WO2020200056A1 - 解调导频参考信号生成方法及装置 - Google Patents

解调导频参考信号生成方法及装置 Download PDF

Info

Publication number
WO2020200056A1
WO2020200056A1 PCT/CN2020/081512 CN2020081512W WO2020200056A1 WO 2020200056 A1 WO2020200056 A1 WO 2020200056A1 CN 2020081512 W CN2020081512 W CN 2020081512W WO 2020200056 A1 WO2020200056 A1 WO 2020200056A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
reference signal
demodulation pilot
pilot reference
Prior art date
Application number
PCT/CN2020/081512
Other languages
English (en)
French (fr)
Inventor
郭文婷
向铮铮
苏宏家
张锦芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020200056A1 publication Critical patent/WO2020200056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communication technology, especially V2X, intelligent driving, intelligent networked cars, etc., and especially relates to a method and device for generating a demodulated pilot reference signal.
  • a demodulation reference signal can generally be used for relative demodulation of a physical up share channel (PUSCH) and a physical up control channel (PUCCH).
  • PUSCH physical up share channel
  • PUCCH physical up control channel
  • DMRS can be generated by specifying a sequence.
  • LTE long term evolution
  • DFT discrete Fourier transform orthogonal frequency division multiplexing
  • u represents the group number
  • v represents the serial number.
  • u represents the group number
  • v represents the serial number.
  • u ⁇ 0,1,2, ⁇ ,29 ⁇ , v ⁇ 0,1 ⁇ that is, the root sequence u and v
  • the number of values is limited, so that the expression space of the demodulation pilot reference signal is limited.
  • due to the base sequence Performing a cyclic shift ⁇ will also affect the correlation of the demodulation pilot reference signal.
  • V2X vehicle-to-everything
  • the vehicle needs to communicate with anything outside, which means that the V2X system requires a large number of different (ie, unrelated) DMRSs.
  • the DMRS generated based on the ZC sequence may have a relatively large correlation, which cannot meet the actual application requirements of the V2X system.
  • a pseudo noise (PN) sequence is used to generate a DMRS.
  • the initial value of the PN sequence is related to the demodulation pilot scrambling identifier (scrambling identifier, SCID) and the cell identifier configured by the higher layer. That is to say, this method is mainly applied to the uplink and downlink communication links between the base station and the terminal device, that is, it is applied to a communication scenario configured with a cell identity.
  • the terminal devices of both parties may be in the coverage of the same cell, or may be in the coverage of different cells, or both may be in the coverage of no mobile network. If the terminal device is in the coverage area of no mobile network, it is likely that the cell identity is not configured. As a result, the terminal device cannot obtain the DMRS based on the PN sequence, and thus cannot communicate normally.
  • the embodiments of the present application provide a demodulation pilot signal processing method and device, which can ensure normal communication between terminal devices when there is no network coverage.
  • this application provides a method for generating a demodulation pilot reference signal, which may be executed by a first terminal device.
  • the first terminal device may be a terminal device or a component (such as a chip system) in the terminal device.
  • the method includes: the first terminal device determines the initial value of the pseudo-noise PN sequence according to the channel type and the first information, and generates the first demodulation pilot reference signal according to the initial value of the PN sequence, and then transmits the second terminal device to the second terminal device.
  • a demodulation pilot reference signal includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index.
  • the first terminal device determines the initial value of the PN sequence according to the channel type and the first information, and then generates the first demodulation pilot reference signal according to the initial value of the PN sequence, and The first demodulation pilot reference signal is transmitted to the second terminal device.
  • the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index.
  • the demodulation pilot reference signal generation process is applicable to the scenario of configuring the cell identity, and the initial value of the demodulation pilot reference signal is related to the demodulation pilot scrambling code and cell identity configured by the higher layer.
  • the demodulation pilot reference signal generation method determines the initial value of the PN sequence in different channel types by combining different first information, and then generates the first demodulation pilot reference to be sent to the second terminal device Signal, and the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index. It can be seen that the first information used has nothing to do with the demodulation pilot scrambling code and cell ID configured by the higher layer. Even if the first terminal device and the second terminal device are not in the area where the cell ID is configured, the demodulation pilot can be generated normally. Reference signal.
  • the channel type is a data channel
  • the system time information includes first system time information
  • the first information includes the identifier of the first terminal device and the first system time information.
  • the first terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information, including:
  • the first terminal device determines the initial value of the pseudo noise PN sequence according to the identification of the first terminal device and the first system time information; or
  • the first terminal device determines the initial value of the PN sequence according to the identification of the first terminal device, the first system time information, and the configuration information of the demodulation pilot reference signal; wherein the first system time information is determined by the time slot index and the time domain symbol The time information represented by the index, the number of time slots and the number of time-domain symbols.
  • the configuration information of the demodulation pilot reference signal includes the number of demodulation pilot reference signals contained in each transmission time slot.
  • the position of the pilot reference signal and the configuration information of the demodulated pilot reference signal are network configuration information or information pre-stored by the first terminal device.
  • the first terminal device determines the initial value of the first demodulation pilot reference signal of the data channel based on the identification of the first terminal device and the first system time information, so that the data channel generated by each first terminal device can be The first demodulation pilot reference signals are different from each other. In this way, the discrimination of the first demodulation pilot reference signals corresponding to the data channels of different terminal devices is improved, thereby reducing interference between different terminal devices.
  • the demodulation pilot reference signal generation method provided in this application further includes:
  • the first terminal device obtains the check information of the control information from the control channel, and determines the identity of the first terminal device according to the check information of the control information, or
  • the first terminal device obtains the identification of the first terminal device from the control information, or
  • the first terminal device pre-stores the identification of the first terminal device.
  • the channel type is a control channel
  • the first information includes system time information
  • the system time information includes first system time information and second system time information.
  • the first terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information, including:
  • the first terminal device determines the initial value of the PN sequence according to the first system time information and the second system time information.
  • the first system time information is determined by the time slot index, the time domain symbol index, and the number of time slots and time domain symbols.
  • Characterized time information, the second system time information is the system time information when the first terminal device and the second terminal device are in a synchronized state, which is characterized by frame information and/or subframe information.
  • the first terminal device determines the initial value of the PN sequence based on the system time information, and then generates the first demodulation pilot reference signal of the control channel, and sends it to the second terminal device.
  • the second terminal device receives the first demodulation pilot reference signals from the control channels of the different first terminal devices, it can learn the subframe numbers and/or frame numbers of the different first demodulation pilot reference signals. If the subframe number and/or frame number of a certain first demodulation pilot reference signal is the same as the subframe number and/or frame number of the second terminal device itself, the sender of the first demodulation pilot reference signal Synchronize with the second terminal device. In this way, the second terminal device can determine the first terminal device synchronized with itself from among the plurality of first terminal devices. This improves the discrimination of the first demodulation pilot reference signal of the control channel of the synchronization source (the first terminal device), and reduces interference.
  • the channel type is a broadcast channel
  • the first information includes the identifier of the first terminal device and the broadcast frequency index.
  • the first terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information, including:
  • the first terminal device determines the initial value of the pseudo-noise PN sequence according to the identifier of the first terminal device and the broadcast frequency index, and the broadcast frequency index represents the index of the broadcast channel broadcast message frequency within a predetermined time period.
  • the second terminal device determines the initial value of the second demodulation pilot reference signal of the broadcast channel based on the identification of the first terminal device and the broadcast times index, and then provides information support for the local end to generate the second demodulation pilot reference signal.
  • this application provides a method for generating a demodulation pilot reference signal, which may be executed by a second terminal device.
  • the second terminal device may be a terminal device or a component (such as a chip system) in the terminal device.
  • the method includes: the second terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information, and generates the second demodulation pilot reference signal according to the initial value of the PN sequence. Wherein, both the first demodulation pilot reference signal and the second demodulation pilot reference signal are used for channel estimation.
  • the first information includes one or more of the identifier of the first terminal device, system time information, and broadcast frequency index, and the first terminal device is a terminal device that sends the first demodulation pilot reference signal to the second terminal device.
  • the channel type is a data channel
  • the system time information includes first system time information
  • the first information includes the identifier of the first terminal device and the first system time information.
  • the second terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information, including:
  • the second terminal device determines the initial value of the PN sequence according to the identification of the first terminal device and the first system time information; or
  • the second terminal device determines the initial value of the PN sequence according to the identification of the first terminal device, the first system time information, and the configuration information of the demodulation pilot reference signal; wherein the first system time information is based on the time slot index and the time domain symbol The time information represented by the index, the number of time slots and the number of time-domain symbols.
  • the configuration information of the demodulation pilot reference signal includes the number of demodulation pilot reference signals contained in each transmission time slot.
  • the position of the pilot reference signal and the configuration information of the demodulated pilot reference signal are network configuration information or information pre-stored by the second terminal device.
  • the second terminal device may also perform the following steps:
  • the second terminal device obtains the check information of the control information from the control channel, and determines the identity of the first terminal device according to the check information of the control information, or
  • the second terminal device obtains the identification of the first terminal device from the control information, or
  • the second terminal device pre-stores the identification of the first terminal device.
  • the channel type is a control channel
  • the first information includes system time information
  • the system time information includes first system time information and second system time information.
  • the second terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information, including:
  • the second terminal device determines the initial value of the pseudo-noise PN sequence according to the first system time information and the second system time information.
  • the first system time information is configured by the slot index, the time domain symbol index, and the number of time slots and time domain symbols.
  • the time information represented by the relationship, and the second system time information is the system time information when the first terminal device and the second terminal device are in a synchronized state represented by frame information and/or subframe information.
  • the channel type is a broadcast channel
  • the first information includes the identifier of the first terminal device and the broadcast frequency index.
  • the second terminal device determines the initial value of the pseudo-noise PN sequence according to the channel type and the first information, which can be specifically implemented as the following steps: the second terminal device determines the initial value of the PN sequence according to the identifier of the first terminal device and the broadcast times index, and broadcasts
  • the number index represents the index of the number of times the broadcast channel broadcast messages in a predetermined time period.
  • the present application provides a demodulation pilot reference signal generating device, which may be the first terminal device in the above first aspect.
  • the device includes a processor, a transmitter, a receiver, and a memory.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and first information.
  • the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index; according to the PN sequence
  • the initial value is to generate the first demodulation pilot reference signal; the transmitter is used to send the first demodulation pilot reference signal to the second terminal device.
  • the channel type is a data channel
  • the system time information includes first system time information
  • the first information includes the identifier of the first terminal device and the first system time information.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and the first information, including: determining the initial value of the pseudo-noise PN sequence according to the identifier of the first terminal device and the first system time information; or
  • the configuration information of demodulation pilot reference signals includes the number of demodulation pilot reference signals contained in each transmission time slot and the number of demodulation pilots
  • the location of the reference signal and the configuration information of the demodulated pilot reference signal are network configuration information or information pre-stored in the memory.
  • the processor is configured to control the receiver to obtain the check information of the control information from the control channel; determine the identity of the first terminal device according to the check information of the control information, or
  • the channel type is a control channel
  • the first information includes system time information
  • the system time information includes first system time information and second system time information.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and the first information, including: determining the initial value of the PN sequence according to the first system time information and the second system time information, the first system time information is The time information represented by the time slot index, the time domain symbol index, the number configuration relationship between the time slot and the time domain symbol, the second system time information is the first terminal device and the second terminal device represented by the frame information and/or subframe information System time information when the terminal device is in a synchronized state.
  • the channel type is a broadcast channel
  • the first information includes the identification of the first terminal device and the broadcast frequency index.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and the first information, and may be specifically implemented as: determining the initial value of the pseudo-noise PN sequence and the number of broadcasts according to the identifier of the first terminal device and the index of broadcast times The index represents the index of the number of times the broadcast channel broadcast messages in a predetermined time period.
  • the present application provides a device for generating a demodulation pilot reference signal.
  • the device may be the second terminal device in the second aspect.
  • the device includes a processor, a receiver, and a memory.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and first information.
  • the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index.
  • a terminal device is a terminal device that sends a first demodulation pilot reference signal to a second terminal device; according to the initial value of the PN sequence, a second demodulation pilot reference signal is generated, the first demodulation pilot reference signal and the second The demodulation pilot reference signals are used for channel estimation.
  • the channel type is a data channel
  • the system time information includes first system time information
  • the first information includes the identifier of the first terminal device and the first system time information.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and the first information, including: determining the initial value of the PN sequence according to the identifier of the first terminal device and the first system time information; or
  • the configuration information of demodulation pilot reference signals includes the number of demodulation pilot reference signals contained in each transmission time slot and the number of demodulation pilots
  • the location of the reference signal and the configuration information of the demodulated pilot reference signal are network configuration information or information pre-stored in the memory.
  • the receiver is used to obtain the check information of the control information from the control channel;
  • the processor is further configured to determine the identity of the first terminal device according to the check information of the control information, or
  • the receiver is also used to obtain the identification of the first terminal device from the control information, or
  • the memory is used to pre-store the identification of the first terminal device.
  • the channel type is a control channel
  • the first information includes system time information
  • the system time information includes first system time information and second system time information.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and the first information, including: determining the initial value of the pseudo-noise PN sequence according to the first system time information and the second system time information, the first system time
  • the information is the time information represented by the time slot index, the time domain symbol index, the number configuration relationship between the time slot and the time domain symbol
  • the second system time information is represented by the frame information and/or subframe information. System time information when the second terminal device is in a synchronized state.
  • the channel type is a broadcast channel
  • the first information includes the identifier of the first terminal device and the broadcast frequency index.
  • the processor is configured to determine the initial value of the pseudo-noise PN sequence according to the channel type and the first information, including: determining the initial value of the PN sequence according to the identifier of the first terminal device and the broadcast frequency index, the broadcast frequency index represents a predetermined time period The index of the number of times that the internal broadcast channel broadcasts a message.
  • the present application provides a demodulation pilot reference signal generating device, which is used to implement the function of the first terminal device in the first aspect described above, or is used to implement the function of the second terminal device in the second aspect described above.
  • an embodiment of the present application provides a device for generating a demodulation pilot reference signal, which has the function of implementing the method for generating a demodulation pilot reference signal in any one of the foregoing aspects.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • a device for generating a demodulation pilot reference signal including: a processor and a memory; the memory is used to store computer execution instructions, and when the device for generating a demodulation pilot reference signal is running, the processor executes the The computer executes instructions stored in the memory, so that the demodulation pilot reference signal generation device executes the demodulation pilot reference signal generation method according to any one of the foregoing aspects.
  • a device for generating a demodulation pilot reference signal including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute any one of the above-mentioned aspects according to the instruction.
  • Demodulation pilot reference signal generation method including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute any one of the above-mentioned aspects according to the instruction.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the demodulation pilot reference of any one of the above aspects Signal generation method.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the demodulation pilot reference signal generation method of any one of the above aspects.
  • a circuit system in an eleventh aspect, includes a processing circuit configured to execute the demodulation pilot reference signal generation method according to any one of the above aspects.
  • a chip in a twelfth aspect, includes a processor, and the processor is coupled with a memory.
  • the memory stores program instructions. When the program instructions stored in the memory are executed by the processor, the demodulation guide of any one of the above aspects is realized. Frequency reference signal generation method.
  • a communication system in a thirteenth aspect, includes the first terminal device in any one of the above aspects and the second terminal device in any one of the above aspects.
  • Figure 1 is a schematic diagram of an application scenario of a V2X system provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a communication system between two terminal devices according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a communication scenario between two terminal devices provided by an embodiment of the application.
  • FIG. 4 is a flowchart of a method for generating a demodulation pilot reference signal provided by an embodiment of the application
  • FIG. 5 is a flowchart of a method for generating a demodulation pilot reference signal of a data channel provided by an embodiment of the application;
  • FIG. 6 is a flowchart of a method for generating a demodulation pilot reference signal for a data channel provided by an embodiment of the application;
  • FIG. 7 is a flowchart of a method for generating a demodulation pilot reference signal of a control channel according to an embodiment of the application
  • FIG. 8 is a flowchart of a method for generating a demodulation pilot reference signal of a broadcast channel according to an embodiment of the application
  • FIG. 9 is a flowchart of a data channel information transmission method provided by an embodiment of the application.
  • FIG. 10 is a flowchart of a data channel information transmission method provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of an apparatus for generating a demodulation pilot reference signal of a data channel according to an embodiment of the application;
  • FIG. 12 is a schematic structural diagram of an apparatus for generating a demodulation pilot reference signal of a data channel provided by an embodiment of the application.
  • the embodiments of the present application may be applicable to systems for communication between terminal devices, such as V2X communication systems and device-to-device (D2D) systems.
  • a V2X communication system is taken as an example to describe the communication system to which the embodiments of the present application are applied.
  • the communication system includes at least two terminal devices, and the two terminal devices can directly communicate via sidelink (SL) ( Figure 1, Figure 2 and Figure 3) Both only show two terminal devices).
  • the communication system further includes access network equipment.
  • the terminal device can also communicate with the access network equipment.
  • the V2X communication system can have the following communication scenarios: vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, vehicle-to-vehicle (vehicle to network) communication , V2N) communication, vehicle to pedestrian mobile terminal (vehicle to pedestrain, V2P) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-vehicle to network
  • V2N vehicle to pedestrian mobile terminal
  • V2P vehicle to pedestrain
  • the terminal device is mainly used to receive or send data.
  • the terminal device involved in the embodiments of the present application may be a device or a component in a device that implements terminal functions.
  • the terminal device includes, for example, but not limited to, various handheld devices with wireless communication functions, vehicle-mounted devices, Wearable devices, computing devices, or other processing devices connected to wireless modems; can also include subscriber units, cellular phones, smart phones, wireless data cards, personal digital assistants (personal digital assistants) assistant, PDA) computer, tablet computer, handheld device (handheld), laptop computer (laptop computer), machine type communication (MTC) terminal (terminal), user equipment (UE), mobile Terminal etc.
  • PDA personal digital assistants
  • MTC machine type communication
  • UE user equipment
  • the terminal device may be a component in any of the foregoing devices (for example, the terminal device may refer to a chip system in any of the foregoing devices).
  • the terminal device may also be referred to as a terminal, which is described here in a unified manner and will not be described in detail below.
  • the access network equipment involved in the embodiments of the present application is a device deployed on a wireless access network to provide wireless communication functions.
  • access network equipment may refer to equipment that communicates with wireless terminals through one or more cells on the air interface of the access network.
  • the device that realizes the function of the access network equipment may be the access network equipment or It is a device that supports the access network equipment to achieve this function (such as the chip in the access network equipment).
  • the access network device can perform attribute management on the air interface.
  • the base station equipment can also coordinate the attribute management of the air interface.
  • the access network equipment includes various forms of macro base stations, micro base stations (also called small stations), relay equipment such as relay stations or relay equipment chips, transmission reception points (TRP), and evolved network nodes (evolved Node B, eNB), next-generation network node (g Node B, gNB), evolved Node B (ng-evolved Node B, ng-eNB) connected to the next-generation core network, etc.
  • the access network equipment can be a baseband unit (BBU) and a remote radio unit (RRU), in the cloud radio access Netowrk, CRAN
  • BBU pool baseband pool
  • RRU remote radio unit
  • FIG. 1 For two terminal devices (UE1 and UE2) using sidelink communication, there may be three communication scenarios as follows: First, two terminal devices (UE1 and UE2) They are all within the coverage of the same public land mobile network (PLMN) (such as PLMN1), as shown in Figure 1.
  • PLMN public land mobile network
  • UE1 only one terminal device (UE1) is in the public land mobile network (public land mobile network, PLMN) (such as PLMN1) coverage, the other terminal device (UE2) is outside the coverage of the public land mobile network (PLMN) (PLMN1), as shown in Figure 2;
  • PLMN public land mobile network
  • PLMN1 public land mobile network
  • PLMN1 public land mobile network
  • PLMN1 public land mobile network
  • PLMN1 public land mobile network
  • FIG. 3 the dotted ellipse areas in Figure 1, Figure 2 and Figure 3 all represent the coverage of PLMN1. Since the two terminal devices use the side link for communication, the two terminal devices can communicate normally regardless of whether the two terminal devices are simultaneously in the coverage of the PLMN.
  • both terminal devices When two terminal devices communicate based on a sidelink (SL), both terminal devices need to generate a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • the first method for generating DMRS In the discrete Fourier transform orthogonal frequency division multiplexing (DFT-OFDM) waveform design with low peak to average ratio (PAPR),
  • DFT-OFDM discrete Fourier transform orthogonal frequency division multiplexing
  • PAPR peak to average ratio
  • the demodulation pilot reference signal is generated based on the ZC sequence.
  • the base sequence of the demodulated pilot reference signal The generation process is as follows:
  • u ⁇ ⁇ 0,1,2, ⁇ , 29 ⁇ represents the group number
  • v ⁇ ⁇ 0, 1 ⁇ represents the sequence number in the group
  • M SC represents the sequence length of the demodulation pilot reference signal
  • N ZC represents the largest prime number smaller than M SC . Represents the round-down operator.
  • Base sequence Perform a cyclic shift ⁇ to obtain the demodulation pilot reference signal, based on the base sequence
  • the process of obtaining the demodulation pilot reference signal satisfies the following formula:
  • represents the subcarrier spacing configuration
  • represents the cyclic shift
  • the demodulation pilot reference signal generated based on the finite values of u and v has a limited expression space.
  • the demodulation pilot reference signal needs to have a larger expression space. Therefore, the method of obtaining the demodulated pilot reference signal based on the ZC sequence cannot be applied to a scenario where a large number of terminal devices communicate.
  • the second method of generating DMRS In the cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) waveform design, the PN sequence is used to generate the demodulation pilot reference signal.
  • the generation process satisfies the following formula:
  • r(n) represents the demodulation pilot reference signal
  • c(n) represents the PN sequence
  • x 1 (n+31) (x 1 (n+3)+x 1 (n))mod2 (8)
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod2 (9)
  • N c 1600
  • x 1 (n) and x 2 (n) represent two m sequences (a PN sequence). Each m sequence requires 31 initial values.
  • the initial value of x 1 (n) is a fixed value.
  • c init represents the initial value of x 2 (n).
  • the initial value of x 2 (n) ie, c init ) satisfies different calculation formulas.
  • the initial value of x 2 (n) (that is, c init ) satisfies the following formula:
  • n SCID uplink demodulation pilot scrambling identity
  • the initial value of x 2 (n) (that is, c init ) satisfies the following formula:
  • N ID ⁇ 0,1,...,65535 ⁇ represents the control channel demodulation pilot scrambling configured by the higher layer Code identification. If N ID is not configured, it can be replaced by cell ID. At this time,
  • the initial value of x 2 (n) (that is, c init ) satisfies the following formula:
  • L represents the maximum number of broadcast signals in a preset time period.
  • n hf represents half-frame indication.
  • n hf 0, it means that the broadcast signal is sent in the first half of the current wireless frame;
  • n hf 1, it means that the broadcast signal is sent in the second half of the current wireless frame.
  • i SSB represents the lowest two bits of the broadcast signal times index in the period.
  • i SSB represents the lowest three bits of the broadcast signal times index in the period.
  • the initial value of the PN sequence needs to be obtained, and the initial value of the PN sequence is related to the demodulation pilot scrambling code (scrambling identifier, SCID) and cell identity configured by the higher layer. That is to say, the method of using the PN sequence to generate the demodulation pilot reference signal is mainly applied in the uplink and downlink communication scenarios between the base station and the terminal device. For two terminal devices that communicate directly, there may be one terminal device in the coverage of a public land mobile network (PLMN), and the other terminal device is in a public land mobile network (PLMN). Out of coverage, that is, the scenario shown in FIG.
  • PLMN public land mobile network
  • PLMN public land mobile network
  • the terminal devices may also exist that the terminal devices are all outside the coverage of a public land mobile network (PLMN), that is, the scenario shown in FIG. 3.
  • PLMN public land mobile network
  • the terminal device cannot obtain the demodulation pilot scrambling identifier (SCID) and cell identifier configured by the higher layer during the DMRS generation process, and therefore cannot determine the PN
  • SCID demodulation pilot scrambling identifier
  • the initial value of the sequence that is, the initial value of the m sequence (a PN sequence) of x 2 (n) cannot be obtained, and thus the DMRS cannot be generated, which affects normal communication between terminal devices.
  • the embodiment of the present application provides a method for generating a demodulation pilot reference signal, and the method is applied in a process of generating a demodulation pilot reference signal by a terminal device.
  • the side link can be used for communication between terminal devices.
  • the DMRS generation method in the embodiment of the present application includes the following steps:
  • the first terminal device determines the initial value of the PN sequence according to the channel type and the first information.
  • the channel types can include data channels, control channels, and broadcast channels.
  • the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index.
  • the first terminal device may obtain the identification of the first terminal device from the control information of the control channel, may also obtain the identification of the first terminal device from the check information of the control information, and may also pre-store the identification of the first terminal device.
  • the system time information includes the first system time information and the second system time information.
  • the first system time information is the time information characterized by the time slot index, the time domain symbol index, and the number configuration relationship between the time slot and the time domain symbol.
  • the system time information represents the system time information when the first terminal device and the second terminal device are in a synchronized state. Exemplarily, parameters that can characterize the system time information include but are not limited to frame numbers and subframe numbers.
  • the broadcast frequency index indicates the index of the broadcast channel broadcast message times in a predetermined time period.
  • the first terminal device refers to different first information to determine the initial value of the PN sequence.
  • the channel types include but are not limited to data channels, control channels, and broadcast channels.
  • the system time information includes the first system time information
  • the first system time information is the time represented by the time slot index, the time domain symbol index, and the number configuration relationship between the time slot and the time domain symbol. information.
  • the first information includes the identification of the first terminal device and the first system time information.
  • the first terminal device can obtain the identification of the first terminal device from the check information of the control information.
  • the specific implementation process may include the following steps:
  • the first terminal device obtains the check information of the control information from the control channel.
  • the verification information includes information used to generate the first terminal device identification.
  • the check information may be a cyclic redundancy check (cyclic redundancy check, CRC).
  • CRC check information such as the first 24 bits, carry the identity of the first terminal device. After the first terminal device demodulates and decodes the information transmitted by the control channel, the CRC check information can be obtained.
  • the first terminal device determines the identity of the first terminal device according to the verification information of the control information.
  • the identification of the first terminal device satisfies the following formula :
  • N ID represents the identity of the first terminal device
  • k represents the index of the bit used to carry the identity of the first terminal device in the cyclic redundancy check code
  • c k represents the first terminal carried by the bit with index k The part of the device ID.
  • the first terminal device obtains the identity of the first terminal device based on the check information of the control information transmitted by the control channel, so as to determine the initial value of the PN sequence.
  • the specific implementation process of S401 may include:
  • the first terminal device determines the initial value of the PN sequence according to the identifier of the first terminal device and the first system time information.
  • the first system time information is time information characterized by a time slot index, a time domain symbol index, and a number configuration relationship between time slots and time domain symbols.
  • the first DMRS is a DMRS generated by the first terminal device.
  • the second DMRS is a DMRS generated by the second terminal device.
  • one demodulation pilot reference signal may occupy one or more time domain symbols.
  • one demodulation pilot reference signal occupies one time domain symbol as an example for description.
  • formula (14) takes the first time domain symbol index among the multiple time domain symbols.
  • the first terminal device determines the initial value of the first demodulation pilot reference signal of the data channel based on the identification of the first terminal device and the first system time information, so that the data channel generated by each first terminal device can be The first demodulation pilot reference signals are different from each other. In this way, the discrimination of the first demodulation pilot reference signals corresponding to the data channels of different terminal devices is improved, thereby reducing interference between different terminal devices.
  • the number of first demodulation pilot reference signals corresponding to the data channel is variable.
  • the specific implementation process of S401 may include:
  • the first terminal device determines the initial value of the PN sequence according to the identifier of the first terminal device, the first system time information, and the configuration information of the demodulation pilot reference signal.
  • the configuration information of the demodulation pilot reference signal includes: the number of demodulation pilot reference signals contained in each transmission slot and the position of the number of demodulation pilot reference signals.
  • the configuration information may be stored in the first terminal device in advance, or may be sent to the first terminal device after being configured by the access network device.
  • the configuration information of the demodulation pilot reference signal includes one or more pilot configuration indexes. Each pilot configuration index corresponds to the number of demodulation pilot reference signals contained in each transmission slot and the position of each demodulation pilot reference signal in a transmission slot. Table 1 shows a possible implementation of configuration information.
  • n DMRS-index represents the pilot configuration index
  • l 0 represents the index of the first time domain symbol in a transmission slot.
  • Table 1 Taking one demodulation pilot reference signal occupies one time domain symbol as an example, when the pilot configuration index n DMRS-index is 0, the first demodulation pilot reference signal contained in each transmission slot The number of (ie, the demodulation pilot reference signal generated by the first terminal) is 1, and the time domain symbol index of the first demodulation pilot reference signal in one transmission slot is l 0 (that is, l 0 +0).
  • Pilot configuration index n When DMRS-index is 1, a time slot contains two first demodulation pilot reference signals, and the time domain symbols of the two contained first demodulation pilot reference signals in the time slot The indexes are expressed as: l 0 +0 and l 0 +7.
  • the pilot configuration index n DMRS-index is 3
  • the number of first demodulation pilot reference signals contained in each transmission slot is 4, and 4 first demodulation pilot reference signals are in one transmission slot
  • the time domain symbol index of is expressed as l 0 , l 0 +5, l 0 +8 and l 0 +11.
  • the first terminal device can select a pilot configuration index from the configuration information in combination with actual application requirements, and accordingly determine the number and number of first demodulation pilot reference signals contained in each transmission slot. The positions of the number of first demodulation pilot reference signals can then obtain the initial value of the PN sequence.
  • N DMRS represents the number of first demodulation pilot reference signals contained in a transmission slot
  • N index ⁇ ⁇ 0,1,2,...,N DMRS -1 ⁇ represents a transmission slot
  • the index of the first demodulation pilot reference signal in. In a frame structure, the index of the first demodulation pilot reference signal increases sequentially from left to right.
  • the first terminal device determines the initial value of the first demodulation pilot reference signal corresponding to the data channel based on the identification of the first terminal device, the first system time information, and the configuration information of the demodulation pilot reference signal.
  • different initial values correspond to different first pilot numbers.
  • the first pilot numbers are the first demodulation pilot reference signals that can be transmitted in one time slot. For example, see Table 1.
  • the PN sequence has a certain initial value
  • the corresponding n DMRS-index is 1, and accordingly, one time slot can transmit two first demodulation pilot reference signals.
  • different initial values correspond to different first demodulation pilot reference signals. It can be deduced that different first demodulation pilot reference signals correspond to different numbers of first pilots.
  • the second terminal device when the second terminal device receives a certain first demodulation pilot reference signal, it can know the first demodulation pilot reference signal.
  • the number of first pilots corresponding to a demodulation pilot reference signal is the number of first demodulation reference signals that can be transmitted in a time slot. This is equivalent to that the first demodulation pilot reference signal can implicitly indicate the number of first pilots, and there is no need to display the number of first pilots through the control information alone, which reduces the length of control information and saves spectrum resources .
  • the first information includes system time information
  • the system time information includes first system time information and second system time information.
  • the slot index, the time domain symbol index, the number configuration relationship between the slot and the time domain symbol can all represent the first system time information
  • the frame information and subframe information can both represent the first terminal device and the first terminal device.
  • the second system time when the two terminal devices are in a synchronized state.
  • the specific implementation process of S401 may include:
  • the first terminal device determines the initial value of the PN sequence according to the first system time information and the second system time information.
  • the first system time information is the time information represented by the time slot index, the time domain symbol index, the number configuration relationship between the time slot and the time domain symbol
  • the second system time information is the time information represented by the frame information and/or subframe information. Characterizing system time information when the first terminal device and the second terminal device are in a synchronized state.
  • the frame information may use the frame number
  • the subframe information may use the subframe number
  • the first terminal device determines the initial value of the PN sequence based on the system time information, at least one of the following three methods may be adopted:
  • the first terminal device determines the initial value of the PN sequence according to the first system time information and frame information (such as frame number).
  • the first terminal device determines the initial value of the pseudo-noise PN sequence according to the first system time information and subframe information (such as subframe number).
  • n f represents the first terminal device and the second terminal device The subframe number when the terminal device is in the synchronization state.
  • the first terminal device determines the initial value of the pseudo noise PN sequence according to the first system time information, frame information (such as frame number), and subframe information (such as subframe number).
  • N f represents the frame number when the first terminal device and the second terminal device are in a synchronized state
  • N f represents the subframe number when the first terminal device and the second terminal device are in a synchronized state.
  • the first terminal device determines the initial value of the PN sequence based on the system time information, and then generates the first demodulation pilot reference signal of the control channel, and sends it to the second terminal device.
  • the second terminal device receives the first demodulation pilot reference signals from the control channels of the different first terminal devices, it can learn the subframe numbers and/or frame numbers of the different first demodulation pilot reference signals. If the subframe number and/or frame number of a certain first demodulation pilot reference signal is the same as the subframe number and/or frame number of the second terminal device itself, the sender of the first demodulation pilot reference signal Synchronize with the second terminal. In this way, the second terminal device can determine the first terminal device synchronized with itself from among the plurality of first terminal devices. This improves the discrimination of the first demodulation pilot reference signal of the control channel of the synchronization source (the first terminal device), and reduces interference.
  • the first information includes the identifier of the first terminal device and the broadcast frequency index.
  • the specific implementation process of S401 may include:
  • the first terminal device determines the initial value of the PN sequence according to the identifier of the first terminal device and the broadcast frequency index.
  • the identity of the first terminal device includes the identity of the first terminal device in the synchronization channel.
  • the broadcast frequency index indicates the index of the broadcast channel broadcast message times in a predetermined time period.
  • i SSB represents the index of the number of broadcast channel broadcast messages in a predetermined time period.
  • the time period may be a pre-configured parameter, such as a parameter configured by an access network device.
  • the initial value of the PN sequence based on the broadcast frequency index is also different, and furthermore, the first demodulation pilot reference signal generated from the initial value of the PN sequence is also different.
  • the expression space of the first demodulation pilot reference signal of the broadcast channel is enlarged, the recognizability of the first demodulation pilot reference signal of the broadcast channel of different terminal devices is improved, and interference is reduced.
  • the first terminal device generates a first demodulation pilot reference signal according to the initial value of the PN sequence.
  • the m sequence is a PN sequence
  • x 1 (n) and x 2 (n) are required
  • Each m sequence requires 31 initial values.
  • the initial value of x 2 (n) can be determined by S401. According to formula (10), x 2 (n) can be obtained. After determining the two m-sequences x 1 (n) and x 2 (n), according to formulas (6) to (9), first demodulation pilot reference signals of different channel types can be obtained.
  • the first terminal device sends the first demodulation pilot reference signal to the second terminal device.
  • the second terminal device receives the first demodulation pilot reference signal sent by the first terminal device to perform channel estimation.
  • the first terminal device determines the initial value of the PN sequence according to the channel type and the first information, and then generates the first demodulation pilot reference signal according to the initial value of the PN sequence , And send the first demodulation pilot reference signal to the second terminal device.
  • the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index.
  • the demodulation pilot reference signal generation process is applicable to the scenario of configuring the cell identity, and the initial value of the demodulation pilot reference signal is related to the demodulation pilot scrambling code and cell identity configured by the higher layer.
  • the demodulation pilot reference signal generation method determines the initial value of the PN sequence in different channel types by combining different first information, and then generates the first demodulation pilot reference to be sent to the second terminal device Signal, and the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index. It can be seen that the first information used has nothing to do with the demodulation pilot scrambling code and cell ID configured by the higher layer. Even if the first terminal device and the second terminal device are not in the area where the cell ID is configured, the demodulation pilot can be generated normally. Reference signal.
  • the second terminal device in the process of sending information from the first terminal device to the second terminal device, the second terminal device, as the receiving end, needs to perform channel estimation to obtain channel information to assist in decoding and accurately obtain the information sent by the first terminal device. Information.
  • the second terminal device needs two demodulation pilot reference signals, namely the first demodulation pilot reference signal received by the second terminal device and the second demodulation pilot reference signal generated by the second terminal device signal. Referring to Figure 4, the execution steps of the second terminal device are as follows:
  • the second terminal device determines the initial value of the pseudo noise PN sequence according to the channel type and the first information.
  • the channel types can include data channels, control channels, and broadcast channels.
  • the first information includes one or more of the identification of the first terminal device, system time information, and broadcast frequency index.
  • the first terminal device is a terminal device that transmits the first demodulation pilot reference signal to the second terminal device.
  • the second terminal device may obtain the identity of the first terminal device during communication with the first terminal device, or obtain the first terminal device from sidelink control information (SCI) transmitted through the control channel.
  • SCI sidelink control information
  • the identification of the device, or the identification of the first terminal device is obtained from a cyclic redundancy check (CRC) transmitted through the control channel.
  • the system time information includes the first system time information and the second system time information.
  • the first system time information is the time information characterized by the time slot index, the time domain symbol index, and the number configuration relationship between the time slot and the time domain symbol.
  • the system time information represents the system time information when the first terminal device and the second terminal device are in a synchronized state.
  • parameters that can characterize the system time information include but are not limited to frame numbers and subframe numbers.
  • the broadcast frequency index indicates the index of the broadcast channel broadcast message times in a predetermined time period.
  • the first demodulation pilot reference signal of the data channel and the second demodulation pilot reference signal of the data channel need to be used.
  • the demodulation pilot reference signal of the corresponding channel type is used.
  • the second terminal device needs to generate a DMRS corresponding to the data channel according to the identifier of the first terminal device for channel estimation.
  • the second terminal device obtains the identity of the first terminal device according to the information transmitted by the control channel.
  • the specific implementation process includes the following steps:
  • the second terminal device obtains the check information of the control information from the control channel.
  • the verification information of the control information includes information capable of generating the identification of the first terminal device.
  • the check information may be a cyclic redundancy check (cyclic redundancy check, CRC).
  • CRC check information such as the first 24 bits, carry the identity of the first terminal device. After the second terminal device demodulates and decodes the information transmitted by the control channel, the CRC check information can be obtained.
  • the second terminal device determines the identity of the first terminal device according to the verification information of the control information.
  • the identification of the first terminal device satisfies the following formula :
  • N ID represents the identity of the first terminal device
  • k represents the index of the bit used to carry the identity of the first terminal device in the cyclic redundancy check code
  • c k represents the first terminal carried by the bit with index k The part of the device ID.
  • the second terminal device obtains the identity of the first terminal device based on the information transmitted by the control channel, so as to determine the initial value of the PN sequence.
  • the specific implementation process of S404 may include:
  • the second terminal device determines the initial value of the PN sequence according to the identifier of the first terminal device and the first system time information.
  • the first system time information is time information characterized by a time slot index, a time domain symbol index, and a number configuration relationship between time slots and time domain symbols.
  • the specific form of the identification of the first terminal device adopted by the second terminal device (receiving terminal) needs to be consistent with the specific form of the identification of the first terminal device adopted by the first terminal device (ie, the sending terminal) in S4011.
  • the initial value of the PN sequence also needs to satisfy formula (14).
  • the second terminal device determines the initial value of the PN sequence based on the identifier of the first terminal device and the first system time information, and then provides information support for the local terminal to generate the second demodulation pilot reference signal.
  • the second terminal device will receive one or more first demodulation pilot reference signals to form a first demodulation pilot reference signal set.
  • the second terminal device needs to combine the configuration information to generate the second demodulation pilot reference signal corresponding to the data channel.
  • the required first information includes the identification of the first terminal device, the first system time information, and the configuration of the demodulation pilot reference signal
  • the specific implementation process of S404 may include:
  • the second terminal device determines the initial value of the PN sequence according to the identifier of the first terminal device, the first system time information, and the configuration information of the demodulation pilot reference signal.
  • the first system time information is time information characterized by a time slot index, a time domain symbol index, and a number configuration relationship between time slots and time domain symbols.
  • the configuration information of the demodulation pilot reference signal includes: the number of first demodulation pilot reference signals contained in each transmission slot and the position of the number of first demodulation pilot reference signals.
  • the configuration information of the demodulation pilot reference signal may be network configuration, or information pre-stored by the second terminal device.
  • the specific form of the identification of the first terminal device used in S4042 still needs to be consistent with the specific form of the identification of the first terminal device used in S4012.
  • the second terminal device Since the second terminal device failed to obtain the pilot configuration index used by the first terminal device when performing S4012, the second terminal device first generates the second demodulation pilot reference signal corresponding to all the pilot configuration indexes to form The second demodulation pilot reference signal set. For each second demodulation pilot reference signal, the initial value of its PN sequence also needs to satisfy formula (15).
  • the second terminal device determines all possible initial values of the second demodulation pilot reference signal based on the identification of the first terminal device, the first system time information, and the configuration information of the demodulation pilot reference signal, and then is the local terminal Generate all possible second demodulation pilot reference signals to provide information support.
  • the first demodulation pilot reference signal includes the demodulation pilot reference signal corresponding to the control channel.
  • the second terminal device generates the second demodulation pilot reference signal corresponding to the control channel
  • the required first information includes system time information
  • the system time information includes first system time information and second system time information.
  • the slot index, the time domain symbol index, the number configuration relationship between the slot and the time domain symbol can all represent the first system time information
  • the frame information and subframe information can both represent the first terminal device and the first terminal device.
  • the second terminal device determines the initial value of the PN sequence according to the first system time information and the second system time information.
  • the first system time information is the time information represented by the time slot index, the time domain symbol index, the number configuration relationship between the time slot and the time domain symbol
  • the second system time information is the time information represented by the frame information and/or subframe information. Characterizing system time information when the first terminal device and the second terminal device are in a synchronized state.
  • the method used in S4043 must be consistent with the method used in S4013. For example, if the initial value of the PN sequence is determined based on the frame number in S4013 (that is, mode 1), the frame number also needs to be used to determine the initial value of the PN sequence in S4043. In addition, the initial value of the PN sequence also needs to satisfy formula (16).
  • the second terminal device determines the initial value of the second demodulation pilot reference signal of the control channel based on the system time information, and then provides information support for the local end to generate the second demodulation pilot reference signal.
  • the first demodulation pilot reference signal includes the demodulation pilot reference signal corresponding to the broadcast channel.
  • the second terminal device generates the second demodulation pilot reference signal corresponding to the broadcast channel, and the required first information includes the identification of the first terminal device and the broadcast times index. See FIG. 8, the specific implementation process of S404 may include :
  • the second terminal device determines the initial value of the pseudo noise PN sequence according to the identifier of the first terminal device and the broadcast frequency index.
  • the identifier of the first terminal device includes the identifier of the first terminal device on the synchronization channel.
  • the broadcast frequency index indicates the index of the broadcast channel broadcast message times in a predetermined time period.
  • the second terminal device pre-acquires the maximum number of broadcast messages sent in each time period, or the second terminal device blindly checks the maximum number of broadcast messages sent in each time period.
  • the specific form of the identification of the first terminal device used in S4044 still needs to be consistent with the specific form of the identification of the first terminal device used in S4014.
  • the initial value of the PN sequence also needs to satisfy formula (19).
  • the second terminal device determines the initial value of the second demodulation pilot reference signal of the broadcast channel based on the identification of the first terminal device and the broadcast times index, and then provides information support for the local end to generate the second demodulation pilot reference signal.
  • the second terminal device generates a second demodulation pilot reference signal according to the initial value of the PN sequence.
  • the second terminal device needs to be consistent with the process of generating the first demodulation pilot reference signal by the first terminal device.
  • the second demodulation pilot reference signal is a signal generated based on the initial value of the PN sequence determined by S40412, S4043, and S4044, it can be directly used for channel estimation; if the second demodulation pilot reference is The signal is a signal generated based on the initial value of the PN sequence determined in S4042. It is necessary to calculate the correlation between the first demodulation pilot reference signal and the second demodulation pilot reference signal under each pilot configuration index. The obtained correlation selects the pilot configuration index, and the second demodulation pilot reference information corresponding to the pilot configuration index is used for channel estimation, so as to improve the accuracy of channel estimation. Referring to FIG. 6, the process for the second terminal device to select the second demodulation pilot reference signal for channel estimation is as follows:
  • the second terminal device determines the correlation between the first demodulation pilot reference signal in the first time slot and one or more second demodulation pilot reference signals in the first time slot .
  • the second terminal device determines the time-frequency resource occupied by the data channel according to the pre-acquired control information, and then randomly determines the position of the first time slot from the time-frequency resource occupied by the data channel, and in the first time slot, Calculate the correlation between the first demodulation pilot reference signal and one or more second demodulation pilot reference signals.
  • the configuration information of the demodulation pilot reference signal can indicate the position of each demodulation pilot reference signal in a time slot.
  • the configuration information of the demodulation pilot reference signal if there is only one column of the first demodulation pilot reference signal in the data channel, the column of the first demodulation pilot reference signal must be mapped to the first pilot of a time slot Symbol.
  • a column of demodulation pilot reference signals refers to one or more demodulation pilot reference signals along the frequency axis.
  • the first column of first demodulation pilot reference signals refers to one or more first demodulation pilot reference signals on the first pilot symbol in a time slot.
  • a pilot symbol refers to one or more time-domain symbols to which a demodulation pilot reference signal is mapped, which is described here in a unified manner.
  • the first demodulation pilot reference signal exists on the first pilot symbol of a time slot.
  • the index l is the first time domain symbol 0 are the presence of a first demodulation reference signal.
  • the second terminal device may use at least one of the following methods to calculate the correlation between the first demodulation pilot reference signal and the second demodulation pilot reference signal:
  • Method 1 When there is only one column or two or more columns of the first demodulation pilot reference signal in the data channel, calculate the difference between the first column of the first demodulation pilot reference signal and the first column of the second demodulation pilot reference signal The correlation between.
  • the first demodulation pilot reference signal on the single frequency domain unit in the first column and the first demodulation pilot reference signal on the single frequency domain unit in the first column are calculated.
  • the multiple calculated correlations are accumulated to obtain the correlation between the first column of first demodulation pilot reference signals and the first column of demodulation pilot reference signals.
  • the correlation between the first demodulation pilot reference signal and one or more second demodulation pilot reference signals satisfies the following formula:
  • h i represents the first demodulation pilot reference signal of the i-th frequency domain unit on the first pilot symbol of a slot, i ⁇ 1,2,...,I-1,I ⁇ , i Indicates the index of the frequency domain unit, and I is a value determined according to the bandwidth of the data channel and the interval of the frequency domain unit.
  • each pilot symbol corresponds to a demodulation pilot reference signal.
  • the frequency domain unit may specifically refer to frequency domain subcarriers.
  • n DMRS-index indicates the pilot configuration index of the first demodulation pilot reference signal in the configuration information.
  • the configuration information with the pilot configuration index being n DMRS-index is used to indicate: when the pilot configuration index is n DMRS-index , Correspondence between the first demodulation pilot reference signal and time domain symbols in a time slot.
  • the second terminal device can obtain the second demodulation pilot for channel estimation only based on the correlation between the first demodulation pilot reference signal in the first column and the second demodulation pilot reference signal in the first column.
  • Frequency reference signal the amount of calculation is small, and the accuracy of channel estimation is improved.
  • Manner 2 The second terminal device calculates all possible correlations between the first demodulation pilot reference signal and the second demodulation pilot reference signal.
  • the first demodulation pilot reference signal includes the demodulation pilot reference signal on any pilot symbol in the first time slot in the first demodulation pilot reference signal set
  • the second demodulation pilot reference signal includes the demodulation pilot reference signal on the same pilot symbol as the first demodulation pilot reference signal in the second demodulation pilot reference signal set.
  • the first demodulation pilot reference signal set represents the set of demodulation pilot reference signals corresponding to the data channel received by the receiving end
  • the second demodulation pilot reference signal set represents the demodulation generated based on the configuration information of the pilot.
  • the correlation between the first demodulation pilot reference signal and one or more second demodulation pilot reference signals can satisfy the following formula:
  • h i,l represents the first demodulation pilot reference signal of the i-th frequency domain unit on the l-th time-domain symbol of a slot
  • i ⁇ 1,2,...,I-1,I ⁇ I represents the index of the frequency domain unit
  • I is a value determined according to the bandwidth of the data channel and the interval of the frequency domain unit.
  • Each pilot symbol corresponds to a demodulation pilot reference signal.
  • the frequency domain unit may specifically refer to frequency domain subcarriers.
  • n DMRS-index indicates the pilot configuration index of the first demodulation pilot reference signal in the configuration information.
  • the configuration information with the pilot configuration index being n DMRS-index is used to indicate: when the pilot configuration index is n DMRS-index , Correspondence between pilot symbols and time domain symbols where the first demodulation pilot reference signal is located in a time slot.
  • the correlation between the first demodulation pilot reference signal and one or more second demodulation pilot reference signals can also satisfy the following formula:
  • h i,l represents the first demodulation pilot reference signal of the i-th frequency domain unit on the l-th time-domain symbol of a slot
  • i ⁇ 1,2,...,I-1,I ⁇ I represents the index of the frequency domain unit
  • I is a value determined according to the bandwidth of the data channel and the interval of the frequency domain unit.
  • Each pilot symbol corresponds to a demodulation pilot reference signal.
  • the frequency domain unit may specifically refer to frequency domain subcarriers.
  • n DMRS-index indicates the pilot configuration index of the first demodulation pilot reference signal in the configuration information.
  • the configuration information with the pilot configuration index being n DMRS-index is used to indicate: when the pilot configuration index is n DMRS-index , Correspondence between pilot symbols and time domain symbols where the first demodulation pilot reference signal is located in a time slot.
  • the second terminal device calculates the correlation between each first demodulation pilot reference signal and the second demodulation pilot reference signal, improves the accuracy of the correlation calculation result, and then accurately selects the pilot configuration index to obtain The second demodulation pilot reference signal used for channel estimation.
  • S407 Determine a second demodulation pilot reference signal used for channel estimation according to the correlation between the first demodulation pilot reference signal and one or more second demodulation pilot reference signals.
  • the second demodulation pilot reference signal used for channel estimation includes the second demodulation pilot reference signal with the greatest correlation.
  • the second demodulation pilot reference signal used for channel estimation satisfies the following formula:
  • the second demodulation pilot reference signal used for channel estimation satisfies the following formula:
  • the second demodulation pilot reference signal used for channel estimation satisfies the following formula:
  • the second terminal device selects the pilot configuration index with the highest correlation calculation result, and uses the second demodulation pilot reference signal corresponding to the pilot configuration index with the highest correlation for channel estimation, so as to improve the accuracy of channel estimation .
  • the method includes the following steps:
  • S901 The first terminal device performs channel coding on the information to be sent.
  • the first terminal device generates a first demodulation pilot reference signal corresponding to the data channel.
  • the first terminal device may perform S901 and then S902, or may perform S902 and then S901, or perform S901 and S902 at the same time.
  • the sequence of S901 and S902 is not limited here.
  • the first terminal device maps the channel-coded information to be sent and the first demodulation pilot reference signal corresponding to the data channel to the time domain resource.
  • the time domain symbol index represents the position of 0.
  • the first terminal device performs fast Fourier transform (fast fourier transform, FFT) and framing processing on the information of the time domain resource.
  • FFT fast fourier transform
  • a header and a tail are added to the front and back of the FFT processed data and encapsulated into a frame, so that the second terminal device can recognize the start and end of the frame from the received bit stream according to the markers of the header and the tail.
  • the first terminal device sends the information encapsulated as a frame to the second terminal device.
  • the second terminal device receives the information encapsulated as a frame from the first terminal device.
  • the second terminal device performs deframing processing and inverse fast Fourier transform (IFFT) on the information that has been encapsulated as a frame.
  • IFFT inverse fast Fourier transform
  • the second terminal device performs channel separation on the information after the inverse fast Fourier transform, and obtains the first demodulation pilot reference signal and data information.
  • the second terminal device generates a second demodulation pilot reference signal corresponding to the data channel.
  • the second terminal device may first perform S907 and then S908, or may first perform S908 and then S907, or simultaneously perform S907 and S908.
  • the sequence of S907 and S908 is not limited here.
  • the second terminal device performs channel estimation according to the received first demodulation pilot reference signal and the generated second demodulation pilot reference signal, and obtains a channel estimation result.
  • the second terminal device decodes the received data information according to the channel estimation result.
  • the first terminal device and the second terminal device can communicate directly, there is no limitation of the expression space of the demodulation pilot reference signal, and the discrimination between different demodulation pilot reference signals can be improved.
  • the first terminal device sends information (the information carries the first demodulation pilot reference signal) and the second terminal device receives and decodes the information.
  • the information process is elaborated in detail. Referring to Figure 10, the method includes the following steps:
  • the first terminal device performs channel coding on the information to be sent.
  • the first terminal device generates a first demodulation pilot reference signal corresponding to the data channel.
  • the first terminal device maps the channel-coded information to be sent and the first demodulation pilot reference signal corresponding to the data channel to time domain resources.
  • the number of first demodulation pilot reference signals contained in one transmission time slot is 2, and two first demodulation pilots
  • the position where the reference signal is mapped to the time domain resource is the position where the time domain symbol index in each transmission slot is expressed as l 0 and l 0 +7.
  • the second terminal device generates a second demodulation pilot reference signal corresponding to the data channel.
  • the second terminal device may first execute S1006 and then execute S1007, or may first execute S1007 and then execute S1006, or execute S1006 and S1007 simultaneously.
  • the sequence of S1006 and S1007 is not limited here.
  • the second terminal device performs blind detection on the information after the inverse fast Fourier transform according to the generated second demodulation pilot reference signal, and obtains the pilot configuration index used by the first terminal device.
  • the second terminal device performs channel separation on the information after the inverse fast Fourier transform according to the pilot configuration index adopted by the first terminal device, and obtains the first demodulation pilot reference signal and data information.
  • S1010 Perform channel estimation according to the received first demodulation pilot reference signal and the second demodulation pilot reference signal corresponding to the pilot configuration index, and obtain a channel estimation result.
  • the first terminal device and the second terminal device can communicate directly. Even if the number of demodulation pilot reference signals in the data channel is variable, the second terminal device can determine the pilot used by the first terminal device. Frequency configuration index, the second demodulation pilot reference signal corresponding to the same pilot configuration index is used for channel estimation to improve the accuracy of channel estimation. In addition, the control information does not need to carry quantitative information, which reduces the length of the control information and saves spectrum resources.
  • the first terminal device and the second terminal device include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiment of the present application can divide the functional units of the demodulation pilot reference signal generating apparatus according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing. Unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a schematic block diagram of a demodulation pilot reference signal generating apparatus provided in an embodiment of the present application.
  • the demodulation pilot reference signal generating device 1100 may exist in the form of software, or may be a device, or a component in the device (such as a chip system).
  • the demodulation pilot reference signal generating device 1100 includes: a processing unit 1102 and a communication unit 1103.
  • the communication unit 1103 can also be divided into a sending unit (not shown in FIG. 11) and a receiving unit (not shown in FIG. 11).
  • the sending unit is used to support the demodulation pilot reference signal generating device 1100 to send information to other network elements.
  • the receiving unit is configured to support the demodulation pilot reference signal generating device 1100 to receive information from other network elements.
  • the processing unit 1102 may be used to support the device 1100 to perform S401 and S402 in FIG. 4, and/or be used herein Other processes of the described scheme.
  • the communication unit 1103 is used to support communication between the device 1100 and other network elements (for example, a second terminal device). For example, the communication unit is used to support the device 1100 to perform S403 shown in FIG. 4 and/or other processes used in the solution described herein.
  • the processing unit 1102 may be used to support the device 1100 to perform S404, S405, and/or as shown in FIG. 4 Other procedures used in the scenarios described herein.
  • the communication unit 1103 is used to support communication between the device 1100 and other network elements (for example, the first terminal device). For example, the communication unit is used to support the device 1100 to perform S403 shown in FIG. 4 and/or other processes used in the solution described herein.
  • the demodulation pilot reference signal generating device 1100 may further include a storage unit 1101 for storing program codes and data of the device 1100, and the data may include but not limited to original data or intermediate data.
  • the processing unit 1102 may be a processor or a controller, for example, a CPU, a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 1103 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is a general term.
  • the communication interface may include multiple interfaces, for example, may include: an interface between the terminal and the terminal and/ Or other interfaces.
  • the storage unit 1101 may be a memory.
  • the processing unit 1102 is a processor
  • the communication unit 1103 is a communication interface
  • the storage unit 1101 is a memory
  • the demodulation pilot reference signal generating apparatus 1200 involved in the embodiment of the present application may be as shown in FIG. 12.
  • the device 1200 includes a processor 1202, a transceiver 1203, and a memory 1201.
  • the transceiver 1203 may be an independently set transmitter, which may be used to send information to other devices, and the transceiver may also be an independently set receiver, which is used to receive information from other devices.
  • the transceiver may also be a component that integrates the functions of sending and receiving information. The embodiment of the present application does not limit the specific implementation of the transceiver.
  • the demodulation pilot reference signal generating apparatus 1200 may further include a bus 1204.
  • the transceiver 1203, the processor 1202, and the memory 1201 may be connected to each other through a bus 1204; the bus 1204 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, for short) EISA) bus, etc.
  • the bus 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used to represent in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • a person of ordinary skill in the art can understand that: in the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server, or data center via wired (for example, coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network devices (for example, Terminal). Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种解调导频参考信号生成方法及装置,涉及通信技术领域,特别是V2X、智能驾驶、智能网联汽车等,能够解决在无网络覆盖时通信终端装置无法正常通信的问题。该方法包括:第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,并根据PN序列的初始值,生成第一解调导频参考信号,再向第二终端装置发送第一解调导频参考信号。其中,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。该方法应用在终端装置生成解调导频参考信号过程中。

Description

解调导频参考信号生成方法及装置
本申请要求于2019年04月02日提交中国国家知识产权局、申请号为201910263491.1、发明名称为“解调导频参考信号生成方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是V2X、智能驾驶、智能网联汽车等,尤其涉及一种解调导频参考信号生成方法及装置。
背景技术
解调导频参考信号(demodulation reference signal,DMRS)通常可以用于物理上行共享信道(physical up share channel,PUSCH)和物理上行控制信道(physical up control channel,PUCCH)的相关解调。目前,可以通过指定序列生成DMRS。其中,作为一种生成DMRS的实现方式,通用移动通信技术的长期演进(long term evolution,LTE)中,对于离散傅里叶变换的正交频分复用(discrete fourier transform orthogonal frequency division multiplexing,DFT-OFDM)波形设计的信道,首先采用根序列u和v生成ZC序列(Zadoff-Chu sequence),并基于ZC序列得到DMRS的基序列
Figure PCTCN2020081512-appb-000001
之后,对基序列
Figure PCTCN2020081512-appb-000002
进行循环移位α,得到解调导频参考信号。其中,u表示组号,v表示序列号。通常,为了保证解调导频参考信号具备良好的相关性,u∈{0,1,2,···,29},v∈{0、1},也就是说,根序列u和v的取值数量有限,进而使解调导频参考信号的表达空间有限。同时,由于对基序列
Figure PCTCN2020081512-appb-000003
进行循环移位α,也会影响解调导频参考信号的相关性。而在车与任何事物通信(vehicle to everything,V2X)的车联网技术中,车辆需要与外界的任何事物进行通信,也就意味着,V2X***需要大量互不相同(即互不相关)的DMRS,而基于ZC序列所生成的DMRS之间相关性可能较大,无法满足V2X***的实际应用需求。
作为另一种生成DMRS的实现方式,对于循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形设计的信道,采用伪噪声(pseudo noise,PN)序列生成DMRS。并且,PN序列的初始值均与高层配置的解调导频扰码(scrambling identifier,SCID)和小区标识有关。也就是说,这种方式主要应用于基站与终端装置之间的上、下行通信链路中,即应用于配置有小区标识的通信场景。而V2X***中,通信双方的终端装置可能处于同一小区覆盖范围内,也有可能处于不同小区覆盖范围内,或者均处于无移动网络覆盖范围。若终端装置处于无移动网络覆盖范围内,则很可能并未被配置小区标识,这样一来,终端装置无法基于PN序列得到DMRS,进而无法正常通信。
发明内容
本申请实施例提供一种解调导频信号处理方法及装置,能够在无网络覆盖时,保证终端装置之间正常通信。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请提供一种解调导频参考信号生成方法,该方法可以由第一终端装置 执行。第一终端装置可以为终端设备,也可以为终端设备中的组件(比如芯片***)。该方法包括:第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,并根据PN序列的初始值,生成第一解调导频参考信号,再向第二终端装置发送第一解调导频参考信号。其中,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。
本申请提供的解调导频参考信号生成方法,第一终端装置根据信道类型和第一信息确定PN序列的初始值,再根据PN序列的初始值,生成第一解调导频参考信号,并向第二终端装置发送第一解调导频参考信号。其中,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。相对于现有技术中,解调导频参考信号的生成过程均适用于配置小区标识的场景,解调导频参考信号的初始值均与高层配置的解调导频扰码和小区标识有关,对于处于未配置小区标识区域的终端装置则无法生成解调导频参考信号,无法保证两个终端装置之间直接通信。本申请实施例提供的解调导频参考信号生成方法在不同的信道类型中,结合不同的第一信息确定PN序列的初始值,进而生成向第二终端装置发送的第一解调导频参考信号,且第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。可见,所使用的第一信息与高层配置的解调导频扰码和小区标识无关,即使第一终端装置和第二终端装置均未处于配置小区标识的区域,也能够正常生成解调导频参考信号。
在一种可能的设计中,信道类型为数据信道,***时间信息包括第一***时间信息,第一信息包括第一终端装置的标识和第一***时间信息。
第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
第一终端装置根据第一终端装置的标识和第一***时间信息确定伪噪声PN序列的初始值;或
第一终端装置根据第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和数量的解调导频参考信号的位置,解调导频参考信号的配置信息是网络配置的信息或第一终端装置预存储的信息。
如此,第一终端装置基于第一终端装置的标识和第一***时间信息,确定数据信道第一解调导频参考信号的初始值,可使每个第一终端装置所生成的数据信道对应的第一解调导频参考信号互不相同。如此,提高了不同终端装置数据信道对应的第一解调导频参考信号的区分度,进而降低不同终端装置之间的干扰。
在一种可能的设计中,本申请提供的解调导频参考信号生成方法还包括:
第一终端装置从控制信道获取控制信息的校验信息,并根据控制信息的校验信息确定第一终端装置的标识,或
第一终端装置从控制信息中获取第一终端装置的标识,或
第一终端装置预存储第一终端装置的标识。
在一种可能的设计中,信道类型为控制信道,第一信息包括***时间信息,***时间信息包括第一***时间信息和第二***时间信息。
第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
第一终端装置根据第一***时间信息和第二***时间信息确定PN序列的初始值,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息是通过帧信息和/或子帧信息所表征第一终端装置与第二终端装置处于同步状态时的***时间信息。
这里,第一终端装置基于***时间信息确定PN序列的初始值,进而生成控制信道的第一解调导频参考信号,发送给第二终端装置。在第二终端装置接收到来自不同第一终端装置控制信道的第一解调导频参考信号之后,可以获知不同的第一解调导频参考信号的子帧号和/或帧号。若某一第一解调导频参考信号的子帧号和/或帧号与第二终端装置自身的子帧号和/或帧号相同,则该第一解调导频参考信号的发送方与第二终端装置同步。如此,第二终端装置能够从多个第一终端装置中确定与自身同步的第一终端装置。也就提高了同步源(第一终端装置)的控制信道第一解调导频参考信号的区分度,降低干扰。
在一种可能的设计中,信道类型为广播信道,第一信息包括第一终端装置的标识和广播次数索引。
第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
第一终端装置根据第一终端装置的标识和广播次数索引确定伪噪声PN序列的初始值,广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
如此,第二终端装置基于第一终端装置的标识和广播次数索引,确定广播信道第二解调导频参考信号的初始值,进而为本地端生成第二解调导频参考信号提供信息支持。
第二方面,本申请提供一种解调导频参考信号生成方法,该方法可以由第二终端装置执行。第二终端装置可以为终端设备,也可以为终端设备中的组件(比如芯片***)。该方法包括:第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,并根据PN序列的初始值,生成第二解调导频参考信号。其中,第一解调导频参考信号和第二解调导频参考信号均用于信道估计。其中,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个,第一终端装置是向第二终端装置发送第一解调导频参考信号的终端装置。
在一种可能的设计中,信道类型为数据信道,***时间信息包括第一***时间信息,第一信息包括第一终端装置的标识和第一***时间信息。
第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
第二终端装置根据第一终端装置的标识和第一***时间信息确定PN序列的初始值;或
第二终端装置根据第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和数量的解调导频参考信号的位置,解调导频参考信号的配置信息是网络配置的信息或第二终端装置预存储的信息。
在一种可能的设计中,第二终端装置还可以执行如下步骤:
第二终端装置从控制信道获取控制信息的校验信息,并根据控制信息的校验信息确定第一终端装置的标识,或
第二终端装置从控制信息中获取第一终端装置的标识,或
第二终端装置预存储第一终端装置的标识。
在一种可能的设计中,信道类型为控制信道,第一信息包括***时间信息,***时间信息包括第一***时间信息和第二***时间信息。
第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
第二终端装置根据第一***时间信息和第二***时间信息确定伪噪声PN序列的初始值,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息是通过帧信息和/或子帧信息所表征第一终端装置与第二终端装置处于同步状态时的***时间信息。
在一种可能的设计中,信道类型为广播信道,第一信息包括第一终端装置的标识和广播次数索引。
第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,可以具体实现为如下步骤:第二终端装置根据第一终端装置的标识和广播次数索引确定PN序列的初始值,广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
第三方面,本申请提供一种解调导频参考信号生成装置,该装置可以为上述第一方面中的第一终端装置。该装置包括处理器、发送器、接收器和存储器。处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个;根据PN序列的初始值,生成第一解调导频参考信号;发送器,用于向第二终端装置发送第一解调导频参考信号。
在一种可能的设计中,信道类型为数据信道,***时间信息包括第一***时间信息,第一信息包括第一终端装置的标识和第一***时间信息。
处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据第一终端装置的标识和第一***时间信息确定伪噪声PN序列的初始值;或
用于根据第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和数量的解调导频参考信号的位置,解调导频参考信号的配置信息是网络配置的信息或存储器预存储的信息。
在一种可能的设计中,处理器,用于控制接收器从控制信道获取控制信息的校验信息;根据控制信息的校验信息确定第一终端装置的标识,或
用于控制接收器从控制信息中获取第一终端装置的标识,或
用于控制存储器预存储第一终端装置的标识。
在一种可能的设计中,信道类型为控制信道,第一信息包括***时间信息,***时间信息包括第一***时间信息和第二***时间信息。
处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据第一***时间信息和第二***时间信息确定PN序列的初始值,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息是通过帧信息和/或子帧信息所表征第一终端装置与第二终端装置处于同步状态时的***时间信息。
在一种可能的设计中,信道类型为广播信道,第一信息包括第一终端装置的标识和广 播次数索引。
处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,具体可以实现为:用于根据第一终端装置的标识和广播次数索引确定伪噪声PN序列的初始值,广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
第四方面,本申请提供一种解调导频参考信号生成装置,该装置可以为上述第二方面中的第二终端装置。该装置包括处理器、接收器和存储器。具体的,处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个,第一终端装置是向第二终端装置发送第一解调导频参考信号的终端装置;根据PN序列的初始值,生成第二解调导频参考信号,第一解调导频参考信号和第二解调导频参考信号均用于信道估计。
在一种可能的设计中,信道类型为数据信道,***时间信息包括第一***时间信息,第一信息包括第一终端装置的标识和第一***时间信息。
处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据第一终端装置的标识和第一***时间信息确定PN序列的初始值;或
用于根据第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和数量的解调导频参考信号的位置,解调导频参考信号的配置信息是网络配置的信息或存储器预存储的信息。
在一种可能的设计中,接收器,用于从控制信道获取控制信息的校验信息;
处理器,还用于根据控制信息的校验信息确定第一终端装置的标识,或
接收器,还用于从控制信息中获取第一终端装置的标识,或
存储器,用于预存储第一终端装置的标识。
在一种可能的设计中,信道类型为控制信道,第一信息包括***时间信息,***时间信息包括第一***时间信息和第二***时间信息。
处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据第一***时间信息和第二***时间信息确定伪噪声PN序列的初始值,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息是通过帧信息和/或子帧信息所表征第一终端装置与第二终端装置处于同步状态时的***时间信息。
在一种可能的设计中,信道类型为广播信道,第一信息包括第一终端装置的标识和广播次数索引。
处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据第一终端装置的标识和广播次数索引确定PN序列的初始值,广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
第五方面,本申请提供一种解调导频参考信号生成装置,用于实现上述第一方面中第一终端装置的功能,或用于实现上述第二方面中第二终端装置的功能。
第六方面,本申请实施例提供一种解调导频参考信号生成装置,该装置具有实现上述任一方面中任一项的解调导频参考信号生成方法的功能。该功能可以通过硬件实现,也可 以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,提供一种解调导频参考信号生成装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该解调导频参考信号生成装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该解调导频参考信号生成装置执行如上述任一方面中任一项的解调导频参考信号生成方法。
第八方面,提供一种解调导频参考信号生成装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的解调导频参考信号生成方法。
第九方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的解调导频参考信号生成方法。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的解调导频参考信号生成方法。
第十一方面,提供一种电路***,电路***包括处理电路,处理电路被配置为执行如上述任一方面中任一项的解调导频参考信号生成方法。
第十二方面,提供一种芯片,芯片包括处理器,处理器和存储器耦合,存储器存储有程序指令,当存储器存储的程序指令被处理器执行时实现上述任一方面任意一项的解调导频参考信号生成方法。
第十三方面,提供一种通信***,通信***包括上述各个方面中任一方面中的第一终端装置和任一方面中的第二终端装置。
其中,第二方面至第十三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的V2X***的应用场景示意图;
图2为本申请实施例提供的两个终端装置之间通信的***示意图;
图3为本申请实施例提供的两个终端装置之间的通信场景示意图;
图4为本申请实施例提供的解调导频参考信号生成方法流程图;
图5为本申请实施例提供的数据信道的解调导频参考信号生成方法流程图;
图6为本申请实施例提供的数据信道的解调导频参考信号生成方法流程图;
图7为本申请实施例提供的控制信道的解调导频参考信号生成方法流程图;
图8为本申请实施例提供的广播信道的解调导频参考信号生成方法流程图;
图9为本申请实施例提供的数据信道信息传输方法流程图;
图10为本申请实施例提供的数据信道信息传输方法流程图;
图11为本申请实施例提供的数据信道的解调导频参考信号生成装置的结构示意图;
图12为本申请实施例提供的数据信道的解调导频参考信号生成装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。 例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例可以适用于终端装置之间通信的***,如V2X通信***、设备到设备(device to device,D2D)***。下面,以V2X通信***为例,对本申请实施例所适用的通信***进行说明。参见图1、图2和图3,该通信***包括至少两个终端装置,两个终端装置之间能够通过侧行链路(sidelink,SL)直接进行通信(图1、图2和图3中均仅示出了两个终端装置)。可选的,该通信***还包括接入网设备。终端装置还可以与接入网设备进行通信。
V2X通信***可以存在如下的通信场景:车与车(vehicle to vehicle,V2V)之间的通信、车与基础设施装置(vehicle to infrastructure,V2I)之间的通信、车与应用服务器(vehicle to network,V2N)之间的通信、车与行人的移动终端(vehicle to pedestrain,V2P)之间的通信等。在V2X通信***中,终端装置之间就是通过侧行链路(sidelink,SL)直接进行通信,无需接入网设备的收发过程,不存在上、下行通信链路。
其中,终端装置主要用于接收或者发送数据。可选的,本申请实施例中所涉及到的终端装置可以是实现终端功能的设备或设备中的组件,比如,终端装置包括例如但不限于各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、手持设备(handheld)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端(terminal)、用户设备(user equipment,UE)、移动终端等。又比如,终端装置可以是上述任一设备中的组件(比如,终端装置可以指上述任一设备中的芯片***)。在本申请一些实施例中,终端装置还可以称为终端,在此统一说明,下文不再赘述。
本申请实施例所涉及的接入网设备是一种部署在无线接入网用以提供无线通信功能的装置。可选的,接入网设备可以指接入网的空中接口上通过一个或多个小区与无线终端通信的设备,其中,实现接入网设备的功能的装置可以是接入网设备,也可以是支持接入网设备实现该功能的装置(比如接入网设备中的芯片)。可选的,接入网设备可对空中接口进行属性管理。基站设备还可协调对空中接口的属性管理。接入网设备包括各种形式的宏基站,微基站(也称为小站),诸如中继站的中继设备或中继设备的芯片,发送接收点(transmission reception point,TRP),演进型网络节点(evolved Node B,eNB),下一代网络节点(g Node B,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等。或者,在分布式基站场景下,接入网设备可以是基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access Netowrk,CRAN)场景下,接入网设备可以是基带池(BBU pool)和RRU。
参见图1、图2和图3,对采用侧行链路通信的两个终端装置(UE1和UE2)而言,可 能存在如下三种通信场景:第一,两个终端装置(UE1和UE2)均处于同一公共陆地移动网络(public land mobile network,PLMN)(如PLMN1)覆盖范围内,如图1所示;第二,仅一个终端装置(UE1)处于公共陆地移动网络(public land mobile network,PLMN)(如PLMN1)覆盖范围内,另一个终端装置(UE2)均处于公共陆地移动网络(public land mobile network,PLMN)(PLMN1)覆盖范围外,如图2所示;第三,两个终端装置(UE1和UE2)均处于公共陆地移动网络(public land mobile network,PLMN)(如PLMN1)覆盖范围外,两个终端装置所处的区域范围无预先配置的小区标识,如图3所示。其中,图1、图2和图3中的虚线椭圆区域均表示PLMN1的覆盖范围。由于两个终端装置之间采用侧行链路进行通信,因此,无论两个终端装置是否同时处于PLMN的覆盖范围内,均能够正常进行通信。
两个终端装置之间基于侧行链路(sidelink,SL)进行通信时,终端装置均需要生成解调导频参考信号(demodulation reference signal,DMRS)。在相关技术中存在两种DMRS的生成方法。
第一种生成DMRS的方法:在低峰均比(peak to average ratio,PAPR)的离散傅里叶变换正交频分复用(discrete fourier transform orthogonal frequency division multiplexing,DFT-OFDM)波形设计中,基于ZC序列生成解调导频参考信号。其中,解调导频参考信号的基序列
Figure PCTCN2020081512-appb-000004
生成过程满足如下:
Figure PCTCN2020081512-appb-000005
Figure PCTCN2020081512-appb-000006
Figure PCTCN2020081512-appb-000007
Figure PCTCN2020081512-appb-000008
其中,u∈{0,1,2,···,29},表示组号,v∈{0、1},表示组内序列号,M SC表示解调导频参考信号的序列长度,N ZC表示小于M SC的最大的素数。
Figure PCTCN2020081512-appb-000009
表示向下取整运算符。
对基序列
Figure PCTCN2020081512-appb-000010
进行循环移位α,得到解调导频参考信号,基于基序列
Figure PCTCN2020081512-appb-000011
得到解调导频参考信号过程满足如下公式:
Figure PCTCN2020081512-appb-000012
其中,δ表示子载波间隔配置,α表示循环移位。
综上,基于ZC序列得到解调导频参考信号时,需要三个参数:u,v,α。其中,u和v的取值范围有限,以保证解调导频参考信号之间具备良好的相关性。如此,基于有限取值的u和v所生成的解调导频参考信号的表达空间有限。而大量的终端装置之间进行通信时,则需要解调导频参考信号具备更大的表达空间。因此,基于ZC序列得到解调导频参考信号的方法无法适用于大量终端装置之间进行通信的场景。
第二种生成DMRS的方法:在循环前缀正交频分复用(cyclic prefix orthogonal frequency division multiplexing,CP-OFDM)波形设计中,采用PN序列生成解调导频参考信号。其生成过程满足如下公式:
Figure PCTCN2020081512-appb-000013
其中,r(n)表示解调导频参考信号,c(n)表示PN序列。
PN序列c(n)的生成过程满足如下公式:
c(n)=(x 1(n+N c)+x 2(n+N c))mod2        (7)
x 1(n+31)=(x 1(n+3)+x 1(n))mod2        (8)
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2    (9)
其中,N c=1600,x 1(n)和x 2(n)表示两个m序列(一种PN序列)。每个m序列需要31个初始值。
x 1(n)的初始值是固定值。x 1(0)=1,x 1(n)=0,n=1,2,…,30。
x 2(n)的初始值满足如下公式:
Figure PCTCN2020081512-appb-000014
其中,c init表示x 2(n)的初始值。而在不同的信道类型中,x 2(n)的初始值(即c init)所满足的计算公式不同。
具体地,在新无线(new radio,NR)上行数据信道中,x 2(n)的初始值(即c init)满足如下公式:
Figure PCTCN2020081512-appb-000015
其中,
Figure PCTCN2020081512-appb-000016
表示每个时隙中的符号个数,
Figure PCTCN2020081512-appb-000017
表示一个无线帧的时隙索引,l表示在一个时隙中解调导频参考信号所在符号的索引,
Figure PCTCN2020081512-appb-000018
表示高层配置的上行解调导频扰码标识(scrambling identity,SCID),n SCID∈{0、1}。在高层配置x 2(n)的初始值,或下行控制信息(downlink control information,DCI)调度物理上行共享信道(physical up share channel,PUSCH)传输时,n SCID=1。其他情况,n SCID=0。
如此,对于某一终端装置而言,若
Figure PCTCN2020081512-appb-000019
已知,在不同时隙、不同符号上使用的m序列初始值不同,进而生成具有区分度的解调导频参考信号。
具体地,在新无线(new radio,NR)下行控制信道中,x 2(n)的初始值(即c init)满足如下公式:
Figure PCTCN2020081512-appb-000020
其中,
Figure PCTCN2020081512-appb-000021
表示一个无线帧的时隙索引,l表示在一个时隙中解调导频参考信号所在符号的索引,N ID∈{0,1,…,65535}表示高层配置的控制信道解调导频扰码标识。若未配置N ID,也可由小区ID替代,此时,
Figure PCTCN2020081512-appb-000022
具体地,在新无线(new radio,NR)广播信道中,x 2(n)的初始值(即c init)满足如下公式:
Figure PCTCN2020081512-appb-000023
其中,
Figure PCTCN2020081512-appb-000024
表示高层配置的当前发送广播信号的小区表示。L表示预设时间周期内广播信号的最大次数。
当L=4时,
Figure PCTCN2020081512-appb-000025
其中,n hf表示半帧指示。n hf=0,表示广播信号在当前无线帧的前半帧发送;n hf=1,表示广播信号在当前无线帧的后半帧发送。i SSB表示周期内广播信号次数索引的最低两个比特位。
当L=8或者L=64时,
Figure PCTCN2020081512-appb-000026
其中,i SSB表示周期内广播信号次数索引的最低三个比特位。
综上,基于PN序列获取解调导频参考信号过程中,需要获取PN序列的初始值,而PN序列的初始值与高层配置的解调导频扰码(scrambling identifier,SCID)和小区标识有关,也就是说,使用PN序列生成解调导频参考信号的方法主要应用于基站与终端装置之间的上、下行通信场景中。对于直接通信的两个终端装置而言,可能存在一个终端装置处于公共陆地移动网络(public land mobile network,PLMN)覆盖范围内,另一终端装置处于公共陆地移动网络(public land mobile network,PLMN)覆盖范围外,即如图2所示的场景,也可能存在终端装置均处于公共陆地移动网络(public land mobile network,PLMN)覆盖范围外,即如图3所示的场景。在上述图2和图3所示出的两种场景下,终端装置在生成DMRS过程中,由于无法获取高层配置的解调导频扰码(scrambling identifier, SCID)和小区标识,进而无法确定PN序列的初始值,也就是说,无法获取x 2(n)这一m序列(一种PN序列)的初始值,进而无法生成DMRS,影响终端装置之间的正常通信。
本申请实施例提供一种解调导频参考信号生成方法,该方法应用在终端装置生成解调导频参考信号的过程中。其中,终端装置之间可以采用侧行链路进行通信。
下面以第一终端装置向第二终端装置发送信息为例,说明第一终端装置和第二终端装置分别生成DMRS的方法。其中,第一终端装置作为发送端,参见图4,本申请实施例的DMRS生成方法包括如下步骤:
S401、第一终端装置根据信道类型和第一信息确定PN序列的初始值。
其中,信道类型可以包括数据信道、控制信道和广播信道。
第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。第一终端装置可以从控制信道的控制信息中获取第一终端装置的标识,也可以从控制信息的校验信息中获取第一终端装置的标识,还可以预先存储第一终端装置的标识。***时间信息包括第一***时间信息和第二***时间信息,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息表示第一终端装置与第二终端装置处于同步状态时的***时间信息,示例性的,能够表征***时间信息的参数包括但不限于帧号和子帧号。广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
针对不同的信道类型,第一终端装置参考不同的第一信息,确定PN序列的初始值。其中,信道类型包括但不限于数据信道、控制信道、广播信道。
具体地,信道类型为数据信道时,***时间信息包括第一***时间信息,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息。第一信息包括第一终端装置的标识和第一***时间信息。
对于信道类型为数据信道的场景,参见图5或图6,第一终端装置能够从控制信息的校验信息中获取第一终端装置的标识,其具体实现过程可以包括如下步骤:
S40110、第一终端装置从控制信道获取控制信息的校验信息。
其中,校验信息包括用于生成第一终端装置标识的信息。
示例性的,校验信息可以是循环冗余校验码(cyclic redundancy check,CRC)。CRC校验信息中的某些比特位,如前24个比特位,携带第一终端装置的标识。第一终端装置对控制信道所传输的信息进行解调译码之后,即可得到CRC校验信息。
S40111、第一终端装置根据控制信息的校验信息确定第一终端装置的标识。
示例性的,以基于循环冗余校验码确定第一终端装置的标识、且CRC校验码中的前24个比特位携带第一终端装置标识为例,第一终端装置的标识满足如下公式:
Figure PCTCN2020081512-appb-000027
其中,N ID表示第一终端装置的标识,k表示循环冗余校验码中用于携带第一终端装置标识的比特位的索引,c k表示索引为k的比特位所携带的第一终端装置标识中的部分。
如此,第一终端装置基于控制信道所传输的控制信息的校验信息,来获取第一终端装置的标识,以用于确定PN序列的初始值。
在信道类型为数据信道的一种场景中,数据信道对应的第一解调导频参考信号数量不变。参见图5,信道类型为数据信道时,S401的具体实现过程可以包括:
S40112、第一终端装置根据第一终端装置的标识和第一***时间信息确定PN序列的初始值。其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息。
此时,PN序列的初始值满足如下公式:
Figure PCTCN2020081512-appb-000028
其中,
Figure PCTCN2020081512-appb-000029
表示每个时隙中的时域符号个数,
Figure PCTCN2020081512-appb-000030
表示第一解调导频参考信号在一个无线帧的时隙索引,l表示在一个时隙中第一解调导频参考信号所在时域符号的索引,N ID表示第一终端装置的标识。第一DMRS为第一终端装置生成的DMRS,类似的,下文中,第二DMRS为第二终端装置生成的DMRS。
需要说明的是,一个解调导频参考信号可以占用一个或多个时域符号,在本申请实施例中,主要以一个解调导频参考信号占用一个时域符号为例进行说明。
对于一个解调导频参考信号可以占用多个时域符号时,公式(14)中l取多个时域符号中的首个时域符号索引。
如此,第一终端装置基于第一终端装置的标识和第一***时间信息,确定数据信道第一解调导频参考信号的初始值,可使每个第一终端装置所生成的数据信道对应的第一解调导频参考信号互不相同。如此,提高了不同终端装置数据信道对应的第一解调导频参考信号的区分度,进而降低不同终端装置之间的干扰。
在信道类型为数据信道的另一种场景中,数据信道对应的第一解调导频参考信号数量可变。参见图6,S401的具体实现过程可以包括:
S40113、第一终端装置根据第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值。
其中,第一终端装置的标识可以参见上文,这里不再赘述。解调导频参考信号的配置信息包括:每一传输时隙中所包含的解调导频参考信号的数量、该数量的解调导频参考信号的位置。该配置信息可以预先存储在第一终端装置中,或者,由接入网设备配置后发给第一终端装置。示例性的,解调导频参考信号的配置信息中包括一个或多个导频配置索引。每个导频配置索引对应每一传输时隙中所包含的解调导频参考信号的数量和每一解调导频参考信号在一个传输时隙中所处的位置。表1示出了一种配置信息的可能实现方式。
表1
Figure PCTCN2020081512-appb-000031
其中,n DMRS-index表示导频配置索引,l 0表示在一个传输时隙中首个时域符号的索引。参见表1,以一个解调导频参考信号占用一个时域符号为例,当导频配置索引n DMRS-index为0时,每一传输时隙中所包含的第一解调导频参考信号(即第一终端生成的解调导频参考信号)的数量为1,该第一解调导频参考信号在一个传输时隙中的时域符号索引为l 0(即l 0+0)。导频配置索引n DMRS-index为1时,一个时隙中包含2个第一解调导频参考信号, 所包含的两个第一解调导频参考信号在该时隙中的时域符号索引分别表示为:l 0+0和l 0+7。导频配置索引n DMRS-index为3时,每一传输时隙中所包含的第一解调导频参考信号的数量为4,4个第一解调导频参考信号在一个传输时隙中的时域符号索引分别表示为l 0、l 0+5、l 0+8和l 0+11。此时,第一终端装置可结合实际应用需求,从配置信息中选择某一导频配置索引,也就相应确定了每一传输时隙中所包含的第一解调导频参考信号的数量和该数量的第一解调导频参考信号的位置,进而可以获取到PN序列的初始值。
此时,PN序列的初始值满足如下公式:
Figure PCTCN2020081512-appb-000032
其中,
Figure PCTCN2020081512-appb-000033
表示每个时隙中的时域符号个数,
Figure PCTCN2020081512-appb-000034
表示第一解调导频参考信号在一个无线帧中的时隙索引,l表示在一个时隙中第一解调导频参考信号所在时域符号的索引,N ID表示在数据信道中第一终端装置的标识,N DMRS表示一个传输时隙中所包含的第一解调导频参考信号的数量,N index∈{0,1,2,…,N DMRS-1},表示一个传输时隙中第一解调导频参考信号的索引。在一个帧结构中,第一解调导频参考信号的索引从左到右依次递增。
如此,第一终端装置基于第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息,确定数据信道对应的第一解调导频参考信号的初始值。对于同一第一终端装置来说,不同初始值对应不同的第一导频数量,第一导频数量,即一个时隙中可传输的第一解调导频参考信号,比如,参见表1,PN序列具有某一初始值时,对应n DMRS-index为1,相应的,一个时隙可传输2个第一解调导频参考信号。且不同初始值对应生成不同的第一解调导频参考信号。由此可推导出,不同的第一解调导频参考信号对应不同的第一导频数量,因此,当第二终端装置接收到某一个第一解调导频参考信号之后,可以获知该第一解调导频参考信号对应的第一导频数量,即获知一个时隙中可传输的第一解调导频参考信号的数目。这就相当于,第一解调导频参考信号可隐式指示第一导频数量,进而,无需单独通过控制信息显示携带第一导频数量,减小了控制信息的长度,能够节省频谱资源。
信道类型为控制信道时,第一信息包括***时间信息,***时间信息包括第一***时间信息和第二***时间信息。作为一种可能的实现方式,时隙索引、时域符号索引、时隙与时域符号的数量配置关系均能够表征第一***时间信息,帧信息和子帧信息均能够表征第一终端装置与第二终端装置处于同步状态时的第二***时间。参见图7,S401的具体实现过程可以包括:
S4013、第一终端装置根据第一***时间信息和第二***时间信息确定PN序列的初始值。
其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息是通过帧信息和/或子帧信息所表征第一终端装置与第二终端装置处于同步状态时的***时间信息。
示例性的,帧信息可以采用帧号,子帧信息可以采用子帧号。
第一终端装置基于***时间信息确定PN序列的初始值时,可以采用如下三种方式中的至少一种:
方式一:第一终端装置根据第一***时间信息和帧信息(如帧号)确定PN序列的初始值。
此时,PN序列的初始值满足如下公式:
Figure PCTCN2020081512-appb-000035
其中,
Figure PCTCN2020081512-appb-000036
表示每个时隙中的时域符号个数,
Figure PCTCN2020081512-appb-000037
表示第一解调导频参考信号在一个无线帧中的时隙索引,l表示在一个时隙中第一解调导频参考信号所在时域符号的索引,N f表示第一终端装置与第二终端装置处于同步状态时的帧号。
方式二:第一终端装置根据第一***时间信息和子帧信息(如子帧号)确定伪噪声PN序列的初始值。
此时,PN序列的初始值满足如下公式:
Figure PCTCN2020081512-appb-000038
其中,
Figure PCTCN2020081512-appb-000039
表示每个时隙中的时域符号个数,
Figure PCTCN2020081512-appb-000040
表示第一解调导频参考信号在一个无线帧的时隙索引,l表示在一个时隙中第一解调导频参考信号所在时域符号的索引,n f表示第一终端装置与第二终端装置处于同步状态时的子帧号。
方式三:第一终端装置根据第一***时间信息、帧信息(如帧号)和子帧信息(如子帧号)确定伪噪声PN序列的初始值。
此时,PN序列的初始值满足如下公式:
Figure PCTCN2020081512-appb-000041
其中,
Figure PCTCN2020081512-appb-000042
表示每个时隙中的时域符号个数,
Figure PCTCN2020081512-appb-000043
表示一个无线帧的时隙索引,l表示在一个时隙中第一解调导频参考信号所在时域符号的索引,N f表示第一终端装置与第二终端装置处于同步状态时的帧号,n f表示第一终端装置与第二终端装置处于同步状态时的子帧号。
这里,第一终端装置基于***时间信息确定PN序列的初始值,进而生成控制信道的第一解调导频参考信号,发送给第二终端装置。在第二终端装置接收到来自不同第一终端装置控制信道的第一解调导频参考信号之后,可以获知不同的第一解调导频参考信号的子帧号和/或帧号。若某一第一解调导频参考信号的子帧号和/或帧号与第二终端装置自身的子帧号和/或帧号相同,则该第一解调导频参考信号的发送方与第二终端同步。如此,第二终端装置能够从多个第一终端装置中确定与自身同步的第一终端装置。也就提高了同步源(第一终端装置)的控制信道第一解调导频参考信号的区分度,降低干扰。
具体地,信道类型为广播信道时,第一信息包括第一终端装置的标识和广播次数索引。参见图8,S401的具体实现过程可以包括:
S4014、第一终端装置根据第一终端装置的标识和广播次数索引确定PN序列的初始值。
其中,第一终端装置的标识包括在同步信道中第一终端装置的标识。
广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
此时,PN序列的初始值满足如下公式:
Figure PCTCN2020081512-appb-000044
其中,
Figure PCTCN2020081512-appb-000045
表示在同步信道中第一终端装置的标识,i SSB表示预定时间周期内广播信道广播消息次数的索引。
Figure PCTCN2020081512-appb-000046
为向下取整运算符,mod为取模运算符。时间周期可以是预先配置的参数,如接入网设备所配置的参数。
如此,每次发生广播消息的广播次数索引不同,基于广播次数索引的PN序列的初始值也就不同,进而,由PN序列的初始值生成的第一解调导频参考信号也就不相同。这样一来,扩大了广播信道的第一解调导频参考信号的表达空间,提高了不同终端装置的广播信道第一解调导频参考信号的可识别度,降低干扰。
S402、第一终端装置根据PN序列的初始值,生成第一解调导频参考信号。
作为一种可能的实现方式,基于PN序列生成第一解调导频参考信号时,需要两个m序列(m序列为一种PN序列),即x 1(n)和x 2(n)。每个m序列需要31个初始值。其中,x 1(n)的初始值是固定值,即x 1(0)=1,x 1(n)=0,n=1,2,…,30。x 2(n)的初始值可由S401确定,根据公式(10),即可得到x 2(n)。确定两个m序列x 1(n)和x 2(n)之后,根据公式(6)至公式(9),即可得到不同信道类型的第一解调导频参考信号。
S403、第一终端装置向第二终端装置发送第一解调导频参考信号。
相应的,第二终端装置接收第一终端装置所发送第一解调导频参考信号,以进行信道估计。
本申请实施例提供的解调导频参考信号生成方法,第一终端装置根据信道类型和第一信息确定PN序列的初始值,再根据PN序列的初始值,生成第一解调导频参考信号,并向第二终端装置发送第一解调导频参考信号。其中,第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。相对于现有技术中,解调导频参考信号的生成过程均适用于配置小区标识的场景,解调导频参考信号的初始值均与高层配置的解调导频扰码和小区标识有关,对于处于未配置小区标识区域的终端则无法生成解调导频参考信号,无法保证两个终端装置之间直接通信。本申请实施例提供的解调导频参考信号生成方法在不同的信道类型中,结合不同的第一信息确定PN序列的初始值,进而生成向第二终端装置发送的第一解调导频参考信号,且第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。可见,所使用的第一信息与高层配置的解调导频扰码和小区标识无关,即使第一终端装置和第二终端装置均未处于配置小区标识的区域,也能够正常生成解调导频参考信号。
需要说明的是,在第一终端装置向第二终端装置发送信息的过程中,第二终端装置作为接收端,需要进行信道估计得到信道信息,以辅助译码,准确得到第一终端装置所发送的信息。在进行信道估计时,第二终端装置需要两种解调导频参考信号,即第二终端装置接收到的第一解调导频参考信号和第二终端装置生成的第二解调导频参考信号。参见图4,第二终端装置的执行步骤如下:
S404、第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值。
其中,信道类型可以包括数据信道、控制信道和广播信道。
第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个。第一终端装置是向第二终端装置发送第一解调导频参考信号的终端装置。第二终端装置可以在与第一终端装置通信的过程中获取到第一终端装置的标识,或者,通过控制信道所传输的侧行链路控制信息(sidelink control information,SCI)中获取第一终端装置的标识,或者,通过控制信道所传输的循环冗余校验码(cyclic redundancy check,CRC)中获取第一终端装置的标识。***时间信息包括第一***时间信息和第二***时间信息,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息表示第一终端装置与第二终端装置处于同步状态时的***时间信息,示例性的,能够表征***时间信息的参数包括但不限于帧号和子帧号。广播次数索引表示预定时间周期内广播信道广播消息次数的索引。
需要说明的是,对数据信道进行信道估计时,需要使用数据信道的第一解调导频参考信号和数据信道的第二解调导频参考信号。类似的,在对控制信道或广播信道进行信道估 计时,使用对应信道类型的解调导频参考信号。
对于信道类型为数据信道的场景,参见图5或图6,第二终端装置需要依据第一终端装置的标识生成数据信道对应的DMRS,以用于信道估计。作为一种可能的实现方式,第二终端装置根据从控制信道所传输的信息中获取第一终端装置的标识,具体实现过程包括如下步骤:
S40410、第二终端装置从控制信道获取控制信息的校验信息。
其中,控制信息的校验信息包括能够生成第一终端装置标识的信息。
示例性的,校验信息可以是循环冗余校验码(cyclic redundancy check,CRC)。CRC校验信息中的某些比特位,如前24个比特位,携带第一终端装置的标识。第二终端装置对控制信道所传输的信息进行解调译码之后,即可得到CRC校验信息。
S40411、第二终端装置根据控制信息的校验信息确定第一终端装置的标识。
示例性的,以基于循环冗余校验码确定第一终端装置的标识、且CRC校验码中的前24个比特位携带第一终端装置标识为例,第一终端装置的标识满足如下公式:
Figure PCTCN2020081512-appb-000047
其中,N ID表示第一终端装置的标识,k表示循环冗余校验码中用于携带第一终端装置标识的比特位的索引,c k表示索引为k的比特位所携带的第一终端装置标识中的部分。
如此,第二终端装置基于控制信道所传输的信息,来获取第一终端装置的标识,以用于确定PN序列的初始值。
在信道类型为数据信道,且数据信道对应的第一解调导频参考信号数量不变的场景中。第二终端装置需要生成数据信道对应的第二解调导频参考信号,所需的第一信息包括第一终端装置的标识和第一***时间信息。具体的,参见图5,S404的具体实现过程可以包括:
S40412、第二终端装置根据第一终端装置的标识和第一***时间信息确定PN序列的初始值。
其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息。第二终端装置(接收终端)所采用的第一终端装置的标识具体形式,需与S4011中第一终端装置(即发送终端)所采用的第一终端装置的标识具体形式一致。并且,PN序列的初始值也需满足公式(14)。
如此,第二终端装置基于第一终端装置的标识和第一***时间信息,确定PN序列的初始值,进而为本地端生成第二解调导频参考信号提供信息支持。
在另一种可能的场景中,若第一解调导频参考信号包括数据信道对应的解调导频参考信号,且数据信道对应的第一解调导频参考信号数量可变。此时,在一个传输时隙中,第二终端装置会接收到一个或多个第一解调导频参考信号,构成第一解调导频参考信号集合。第二终端装置需要结合配置信息生成数据信道对应的第二解调导频参考信号,所需的第一信息包括第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息,参见图6,S404的具体实现过程可以包括:
S40413、第二终端装置根据第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值。
其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息。解调导频参考信号的配置信息包括:每一传输时隙中所包含的 第一解调导频参考信号的数量、该数量的第一解调导频参考信号的位置。解调导频参考信号的配置信息可以是网络配置的,或者,第二终端装置预存储的信息。
在确定数据信道PN序列的初始值时,S4042中所采用的第一终端装置的标识具体形式,仍需与S4012中所采用的第一终端装置的标识具体形式一致。
由于第二终端装置未能获取到第一终端装置在执行S4012时所采用的导频配置索引,因此,第二终端装置先生成所有导频配置索引对应的第二解调导频参考信号,构成第二解调导频参考信号集合。而对于每一第二解调导频参考信号而言,其PN序列的初始值也需满足公式(15)。
如此,第二终端装置基于第一终端装置的标识、第一***时间信息和解调导频参考信号的配置信息,确定所有可能的第二解调导频参考信号的初始值,进而为本地端生成所有可能的第二解调导频参考信号提供信息支持。
在一种可能的场景中,若第一解调导频参考信号包括控制信道对应的解调导频参考信号。此时,第二终端装置生成控制信道对应的第二解调导频参考信号,所需的第一信息包括***时间信息,***时间信息包括第一***时间信息和第二***时间信息。作为一种可能的实现方式,时隙索引、时域符号索引、时隙与时域符号的数量配置关系均能够表征第一***时间信息,帧信息和子帧信息均能够表征第一终端装置与第二终端装置处于同步状态时的第二***时间。参见图7,S404的具体实现过程可以包括:
S4043、第二终端装置根据第一***时间信息和第二***时间信息确定PN序列的初始值。
其中,第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,第二***时间信息是通过帧信息和/或子帧信息所表征第一终端装置与第二终端装置处于同步状态时的***时间信息。
在确定控制信道的PN序列的初始值时,S4043中所采用的方式,需与S4013中所采用的方式一致。例如,S4013中基于帧号确定PN序列的初始值(即方式一),则S4043中也需采用帧号确定PN序列的初始值。并且,PN序列的初始值也需满足公式(16)。
如此,第二终端装置基于***时间信息,确定控制信道第二解调导频参考信号的初始值,进而为本地端生成第二解调导频参考信号提供信息支持。
在一种可能的场景中,若第一解调导频参考信号包括广播信道对应的解调导频参考信号。此时,第二终端装置生成广播信道对应的第二解调导频参考信号,所需的第一信息包括第一终端装置的标识和广播次数索引,参见图8,S404的具体实现过程可以包括:
S4044、第二终端装置根据第一终端装置的标识和广播次数索引确定伪噪声PN序列的初始值。
其中,第一终端装置的标识包括第一终端装置在同步信道的标识。
广播次数索引表示预定时间周期内广播信道广播消息次数的索引。第二终端装置预获取每一时间周期内发送广播消息的最大次数,或者,第二终端装置盲检每一时间周期内发送广播消息的最大次数。
在确定广播信道的PN序列的初始值时,S4044中所采用的第一终端装置的标识具体形式,仍需与S4014中所采用的第一终端装置的标识具体形式一致。并且,PN序列的初始值也需满足公式(19)。
如此,第二终端装置基于第一终端装置的标识和广播次数索引,确定广播信道第二解调导频参考信号的初始值,进而为本地端生成第二解调导频参考信号提供信息支持。
S405、第二终端装置根据PN序列的初始值,生成第二解调导频参考信号。
其中,第二终端装置需与第一终端装置生成第一解调导频参考信号的过程一致。
需要说明的是,若第二解调导频参考信号是基于S40412、S4043和S4044所确定的PN序列的初始值所生成的信号,则可直接用于信道估计;若第二解调导频参考信号是基于S4042所确定的PN序列的初始值所生成的信号,则需计算每一导频配置索引下第一解调导频参考信号与第二解调导频参考信号的相关性,基于计算得到的相关性选取导频配置索引,将该导频配置索引所对应的第二解调导频参考信息用于信道估计,以提高信道估计的准确性。参见图6,第二终端装置选取用于信道估计的第二解调导频参考信号的过程如下:
S406、第二终端装置在第一时隙中,确定第一时隙中的第一解调导频参考信号与第一时隙中的一个或多个第二解调导频参考信号的相关性。
这里,第二终端装置根据预获取的控制信息,确定数据信道所占用的时频资源,进而从数据信道占用的时频资源中随机确定第一时隙的位置,并在该第一时隙,计算第一解调导频参考信号与一个或多个第二解调导频参考信号的相关性。
上文已指出,解调导频参考信号的配置信息能够指示每一解调导频参考信号在一个时隙中所处的位置。在解调导频参考信号的配置信息中,若数据信道仅存在一列第一解调导频参考信号,则该列第一解调导频参考信号必须映射至一个时隙的第一个导频符号上。一列解调导频参考信号指的是沿频率轴方向的一个或多个解调导频参考信号。第一列第一解调导频参考信号指的是一个时隙中在第一个导频符号上的一个或多个第一解调导频参考信号。
在本申请实施例中,一个导频符号指的是一个解调导频参考信号映射至的一个或多个时域符号,在此统一说明。
在配置信息中,若数据信道存在两列或更多列第一解调导频参考信号,则必须存在一列第一解调导频参考信号映射至一个时隙的第一个导频符号上。也就是说,对于任一导频配置索引,在一个时隙的第一个导频符号上均存在第一解调导频参考信号。具体如表1所示,索引为l 0的首个时域符号上均存在第一解调导频参考信号。
第二终端装置可采用如下至少一种方式计算第一解调导频参考信号与第二解调导频参考信号之间的相关性:
方式1:当数据信道仅存在一列或存在两列以上的第一解调导频参考信号时,计算第一列第一解调导频参考信号与第一列第二解调导频参考信号之间的相关性。
作为一种可能的实现方式,针对第一列的每一频域单元,计算第一列中该单个频域单元上的第一解调导频参考信号与第一列中该单个频域单元上的第二解调导频参考信号之间的相关性。再将计算出的多个相关性累加,得到第一列第一解调导频参考信号与第一列解调导频参考信号之间的相关性。
相应的,第一解调导频参考信号与一个或多个第二解调导频参考信号的相关性满足以下公式:
Figure PCTCN2020081512-appb-000048
其中,h i表示第i个频域单元在一个时隙的第一个导频符号上的第一解调导频参考信号, i∈{1,2,…,I-1,I},i表示频域单元的索引,I是根据数据信道的带宽和频域单元的间隔所确定的数值。示例性的,每一导频符号对应一个解调导频参考信号。示例性的,频域单元具体可以指频域子载波。
Figure PCTCN2020081512-appb-000049
表示导频配置索引为n DMRS-index时,第i个频域单元在一个时隙的第一个导频符号上的第二解调导频参考信号的共轭。
n DMRS-index表示配置信息中第一解调导频参考信号的导频配置索引,导频配置索引为n DMRS-index的配置信息用于指示:导频配置索引为n DMRS-index时,在一个时隙中第一解调导频参考信号与时域符号的对应关系。
‖ ‖表示求模运算符。
如此,第二终端装置仅根据第一列第一解调导频参考信号与第一列第二解调导频参考信号之间的相关性,就能够得到用于信道估计的第二解调导频参考信号,运算量较小,且信道估计的准确性有所提升。
方式2:第二终端装置计算所有可能的第一解调导频参考信号与第二解调导频参考信号之间的相关性。
此时,第一解调导频参考信号包括第一解调导频参考信号集合中在第一时隙上的任一导频符号上的解调导频参考信号,第二解调导频参考信号包括第二解调导频参考信号集合中与第一解调导频参考信号相同导频符号上的解调导频参考信号。
其中,第一解调导频参考信号集合表示接收端接收到的数据信道对应的解调导频参考信号的集合,第二解调导频参考信号集合表示基于导频的配置信息生成的解调导频参考信号的集合。
第一解调导频参考信号与一个或多个第二解调导频参考信号的相关性能够满足以下公式:
Figure PCTCN2020081512-appb-000050
其中,h i,l表示第i个频域单元在一个时隙的第l个时域符号上的第一解调导频参考信号,i∈{1,2,…,I-1,I},i表示频域单元的索引,I是根据数据信道的带宽和频域单元的间隔所确定的数值。每一导频符号对应一个解调导频参考信号。示例性的,频域单元具体可以指频域子载波。
Figure PCTCN2020081512-appb-000051
表示导频配置索引为n DMRS-index时第i个频域单元在一个时隙的第l个时域符号中的第二解调导频信号的共轭。
n DMRS-index表示配置信息中第一解调导频参考信号的导频配置索引,导频配置索引为n DMRS-index的配置信息用于指示:导频配置索引为n DMRS-index时,在一个时隙中第一解调导频参考信号所处的导频符号与时域符号的对应关系。
‖ ‖表示求模运算符。
第一解调导频参考信号与一个或多个第二解调导频参考信号的相关性也能够满足以下公式:
Figure PCTCN2020081512-appb-000052
其中,h i,l表示第i个频域单元在一个时隙的第l个时域符号上的第一解调导频参考信号,i∈{1,2,…,I-1,I},i表示频域单元的索引,I是根据数据信道的带宽和频域单元的间隔所确定的数值。每一导频符号对应一个解调导频参考信号。示例性的,频域单元具体可以指频域子载波。
Figure PCTCN2020081512-appb-000053
表示导频配置索引为n DMRS-index时第i个频域单元在一个时隙的第l个时域符号中的第二解调导频信号的共轭。
n DMRS-index表示配置信息中第一解调导频参考信号的导频配置索引,导频配置索引为n DMRS-index的配置信息用于指示:导频配置索引为n DMRS-index时,在一个时隙中第一解调导频参考信号所处的导频符号与时域符号的对应关系。
‖ ‖表示求模运算符。
如此,第二终端装置计算每一第一解调导频参考信号与第二解调导频参考信号之间的相关性,提高相关性计算结果的准确性,进而准确选取导频配置索引,得到用于信道估计的第二解调导频参考信号。
S407、根据第一解调导频参考信号与一个或多个第二解调导频参考信号之间的相关性,确定用于信道估计的第二解调导频参考信号。
其中,用于信道估计的第二解调导频参考信号包括相关性最大的第二解调导频参考信号。
示例性的,若基于公式(20)计算第一解调导频参考信号和第二解调导频参考信号之间的相关性,则用于信道估计的第二解调导频参考信号满足以下公式:
Figure PCTCN2020081512-appb-000054
若基于公式(21)计算第一解调导频参考信号和第二解调导频参考信号之间的相关性,则用于信道估计的第二解调导频参考信号满足以下公式:
Figure PCTCN2020081512-appb-000055
若基于公式(22)计算第一解调导频参考信号和第二解调导频参考信号之间的相关性,则用于信道估计的第二解调导频参考信号满足以下公式:
Figure PCTCN2020081512-appb-000056
如此,第二终端装置选取相关性计算结果最高的导频配置索引,将相关性最大的导频配置索引所对应的第二解调导频参考信号用于信道估计,以提高信道估计的准确性。
下面以第一解调导频参考信号数量不变的数据信道为例,对第一终端装置发送信息(该信息携带第一解调导频参考信号)和第二终端装置接收、译码该信息的过程进行具体阐述。参见图9,该方法包括如下步骤:
S901、第一终端装置对待发送信息进行信道编码。
S902、第一终端装置生成数据信道对应的第一解调导频参考信号。
其中,第一终端装置所执行的具体步骤参见S40110至S40112,以及S402,此处不再赘述。
需要说明的是,第一终端装置可以先执行S901、再执行S902,也可以先执行S902、再执行S901,或者,同时执行S901和S902。此处对S901和S902的先后顺序不作限定。
S903、第一终端装置将信道编码后的待发送信息,以及数据信道对应的第一解调导频参考信号映射到时域资源。
示例性的,若一个传输时隙中所包含的第一解调导频参考信号的数量为1,该第一解调导频参考信号映射到时域资源的位置即为每一传输时隙中时域符号索引表示为0的位置。
S904、第一终端装置对时域资源的信息进行快速傅里叶变换(fast fourier transform, FFT)和组帧处理。
示例性的,在FFT处理后的数据前后部分添上首部和尾部,封装为帧,以便于第二终端装置根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。
S905、第一终端装置向第二终端装置发送已封装为帧的信息。
相应的,第二终端装置从第一终端装置接收已封装为帧的信息。
S906、第二终端装置对已封装为帧的信息进行解帧处理和快速傅里叶逆变换(inverse fast fourier transform,IFFT)。
S907、第二终端装置对快速傅里叶逆变换后的信息进行信道分离,获取第一解调导频参考信号和数据信息。
S908、第二终端装置生成数据信道对应的第二解调导频参考信号。
其中,第二终端装置所执行的具体步骤参见S40410至S40412,以及S405,此处不再赘述。
需要说明的是,第二终端装置可以先执行S907、再执行S908,也可以先执行S908、再执行S907,或者,同时执行S907和S908。此处对S907和S908的先后顺序不作限定。
S909、第二终端装置根据接收到的第一解调导频参考信号和生成的第二解调导频参考信号,进行信道估计,获取信道估计结果。
S910、第二终端装置根据信道估计结果对接收到的数据信息进行译码。
如此,第一终端装置和第二终端装置即可直接通信,不存在解调导频参考信号表达空间的限制,且能够提高不同解调导频参考信号之间的区分度。
下面再以第一解调导频参考信号数量可变的数据信道为例,对第一终端装置发送信息(该信息携带第一解调导频参考信号)和第二终端装置接收、译码该信息的过程进行具体阐述。参见图10,该方法包括如下步骤:
S1001、第一终端装置对待发送信息进行信道编码。
S1002、第一终端装置生成数据信道对应的第一解调导频参考信号。
这里,第一终端装置所执行的具体步骤参见S40110、S40111、S40113和S402,此处不再赘述。
S1003、第一终端装置将信道编码后的待发送信息,以及数据信道对应的第一解调导频参考信号映射到时域资源。
示例性的,以表1中导频配置索引n DMRS-index=1为例,一个传输时隙中所包含的第一解调导频参考信号的数量为2,两个第一解调导频参考信号映射到时域资源的位置即为每一传输时隙中时域符号索引分别表示为l 0和l 0+7的位置。
S1004的执行过程参见S904,S1005的执行过程参见S905,S1006的执行过程参见S906,此处不作赘述。
S1007、第二终端装置生成数据信道对应的第二解调导频参考信号。
其中,第二终端装置所执行的具体步骤参见S40410、S40411、S40413和S405,此处不再赘述。
需要说明的是,第二终端装置可以先执行S1006、再执行S1007,也可以先执行S1007、再执行S1006,或者,同时执行S1006和S1007。此处对S1006和S1007的先后顺序不作 限定。
S1008、第二终端装置根据生成的第二解调导频参考信号,对快速傅里叶逆变换后的信息进行盲检测,获取第一终端装置所采用的导频配置索引。
这里,第二终端装置所执行的具体步骤参见S406和S407,此处不再赘述。
S1009、第二终端装置根据第一终端装置所采用的导频配置索引,对快速傅里叶逆变换后的信息进行信道分离,获取第一解调导频参考信号和数据信息。
S1010、根据接收到的第一解调导频参考信号和导频配置索引对应的第二解调导频参考信号,进行信道估计,获取信道估计结果。
S1011的执行过程参见S910,此处不作赘述。
如此,第一终端装置和第二终端装置即可直接通信,即使数据信道中的解调导频参考信号的数量是可变的,第二终端装置也能够确定出第一终端装置所采用的导频配置索引,将相同的导频配置索引所对应的第二解调导频参考信号用于信道估计,以提高信道估计的准确性。并且,控制信息无需携带数量信息,缩小了控制信息的长度,节省频谱资源。
上述主要从不同网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,第一终端装置、第二终端装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对解调导频参考信号生成装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图11示出了本申请实施例中提供的解调导频参考信号生成装置的一种示意性框图。该解调导频参考信号生成装置1100可以以软件的形式存在,也可以为设备,或者设备中的组件(比如芯片***)。该解调导频参考信号生成装置1100包括:处理单元1102和通信单元1103。
通信单元1103还可以划分为发送单元(并未在图11中示出)和接收单元(并未在图11中示出)。其中,发送单元,用于支持解调导频参考信号生成装置1100向其他网元发送信息。接收单元,用于支持解调导频参考信号生成装置1100从其他网元接收信息。
当解调导频参考信号生成装置1100用于实现上述第一终端装置的功能时,示例性的,处理单元1102可以用于支持装置1100执行图4中的S401、S402,和/或用于本文所描述的方案的其它过程。通信单元1103用于支持装置1100和其他网元(例如第二终端装置)之间的通信。比如,通信单元用于支持装置1100执行图4所示的S403,和/或用于本文所描述的方案的其它过程。
当解调导频参考信号生成装置1100用于实现上述方法中第二终端装置的功能时,示例性的,处理单元1102可以用于支持装置1100执行如图4中的S404、S405,和/或用于 本文所描述的方案的其它过程。通信单元1103用于支持装置1100和其他网元(例如第一终端装置)之间的通信。比如,通信单元用于支持装置1100执行图4所示的S403,和/或用于本文所描述的方案的其它过程。
可选的,解调导频参考信号生成装置1100还可以包括存储单元1101,用于存储装置1100的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
其中,处理单元1102可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
通信单元1103可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:终端和终端之间的接口和/或其他接口。
存储单元1101可以是存储器。
当处理单元1102为处理器,通信单元1103为通信接口,存储单元1101为存储器时,本申请实施例所涉及的解调导频参考信号生成装置1200可以为图12所示。
参阅图12所示,该装置1200包括:处理器1202、收发器1203、存储器1201。
其中,收发器1203可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
可选的,解调导频参考信号生成装置1200还可以包括总线1204。其中,收发器1203、处理器1202以及存储器1201可以通过总线1204相互连接;总线1204可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备(例如终端)上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种解调导频参考信号生成方法,其特征在于,包括:
    第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,所述第一信息包括所述第一终端装置的标识、***时间信息和广播次数索引中的一个或多个;
    所述第一终端装置根据所述PN序列的初始值,生成第一解调导频参考信号;
    所述第一终端装置向第二终端装置发送所述第一解调导频参考信号。
  2. 根据权利要求1所述的解调导频参考信号生成方法,其特征在于,所述信道类型为数据信道,所述***时间信息包括第一***时间信息,所述第一信息包括所述第一终端装置的标识和所述第一***时间信息,所述第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
    所述第一终端装置根据所述第一终端装置的标识和所述第一***时间信息确定PN序列的初始值;或
    所述第一终端装置根据所述第一终端装置的标识、所述第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和所述数量的解调导频参考信号的位置,所述解调导频参考信号的配置信息是网络配置的信息或所述第一终端装置预存储的信息。
  3. 根据权利要求2所述的解调导频参考信号生成方法,其特征在于,所述方法还包括:
    所述第一终端装置从控制信道获取控制信息的校验信息;
    所述第一终端装置根据所述控制信息的校验信息确定所述第一终端装置的标识,或
    所述第一终端装置从所述控制信息中获取所述第一终端装置的标识,或
    所述第一终端装置预存储所述第一终端装置的标识。
  4. 根据权利要求1所述的解调导频参考信号生成方法,其特征在于,所述信道类型为控制信道,所述第一信息包括所述***时间信息,所述***时间信息包括第一***时间信息和第二***时间信息,所述第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
    所述第一终端装置根据所述第一***时间信息和所述第二***时间信息确定PN序列的初始值,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述第二***时间信息是通过帧信息和/或子帧信息所表征所述第一终端装置与所述第二终端装置处于同步状态时的***时间信息。
  5. 根据权利要求1所述的解调导频参考信号生成方法,其特征在于,所述信道类型为广播信道,所述第一信息包括所述第一终端装置的标识和所述广播次数索引,所述第一终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
    所述第一终端装置根据所述第一终端装置的标识和所述广播次数索引确定PN序列的初始值,所述广播次数索引表示预定时间周期内所述广播信道广播消息次数的索引。
  6. 一种解调导频参考信号生成方法,其特征在于,包括:
    第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,所述第一信息 包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个,所述第一终端装置是向所述第二终端装置发送第一解调导频参考信号的终端装置;
    所述第二终端装置根据所述PN序列的初始值,生成第二解调导频参考信号,所述第一解调导频参考信号和所述第二解调导频参考信号均用于信道估计。
  7. 根据权利要求6所述的解调导频参考信号生成方法,其特征在于,所述信道类型为数据信道,所述***时间信息包括第一***时间信息,所述第一信息包括所述第一终端装置的标识和所述第一***时间信息,所述第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
    所述第二终端装置根据所述第一终端装置的标识和所述第一***时间信息确定PN序列的初始值;或
    所述第二终端装置根据所述第一终端装置的标识、所述第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和所述数量的解调导频参考信号的位置,所述解调导频参考信号的配置信息是网络配置的信息或所述第二终端装置预存储的信息。
  8. 根据权利要求7所述的解调导频参考信号生成方法,其特征在于,所述方法还包括:
    所述第二终端装置从控制信道获取控制信息的校验信息;
    所述第二终端装置根据所述控制信息的校验信息确定所述第一终端装置的标识,或
    所述第二终端装置从所述控制信息中获取所述第一终端装置的标识,或
    所述第二终端装置预存储所述第一终端装置的标识。
  9. 根据权利要求6所述的解调导频参考信号生成方法,其特征在于,所述信道类型为控制信道,所述第一信息包括所述***时间信息,所述***时间信息包括第一***时间信息和第二***时间信息,所述第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
    所述第二终端装置根据所述第一***时间信息和所述第二***时间信息确定PN序列的初始值,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述第二***时间信息是通过帧信息和/或子帧信息所表征所述第一终端装置与所述第二终端装置处于同步状态时的***时间信息。
  10. 根据权利要求6所述的解调导频参考信号生成方法,其特征在于,所述信道类型为广播信道,所述第一信息包括所述第一终端装置的标识和所述广播次数索引,所述第二终端装置根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:
    所述第二终端装置根据所述第一终端装置的标识和所述广播次数索引确定PN序列的初始值,所述广播次数索引表示预定时间周期内所述广播信道广播消息次数的索引。
  11. 一种解调导频参考信号生成装置,其特征在于,包括:
    处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,所述第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个;根据所述PN序列的初始值,生成第一解调导频参考信号;
    发送器,用于向第二终端装置发送所述第一解调导频参考信号。
  12. 根据权利要求11所述的解调导频参考信号生成装置,其特征在于,所述装置还包括:存储器,所述信道类型为数据信道,所述***时间信息包括第一***时间信息,所述第一信息包括所述第一终端装置的标识和所述第一***时间信息,
    所述处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据所述第一终端装置的标识和所述第一***时间信息确定PN序列的初始值;或
    用于根据所述第一终端装置的标识、所述第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和所述数量的解调导频参考信号的位置,所述解调导频参考信号的配置信息是网络配置的信息或所述存储器预存储的信息。
  13. 根据权利要求12所述的解调导频参考信号生成装置,其特征在于,所述装置还包括接收器;
    所述处理器,用于控制所述接收器从控制信道获取控制信息的校验信息;根据所述控制信息的校验信息确定所述第一终端装置的标识,或
    用于控制所述接收器从所述控制信息中获取所述第一终端装置的标识,或
    用于控制存储器预存储所述第一终端装置的标识。
  14. 根据权利要求11所述的解调导频参考信号生成装置,其特征在于,所述信道类型为控制信道,所述第一信息包括所述***时间信息,所述***时间信息包括第一***时间信息和第二***时间信息,
    所述处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据所述第一***时间信息和所述第二***时间信息确定PN序列的初始值,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述第二***时间信息是通过帧信息和/或子帧信息所表征所述第一终端装置与所述第二终端装置处于同步状态时的***时间信息。
  15. 根据权利要求11所述的解调导频参考信号生成装置,其特征在于,所述信道类型为广播信道,所述第一信息包括所述第一终端装置的标识和所述广播次数索引,
    所述处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据所述第一终端装置的标识和所述广播次数索引确定PN序列的初始值,所述广播次数索引表示预定时间周期内所述广播信道广播消息次数的索引。
  16. 一种解调导频参考信号生成装置,其特征在于,包括:
    处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,所述第一信息包括第一终端装置的标识、***时间信息和广播次数索引中的一个或多个,所述第一终端装置是向第二终端装置发送第一解调导频参考信号的终端装置;根据所述PN序列的初始值,生成第二解调导频参考信号,所述第一解调导频参考信号和所述第二解调导频参考信号均用于信道估计。
  17. 根据权利要求16所述的解调导频参考信号生成装置,其特征在于,所述装置还包括:存储器,所述信道类型为数据信道,所述***时间信息包括第一***时间信息,所 述第一信息包括所述第一终端装置的标识和所述第一***时间信息,
    所述处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据所述第一终端装置的标识和所述第一***时间信息确定PN序列的初始值;或
    用于根据所述第一终端装置的标识、所述第一***时间信息和解调导频参考信号的配置信息确定PN序列的初始值;其中,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述解调导频参考信号的配置信息包括每一传输时隙中所包含的解调导频参考信号的数量和所述数量的解调导频参考信号的位置,所述解调导频参考信号的配置信息是网络配置的信息或所述存储器预存储的信息。
  18. 根据权利要求17所述的解调导频参考信号生成装置,其特征在于,所述装置还包括接收器;
    所述接收器,用于从控制信道获取控制信息的校验信息;
    所述处理器,还用于根据所述控制信息的校验信息确定所述第一终端装置的标识,或
    所述接收器,还用于从所述控制信息中获取所述第一终端装置的标识,或
    所述存储器,还用于预存储所述第一终端装置的标识。
  19. 根据权利要求16所述的解调导频参考信号生成装置,其特征在于,所述信道类型为控制信道,所述第一信息包括所述***时间信息,所述***时间信息包括第一***时间信息和第二***时间信息,
    所述处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据所述第一***时间信息和所述第二***时间信息确定PN序列的初始值,所述第一***时间信息是通过时隙索引、时域符号索引、时隙与时域符号的数量配置关系所表征的时间信息,所述第二***时间信息是通过帧信息和/或子帧信息所表征所述第一终端装置与所述第二终端装置处于同步状态时的***时间信息。
  20. 根据权利要求16所述的解调导频参考信号生成装置,其特征在于,所述信道类型为广播信道,所述第一信息包括所述第一终端装置的标识和所述广播次数索引,
    所述处理器,用于根据信道类型和第一信息确定伪噪声PN序列的初始值,包括:用于根据所述第一终端装置的标识和所述广播次数索引确定PN序列的初始值,所述广播次数索引表示预定时间周期内所述广播信道广播消息次数的索引。
  21. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至5中任一项所述的解调导频参考信号生成方法被实现,或者,如权利要求6至10中任一项所述的解调导频参考信号生成方法被实现。
PCT/CN2020/081512 2019-04-02 2020-03-26 解调导频参考信号生成方法及装置 WO2020200056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910263491.1 2019-04-02
CN201910263491.1A CN111769923B (zh) 2019-04-02 2019-04-02 解调导频参考信号生成方法及装置

Publications (1)

Publication Number Publication Date
WO2020200056A1 true WO2020200056A1 (zh) 2020-10-08

Family

ID=72664998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081512 WO2020200056A1 (zh) 2019-04-02 2020-03-26 解调导频参考信号生成方法及装置

Country Status (2)

Country Link
CN (1) CN111769923B (zh)
WO (1) WO2020200056A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726491A (zh) * 2021-01-06 2022-07-08 中兴通讯股份有限公司 Dmrs配置方法、电子设备和存储介质
CN115037410A (zh) * 2021-03-08 2022-09-09 华为技术有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437984A (zh) * 2016-05-27 2017-12-05 华为技术有限公司 信息传输方法和装置
US20180324732A1 (en) * 2017-05-04 2018-11-08 Innovative Technology Lab Co., Ltd. Method and apparatus for communicating reference signal for broadcast channel
US20180367358A1 (en) * 2017-06-14 2018-12-20 Huawei Technologies Co., Ltd. User equipment related reference signal design, transmission and reception
CN109314623A (zh) * 2016-04-12 2019-02-05 瑞典爱立信有限公司 用于副链路通信的参考信号映射的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248468B (zh) * 2012-02-01 2017-04-12 华为技术有限公司 解调导频信号处理方法、基站及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314623A (zh) * 2016-04-12 2019-02-05 瑞典爱立信有限公司 用于副链路通信的参考信号映射的方法和装置
CN107437984A (zh) * 2016-05-27 2017-12-05 华为技术有限公司 信息传输方法和装置
US20180324732A1 (en) * 2017-05-04 2018-11-08 Innovative Technology Lab Co., Ltd. Method and apparatus for communicating reference signal for broadcast channel
US20180367358A1 (en) * 2017-06-14 2018-12-20 Huawei Technologies Co., Ltd. User equipment related reference signal design, transmission and reception

Also Published As

Publication number Publication date
CN111769923A (zh) 2020-10-13
CN111769923B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US10644850B2 (en) Method and apparatus for uplink signal transmission
US11683768B2 (en) Method and apparatus for time and frequency tracking in cellular communication system
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
WO2018018628A1 (zh) 参考信号序列的映射方法、配置方法、基站和用户设备
US20130301538A1 (en) Reference Signal Structure for OFDM Based Transmissions
JP2022122973A (ja) システムメッセージの伝送方法及び装置
WO2017113514A1 (zh) 传输数据的方法和用户设备
JP2020504484A (ja) 基準信号の伝送方法及び通信装置
EP3866530B1 (en) Uplink signal transmission method and device
CN111757458B (zh) 通信的方法和终端装置
CN109863797A (zh) 传输数据的方法、终端设备和网络设备
WO2014043922A1 (zh) 传输广播消息的方法、基站和用户设备
EP3595223B1 (en) Method and device for sending demodulation reference signal, demodulation method and device
WO2020200056A1 (zh) 解调导频参考信号生成方法及装置
US11991684B2 (en) Data transmission method and apparatus
TWI762531B (zh) 資源映射的方法和通訊設備
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站
JP7332041B2 (ja) 方法、及び、端末デバイス
CN111181887B (zh) 一种序列的生成及处理方法和装置
WO2018028532A1 (zh) 一种控制信道传输方法、装置及***
WO2018185093A1 (en) Supporting mixed numerologies
WO2017167148A1 (zh) 一种信息发送方法、接收方法和装置
US11382077B2 (en) PUCCH transmission method, terminal and network-side device
US20230379121A1 (en) Method performed by user equipment, and user equipment
CN114257484B (zh) 一种符号应用方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783881

Country of ref document: EP

Kind code of ref document: A1