WO2020199983A1 - 一种功率控制方法及装置 - Google Patents

一种功率控制方法及装置 Download PDF

Info

Publication number
WO2020199983A1
WO2020199983A1 PCT/CN2020/080904 CN2020080904W WO2020199983A1 WO 2020199983 A1 WO2020199983 A1 WO 2020199983A1 CN 2020080904 W CN2020080904 W CN 2020080904W WO 2020199983 A1 WO2020199983 A1 WO 2020199983A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
channel
control
transmission power
sub
Prior art date
Application number
PCT/CN2020/080904
Other languages
English (en)
French (fr)
Inventor
郭文婷
张锦芳
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20783273.4A priority Critical patent/EP3913841B1/en
Publication of WO2020199983A1 publication Critical patent/WO2020199983A1/zh
Priority to US17/410,565 priority patent/US11825421B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate

Definitions

  • This application relates to the field of communication technology, and in particular to a power control method and device.
  • the signal generated by the transmitting end needs to be amplified by a power amplifier to obtain sufficient radio frequency power before being fed to the antenna for radiation and sent to the receiving end.
  • the radio frequency amplifier has the characteristics shown in Fig. 1.
  • Fig. 1 is a characteristic curve diagram of the radio frequency amplifier. The horizontal axis represents the input power of the input signal, and the vertical axis represents the output power of the input signal after passing through the radio frequency amplifier.
  • the RF power amplifier amplifies the input signal proportionally; in the non-linear amplification area, the input signal will be nonlinearly amplified. At this time, the sine wave of the input signal will become a non-sine wave The signal is distorted.
  • the amplification factor of the RF power amplifier needs to be adjusted so that the input signal is proportionally amplified in the linear region.
  • the amplification factor of the RF amplifier can be adjusted from K1 K2, to ensure that the input signal is proportionally amplified by K2 times in the linear region.
  • the existing 3rd generation partnership project stipulates that in the case of low frequency (such as: below 6GHz), it takes 10 milliseconds to adjust the amplification factor of the radio frequency function amplifier; In the above) case, it takes 5 milliseconds to adjust the amplification factor of the radio frequency functional amplifier. In this way, it will occupy the signal transmission time, affect the signal transmission performance and cause waste of resources.
  • the SRS channel sounding reference signal
  • the SRS only occupies one symbol. If the transmission power of adjacent SRSs is different, a switching radio frequency is required between adjacent symbols. The transition time of the amplifier's magnification.
  • the transition time can be included in the SRS symbol.
  • the signal may be distorted, or a part of the signal within a symbol uses different transmit power, its performance will definitely be affected.
  • 3GPP defines that if the power of adjacent symbols is changed, one symbol will be directly freed for hardware switching time, which will cause a waste of resources.
  • the embodiments of the present application provide a power control method and device to solve the problem of reduced transmission performance and waste of resources caused by switching the amplification factor of the radio frequency power amplifier when the transmission power of different symbols is different in the existing signal transmission process. The problem.
  • an embodiment of the present application provides a power control method, including: a first terminal device determines the transmission power of a control channel and a first sub-data channel that have the same time domain and no frequency domain overlap; The transmission power of the second sub-data channel is the same as the transmission power of the control channel and the first sub-data channel.
  • the second sub-data channel and the control channel have frequency domain overlap and no time domain overlap; the control channel and the first sub-data channel are used for transmission
  • the power transmits the control channel and the first sub-data channel to the second terminal device; the second sub-data channel is transmitted to the second terminal device with the transmission power of the control channel and the first sub-data channel.
  • the data channel can be divided into a first sub-data channel and a second sub-data channel, and the first sub-data channel and the control channel overlap in the time domain without frequency domain overlap, and the second sub-data channel and the control channel have In the case of frequency domain overlap and no time domain overlap, the transmission power of the second sub-data channel is determined to be the same as the transmission power of the control channel and the first sub-data channel, and the transmission power of the control channel and the first sub-data channel is The second terminal device transmits the control channel and the first sub-data channel, and transmits the second sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel.
  • the method before the first terminal device determines the control channel and the first sub-data channel, the method further includes: the first terminal device determines the control channel and the data channel, and the data channel includes The first sub-data channel and the second sub-data channel.
  • the frame structure of the control channel and the data channel can be determined before the method provided in the embodiments of the present application: the data channel is divided into the first sub-data channel overlapping with the control channel in the time domain and the frequency domain with the control channel.
  • the overlapping second sub-data channel facilitates the first terminal device to execute the power control method provided in the embodiment of the present application based on the frame structure.
  • the bandwidth of the control channel is N
  • the bandwidth of the data channel is M
  • the bandwidth of the first sub-data channel is MN
  • M is greater than N
  • N is a positive integer
  • the first terminal device determines the transmission power of the control channel and the first sub-data channel, including: the first terminal device determines the control according to the maximum transmission power, the bandwidth N of the control channel, and the bandwidth MN of the first sub-data channel
  • the transmission power P control of the channel and the transmission power P DATA_A of the first sub-data channel; P control +P DATA_A is used as the transmission power of the control channel and the first sub-data channel and the transmission power of the second sub-data channel.
  • the control channel and the first sub-data channel when the control channel and the first sub-data channel are the same in the time domain without frequency domain overlap, the control channel and the first sub-data channel can be adjusted according to the bandwidth of the control channel and the bandwidth of the first sub-data channel.
  • Perform power allocation determine the transmission power of the control channel and the transmission power of the first sub-data channel, and use the determined sum of the transmission power of the control channel and the transmission power of the first sub-data channel as the transmission power of the second sub-data channel , Simple and easy.
  • the transmit power of the control channel can be determined to be the maximum transmit power allocated to the control channel and the minimum value of the link demand transmit power of the control channel
  • the transmit power of the first sub-data channel can be determined to be allocated to The minimum value of the maximum transmission power used by the first sub-data channel and the link required transmission power of the first sub-data channel.
  • the transmission power of the control channel P control min ⁇ P CMAX -f(N,MN),P MAX_CC -f(N , MN), f (N) + P O + ⁇ ⁇ PL ⁇
  • the transmission power of the first sub-data channel P DATA_A satisfies the following formula:
  • P DATA_A min ⁇ P CMAX -f(N,MN),P MAX_CC -f(N,MN),f(MN)+P O + ⁇ PL ⁇
  • P CMAX is the maximum transmission power
  • P MAX_CC is the maximum transmission power that meets the congestion control requirements
  • f(N, MN) is a function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel
  • f(MN) is A function of the bandwidth MN of the first sub-data channel
  • f(N) is a function of the bandwidth N of the control channel
  • P 0 is the target received power of the second terminal device
  • PL is the reference link loss
  • PL is a positive number
  • is Link loss compensation coefficient
  • is greater than 0 and less than 1.
  • the transmission power of the control channel as the maximum transmission power allocated to the control channel, according to the maximum transmission power used for the control channel to meet the congestion control requirements and the link demand of the control channel The minimum value of the transmission power, and determining that the transmission power of the first sub-data channel is the maximum transmission power allocated to the first sub-data channel, the maximum transmission power allocated to the first sub-data channel that meets congestion control requirements, and the first The minimum value of the transmission power required by the link of a sub-data channel.
  • the present application provides a power control device.
  • the power control device may be a first terminal device or a chip or a system on a chip in the first terminal device, and may also be used in the first terminal device to implement the first aspect or Any possible design of the functional module of the method in the first aspect.
  • the power control device can implement the functions performed by the first terminal device in the foregoing aspects or various possible designs, and the functions can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the aforementioned functions.
  • the power control device may include:
  • a determining unit configured to determine the transmission power of the control channel and the first sub-data channel, where the control channel and the first sub-data channel have the same time domain and no frequency domain overlap;
  • the transmission power of the second sub-data channel is the same as the transmission power of the control channel and the first sub-data channel, and the second sub-data channel and the control channel have frequency domain overlap and no time domain overlap;
  • the sending unit is configured to send the control channel and the first sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel, and to the second terminal with the transmission power of the control channel and the first sub-data channel
  • the device transmits the second sub-data channel.
  • the data channel can be divided into a first sub-data channel and a second sub-data channel, and the first sub-data channel and the control channel overlap in the time domain without frequency domain overlap, and the second sub-data channel and the control channel have In the case of frequency domain overlap and no time domain overlap, the transmission power of the second sub-data channel is determined to be the same as the transmission power of the control channel and the first sub-data channel, and the transmission power of the control channel and the first sub-data channel is The second terminal device transmits the control channel and the first sub-data channel, and transmits the second sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel.
  • the determining unit before determining the transmission power of the control channel and the first sub-data channel, is also used to determine the control channel and the data channel, and the data channel includes the first sub-data channel and The second sub-data channel.
  • the frame structure of the control channel and the data channel can be determined before the transmission power is determined: the data channel is divided into the first sub-data channel overlapping the control channel time domain and the second sub-channel overlapping the control channel frequency domain.
  • the sub-data channel determines the transmission power of the control channel and the first sub-data channel based on the frame structure.
  • the bandwidth of the second sub-data channel is M
  • the bandwidth of the control channel is N
  • the bandwidth of the first sub-data channel is MN
  • M is greater than N
  • N is a positive integer
  • the determining unit is specifically used to determine the transmission power P control of the control channel and the first sub-data channel according to the maximum transmission power, the bandwidth N of the control channel, and the bandwidth MN of the first sub-data channel
  • P control +P DATA_A is used as the transmission power of the control channel and the first sub-data channel and the transmission power of the second sub-data channel.
  • power allocation can be performed on the control channel and the first sub-data channel according to the bandwidth of the control channel and the bandwidth of the first sub-data channel, the transmission power of the control channel and the transmission power of the first sub-data channel can be determined, and It is simple and easy to use the determined sum of the transmission power of the control channel and the transmission power of the first sub-data channel as the transmission power of the second sub-data channel.
  • the maximum transmission power can be combined to determine the transmission power of the control channel to be the minimum value of the maximum transmission power allocated to the control channel and the link demand transmission power of the control channel, and to determine the value of the first sub-data channel
  • the transmission power is the minimum value of the maximum transmission power allocated to the first sub-data channel and the link required transmission power of the first sub-data channel.
  • the transmission power of the control channel P control min ⁇ P CMAX -f(N,MN),P MAX_CC -f(N , MN), f (N) + P O + ⁇ ⁇ PL ⁇ , the transmission power of the first sub-data channel P DATA_A satisfies the following formula:
  • P DATA_A min ⁇ P CMAX -f(N,MN),P MAX_CC -f(N,MN),f(MN)+P O + ⁇ PL ⁇
  • P CMAX is the maximum transmission power
  • P MAX_CC is the maximum transmission power that meets the congestion control requirements
  • f(N, MN) is a function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel
  • f(MN) is A function of the bandwidth MN of the first sub-data channel
  • f(N) is a function of the bandwidth N of the control channel
  • P 0 is the target received power of the second terminal device
  • PL is the reference link loss
  • PL is a positive number
  • is Link loss compensation coefficient
  • is greater than 0 and less than 1.
  • the transmission power of the control channel can be determined based on the busyness of the channel as the maximum transmission power allocated to the control channel, according to the maximum transmission power used for the control channel to meet the congestion control requirements and the control channel link
  • the minimum value of the required transmission power, and the transmission power of the first sub-data channel is determined to be the maximum transmission power allocated to the first sub-data channel, the maximum transmission power allocated to the first sub-data channel to meet congestion control requirements, and The minimum value of the transmission power required by the link of the first sub-data channel.
  • a power control device may be a first terminal device or a chip or a system on a chip in the first terminal device.
  • the power control device can implement the functions performed by the first terminal device in the above-mentioned aspects or various possible designs, and the functions can be implemented by hardware.
  • the power control device may include: a processor And launcher.
  • the processor may be used to determine the transmission power of the control channel and the first sub-data channel that has the same time domain as the control channel without frequency domain overlap, and determine the transmission power of the second sub-data channel and the control channel and the first sub-channel.
  • the transmission power of the data channel is the same, and the second sub-data channel and the control channel have frequency domain overlap and no time-domain overlap; and the transmission power of the control channel and the first sub-data channel determined by the transmitter determining unit is sent to the second terminal device
  • the control channel and the first sub-data channel are transmitted, and the transmission power of the control channel and the first sub-data channel determined by the determining unit is transmitted to the second terminal device.
  • the power control device may further include a memory, and the memory is used to store computer-executed instructions and data necessary for the power control device. When the power control device is running, the processor executes the computer-executable instructions stored in the memory, so that the power control device executes the power control method as described in the first aspect or any one of the possible designs of the first aspect .
  • a computer storage medium In a fourth aspect, a computer storage medium is provided.
  • the computer-readable storage medium may be a readable non-volatile storage medium.
  • the computer storage medium stores computer instructions that, when run on a computer, enable the computer to The power control method described in the first aspect or any one of the possible designs of the foregoing aspects is executed.
  • a computer program product containing instructions, which when running on a computer, enables the computer to execute the power control method described in the first aspect or any one of the possible designs of the foregoing aspects.
  • a power control device may be a first terminal device or a chip or a system on a chip in the first terminal device.
  • the power control device includes one or more processors and one or more Memory.
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the power control device is caused to execute the power control method described in the first aspect or any possible design of the first aspect.
  • the technical effects brought about by any one of the design methods of the third aspect to the sixth aspect may refer to the technical effects brought about by the above-mentioned first aspect or any possible design of the first aspect, and will not be repeated.
  • an embodiment of the present application provides a power control method, including: a first terminal device determines a transmission power of a control channel and a transmission power of a data channel, where the control channel and the data channel have frequency domain overlap and no time domain overlap; If the transmit power of the control channel is greater than or equal to the transmit power of the data channel, the first terminal device transmits the control channel and the data channel to the second terminal device with the transmit power of the control channel; or, if the transmit power of the control channel is less than that of the data channel Transmission power, the first terminal device transmits the control channel and the data channel to the second terminal device with the transmission power of the data channel.
  • the transmission power of the control channel and the transmission power of the data channel may be used as the maximum transmission power, and the maximum transmission power The power transmits the data channel and the control channel to the second terminal device.
  • the transmit power on different symbols is the same, so that different symbols use the same amplification factor for power amplification, and avoid the transmission performance caused by switching the amplification factor of the RF amplifier when the transmit power of different symbols is different. Reduce the problem of resource waste, improve system performance and resource utilization.
  • the bandwidth of the control channel is N
  • the bandwidth of the data channel is M
  • M is greater than or equal to N
  • N is a positive integer
  • the first terminal device determines the transmission power and data of the control channel
  • the transmission power of the channel includes: the first terminal device determines the transmission power P control of the control channel according to the maximum transmission power and the bandwidth N of the control channel; the first terminal device determines the transmission power of the data channel according to the maximum transmission power and the bandwidth M of the data channel Transmission power P DATA .
  • the transmission power of the control channel can be determined according to the maximum transmission power and the bandwidth of the control channel when the control channel and the data channel overlap in the frequency domain without time domain overlap.
  • the bandwidth determines the transmission power of the data channel, which is simple and easy.
  • control channel and the data channel do not overlap in the time domain, and are divided and multiplexed in real time. Therefore, there is no power allocation between the control channel and the data channel.
  • the transmission power of the control channel is allocated to the first The minimum value of the maximum transmission power of a terminal device and the link required transmission power of the control channel, and determining that the transmission power of the data channel is the minimum value of the maximum transmission power allocated to the first terminal device and the link required transmission power of the data channel .
  • the present application provides a power control device.
  • the power control device may be a first terminal device or a chip or a system on a chip in the first terminal device, and may also be used in the first terminal device to implement the seventh aspect or Any possible design of the seventh aspect is a functional module of the method.
  • the power control device can implement the functions performed by the first terminal device in the foregoing aspects or various possible designs, and the functions can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the aforementioned functions.
  • the power control device may include:
  • the determining unit is used to determine the transmission power of the control channel and the transmission power of the data channel, where the control channel and the data channel have frequency domain overlap and no time domain overlap;
  • the sending unit is configured to send the control channel and the data channel to the second terminal device with the transmission power of the control channel when the transmission power of the control channel is greater than or equal to the transmission power of the data channel; or, when the transmission power of the control channel is less than In the case of the transmission power of the data channel, the control channel and the data channel are transmitted to the second terminal device at the transmission power of the data channel.
  • the determining unit takes the transmission power of the control channel and the transmission power of the data channel as the maximum transmission power, and passes the transmission unit The data channel and the control channel are transmitted to the second terminal device at the maximum transmission power. In this way, it can be ensured that the transmit power on different symbols is the same, so that different symbols use the same amplification factor for power amplification, and avoid the transmission performance caused by switching the amplification factor of the RF amplifier when the transmit power of different symbols is different. Reduce the problem of resource waste, improve system performance and resource utilization.
  • the bandwidth of the control channel is N
  • the bandwidth of the data channel is M
  • M is greater than or equal to N
  • N is a positive integer
  • the determining unit is specifically used for: according to the maximum transmission power,
  • the bandwidth N of the control channel determines the transmission power P control of the control channel;
  • the first terminal device determines the transmission power P DATA of the data channel according to the maximum transmission power and the bandwidth M of the data channel.
  • the determination unit can determine the transmission power of the control channel according to the maximum transmission power and the bandwidth of the control channel when the control channel and the data channel overlap in the frequency domain without time domain overlap, and according to the maximum transmission power and data
  • the bandwidth of the channel determines the transmission power of the data channel, which is simple and easy.
  • the control channel and the data channel do not overlap in the time domain, and are instantaneously divided and multiplexed. Therefore, there is no power allocation between the control channel and the data channel.
  • the determining unit can determine the transmission power of the control channel as the allocation Give the minimum value of the maximum transmission power of the first terminal device and the link required transmission power of the control channel, and determine that the transmission power of the data channel is the maximum transmission power allocated to the first terminal device and the link required transmission power of the data channel Minimum value.
  • a power control device may be a first terminal device or a chip or a system on a chip in the first terminal device.
  • the power control device can implement the functions performed by the first terminal device in the above-mentioned aspects or various possible designs, and the functions can be implemented by hardware.
  • the power control device may include: a processor And launcher.
  • the processor can be used to determine the transmission power of the control channel and the transmission power of the data channel.
  • the control channel and the data channel have frequency domain overlap and no time domain overlap; when the transmission power of the control channel is greater than or equal to the transmission power of the data channel , Using the transmitter to send the control channel and the data channel to the second terminal device at the transmission power of the control channel; or, when the transmission power of the control channel is less than the transmission power of the data channel, the transmitter uses the transmission power of the data channel to send The second terminal device transmits the control channel and the data channel.
  • the power control device may further include a memory, and the memory is used to store computer-executed instructions and data necessary for the power control device.
  • the processor executes the computer-executable instructions stored in the memory, so that the power control device executes the power control method as described in the seventh aspect or any one of the possible designs of the seventh aspect. .
  • a computer storage medium is provided.
  • the computer-readable storage medium may be a readable non-volatile storage medium.
  • the computer storage medium stores computer instructions that, when run on a computer, enable the computer to Perform the power control method described in the seventh aspect or any one of the possible designs of the foregoing aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the power control method described in the seventh aspect or any possible design of the foregoing aspects.
  • a power control device may be a first terminal device or a chip or a system on a chip in the first terminal device.
  • the power control device includes one or more processors and one or Multiple memories.
  • the one or more memories are coupled with the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the power control device is caused to execute the power control method according to the seventh aspect or any possible design of the seventh aspect.
  • an embodiment of the present application provides a power control system, which includes the power control device according to any one of the second aspect to the sixth aspect, and the second terminal device; The power control device and the second terminal device according to any aspect of the twelfth aspect.
  • Figure 1 is a characteristic curve diagram of a radio frequency amplifier
  • Fig. 2a is a schematic diagram of the amplification factor of an existing switching radio frequency amplifier
  • Fig. 2b is a schematic diagram of the amplification factor of the existing switching radio frequency amplifier
  • FIG. 3 is a schematic diagram of the composition of a communication system provided by an embodiment of the application.
  • Fig. 4 is a schematic diagram of four frame structures for mixed multiplexing of control channels and data channels
  • FIG. 5 is a flowchart of a power control method provided by an embodiment of the application.
  • Figure 6a is a schematic diagram of a data channel and a control channel provided by an embodiment of the present application.
  • FIG. 6b is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • FIG. 6c is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • FIG. 6d is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • Figure 6e is a schematic diagram of yet another data channel and control channel provided by an embodiment of the present application.
  • FIG. 6f is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • Figure 7 is a process flow chart of sending control channels and data channels
  • Fig. 8 is a processing flow chart of receiving a control channel and a data channel
  • FIG. 9 is a flowchart of a power control method provided by an embodiment of the application.
  • Figure 10a is a schematic diagram of a data channel and a control channel provided by an embodiment of the present application.
  • FIG. 10b is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • FIG. 10c is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • FIG. 10d is a schematic diagram of another data channel and control channel provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a power control device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of another power control device provided by an embodiment of the present application.
  • the power control method provided by the embodiments of this application can be used in any communication system where the control channel and the data channel are mixed and multiplexed.
  • the communication system can be a third generation partnership project (3rd generation partnership project, 3GPP) communication system, for example, long-term
  • 3GPP third generation partnership project
  • LTE long term evolution
  • LTE long term evolution
  • NR new radio
  • V2X vehicle-to-everything
  • the V2X) system and other next-generation communication systems can also be non-3GPP communication systems without limitation.
  • FIG. 3 uses FIG. 3 as an example to describe the method provided in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include network equipment and terminal equipment.
  • the terminal equipment can be located within the coverage area of the cell or outside the coverage area of the cell.
  • Terminal devices can communicate with network devices through Uu ports, and can also communicate with other terminal devices through device-to-device (D2D) or V2X communications through sidelinks (or PC5 ports).
  • D2D device-to-device
  • V2X communications or PC5 ports.
  • the terminal devices communicating through sidelink can all be located outside the coverage area of the cell, as shown in Figure 3, the terminal device 4 and the terminal device 5 are located outside the coverage area of the cell, and the two can communicate via sidelink; or one of them can be located within the coverage area of the cell.
  • the other is located in the coverage area of the cell.
  • the terminal device 1 can communicate with the terminal device 5 through sidelink.
  • the terminal device 1 is located in the coverage area of the cell, and the terminal device 5 is located outside the coverage of the cell. It can also be located in the same cell. Covered area and in a public land mobile network (PLMN), such as PLMN1, as shown in Figure 3, terminal device 1 and terminal device 2, both of which are located in PLMN1; they can also be in a PLMN Such as PLMN1, but in different cell coverage areas, such as terminal equipment 2 and terminal equipment 3 in Figure 3.
  • PLMN public land mobile network
  • terminal devices communicating via sidelink can also be located in different PLMNs and different cells, such as being located in the common coverage area of different cells of different PLMNs, or located in their respective services under different PLMNs. Within the coverage area of the cell, etc.
  • the network device in FIG. 3 can be any device with a wireless transceiver function, which is mainly used to implement wireless physical control functions, resource scheduling and wireless resource management, wireless access control, and mobility management.
  • the network device may be an access network (AN)/radio access network (RAN) device, or a device composed of multiple 5G-AN/5G-RAN nodes, and It can be a base station (nodeB, NB), an evolved base station (evolution nodeB, eNB), a next-generation base station (gNB), a transmission receiving point (TRP), a transmission point (TP), and a route.
  • AN access network
  • RAN radio access network
  • gNB next-generation base station
  • TRP transmission receiving point
  • TP transmission point
  • Any node in the road side unit (RSU) and some other access node is not restricted.
  • the terminal equipment (terminal equipment) in Figure 3 can be called a terminal (terminal) or a user equipment (UE) or a mobile station (MS) or a mobile terminal (mobile terminal, MT), etc., and can be deployed in On water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites, etc.).
  • the terminal in FIG. 3 may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal can also be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, and a smart grid.
  • VR virtual reality
  • AR augmented reality
  • FIG. 3 is only an exemplary drawing, the number of devices included in FIG. 3 is not limited, and in addition to the devices shown in FIG. 3, the communication architecture may also include other devices.
  • the name of each device in FIG. 3 is not limited. In addition to the name shown in FIG. 3, each device can also be named with other names without limitation.
  • the base station (or network device) scheduling mode that is, the base station (or) network device indicates transmission resources to the terminal device.
  • Competition mode that is, the network device allocates a resource pool including a large number of resources to the terminal device, and multiple terminal devices can select the transmission resources they need in the resource pool through competition. After the terminal device obtains the transmission resource through these two methods, the terminal device can send data signals and control channels on the acquired transmission resource.
  • the terminal device can multiplex the data channel and the control channel together to send to the opposite device.
  • the terminal device can use the four frame structures shown in FIG. 4 to send the data channel and the control channel.
  • the four frame structures are: option1a, the control channel and the data channel have the same frequency domain and no time domain overlap; option1b, the control channel and the data channel overlap the frequency domain without time domain overlap; option2, the control channel The time domain is the same as the data channel without frequency domain overlap; option 3: the control channel is the same as a part of the data channel in the time domain without frequency domain overlap, and the control channel and the remaining part of the data channel overlap in frequency domain without time domain overlap.
  • control channel described in the embodiments of this application can be called a sidelink control channel or a physical sidelink shared channel (PSSCH), which can be used to carry sidelink control information (
  • the sidelink control information (SCI) channel the SCI may include decoding information of the data transmitted in the data channel, and so on.
  • the data channel described in the embodiments of this application may be called a sidelink data channel or a physical sidelink control channel (PSCCH) used to carry data. The data may be sent from the sender to the receiver. The data.
  • the 3GPP protocol discusses the transmission power of the control channel and the transmission power of the data channel as follows: Take the resource diagram shown in option 2 as an example, the control channel and the data channel are multiplexed in frequency division. At the same time, from the time domain point of view, the control channel and the data channel are in a coexistence relationship. The transmission power of the control channel and the data channel needs to be considered together, and the two need to be allocated power.
  • the transmission power control of the data channel is the following formula (1):
  • the transmit power control of the control channel can satisfy the following formula (2):
  • P PSSCH is the transmission power of the data channel
  • P PSCCH is the transmission power of the control channel
  • M PSSCH is the bandwidth of the data channel
  • M PSCCH is the bandwidth of the control channel
  • P CMAX is the maximum transmission power, which can also be understood as the terminal equipment allows The maximum transmit power.
  • PL is the downlink power loss of the terminal equipment. In communication systems, especially in time division duplexing (TDD) systems, it is generally considered that the uplink and downlink losses are the same, so PL can be used to represent the terminal equipment to the network Possible link loss on the side.
  • TDD time division duplexing
  • P O_PSSCH_3 is the power expected to be received by the terminal device (which can also be understood as the target received power of the terminal device), where 3 indicates that the resource allocation mode is the base station scheduling mode.
  • ⁇ PSSCH,3 is the link loss compensation coefficient configured on the network side in the base station scheduling mode.
  • formula (3) and formula (4) respectively include two sub-items.
  • the first item represents the maximum transmit power allocated to the current channel, as shown in formula (3).
  • the term can represent the maximum transmission power allocated to the data channel
  • the first term in formula (4) can represent the maximum transmission power allocated to the control channel.
  • the maximum transmission power allocated to the control channel and the data channel is directly proportional to the bandwidth of the channel itself, and compared with the data channel, the transmission power of each sub-channel of the control channel is increased by 10 3/10 times, namely All the transmit power allowed by the terminal equipment hardware is allocated to the control channel and the data channel in proportion to the bandwidth.
  • the 10 3/10 enhancement is only an indication, which means that the control channel can have a power enhancement.
  • other forms of enhancement can also be used, which are not limited. .
  • the second term of formula (3) and formula (4) indicates that the link budget is calculated according to the link loss of the Uu port and the expected signal-noise-ratio (SNR), that is, the expected transmission power of the link (Or link demand transmission power).
  • the transmission power of the final data channel and the transmission power of the control channel are the minimum values of the first and second items respectively, that is, when the transmission power allowed by the terminal device is large enough, the transmission power according to the link demand (or link budget Transmission power) to send the data channel and the control channel.
  • the power allowed by the terminal device is less than the link requirement, the data channel and the control channel are sent to the second terminal device according to the maximum power allowed by the terminal device.
  • the power control of the data channel may be the following formula (5):
  • A can satisfy the following formula (6):
  • the power control of the control channel can satisfy the following formula (7):
  • B can satisfy the following formula (8):
  • P MAX_CC in the above formula (6) and formula (8) is the maximum transmission power that meets the congestion control requirements.
  • the transmission power of different symbols under the option2 frame structure can be the same, which avoids the need to switch between different symbols.
  • the problem of performance degradation and waste of resources for the control channel and data channel as shown in option1a, option1b, and option3 in Fig. 4 in a hybrid multiplexing scenario where both time domain overlap and frequency domain overlap, if the power control method for the option2 frame structure is adopted, then The same transmission power cannot be satisfied for different symbols, that is, the above power control method for the option 2 frame structure is no longer applicable to the power control under option 1a, option 1b, and option 3 in FIG. 4.
  • the embodiment of the present application provides a new power control method for option1a, option1b, and option3 in FIG. 4.
  • the power control method of option 3 in FIG. 4 refer to the embodiment corresponding to FIG. 5 in the embodiment of the present application
  • the power control method of the frame structure shown in option 1a and option 1b in FIG. 4 refer to FIG. 9 As described in the corresponding embodiment.
  • FIG. 5 is a flowchart of a power control method provided by an embodiment of the application, which is used to perform power control on the data channel and the control channel under option 3 in FIG. 4. As shown in FIG. 5, the method may include:
  • Step 501 The first terminal device determines the transmission power of the control channel and the first sub-data channel.
  • the first terminal device may be any terminal device in the communication system shown in FIG. 3.
  • the control channel may be PSCCH, and the first sub-data channel may be a part of the data channel, for example, it may be a part of the PSSCH.
  • the control channel may have the same time domain as the first sub-data channel without frequency domain overlap.
  • the multiplexing relationship between the control channel and the first sub-data channel may be as shown in option 3 in FIG. 4.
  • FIGS. 6a to 6f provide several possible situations of the frame structure shown in option 3.
  • the data channel can be divided into a first sub-data channel and a second sub-data channel, that is, the first sub-data channel and the second sub-data channel can form a complete data channel .
  • the first sub-data channel and the second sub-data channel may form a complete data channel.
  • the first sub-data channel and the control channel overlap in the time domain, but there is no frequency domain overlap
  • the second sub-data channel and the control channel overlap in the frequency domain, but there is no time domain overlap.
  • the first sub-data channel and the control channel have a time-domain multiplexing relationship but no frequency-domain multiplexing relationship
  • the second sub-data channel and the control channel have a frequency-domain multiplexing relationship but no time-domain multiplexing relationship.
  • the bandwidth of the data channel is M
  • the bandwidth of the control channel is N
  • M is greater than N
  • the bandwidth of the first sub-data channel is M-N
  • the bandwidth of the second sub-data channel is M.
  • M may represent M resource units
  • N may represent N resource units
  • the resource unit may be a resource block (resource block, RB) or subcarrier or other granular resource unit, which is not limited.
  • RB resource block
  • M may represent M RBs
  • N may represent N RBs. It should be noted that the embodiments of this application do not limit the specific values of M and N.
  • the first terminal device may refer to the power control method of 3GPP for the frame structure shown in option 2 in Figure 4, and determine the transmission of the control channel according to the maximum transmission power, the bandwidth N of the control channel, and the bandwidth MN of the first sub-data channel.
  • the power P control and the transmission power P DATA_A of the first sub-data channel are described below.
  • Step 502 The first terminal device determines that the transmission power of the second sub-data channel is the same as the transmission power of the control channel and the first sub-data channel, and the second sub-data channel and the control channel have frequency domain overlap and no time domain overlap.
  • the first terminal device may use P control + P DATA_A as the transmission power of the second sub-data channel.
  • P control + P DATA_A the transmission power of the second sub-data channel.
  • Step 503 The first terminal device transmits the control channel and the first sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel; The two terminal devices transmit the second sub-data channel.
  • the second terminal device can be any device that performs sidelink communication with the first terminal device in the communication system shown in FIG. 3.
  • the first terminal device may use the transmission process shown in FIG. 7 to transmit the control channel and the first sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel; and, to control The transmission power of the channel and the first sub-data channel transmits the second sub-data channel to the second terminal device.
  • the first terminal device generates data channel information and control channel information, and performs channel coding on the data channel information and control channel information to generate a first sub-data channel, a control channel, and a second sub-data channel to control the channel and the first sub-data channel.
  • the transmission power shall prevail, and the power control of the encoded channel is carried out.
  • the power of the encoded second sub-data channel is adjusted to the transmit power of the control channel and the first sub-data channel, and then the power control of each channel After resource mapping processing, resources are mapped to physical time-frequency resources.
  • each channel undergoes fast Fourier transformation (FFT) + group
  • FFT fast Fourier transformation
  • the frame processing is combined to form the data of a subframe, and the data of the subframe is sent out through a radio frequency device (such as the amplification processing of a radio frequency amplifier), so as to realize the transmission of the data channel and the control channel to the second terminal device.
  • a radio frequency device such as the amplification processing of a radio frequency amplifier
  • the data channel information may be information carried on the data channel, such as: data to be sent by the first terminal device to the second terminal device, etc.
  • the control channel information is the information that carries the control channel, for example, it can be SCI.
  • the specific processing procedures such as channel coding, power control, resource mapping, FFT+framing, etc. shown in FIG. 7 can be referred to the prior art and will not be repeated.
  • the second terminal device after receiving the first sub-data channel, second sub-data channel, and control channel sent by the first terminal device, the second terminal device can estimate the transmission power of the control channel, and demodulate the control channel based on the estimated transmission power At the same time, the second terminal device can respectively estimate the transmit power of the first sub-data channel and the transmit power of the second sub-data channel, demodulate the first sub-data channel according to the estimated transmit power of the first sub-data channel, and according to the estimated The transmit power of the second sub-data channel is demodulated to obtain the second sub-data channel, and the demodulated first sub-data channel and the second sub-data channel are combined to obtain the data channel.
  • the specific manner in which the second terminal device receives the control channel can refer to the prior art, and the manner in which the second terminal device receives the first sub-data channel and the second sub-data channel can refer to FIG. 8:
  • the second terminal device receives the first sub-data channel, the second sub-data channel, and the control channel sent by the first terminal device, and performs deframing + inverse fast Fourier transformation (IFFT) on the received channel, and Separate processing to obtain the first sub-data channel, second sub-data channel, and control channel, and perform channel estimation and multi-input multi-output (multi-input multi-output) on the separated first sub-data channel and second sub-data channel.
  • IFFT inverse fast Fourier transformation
  • MIMO multi-input multi-output
  • the channel quality used in the process shown in FIG. 8 may be signal-to-noise ratio or signal-to-interference noise.
  • the maximum ratio combination can be performed according to the channel quality.
  • the specific processing processes such as deframing + IFFT, channel separation, channel estimation, MIMO decoding, data channel merging, and channel decoding can refer to the existing process, and will not be repeated.
  • the data channel can be divided into a first sub-data channel and a second sub-data channel, and the first sub-data channel and the control channel overlap in the time domain without frequency domain overlap.
  • the transmission power of the second sub-data channel is determined to be the same as the transmission power of the control channel and the first sub-data channel to control the transmission of the channel and the first sub-data channel.
  • the power transmits the control channel and the first sub-data channel to the second terminal device, and transmits the second sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel.
  • the control channel and the first sub-data channel are in the same time domain. Therefore, when transmitting in the same time domain, the control channel and the first sub-data channel need to be Power allocation.
  • the first terminal device can determine the transmission power of the control channel according to the maximum transmission power P CMAX , the bandwidth MN of the first sub-data channel, and the bandwidth N of the control channel. More specifically, the transmit power of the control channel can satisfy the following formula (9):
  • P control is the transmission power of the control channel
  • P CMAX is the maximum transmission power
  • f(MN,N) is the function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel
  • f(N) is the control channel A function of the bandwidth N
  • P 0 is the target received power of the second terminal device (also can be understood as the expected received power of the second terminal device)
  • the unit of P 0 is dBm.
  • is the link loss compensation coefficient set by the (base station) considering adjustment stability, which can be configured by higher layers
  • PL is the reference link loss
  • PL is a positive number
  • the unit of PL is dB.
  • PCMAX can be understood as the maximum transmission power limited by physical hardware, or can be understood as the maximum transmission power allowed by the hardware of the terminal device.
  • P CMAX can be configured by higher layer signaling of the base station.
  • f(MN, N) in formula (9) can also be understood as the expression of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel, or it can also be understood as the bandwidth MN of the first sub-data channel. The relationship with the bandwidth N of the control channel, etc.
  • P CMAX -f(MN,N) can be understood as the transmission power allocated by the control channel according to the maximum transmission power P CMAX and the bandwidth ratio of the control channel to the first sub-data channel, f(N)+P O + ⁇ PL can be understood as the link budget of the control channel or the link required transmission power of the control channel or the link expected transmission power of the control channel.
  • f(M-N,N) can satisfy the following formula (10):
  • f(M-N, N) can be understood as the power allocation relationship between the control channel and the first sub-data channel.
  • f(N) can satisfy the following formula (11):
  • this embodiment also provides another form to express the transmission power of the control channel, as shown in the following formula (13):
  • formula (12) and formula (13) are equivalent. They are two different forms of the transmission power of the control channel in the base station scheduling mode.
  • the first terminal device needs to determine the transmission power of the control channel, whether it is According to formula (12) or formula (13), the result of the transmission power of the control channel determined by the first terminal device is consistent. Therefore, the first terminal device may also determine the transmission power of the control channel through formula (9) and further formula (12) or formula (13).
  • the transmit power of the control channel may satisfy the following formula:
  • P control is the transmission power of the control channel
  • P CMAX is the maximum transmission power
  • f(MN,N) is a function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel
  • f(N ) Is a function of the bandwidth N of the control channel
  • P 0 is the target received power of the second terminal device
  • is the link loss compensation coefficient set in consideration of adjustment stability, which can be configured by higher layers
  • PL is the reference link loss
  • P MAX_CC In order to meet the maximum transmission power required by congestion control, it can also be understood as the maximum channel busy ratio (max channel busy ratio).
  • P MAX_CC is mainly used for congestion control.
  • the purpose is to reduce the maximum transmission power of the sending user when the busyness of the system exceeds a certain limit, or to set the maximum transmission power of the user under the current busyness.
  • the transmit power of the control channel satisfies the following formula:
  • formula (15) and formula (16) are two different forms of transmission power of the control channel, and the transmission power of the control channel determined by the first terminal device through formula (15) and formula (16) is consistent.
  • the transmission power of the first sub-data channel may be determined according to the maximum transmission power P CMAX , the bandwidth MN of the first sub-data channel, and the bandwidth N of the control channel.
  • the transmit power of the first sub-data channel may satisfy the following formula (17):
  • P DATA_A min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL ⁇ [dBm] (17)
  • P CMAX is the maximum transmission power
  • f(N, MN) is a function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel
  • f(MN) is the bandwidth of the first sub-data channel
  • P 0 is the target received power of the second terminal device
  • PL is the reference link loss
  • PL is a positive number
  • is the link loss compensation coefficient, ⁇ Greater than 0 and less than 1.
  • f(N, MN) can also be understood as an expression or relationship between the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel, etc.
  • f(MN) can also be understood as the first sub-data channel The expression or relational equation of the bandwidth MN.
  • P CMAX -f(N,MN) can be understood as the transmission power allocated by the first sub-data channel according to the maximum transmission power P CMAX and the bandwidth ratio of the first sub-data channel to the control channel, f(MN)+P O + ⁇ PL can be understood as the link budget of the first sub-data channel.
  • the transmit power of the first sub-data channel may satisfy the following formula (20):
  • this embodiment also provides another form to express the transmit power of the first sub-data channel, as shown in the following formula (21):
  • Formula (20) and formula (21) are two different forms of the transmission power of the first sub-data channel, and the transmission power of the first sub-data channel determined by the first terminal device through formula (20) and formula (21) is Consistent.
  • the transmit power of the first sub-data channel may satisfy the following formula (22):
  • P MAX_CC is the maximum transmission power that meets the congestion control requirements. It can be understood that P MAX_CC in formula (17) and formula (22) can be understood as the same maximum transmission power that meets the congestion control requirements.
  • the transmit power of the first sub-data channel satisfies the following formula (24):
  • formula (23) and formula (24) are two different forms of the transmit power of the first sub-data channel in the competition mode.
  • the first terminal device determines the first sub-channel by formula (23) and formula (24).
  • the transmission power of the data channel is consistent.
  • P DATA_B satisfies the following formula (25):
  • the transmission power of the second sub-data channel is equivalent to the fusion of power allocation and link demand.
  • the combination of the two min functions in the above formula (26) there are several possibilities for the combination of the two min functions in the above formula (26):
  • the third possibility is that it does not exist.
  • the verification process can refer to the following.
  • the maximum and minimum terms in the two min functions are the same, so the transmission power of the second sub-data channel can also be expressed as the allocated maximum transmission power and the link demand transmission power
  • the minimum value of, that is, in the non-dB domain, the expression of the second sub-data channel can be as in formula (27) as follows:
  • P DATA_B min ⁇ P allocation_c +P allocation_D_A ,P r_c +P r_D_A ⁇ (27)
  • the maximum transmit power allocated for the second sub-data channel can be expressed as shown in formula (28):
  • the maximum transmit power allocated for the second sub-data channel can be expressed as shown in formula (29):
  • the link required transmission power of the second sub-data channel can be expressed as formula (30):
  • Equation (31) a data channel and a control channel PL and the same P O, binding equation (29) and Equation (30), finally, the second sub-data channel transmission power may be expressed as Equation (31):
  • the control channel has a 3dB power enhancement relative to the data channel on each RE.
  • the enhancement of is only an indication, indicating that the control channel can have a power enhancement, except In addition, it can be enhanced by other forms without limitation.
  • the target received power P 0 and the reference link loss PL of the control channel and the data channel are the same. If the target received power P 0 of the control channel and the data channel is different from the reference link loss PL, the above formula (29) and formula (30) cannot be combined. Then in the non-dB domain, the transmit power of the second sub-data channel is only It can be expressed as shown in formula (26).
  • the transmit power of the control channel, the transmit power of the first sub-data channel, or the transmit power of the second sub-data channel described in the embodiment shown in FIG. 5 all refer to a certain moment or a certain time.
  • the transmit power on the unit all refer to a certain moment or a certain time.
  • FIG. 9 is another power control method provided by an embodiment of the application, which is used to perform power control on the data channel and the control channel in the option1a and option1b frame structures. As shown in FIG. 9, the method may include:
  • Step 901 The first terminal device determines the transmit power of the control channel and the transmit power of the data channel. If the transmit power of the control channel is greater than or equal to the transmit power of the data channel, perform step 902; if the transmit power of the control channel is less than the transmit power of the data channel Power, go to step 903.
  • the first terminal device may be any terminal device in the system shown in FIG. 3.
  • control channel and the data channel may have frequency domain overlap and no time domain overlap.
  • multiplexing relationship between the control channel and the data channel may be as shown in option1a and option1ba in Figure 4.
  • Figures 10a to 10d provide several possible structures in which the data channel and the control channel have frequency domain overlap and no time domain overlap. . Taking FIG. 10a as an example, as shown in FIG. 10a, the data channel and the control channel overlap in the frequency domain, but there is no overlap in the time domain.
  • the bandwidth of the data channel is M
  • the bandwidth of the control channel is N
  • M can be greater than N or M equal to N.
  • M may represent M resource units
  • N may represent N resource units
  • the resource units may be RBs or subcarriers or other granular resource units, which are not limited.
  • M may represent M RBs
  • N may represent N RBs.
  • the control channel and the data channel are time-division multiplexed, there is no power allocation problem, and the data channel and the control channel can enjoy all the power independently without power allocation.
  • the transmission power of the data channel can be determined in the maximum transmission power and the link budget of the data channel.
  • the transmission power of the data channel can be determined in the maximum transmission power and the link budget of the data channel.
  • the transmit power of the control channel can satisfy the following formula (32):
  • the transmit power of the data channel can satisfy the following formula (33):
  • P control is the transmission power of the control channel
  • P DATA is the transmission power of the control channel
  • P CMAX is the maximum transmission power
  • f(M) is a function of the bandwidth M of the data channel
  • f(N) is the bandwidth N of the control channel
  • the function of P 0 is the target received power of the second terminal device (also can be understood as the expected received power of the second terminal device)
  • the unit of P 0 is dBm.
  • is the link loss compensation coefficient set by the (base station) considering adjustment stability, which can be configured by higher layers
  • PL is the reference link loss
  • PL is a positive number
  • the unit of PL is dB.
  • f(M) in formula (33) can also be understood as the expression of the bandwidth M of the data channel, or can also be understood as the relational expression of the bandwidth M of the data channel.
  • f(M) can satisfy the following formula (34):
  • f(N) can satisfy the following formula (35):
  • the transmission power of the control channel can satisfy the following formula (36):
  • the transmit power of the data channel can satisfy the following formula (37):
  • the first type relative to the second term in the transmission power formula of the data channel, the second term in the transmission power formula of the control channel is the largest, that is, the link demand transmission power of the control channel is relatively large.
  • the control channel and the data channel are transmitted based on the transmission power of the control channel, that is: the final transmission power of the control channel and the transmission power of the data channel satisfy the following Formula (38):
  • the second type, relative to the second term in the transmission power formula of the control channel, the second term in the transmission power formula of the data channel is the largest, that is, the link of the data channel requires a higher transmission power.
  • the control channel and the data channel are transmitted based on the transmission power of the data channel, that is, the transmission power of the final control channel and the transmission power of the data channel meet The following formula (40):
  • the power of the finally determined transmission control channel and data channel has the following two situations:
  • the control channel has power enhancement compared to the data channel.
  • the target power enhancement of the control data may be 3dB, and there are other possibilities.
  • the present invention is only applicable and does not provide protection. But in this embodiment, when When using the transmission power of the data channel, the result may be that the output power gain of the control channel may be greater than 3dB.
  • the target received power P 0 of the control channel and the data channel and the reference link loss PL are the same, if the target received power P 0 of the control channel and the data channel and the reference link loss If the PL is different, the finally determined transmission control channel and data channel power can be expressed as:
  • P R_MAX max ⁇ 10log 10 (M)+P DATA + ⁇ PL DATA ,10log 10 (M)+P control + ⁇ PL control ⁇
  • P control is the target received power of the control channel
  • PL control is the reference link loss of the control channel
  • P DATA is the target received power of the data channel
  • PL DATA is the reference link loss of the data channel.
  • Step 902 The first terminal device transmits the control channel and the data channel to the second terminal device using the transmission power of the control channel.
  • Step 903 The first terminal device transmits the control channel and the data channel to the second terminal device using the transmission power of the data channel.
  • the first terminal device may refer to the transmission process shown in FIG. 7 to transmit the control channel and the data channel to the second terminal device with the transmission power of the control channel; or, transmit the control channel and the data channel to the second terminal device with the transmission power of the data channel.
  • Channel and data channel may refer to the transmission process shown in FIG. 7 to transmit the control channel and the data channel to the second terminal device with the transmission power of the control channel; or, transmit the control channel and the data channel to the second terminal device with the transmission power of the data channel.
  • Channel and data channel may refer to the transmission process shown in FIG. 7 to transmit the control channel and the data channel to the second terminal device with the transmission power of the control channel; or, transmit the control channel and the data channel to the second terminal device with the transmission power of the data channel.
  • the transmission power of the control channel and the transmission power of the data channel described in the embodiment shown in FIG. 9 all refer to the transmission power at a certain moment or a certain time unit.
  • the transmission power of the control channel and the transmission power of the data channel may be used as the maximum transmission power.
  • the transmission power of the data channel and the control channel are transmitted to the second terminal device. In this way, it can be ensured that the transmit power on different symbols is the same, so that different symbols use the same amplification factor for power amplification, and avoid the transmission performance caused by switching the amplification factor of the RF amplifier when the transmit power of different symbols is different. Reduce the problem of resource waste, improve system performance and resource utilization.
  • each node for example, the first terminal device, in order to implement the above-mentioned functions, includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of this application can divide the access network equipment and terminals into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 is a schematic structural diagram of a power control device provided by an embodiment of the present application.
  • the power control device can be used to execute the method described in the embodiment of the present application.
  • the power control device can be a first terminal device or a first terminal device.
  • the power control device includes a determining unit 1101 and a sending unit 1102.
  • the determining unit 1101 is used to determine the transmission power of the control channel and the first sub-data channel.
  • the control channel and the first sub-data channel have the same time domain and no frequency domain. Overlap; and determining that the transmit power of the second sub-data channel is the same as the transmit power of the control channel and the first sub-data channel, and the second sub-data channel and the control channel have frequency domain overlap and no time domain overlap;
  • the sending unit 1102 is configured to send the control channel and the first sub-data channel to the second terminal device with the transmission power of the control channel and the first sub-data channel, and to send the second terminal device with the transmission power of the control channel and the first sub-data channel.
  • the terminal device transmits the second sub-data channel.
  • the determining unit 1101 is further configured to determine the control channel and the data channel before determining the transmission power of the control channel and the first sub-data channel.
  • the data channel includes the first sub-data channel and the first sub-data channel. Two sub data channels.
  • the frame structure of the control channel and the data channel can be determined before the transmission power is determined: the data channel is divided into the first sub-data channel overlapping the control channel time domain and the second sub-channel overlapping the control channel frequency domain.
  • the sub-data channel determines the transmission power of the control channel and the first sub-data channel based on the frame structure.
  • the bandwidth of the second sub-data channel is M
  • the bandwidth of the control channel is N
  • the bandwidth of the first sub-data channel is MN
  • M is greater than N
  • N is a positive integer
  • the determining unit 1101 configured to: according to the bandwidth MN maximum transmit power, bandwidth channel N, a first sub-data channel, power control channel transmission to determine transmit power P control data and the first sub-channel P DATA_A; the P control + P DATA_A is used as the transmission power of the control channel and the first sub-data channel and the transmission power of the second sub-data channel.
  • the transmit power of the first sub-data channel P DATA_A min ⁇ P CMAX -f(N,MN),f(MN)+P O + ⁇ PL ⁇ , where P CMAX is the maximum transmit power, f(N, MN) is a function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel, f(MN) is a function of the bandwidth MN of the first sub-data channel, f(N) is a function of the bandwidth N of the control channel, P 0 is the target received power of the second terminal device, PL is the reference link loss, PL is a positive number, ⁇ is the link loss compensation coefficient, and ⁇ is greater than 0 and less than 1.
  • the transmit power of the control channel is:
  • P control min ⁇ P CMAX -f (N, MN), P MAX_CC -f (N, MN), f (N) + P O + ⁇ ⁇ PL ⁇ ,
  • the transmission power P DATA_A of the first sub-data channel satisfies the following formula:
  • P DATA_A min ⁇ P CMAX -f (N, MN), P MAX_CC -f (N, MN), f (MN) + P O + ⁇ ⁇ PL ⁇ ,
  • P CMAX is the maximum transmission power
  • P MAX_CC is the maximum transmission power that meets the congestion control requirements
  • f(N, MN) is a function of the bandwidth MN of the first sub-data channel and the bandwidth N of the control channel
  • f(MN) is A function of the bandwidth MN of the first sub-data channel
  • f(N) is a function of the bandwidth N of the control channel
  • P 0 is the target received power of the second terminal device
  • PL is the reference link loss
  • PL is a positive number
  • is Link loss compensation coefficient
  • is greater than 0 and less than 1.
  • the data channel can be divided into a first sub-data channel and a second sub-data channel, and the first sub-data channel and the control channel overlap in the time domain without frequency domain overlap, and the second sub-data channel and the control channel have frequency.
  • the transmission power of the second sub-data channel is determined to be the same as the transmission power of the control channel and the first sub-data channel, and the transmission power of the control channel and the first sub-data channel.
  • the determining unit 1101 is used to determine the transmission power of the control channel and the transmission power of the data channel that has frequency domain overlap with the control channel and no time domain overlap;
  • the sending unit 1102 is configured to send the control channel and the data channel to the second terminal device with the transmission power of the control channel when the transmission power of the control channel is greater than or equal to the transmission power of the data channel; or, the transmission power of the control channel If it is less than the transmission power of the data channel, the control channel and the data channel are transmitted to the second terminal device at the transmission power of the data channel.
  • the bandwidth of the control channel is N
  • the bandwidth of the data channel is M
  • M is greater than or equal to N
  • N is a positive integer
  • the determining unit 1101 is specifically configured to: control according to the maximum transmit power
  • the bandwidth N of the channel determines the transmission power P control of the control channel
  • the first terminal device determines the transmission power P DATA of the data channel according to the maximum transmission power and the bandwidth M of the data channel.
  • the determining unit 1101 takes the transmission power of the control channel and the transmission power of the data channel as the criterion, and passes the transmission unit 1102 transmits the data channel and the control channel to the second terminal device at the maximum transmission power. In this way, it can be ensured that the transmit power on different symbols is the same, so that different symbols use the same amplification factor for power amplification, and avoid the transmission performance caused by switching the amplification factor of the RF amplifier when the transmit power of different symbols is different. Reduce the problem of resource waste, improve system performance and resource utilization.
  • the power control device shown in FIG. 11 may include: a processing module and a communication module.
  • the processing module may integrate the functions of the determining unit 1101, and the communication module may integrate the functions of the sending unit 1102.
  • the processing module is used to control and manage the actions of the power control device.
  • the processing module is used to support the power control device 110 to perform step 501, step 502, step 901, and other processes of the technology described herein.
  • the communication module is used to support the communication between the power control device and other network entities.
  • the communication module can be used to support the power control device to perform step 503, step 902, and step 903.
  • the power control device shown in FIG. 11 may also include a storage module for storing program codes and data capable of executing the power control method provided in this application.
  • the processing module may be a processor or a controller. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processing (DSP) and a microprocessor, and so on.
  • the communication module can be a transmitter, a transceiver circuit, a communication interface, or a radio frequency link.
  • the storage module may be a memory.
  • FIG. 12 is a schematic structural diagram of a power control device 120 provided by an embodiment of the present application.
  • the power control device may be used to execute the method described in the embodiment of the present application.
  • the power control device may be a first terminal device or Chip or system on chip in the first terminal device.
  • FIG. 12 a schematic diagram of the composition of a power control device 120 provided by an embodiment of this application.
  • the power control device 120 may include at least one processor 1201, a radio frequency link 1202, an antenna, and a memory. Wait.
  • the processor 1201 is mainly used to process the communication protocol and communication data, and to control the entire first terminal device, execute the software program, and process the data of the software program, for example, to support the power control device 120 to execute FIG. 5 and Figure 9 describes the process.
  • the processor 1201 may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data
  • the CPU is mainly used to control the entire first terminal device and execute software.
  • Programs, which process the data of software programs may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the radio frequency link 1202 is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals, and can be used for communication with other equipment or communication networks (such as Ethernet, radio access network (RAN)) , Wireless local area networks (wireless local area networks, WLAN), etc.).
  • the radio frequency link 1202 may be a module, a circuit, a transceiver, or any device capable of implementing communication.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the memory can be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or it can be a random access memory (RAM) or can store information And/or other types of dynamic storage devices for instructions, which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM) Or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store expectations in the form of instructions or data structures
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store expectations in the form of instructions or
  • the memory may exist independently of the processor 1201, that is, the memory may be a memory external to the processor 1201. In this case, the memory may be connected to the processor 1201 through a communication line for storing instructions or program codes.
  • the processor 1201 calls and executes the instructions or program codes stored in the memory, it can implement the communication method provided in the following embodiments of the present application.
  • the memory can also be integrated with the processor 1201, that is, the memory can be an internal memory of the processor 1201, for example, the memory is a cache, which can be used to temporarily store some data and/or instruction information Wait.
  • the processor 1201 may include one or more CPUs.
  • the power control device 120 may include multiple processors.
  • the power control device 120 may further include an input and output unit.
  • the input and output unit may be a keyboard, a mouse, a microphone or a joystick, a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of first terminal devices may not have input and output devices.
  • the processor 1201 can read the software program in the storage unit, interpret and execute the software program. For example, when it is necessary to send a control channel and a data channel to the second terminal device, the processor 1201 may perform baseband processing on the control channel and data channel, and then output the baseband signal to the radio frequency link.
  • the radio frequency link performs radio frequency processing on the baseband signal
  • the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the processor 1201 may be configured to execute the method shown in step 501 and step 502 shown in FIG. 5 and step 901 shown in FIG. 9.
  • the radio frequency link 1202 can be used to perform step 503 shown in FIG. 5 and the methods shown in step 902 and step 903 shown in FIG. 9.
  • the processor 1201 is used to determine the transmission power of the control channel and the first sub-data channel.
  • the control channel and the first sub-data channel have the same time domain and no frequency domain overlap;
  • determining that the transmission power of the second sub-data channel is the same as the transmission power of the control channel and the first sub-data channel, and the second sub-data channel and the control channel have frequency domain overlap and no time domain overlap;
  • the radio frequency link 1202 is used to transmit the control channel and the first sub-data channel to the second terminal device with the transmit power of the control channel and the first sub-data channel, and to transmit the control channel and the first sub-data channel to the second terminal device with the transmit power of the control channel and the first sub-data channel.
  • the two terminal devices transmit the second sub-data channel.
  • the processor 1201 is configured to determine the transmission power of the control channel and the transmission power of a data channel that has frequency domain overlap with the control channel and has no time domain overlap;
  • the radio frequency link 1202 is used to send the control channel and the data channel to the second terminal device at the transmission power of the control channel when the transmission power of the control channel is greater than or equal to the transmission power of the data channel; or, in the transmission of the control channel When the power is less than the transmission power of the data channel, the control channel and the data channel are transmitted to the second terminal device at the transmission power of the data channel.
  • the power control device 120 may be a general-purpose device or a special-purpose device.
  • the power control device 120 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system, or a device with a similar structure in FIG. 12.
  • the embodiment of the present application does not limit the type of the power control device 120.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device structure shown in FIG. 12 does not constitute a limitation on the power control device.
  • the power control device 120 may include more or less components than those shown in the figure, or a combination Certain components, or different component arrangements.
  • the embodiment of the present application also provides a computer-readable storage medium. All or part of the procedures in the foregoing method embodiments may be completed by a computer program instructing relevant hardware.
  • the program may be stored in the foregoing computer storage medium. When the program is executed, it may include the procedures of the foregoing method embodiments.
  • the computer-readable storage medium may be an internal storage unit of the power control device (including the data sending end and/or the data receiving end) of any of the foregoing embodiments, such as the hard disk or memory of the power control device.
  • the aforementioned computer-readable storage medium may also be an external storage device of the aforementioned power control device, such as a plug-in hard disk equipped on the aforementioned power control device, a smart media card (SMC), or a secure digital (SD) Card, flash card, etc. Further, the aforementioned computer-readable storage medium may also include both an internal storage unit of the aforementioned power control device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the power control device.
  • the aforementioned computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • At least one (item) refers to one or more
  • “multiple” refers to two or more than two
  • “at least two (item)” refers to two or three And three or more
  • "and/or” is used to describe the association relationship of the associated objects, indicating that there can be three relationships, for example, "A and/or B” can mean: only A, only B and A And B three cases, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium.
  • a device which may be a single-chip microcomputer, a chip, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种功率控制方法及装置,涉及通信技术领域,特别是V2X,智能汽车,自动驾驶,智能网联汽车等。该方法可以包括:第一终端装置确定控制信道和第一子数据信道的发送功率,控制信道与第一子数据信道具有相同的时域且无频域重叠,以及,确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信道具有频域重叠且无时域重叠;以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道;以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。

Description

一种功率控制方法及装置
本申请要求于2019年03月29日提交国家知识产权局、申请号为201910253438.3、申请名称为“一种功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种功率控制方法及装置。
背景技术
在无线通信***中,发送端生成的信号需要经过功率放大器的放大,获得足够的射频功率以后,才能馈送到天线上辐射出去,发送给接收端。其中,射频放大器具有如图1所示特性,图1为射频放大器的特征曲线图,横轴表示输入信号的输入功率,纵轴表示输入信号经过射频放大器后的输出功率。如图1所示,在线性放大区域,射频功率放大器对输入信号正比例放大;在非线性放大区域,输入信号会出现非线性放大,此时,会导致输入信号的正弦波会变成非正弦波信号,出现失真。
为了保证信号传输过程中不失真,则需要调整射频功率放大器的放大倍数,使得输入信号在线性区域正比例放大。例如,如图1所示,当输入信号的输入功率为A,且射频放大器的放大倍数为K1时,输入信号进入非线性区域,出现失真,此时,可以将射频放大器的放大倍数从K1调整为K2,保证输入信号在线性区域内正比例放大K2倍。
现有的第三代合作伙伴计划(the 3rd generation partnership project,3GPP)协议规定在低频(如:6GHz以下)情况下,需要10毫秒的时间来调整射频功能放大器的放大倍数;在高频(6GHz以上)情况下,需要5毫秒的时间来调整射频功能放大器的放大倍数,如此,会占用信号的发送时间,影响信号传输性能以及带来资源浪费。例如,如图2a和图2b所示,以信道探测参考信号(sounding reference signal,SRS)为例,SRS只占用一个符号,如果相邻SRS的发送功率不同时,相邻符号间需要一个切换射频放大器的放大倍数的过度时间。如图2a所示,针对15kHz和30kHz载波间隔,由于SRS占用的符号持续长度较长,该过度时间可以被包含在SRS符号内部,这样虽然所有的时频资源都得到了有效利用,但是有部分信号可能产生畸变,或者一个符号内部有部分信号采用了不同的发送功率,其性能肯定会受到影响。如图2b所示,对于60kHz载波间隔,由于SRS符号持续时间比较短,3GPP定义如果相邻符号的功率产生变换,会直接空出一个符号用来做硬件的切换时间,这样会造成资源浪费。
发明内容
本申请实施例提供了一种功率控制方法及装置,以解决现有信号发送过程中,在不同符号的发送功率不同的情况下,切换射频功率放大器的放大倍数带来的传输性能降低以及资源浪费的问题。
第一方面,本申请实施例提供了一种功率控制方法,包括:第一终端装置确定具有相同的时域且无频域重叠的控制信道和第一子数据信道的发送功率,以及,确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信 道具有频域重叠且无时域重叠;以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道;以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。
基于第一方面,可以在数据信道分为第一子数据信道和第二子数据信道,且第一子数据信道与控制信道有时域重叠且无频域重叠,第二子数据信道与控制信道有频域重叠且无时域重叠的情况下,将第二子数据信道的发送功率确定为与控制信道和第一子数据信道的发送功率相同,以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
在一种可能的设计中,结合第一方面,在第一终端装置确定控制信道和第一子数据信道之前,所述方法还包括:第一终端装置确定控制信道和数据信道,该数据信道包括第一子数据信道和第二子数据信道。
基于该可能的设计,可以在本申请实施例提供的方法之前,确定控制信道和数据信道的帧结构:将数据信道划分为与控制信道时域重叠的第一子数据信道以及与控制信道频域重叠的第二子数据信道,便于第一终端装置基于该帧结构执行本申请实施例提供的功率控制方法。
在又一种可能的设计中,结合第一方面或者第一方面的可能的设计,控制信道的带宽为N,数据信道的带宽为M,第一子数据信道的带宽为M-N,M大于N,N为正整数;第一终端装置确定控制信道和第一子数据信道的发送功率,包括:第一终端装置根据最大发送功率、控制信道的带宽N、第一子数据信道的带宽M-N,确定控制信道的发送功率P control和第一子数据信道的发送功率P DATA_A;将P control+P DATA_A作为控制信道和第一子数据信道的发送功率和第二子数据信道的发送功率。
基于该可能的设计,可以在控制信道与第一子数据信道时域相同且无频域重叠的情况下,根据控制信道的带宽以及第一子数据信道的带宽对控制信道和第一子数据信道进行功率分配,确定控制信道的发送功率和第一子数据信道的发送功率,并将确定后的控制信道的发送功率和第一子数据信道的发送功率之和作为第二子数据信道的发送功率,简单易行。
在又一种可能的设计中,结合第一方面或者第一方面的任一可能的设计,控制信道的发送功率P control满足如下公式:P control=min{P CMAX-f(N,M-N),f(N)+P O+α·PL},第一子数据信道的发送功率P DATA_A=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL},其中,P CMAX为最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
基于该可能的设计,可以确定控制信道的发送功率为分配给控制信道使用的最大发送功率和控制信道的链路需求发送功率的最小值,以及,确定第一子数据信道的发送功率为分配给第一子数据信道使用的最大发送功率和第一子数据信道的链路需求发送功率的最小值。
在又一种可能的设计中,结合第一方面或者第一方面的任一可能的设计,控制信道的发送功率P control=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(N)+P O+α·PL},第一子数据信道的发送功率P DATA_A满足如下公式:
P DATA_A=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(M-N)+P O+α·PL}
其中,P CMAX为最大发送功率,P MAX_CC为满足拥塞控制要求的最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
基于该可能的设计,基于信道的繁忙程度,确定控制信道的发送功率为分配给控制信道使用的最大发送功率、根据给控制信道使用的满足拥塞控制要求的最大发送功率和控制信道的链路需求发送功率的最小值,以及,确定第一子数据信道的发送功率为分配给第一子数据信道使用的最大发送功率、分配给第一子数据信道使用的满足拥塞控制要求的最大发送功率和第一子数据信道的链路需求发送功率的最小值。
第二方面,本申请提供一种功率控制装置,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***,还可以为第一终端装置中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。该功率控制装置可以实现上述各方面或者各可能的设计中第一终端装置所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该功率控制装置可以包括:
确定单元,用于确定控制信道和第一子数据信道的发送功率,控制信道与第一子数据信道具有相同的时域且无频域重叠;
以及,确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信道具有频域重叠且无时域重叠;
发送单元,用于以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。
基于第二方面,可以在数据信道分为第一子数据信道和第二子数据信道,且第一子数据信道与控制信道有时域重叠且无频域重叠,第二子数据信道与控制信道有频域重叠且无时域重叠的情况下,将第二子数据信道的发送功率确定为与控制信道和第一子数据信道的发送功率相同,以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
在一种可能的设计中,结合第二方面,在确定控制信道和第一子数据信道的发送功率之前,确定单元,还用于确定控制信道和数据信道,数据信道包括第一子数据信道和第二子数据信道。基于该可能的设计,可以在确定发送功率前,确定控制信道和数据信道的帧结构:将数据信道划分为与控制信道时域重叠的第一子数据信道以及与控制信道频域重叠的第二子数据信道,基于该帧结构确定控制信道和第一子数据信道的发送功率。
在又一种可能的设计中,结合第二方面或第二方面任一可能的设计,第二子数据信道的带宽为M,控制信道的带宽为N,第一子数据信道的带宽为M-N,M大于N,N为正整数;确定单元,具体用于:根据最大发送功率、控制信道的带宽N、第一子数据信道的带宽M-N,确定控制信道的发送功率P control和第一子数据信道的发送功率P DATA_A;将P control+P DATA_A作为控制信道和第一子数据信道的发送功率和第二子数据信道的发送功率。
基于该可能的设计,可以根据控制信道的带宽以及第一子数据信道的带宽对控制信道和第一子数据信道进行功率分配,确定控制信道的发送功率和第一子数据信道的发送功率,并将确定后的控制信道的发送功率和第一子数据信道的发送功率之和作为第二子数据信道的发送功率,简单易行。
在又一种可能的设计中,结合第二方面或第二方面任一可能的设计,控制信道的发送功率P control满足如下公式:P control=min{P CMAX-f(N,M-N),f(N)+P O+α·PL},第一子数据信道的发送功率P DATA_A=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL},其中,P CMAX为最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
基于该可能的设计,可以结合最大发送功率,确定控制信道的发送功率为分配给控制信道使用的最大发送功率和控制信道的链路需求发送功率的最小值,以及,确定第一子数据信道的发送功率为分配给第一子数据信道使用的最大发送功率和第一子数据信道的链路需求发送功率的最小值。
在又一种可能的设计中,结合第二方面或者第二方面的任一可能的设计,控制信道的发送功率P control=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(N)+P O+α·PL},第一子数据信道的发送功率P DATA_A满足如下公式:
P DATA_A=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(M-N)+P O+α·PL}
其中,P CMAX为最大发送功率,P MAX_CC为满足拥塞控制要求的最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
基于该可能的设计,可以基于信道的繁忙程度,确定控制信道的发送功率为分配给控制信道使用的最大发送功率、根据给控制信道使用的满足拥塞控制要求的最大发送功率和控制信道的链路需求发送功率的最小值,以及,确定第一子数据信道的发送功率为分配给第一子数据信道使用的最大发送功率、分配给第一子数据信道使用的满足拥塞控制要求的最大发送功率和第一子数据信道的链路需求发送功率的最小值。
第三方面,提供了一种功率控制装置,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***。该功率控制装置可以实现上述各方面或者各可能的设计中第一终端装置所执行的功能,所述功能可以通过硬件实现,如:一种可能的设计中,该功率控制装置可以包括:处理器和发射器。处理器可以用于确定控制信道和与控制信道具有相同的时域且无频域重叠的第一子数据信道的发送功率,以及,确定第二子数据信道的 发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信道具有频域重叠且无时域重叠;并通过发射器以确定单元确定的控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以确定单元确定的控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。在又一种可能的设计中,所述功率控制装置还可以包括存储器,所述存储器,用于保存功率控制装置必要的计算机执行指令和数据。当该功率控制装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该功率控制装置执行如上述第一方面或者第一方面的任一种可能的设计所述的功率控制方法。
第四方面,提供了一种计算机存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机存储介质存储有计算机指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述方面的任一种可能的设计所述的功率控制方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或者上述方面的任一种可能的设计所述的功率控制方法。
第六方面,提供了一种功率控制装置,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***,该功率控制装置包括一个或者多个处理器以及和一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述功率控制装置执行如上述第一方面或者第一方面的任一可能的设计所述的功率控制方法。
其中,第三方面至第六方面中任一种设计方式所带来的技术效果可参见上述第一方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第七方面,本申请实施例提供了一种功率控制方法,包括:第一终端装置确定控制信道的发送功率以及数据信道的发送功率,控制信道与数据信道具有频域重叠且无时域重叠;若控制信道的发送功率大于或等于数据信道的发送功率,则第一终端装置以控制信道的发送功率向第二终端装置发送控制信道和数据信道;或者,若控制信道的发送功率小于数据信道的发送功率,则第一终端装置以数据信道的发送功率向第二终端装置发送控制信道和数据信道。
基于第七方面,可以在数据信道和控制信道具有频域重叠且无时域重叠的情况下,以控制信道的发送功率和数据信道的发送功率中最大的发送功率为准,以该最大的发送功率向第二终端装置发送数据信道和控制信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
在一种可能的设计中,结合第七方面,控制信道的带宽为N,数据信道的带宽为M,M大于或等于N,N为正整数;第一终端装置确定控制信道的发送功率和数据信道的发送功率,包括:第一终端装置根据最大发送功率、控制信道的带宽N,确定控制信道的发送功率P control;第一终端装置根据最大发送功率、数据信道的带宽M,确定数据信道的发送功率P DATA
基于该可能的设计,可以在控制信道与数据信道有频域重叠且无时域重叠的情况下, 根据最大发送功率以及控制信道的带宽确定控制信道的发送功率,根据最大发送功率以及数据信道的带宽确定数据信道的发送功率,简单易行。
在又一种可能的设计中,结合第七方面或者第七方面的任一可能的设计,控制信道的发送功率P control满足如下公式:P control=min{P CMAX,f(N)+P O+α·PL},数据信道的发送功率P DATA满足如下公式:P DATA=min{P CMAX,f(M)+P O+α·PL},其中,P CMAX为最大发送功率,f(N)为控制信道的带宽N的函数,f(M)为数据信道的带宽M的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
在该可能的设计中,控制信道和数据信道时域无重叠,即时分复用,因此,控制信道和数据信道之间不存在功率分配,鉴于此,可以确定控制信道的发送功率为分配给第一终端装置最大发送功率和控制信道的链路需求发送功率的最小值,以及,确定数据信道的发送功率为分配给第一终端装置的最大发送功率和数据信道的链路需求发送功率的最小值。
第八方面,本申请提供一种功率控制装置,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***,还可以为第一终端装置中用于实现第七方面或第七方面的任一可能的设计所述的方法的功能模块。该功率控制装置可以实现上述各方面或者各可能的设计中第一终端装置所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该功率控制装置可以包括:
确定单元,用于确定控制信道的发送功率以及数据信道的发送功率,控制信道与数据信道具有频域重叠且无时域重叠;
发送单元,用于在控制信道的发送功率大于或等于数据信道的发送功率的情况下,以控制信道的发送功率向第二终端装置发送控制信道和数据信道;或者,在控制信道的发送功率小于数据信道的发送功率的情况下,以数据信道的发送功率向第二终端装置发送控制信道和数据信道。
基于第八方面,可以在数据信道和控制信道具有频域重叠且无时域重叠的情况下,确定单元以控制信道的发送功率和数据信道的发送功率中最大的发送功率为准,通过发送单元以该最大的发送功率向第二终端装置发送数据信道和控制信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
在一种可能的设计中,结合第八方面,控制信道的带宽为N,数据信道的带宽为M,M大于或等于N,N为正整数;确定单元,具体用于:根据最大发送功率、控制信道的带宽N,确定控制信道的发送功率P control;第一终端装置根据最大发送功率、数据信道的带宽M,确定数据信道的发送功率P DATA
基于该可能的设计,可以在控制信道与数据信道有频域重叠且无时域重叠的情况下,确定单元根据最大发送功率以及控制信道的带宽确定控制信道的发送功率,根据最大发送功率以及数据信道的带宽确定数据信道的发送功率,简单易行。
在又一种可能的设计中,结合第八方面或者第八方面的任一可能的设计,控制信道的发送功率P control满足如下公式:P control=min{P CMAX,f(N)+P O+α·PL},数据信道的发送功 率P DATA满足如下公式:P DATA=min{P CMAX,f(M)+P O+α·PL},其中,P CMAX为最大发送功率,f(N)为控制信道的带宽N的函数,f(M)为数据信道的带宽M的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
在该可能的设计中,控制信道和数据信道时域无重叠,即时分复用,因此,控制信道和数据信道之间不存在功率分配,鉴于此,确定单元可以确定控制信道的发送功率为分配给第一终端装置最大发送功率和控制信道的链路需求发送功率的最小值,以及,确定数据信道的发送功率为分配给第一终端装置的最大发送功率和数据信道的链路需求发送功率的最小值。
第九方面,提供了一种功率控制装置,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***。该功率控制装置可以实现上述各方面或者各可能的设计中第一终端装置所执行的功能,所述功能可以通过硬件实现,如:一种可能的设计中,该功率控制装置可以包括:处理器和发射器。处理器可以用于确定控制信道的发送功率以及数据信道的发送功率,控制信道与数据信道具有频域重叠且无时域重叠;在控制信道的发送功率大于或等于数据信道的发送功率的情况下,通过发射器以控制信道的发送功率向第二终端装置发送控制信道和数据信道;或者,在控制信道的发送功率小于数据信道的发送功率的情况下,通过发射器以数据信道的发送功率向第二终端装置发送控制信道和数据信道。
在又一种可能的设计中,所述功率控制装置还可以包括存储器,所述存储器,用于保存功率控制装置必要的计算机执行指令和数据。当该功率控制装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该功率控制装置执行如上述第七方面或者第七方面的任一种可能的设计所述的功率控制方法。
第十方面,提供了一种计算机存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机存储介质存储有计算机指令,当其在计算机上运行时,使得计算机可以执行上述第七方面或者上述方面的任一种可能的设计所述的功率控制方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第七方面或者上述方面的任一种可能的设计所述的功率控制方法。
第十二方面,提供了一种功率控制装置,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***,该功率控制装置包括一个或者多个处理器以及和一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使得所述功率控制装置执行如上述第七方面或者第七方面的任一可能的设计所述的功率控制方法。
其中,第九方面至第十二方面中任一种设计方式所带来的技术效果可参见上述第七方面或者第七方面的任一种可能的设计所带来的技术效果,不再赘述。
第十三方面,本申请实施例提供一种功率控制***,该***包括如第二方面至第六方面任一方面所述的功率控制装置、第二终端装置;或者,包括如第八方面至第十二方面任一方面所述的功率控制装置、第二终端装置。
附图说明
图1为射频放大器的特征曲线图;
图2a为现有切换射频放大器的放大倍数示意图;
图2b为现有切换射频放大器的放大倍数示意图;
图3为本申请实施例提供的一种通信***的组成示意图;
图4为控制信道与数据信道混合复用的四种帧结构的示意图;
图5为本申请实施例提供的一种功率控制方法的流程图;
图6a是本申请实施例提供的一种数据信道和控制信道的示意图;
图6b是本申请实施例提供的另一种数据信道和控制信道的示意图;
图6c是本申请实施例提供的又一种数据信道和控制信道的示意图;
图6d是本申请实施例提供的又一种数据信道和控制信道的示意图;
图6e是本申请实施例提供的又一种数据信道和控制信道的示意图;
图6f是本申请实施例提供的又一种数据信道和控制信道的示意图;
图7为发送控制信道和数据信道的处理流程图;
图8为接收控制信道和数据信道的处理流程图;
图9为本申请实施例提供的一种功率控制方法的流程图;
图10a是本申请实施例提供的一种数据信道和控制信道的示意图;
图10b是本申请实施例提供的另一种数据信道和控制信道的示意图;
图10c是本申请实施例提供的又一种数据信道和控制信道的示意图;
图10d是本申请实施例提供的又一种数据信道和控制信道的示意图;
图11是本申请实施例提供的一种功率控制装置的结构示意图;
图12是本申请实施例提供的又一种功率控制装置的结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的功率控制方法可用于控制信道和数据信道混合复用的任一通信***,该通信***可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信***,例如,长期演进(long term evolution,LTE)***,又可以为第五代(5th generation,5G)移动通信***、新空口(new radio,NR)***、NR-车与任何事物通信(vehicle-to-everything,V2X)***以及其他下一代通信***,也可以为非3GPP通信***,不予限制。下面以图3为例,对本申请实施例提供的方法进行描述。
图3是本申请实施例提供的一种通信***的示意图,如图3所示,该通信***可以包括网络设备、终端设备。终端设备可以位于小区覆盖范围内,也可以位于小区覆盖范围外。终端设备可以通过Uu口与网络设备相互通信,也可以通过侧行链路(sidelink)(或者PC5口)与其他终端设备进行设备到设备(device to device,D2D)通信或者V2X通信。其中,通过sidelink通信的终端设备可以均位于小区覆盖范围外,如图3中的终端设备4和终端设备5位于小区覆盖范围外,二者可以通过sidelink通信;也可以一个位于小区覆盖范围内,另一个位于小区覆盖范围内,如图3中的终端设备1可以与终端设备5通过sidelink通信,终端设备1位于小区覆盖范围内,终端设备5位于小区覆盖外;还可以均位于同一个小区的覆盖范围内,且在一个公共陆地移动网络(public land mobile network,PLMN) 中,如PLMN1,如图3中的终端设备1和终端设备2,二者均位于PLMN1中;又可以在一个PLMN中如PLMN1,但处于不同的小区覆盖范围,如图3中的终端设备2和终端设备3。虽然图3中未示出,但通过sidelink通信的终端设备还可以分别在不同的PLMN、不同的小区中,如位于不同PLMN的不同小区的共同覆盖范围内,或者,位于不同PLMN下各自的服务小区的覆盖范围内等。
其中,图3中的网络设备可以是任意一种具有无线收发功能的设备,主要用于实现无线物理控制功能、资源调度和无线资源管理、无线接入控制以及移动性管理等功能。具体的,该网络设备可以为接入网(access network,AN)/无线接入网(radio access network,RAN)设备,还可以为由多个5G-AN/5G-RAN节点组成的设备,又可以为者基站(nodeB,NB)、演进型基站(evolution nodeB,eNB)、下一代基站(generation nodeB,gNB)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)、路边单元(road side unit,RSU)以及某种其它接入节点中的任一节点等,不予限制。
图3中的终端设备(terminal equipment)可以称为终端(terminal)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等,可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。具体的,图3中的终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有V2V通信能力的车辆等等,不予限制。
需要说明的是,图3仅为示例性附图,图3包括的设备的数量不受限制,且除图3所示设备之外,该通信架构还可以包括其他设备。此外,图3中各个设备的名称不受限制,除图3所示名称之外,各个设备还可以命名为其他名称,不予限制。
在图3所示通信***中,存在如下两种资源分配方法:一、基站(或者网络设备)调度模式,即基站(或者)网络设备将传输资源指示给终端设备。二、竞争模式,即网络设备为终端设备分配包括大量资源的资源池,多个终端设备可以通过竞争的方式在该资源池中选择自身所需要的传输资源。当终端设备通过这两种方式获取到传输资源后,终端设备可以在获取到的传输资源上发送数据信号和控制信道。
其中,本申请实施例中,终端设备可以将数据信道和控制信道复用在一起发送给对端设备,如:终端设备可以采用图4所示的四种帧结构发送数据信道和控制信道。如图4所示,这四种帧结构分别为:option1a、控制信道与数据信道频域相同且无时域重叠;option1b、控制信道与数据信道频域重叠且无时域重叠;option2、控制信道与数据信道时域相同且无频域重叠;option3:控制信道与数据信道的一部分时域相同且无频域重叠,控制信道与数据信道的剩余部分频域重叠且无时域重叠。
需要说明的是,本申请实施例所述的控制信道可以称为侧行链路的控制信道或者物理侧行共享信道(physical sidelink shared channel,PSSCH),可以用来承载侧行链路控制信息(sidelink control information,SCI)的信道,SCI可以包括数据信道中传输的数据的解码信息等等。本申请实施例所述的数据信道可以称为侧行链路的数据信道或者物理侧行控制信道(physical sidelink control channel,PSCCH)用于承载数据的信道,该数据可以为发 送端向接收端发送的数据。
其中,针对option2的帧结构,3GPP协议对控制信道的发送功率和数据信道的发送功率进行了如下讨论:以option2所示的资源图为例,控制信道和数据信道以频分的方式复用在一起,从时域来看,控制信道和数据信道是共存关系,控制信道和数据信道的发送功率需要一起考虑,二者需要进行功率分配。
示例性的,在资源分配方式为基站调度模式下,数据信道的发送功率控制为如下公式(1):
Figure PCTCN2020080904-appb-000001
控制信道的发送功率控制可满足如下公式(2):
Figure PCTCN2020080904-appb-000002
其中,P PSSCH为数据信道的发送功率,P PSCCH为控制信道的发送功率;M PSSCH为数据信道的带宽,M PSCCH为控制信道的带宽;P CMAX为最大发射功率,也可理解为终端设备允许的最大发射功率。PL为终端设备的下行链路功率损耗,在通信***中特别是时分双工(time division duplexing,TDD)***中,一般认为上下行链路损耗是一致的,所以PL可用于表示终端设备到网络侧可能的链路损耗。P O_PSSCH_3为终端设备期望接收到的功率(也可理解为终端设备的目标接收功率),其中,3表示资源分配模式为基站调度模式。α PSSCH,3为基站调度模式下网络侧配置的链路损耗补偿系数。
进一步的,上述公式(1)还可以变化为下述公式(3):
Figure PCTCN2020080904-appb-000003
上述公式(2)还可以变化为下述公式(4):
Figure PCTCN2020080904-appb-000004
观察公式(3)和公式(4)可知,公式(3)和公式(4)中分别包括两个子项,其中第一项表示当前信道分配到的最大发送功率,如公式(3)中第一项可以表示数据信道分 配到的最大发送功率,公式(4)中第一项可以表示控制信道分配到的最大发送功率。根据第一项可知控制信道和数据信道分配到的最大发送功率跟信道本身的带宽成正比例关系,且与数据信道相比,控制信道每个子信道的发送功率有10 3/10倍的增强,即终端设备硬件允许的全部发送功率按照带宽大小成比例分配给控制信道和数据信道。需要说明的是,本申请实施例中,10 3/10的增强仅为一个示意,表示控制信道可以有一个功率增强,除10 3/10之外,还可以由其他形式的增强,不予限制。
其中,公式(3)和公式(4)第二项表示根据Uu口的链路损耗和期望达到的信噪比(signal-noise-ratio,SNR)计算得到链路预算,即链路预期发送功率(或者链路需求发送功率)。最终数据信道的发送功率和控制信道的发送功率分别为第一项和第二项中的最小值,即在终端设备允许的发送功率足够大的时候,按照链路需求发送功率(或者链路预算发送功率)发送数据信道和控制信道,在终端设备允许的功率小于链路需求时,按照终端设备允许的最大功率向第二终端装置发送数据信道和控制信道。
示例性的,在资源分配方式为基于竞争模式下,数据信道的功率控制可以为如下公式(5):
Figure PCTCN2020080904-appb-000005
其中,A可满足如下公式(6):
Figure PCTCN2020080904-appb-000006
控制信道的功率控制可满足如下公式(7):
Figure PCTCN2020080904-appb-000007
其中,B可满足如下公式(8):
Figure PCTCN2020080904-appb-000008
其中,上述公式(6)和公式(8)中的P MAX_CC为满足拥塞控制要求的最大发送功率。
以上为3GPP协议针对option2帧结构进行功率控制的说明,采用上述功率控制方法后,option2帧结构下不同符号的发送功率可以是相同的,避免了不同符号间需要进行放大倍数切换所带来的传输性能降低和资源浪费的问题。然而,对于如图4中的option1a、option1b以及option3所示的控制信道和数据信道既有时域重叠,又有频域重叠的混合复用场景,若采用上述针对option2帧结构的功率控制方法,则不能满足不同符号的发送功率相同,即上述针对option2帧结构的功率控制方法对于图4中的option1a、option1b以及option3下的功率控制就不再适用。鉴于此,本申请实施例提供了针对图4中的option1a、option1b以及option3的新的功率控制方法。具体的,对于图4中的option3的功率控制方法可参考本申请实施例图5对应的实施例中所述,对于图4中的option1a、option1b所示的帧结构的功率控制方法可参照图9对应的实施例中所述。
下面结合图3所示通信***,以该通信***支持图4中option3所示的帧结构为例,对本申请实施例提供的功率控制方法进行描述。需要说明的是,本申请下述实施例中各个网元间交互的消息的名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。此外,本申请实施例中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序,本申请实施例对“第一”和“第二”所表示的不同对象的属性不做限定。
图5为本申请实施例提供的一种功率控制方法的流程图,用于对图4中option3下的数据信道和控制信道进行功率控制,如图5所示,该方法可包括:
步骤501:第一终端装置确定控制信道和第一子数据信道的发送功率。
其中,第一终端装置可以为图3所示通信***中的任一终端设备。
其中,控制信道可以为PSCCH,第一子数据信道可以为数据信道的一部分,如:可以为PSSCH的一部分。控制信道可以与第一子数据信道具有相同的时域且无频域重叠。例如,控制信道、第一子数据信道之间的复用关系可以如图4中option3所示。
为更形象的理解本申请实施例所描述的图4中option3所示的帧结构,图6a~图6f提供了option3所示帧结构的几种可能情况。以图6a为例,如图6a所示,数据信道可分为第一子数据信道和第二子数据信道,也就是说,第一子数据信道和第二子数据信道可以构成完整的数据信道。又或者,第一子数据信道和第二子数据信道可以组成完整的数据信道。其中,第一子数据信道与控制信道有时域重叠,但无频域重叠,第二子数据信道与控制信道有频域重叠,但无时域重叠。也就是说,第一子数据信道与控制信道有时域复用关系,但无频域复用关系,第二子数据信道与控制信道有频域复用关系,但无时域复用关系。
作为示例,数据信道的带宽为M,控制信道的带宽为N,且M大于N,则第一子数据信道的带宽为M-N,第二子数据信道的带宽为M。可理解,其中M可表示M个资源单元,N可以表示N个资源单元,该资源单元可以为资源块(resource block,RB)或者子载波或者其他粒度的资源单元,不予限制。以资源单元为RB为例,本申请实施例中,M可以表示M个RB,N可以表示N个RB。需要说明的是,本申请实施例不限定M、N的具体取值。
可理解的是,对于数据信道和控制信道存在频域重叠又存在时域重叠的其他可能情况,还可参考图6b至图6f所示的示意图,这里不再一一详述。
示例性的,第一终端装置可以参照3GPP针对图4中option2所示帧结构的功率控制方法,根据最大发送功率、控制信道的带宽N、第一子数据信道的带宽M-N,确定控制信道的发送功率P control和第一子数据信道的发送功率P DATA_A。具体的,下文将会描述第一终端装置确定控制信道的发送功率和第一子数据信道的发送功率的详细过程。
步骤502:第一终端装置确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信道具有频域重叠且无时域重叠。
示例性的,第一终端装置可以将P control+P DATA_A作为第二子数据信道的发送功率。具体的,下文将会描述第一终端装置确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同的详细过程。
步骤503:第一终端装置以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道;以及,以控制信道和第一子数据信道的发送功率向第二终 端装置发送第二子数据信道。
其中,第二终端装置可以为图3所示通信***中,与第一终端装置进行sidelink通信的任一设备。示例性的,第一终端装置可以采用如图7所示的发送流程,以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道;以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。如:
第一终端设备生成数据信道信息、控制信道信息,将数据信道信息和控制信道信息进行信道编码生成第一子数据信道、控制信道和第二子数据信道,以控制信道和第一子数据信道的发送功率为准,对编码后的信道进行功率控制,如:将编码后的第二子数据信道的功率调整为控制信道和第一子数据信道的发送功率,然后,将功率控制后的各个信道经过资源映射处理,资源映射到物理的时频资源上,其中,映射后的时频资源的格式如上述option3所示;最后,各个信道经过快速傅里叶变换(fast fourier transformation,FFT)+组帧处理组合在一起形成一个子帧的数据,将该子帧的数据通过射频器件(如:射频放大器的放大处理)发送出去,从而实现将数据信道和控制信道发送给第二终端装置。
其中,数据信道信息可以为承载在数据信道的信息,如:第一终端装置待发送给第二终端装置的数据等。控制信道信息为承载控制信道的信息,如:可以为SCI等。此外,图7所示的信道编码、功率控制、资源映射、FFT+组帧等具体处理过程可参照现有技术,不再赘述。
相对应的,第二终端装置接收到第一终端装置发送的第一子数据信道、第二子数据信道、控制信道后,可以估计控制信道的发送功率,根据估计的发送功率解调出控制信道,同时,第二终端装置可以分别估计第一子数据信道的发送功率、第二子数据信道的发送功率,根据估计的第一子数据信道的发送功率解调出第一子数据信道,根据估计的第二子数据信道的发送功率解调出第二子数据信道,并将解调出的第一子数据信道和第二子数据信道合并起来得到数据信道。其中,第二终端装置接收控制信道的具体方式可参照现有技术,第二终端装置接收第一子数据信道和第二子数据信道的方式可参照图8所示:
第二终端装置接收第一终端装置发送的第一子数据信道、第二子数据信道、控制信道,对接收到的信道进行解帧+快速傅里叶逆变换(inverse fast fourier transformation,IFFT)以及分离处理,得到第一子数据信道、第二子数据信道、控制信道,并对分离后的第一子数据信道和第二子数据信道分别进行信道估计和多输入多输出(multi-input multi-outer,MIMO)译码,并根据信道质量对MIMO译码后的第一子数据信道、第二子数据信道进行数据信道合并得到数据信道,最后,对合并后的数据信道进行信道译码得到第一终端装置发送给第二终端装置的数据信道信息。其中,图8所示过程中采用的信道质量可以是信噪比或信干噪,第一子数据信道、第二子数据信道进行数据信道合并时候,可以根据信道质量进行最大比合并。
其中,图8所示过程中,解帧+IFFT、信道分离、信道估计、MIMO译码、数据信道合并、信道译码等具体处理过程可参照现有过程,不再赘述。
基于图5所示方法,可以在数据信道分为第一子数据信道和第二子数据信道,且第一子数据信道与控制信道有时域重叠且无频域重叠,第二子数据信道与控制信道有频域重叠且无时域重叠的情况下,将第二子数据信道的发送功率确定为与控制信道和第一子数据信道的发送功率相同,以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信 道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
下面以图6a所示控制信道和数据信道复用关系的示意图为例,对第一终端装置如何确定控制信道的发送功率、第一子数据信道的发送功率和第二子数据信道的发送功率进行说明,其他图6b~图6f所示帧结构下的功率控制可参照下述,不再一一赘述:
一、控制信道的发送功率:
本申请的一些实施例中,在图6a所示帧结构中,控制信道与第一子数据信道时域相同,故在相同时域上传输时,控制信道与第一子数据信道之间需要进行功率分配,鉴于此,对于控制信道的发送功率,第一终端装置可根据最大发送功率P CMAX、第一子数据信道的带宽M-N以及控制信道的带宽N确定。更具体的,控制信道的发送功率可满足如下公式(9):
P control=min{P CMAX-f(M-N,N),f(N)+P O+α·PL}[dBm]   (9)
其中,P control为控制信道的发送功率,P CMAX为最大发送功率,f(M-N,N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率(也可理解为第二终端装置期望的接收功率),P 0的单位dBm。α为(基站)考虑调整平稳性设定的链路损耗补偿系数,可由高层配置,PL为参考链路损耗,PL为正数,PL的单位为dB。
其中,PL的具体描述可参考现有技术,这里不再详述。具体的,P CMAX可理解为物理硬件受限的最大发送功率,或者,可理解为终端设备的硬件所能允许的最大发送功率。可选的,P CMAX可由基站的高层信令配置。
可理解,公式(9)中f(M-N,N)也可理解为第一子数据信道的带宽M-N与控制信道的带宽N的表达式,或者,也可理解为第一子数据信道的带宽M-N与控制信道的带宽N的关系式等。
对于公式(9),P CMAX-f(M-N,N)可理解为控制信道根据最大发送功率P CMAX以及控制信道与第一子数据信道的带宽比例分配到的发送功率,f(N)+P O+α·PL可理解为控制信道的链路预算或者控制信道的链路需求发送功率或者控制信道的链路预期发送功率等。
具体的,f(M-N,N)可满足如下公式(10):
Figure PCTCN2020080904-appb-000009
也就是说,由于控制信道与第一子数据信道有时域重叠无频域重叠,因此控制信道和第一子数据信道分别是在同一时刻发送控制信息和数据,因此控制信道与第一子数据信道需要做功率分配。由此f(M-N,N)可理解为控制信道与第一子数据信道之间的功率分配关系。
具体的,f(N)可满足如下公式(11):
Figure PCTCN2020080904-appb-000010
进一步地,结合公式(10)和公式(11),控制信道的发送功率可满足如下公式(12):
Figure PCTCN2020080904-appb-000011
或者,本实施例还提供了另一种形式来表示控制信道的发送功率,如下公式(13)所示:
Figure PCTCN2020080904-appb-000012
可理解,公式(12)和公式(13)是等价的,为基站调度模式下,控制信道的发送功率的两种不同形式,在第一终端装置需要确定控制信道的发送功率时,不管是通过公式(12)还是公式(13),该第一终端装置所确定出的控制信道的发送功率的结果是一致的。因此,第一终端装置还可以通过公式(9),进一步地通过公式(12)或公式(13)确定控制信道的发送功率。
以上所示的控制信道所满足的公式(9)、公式(12)和公式(13)是在基站调度模式下示出的,而在竞争模式下,由于每个子信道有繁忙功率控制设定,因此,在本申请的一些实施例中,控制信道的发送功率可满足如下公式:
P control=min{P CMAX-f(M-N,N),f(N)+P O+α·PL,P MAX_CC-f(M-N,N)}[dBm](14)
其中,如前所述,P control为控制信道的发送功率,P CMAX为最大发送功率,f(M-N,N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,α为考虑调整平稳性设定的链路损耗补偿系数,可由高层配置,PL为参考链路损耗,P MAX_CC为满足拥塞控制要求的最大发送功率,或者,也可理解为最大信道繁忙功率(max channel busy ratio)。
其中,P MAX_CC主要是用来做拥塞控制的,目的是当***的繁忙程度超过某限度后,降低发送用户的最大发送功率,或者设置一个当前繁忙程度下用户的最大发送功率。
进一步地,结合公式(10)和公式(11),在竞争模式下,控制信道的发送功率可满足如下公式(15):
Figure PCTCN2020080904-appb-000013
或者,在竞争模式下,控制信道的发送功率满足如下公式:
Figure PCTCN2020080904-appb-000014
可理解,公式(15)和公式(16)为控制信道的发送功率的两种不同形式,第一终端装置通过公式(15)和公式(16)确定出的控制信道的发送功率是一致的。
可理解,对于以上各个实施例,控制信道的发送功率可能还存在其他变形,因此,不应将以上所示的各个实施例理解为对本申请的限定。
二、第一子数据信道的发送功率:
本申请一些实施例中,第一子数据信道的发送功率可根据最大发送功率P CMAX、第一子数据信道的带宽M-N以及控制信道的带宽N确定。
更具体的,第一子数据信道的发送功率可满足如下公式(17):
P DATA_A=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}[dBm]  (17)
其中,如前所述,P CMAX为最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
可理解,f(N,M-N)还可以理解为第一子数据信道的带宽M-N与控制信道的带宽N的表达式或关系式等等,以及f(M-N)还可以理解为第一子数据信道的带宽M-N的表达式或关系式等。
其中,P CMAX-f(N,M-N)可理解为第一子数据信道根据最大发送功率P CMAX以及第一子数据信道与控制信道的带宽比例分配到的发送功率,f(M-N)+P O+α·PL可理解为第一子数据信道的链路预算。
具体的,f(N,M-N)满足如下公式(18):
Figure PCTCN2020080904-appb-000015
具体的,f(M-N)满足如下公式(19):
f(M-N)=10log 10(M-N)[dBm](19)
进一步地,结合公式(18)和公式(19),第一子数据信道的发送功率可满足如下公式(20):
Figure PCTCN2020080904-appb-000016
或者,本实施例还提供了其他另一种形式来表示第一子数据信道的发送功率,如下公式(21)所示:
Figure PCTCN2020080904-appb-000017
公式(20)和公式(21)为第一子数据信道的发送功率的两种不同形式,第一终端装置通过公式(20)和公式(21)确定出的第一子数据信道的发送功率是一致的。
以上所示的第一子数据信道所满足的公式(17)、公式(20)和公式(21)是在基站调度模式下示出的,而在竞争模式下,由于每个子信道有繁忙功率控制设定,因此,在本申请的一些实施例中,第一子数据信道的发送功率可满足如下公式(22):
P DATA_A=min{P CMAX-f(N,M-N),
f(M-N)+P O+α·PL,P MAX_CC-f(N,M-N)}[dBm]   (22)
其中,P MAX_CC为满足拥塞控制要求的最大发送功率。可理解,公式(17)和公式(22)中的P MAX_CC可理解为同一个满足拥塞控制要求的最大发送功率。
进一步地,结合公式(18)和公式(19),在竞争模式下,第一子数据信道的发送功率满足如下公式(23):
Figure PCTCN2020080904-appb-000018
或者,在竞争模式下,第一子数据信道的发送功率满足如下公式(24):
Figure PCTCN2020080904-appb-000019
其中,公式(23)和公式(24)为竞争模式下,第一子数据信道的发送功率的两种不同形式,第一终端装置通过公式(23)和公式(24)确定出的第一子数据信道的发送功率是一致的。
可理解,公式(23)和公式(24)中各个参数的具体描述,可对应参考前述,这里不再一一详述。此外,可理解,对于以上各个实施例,第一子数据信道的发送功率可能还存在其他变形,因此,不应将以上所示的各个实施例理解为对本申请的限定。
三、第二子数据信道的发送功率:
以第二子数据信道的发送功率为P DATA_B为例,P DATA_B满足如下公式(25):
P DATA_B=P control+P DATA_A   (25)
其中,如上所述,P control、P DATA_A的发送功率分别满足如下公式:
Figure PCTCN2020080904-appb-000020
Figure PCTCN2020080904-appb-000021
假设
Figure PCTCN2020080904-appb-000022
P r_D_A=10log 10(M-N)+P O+α·PL,
Figure PCTCN2020080904-appb-000023
Figure PCTCN2020080904-appb-000024
则上述公式(25)可以变为下述公式(26):
P DATA_B=P control+P DATA_A=min{P allocation_c,P r_c}+min{P allocation_D_A,P r_D_A}  (26)
即第二子数据信道的发送功率等价于功率分配和链路需求的融合。其中,上述公式(26)中两个min函数的合并有一下几种可能:
1、P allocation_c>P r_c&P allocation_D_A>P r_D_A
2、P allocation_c<P r_c&P allocation_D_A<P r_D_A
3、P allocation_c>P r_c&P allocation_D_A<P r_D_A;或者,
P allocation_c<P r_c&P allocation_D_A>P r_D_A
其中,通过验证,第三种可能是不存在,具体的,该验证过程可参照下述。而针对第一种和第二种可能,两个min函数中的最大最小项均是一致的,所以,第二子数据信道的发送功率也可以表达为分配的最大发送功率和链路需求发送功率的最小值,即在非dB域下,第二子数据信道的表达可以如公式(27)如下:
P DATA_B=min{P allocation_c+P allocation_D_A,P r_c+P r_D_A}  (27)
Figure PCTCN2020080904-appb-000025
其中
Figure PCTCN2020080904-appb-000026
表示最大发射功率的非dB域值。那么:
Figure PCTCN2020080904-appb-000027
同理,
Figure PCTCN2020080904-appb-000028
所以在非dB域,第二子数据信道分配的最大发送功率可以表示为公式(28)所示:
Figure PCTCN2020080904-appb-000029
在dB域,第二子数据信道分配的最大发送功率可以表示为公式(29)所示:
Figure PCTCN2020080904-appb-000030
同理,dB域下,第二子数据信道的链路需求发送功率可以表达为公式(30):
Figure PCTCN2020080904-appb-000031
假设控制信道和数据信道的PL和P O相同,结合公式(29)和公式(30),最终,第二子数据信道的发送功率可以表示为公式(31):
Figure PCTCN2020080904-appb-000032
在上述描述中,
Figure PCTCN2020080904-appb-000033
表示控制信道功率增强的倍数,即表示控制信道在每个RE上相对于数据信道有3dB的功率增强,需要说明的是,本申请实施例中,
Figure PCTCN2020080904-appb-000034
的增强仅为一个 示意,表示控制信道可以有一个功率增强,除
Figure PCTCN2020080904-appb-000035
之外,还可以由其他形式的增强,不予限制。
需要说明的是,在上述设计中,假定控制信道和数据信道的目标接收功率P 0和参考链路损耗PL是相同。若控制信道和数据信道的目标接收功率P 0和参考链路损耗PL不同,则上述公式(29)和公式(30)将无法合并,那么在非dB域,第二子数据信道的发送功率仅可以表达为公式(26)所示。
需要说明的是,图5所示实施例所描述的控制信道的发送功率、第一子数据信道的发送功率或第二子数据信道的发送功率,均指的是在某一时刻或某一时间单元上的发送功率。
以下为证明上述第3种可能的情况:P allocation_c>P r_c&P allocation_D_A<P r_D_A;或者,P allocation_c<P r_c&P allocation_D_A>P r_D_A不存在的过程:
首先,假设P allocation_c>P r_c,那么:
Figure PCTCN2020080904-appb-000036
相应的,把公式P allocation_c>P r_c变形为:
Figure PCTCN2020080904-appb-000037
即:
Figure PCTCN2020080904-appb-000038
Figure PCTCN2020080904-appb-000039
即:P allocation_D_A>P r_D_A
由上证明可知:当P allocation_c>P r_c时,一定有P allocation_D_A>P r_D_A
同理,当P allocation_c<P r_c时,一定有P allocation_D_A<P r_D_A,所以经过上过上述证明可知:
P allocation_c>P r_c&P allocation_D_A<P r_D_A;或者,P allocation_c<P r_c&P allocation_D_A>P r_D_A不存在。
上述实施例针对option3的功率控制方法进行了描述,下面结合图9所示方法,对option1a、option1b帧结构的功率控制方法进行描述:
图9为本申请实施例提供的又一种功率控制方法,用于对option1a、option1b帧结构下的数据信道和控制信道进行功率控制,如图9所示,该方法可以包括:
步骤901:第一终端装置确定控制信道的发送功率以及数据信道的发送功率,若控制信道的发送功率大于或等于数据信道的发送功率,执行步骤902;若控制信道的发送功率 小于数据信道的发送功率,则执行步骤903。
其中,第一终端装置可以为图3所示***中的任一终端设备。
其中,控制信道与数据信道可以具有频域重叠且无时域重叠。例如,控制信道、数据信道之间的复用关系可以如图4中option1a、option1ba所示。
为更形象的理解本申请实施例所描述的图4中option1a、option1ba所示的帧结构,图10a~图10d提供了数据信道和控制信道具有频域重叠且无时域重叠的几种可能结构。以图10a为例,如图10a所示,数据信道与控制信道有频域重叠,但无时域重叠。
作为示例,数据信道的带宽为M,控制信道的带宽为N,且M可以大于N或者M等于N。可理解,其中M可表示M个资源单元,N可以表示N个资源单元,该资源单元可以为RB或者子载波或者其他粒度的资源单元,不予限制。以资源单元为RB为例,本申请实施例中,M可以表示M个RB,N可以表示N个RB。
可理解的是,对于数据信道和控制信道的示意图,还可参考图10b至图10c所示的示意图,这里不再一一详述。
示例性的,由于控制信道和数据信道是时分复用,所以不存在功率分配问题,数据信道和控制信道可以独自享用所有功率,不做功率分配。如:数据信道的发送功率可以在最大发送功率和数据信道的链路预算中确定,同理,数据信道的发送功率可以在最大发送功率和数据信道的链路预算中确定。
具体的,控制信道的发送功率可满足如下公式(32):
P control=min{P CMAX,f(N)+P O+α·PL}[dBm]  (32)
数据信道的发送功率可满足如下公式(33):
P DATA=min{P CMAX,f(M)+P O+α·PL}[dBm]  (33)
其中,P control为控制信道的发送功率,P DATA为控制信道的发送功率,P CMAX为最大发送功率,f(M)为数据信道的带宽M的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率(也可理解为第二终端装置期望的接收功率),P 0的单位dBm。α为(基站)考虑调整平稳性设定的链路损耗补偿系数,可由高层配置,PL为参考链路损耗,PL为正数,PL的单位为dB。
可理解,公式(33)中f(M)也可理解为数据信道的带宽M的表达式,或者,也可理解为数据信道的带宽M的关系式等。
具体的,f(M)可满足如下公式(34):
f(M)=10log 10(M)[dBm]  (34)
f(N)可满足如下公式(35):
Figure PCTCN2020080904-appb-000040
进一步地,结合公式(35)控制信道的发送功率可满足如下公式(36):
Figure PCTCN2020080904-appb-000041
结合公式(34),数据信道的发送功率可满足如下公式(37):
P DATA=min{P CMAX,10log 10(M)+P O+α·PL}[dBm]  (37)
为达到在一个时间单元内(如:一个传输时间单元(transmission time interval,TTI)) 中所有符号采用相同发送功率的目的,可以取上述控制信道和数据信道的两个发送功率的最大值。观察上述公式(36)和公式(36),则存在两种可能:
第一种、相对于数据信道的发送功率公式中的第二项,控制信道的发送功率公式中的第二项最大,即控制信道的链路需求发送功率比较大,
Figure PCTCN2020080904-appb-000042
为保持整个时间单元内发送功率的一致性,一种可能的设计中,以控制信道的发送功率为准发送控制信道和数据信道,即:最终控制信道的发送功率和数据信道的发送功率满足如下公式(38):
Figure PCTCN2020080904-appb-000043
第二种、相对于控制信道的发送功率公式中的第二项,数据信道的发送功率公式中的第二项最大,即数据信道的链路需求发送功率比较大,
Figure PCTCN2020080904-appb-000044
为保持整个时间单元内发送功率的一致性,又一种可能的设计中,以数据信道的发送功率为准发送控制信道和数据信道,即:最终控制信道的发送功率和数据信道的发送功率满足如下公式(40):
P PSCCH=P PSSCH=min{P CMAX,10log 10(M)+P O+α·PL}[dBm]  (40)
同样,假定控制信道和数据信道的目标接收功率P 0和参考链路损耗PL是相同,则最终确定出的发送控制信道和数据信道的功率存在下述两种情况:
Figure PCTCN2020080904-appb-000045
其中,
Figure PCTCN2020080904-appb-000046
表示控制信道相比数据信道有功率增强。这里
Figure PCTCN2020080904-appb-000047
仅表示该控制数据的目标功率增强可能为3dB,也有其他可能,本发明仅适用,不做保护。但是本实施例中,当
Figure PCTCN2020080904-appb-000048
的时候,采用数据信道的发送功率,造成的结果可能是控制信道的输出功率增益有可能大于3dB。
需要说明的,上述方案是在控制信道和数据信道的目标接收功率P 0和参考链路损耗PL相同的情况下进行描述的,若控制信道和数据信道的目标接收功率P 0和参考链路损耗PL不同,则最终确定出的发送控制信道和数据信道的功率可以表达为:
P PSCCH=P PSSCH=min{P CMAX,P R_MAX}
P R_MAX=max{10log 10(M)+P DATA+α·PL DATA,10log 10(M)+P control+α·PL control}
其中,P control为控制信道的目标接收功率,PL control为控制信道的参考链路损耗。P DATA为数据信道的目标接收功率,PL DATA为数据信道的参考链路损耗。
步骤902:第一终端装置以控制信道的发送功率,向第二终端装置发送控制信道和数据信道。
步骤903:第一终端装置以数据信道的发送功率,向第二终端装置发送控制信道和数据信道。
其中,第一终端装置可参照上述图7所示的发送流程,以控制信道的发送功率向第二终端装置发送控制信道和数据信道;或者,以数据信道的发送功率向第二终端装置发送控制信道和数据信道。
需要说明的是,图9所示实施例所描述的控制信道的发送功率、数据信道的发送功率均指的是在某一时刻或某一时间单元上的发送功率。
基于图9所示方法,可以在数据信道和控制信道具有频域重叠且无时域重叠的情况下, 以控制信道的发送功率和数据信道的发送功率中最大的发送功率为准,以该最大的发送功率向第二终端装置发送数据信道和控制信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
上述主要从第一终端装置的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如第一终端装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网设备、终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
参见图11,图11是本申请实施例提供的一种功率控制装置的结构示意图,该功率控制装置可用于执行本申请实施例所描述的方法,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***。如图11所示,作为一种可能的设计,该功率控制装置包括确定单元1101、发送单元1102。
为解决option3帧结构下的功率控制,示例一中,确定单元1101,用于确定控制信道和第一子数据信道的发送功率,控制信道与第一子数据信道具有相同的时域且无频域重叠;以及,确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信道具有频域重叠且无时域重叠;
发送单元1102,用于以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。
在示例一的一种可能的设计中,确定单元1101,还用于在确定控制信道和第一子数据信道的发送功率之前,确定控制信道和数据信道,数据信道包括第一子数据信道和第二子数据信道。基于该可能的设计,可以在确定发送功率前,确定控制信道和数据信道的帧结构:将数据信道划分为与控制信道时域重叠的第一子数据信道以及与控制信道频域重叠的第二子数据信道,基于该帧结构确定控制信道和第一子数据信道的发送功率。
在示例一的又一种可能的设计中,第二子数据信道的带宽为M,控制信道的带宽为N,第一子数据信道的带宽为M-N,M大于N,N为正整数;确定单元1101,具体用于:根据最大发送功率、控制信道的带宽N、第一子数据信道的带宽M-N,确定控制信道的发送功率P control和第一子数据信道的发送功率P DATA_A;将P control+P DATA_A作为控制信道和第一子数据信道的发送功率和第二子数据信道的发送功率。
在示例一的又一种可能的设计中,控制信道的发送功率P control满足如下公式: P control=min{P CMAX-f(N,M-N),f(N)+P O+α·PL},第一子数据信道的发送功率P DATA_A=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL},其中,P CMAX为最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
在示例一的又一种可能的设计中,控制信道的发送功率为:
P control=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(N)+P O+α·PL},
第一子数据信道的发送功率P DATA_A满足如下公式:
P DATA_A=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(M-N)+P O+α·PL},
其中,P CMAX为最大发送功率,P MAX_CC为满足拥塞控制要求的最大发送功率,f(N,M-N)为第一子数据信道的带宽M-N与控制信道的带宽N的函数,f(M-N)为第一子数据信道的带宽M-N的函数,f(N)为控制信道的带宽N的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
基于示例一,可以在数据信道分为第一子数据信道和第二子数据信道,且第一子数据信道与控制信道有时域重叠且无频域重叠,第二子数据信道与控制信道有频域重叠且无时域重叠的情况下,将第二子数据信道的发送功率确定为与控制信道和第一子数据信道的发送功率相同,以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
为解决option1a、option1b帧结构下的功率控制,示例二中,确定单元1101,用于确定控制信道的发送功率以及与控制信道具有频域重叠且无时域重叠数据信道的发送功率;
发送单元1102,用于在控制信道的发送功率大于或等于数据信道的发送功率的情况下,以控制信道的发送功率向第二终端装置发送控制信道和数据信道;或者,在控制信道的发送功率小于数据信道的发送功率的情况下,以数据信道的发送功率向第二终端装置发送控制信道和数据信道。
在示例二的一种可能的设计中,控制信道的带宽为N,数据信道的带宽为M,M大于或等于N,N为正整数;确定单元1101,具体用于:根据最大发送功率、控制信道的带宽N,确定控制信道的发送功率P control;第一终端装置根据最大发送功率、数据信道的带宽M,确定数据信道的发送功率P DATA
在示例二的又一种可能的设计中,结合第八方面或者第八方面的任一可能的设计,控制信道的发送功率P control满足如下公式:P control=min{P CMAX,f(N)+P O+α·PL},数据信道的发送功率P DATA满足如下公式:P DATA=min{P CMAX,f(M)+P O+α·PL},其中,P CMAX为最大发送功率,f(N)为控制信道的带宽N的函数,f(M)为数据信道的带宽M的函数,P 0为第二终端装置的目标接收功率,PL为参考链路损耗,PL为正数,α为链路损耗补偿系数,α大于0且小于1。
基于示例二,可以在数据信道和控制信道具有频域重叠且无时域重叠的情况下,确定单元1101以控制信道的发送功率和数据信道的发送功率中最大的发送功率为准,通过发送单元1102以该最大的发送功率向第二终端装置发送数据信道和控制信道。如此,可以保证不同符号上的发送功率是相同的,使不同符号采用相同的放大倍数进行功率放大,避免在不同符号的发送功率不同的情况下,切换射频放大器的放大倍数所带来的传输性能降低和资源浪费的问题,提高了***性能以及资源利用率。
作为又一种可实现方式,图11所示功率控制装置可以包括:处理模块和通信模块。处理模块可以集成确定单元1101的功能,通信模块可以集成发送单元1102的功能。处理模块用于对功率控制装置的动作进行控制管理,例如,处理模块用于支持该功率控制装置110执行步骤501、步骤502、步骤901以及本文所描述的技术的其它过程。通信模块用于支持功率控制装置与其他网络实体的通信,如:通信模块可以用于支持功率控制装置执行步骤503、步骤902以及步骤903等。进一步的,图11所示功率控制装置还可以包括存储模块,用于存储能够执行本申请提供的功率控制方法的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器(digital signal processing,DSP)和微处理器的组合等等。通信模块可以是发射器、收发电路、通信接口或者射频链路等。存储模块可以是存储器。
参见图12,图12是本申请实施例提供的一种功率控制装置120的结构示意图,该功率控制装置可用于执行本申请实施例所描述的方法,该功率控制装置可以为第一终端装置或者第一终端装置中的芯片或者片上***。如图12所示,为本申请实施例提供的一种功率控制装置120的组成示意图,如图12所示,该功率控制装置120可以包括至少一个处理器1201、射频链路1202,天线、存储器等。
其中,处理器1201,主要用于对通信协议以及通信数据进行处理,以及对整个第一终端装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持功率控制装置120执行图5和图9所描述的流程。处理器1201可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个第一终端装置进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
射频链路1202,主要用于基带信号与射频信号的转换以及对射频信号的处理,以及,可以用于与其他设备或通信网络通信(如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等)。射频链路1202可以是模块、电路、收发器或者任何能够实现通信的装置。
天线主要用于收发电磁波形式的射频信号。
存储器,可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,不限于此。一种可能的设计中,存储器可以独立于处理器1201存在,即存储器可以为处理器1201外部的存储器,此时,存储器可以通过通信线路与处理器1201相连接,用于存储指令或者程序代码。处理器1201调用并执行存储器中存储的指令或程序代码时,能够实现本申请下述实施例提供的通信方法。又一种可能的设计中,存储器也可以和处理器1201集成在一起,即存储器可以为处理器1201的内部存储器,例如,该存储器为高速缓存,可以用于暂存一些数据和/或指令信息等。
在一种示例中,处理器1201可以包括一个或多个CPU。作为另一种可实现方式,功率控制装置120可以包括多个处理器。作为再一种可实现方式,功率控制装置120还可以包括输入输出单元。示例性地,输入输出单元可以是键盘、鼠标、麦克风或操作杆、触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的第一终端装置可以不具有输入输出装置。
当功率控制装置120启动工作后,处理器1201可以读取存储单元中的软件程序,解释并执行软件程序。如:当需要向第二终端装置发送控制信道和数据信道时,处理器1201可以对控制信道和数据信道进行基带处理后,输出基带信号至射频链路,射频链路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。
示例性的,处理器1201可用于执行图5所示的步骤501、步骤502以及图9所示的步骤901所示的方法。射频链路1202可用于执行图5所示的步骤503以及图9所示步骤902和步骤903所示方法。例如:为解决option3帧结构下的功率控制,处理器1201,用于确定控制信道和第一子数据信道的发送功率,控制信道与第一子数据信道具有相同的时域且无频域重叠;以及,确定第二子数据信道的发送功率与控制信道和第一子数据信道的发送功率相同,第二子数据信道与控制信道具有频域重叠且无时域重叠;
射频链路1202,用于以控制信道和第一子数据信道的发送功率向第二终端装置发送控制信道和第一子数据信道,以及,以控制信道和第一子数据信道的发送功率向第二终端装置发送第二子数据信道。
为解决option1a、option1b帧结构下的功率控制,处理器1201,用于确定控制信道的发送功率以及与控制信道具有频域重叠且无时域重叠数据信道的发送功率;
射频链路1202,用于在控制信道的发送功率大于或等于数据信道的发送功率的情况下,以控制信道的发送功率向第二终端装置发送控制信道和数据信道;或者,在控制信道的发送功率小于数据信道的发送功率的情况下,以数据信道的发送功率向第二终端装置发送控制信道和数据信道。
可理解的是,图12所示功率控制装置120的实现方式,具体可参考前述各个实施例,这里不再详述。
需要说明的是,功率控制装置120可以是一个通用设备或者是一个专用设备。如:功率控制装置120可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片***或有图12中类似结构的设备。本申请实施例不限定功率控制装置120的类型。本申请实施例中,芯片***可以由芯片构成,也可以包括芯片和其他分立器件。此外,图12中示出的设备结构并不构成对该功率控制装置的限定,除图12所示部件之外,该功率控制装置120可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的功率控制装置(包括数据发送端和/或数据接收端)的内部存储单元,例如功率控制装置的硬盘或内存。上述计算机可读存储介质也可以是上述功率控制装置的外部存储设备,例如上述功率控制装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述功率控制装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述功率控制装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种功率控制方法,其特征在于,所述方法包括:
    第一终端装置确定控制信道和第一子数据信道的发送功率,所述控制信道与所述第一子数据信道具有相同的时域且无频域重叠;
    所述第一终端装置确定第二子数据信道的发送功率与所述控制信道和第一子数据信道的发送功率相同,所述第二子数据信道与所述控制信道具有频域重叠且无时域重叠;
    所述第一终端装置以所述控制信道和第一子数据信道的发送功率向第二终端装置发送所述控制信道和第一子数据信道;
    所述第一终端装置以所述控制信道和第一子数据信道的发送功率向所述第二终端装置发送所述第二子数据信道。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一终端装置确定控制信道和第一子数据信道的发送功率之前,所述方法还包括:
    所述第一终端装置确定所述控制信道和数据信道,所述数据信道包括所述第一子数据信道和所述第二子数据信道。
  3. 根据权利要求1或者2所述的方法,其特征在于,所述第二子数据信道的带宽为M,所述控制信道的带宽为N,所述第一子数据信道的带宽为M-N,所述M大于所述N,所述N为正整数;第一终端装置确定控制信道和第一子数据信道的发送功率,包括:
    所述第一终端装置根据最大发送功率、所述控制信道的带宽N、所述第一子数据信道的带宽M-N,确定所述控制信道的发送功率P control和所述第一子数据信道的发送功率P DATA_A
    所述第一终端装置将P control+P DATA_A作为所述控制信道和所述第一子数据信道的发送功率和所述第二子数据信道的发送功率。
  4. 根据权利要求3所述的方法,其特征在于,所述控制信道的发送功率P control满足如下公式:
    P control=min{P CMAX-f(N,M-N),f(N)+P O+α·PL}
    所述第一子数据信道的发送功率P DATA_A满足如下公式:
    P DATA_A=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
    其中,所述P CMAX为最大发送功率,所述f(N,M-N)为所述第一子数据信道的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一子数据信道的带宽M-N的函数,所述f(N)为所述控制信道的带宽N的函数,所述P 0为所述第二终端装置的目标接收功率,所述PL为参考链路损耗,所述PL为正数,所述α为链路损耗补偿系数,所述α大于0且小于1。
  5. 根据权利要求3所述的方法,其特征在于,所述控制信道的发送功率P control满足如下公式:
    P control=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(N)+P O+α·PL}
    所述第一子数据信道的发送功率P DATA_A满足如下公式:
    P DATA_A=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(M-N)+P O+α·PL}
    其中,所述P CMAX为最大发送功率,所述P MAX_CC为满足拥塞控制要求的最大发送功 率,所述f(N,M-N)为所述第一子数据信道的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一子数据信道的带宽M-N的函数,所述f(N)为所述控制信道的带宽N的函数,所述P 0为所述第二终端装置的目标接收功率,所述PL为参考链路损耗,所述PL为正数,所述α为链路损耗补偿系数,所述α大于0且小于1。
  6. 一种功率控制方法,其特征在于,所述方法包括:
    第一终端装置确定控制信道的发送功率以及数据信道的发送功率,所述控制信道与所述数据信道具有频域重叠且无时域重叠;
    若所述控制信道的发送功率大于或等于所述数据信道的发送功率,则所述第一终端装置以所述控制信道的发送功率向第二终端装置发送所述控制信道和所述数据信道;或者,
    若所述控制信道的发送功率小于所述数据信道的发送功率,则所述第一终端装置以所述数据信道的发送功率向第二终端装置发送所述控制信道和所述数据信道。
  7. 根据权利要求6所述的方法,其特征在于,所述控制信道的带宽为N、所述数据信道的带宽为M,所述M大于或等于所述N,所述N为正整数;第一终端装置确定控制信道的发送功率和数据信道的发送功率,包括:
    所述第一终端装置根据最大发送功率、所述控制信道的带宽N,确定所述控制信道的发送功率P control;所述第一终端装置根据最大发送功率、所述数据信道的带宽M,确定所述数据信道的发送功率P DATA
  8. 根据权利要求7所述的方法,其特征在于,所述控制信道的发送功率P control满足如下公式:
    P control=min{P CMAX,f(N)+P O+α·PL}
    所述数据信道的发送功率P DATA满足如下公式:
    P DATA=min{P CMAX,f(M)+P O+α·PL}
    其中,所述P CMAX为最大发送功率,所述f(N)为所述控制信道的带宽N的函数,所述f(M)为所述数据信道的带宽M的函数,所述P 0为所述第二终端装置的目标接收功率,所述PL为参考链路损耗,所述PL为正数,所述α为链路损耗补偿系数,所述α大于0且小于1。
  9. 一种功率控制装置,其特征在于,所述装置包括:
    确定单元,用于确定控制信道和第一子数据信道的发送功率,所述控制信道与所述第一子数据信道具有相同的时域且无频域重叠;
    所述确定单元,还用于确定第二子数据信道的发送功率与所述控制信道和第一子数据信道的发送功率相同,所述第二子数据信道与所述控制信道具有频域重叠且无时域重叠;
    发送单元,用于以所述控制信道和第一子数据信道的发送功率向第二终端装置发送所述控制信道和第一子数据信道,以及,以所述控制信道和第一子数据信道的发送功率向所述第二终端装置发送所述第二子数据信道。
  10. 根据权利要求9所述的装置,其特征在于,
    在确定控制信道和第一子数据信道的发送功率之前,所述确定单元,还用于确定所述控制信道和数据信道,所述数据信道包括所述第一子数据信道和所述第二子数据信道。
  11. 根据权利要求9或者10所述的装置,其特征在于,所述第二子数据信道的带宽为M,所述控制信道的带宽为N,所述第一子数据信道的带宽为M-N,所述M大于所述 N,所述N为正整数;所述确定单元,具体用于:
    根据最大发送功率、所述控制信道的带宽N、所述第一子数据信道的带宽M-N,确定所述控制信道的发送功率P control和所述第一子数据信道的发送功率P DATA_A
    将P control+P DATA_A作为所述控制信道和所述第一子数据信道的发送功率和所述第二子数据信道的发送功率。
  12. 根据权利要求11所述的装置,其特征在于,所述控制信道的发送功率P control满足如下公式:
    P control=min{P CMAX-f(N,M-N),f(N)+P O+α·PL}
    所述第一子数据信道的发送功率P DATA_A满足如下公式:
    P DATA_A=min{P CMAX-f(N,M-N),f(M-N)+P O+α·PL}
    其中,所述P CMAX为最大发送功率,所述f(N,M-N)为所述第一子数据信道的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一子数据信道的带宽M-N的函数,所述f(N)为所述控制信道的带宽N的函数,所述P 0为所述第二终端装置的目标接收功率,所述PL为参考链路损耗,所述PL为正数,所述α为链路损耗补偿系数,所述α大于0且小于1。
  13. 根据权利要求11所述的装置,其特征在于,所述控制信道的发送功率P control满足如下公式:
    P control=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(N)+P O+α·PL}
    所述第一子数据信道的发送功率P DATA_A满足如下公式:
    P DATA_A=min{P CMAX-f(N,M-N),P MAX_CC-f(N,M-N),f(M-N)+P O+α·PL}
    其中,所述P CMAX为最大发送功率,所述P MAX_CC为满足拥塞控制要求的最大发送功率,所述f(N,M-N)为所述第一子数据信道的带宽M-N与所述控制信道的带宽N的函数,所述f(M-N)为所述第一子数据信道的带宽M-N的函数,所述f(N)为所述控制信道的带宽N的函数,所述P 0为所述第二终端装置的目标接收功率,所述PL为参考链路损耗,所述PL为正数,所述α为链路损耗补偿系数,所述α大于0且小于1。
  14. 一种功率控制装置,其特征在于,所述装置包括:
    确定单元,用于确定控制信道的发送功率以及数据信道的发送功率,所述控制信道与所述数据信道具有频域重叠且无时域重叠;
    发送单元,用于在所述控制信道的发送功率大于或等于所述数据信道的发送功率的情况下,以所述控制信道的发送功率向第二终端装置发送所述控制信道和所述数据信道;或者
    所述发送单元,用于在所述控制信道的发送功率小于所述数据信道的发送功率的情况下,以所述数据信道的发送功率向第二终端装置发送所述控制信道和所述数据信道。
  15. 根据权利要求14所述的装置,其特征在于,所述控制信道的带宽为N、所述数据信道的带宽为M,所述M大于或等于所述N,所述N为正整数;功率控制装置确定控制信道的发送功率和数据信道的发送功率,包括:
    所述功率控制装置根据最大发送功率、所述控制信道的带宽N,确定所述控制信道的发送功率P control;所述功率控制装置根据最大发送功率、所述数据信道的带宽M, 确定所述数据信道的发送功率P DATA
  16. 根据权利要求15所述的装置,其特征在于,所述控制信道的发送功率P control满足如下公式:
    P control=min{P CMAX,f(N)+P O+α·PL}
    所述数据信道的发送功率P DATA满足如下公式:
    P DATA=min{P CMAX,f(M)+P O+α·PL}
    其中,所述P CMAX为最大发送功率,所述f(N)为所述控制信道的带宽N的函数,所述f(M)为所述数据信道的带宽M的函数,所述P 0为所述第二终端装置的目标接收功率,所述PL为参考链路损耗,所述PL为正数,所述α为链路损耗补偿系数,所述α大于0且小于1。
  17. 一种功率控制装置,其特征在于,所述功率控制装置包括一个或多个处理器和一个或多个存储器;所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令;
    当所述一个或多个处理器执行所述计算机指令时,使得所述功率控制装置执行如权利要求1-5任一项所述的功率控制方法。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-5任一项所述的功率控制方法。
  19. 一种功率控制装置,其特征在于,所述功率控制装置包括一个或多个处理器和一个或多个存储器;所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令;
    当所述一个或多个处理器执行所述计算机指令时,使得所述功率控制装置执行如权利要求6-8任一项所述的功率控制方法。
  20. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求6-8任一项所述的功率控制方法。
PCT/CN2020/080904 2019-03-29 2020-03-24 一种功率控制方法及装置 WO2020199983A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20783273.4A EP3913841B1 (en) 2019-03-29 2020-03-24 Power control method and device
US17/410,565 US11825421B2 (en) 2019-03-29 2021-08-24 Power control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253438.3A CN111757448B (zh) 2019-03-29 2019-03-29 一种功率控制方法及装置
CN201910253438.3 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/410,565 Continuation US11825421B2 (en) 2019-03-29 2021-08-24 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2020199983A1 true WO2020199983A1 (zh) 2020-10-08

Family

ID=72664990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080904 WO2020199983A1 (zh) 2019-03-29 2020-03-24 一种功率控制方法及装置

Country Status (4)

Country Link
US (1) US11825421B2 (zh)
EP (1) EP3913841B1 (zh)
CN (1) CN111757448B (zh)
WO (1) WO2020199983A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3829076A3 (en) 2019-11-28 2021-08-04 Samsung Electronics Co., Ltd. Transmission power control of sounding reference signals in wireless communication system and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039880A1 (en) * 2015-09-01 2017-03-09 Qualcomm Incorporated Method and apparatus for power control in d2d/wan coexistence networks
WO2018038525A1 (ko) * 2016-08-24 2018-03-01 엘지전자 주식회사 무선 통신 시스템에서 단말의 pscch 및 pssch 송수신 방법 및 장치
WO2018087742A1 (en) * 2016-11-14 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Deriving configured output power for consecutive transmission time intervals (ttis) in shortened tti patterns

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712019B1 (en) * 2004-01-29 2014-01-15 Neocific, Inc. Methods and apparatus for overlaying multi-carrier and direct sequence spread spectrum signals in a broadband wireless communication system
JP4671982B2 (ja) * 2007-01-09 2011-04-20 株式会社エヌ・ティ・ティ・ドコモ 基地局、送信方法及び移動通信システム
US7885176B2 (en) * 2007-06-01 2011-02-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping modulation symbols to resources in OFDM systems
CN106954272A (zh) * 2016-01-07 2017-07-14 中兴通讯股份有限公司 一种资源调度方法、装置及***
CN108632965B (zh) * 2017-03-24 2023-08-22 华为技术有限公司 一种上行发射功率控制的方法和设备
US10492151B2 (en) * 2017-06-09 2019-11-26 Qualcomm Incorporated Power control in new radio systems
CN109151833B (zh) * 2017-06-16 2020-07-21 华为技术有限公司 传输控制信息的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039880A1 (en) * 2015-09-01 2017-03-09 Qualcomm Incorporated Method and apparatus for power control in d2d/wan coexistence networks
WO2018038525A1 (ko) * 2016-08-24 2018-03-01 엘지전자 주식회사 무선 통신 시스템에서 단말의 pscch 및 pssch 송수신 방법 및 장치
WO2018087742A1 (en) * 2016-11-14 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Deriving configured output power for consecutive transmission time intervals (ttis) in shortened tti patterns

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Discussion on the remaining issues for sidelink power control", 3GPP DRAFT; R1-1609373, 14 October 2016 (2016-10-14), Lisbon, Portugal, pages 1 - 3, XP051159466 *
ZTE; SANECHIPS: "Discussion on NR sidelink physical layer structure", 3GPP DRAFT; R1-1902137, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 10, XP051599832 *

Also Published As

Publication number Publication date
EP3913841A1 (en) 2021-11-24
US20210385760A1 (en) 2021-12-09
EP3913841A4 (en) 2022-07-13
EP3913841B1 (en) 2023-11-15
US11825421B2 (en) 2023-11-21
CN111757448A (zh) 2020-10-09
CN111757448B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
US20220385430A1 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
EP3890409B1 (en) Power control method and power control apparatus
WO2020063130A1 (zh) 一种资源确定方法及装置
CN114902766A (zh) 最小调度偏移限制的应用延迟值的确定
KR102535608B1 (ko) 전력 제어 방법 및 장치
WO2019015445A1 (zh) 一种通信方法及装置
WO2020199983A1 (zh) 一种功率控制方法及装置
US11751229B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
US20230239805A1 (en) Method for transmitting and receiving data in wireless communication system supporting full duplex radio, and apparatus therefor
WO2020156214A1 (zh) 功率控制方法及终端设备
CN117882353A (zh) 用于无线通信的频谱整形
US11096202B2 (en) Method for D2D operation of terminal in wireless communication system and terminal using said method
WO2024051769A1 (zh) 一种数据传输的方法和通信装置
WO2023137768A1 (zh) 侧行反馈信道的传输方法、装置、终端及存储介质
US20240129805A1 (en) Wi-fi spectrum efficiency
CN114223166B (zh) 通信方法、装置、***和可读存储介质
WO2024138609A1 (zh) 通信方法及通信装置
WO2022079955A1 (ja) 端末、基地局及び通信方法
WO2024092670A1 (zh) 侧行传输方法及终端设备
CN116017664A (zh) 通信方法及装置
CN117678307A (zh) 无线通信***中的用户设备的操作方法及利用上述方法的装置
CN117426057A (zh) 用于处理dl ul tci状态的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020783273

Country of ref document: EP

Effective date: 20210820

NENP Non-entry into the national phase

Ref country code: DE