high numerical aperture can be realized in the POF. As a result, for example, the bending loss is reduced, the effect of confining light in the core is improved, and a POF capable of realizing a low transmission loss can be realized.
 クラッドにおいて、多孔質構造を有する樹脂によって構成されている部分の屈折率は特には限定されないが、例えば、1.310以下とすることができ、1.300以下であることが好ましい。多孔質構造を有する樹脂によって構成されている部分の屈折率の下限は、特には限定されないが、例えば1.285以上である。 The refractive index of the portion of the clad made of the resin having a porous structure is not particularly limited, but can be, for example, 1.310 or less, preferably 1.300 or less. The lower limit of the refractive index of the portion made of the resin having a porous structure is not particularly limited, but is, for example, 1.285 or more.
 クラッドが、例えば図1に示すように単層によって構成されている場合、クラッド12において多孔質構造を有する部分は、より外周に位置する部分であることが好ましい。内周部分、すなわちコア11により近い部分、例えばコア11と接する部分は、クラッド側に漏れ出た光が散乱することを確実に抑制するために、多孔質構造を有していないことが好ましい。 When the clad is composed of a single layer as shown in FIG. 1, for example, the portion of the clad 12 having a porous structure is preferably a portion located on the outer periphery. The inner peripheral portion, that is, the portion closer to the core 11, for example, the portion in contact with the core 11, preferably does not have a porous structure in order to surely suppress the scattering of the light leaked to the clad side.
 クラッドが、例えば図2に示すように複数層によって構成されている場合、コア11に接して配置されている第1のクラッド層221よりも外周側に配置されている第2のクラッド層222は、多孔質構造を有することが好ましい。この場合、コア11から第1のクラッド層221に漏れ出た光が、第2のクラッド層222で確実に全反射されてクラッド22内に閉じ込められるように、第2のクラッド層222は第1のクラッド層221よりも低い屈折率を有することが好ましい。例えば、第1のクラッド層221は、1.300~1.322の範囲内の屈折率を有することが好ましい。例えば、第2のクラッド層222は、第1のクラッド層221よりも低く、かつ1.290~1.300の範囲内の屈折率を有することが好ましい。 When the clad is composed of a plurality of layers as shown in FIG. 2, for example, the second clad layer 222 arranged on the outer peripheral side of the first clad layer 221 arranged in contact with the core 11 , It is preferable to have a porous structure. In this case, the second clad layer 222 is first so that the light leaked from the core 11 to the first clad layer 221 is surely totally reflected by the second clad layer 222 and confined in the clad 22. It is preferable to have a refractive index lower than that of the clad layer 221 of. For example, the first clad layer 221 preferably has a refractive index in the range of 1.300 to 1.322. For example, the second clad layer 222 is preferably lower than the first clad layer 221 and has a refractive index in the range of 1.290 to 1.300.
 なお、上述のとおり、クラッド22は、3層以上のクラッド層を有していてもよい。その場合、第2のクラッド層222は、クラッド22において最も内周側以外の位置であればどの位置に配置されてもよいが、光の散乱の可能性をより低減するために、より外周側の位置に配置されることが好ましい。クラッド22が3層以上のクラッド層を有する場合、クラッド22に漏れ出た光をクラッド22内に確実に閉じ込めるために、クラッド22において、最も内周側に配置される第1のクラッド層221の屈折率が最も高く、より外周側に配置されるクラッド層ほど屈折率が低いことが好ましい。多孔質構造を有するクラッド層は、屈折率が所望の範囲内となるように、細孔径及び空隙率等の細孔条件を適宜調整することによって屈折率が設計されてもよい。 As described above, the clad 22 may have three or more clad layers. In that case, the second clad layer 222 may be arranged at any position other than the innermost side of the clad 22, but in order to further reduce the possibility of light scattering, the second clad layer 222 may be arranged on the outer peripheral side. It is preferable to be arranged at the position of. When the clad 22 has three or more clad layers, in order to ensure that the light leaked to the clad 22 is confined in the clad 22, the first clad layer 221 arranged on the innermost peripheral side of the clad 22 It is preferable that the refractive index is the highest, and the clad layer arranged on the outer peripheral side has a lower refractive index. The refractive index of the clad layer having a porous structure may be designed by appropriately adjusting the pore conditions such as the pore diameter and the void ratio so that the refractive index is within a desired range.
 コア11に接している第1のクラッド層221は、多孔質構造を有していてもよいが、多孔質構造を有していないことが好ましい。その理由は、第1のクラッド層221が多孔質構造を有している場合、クラッド側に漏れ出て第1のクラッド層221に入射した光が散乱する場合があるためである。したがって、光の散乱による損失を抑制するために、第1のクラッド層221は、多孔質構造を有していないことが好ましい。 The first clad layer 221 in contact with the core 11 may have a porous structure, but preferably does not have a porous structure. The reason is that when the first clad layer 221 has a porous structure, the light leaking to the clad side and incident on the first clad layer 221 may be scattered. Therefore, in order to suppress the loss due to light scattering, it is preferable that the first clad layer 221 does not have a porous structure.
 クラッドの材料として用いられる樹脂は、コアの材料として用いられる樹脂の屈折率以下の屈折率を有する樹脂であることが好ましい。クラッドの材料として用いられる樹脂は、例えば、含フッ素樹脂、メチルメタクリレート等のアクリル系樹脂、スチレン系樹脂、及びカーボネート系樹脂等が挙げられる。クラッドとコアとの界面で剥離が生じることを防ぐために、クラッドの材料として用いられる樹脂は、コアの材料として用いられている樹脂と同種であることが好ましい。例えば、コアの材料として含フッ素樹脂が用いられる場合、クラッドの材料としての樹脂も、同じ含フッ素樹脂であることが好ましい。また、クラッドが、例えば図2に示すように複数層によって構成されている場合、層間の剥離を抑制するために、各クラッド層の材料として用いられる樹脂は、互いに同じ種類の樹脂であることが好ましい。 The resin used as the clad material is preferably a resin having a refractive index equal to or lower than that of the resin used as the core material. Examples of the resin used as the material for the clad include a fluororesin, an acrylic resin such as methyl methacrylate, a styrene resin, and a carbonate resin. In order to prevent peeling from occurring at the interface between the clad and the core, the resin used as the clad material is preferably the same as the resin used as the core material. For example, when a fluororesin is used as the core material, it is preferable that the resin as the clad material is also the same fluororesin. Further, when the clad is composed of a plurality of layers as shown in FIG. 2, for example, the resins used as the material of each clad layer in order to suppress the peeling between the layers may be the same type of resin. preferable.
 上述のとおり、クラッドの少なくとも一部は、多孔質構造を有する。光の散乱を抑制するために、多孔質構造に含まれる細孔の孔径は、10nm~200nmの範囲内であることが好ましく、10nm~150nmの範囲内であることがより好ましく、50nm~120nmの範囲内であることがより好ましい。ここで、多孔質構造に含まれる細孔の孔径は、透過型電子顕微鏡(TEM)画像を用いて、各細孔の最大径を計測することによって求めることができる。 As mentioned above, at least a part of the clad has a porous structure. In order to suppress light scattering, the pore diameter of the pores contained in the porous structure is preferably in the range of 10 nm to 200 nm, more preferably in the range of 10 nm to 150 nm, and is 50 nm to 120 nm. It is more preferable that it is within the range. Here, the pore diameter of the pores contained in the porous structure can be determined by measuring the maximum diameter of each pore using a transmission electron microscope (TEM) image.
 多孔質構造は、樹脂内に形成されたボイドによって実現されていてもよいし、樹脂に中空粒子を含ませることによって実現されていてもよい。多孔質構造の細孔の大きさを所望の範囲に制御しやすいという観点から、多孔質構造は、樹脂に中空粒子を混合させることによって形成されていることが好ましい。 The porous structure may be realized by voids formed in the resin, or may be realized by including hollow particles in the resin. From the viewpoint that the size of the pores of the porous structure can be easily controlled within a desired range, the porous structure is preferably formed by mixing hollow particles with the resin.
 樹脂に混合される中空粒子は、無機化合物で構成されていることが好ましい。中空粒子として、例えば、中空シリカ粒子を用いることができる。中空粒子は、中空シリカ粒子と他の中空粒子との混合物であってもよいし、中空シリカ粒子のみで構成されていてもよい。 The hollow particles mixed with the resin are preferably composed of an inorganic compound. As the hollow particles, for example, hollow silica particles can be used. The hollow particles may be a mixture of the hollow silica particles and other hollow particles, or may be composed of only the hollow silica particles.
 樹脂に中空粒子を混合することによってクラッドが形成される場合、中空粒子がクラッド内において伝送損失を増大させる異物とならないようにすることが好ましい。したがって、中空粒子の粒径は、10nm~200nmの範囲内であることが好ましく、50nm~120nmの範囲内であることがより好ましい。ここで、樹脂中における中空粒子の粒径は、TEM画像を用いて、中空粒子の粒径を計測することによって求めることができる。また、多孔質構造を有する樹脂において、中空粒子は、10質量%~30質量%の範囲内で含まれることが好ましく、10質量%~25質量%の範囲内で含まれることがより好ましく、15~25質量%の範囲内で含まれることがさらに好ましい。クラッドにおける中空粒子の含有量は、TEM画像を用いて、クラッド樹脂部分の面積と中空粒子部分の面積との割合から算出することができる。 When the clad is formed by mixing the hollow particles in the resin, it is preferable that the hollow particles do not become foreign substances that increase the transmission loss in the clad. Therefore, the particle size of the hollow particles is preferably in the range of 10 nm to 200 nm, and more preferably in the range of 50 nm to 120 nm. Here, the particle size of the hollow particles in the resin can be determined by measuring the particle size of the hollow particles using a TEM image. Further, in the resin having a porous structure, the hollow particles are preferably contained in the range of 10% by mass to 30% by mass, more preferably in the range of 10% by mass to 25% by mass, and 15% by mass. It is more preferably contained in the range of about 25% by mass. The content of hollow particles in the clad can be calculated from the ratio of the area of the clad resin portion to the area of the hollow particle portion using a TEM image.
 中空粒子によって多孔質構造の細孔が形成される場合、多孔質構造を有する樹脂は、例えば、母材となる樹脂に中空粒子を混合して分散させることによって作製されうる。このとき、中空粒子は、母材となる樹脂中に均一に分散していることが好ましく、凝集体(すなわち二次粒子)を形成せずに、一次粒子の状態で分散していることが好ましい。このような良好な分散性を可能とするために、中空粒子には、例えば疎水処理等の表面処理が施されていることが好ましい。 When pores having a porous structure are formed by hollow particles, a resin having a porous structure can be produced, for example, by mixing and dispersing the hollow particles in a resin as a base material. At this time, the hollow particles are preferably uniformly dispersed in the resin as the base material, and are preferably dispersed in the state of primary particles without forming aggregates (that is, secondary particles). .. In order to enable such good dispersibility, it is preferable that the hollow particles are subjected to surface treatment such as hydrophobic treatment.
 (被覆層)
 上述のとおり、被覆層は、POFの機械的強度を向上させるために設けられている。被覆層には、例えば、公知のPOFにおいて被覆層として用いられている材料(例えば、ポリカーボネート等)、各種エンジニアリングプラスチック、シクロオレフィンポリマー、PTFE、変性PTFE、PFA及び構成が適用されうる。
(Coating layer)
As described above, the coating layer is provided to improve the mechanical strength of the POF. For the coating layer, for example, a material (for example, polycarbonate or the like) used as a coating layer in a known POF, various engineering plastics, cycloolefin polymer, PTFE, modified PTFE, PFA and a composition can be applied.
 (POFの製造方法)
 本実施形態のPOFは、公知のPOFの製造方法を利用して製造することができる。すなわち、本実施形態のPOFは、コア及びクラッド等に用いられる各樹脂材料を準備する工程と、それらの樹脂材料を用いてPOFを成形する工程と、を含む方法によって製造されうる。POFを成形する方法として、例えば、溶融紡糸法を用いることができる。溶融紡糸法によるPOFの成形は、例えば、コア用の樹脂材料及びクラッド用の樹脂材料、並びに、必要に応じて被覆層用の樹脂材料を、それぞれ溶融し、複合紡糸することによって行うことができる。
(POF manufacturing method)
The POF of the present embodiment can be produced by using a known method for producing a POF. That is, the POF of the present embodiment can be produced by a method including a step of preparing each resin material used for a core, a clad, and the like, and a step of molding a POF using those resin materials. As a method for forming the POF, for example, a melt spinning method can be used. The POF can be formed by the melt spinning method, for example, by melting the resin material for the core, the resin material for the clad, and the resin material for the coating layer, if necessary, and composite spinning. ..
 クラッドの多孔質構造が例えば中空粒子によって形成される場合、クラッド用の樹脂材料として、母材となる樹脂に中空粒子が混合されたものが準備される。クラッドの多孔質構造が樹脂内に形成されたボイドによって実現される場合、例えば、樹脂材料にあらかじめ発泡剤を分散させておき、POFの成形時に加熱して発泡剤を熱分解することにより気泡を発生させる方法を用いることができる。 When the porous structure of the clad is formed of, for example, hollow particles, a resin material for the clad in which the hollow particles are mixed with the resin as the base material is prepared. When the porous structure of the clad is realized by the voids formed in the resin, for example, the foaming agent is dispersed in the resin material in advance and heated at the time of forming the POF to thermally decompose the foaming agent to generate bubbles. A method of generating can be used.
 (実施例)
 フッ素樹脂としてのポリパーフルオロ-4-メチル1、3ジオキソランに対し、中空ナノシリカを20質量%となるように添加し、二軸混練押し出し機で均一分散させた(混練物a)。
(Example)
Hollow nanosilica was added so as to be 20% by mass with respect to polyperfluoro-4-methyl 1, 3 dioxolane as a fluororesin, and uniformly dispersed by a biaxial kneading extruder (kneaded product a).
 フッ素樹脂としてのポリパーフルオロ-4-メチル1、3ジオキソランに対し、屈折率調整剤としての2,4,6-トリフェニルトリアジンを5質量%となるように溶融混合した(混合物b)。 Polyperfluoro-4-methyl 1,3 dioxolane as a fluororesin was melt-mixed with 2,4,6-triphenyltriazine as a refractive index adjuster so as to be 5% by mass (mixture b).
 コアとして混合物bを、第1のクラッド層としてフッ素樹脂のポリパーフルオロ-4-メチル1、3ジオキソランを、第2のクラッド層として混練物aを、被覆層としてポリカーボネートを用い、多層溶融押し出しにより、コア、第1のクラッド、第2のクラッド、及び被覆層からなる同心円状の4層ファイバーを形成した。 A mixture b is used as a core, a fluororesin polyperfluoro-4-methyl 1, 3 dioxolane is used as a first clad layer, a kneaded product a is used as a second clad layer, and polycarbonate is used as a coating layer. , A concentric four-layer fiber consisting of a core, a first clad, a second clad, and a coating layer was formed.
 以上の方法で、図3に示す構成と同様の構成を有する、実施例のPOFが作製された。実施例のPOFにおいて、コアの直径は50μmであり、第1のクラッドの厚さは70μmであり、第2のクラッドの厚さは5μmであり、被覆層の厚さは250μmであった。 By the above method, the POF of the example having the same configuration as that shown in FIG. 3 was prepared. In the POF of the example, the diameter of the core was 50 μm, the thickness of the first clad was 70 μm, the thickness of the second clad was 5 μm, and the thickness of the coating layer was 250 μm.
 実施例のPOFの評価は、屈曲後の伝送損失を測定することによって行われた。伝送損失の測定は、JIS C6823:2010に準拠して行われた。測定波長は850nmであった。POFの屈曲は、屈曲半径2.5mmで、180度曲げ(U字曲げ)を1回行うことによって、実施された。実施例のPOFの伝送損失は、0.5dB/km以下であった。 The evaluation of the POF of the example was performed by measuring the transmission loss after bending. The transmission loss was measured in accordance with JIS C6823: 2010. The measurement wavelength was 850 nm. The bending of the POF was carried out by performing a 180-degree bending (U-shaped bending) once with a bending radius of 2.5 mm. The transmission loss of the POF of the example was 0.5 dB / km or less.
 (比較例)
 第2のクラッド層を形成しなかったことのみを除き、その他は実施例のPOFと同一条件で比較例のPOFを作製した。さらに、比較例のPOFにおいても、実施例のPOFと同様の方法で評価を行った。比較例のPOFの伝送損失は、5dB以上であった。
(Comparison example)
Comparative Example POFs were prepared under the same conditions as the Example POFs, except that the second clad layer was not formed. Further, the POF of the comparative example was also evaluated by the same method as the POF of the example. The transmission loss of the POF of the comparative example was 5 dB or more.
 以上の実施例及び比較例の結果から、多孔質構造を含むクラッドを備えたPOFは、低い伝送損失を実現できることが確認された。 From the results of the above Examples and Comparative Examples, it was confirmed that the POF having a clad containing a porous structure can realize a low transmission loss.
 本発明のPOFは低い伝送損失を実現でき、高速通信の用途に適している。 The POF of the present invention can realize a low transmission loss and is suitable for high-speed communication applications.

Claims (9)

  1.  コアと、前記コアの外周に配置されたクラッドと、を備えたプラスチック光ファイバーであって、
     前記クラッドの少なくとも一部が、多孔質構造を有する樹脂によって構成されている、プラスチック光ファイバー。
    A plastic optical fiber comprising a core and a clad arranged on the outer periphery of the core.
    A plastic optical fiber in which at least a part of the clad is made of a resin having a porous structure.
  2.  前記多孔質構造に含まれる細孔の孔径は、10nm以上200nm以下の範囲内である、
    請求項1に記載のプラスチック光ファイバー。
    The pore diameter of the pores contained in the porous structure is in the range of 10 nm or more and 200 nm or less.
    The plastic optical fiber according to claim 1.
  3.  前記クラッドは、第1のクラッド層及び第2のクラッド層を含み、
     前記第1のクラッド層は、前記コアに接して配置されており、
     前記第2のクラッド層は、前記第1のクラッド層よりも外周側に配置され、かつ前記多孔質構造を有する前記樹脂によって構成されている、
    請求項1又は2に記載のプラスチック光ファイバー。
    The clad includes a first clad layer and a second clad layer.
    The first clad layer is arranged in contact with the core.
    The second clad layer is arranged on the outer peripheral side of the first clad layer and is composed of the resin having the porous structure.
    The plastic optical fiber according to claim 1 or 2.
  4.  前記樹脂は、中空粒子を含んでおり、
     前記多孔質構造が、前記中空粒子によって形成されている、
    請求項1~3のいずれか1項に記載のプラスチック光ファイバー。
    The resin contains hollow particles and contains hollow particles.
    The porous structure is formed by the hollow particles.
    The plastic optical fiber according to any one of claims 1 to 3.
  5.  前記中空粒子は、無機化合物で構成されている、
    請求項4に記載のプラスチック光ファイバー。
    The hollow particles are composed of an inorganic compound.
    The plastic optical fiber according to claim 4.
  6.  前記中空粒子は、中空シリカ粒子を含む、
    請求項4又は5に記載のプラスチック光ファイバー。
    The hollow particles include hollow silica particles.
    The plastic optical fiber according to claim 4 or 5.
  7.  前記中空粒子の粒径は、50nm以上120nm以下の範囲内である、
    請求項4~6のいずれか1項に記載のプラスチック光ファイバー。
    The particle size of the hollow particles is in the range of 50 nm or more and 120 nm or less.
    The plastic optical fiber according to any one of claims 4 to 6.
  8.  前記樹脂は、前記中空粒子を10質量%以上25質量%以下の範囲内で含む、
    請求項4~7のいずれか1項に記載のプラスチック光ファイバー。
    The resin contains the hollow particles in a range of 10% by mass or more and 25% by mass or less.
    The plastic optical fiber according to any one of claims 4 to 7.
  9.  前記クラッドの外周に配置された被覆層をさらに含む、
    請求項1~8のいずれか1項に記載のプラスチック光ファイバー。
    Further including a coating layer arranged on the outer periphery of the clad,
    The plastic optical fiber according to any one of claims 1 to 8.
PCT/JP2020/014369 2019-03-29 2020-03-27 Plastic optical fiber WO2020203920A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019068809 2019-03-29
JP2019-068809 2019-03-29
JP2019141650A JP2020166223A (en) 2019-03-29 2019-07-31 Plastic optical fiber
JP2019-141650 2019-07-31

Publications (1)

Publication Number Publication Date
WO2020203920A1 true WO2020203920A1 (en) 2020-10-08

Family

ID=72668244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014369 WO2020203920A1 (en) 2019-03-29 2020-03-27 Plastic optical fiber

Country Status (1)

Country Link
WO (1) WO2020203920A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230157A (en) * 1996-02-28 1997-09-05 Matsushita Electric Works Ltd Optical fiber
JPH11101915A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Plastic optical fiber raw wire, wire and cable
JP2000098142A (en) * 1998-09-28 2000-04-07 Konica Corp Optical fiber and its production
US20030026584A1 (en) * 2001-06-20 2003-02-06 Dov Ingman Optical fiber with nano-particle cladding
JP2006178102A (en) * 2004-12-21 2006-07-06 Fuji Photo Film Co Ltd Plastic primary coated optical fiber and manufacturing method therefor
US20090269016A1 (en) * 2008-02-14 2009-10-29 The Curators Of The University Of Missouri Ultra-low refractive index high surface area nanoparticulate films and nanoparticles
JP2010171002A (en) * 2008-12-26 2010-08-05 Taiheiyo Materials Corp Coating material for cable and its cable
JP2012214754A (en) * 2011-03-30 2012-11-08 Daikin Industries Ltd Fluorine-containing resin composition for optical element sealing, and cured product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230157A (en) * 1996-02-28 1997-09-05 Matsushita Electric Works Ltd Optical fiber
JPH11101915A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Plastic optical fiber raw wire, wire and cable
JP2000098142A (en) * 1998-09-28 2000-04-07 Konica Corp Optical fiber and its production
US20030026584A1 (en) * 2001-06-20 2003-02-06 Dov Ingman Optical fiber with nano-particle cladding
JP2006178102A (en) * 2004-12-21 2006-07-06 Fuji Photo Film Co Ltd Plastic primary coated optical fiber and manufacturing method therefor
US20090269016A1 (en) * 2008-02-14 2009-10-29 The Curators Of The University Of Missouri Ultra-low refractive index high surface area nanoparticulate films and nanoparticles
JP2010171002A (en) * 2008-12-26 2010-08-05 Taiheiyo Materials Corp Coating material for cable and its cable
JP2012214754A (en) * 2011-03-30 2012-11-08 Daikin Industries Ltd Fluorine-containing resin composition for optical element sealing, and cured product

Similar Documents

Publication Publication Date Title
KR100768020B1 (en) Plastic optical fiber
KR20050035537A (en) Plastic optical fiber
JP4232172B2 (en) Manufacturing method of gradient index optical fiber
US7135133B2 (en) Method and apparatus for manufacturing plastic optical transmission medium
JP3719735B2 (en) Optical fiber
JP2006208551A (en) Method and equipment for manufacturing plastic optical fiber
JP2002071972A (en) Plastic optical fiber
JPH041704A (en) Plastic optical fiber
JP2020166223A (en) Plastic optical fiber
WO2020203920A1 (en) Plastic optical fiber
US20050141834A1 (en) Optical fiber having sea and islands structure
JP2006343455A (en) Manufacturing method of plastic optical material
EP3098630B1 (en) Optical fiber, optical fiber cable, and communication equipment
WO2023152926A1 (en) Plastic optical fiber and method for producing same
WO2004021054A1 (en) Optical fiber with island structure
JP2022117348A (en) Plastic optical fiber and method of manufacturing the same
WO2022209921A1 (en) Plastic optical fiber and manufacturing method thereof
WO2022210810A1 (en) Plastic optical fiber, hybrid cable, patch code, and active optical cable
WO2023054141A1 (en) Plastic optical fiber and method for manufacturing same
JP3719734B2 (en) Plastic optical fiber cord and bundle fiber
TW202346069A (en) plastic optical fiber
JP2006178102A (en) Plastic primary coated optical fiber and manufacturing method therefor
WO2021200525A1 (en) Plastic optical fiber manufacturing method
JP4727435B2 (en) Manufacturing method of plastic optical fiber
WO2022210812A1 (en) Manufacturing method for plastic optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784207

Country of ref document: EP

Kind code of ref document: A1