WO2020196652A1 - Solid state contact medium - Google Patents

Solid state contact medium Download PDF

Info

Publication number
WO2020196652A1
WO2020196652A1 PCT/JP2020/013412 JP2020013412W WO2020196652A1 WO 2020196652 A1 WO2020196652 A1 WO 2020196652A1 JP 2020013412 W JP2020013412 W JP 2020013412W WO 2020196652 A1 WO2020196652 A1 WO 2020196652A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
weight
contact medium
shape
retaining material
Prior art date
Application number
PCT/JP2020/013412
Other languages
French (fr)
Japanese (ja)
Inventor
純一 星野
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019059618A external-priority patent/JP2022081704A/en
Priority claimed from JP2019059617A external-priority patent/JP2022081703A/en
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2020196652A1 publication Critical patent/WO2020196652A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to a solid contact medium.
  • the present invention relates to a solid-state contact medium used in an ultrasonic transmitter, an ultrasonic receiver, and an ultrasonic transmitter / receiver used as an ultrasonic diagnostic apparatus.
  • the ultrasonic diagnostic apparatus makes it possible to bring an ultrasonic transmitter / receiver into contact with a subject such as a human body to transmit ultrasonic waves, receive the ultrasonic waves reflected in the subject as a signal, and form an image based on the signal. It is configured.
  • Patent Documents 1 to 4 disclose a technique in which a gel is used as a solid contact medium.
  • the gels disclosed so far may be broken when the ultrasonic transmitter is scanned on the gel due to insufficient strength, or may not be successfully scanned through the gel due to high frictional force. It has not been put into practical use due to problems such as
  • one surface is a smooth hydrogel layer so that the ultrasonic transmitter can be scanned on a subject, and another surface can be adhered to the ultrasonic radiation surface of the ultrasonic transmitter.
  • a solid contact medium formed from an adhesive hydrogel layer is disclosed.
  • the water-soluble polymer contained in the hydrogel is accumulated on one main surface to form a smooth first layer and a sticky or adhesive second layer.
  • the smooth hydrogel reacts with the adhesive hydrogel, or forms an interpenetrating network with the surface of the adhesive hydrogel before the smooth hydrogel cures to adhere to the smooth second layer. It is said that it can be manufactured to include a second layer of adhesive or adhesive, but the reaction between the smooth hydrogel and the adhesive hydrogel and the formation of the interpenetrating network can be formed only near the surface of the adhesive hydrogel, so that the bond strength Insufficiently, and because the bond between the smooth hydrogel layer and the adhesive hydrogel layer is by co-bonding, it cannot be re-bonded if the bond is broken by the deformation that occurs during scanning of the ultrasonic transmitter. When the ultrasonic transmitter was scanned on the gel, there was a problem that the hydrogel was destroyed starting from the peeling between the two layers.
  • a hydrophobic pressure-sensitive adhesive via a fiber sheet can be used, but fiber sheets such as Velcro® described are ultrasonically permeable. Therefore, there is a problem that it cannot be practically used for an ultrasonic transmitter.
  • the first object of the present disclosure is to provide a solid contact medium having high strength and low frictional force.
  • the present disclosure also provides a solid contact medium that is adhered to the ultrasonic radiation surface of an ultrasonic transmitter and can suppress homogenization of the two layers without peeling between the two layers (adhesive layer and gel layer). That is the second purpose.
  • the solid contact medium includes a water-insoluble shape-retaining material and a hydrogel portion containing a component forming a physical crosslink, and the hydrogel portion is
  • the thickness of the water-containing gel portion is 0.1 mm or more and 0.5 mm or less, which includes an outer layer portion formed on both main surfaces of the shape-retaining material and an impregnated portion impregnated by the shape-retaining material.
  • the thickness of the shape-retaining material is 0.01 mm or more and 0.2 mm or less
  • the thickness of the shape-retaining material is 10% or more and 40% or less of the thickness of the water-containing gel portion
  • the density of the shape-retaining material is 0. .1 g / cc or more and 0.3 g / cc or less.
  • the compressive stress at 20% strain of the water-containing gel portion is 1 kPa or more and 30 kPa or less, and the frictional force of the water-containing gel portion that does not contain the shape-retaining material, that is, the dynamic friction coefficient. Is preferably 1.5 or less.
  • the shape-retaining material contains a hydrophilic material.
  • the solid contact medium according to the present disclosure preferably contains at least one selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon as the shape-retaining material.
  • the solid contact medium contains a gel sheet containing at least one water-soluble polymer component that is crosslinked by ionic bonding to form a hydrogel, and is one of the main components of the gel sheet. It is preferable that the surface is formed of an adhesive layer that can be attached and re-peelable to the object to be attached, and the adhesive layer contains poly (meth) acrylic acids as at least one component that exhibits adhesiveness.
  • the solid contact medium according to the present disclosure contains at least one selected from the group consisting of carboxymethyl celluloses, alginic acids, and deacetylated gellan gums as the water-soluble polymer component.
  • the solid contact medium according to the present disclosure contains a polyvalent ion source in which the gel sheet forms the ionic bond
  • the polyvalent ion source is a compound containing at least one of calcium and aluminum, or a compound thereof. More preferably, it is a salt.
  • the other main surface of the gel sheet is formed from a gel layer, and the water-soluble polymer component is 0.5% by weight or more based on the weight of the gel layer. More preferably, it is contained in an amount of% by weight or less.
  • the solid contact medium according to the present disclosure contains the poly (meth) acrylic acids in an amount of 2% by weight or more and 10% by weight or less based on the weight of the adhesive layer.
  • the solid contact medium according to the present disclosure contains a polyvalent ion source in which the gel sheet forms the ionic bond, the other main surface of the gel sheet is formed from a gel layer, and the polyvalent ion source is formed. More preferably, it is contained in an amount of 20 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer.
  • the other main surface of the gel sheet is formed from a gel layer, and the gel layer is non-adhesive to a subject.
  • a solid contact medium having high strength and low frictional force can be provided.
  • the solid-state contact medium 1 in the present embodiment is used for an ultrasonic transmitter / receiver.
  • the solid contact medium 1 has a shape-retaining material 2 and a water-containing gel portion 3.
  • the water-containing gel portion 3 has an outer layer portion 4 formed on both main surface sides of the shape-retaining material 2 and an impregnated portion 5 impregnated by the shape-retaining material 2.
  • the solid contact medium according to the present embodiment includes a water-insoluble shape-retaining material 2 and a water-containing gel portion 3 containing a component forming a physical crosslink, and the thickness of the water-containing gel portion 3 is 0.1 mm or more and 0.
  • the shape-retaining material 2 is 5.5 mm or less, the thickness of the shape-retaining material 2 is 0.01 mm or more and 0.2 mm or less, and the thickness of the shape-retaining material 2 is 10% or more and 40% or less of the thickness of the hydrogel portion 3.
  • the density is preferably 0.1 g / cc or more and 0.3 g / cc or less, and further, from the viewpoint of strength and ultrasonic propagation, the thickness of the hydrogel portion 3 is 0.2 mm or more and 0.4 mm or less, and the shape is It is more preferable that the thickness of the holding material 2 is 0.02 mm or more and 0.1 mm or less, and the thickness of the shape holding material 2 is 10% or more and 25% or less of the thickness of the hydrogel portion 3.
  • the gels that can be used in the hydrogel part 3 are roughly classified into physical gels and / or chemical gels having the characteristics of both.
  • a physical gel is formed by forming a three-dimensional network structure of a polymer or the like by physical cross-linking such as hydrogen bond, ionic bond, coordination bond, and hydrophobic bond.
  • the network structure by physical cross-linking of physical gels breaks the cross-linking points when a high load is applied, and the polymer and the solvent retained by the polymer are released on the gel surface. become in a state. This causes a decrease in frictional force.
  • the impregnable shape-retaining material 2 is formed of a fiber or a porous resin film or sheet, and has a resin portion constituting the retaining material and an empty opening in the plane.
  • the solid contact medium is compressed by the ultrasonic transmitter / receiver, if there is a resin portion constituting the shape-retaining material in the compression direction, the normal force from the resin portion exists in the water-containing gel portion 3 in the same compression direction.
  • the hydrogel portion 3 between the resin portion and the ultrasonic transmitter / receiver is compressed more than the hydrogel portion 3 between the opening and the ultrasonic transmitter / receiver.
  • the thickness of the water-insoluble shape-retaining material 2 and the water-containing gel portion 3 containing the component forming the physical crosslink is 0.1 mm or more and 0.5 mm or less, and the thickness of the shape-retaining material 2 is 0.
  • the shape-retaining material 2 is 01 mm or more and 0.2 mm or less and the thickness of the shape-retaining material 2 is 10% or more and 40% or less of the thickness of the water-containing gel portion 3
  • the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3. Since the deformation stress on the water-containing gel portion 3 is relaxed by the shape-retaining material 2, it is possible to provide a solid contact medium having high strength and low frictional force.
  • the thickness of the water-containing gel portion 3 is less than 0.1 mm, the strength is insufficient, and the water-containing gel portion 3 dries during use, resulting in poor followability to the skin and, in turn, hindering ultrasonic propagation. There is a fear.
  • the thickness of the water-containing gel portion 3 exceeds 0.5 mm, the distance from the surface of the water-containing gel portion 3 to the shape-retaining material 2 is increased, and the water-containing gel portion when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 There is a risk that the deformation stress to 3 will not reach the shape-retaining material 2.
  • the hydrogel portion 3 according to the present embodiment contains a component that forms a physical crosslink.
  • the components forming the chemical crosslinks generally use polymerizable monomers and crosslinkers having low biocompatibility, there is a risk that they remain in the gel, so that the hydrogel portion 3 forms a physical crosslink.
  • a highly biocompatible polymerizable monomer or cross-linking agent is used.
  • the thickness of the shape-retaining material 2 is less than 0.01 mm, the strength is insufficient to alleviate the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3.
  • the deformation stress on the hydrogel portion 3 cannot be relaxed and the hydrogel portion 3 may be broken.
  • the thickness of the shape-retaining material 2 exceeds 0.2 mm, the ultrasonic wave propagation efficiency is remarkably lowered and the followability to the skin is lowered, so that the solid contact medium may not be provided.
  • the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 is caused by the shape-retaining material.
  • the hydrogel portion 3 may be broken before being relaxed.
  • the thickness of the shape-retaining material 2 exceeds 40% of the thickness of the hydrogel portion 3, the ultrasonic wave propagation efficiency is significantly reduced, and there is a risk that the solid contact medium cannot be provided.
  • the density of the shape-retaining material 2 is 0.1 g / cc or more and 0.3 g / cc or less, the joint points between the water-containing gel portion 3 and the shape-retaining material 2 are increased without hindering ultrasonic propagation, and the shape-retaining material 2 is super. Since the deformation stress on the hydrogel portion 3 when the ultrasonic transmitter is scanned through the hydrogel portion 3 is efficiently relaxed by the shape-retaining material, a solid contact medium having high strength and low frictional force is provided. be able to.
  • the density of the shape-retaining material 2 is less than 0.1 g / cc, the strength capable of relaxing the deformation stress on the hydrogel portion 3 when the ultrasonic transmitter / receiver is scanned through the hydrogel portion 3 is insufficient.
  • the hydrogel portion 3 may be broken.
  • the density of the shape-retaining material 2 exceeds 0.3 g / cc, the joint points between the water-containing gel portion 3 and the shape-retaining material 2 decrease, so that the water content when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3
  • the deformation stress on the gel portion 3 may be difficult to be relaxed by the shape-retaining material 2, and the ultrasonic propagation may be significantly hindered.
  • the compressive stress at 20% strain of the water-containing gel portion 3 is 1 kPa or more and 30 kPa or less, and the frictional force of the water-containing gel portion 3 that does not include the shape-retaining material 2, that is, dynamic friction.
  • the coefficient is preferably 1.5 or less.
  • the compressive stress at 20% strain of the water-containing gel part 3 is 1 kPa or more and 30 kPa or less, and the dynamic friction coefficient of the water-containing gel part 3 that does not include the shape-retaining material 2 is 1.5 or less, so that the ultrasonic transmitter / receiver is water-containing.
  • High strength and low frictional force can be suppressed because the deformation stress on the water-containing gel portion 3 when scanning through the gel portion 3 can be suppressed from being connected to the breakage of the water-containing gel portion 3 before being relaxed by the shape-retaining material.
  • Solid contact medium can be provided.
  • the compressive stress at 20% strain is less than 1 kPa
  • the deformation stress on the hydrogel portion 3 when the ultrasonic transmitter / receiver is scanned through the hydrogel portion 3 is water-containing before the shape-retaining material 2 relaxes it. The possibility that the gel portion 3 will be broken increases.
  • the compressive stress at 20% strain exceeds 30 kPa
  • the deformation stress to the hydrogel portion 3 when the ultrasonic transmitter / receiver is scanned through the hydrogel portion 3 is difficult to be transmitted to the shape-retaining material 2, and the frictional force Is less likely to decrease.
  • the dynamic friction coefficient of the water-containing gel portion 3 not including the shape-retaining material 2 exceeds 1.5, the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 is increased.
  • the hydrogel portion 3 may be broken before being relaxed by the shape-retaining material 2.
  • the shape-retaining material 2 contains a hydrophilic material.
  • the shape-retaining material 2 contains a hydrophilic material, the binding force between the water-containing gel portion 3 and the shape-retaining material 2 is increased, and the ultrasonic transmitter / receiver is moved to the water-containing gel portion 3 when scanned through the water-containing gel portion 3. Since the deformation stress of the gel is greatly relaxed by the shape-retaining material, a solid contact medium having high strength and low frictional force can be provided.
  • the solid contact medium according to the present embodiment contains at least one of the shape-retaining materials 2 selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon.
  • the shape-retaining material contains at least one selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon
  • the hydrophilicity of the polyacrylic acids, polyvinyl alcohols, or rayon causes the water-containing gel portion 3 to be combined.
  • the binding force of the shape-retaining material 2 is increased, and the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 is more relaxed by the shape-retaining material 2, so that the strength is high.
  • the shape-retaining material 2 according to the present embodiment is not particularly limited as long as it is water-insoluble and has a thickness of 0.01 mm or more and 0.2 mm or less, and is a known shape-retaining material that is hydrophobic or hydrophilic. Can be used. Regarding the definition of hydrophobicity and hydrophilicity, the official moisture content was measured based on JIS L 0105: 2006, and those with less than 4.5% were defined as hydrophobic and those with 4.5% or more were defined as hydrophilic. ..
  • hydrophobic shape-retaining material examples include non-woven fabrics, woven fabrics, and knitted fabrics formed using one or more materials selected from hydrophobic fibers such as polyester, acrylic, polyethylene, polypropylene, and polyvinyl chloride. Or a porous resin film or sheet made of polyethylene, polypropylene, polyester, polyvinyl chloride, polyvinylidene chloride, polyurethane, polystyrene, ethylene-vinyl acetate copolymer, polycarbonate, rubber hydrochloride, etc. It may be present or it may be a complex of these.
  • hydrophobic shape-retaining materials a hydrophobic fiber or a porous resin film or sheet formed by using one or more selected from polyester, polypropylene, and polyethylene is preferable from the viewpoint of strength and flexibility. ..
  • hydrophilic shape-retaining material examples include hydrophilic fibers such as rayon, cupra, acetate, cotton, hemp, silk, cellulose, wood pulp, and non-wood pulp; polyacrylic acids, polyvinyl alcohols, polyethylene glycols, acetic acid. Hydrophilic fibers or porous resin films or sheets formed using hydrophilic polymers such as cellulose, polyacrylamides, melamine resins, hydrophilic polyurethanes; hydrophobic polymers such as hydrophilized polyester, polyethylene, polypropylene Hydrophilic fiber or porous resin film or sheet formed using Hydrophilic part formed by using a hydrophobic polymer such as polyester, polyethylene, polypropylene, etc. and hydrophilicity formed by using a hydrophilic polymer. Examples include a hydrophilic composite fiber or a porous resin film or sheet provided with a portion; and the like.
  • hydrophilization treatment method examples include a method of mixing a hydrophilic agent with a hydrophobic polymer, and a method of impregnating a hydrophobic polymer with a hydrophilic agent.
  • Hydrophilic agents include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates; cationic surfactants such as quaternary ammonium salts; polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids.
  • Nonionic surfactants such as esters; silicone-based surfactants such as polyoxyalkylene-modified silicones; and stain-releasing agents using polyester-based, polyamide-based, acrylic-based, and urethane-based resins; and the like are used. These may be used alone or in combination of two or more.
  • the hydrophilic composite fiber include a fiber having a core-sheath structure formed from a core portion and a sheath portion, and at least one of which is formed by using a hydrophilic polymer. Further, it may exhibit a porous structure formed by voids that retain water inside the fiber. It should be noted that at least a part of each fiber may exist in a state of being oriented in one direction, or may be oriented in a random direction.
  • hydrophilic fibers or hydrophilic composite fibers containing one or more selected from polyacrylic acids, polyvinyl alcohols, and rayon are selected from the viewpoint of ultrasonic propagation and strength.
  • polyacrylic acids include poly (meth) acrylic acid, salts thereof or partially neutralized products thereof, or cross-linked products thereof
  • polyvinyl alcohols include cross-linking of the hydroxyl groups of polyvinyl alcohol in the main chain. Examples thereof include vinylon and a polyvinyl alcohol derivative in which the main chains are crosslinked, but these are not particularly limited as long as a hydrophilic shape-retaining material can be formed.
  • the official moisture content correlates with the magnitude of polarity and the number of polar groups on the surface of the shape-retaining material. Therefore, the higher the official moisture content, that is, the higher the hydrophilicity, the higher the affinity with the water-soluble polymer constituting the water-containing gel portion 3 described later, and when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3. Since the deformation stress of the water-containing gel portion 3 is easily transmitted to the shape-retaining material 2, it is possible to provide a solid contact medium having high strength and low frictional force.
  • the frictional force when the solid contact medium is compressed by the ultrasonic transmitter / receiver locally differs depending on the shape-retaining material portion in the compression direction, that is, the presence / absence of the resin portion of the shape-retaining material, and as a whole,
  • the frictional force becomes non-woven, but if there are too many parts with high frictional force, that is, parts that do not break the physical gel, the overall frictional force is difficult to decrease, so even if the shape-retaining material has the same density.
  • fibers such as non-woven fabrics, woven fabrics, and knitted fabrics having a low opening ratio are preferable to porous resin films or sheets having a high opening ratio, and non-woven fabrics having a lower opening ratio are more preferable.
  • non-woven fabric processing method examples include a spunlace method, a spunbond method, a thermal bond method, an air-through method, a needle punch method, and the like, but the shape-retaining material is not particularly limited as long as it satisfies the conditions in the present disclosure.
  • the composition of the component constituting the component is not particularly limited and is known. It can be composed of a water-soluble polymer, a cross-linking agent, a moisturizing agent, an excipient, a stabilizer and the like. Further, the water-containing gel portion 3 may be composed of a plurality of layers having different properties such as adhesiveness, adhesiveness, and low frictional property.
  • the water content it is preferable to contain water of 25% by weight or more and 95% by weight or less, and more preferably 40% by weight or more and 90% by weight or less of water with respect to the gel weight.
  • the water content is less than 25% by weight, the adhesion of the solid contact medium to the living body is lowered, the scannability of the ultrasonic transmitter / receiver is lowered, and the solid contact medium dries during use. , There is a risk of hindering ultrasonic propagation.
  • the water content exceeds 95% by weight, the strength of the solid contact medium is lowered, and the solid contact medium may be broken during use.
  • water-soluble polymer that forms the physical crosslinks contained in the water-containing gel portion 3 examples include poly (meth) acrylic acids such as carboxyvinyl polymers, polyacrylic acids, and acrylate / alkyl methacrylate copolymers; carboxymethyl celluloses, Anionic cellulose derivatives such as carboxyethyl celluloses; polysaccharides such as gellan gum, pectin, xanthan gum, carrageenan, agar, alginic acids, glucomannan, xyloglucane; anionic starch derivatives; etc., and at least one of them or Two or more types of polymers can be used.
  • poly (meth) acrylic acids such as carboxyvinyl polymers, polyacrylic acids, and acrylate / alkyl methacrylate copolymers
  • carboxymethyl celluloses Anionic cellulose derivatives such as carboxyethyl celluloses
  • polysaccharides such as gellan gum, pectin,
  • poly One or more selected from (meth) acrylic acids, carboxymethyl celluloses, gellan gums, carrageenans, alginic acids, and glucomannans are preferable.
  • the blending amount of the polymer forming the physical crosslink in the hydrous gel portion 3 differs depending on the type, but if the blending amount is too small, the strength of the gel is insufficient, and if the blending amount is too large, the flexibility of the gel decreases. Therefore, it is preferably 0.1% by weight or more and 30% by weight or less, more preferably 0.5% by weight or more and 20% by weight or less, and further preferably 1% by weight or more and 15% by weight or less with respect to the gel weight. It is as follows.
  • cross-linking agent for forming the physical cross-linking contained in the hydrogel portion 3 examples include compounds containing polyvalent metals such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, lead and calcium. These salts are mentioned. Specifically, for example, polyvalent metal hydroxides such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, and aluminum aluminum hydroxide; aluminum oxide, calcium oxide, magnesium oxide, zinc oxide, and aluminic acid.
  • Polyvalent metal oxides such as sodium; aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate, aluminum ammonium sulfate, aluminum carbonate, aluminum nitrate, aluminum chloride, polyaluminum chloride, calcium sulfate, calcium carbonate, calcium chloride, magnesium sulfate, carbonic acid
  • Polyvalent metal inorganic salts such as magnesium, magnesium chloride, zinc sulfate, zinc carbonate, zinc chloride, magnesium (meth) silicate aluminate, synthetic hydrotalcite, etc .; aluminum acetate, calcium acetate, magnesium acetate, zinc acetate, aluminum hydroxide,
  • Polyvalent metal organic salts such as calcium lactate, calcium phosphate, aluminum stearate, aluminum myristate, aluminum glycinate, aluminum benzoate, calcium thioglycolate and alkaline earth metal salts such as magnesium;
  • polyamino acids such as polylysine
  • polyamino acids such as
  • an inorganic acid salt of aluminum and an inorganic acid salt of calcium are preferable from the viewpoint of solubility, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate, sodium aluminum sulfate, calcium chloride and calcium lactate are used. More preferable. In addition, one or more of these may be used in combination. If the blending amount is too small, the strength of the gel will be insufficient, and if the blending amount is too large, the flexibility of the gel will decrease. Although it varies depending on the type, 0.001% by weight or more and 10% by weight or less is preferable, and 0.01% by weight or more and 1% by weight or less is more preferable with respect to the gel weight.
  • the hydrogel portion 3 preferably contains only a component that forms a physical crosslink, but may contain a component that crosslinks by a covalent bond.
  • the method of forming a crosslink by a covalent bond include a method of using a monofunctional polymerizable monomer, a polyfunctional polymerizable monomer and a polymerization initiator in combination, and forming a covalent bond by a chemical reaction with a polymer component to be crosslinked. Examples include a method using a polyfunctional cross-linking agent and a method using these methods at the same time.
  • Examples of the monofunctional polymerizable monomer include (meth) acrylate, itaconic acid, maleic acid, crotonic acid, sorbic acid, carcinic acid, vinyl sulphonic acid, allyl sulphonic acid, styrene sulphonic acid, and vinyl toluene flufonic acid.
  • These may be used alone or in combination of two or more, and are 0.1% by weight based on the weight of the gel from the viewpoint of gel strength, ultrasonic propagation, and biocompatibility. More than 10% by weight is preferable, and 0.5% by weight or more and 5% by weight or less is more preferable.
  • polyfunctional polymerizable monomer examples include tripropylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and neopentyl glycol hydroxypivalic acid.
  • Trifunctional monomers such as acrylate, propoxylated trimethylol propantri (meth) acrylate, propoxylated glyceryl tri (meth) acrylate; pentaerythritol tetra (meth) acrylate, ditrimethylol propantetra (meth) acrylate, dipentaerythritol hydroxy
  • Trifunctional monomers such as penta (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, penta (meth) acrylate ester, and dipentaerythritol hexa (meth) acrylate.
  • the gel weight It is preferably 0.005% by weight or more and 1% by weight or less, and more preferably 0.01% by weight or more and 0.5% by weight or less.
  • polymerization initiator examples include 2-oxoglutaric acid, 2-hydroxy-2-methyl-1-phenyl-propane-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2. -Methyl-1-propan-1-one, 22-hirodoxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propane-1-one, 1-Hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, Phenylglycolic acid methyl ester, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], triallyl sulfonium hex
  • the gel weight It is preferably 0.005% by weight or more and 1% by weight or less, and more preferably 0.01% by weight or more and 0.5% by weight or less.
  • polyfunctional cross-linking agent examples include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, triglycidyl isocyanurate, pentaerythritol tetraglycidyl ether, sorbitol hexaglycidyl ether, and polyethylene glycol.
  • Moisturizers include, for example, glycerin, diglycerin, triglycerin, polyglycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, pentaerythritol, neopentyl glycol, martitol, lactitol, palatinit, erythritol, sorbitol, mannitol, etc.
  • Polyhydric alcohols such as xylitol, xylose, glucose, lactose, mannitol, maltose, galactose, fructose, inositol, raffinose, trehalose, trimethylglycin, cyclodextrin, polyethylene glycol, polypropylene glycol; glucomannan, purulan, starches, hyaluronic acid , Collagen, mucopolysaccharide, water-soluble polymer such as chondroitin sulfate; amino acids, urea, sodium pyrrolidone carboxylate, betaine, whey, olive squalane and the like.
  • the blending amount varies depending on the type, but is preferably 1% by weight or more and 20% by weight or less with respect to the gel weight from the viewpoint of ultrasonic propagation efficiency, and when the blending amount is increased, the same amount is used from the viewpoint of gel strength. It is preferable to reduce the water content of the gel.
  • the excipient for example, kaolin, titanium oxide, silicic anhydride, zinc oxide, bentonite, smectite and the like can be used alone or in combination of two or more.
  • the blending amount thereof varies depending on the type, but is preferably 10% by weight or less, preferably 5% by weight or less, based on the gel weight. More preferred.
  • the stabilizer for example, edetate, paraoxybenzoic acid ester, tartaric acid, tocopherol acetate, ascorbic acid, sodium bisulfite and the like can be used alone or in combination of two or more.
  • the blending amount varies depending on the type, but if it is too large, physical cross-linking may not proceed and the gel strength may decrease, so 5% by weight or less is preferable with respect to the gel weight.
  • the pH of the hydrogel portion 3 is preferably in the range of pH 4.0 or more and 7.5 or less, and more preferably in the range of pH 5.0 or more and 7.0 or less from the viewpoint of skin irritation.
  • preservatives antioxidants, plasticizers, emulsifiers, surfactants, etc. can be further added as needed.
  • the present invention is not limited to this embodiment and can be variously modified without departing from the spirit of the present invention. It is also suitably used not only for ultrasonic transmitters and receivers but also for ultrasonic receivers and ultrasonic transmitters.
  • the solid contact medium 14 in the present embodiment is used for an ultrasonic transmitter / receiver.
  • the gel sheet 11 has an adhesive layer 12 formed on one main surface and a gel layer 13 on the other side.
  • the solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver includes a gel sheet 11 containing at least one water-soluble polymer component that is crosslinked by ionic bonding to form a hydrogel, and is a gel sheet.
  • One main surface of 11 is formed of an adhesive layer 12 that can be attached and re-peelable to an object to be attached, that is, the ultrasonic radiation surface of the ultrasonic transmitter / receiver in the present embodiment, and is contained in the adhesive layer 12 and adheres.
  • At least one component that expresses sex is poly (meth) acrylic acid.
  • the adhesive layer 12 also contains a water-soluble polymer component that is crosslinked by ionic bonding to form the gel layer 13, and is crosslinked with poly (meth) acrylic acids that exhibit adhesiveness by ionic bonding. Since the elution of the component exhibiting adhesiveness to the gel layer 13 can be prevented, it is possible to prevent the adhesive layer 12 and the gel layer 13 from being homogenized with the passage of time.
  • poly (meth) acrylic acids are contained in the adhesive layer 12 and exhibit adhesiveness, so that the gel sheet 11 is broken even when scanned by an ultrasonic transmitter / receiver in which the gel sheet 11 is adhered to the ultrasonic radiation surface. It is possible to form the adhesive layer 12 which has no strength, is flexible enough to follow the unevenness of the subject, and has good adhesiveness so that the gel sheet 11 does not peel off.
  • Poly (meth) acrylic acids are generally used for forming gel layers such as poultices, and are known to have excellent strength, adhesiveness, and biocompatibility.
  • the multivalent ion source and the water-soluble polymer component forming the gel layer 13 are not particularly limited, and a known multivalent ion source and the water-soluble polymer can be used.
  • the multivalent ion source in the present disclosure is a compound or a salt thereof that releases an inorganic cation having a valence of 2 or more in an aqueous solution.
  • Examples of the polyvalent ion source forming the gel layer 13 include compounds containing polyvalent metals such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, zirconium, lead and calcium, or salts thereof. Can be mentioned. Specifically, for example, polyvalent metal hydroxides such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, aluminum magnesium hydroxide, zirconium chloride; aluminum oxide, calcium oxide, magnesium oxide, etc.
  • Polyvalent metal oxides such as zinc oxide and sodium aluminate; aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate, aluminum ammonium sulfate, aluminum carbonate, aluminum nitrate, aluminum chloride, polyaluminum chloride, calcium sulfate, calcium carbonate, calcium chloride , Magnesium sulfate, magnesium carbonate, magnesium chloride, zinc sulfate, zinc carbonate, zinc chloride, magnesium (meth) silicate aluminate, synthetic hydrotalcite, zirconium chloride, ammonium zirconium carbonate, sodium zirconium carbonate, potassium zirconium carbonate, sulfate Polyvalent metal inorganic salts such as zirconium and zirconium nitrate; aluminum acetate, calcium acetate, magnesium acetate, zinc acetate, zirconium acetate, aluminum lactate, calcium lactate, calcium phosphate, aluminum stearate, aluminum myristate,
  • a polyvalent ion source that is, a cross-linking agent for forming a physical cross-linking
  • an inorganic acid salt of aluminum and an inorganic acid salt of calcium are preferable from the viewpoint of availability and solubility, and aluminum sulfate, aluminum chloride, and potassium aluminum sulfate. And sodium aluminum sulfate, calcium chloride, calcium lactate are more preferred. Moreover, you may use these 1 type or 2 or more types together. If the blending amount of the multivalent ion source is too small, the strength of the gel sheet 11 will be insufficient, and if the blending amount is too large, the flexibility of the gel sheet 11 will decrease. Therefore, the blending amount varies depending on the type.
  • It is preferably 10 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer 13. Similarly, it is more preferably 20 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer 13.
  • the solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver is a compound in which the polyvalent ion source forming the ionic bond contains at least one of calcium and aluminum.
  • these salts are preferable. Since these ions have a smaller ionic radius than ions such as magnesium, titanium, zinc, and zirconium, they easily move in the gel layer 13. Therefore, when scanning the ultrasonic transmitter / receiver to which the gel sheet 11 is adhered, they are localized. Even if the ionic bond is broken due to excessive stress, the ions are easily rebonded and the bond length of the ionic bond is shortened, so that a strong ionic bond is formed. Therefore, the two layers (adhesive layer 12 and gel layer 13) are used. It is possible to provide a solid contact medium that does not peel off and adheres to the ultrasonic radiation surface of the ultrasonic transmitter / receiver.
  • Examples of the water-soluble polymer component forming the gel layer 13 include poly (meth) acrylic acids; anionic cellulose derivatives such as carboxymethyl celluloses and carboxyethyl celluloses; gellan gums, pectins, xanthan gums, carrageenans, and alginic acids.
  • Etc. such as polysaccharides; anionic starch derivatives; etc., and at least one or more of these polymers can be used.
  • it has gel strength that can withstand scanning after being adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver, low friction for efficient scanning, and flexibility that can follow the unevenness of the skin and its movement.
  • At least one or more selected from the group consisting of carboxymethyl celluloses, gellan gums, carrageenans, and alginic acids is preferable.
  • carrageenans include lambda carrageenan, iota carrageenan, kappa carrageenan, and carrageenan containing a mu component and a new component, and it is preferable to contain at least iota carrageenan that can be crosslinked with poly (meth) acrylic acid by an ionic bond.
  • Carrageenan is commercially available, for example, Carrageenan CSI-1 (manufactured by Saneigen SFI Co., Ltd.); Carrageenan CS-2 (manufactured by Ina Food Industry Co., Ltd.); Geneubisco JJ, Geneugel CJ, Geneubisco PJJ-JPE Also manufactured by Copenhagen Pectin Factory); etc. can be used.
  • the content of the water-soluble polymer component forming the gel layer 13 varies depending on the type thereof, but is preferably the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and followability to the skin. It is 0.5% by weight or more and 10% by weight or less with respect to the gel weight of.
  • the water-soluble polymer component that is crosslinked by the ionic bond to form the gel layer 13 is carboxymethyl cellulose. It is preferably alginic acid or deacetylated gellan gum.
  • these components can form a gel layer 13 having both high strength derived from a strong ionic bond and flexibility derived from the sugar skeleton of the main chain, two layers (adhesive layer 12 and gel layer 13). It is possible to provide a solid contact medium that adheres to the ultrasonic radiation surface of an ultrasonic transmitter / receiver that does not peel off.
  • carboxymethyl celluloses examples include carboxymethyl cellulose or a salt thereof, and examples of the salt of carboxymethyl cellulose include one or more selected from alkali metal salts such as sodium salt and potassium salt and ammonium salts.
  • Sodium carboxymethyl cellulose is preferable from the viewpoint of forming ionic crosslinks satisfactorily.
  • the degree of etherification of carboxymethyl cellulose or a salt thereof is preferably 0.6 to 1.2 from the viewpoint of maintaining an appropriate gel strength to enhance the followability to the skin and ensuring the stability of the gel. It is more preferably 0.7 to 1.1. Further, from the viewpoint of maintaining an appropriate gel strength to improve the followability to the skin and ensuring the stability of the gel, the viscosity at 25 ° C.
  • a 1 wt% aqueous solution when a 1 wt% aqueous solution is used is measured by a B-type viscometer. It is preferably 1,500 to 7,000 mPa ⁇ s. The content thereof varies depending on the type, but is preferably 0.1% by weight based on the gel weight of the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and skin followability to the gel. It is 5% by weight or less.
  • alginic acids examples include alginic acid and alginates such as sodium alginate, potassium alginate, calcium alginate, and ammonium alginate. Among these alginates, it is preferable to use sodium alginate from the viewpoint of crosslinkability.
  • the viscosity of these alginic acids at 25 ° C. as a 1 wt% aqueous solution is preferably 100 to 1,000 mPa ⁇ s as measured by a B-type viscometer.
  • the ratio M / G of gluronic acid (G) and mannuronic acid (M) in alginic acid or a salt thereof in the present embodiment is preferably 0.5 to 2.0, more preferably 0.5 to 1.5.
  • the content thereof varies depending on the type, but is preferably 0.1% by weight based on the gel weight of the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and skin followability to the gel. It is 10% by weight or less.
  • deacetylated gellan gum examples include commercially available gel-up (registered trademark) KS manufactured by Saneigen FFI Co., Ltd., and Kelco gel (registered trademark) AFT manufactured by Kelco.
  • the content thereof varies depending on the type, but is preferably 0.1% by weight based on the gel weight of the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and skin followability to the gel. It is 5% by weight or less.
  • the water-soluble polymer component forming the gel layer 13 is 1% by weight based on the weight of the gel layer 13. It is preferable that the above is included.
  • a solid contact medium can be provided.
  • any water content and known moisturizers, excipients, stabilizers and the like can be used as the components constituting the gel layer 13.
  • the water content of the gel layer 13 is preferably 10% by weight or more and 90% by weight or less, and preferably 30% by weight or more and 80% by weight or less of water with respect to the weight of the adhesive layer 12. More preferred. If the water content is less than 10% by weight, ultrasonic propagation may be hindered. On the other hand, if the water content exceeds 90% by weight, the strength and adhesiveness of the gel layer 13 will decrease, and the solid contact medium may break during use.
  • Examples of the moisturizing agent for the gel layer 13 include glycerin, diglycerin, triglycerin, polyglycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, pentaerythritol, neopentyl glycol, martitol, lactitol, palatinit, and erythritol.
  • Polyhydric alcohols such as sorbitol, mannitol, xylitol, xylose, glucose, lactose, mannose, maltose, galactose, fructose, inositol, raffinose, trehalose, trimethylglycin, cyclodextrin, polyethylene glycol, polypropylene glycol; glucomannan, purulan, starch Classes, water-soluble polymers such as collagen, mucopolysaccharide, chondroitin sulfate; amino acids, urea, betaine, whey, olive squalane and the like.
  • the blending amount varies depending on the type, but is preferably 0.5% by weight or more and 30% by weight or less with respect to the gel weight of the gel layer 13 from the viewpoint of achieving both an appropriate moisturizing effect and non-adhesiveness.
  • the excipient of the gel layer 13 for example, kaolin, titanium oxide, silicic anhydride, zinc oxide, bentonite, smectite and the like can be used in one kind or a combination of two or more kinds.
  • the blending amount thereof is preferably 10% by weight or less, more preferably 5% by weight or less, based on the gel weight of the gel layer 13.
  • the stabilizer of the gel layer 13 for example, edetate, paraoxybenzoic acid ester, tartaric acid, tocopherol acetate, ascorbic acid, sodium bisulfite and the like can be used in one kind or a combination of two or more kinds.
  • the pH of the gel layer 13 is preferably in the range of pH 5.0 to 7.5, and more preferably in the range of pH 6.0 to 7.0, from the viewpoint of maintaining skin irritation and ionic bond recombination. preferable.
  • preservatives antioxidants, plasticizers, emulsifiers, surfactants, etc. can be further added as needed.
  • the gel layer 13 is preferably non-adhesive to the subject. Due to its non-adhesiveness, the ultrasonic transmitter / receiver can be efficiently scanned through the gel sheet 11.
  • the non-adhesiveness is determined based on the definition described in "JIS K 6894" based on whether the gel sheet 11 is brought into contact with the subject and does not stick or does not stick easily.
  • the non-adhesiveness in the present disclosure can be defined based on the coefficient of dynamic friction.
  • the coefficient of dynamic friction was obtained by measuring the coefficient of dynamic friction of the gel layer 13 using a tactile measuring device (device name: KES-SE-SR-U, manufactured by Kato Tech Co., Ltd.) equipped with a 10 mm square silicon sensor.
  • the coefficient of dynamic friction of the gel layer 13 is preferably 1.0 or less.
  • poly (meth) acrylic acid contained in the adhesive layer 12 for example, one or more of poly (meth) acrylic acid, a salt thereof or a partially neutralized product thereof can be combined.
  • the poly (meth) acrylic acid is not particularly limited in its molecular weight and its shape such as linear or branched chain, but it is preferable to use a poly (meth) acrylic acid having a weight average molecular weight of 10,000 or more and 10 million or less. If the weight average molecular weight is 10,000 or less, poly (meth) acrylic acid may be eluted from the adhesive layer 12, and if the weight average molecular weight is 10 million or more, the viscosity becomes high, which causes a problem in workability during manufacturing. There is a fear.
  • a polymer obtained by partially cross-linking an acrylic acid polymer such as a carboxyvinyl polymer may be combined.
  • the weight average molecular weight can be measured by a GPC (gel permeation chromatography) method using polyethylene oxide as a standard substance.
  • poly (meth) acrylate examples include monovalent metal salts of poly (meth) acrylic acid such as sodium poly (meth) acrylate and potassium poly (meth) acrylate; monoethanolamine poly (meth) acrylate, and poly.
  • Amine salts of poly (meth) acrylic acid such as diethanolamine (meth) acrylic acid and triethanolamine poly (meth) acrylic acid; ammonium salts of poly (meth) acrylic acid; and the like can be mentioned.
  • the compounding ratio (weight ratio) of these is 1: 9 for poly (meth) acrylic acid: poly (meth) acrylate. ⁇ 9: 1 is preferable, and 2: 8 to 8: 2 is more preferable.
  • poly (meth) acrylic acid may be partially neutralized so that the poly (meth) acrylic acid salt has the above ratio.
  • the degree of neutralization is preferably 10% or more and 60% or less.
  • the blending amount of the poly (meth) acrylic acid is preferably 1% by weight or more and 20% by weight or less, and more preferably 2% by weight or more and 10% by weight or less with respect to the weight of the adhesive layer 12. If the blending amount is less than 1% by weight, the adhesive strength may be insufficient, and if it exceeds 20% by weight, the viscosity becomes high, which may cause a problem in workability during manufacturing.
  • poly (meth) acrylic acids are 2% by weight or more and 10% by weight or less with respect to the weight of the adhesive layer 12. It is preferably a solid contact medium that can be attached to the ultrasonic radiation surface of the ultrasonic transmitter / receiver, which is characterized by being contained.
  • the blending amount is 2% by weight or more and 10% by weight or less, the number of points that can be recombined at the joint point between the adhesive layer 12 and the gel layer 13 increases, and the workability during manufacturing is extremely good. It is possible to provide a solid contact medium that does not peel off between layers (adhesive layer 12 and gel layer 13) and is adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver.
  • the adhesive layer 12 is not particularly limited in the composition of the components constituting the adhesive layer 12 as long as it contains poly (meth) acrylic acids, and has an arbitrary water content, a known water-soluble polymer, a cross-linking agent, a moisturizing agent, and an excipient. It can be composed of a shaping agent, a stabilizer and the like.
  • the water content of the adhesive layer 12 is preferably 10% by weight or more and 90% by weight or less, preferably 30% by weight or more and 80% by weight or less, based on the weight of the adhesive layer 12. More preferred. If the water content is less than 10% by weight, ultrasonic propagation may be hindered. On the other hand, if the water content exceeds 90% by weight, the strength and adhesiveness of the adhesive layer 12 are lowered, and the solid contact medium may be broken during use.
  • water-soluble polymer of the adhesive layer 12 examples include polyvinylpyrrolidone, gelatin, carboxymethyl cellulose, carboxyethyl cellulose, alginic acid, gellan gum, pectin, xanthan gum, carrageenan, polyvinyl alcohol, maleic anhydride copolymer, and the like.
  • examples thereof include carboxymethyl starch sodium, glucomannan, xylglucans, natural rubber having a carboxyl group, and one or more of these polymers can be used.
  • a water-soluble polymer crosslinked by a polyvalent ion source is used with poly (meth) acrylic acids, the function of the poly (meth) acrylic acids may be impaired.
  • the blending amount of the polymer varies depending on the type, but is preferably 150% by weight or less, more preferably 100% by weight or less, based on the weight of the poly (meth) acrylic acids.
  • a cross-linking agent for the adhesive layer 12 that is, a multivalent ion source forming an ionic bond
  • polyvalents such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, zirconium, lead, and calcium.
  • examples include compounds containing metals or salts thereof.
  • polyvalent metal hydroxides such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, aluminum magnesium hydroxide, zirconium chloride; aluminum oxide, calcium oxide, magnesium oxide, etc.
  • Polyvalent metal oxides such as zinc oxide and sodium aluminate; aluminum sulfate, potassium aluminum sulfate, aluminum ammonium sulfate, sodium aluminum sulfate, aluminum carbonate, aluminum nitrate, aluminum chloride, polyaluminum chloride, calcium sulfate, calcium carbonate, calcium chloride , Magnesium sulfate, magnesium carbonate, magnesium chloride, zinc sulfate, zinc carbonate, zinc chloride, magnesium (meth) silicate aluminate, synthetic hydrotalcite, zirconium chloride, ammonium zirconium carbonate, sodium zirconium carbonate, potassium zirconium carbonate, sulfate Polyvalent metal inorganic salts such as zirconium and zirconium nitrate; aluminum acetate, calcium acetate, magnesium acetate, zinc acetate, zirconium acetate, aluminum lactate, calcium lactate, calcium phosphate, aluminum stearate, aluminum myristate,
  • an inorganic acid salt of aluminum and an inorganic acid salt of calcium are preferable from the viewpoint of availability and solubility, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate and sodium aluminum sulfate, chloride. Calcium and calcium lactate are more preferable. In addition, one or more of these may be used in combination. If the blending amount is too small, the strength of the gel will be insufficient, and if the blending amount is too large, the flexibility of the gel will decrease. Although it varies depending on the type, 0.1% by weight or more and 5% by weight or less is preferable with respect to the gel weight of the adhesive layer 12.
  • Examples of the moisturizing agent for the adhesive layer 12 include glycerin, diglycerin, triglycerin, polyglycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, pentaerythritol, neopentyl glycol, martitol, lactitol, palatinit, and erythritol.
  • Polyhydric alcohols such as sorbitol, mannitol, xylitol, xylose, glucose, lactose, mannose, maltose, galactose, fructose, inositol, raffinose, trehalose, trimethylglycin, cyclodextrin, polyethylene glycol, polypropylene glycol; glucomannan, purulan, starch , Collagen, water-soluble polymers such as mucopolysaccharide; amino acids, urea, betaine, whey, olive squalane and the like.
  • the blending amount varies depending on the type, but is preferably 1% by weight or more and 40% by weight or less with respect to the gel weight of the adhesive layer 12 from the viewpoint of ensuring an appropriate moisturizing effect and ultrasonic wave propagation.
  • the excipient of the adhesive layer 12 for example, kaolin, titanium oxide, silicic anhydride, zinc oxide, bentonite, smectite and the like can be used in one kind or a combination of two or more kinds.
  • the blending amount thereof is preferably 10% by weight or less, more preferably 5% by weight or less, based on the gel weight of the adhesive layer 12.
  • the stabilizer of the adhesive layer 12 for example, edetate, paraoxybenzoic acid ester, tartaric acid, tocopherol acetate, ascorbic acid, sodium bisulfite and the like can be used in one kind or a combination of two or more kinds.
  • the blending amount varies depending on the type, but if it is too large, cross-linking may not proceed and the gel strength may decrease. Therefore, the blending amount is preferably 5% by weight or less with respect to the gel weight of the adhesive layer 12.
  • preservatives antioxidants, plasticizers, emulsifiers, surfactants, etc. can be further added as needed.
  • the gel sheet 11 may be impregnated with a known hydrophobic or hydrophilic fiber or porous resin film or sheet in order to improve the strength or the like.
  • the present invention is not limited to this embodiment and can be variously modified without departing from the spirit of the present invention. Further, as the object to be attached, it is suitably used not only for the ultrasonic transmitter / receiver but also for any of the ultrasonic radiation surface and the ultrasonic reception surface of the ultrasonic receiver and the ultrasonic transmitter, and both of them.
  • the shape-retaining material As the shape-retaining material according to this embodiment, a, b, c, d, e, f, and g shown in Table 1 were used. The thickness (mm), density (g / cc), type, material, property, and official water content of a, b, c, d, e, f, and g are as shown in Table 1, respectively. The thickness of the shape-retaining material used was measured by a digital micrometer (product number: 79523) manufactured by Shinwa Rules Co., Ltd., and the average value of 10 randomly selected points was used. The density of the shape-retaining material used was calculated from its basis weight (g / m 2 ) and thickness. As for the material, as shown in Table 1, the hydrophobic shape-retaining material does not include a hydrophilic material.
  • gel used for the hydrogel portion As the gel used for the hydrogel portion according to this example, three types of gels A, B, and C, which will be described later, were used. Hereinafter, the methods for producing gel A, gel B, and gel C will be specifically described.
  • a stock solution of Gel A was prepared by dropping an aqueous solution prepared by dissolving 0.04 g of (manufactured by the company) and 0.04 g of sodium edetate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) at 0.1 ml / sec.
  • the undiluted solution of Gel A was coated and cut on a polyester film to a predetermined size to obtain a test piece.
  • a stock solution of Gel B was prepared by dropping an aqueous solution prepared by dissolving 0.07 g of (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 0.05 g of sodium alginate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) at 0.1 ml / sec.
  • the undiluted solution of Gel B was applied onto a polyester film to a predetermined size and cut to obtain a test piece.
  • a compression tester (device name: KES-G5, manufactured by Kato Tech Co., Ltd.) equipped with a spherical compressor with a diameter of 10 mm is used to measure the compressive stress at 20% strain. It was measured.
  • the size of the test piece is 50 mm in length ⁇ 100 mm in width, the moving speed of the compressor is 2 mm / sec, and the stress at the time when the amount of deformation becomes 20% of the thickness of the sample is the compressive stress at 20% strain in the present disclosure. And said.
  • the dynamic friction coefficient of the solid contact medium of each example was measured using a tactile measuring device (device name: KES-SE-SR-U, manufactured by Kato Tech Co., Ltd.) equipped with a 10 mm square silicon sensor. The results are shown in Tables 2 and 3.
  • the moving speed of the sensor was 1 mm / sec
  • the load was 200 gf
  • the size of the test piece was 50 mm in length ⁇ 100 mm in width.
  • the average value of the obtained fluctuation data of the friction coefficient was used as the dynamic friction coefficient in the present disclosure.
  • gels A, B, and C produced by the above-mentioned production method are impregnated into each shape-retaining material, and the solid contact medium having a size of 50 mm in length and 100 mm in width is used.
  • the solid contact medium having a size of 50 mm in length and 100 mm in width is used.
  • Gels A, B, and C are coated so that the thickness of the water-containing gel portion 3 is 1 mm, 0.5 mm, 0.4 mm, and 0.1 mm, and Examples 1 to 24 and Comparative Example 1 in Tables 2 and 3 are applied.
  • the solid contact media shown in 8 to 8 were prepared.
  • the solid contact medium prepared was attached to the forearm of one volunteer, and the ultrasonic transmitter / receiver was broken when 20 reciprocating scans were performed through the hydrogel portion 3. The presence or absence was evaluated. The results are shown in Tables 2 and 3. The presence or absence of breakage was visually judged as having breakage if the broken gel had adhered to the ultrasonic transmitter / receiver after the test, and as having no breakage if it had not adhered.
  • the ultrasonic transmitter / receiver a pocket echo miruco manufactured by Nippon Sigmax Co., Ltd. was used.
  • the water-insoluble shape-retaining material shown in this example and the water-containing gel portion are included, and the water-containing gel portion is an outer layer formed on both main surfaces of the shape-retaining material.
  • the thickness of the water-containing gel portion is 0.1 mm or more and 0.5 mm or less, and the thickness of the shape-retaining material is 0.01 mm or more and 0.2 mm or less, including the portion and the impregnated portion impregnated by the shape-retaining material.
  • the thickness of the shape-retaining material is 10% or more and 40% or less of the thickness of the hydrogel portion, and the density of the shape-retaining material is 0.1 g / cc or more and 0.3 g / cc or less. Since the deformation stress on the water-containing gel portion when scanning through the water-containing gel portion is relaxed by the shape-retaining material 2, a solid contact medium having high strength and low frictional force can be obtained.
  • Table 4 shows sodium polyacrylate (degree of polymerization 22000 to 70000) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a component that exhibits adhesiveness in the adhesive layers shown in Tables 4 to 6 in an appropriate amount of purified water.
  • Aluminum sulfate manufactured by Kanto Chemical Co., Inc.
  • glycerin manufactured by Hayashi Junyaku Kogyo Co., Ltd.
  • titanium oxide manufactured by KENIS, Ltd.
  • edetic acid A stock solution of the adhesive layer was prepared by dropping an aqueous solution uniformly mixed with 1% by weight of sodium (manufactured by Tokyo Kasei Kogyo Co., Ltd.) at 0.1 ml / sec.
  • this undiluted solution was applied on a release film to a predetermined size and cut.
  • the components forming the gel layer shown in Tables 4 to 6 are dissolved in an appropriate amount of purified water at the ratios shown in Tables 4 to 6, and the polyvalent ion sources shown in Table 4 are shown in Table 4.
  • the undiluted solution of the gel layer was prepared by dropping the mixed aqueous solution at 0.1 ml / sec. When producing the gel layer, this undiluted solution was applied onto a release film to a predetermined size and cut.
  • the measurement is a T-type peeling test in which the adhesive layer of the test piece in which the adhesive layer and the gel layer are laminated is fixed to one measuring jig, and only the gel layer is fixed to the other jig and peeled off at a speed of 300 mm / min. It was carried out at. The average of the tensile strengths at 20, 30, 40, 50, and 60 mm from the peeling was taken as the peeling strength (unit: gf / 20 mm).
  • the adhesive strength persistence was evaluated by measuring and comparing the adhesive strength (peeling strength) immediately after the production of the gel sheet and 48 hours after the production.
  • the adhesive strength (peeling strength) was measured using a tensile tester (RTE-10, manufactured by Orientec Co., Ltd.).
  • RTE-10 tensile tester
  • As a measurement method a gel sheet prepared on a silicone rubber sheet (manufactured by Togawa Rubber Co., Ltd.) that imitates the radiation surface of an ultrasonic transmitter / receiver is used as a test piece, the gel sheet is fixed to one measuring tool, and the other tool is used.
  • a silicone rubber sheet was fixed to the surface, and the gel sheet was peeled off from the silicone rubber sheet at a speed of 300 mm / min in a 90-degree peeling test.
  • the average of the tensile forces at 20, 30, 40, 50, and 60 mm from the peeling was taken as the adhesive force (peeling strength) (gf / 20 mm).
  • the adhesive strength (peeling strength) after 48 hours was measured by sandwiching the upper and lower parts of the prepared test piece with a release film, laminating with an aluminum film, and leaving it for 48 hours in order to prevent drying. The results are shown in Tables 4-6.
  • the gel sheet contains at least one kind of water-soluble polymer component that forms a hydrogel by cross-linking by ionic bonding by the polyvalent ion source shown in this example, and is one of the gel sheets.
  • the main surface of is formed from an adhesive layer that can be peeled off from the ultrasonic radiation surface of the ultrasonic transmitter / receiver, and at least one component contained in the adhesive layer and exhibiting adhesiveness is poly (meth) acrylic acid.
  • the solid-state contact medium according to the present invention is particularly useful as a solid-state contact medium for an ultrasonic transmitter, an ultrasonic receiver, and an ultrasonic transmitter / receiver.
  • a solid contact medium utilizing this can improve the efficiency of ultrasonic diagnostic work.
  • the solid contact medium according to the present invention is a solid contact medium that is adhered to an object to be attached, particularly an ultrasonic transmitter, an ultrasonic receiver, an ultrasonic radiation surface of an ultrasonic transmitter / receiver, and an ultrasonic reception surface. It is useful as. A solid contact medium utilizing this can improve the efficiency of ultrasonic diagnostic work.
  • Solid contact medium 2 ... Shape-retaining material 3 ... Hydrous gel part 4 ... Outer layer part 5 ... Immersion part 11 ... Gel sheet 12 ... Adhesive layer 13 ... Gel layer 14 ... Solid contact medium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Medicinal Preparation (AREA)

Abstract

Provided is a solid state contact medium which comprises a water-insoluble shape-retaining material and a water-containing gel portion that contains a component which forms a physical crosslink, wherein the water-containing gel portion includes outer layer portions that are formed on both main surfaces of the shape-retaining material and an impregnated portion that is impregnated with the shape-retaining material, the water-containing gel portion has a thickness of 0.1 to 0.5 mm, the shape-retaining material has a thickness of 0.01 to 0.2 mm, the thickness of the shape-retaining material is 10 to 40% of the thickness of the water-containing gel portion, and the shape-retaining material has a density of 0.1 to 0.3 g/cc.

Description

固体状接触媒体Solid contact medium
 本発明は、固体状接触媒体に関する。特に、超音波診断装置として用いられる超音波送信器、超音波受信器、および超音波送受信器に用いられる固体状接触媒体に関する。 The present invention relates to a solid contact medium. In particular, the present invention relates to a solid-state contact medium used in an ultrasonic transmitter, an ultrasonic receiver, and an ultrasonic transmitter / receiver used as an ultrasonic diagnostic apparatus.
 超音波診断装置は、超音波送受信器を人体などの被検体に接触させて超音波を送信し、被検体内で反射した超音波を信号として受信し、その信号に基づく画像を形成できるように構成されている。 The ultrasonic diagnostic apparatus makes it possible to bring an ultrasonic transmitter / receiver into contact with a subject such as a human body to transmit ultrasonic waves, receive the ultrasonic waves reflected in the subject as a signal, and form an image based on the signal. It is configured.
 通常、超音波診断の際には、被検体の診断部に流動性のあるゼリーを接触媒体として塗布し、ゼリーの塗布された被検体の診断部に超音波送信器を接触させ、走査した際の、超音波送信器と被検体との密着性を向上させ、超音波の伝播効率を高めている。 Normally, in the case of ultrasonic diagnosis, when a fluid jelly is applied to the diagnostic part of the subject as a contact medium and the ultrasonic transmitter is brought into contact with the diagnostic part of the subject to which the jelly is applied and scanned. The adhesion between the ultrasonic transmitter and the subject is improved, and the propagation efficiency of ultrasonic waves is improved.
 しかしながら、流動性のあるゼリーを塗布した場合、被検体から流れ落ちてしまうことで追加の必要性が生じたり、超音波診断後に拭き取る必要性が生じたりするため、流動性のあるゼリーは超音波診断業務の効率を低下させていた。そこで、流動性の無い固体状の接触媒体の開発が続けられてきた。 However, when a fluid jelly is applied, it may run off the subject, which may cause additional need or need to be wiped off after the ultrasonic diagnosis. Therefore, the fluid jelly is used for ultrasonic diagnosis. It reduced the efficiency of business. Therefore, the development of a solid contact medium with no fluidity has been continued.
 例えば、特許文献1~4においてゲルを固体状の接触媒体とした技術が開示されている。しかしながら、これまで開示されてきたゲルは、強度が不十分なために超音波送信器をゲル上で走査した際に破断してしまったり、摩擦力が高いためにゲルを介して上手く走査できなかったりする、等といった課題があり、実用化されてこなかった。 For example, Patent Documents 1 to 4 disclose a technique in which a gel is used as a solid contact medium. However, the gels disclosed so far may be broken when the ultrasonic transmitter is scanned on the gel due to insufficient strength, or may not be successfully scanned through the gel due to high frictional force. It has not been put into practical use due to problems such as
 また、超音波送信器に粘着できる流動性の無い接触媒体の開発が続けられてきた。例えば、特許文献5では、超音波送信器を被検体上で走査することができるほど、一方の面が滑らかなヒドロゲル層でかつ、異なる面が超音波送信器の超音波放射面に粘着可能な粘着性ヒドロゲル層から形成される固体状接触媒体が開示されている。 In addition, the development of non-fluid contact media that can adhere to ultrasonic transmitters has been continued. For example, in Patent Document 5, one surface is a smooth hydrogel layer so that the ultrasonic transmitter can be scanned on a subject, and another surface can be adhered to the ultrasonic radiation surface of the ultrasonic transmitter. A solid contact medium formed from an adhesive hydrogel layer is disclosed.
 しかしながら、ある実施例では、ヒドロゲルの製造工程において、ヒドロゲル中に含ませた水溶性ポリマーを一方の主面に蓄積することで、滑らかな第1層と粘着性又は接着性の第2層とを含むように製造できるとあるが、水溶性ポリマーはヒドロゲル中において絶えず運動しているために、時間の経過とともに両層が均質化してしまうという課題があった。 However, in one embodiment, in the process of producing a hydrogel, the water-soluble polymer contained in the hydrogel is accumulated on one main surface to form a smooth first layer and a sticky or adhesive second layer. Although it is said that it can be produced to contain, there is a problem that both layers are homogenized over time because the water-soluble polymer is constantly moving in the hydrogel.
 また他の実施例では、滑らかなヒドロゲルと接着性ヒドロゲルが反応するか、又は滑らかなヒドロゲルが硬化する前に接着性ヒドロゲルの表面と相互侵入網目を形成することで、滑らかな第2層と粘着性又は接着性の第2層とを含むように製造できるとあるが、滑らかなヒドロゲルと接着性ヒドロゲルの反応、および相互侵入網目の形成は接着性ヒドロゲル表面近傍のみでしか形成できないため、結合強度が不十分であり、また滑らかなヒドロゲル層と粘着性ヒドロゲル層の接合が共有結合によるため、超音波送信器の走査時に起こる変形によってその結合が破壊された場合に再結合することができず、超音波送信器をゲル上で走査した際に2層間の剥離を起点にヒドロゲルが破壊されてしまうといった課題があった。 In yet another embodiment, the smooth hydrogel reacts with the adhesive hydrogel, or forms an interpenetrating network with the surface of the adhesive hydrogel before the smooth hydrogel cures to adhere to the smooth second layer. It is said that it can be manufactured to include a second layer of adhesive or adhesive, but the reaction between the smooth hydrogel and the adhesive hydrogel and the formation of the interpenetrating network can be formed only near the surface of the adhesive hydrogel, so that the bond strength Insufficiently, and because the bond between the smooth hydrogel layer and the adhesive hydrogel layer is by co-bonding, it cannot be re-bonded if the bond is broken by the deformation that occurs during scanning of the ultrasonic transmitter. When the ultrasonic transmitter was scanned on the gel, there was a problem that the hydrogel was destroyed starting from the peeling between the two layers.
 さらに、接着性ヒドロゲルの代わりに、繊維製シートを介した疎水性の感圧性接着剤を用いることもできるとあるが、記載されているベルクロ(登録商標)のような繊維製シートは超音波透過を阻害するため、実質的に超音波送信器に用いることができないといった課題があった。 Further, instead of the adhesive hydrogel, a hydrophobic pressure-sensitive adhesive via a fiber sheet can be used, but fiber sheets such as Velcro® described are ultrasonically permeable. Therefore, there is a problem that it cannot be practically used for an ultrasonic transmitter.
特開平3-272750号公報Japanese Unexamined Patent Publication No. 3-272750 米国特許第5782767号明細書U.S. Pat. No. 5,782,767 米国特許第6719699号明細書U.S. Pat. No. 6,719,699 特開2012-176197号公報Japanese Unexamined Patent Publication No. 2012-176197 特表2017-513688号公報Special Table 2017-513688
 そこで本開示は、高強度でかつ低摩擦力の固体状接触媒体を提供することを第1の目的とする。 Therefore, the first object of the present disclosure is to provide a solid contact medium having high strength and low frictional force.
 また、本開示は、2層間(粘着層とゲル層)で剥離せず、2層の均質化を抑制可能な、超音波送信器の超音波放射面に粘着される固体状接触媒体を提供することを第2の目的とする。 The present disclosure also provides a solid contact medium that is adhered to the ultrasonic radiation surface of an ultrasonic transmitter and can suppress homogenization of the two layers without peeling between the two layers (adhesive layer and gel layer). That is the second purpose.
 上記第1の目的を達成するため、本開示に係る固体状接触媒体は、非水溶性の形状保持材と、物理架橋を形成する成分を含む含水ゲル部と、を含み、前記含水ゲル部は、前記形状保持材の両主面に形成された外層部と、前記形状保持材に含侵された含侵部と、を含み、前記含水ゲル部の厚みが0.1mm以上0.5mm以下で、前記形状保持材の厚みが、0.01mm以上0.2mm以下でかつ、前記形状保持材の厚みが前記含水ゲル部の厚みの10%以上40%以下でかつ、前記形状保持材が密度0.1g/cc以上0.3g/cc以下である。 In order to achieve the first object, the solid contact medium according to the present disclosure includes a water-insoluble shape-retaining material and a hydrogel portion containing a component forming a physical crosslink, and the hydrogel portion is The thickness of the water-containing gel portion is 0.1 mm or more and 0.5 mm or less, which includes an outer layer portion formed on both main surfaces of the shape-retaining material and an impregnated portion impregnated by the shape-retaining material. The thickness of the shape-retaining material is 0.01 mm or more and 0.2 mm or less, the thickness of the shape-retaining material is 10% or more and 40% or less of the thickness of the water-containing gel portion, and the density of the shape-retaining material is 0. .1 g / cc or more and 0.3 g / cc or less.
 また、本開示に係る固体状接触媒体は、前記含水ゲル部の20%ひずみ時圧縮応力が1kPa以上30kPa以下であり、かつ前記形状保持材を含まない前記含水ゲル部の摩擦力、すなわち動摩擦係数が1.5以下であることが好ましい。 Further, in the solid contact medium according to the present disclosure, the compressive stress at 20% strain of the water-containing gel portion is 1 kPa or more and 30 kPa or less, and the frictional force of the water-containing gel portion that does not contain the shape-retaining material, that is, the dynamic friction coefficient. Is preferably 1.5 or less.
 また、本開示に係る固体状接触媒体は、前記形状保持材が親水性の材質を含むことが好ましい。 Further, in the solid contact medium according to the present disclosure, it is preferable that the shape-retaining material contains a hydrophilic material.
 また、本開示に係る固体状接触媒体は、前記形状保持材が、ポリアクリル酸類、ポリビニルアルコール類、及びレーヨンからなる群から選択される少なくとも一種を含むことが好ましい。 Further, the solid contact medium according to the present disclosure preferably contains at least one selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon as the shape-retaining material.
 上記第2の目的を達成するため、本開示に係る固体状接触媒体は、イオン結合により架橋してヒドロゲルを形成する水溶性高分子成分を少なくとも1種類含むゲルシートを含み、前記ゲルシートの一方の主面が貼付対象物に対して、貼付および再剥離可能な粘着層から形成され、前記粘着層は、粘着性を発現する少なくとも1種類の成分としてポリ(メタ)アクリル酸類を含むことが好ましい。 In order to achieve the second object, the solid contact medium according to the present disclosure contains a gel sheet containing at least one water-soluble polymer component that is crosslinked by ionic bonding to form a hydrogel, and is one of the main components of the gel sheet. It is preferable that the surface is formed of an adhesive layer that can be attached and re-peelable to the object to be attached, and the adhesive layer contains poly (meth) acrylic acids as at least one component that exhibits adhesiveness.
 また、本開示に係る固体状接触媒体は、前記水溶性高分子成分が、カルボキシメチルセルロース類、アルギン酸類、および脱アセチル化ジェランガム類からなる群から選択される少なくとも1種を含むことがより好ましい。 Further, it is more preferable that the solid contact medium according to the present disclosure contains at least one selected from the group consisting of carboxymethyl celluloses, alginic acids, and deacetylated gellan gums as the water-soluble polymer component.
 また、本開示に係る固体状接触媒体は、前記ゲルシートが前記イオン結合を形成する多価イオン源を含み、前記多価イオン源が、カルシウムおよびアルミニウムのうちの少なくとも1種類を含む化合物又はこれらの塩であることがより好ましい。 Further, the solid contact medium according to the present disclosure contains a polyvalent ion source in which the gel sheet forms the ionic bond, and the polyvalent ion source is a compound containing at least one of calcium and aluminum, or a compound thereof. More preferably, it is a salt.
 また、本開示に係る固体状接触媒体は、前記ゲルシートの他方の主面が、ゲル層から形成され、前記水溶性高分子成分が、前記ゲル層の重量に対して0.5重量%以上10重量%以下含まれることがより好ましい。 Further, in the solid contact medium according to the present disclosure, the other main surface of the gel sheet is formed from a gel layer, and the water-soluble polymer component is 0.5% by weight or more based on the weight of the gel layer. More preferably, it is contained in an amount of% by weight or less.
 また、本開示に係る固体状接触媒体は、前記ポリ(メタ)アクリル酸類が、前記粘着層の重量に対して2重量%以上10重量%以下含まれることがより好ましい。 Further, it is more preferable that the solid contact medium according to the present disclosure contains the poly (meth) acrylic acids in an amount of 2% by weight or more and 10% by weight or less based on the weight of the adhesive layer.
 また、本開示に係る固体状接触媒体は、前記ゲルシートが前記イオン結合を形成する多価イオン源を含み、前記ゲルシートの他方の主面が、ゲル層から形成され、前記多価イオン源が、前記ゲル層の重量に対して20mmol/kg以上200mmol/kg以下含まれることがより好ましい。 Further, the solid contact medium according to the present disclosure contains a polyvalent ion source in which the gel sheet forms the ionic bond, the other main surface of the gel sheet is formed from a gel layer, and the polyvalent ion source is formed. More preferably, it is contained in an amount of 20 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer.
 また、本開示に係る固体状接触媒体は、前記ゲルシートの他方の主面が、ゲル層から形成され、前記ゲル層は、被検体に対して非粘着性であることがより好ましい。 Further, in the solid contact medium according to the present disclosure, it is more preferable that the other main surface of the gel sheet is formed from a gel layer, and the gel layer is non-adhesive to a subject.
 本開示によれば、高強度でかつ低摩擦力の固体状接触媒体が提供できる。 According to the present disclosure, a solid contact medium having high strength and low frictional force can be provided.
 また、本開示によれば、2層間(粘着層とゲル層)で剥離せず、2層の均質化を抑制可能な、固体状接触媒体が提供できる。 Further, according to the present disclosure, it is possible to provide a solid contact medium that does not peel off between two layers (adhesive layer and gel layer) and can suppress homogenization of the two layers.
本実施形態の固体状接触媒体の断面図である。It is sectional drawing of the solid contact medium of this embodiment. 本実施形態の固体状接触媒体の断面図である。It is sectional drawing of the solid contact medium of this embodiment.
 本開示に係る一の実施形態について図1を参照しながら説明する。なお本実施形態における固体状接触媒体1は超音波送受信器用に用いられるものを示す。図1に示すように、固体状接触媒体1は、形状保持材2と、含水ゲル部3を有する。含水ゲル部3は、形状保持材2の両主面側に形成された外層部4と、形状保持材2に含侵された含侵部5を有する。 An embodiment according to the present disclosure will be described with reference to FIG. The solid-state contact medium 1 in the present embodiment is used for an ultrasonic transmitter / receiver. As shown in FIG. 1, the solid contact medium 1 has a shape-retaining material 2 and a water-containing gel portion 3. The water-containing gel portion 3 has an outer layer portion 4 formed on both main surface sides of the shape-retaining material 2 and an impregnated portion 5 impregnated by the shape-retaining material 2.
 本実施形態に係る固体状接触媒体は、非水溶性の形状保持材2と、物理架橋を形成する成分を含む含水ゲル部3と、を含み、含水ゲル部3の厚みは0.1mm以上0.5mm以下で、形状保持材2の厚みが、0.01mm以上0.2mm以下で、形状保持材2の厚みが含水ゲル部3の厚みの10%以上40%以下で、前記形状保持材2が密度0.1g/cc以上0.3g/cc以下であることが好ましく、さらには、強度と超音波伝搬の観点から、含水ゲル部3の厚みが0.2mm以上0.4mm以下で、形状保持材2の厚みが、0.02mm以上0.1mm以下でかつ、形状保持材2の厚みが含水ゲル部3の厚みの10%以上25%以下であることがより好ましい。 The solid contact medium according to the present embodiment includes a water-insoluble shape-retaining material 2 and a water-containing gel portion 3 containing a component forming a physical crosslink, and the thickness of the water-containing gel portion 3 is 0.1 mm or more and 0. The shape-retaining material 2 is 5.5 mm or less, the thickness of the shape-retaining material 2 is 0.01 mm or more and 0.2 mm or less, and the thickness of the shape-retaining material 2 is 10% or more and 40% or less of the thickness of the hydrogel portion 3. The density is preferably 0.1 g / cc or more and 0.3 g / cc or less, and further, from the viewpoint of strength and ultrasonic propagation, the thickness of the hydrogel portion 3 is 0.2 mm or more and 0.4 mm or less, and the shape is It is more preferable that the thickness of the holding material 2 is 0.02 mm or more and 0.1 mm or less, and the thickness of the shape holding material 2 is 10% or more and 25% or less of the thickness of the hydrogel portion 3.
 含水ゲル部3に用いられ得るゲルは、物理ゲルと化学ゲルまたはその両者の特徴を備えたものに大別される。物理ゲルは、高分子等が水素結合、イオン結合、配位結合、疎水結合などの物理架橋によって三次元的な網目構造を形成してなるものである。共有結合による架橋によって形成される化学ゲルと異なり、物理ゲルの物理架橋による網目構造は、高い荷重を加えると架橋点が破壊されて、ゲル表面に高分子と高分子が保持する溶媒が遊離した状態になる。それによって摩擦力の低下が引き起こされる。 The gels that can be used in the hydrogel part 3 are roughly classified into physical gels and / or chemical gels having the characteristics of both. A physical gel is formed by forming a three-dimensional network structure of a polymer or the like by physical cross-linking such as hydrogen bond, ionic bond, coordination bond, and hydrophobic bond. Unlike chemical gels formed by cross-linking by covalent bonds, the network structure by physical cross-linking of physical gels breaks the cross-linking points when a high load is applied, and the polymer and the solvent retained by the polymer are released on the gel surface. Become in a state. This causes a decrease in frictional force.
 本開示において、含浸可能な形状保持材2は、繊維または多孔性樹脂フィルムないしシートから形成され、面内において、保持材を構成する樹脂部と、何もない開口部を有する。超音波送受信器により固体状接触媒体が圧縮された際に、圧縮方向に形状保持材を構成する樹脂部が存在する場合、樹脂部からの垂直抗力が同じ圧縮方向に存在する含水ゲル部3に加わり、樹脂部と超音波送受信器の間の含水ゲル部3が、開口部と超音波送受信器の間の含水ゲル部3よりも圧縮される。周囲よりも圧縮された含水ゲル部3の領域は、含水ゲル部3を構成する物理架橋が周囲よりも多く破壊され、破壊された架橋部分に保持されていた高分子及び水分子がより多く溶出し、その領域の膜厚方向の最外層周辺の摩擦力がより低下する。このため、超音波送受信器により固体状接触媒体が圧縮された際の全体の摩擦力は、同じ圧縮力でも、形状保持材を含浸しない場合と比較して低下する。また、含水ゲルはヤング率が低く、大変形を起こすため、超音波送受信器により固体状接触媒体が圧縮された際に応力集中しやすく、破断の可能性が高まるが、含水ゲルよりもはるかにヤング率の高い形状保持材に応力が伝わると、その剛性によって形状保持材全体が変形するように応力が分散するため、全体としての見かけの強度が高まる。 In the present disclosure, the impregnable shape-retaining material 2 is formed of a fiber or a porous resin film or sheet, and has a resin portion constituting the retaining material and an empty opening in the plane. When the solid contact medium is compressed by the ultrasonic transmitter / receiver, if there is a resin portion constituting the shape-retaining material in the compression direction, the normal force from the resin portion exists in the water-containing gel portion 3 in the same compression direction. In addition, the hydrogel portion 3 between the resin portion and the ultrasonic transmitter / receiver is compressed more than the hydrogel portion 3 between the opening and the ultrasonic transmitter / receiver. In the region of the hydrogel portion 3 compressed more than the surroundings, more physical crosslinks constituting the hydrogel portion 3 were destroyed than in the surroundings, and more polymers and water molecules retained in the destroyed crosslinked portions were eluted. However, the frictional force around the outermost layer in the film thickness direction of the region is further reduced. Therefore, the total frictional force when the solid contact medium is compressed by the ultrasonic transmitter / receiver is lower than that in the case where the shape-retaining material is not impregnated even with the same compressive force. In addition, since the hydrous gel has a low Young's modulus and causes large deformation, stress is easily concentrated when the solid contact medium is compressed by the ultrasonic transmitter / receiver, and the possibility of breakage increases, but it is much higher than that of the hydrous gel. When stress is transmitted to a shape-retaining material with a high Young's modulus, the stress is dispersed so that the entire shape-retaining material is deformed by its rigidity, so that the apparent strength as a whole is increased.
 以上の理由から、非水溶性の形状保持材2と、物理架橋を形成する成分を含む含水ゲル部3の厚みが0.1mm以上0.5mm以下で、形状保持材2の厚みが、0.01mm以上0.2mm以下でかつ、形状保持材2の厚みが含水ゲル部3の厚みの10%以上40%以下であることで、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材2によって緩和されるため、高強度でかつ低摩擦力の固体状接触媒体を提供することができる。 For the above reasons, the thickness of the water-insoluble shape-retaining material 2 and the water-containing gel portion 3 containing the component forming the physical crosslink is 0.1 mm or more and 0.5 mm or less, and the thickness of the shape-retaining material 2 is 0. When the shape-retaining material 2 is 01 mm or more and 0.2 mm or less and the thickness of the shape-retaining material 2 is 10% or more and 40% or less of the thickness of the water-containing gel portion 3, the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3. Since the deformation stress on the water-containing gel portion 3 is relaxed by the shape-retaining material 2, it is possible to provide a solid contact medium having high strength and low frictional force.
 含水ゲル部3の厚みが0.1mm未満であると、強度が不足し、かつ含水ゲル部3が使用中に乾燥して皮膚への追従性が悪くなるとともに、ひいては超音波伝搬を妨げてしまう恐れがある。また含水ゲル部3の厚みが0.5mmを超えると、含水ゲル部3表面から形状保持材2までの距離が離れ、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材2に到達しなくなってしまう恐れがある。 If the thickness of the water-containing gel portion 3 is less than 0.1 mm, the strength is insufficient, and the water-containing gel portion 3 dries during use, resulting in poor followability to the skin and, in turn, hindering ultrasonic propagation. There is a fear. When the thickness of the water-containing gel portion 3 exceeds 0.5 mm, the distance from the surface of the water-containing gel portion 3 to the shape-retaining material 2 is increased, and the water-containing gel portion when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 There is a risk that the deformation stress to 3 will not reach the shape-retaining material 2.
 前述の通り、本実施形態に係る含水ゲル部3には物理架橋を形成する成分を含んでいることが好ましい。また、化学架橋を形成する成分は、一般的に生体適合性の低い重合性モノマー及び架橋剤等を用いることから、ゲルにそれらが残存するリスクがあるため、含水ゲル部3は物理架橋を形成する成分のみを含む構成とすること、換言すれば共有結合によって架橋する成分を含まない構成とすることが、生体適合性の観点からより好ましい。ただし、生体適合性の高い重合性モノマー又は架橋剤等を用いる場合はこの限りではない。 As described above, it is preferable that the hydrogel portion 3 according to the present embodiment contains a component that forms a physical crosslink. In addition, since the components forming the chemical crosslinks generally use polymerizable monomers and crosslinkers having low biocompatibility, there is a risk that they remain in the gel, so that the hydrogel portion 3 forms a physical crosslink. From the viewpoint of biocompatibility, it is more preferable to have a structure containing only the components to be cross-linked, in other words, a structure not containing the components cross-linked by covalent bonds. However, this does not apply when a highly biocompatible polymerizable monomer or cross-linking agent is used.
 形状保持材2の厚みが0.01mm未満であると、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力を緩和できるだけの強度が不足するため、超音波送受信器を含水ゲル部3上で走査した際に含水ゲル部3への変形応力を緩和できずに含水ゲル部3が破断されてしまう恐れがある。 If the thickness of the shape-retaining material 2 is less than 0.01 mm, the strength is insufficient to alleviate the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3. When the sound transmitter / receiver is scanned on the hydrogel portion 3, the deformation stress on the hydrogel portion 3 cannot be relaxed and the hydrogel portion 3 may be broken.
 形状保持材2の厚みが0.2mmを超えると、超音波伝搬効率が著しく低下するとともに、皮膚への追従性が低下するため、固体状接触媒体が提供できなくなる恐れがある。 If the thickness of the shape-retaining material 2 exceeds 0.2 mm, the ultrasonic wave propagation efficiency is remarkably lowered and the followability to the skin is lowered, so that the solid contact medium may not be provided.
 形状保持材2の厚みが含水ゲル部3の厚みの10%未満であると、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材によって緩和される前に、含水ゲル部3が破断されてしまう恐れがある。 When the thickness of the shape-retaining material 2 is less than 10% of the thickness of the water-containing gel portion 3, the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 is caused by the shape-retaining material. The hydrogel portion 3 may be broken before being relaxed.
 形状保持材2の厚みが含水ゲル部3の厚みの40%を超えると、超音波伝搬効率が著しく低下するため、固体状接触媒体が提供できなくなる恐れがある。 If the thickness of the shape-retaining material 2 exceeds 40% of the thickness of the hydrogel portion 3, the ultrasonic wave propagation efficiency is significantly reduced, and there is a risk that the solid contact medium cannot be provided.
 形状保持材2の密度が0.1g/cc以上0.3g/cc以下であることで、超音波伝搬を妨げることなく、かつ含水ゲル部3と形状保持材2の接合点が増加し、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材によって効率良く緩和されるため、高強度でかつ低摩擦力の固体状接触媒体を提供することができる。 When the density of the shape-retaining material 2 is 0.1 g / cc or more and 0.3 g / cc or less, the joint points between the water-containing gel portion 3 and the shape-retaining material 2 are increased without hindering ultrasonic propagation, and the shape-retaining material 2 is super. Since the deformation stress on the hydrogel portion 3 when the ultrasonic transmitter is scanned through the hydrogel portion 3 is efficiently relaxed by the shape-retaining material, a solid contact medium having high strength and low frictional force is provided. be able to.
 形状保持材2の密度が0.1g/cc未満であると、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力を緩和できる強度が不足するため、含水ゲル部3が破断されてしまう恐れがある。形状保持材2の密度が0.3g/ccを超えると、含水ゲル部3と形状保持材2の接合点が減少するため、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材2によって緩和されにくくなってしまうとともに、超音波伝搬を著しく妨げてしまう恐れがある。 If the density of the shape-retaining material 2 is less than 0.1 g / cc, the strength capable of relaxing the deformation stress on the hydrogel portion 3 when the ultrasonic transmitter / receiver is scanned through the hydrogel portion 3 is insufficient. The hydrogel portion 3 may be broken. When the density of the shape-retaining material 2 exceeds 0.3 g / cc, the joint points between the water-containing gel portion 3 and the shape-retaining material 2 decrease, so that the water content when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 The deformation stress on the gel portion 3 may be difficult to be relaxed by the shape-retaining material 2, and the ultrasonic propagation may be significantly hindered.
 また、本実施形態に係る固体状接触媒体は、含水ゲル部3の20%ひずみ時圧縮応力が1kPa以上30kPa以下であり、かつ形状保持材2を含まない含水ゲル部3の摩擦力、すなわち動摩擦係数が1.5以下であることが好ましい。 Further, in the solid contact medium according to the present embodiment, the compressive stress at 20% strain of the water-containing gel portion 3 is 1 kPa or more and 30 kPa or less, and the frictional force of the water-containing gel portion 3 that does not include the shape-retaining material 2, that is, dynamic friction. The coefficient is preferably 1.5 or less.
 含水ゲル部3の20%ひずみ時圧縮応力が1kPa以上30kPa以下であり、かつ形状保持材2を含まない含水ゲル部3の動摩擦係数が1.5以下であることで、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材によって緩和される前に、含水ゲル部3の破断に繋がることを抑制できるため、高強度でかつ低摩擦力の固体状接触媒体を提供することができる。 The compressive stress at 20% strain of the water-containing gel part 3 is 1 kPa or more and 30 kPa or less, and the dynamic friction coefficient of the water-containing gel part 3 that does not include the shape-retaining material 2 is 1.5 or less, so that the ultrasonic transmitter / receiver is water-containing. High strength and low frictional force can be suppressed because the deformation stress on the water-containing gel portion 3 when scanning through the gel portion 3 can be suppressed from being connected to the breakage of the water-containing gel portion 3 before being relaxed by the shape-retaining material. Solid contact medium can be provided.
 20%ひずみ時圧縮応力が1kPa未満の場合、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が、形状保持材2によって緩和される前に、含水ゲル部3が破断されてしまう可能性が高まる。一方で20%ひずみ時圧縮応力が30kPaを超える場合、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材2まで伝わりにくくなり、摩擦力が低下しにくくなる。 When the compressive stress at 20% strain is less than 1 kPa, the deformation stress on the hydrogel portion 3 when the ultrasonic transmitter / receiver is scanned through the hydrogel portion 3 is water-containing before the shape-retaining material 2 relaxes it. The possibility that the gel portion 3 will be broken increases. On the other hand, when the compressive stress at 20% strain exceeds 30 kPa, the deformation stress to the hydrogel portion 3 when the ultrasonic transmitter / receiver is scanned through the hydrogel portion 3 is difficult to be transmitted to the shape-retaining material 2, and the frictional force Is less likely to decrease.
 また、形状保持材2を含まない含水ゲル部3の動摩擦係数が1.5を超える場合、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が、形状保持材2によって緩和される前に、含水ゲル部3が破断されてしまう恐れがある。 Further, when the dynamic friction coefficient of the water-containing gel portion 3 not including the shape-retaining material 2 exceeds 1.5, the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 is increased. The hydrogel portion 3 may be broken before being relaxed by the shape-retaining material 2.
 また、本実施形態に係る固体状接触媒体は、形状保持材2が親水性の材質を含む。 Further, in the solid contact medium according to the present embodiment, the shape-retaining material 2 contains a hydrophilic material.
 形状保持材2が親水性の材質を含むことで、含水ゲル部3と形状保持材2の結合力が増し、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材によってより大きく緩和されるため、高強度でかつ低摩擦力の固体状接触媒体を提供することができる。 Since the shape-retaining material 2 contains a hydrophilic material, the binding force between the water-containing gel portion 3 and the shape-retaining material 2 is increased, and the ultrasonic transmitter / receiver is moved to the water-containing gel portion 3 when scanned through the water-containing gel portion 3. Since the deformation stress of the gel is greatly relaxed by the shape-retaining material, a solid contact medium having high strength and low frictional force can be provided.
 また、本実施形態に係る固体状接触媒体は、形状保持材2が、ポリアクリル酸類、ポリビニルアルコール類、及びレーヨンからなる群から選択される少なくとも一種を含む。 Further, the solid contact medium according to the present embodiment contains at least one of the shape-retaining materials 2 selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon.
 形状保持材が、ポリアクリル酸類、ポリビニルアルコール類、及びレーヨンからなる群から選択される少なくとも一種を含むことで、ポリアクリル酸類、ポリビニルアルコール類、またはレーヨンの有する親水性によって、含水ゲル部3と形状保持材2の結合力が増し、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材2によってより大きく緩和されるため、高強度でかつ低摩擦力の固体状接触媒体を提供することができる。 When the shape-retaining material contains at least one selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon, the hydrophilicity of the polyacrylic acids, polyvinyl alcohols, or rayon causes the water-containing gel portion 3 to be combined. The binding force of the shape-retaining material 2 is increased, and the deformation stress on the water-containing gel portion 3 when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3 is more relaxed by the shape-retaining material 2, so that the strength is high. Moreover, it is possible to provide a solid contact medium having a low frictional force.
 本実施形態に係る形状保持材2は、非水溶性でかつ厚みが0.01mm以上0.2mm以下であればその材質については特に制限はなく、疎水性または親水性である公知の形状保持材を使用することができる。なお、疎水性と親水性の定義については、JIS L 0105:2006に基づいて公定水分率を測定し、4.5%未満のものを疎水性、4.5%以上のものを親水性とした。 The shape-retaining material 2 according to the present embodiment is not particularly limited as long as it is water-insoluble and has a thickness of 0.01 mm or more and 0.2 mm or less, and is a known shape-retaining material that is hydrophobic or hydrophilic. Can be used. Regarding the definition of hydrophobicity and hydrophilicity, the official moisture content was measured based on JIS L 0105: 2006, and those with less than 4.5% were defined as hydrophobic and those with 4.5% or more were defined as hydrophilic. ..
 疎水性の形状保持材としては、例えば、ポリエステル、アクリル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の疎水性繊維から選ばれる1種または2種以上の素材を用いて形成された不織布、織布、編物などであってもよいし、ポリエチレン、ポリプロピレン、ポリエステル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリウレタン、ポリスチレン、エチレン-酢酸ビニル共重合体、ポリカーボネート、塩酸ゴム等で形成された多孔性樹脂フィルムないしシートであってもよいし、これらの複合体であってもよい。これら疎水性の形状保持材の中でも、強度と柔軟性の観点から、ポリエステル、ポリプロピレン、ポリエチレンから選ばれる1種又は2種以上を用いて形成された疎水性繊維または多孔性樹脂フィルムないしシートが好ましい。 Examples of the hydrophobic shape-retaining material include non-woven fabrics, woven fabrics, and knitted fabrics formed using one or more materials selected from hydrophobic fibers such as polyester, acrylic, polyethylene, polypropylene, and polyvinyl chloride. Or a porous resin film or sheet made of polyethylene, polypropylene, polyester, polyvinyl chloride, polyvinylidene chloride, polyurethane, polystyrene, ethylene-vinyl acetate copolymer, polycarbonate, rubber hydrochloride, etc. It may be present or it may be a complex of these. Among these hydrophobic shape-retaining materials, a hydrophobic fiber or a porous resin film or sheet formed by using one or more selected from polyester, polypropylene, and polyethylene is preferable from the viewpoint of strength and flexibility. ..
 親水性の形状保持材としては、例えば、レーヨン、キュプラ、アセテート、綿、麻、絹、セルロース、木材パルプ、非木材パルプ等の親水性繊維;ポリアクリル酸類、ポリビニルアルコール類、ポリエチレングリコール類、酢酸セルロース、ポリアクリルアミド類、メラミン樹脂、親水性ポリウレタン等の親水性高分子を用いて形成された親水性繊維または多孔性樹脂フィルムないしシート;親水化処理したポリエステル、ポリエチレン、ポリプロピレン等の疎水性高分子を用いて形成された親水性繊維または多孔性樹脂フィルムないしシート;ポリエステル、ポリエチレン、ポリプロピレン等の疎水性高分子を用いて形成された疎水性部と親水性高分子を用いて形成された親水性部とを備える親水性の複合繊維または多孔性樹脂フィルムないしシート;等が挙げられる。 Examples of the hydrophilic shape-retaining material include hydrophilic fibers such as rayon, cupra, acetate, cotton, hemp, silk, cellulose, wood pulp, and non-wood pulp; polyacrylic acids, polyvinyl alcohols, polyethylene glycols, acetic acid. Hydrophilic fibers or porous resin films or sheets formed using hydrophilic polymers such as cellulose, polyacrylamides, melamine resins, hydrophilic polyurethanes; hydrophobic polymers such as hydrophilized polyester, polyethylene, polypropylene Hydrophilic fiber or porous resin film or sheet formed using Hydrophilic part formed by using a hydrophobic polymer such as polyester, polyethylene, polypropylene, etc. and hydrophilicity formed by using a hydrophilic polymer. Examples include a hydrophilic composite fiber or a porous resin film or sheet provided with a portion; and the like.
 親水化処理の方法としては、例えば、疎水性高分子に親水化剤を混合する方法、または疎水性高分子に親水化剤を含浸させる方法などが挙げられる。親水化剤としては、脂肪族スルホン酸塩、高級アルコール硫酸エステル塩等のアニオン系界面活性剤;第4級アンモニウム塩等のカチオン系界面活性剤;ポリエチレングリコール脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル等のノニオン系界面活性剤;ポリオキシアルキレン変性シリコーン等のシリコーン系界面活性剤;およびポリエステル系、ポリアミド系、アクリル系、ウレタン系の樹脂を用いたステイン・リリース剤;等が用いられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。親水性の複合繊維としては、例えば、芯部と鞘部とから形成され、少なくとも一方が親水性高分子を用いて形成される芯鞘構造を有する繊維が挙げられる。また、繊維内部に水分を保持する空隙によって形成された多孔質構造を呈していてもよい。なお、個々の繊維については、少なくとも一部が一方向に配向した状態で存在していてもよく、あるいはランダムな方向に配向していてもよい。 Examples of the hydrophilization treatment method include a method of mixing a hydrophilic agent with a hydrophobic polymer, and a method of impregnating a hydrophobic polymer with a hydrophilic agent. Hydrophilic agents include anionic surfactants such as aliphatic sulfonates and higher alcohol sulfates; cationic surfactants such as quaternary ammonium salts; polyethylene glycol fatty acid esters, polyglycerin fatty acid esters, and sorbitan fatty acids. Nonionic surfactants such as esters; silicone-based surfactants such as polyoxyalkylene-modified silicones; and stain-releasing agents using polyester-based, polyamide-based, acrylic-based, and urethane-based resins; and the like are used. These may be used alone or in combination of two or more. Examples of the hydrophilic composite fiber include a fiber having a core-sheath structure formed from a core portion and a sheath portion, and at least one of which is formed by using a hydrophilic polymer. Further, it may exhibit a porous structure formed by voids that retain water inside the fiber. It should be noted that at least a part of each fiber may exist in a state of being oriented in one direction, or may be oriented in a random direction.
 これら親水性の形状保持材の中でも、超音波伝搬性と強度の観点から、ポリアクリル酸類、ポリビニルアルコール類、レーヨンから選ばれる1種または2種以上を含む親水性繊維または親水性の複合繊維が好ましい。
 ポリアクリル酸類としては例えば、ポリ(メタ)アクリル酸、その塩またはその部分中和物またはそれらを架橋したもの等が挙げられ、ポリビニルアルコール類としては例えば、ポリビニルアルコールの水酸基を主鎖内で架橋したビニロン、及び、主鎖間を架橋したポリビニルアルコール誘導体等が挙げられるが、親水性の形状保持材を形成できれば、これらは特に限定されない。公定水分率は形状保持材におけるその表面の極性の大きさ及び極性基の数と相関している。そのため、公定水分率が高い、すなわち親水性が高いほど、後述する含水ゲル部3を構成する水溶性高分子との親和性が高まり、超音波送受信器を含水ゲル部3を介して走査した際の含水ゲル部3への変形応力が形状保持材2に伝わりやすくなるため、高強度でかつ低摩擦力の固体状接触媒体を提供することができる。
Among these hydrophilic shape-retaining materials, hydrophilic fibers or hydrophilic composite fibers containing one or more selected from polyacrylic acids, polyvinyl alcohols, and rayon are selected from the viewpoint of ultrasonic propagation and strength. preferable.
Examples of polyacrylic acids include poly (meth) acrylic acid, salts thereof or partially neutralized products thereof, or cross-linked products thereof, and examples of polyvinyl alcohols include cross-linking of the hydroxyl groups of polyvinyl alcohol in the main chain. Examples thereof include vinylon and a polyvinyl alcohol derivative in which the main chains are crosslinked, but these are not particularly limited as long as a hydrophilic shape-retaining material can be formed. The official moisture content correlates with the magnitude of polarity and the number of polar groups on the surface of the shape-retaining material. Therefore, the higher the official moisture content, that is, the higher the hydrophilicity, the higher the affinity with the water-soluble polymer constituting the water-containing gel portion 3 described later, and when the ultrasonic transmitter / receiver is scanned through the water-containing gel portion 3. Since the deformation stress of the water-containing gel portion 3 is easily transmitted to the shape-retaining material 2, it is possible to provide a solid contact medium having high strength and low frictional force.
 前述したように、超音波送受信器により固体状接触媒体が圧縮された際の摩擦力は、圧縮方向の形状保持材部位、すなわち形状保持材の樹脂部の有無によって局所的に異なり、全体としては摩擦力が不均一となるが、摩擦力の高い部分、すなわち物理ゲルの破壊に至らない部分が多すぎると、全体の摩擦力が下がりにくくなるため、形状保持材としては同じ密度であっても、一般的に開口率が高い多孔性樹脂フィルムないしシートよりも、一般的に開口率が低い不織布、織布、編物などの繊維の方が好ましく、より開口率が低くなる不織布がさらに好ましい。なお不織布の加工法としては、スパンレース法、スパンボンド法、サーマルボンド法、エアスルー法、ニードルパンチ法等が挙げられるが、本開示における条件を満たす形状保持材であれば特に限定されない。 As described above, the frictional force when the solid contact medium is compressed by the ultrasonic transmitter / receiver locally differs depending on the shape-retaining material portion in the compression direction, that is, the presence / absence of the resin portion of the shape-retaining material, and as a whole, The frictional force becomes non-woven, but if there are too many parts with high frictional force, that is, parts that do not break the physical gel, the overall frictional force is difficult to decrease, so even if the shape-retaining material has the same density. In general, fibers such as non-woven fabrics, woven fabrics, and knitted fabrics having a low opening ratio are preferable to porous resin films or sheets having a high opening ratio, and non-woven fabrics having a lower opening ratio are more preferable. Examples of the non-woven fabric processing method include a spunlace method, a spunbond method, a thermal bond method, an air-through method, a needle punch method, and the like, but the shape-retaining material is not particularly limited as long as it satisfies the conditions in the present disclosure.
 また本実施形態において、含水ゲル部3は厚みが0.1mm以上0.5mm以下でかつ、物理架橋を形成する成分を含めば、それを構成する成分の組成については特に制限はなく、公知の水溶性高分子、架橋剤、保湿剤、賦形剤、安定化剤などから構成することができる。また、含水ゲル部3は、粘着性、接着性、低摩擦性等、性質の異なる複数の層からなってもよい。 Further, in the present embodiment, as long as the water-containing gel portion 3 has a thickness of 0.1 mm or more and 0.5 mm or less and includes a component forming a physical crosslink, the composition of the component constituting the component is not particularly limited and is known. It can be composed of a water-soluble polymer, a cross-linking agent, a moisturizing agent, an excipient, a stabilizer and the like. Further, the water-containing gel portion 3 may be composed of a plurality of layers having different properties such as adhesiveness, adhesiveness, and low frictional property.
 含水量としては、ゲル重量に対して25重量%以上95重量%以下の水を含有することが好ましく、40重量%以上90%重量%以下の水を含有することがより好ましい。水の含有量が25重量%未満の場合、固体状接触媒体の生体への密着性が低下し、超音波送受信器の走査性が低下するとともに、固体状接触媒体を使用中に乾燥してしまい、超音波伝搬を阻害してしまう恐れがある。一方で、水の含有量が95重量%を超えると固体状接触媒体の強度が低下し、固体状接触媒体を使用中に破断してしまう恐れがある。 As for the water content, it is preferable to contain water of 25% by weight or more and 95% by weight or less, and more preferably 40% by weight or more and 90% by weight or less of water with respect to the gel weight. When the water content is less than 25% by weight, the adhesion of the solid contact medium to the living body is lowered, the scannability of the ultrasonic transmitter / receiver is lowered, and the solid contact medium dries during use. , There is a risk of hindering ultrasonic propagation. On the other hand, if the water content exceeds 95% by weight, the strength of the solid contact medium is lowered, and the solid contact medium may be broken during use.
 含水ゲル部3に含まれる物理架橋を形成する水溶性高分子としては例えば、カルボキシビニルポリマー、ポリアクリル酸、アクリル酸・メタクリル酸アルキル共重合体等のポリ(メタ)アクリル酸類;カルボキシメチルセルロース類、カルボキシエチルセルロース類等のアニオン性セルロース誘導体;ジェランガム、ペクチン、キサンタンガム、カラギーナン、寒天、アルギン酸類、グルコマンナン、キシログルカン等の多糖類;アニオン性の澱粉誘導体;等が挙げられ、これらの少なくとも1種又は2種以上の高分子を使用できる。なかでも、超音波送受信器を含水ゲル部3上で走査に耐えられるゲル強度、走査を効率よく行うための低摩擦性、皮膚の凹凸及びその動きに追従可能な柔軟性を兼ね備える観点から、ポリ(メタ)アクリル酸類、カルボキシメチルセルロース類、ジェランガム類、カラギーナン類、アルギン酸類、グルコマンナンから選ばれる1種又は2種以上が好ましい。含水ゲル部3における物理架橋を形成する高分子の配合量は、その種類に応じて異なるが、配合量が少なすぎるとゲルの強度が不足し、配合量が多すぎるとゲルの柔軟性が低下することから、好ましくはゲル重量に対して0.1重量%以上30重量%以下であり、より好ましくは0.5重量%以上20重量%以下であり、更に好ましくは1重量%以上15重量%以下である。 Examples of the water-soluble polymer that forms the physical crosslinks contained in the water-containing gel portion 3 include poly (meth) acrylic acids such as carboxyvinyl polymers, polyacrylic acids, and acrylate / alkyl methacrylate copolymers; carboxymethyl celluloses, Anionic cellulose derivatives such as carboxyethyl celluloses; polysaccharides such as gellan gum, pectin, xanthan gum, carrageenan, agar, alginic acids, glucomannan, xyloglucane; anionic starch derivatives; etc., and at least one of them or Two or more types of polymers can be used. Above all, from the viewpoint of having the gel strength that allows the ultrasonic transmitter / receiver to withstand scanning on the hydrogel portion 3, low friction for efficient scanning, and the flexibility to follow the unevenness of the skin and its movement, poly One or more selected from (meth) acrylic acids, carboxymethyl celluloses, gellan gums, carrageenans, alginic acids, and glucomannans are preferable. The blending amount of the polymer forming the physical crosslink in the hydrous gel portion 3 differs depending on the type, but if the blending amount is too small, the strength of the gel is insufficient, and if the blending amount is too large, the flexibility of the gel decreases. Therefore, it is preferably 0.1% by weight or more and 30% by weight or less, more preferably 0.5% by weight or more and 20% by weight or less, and further preferably 1% by weight or more and 15% by weight or less with respect to the gel weight. It is as follows.
 含水ゲル部3に含まれる物理架橋を形成する架橋剤としては例えば、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、カドミウム、鉛、カルシウム等の多価金属を含む化合物又はこれらの塩が挙げられる。具体的には、例えば、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、水酸化アルミニウムマグネシウム等の多価金属水酸化物;酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、アルミン酸ナトリウム等の多価金属酸化物;硫酸アルミニウム、硫酸カリウムアルミニウム、硫酸ナトリウムアルミニウム、硫酸アルミニウムアンモニウム、炭酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸カルシウム、炭酸カルシウム、塩化カルシウム、硫酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、硫酸亜鉛、炭酸亜鉛、塩化亜鉛、(メタ)ケイ酸アルミン酸マグネシウム、合成ヒドロタルサイト等の多価金属無機塩;酢酸アルミニウム、酢酸カルシウム、酢酸マグネシウム、酢酸亜鉛、乳酸アルミニウム、乳酸カルシウム、リン酸カルシウム、ステアリン酸アルミニウム、ミリスチン酸アルミニウム、アルミニウムグリシネート、安息香酸アルミニウム、チオグリコール酸のカルシウム及びマグネシウム等のアルカリ土類金属塩等の多価金属有機塩;が挙げられる。また、多価金属を含む化合物又はそれらの塩以外にも、ポリリジン等のポリアミノ酸;キトサン、ポリエチレンイミンのようなカチオン性高分子;等が挙げられる。物理架橋を形成する架橋剤としては、溶解性の観点から、アルミニウムの無機酸塩及びカルシウムの無機酸塩が好ましく、硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム、塩化カルシウム、乳酸カルシウムがより好ましい。また、これらの1種又は2種以上を併用しても良く、配合量が少なすぎるとゲルの強度が不足し、配合量が多すぎるとゲルの柔軟性が低下することから、その配合量は、その種類に応じて異なるが、ゲル重量に対して0.001重量%以上10重量%以下が好ましく、0.01重量%以上1重量%以下がより好ましい。 Examples of the cross-linking agent for forming the physical cross-linking contained in the hydrogel portion 3 include compounds containing polyvalent metals such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, lead and calcium. These salts are mentioned. Specifically, for example, polyvalent metal hydroxides such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, and aluminum aluminum hydroxide; aluminum oxide, calcium oxide, magnesium oxide, zinc oxide, and aluminic acid. Polyvalent metal oxides such as sodium; aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate, aluminum ammonium sulfate, aluminum carbonate, aluminum nitrate, aluminum chloride, polyaluminum chloride, calcium sulfate, calcium carbonate, calcium chloride, magnesium sulfate, carbonic acid Polyvalent metal inorganic salts such as magnesium, magnesium chloride, zinc sulfate, zinc carbonate, zinc chloride, magnesium (meth) silicate aluminate, synthetic hydrotalcite, etc .; aluminum acetate, calcium acetate, magnesium acetate, zinc acetate, aluminum hydroxide, Polyvalent metal organic salts such as calcium lactate, calcium phosphate, aluminum stearate, aluminum myristate, aluminum glycinate, aluminum benzoate, calcium thioglycolate and alkaline earth metal salts such as magnesium; In addition to compounds containing polyvalent metals or salts thereof, polyamino acids such as polylysine; cationic polymers such as chitosan and polyethyleneimine; and the like can be mentioned. As the cross-linking agent for forming the physical cross-linking, an inorganic acid salt of aluminum and an inorganic acid salt of calcium are preferable from the viewpoint of solubility, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate, sodium aluminum sulfate, calcium chloride and calcium lactate are used. More preferable. In addition, one or more of these may be used in combination. If the blending amount is too small, the strength of the gel will be insufficient, and if the blending amount is too large, the flexibility of the gel will decrease. Although it varies depending on the type, 0.001% by weight or more and 10% by weight or less is preferable, and 0.01% by weight or more and 1% by weight or less is more preferable with respect to the gel weight.
 前述の通り、含水ゲル部3は物理架橋を形成する成分のみを含むことが好ましいが、共有結合によって架橋する成分を含んでいても良い。共有結合による架橋を形成する方法としては例えば、単官能性の重合性モノマーと多官能性の重合性モノマーと重合開始剤を併用する方法、架橋させたい高分子成分と化学反応により共有結合を形成する多官能性の架橋剤を用いる方法、これらの方法を同時に用いる方法が挙げられる。 As described above, the hydrogel portion 3 preferably contains only a component that forms a physical crosslink, but may contain a component that crosslinks by a covalent bond. Examples of the method of forming a crosslink by a covalent bond include a method of using a monofunctional polymerizable monomer, a polyfunctional polymerizable monomer and a polymerization initiator in combination, and forming a covalent bond by a chemical reaction with a polymer component to be crosslinked. Examples include a method using a polyfunctional cross-linking agent and a method using these methods at the same time.
 単官能性の重合性モノマーとしては例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、クロトン酸、ソルビン酸、けい皮酸、ビニルスルフォン酸、アリルスルフォン酸、スチレンスルフォン酸、ビニルトルエンフルフォン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルフォン酸、2-(メタ)アクリロイルエタンスルフォン酸、2-(メタ)アクリロイルプロパンスルフォン酸、2-ヒドロキシルエチルアクリロイルオフォスフェート、2-ヒドロキシルエチルメタクリロイルフォスフェート、フェニル-2-アクリロイロキシエチルフォスフェート、ビニルリン酸等のアニオン性モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド及びN,N-ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;N-イソプロピル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド及びN-プロピル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド及びN-ヒドロキシメチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミド;N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ペントキシメチル(メタ)アクリルアミド、N-ヘキシロキシメチル(メタ)アクリルアミド、N-ヘプトキシメチル(メタ)アクリルアミド、N-オクトキシメチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-プロポキシエチル(メタ)アクリルアミド及びN-ブトキシエチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド;ジメチルアミノプロピル(メタ)アクリルアミド等のアクリルアミド系モノマー;等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよく、ゲルの強度と超音波伝搬性および生体適合性の観点から、ゲル重量に対して0.1重量%以上10重量%以下が好ましく、0.5重量%以上5重量%以下がより好ましい。 Examples of the monofunctional polymerizable monomer include (meth) acrylate, itaconic acid, maleic acid, crotonic acid, sorbic acid, carcinic acid, vinyl sulphonic acid, allyl sulphonic acid, styrene sulphonic acid, and vinyl toluene flufonic acid. , 2- (Meta) Acrylamide-2-methylpropan sulphonic acid, 2- (meth) acryloyl ethanesulphonic acid, 2- (meth) acryloyl propanesulphonic acid, 2-hydroxylethyl acryloyl ofosphate, 2-hydroxylethyl methacryloyl phosphate , Phenyl-2-acryloyloxyethyl phosphate, anionic monomers such as vinyl phosphate; N, N- such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide and N, N-diethyl (meth) acrylamide. Dialkyl (meth) acrylamide; N-alkyl (meth) acrylamide such as N-isopropyl (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide and N-propyl (meth) acrylamide; N-hydroxy N-hydroxyalkyl (meth) acrylamide such as ethyl (meth) acrylamide and N-hydroxymethyl (meth) acrylamide; N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-butoxymethyl (meth) Acrylamide, N-isobutoxymethyl (meth) acrylamide, N-pentoxymethyl (meth) acrylamide, N-hexyloxymethyl (meth) acrylamide, N-heptoxymethyl (meth) acrylamide, N-octoxymethyl (meth) acrylamide, N-alkoxyalkyl (meth) acrylamide such as N-ethoxyethyl (meth) acrylamide, N-propoxyethyl (meth) acrylamide and N-butoxyethyl (meth) acrylamide; acrylamide-based monomers such as dimethylaminopropyl (meth) acrylamide; And so on. These may be used alone or in combination of two or more, and are 0.1% by weight based on the weight of the gel from the viewpoint of gel strength, ultrasonic propagation, and biocompatibility. More than 10% by weight is preferable, and 0.5% by weight or more and 5% by weight or less is more preferable.
 多官能性の重合性モノマーとしてはトリプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、エトキシ変性ビスフェノールAジ(メタ)アクリレート、ポリエチレングリコール200ジ(メタ)アクリレート、ポリエチレングリコール400ジ(メタ)アクリレート、メチレンビスアクリルアミド等の二官能性モノマー;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアリルイソシアネート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート,プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化グリセリルトリ(メタ)アクリレート等の三官能性モノマー;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタ(メタ)アクリレートエステル、ジペンタエリスリトールヘキサ(メタ)アクリレート等の四官能性モノマー;が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよく、その配合量は、その種類に応じて異なるが、ゲルの強度と生体適合性の観点から、ゲル重量に対して0.005重量%以上1重量%以下が好ましく、0.01重量%以上0.5重量%以下がより好ましい。 Examples of the polyfunctional polymerizable monomer include tripropylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and neopentyl glycol hydroxypivalic acid. Esterdi (meth) acrylate, neopentyl glycol hydroxypivalate di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (Meta) acrylate, 1,9-nonanediol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, caprolactone-modified neopentyl glycol of hydroxypivalate Esterdi (meth) acrylate, propoxylated neopentyl glycol di (meth) acrylate, ethoxy-modified bisphenol A di (meth) acrylate, polyethylene glycol 200 di (meth) acrylate, polyethylene glycol 400 di (meth) acrylate, methylene bisacrylamide, etc. Bifunctional monomer of: Trimethylol propantri (meth) acrylate, pentaerythritol tri (meth) acrylate, triallyl isocyanate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, ethoxylated trimethyl propantri (meth). ) Trifunctional monomers such as acrylate, propoxylated trimethylol propantri (meth) acrylate, propoxylated glyceryl tri (meth) acrylate; pentaerythritol tetra (meth) acrylate, ditrimethylol propantetra (meth) acrylate, dipentaerythritol hydroxy Examples thereof include tetrafunctional monomers such as penta (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, penta (meth) acrylate ester, and dipentaerythritol hexa (meth) acrylate. These may be used alone or in combination of two or more, and the blending amount thereof varies depending on the type, but from the viewpoint of gel strength and biocompatibility, the gel weight It is preferably 0.005% by weight or more and 1% by weight or less, and more preferably 0.01% by weight or more and 0.5% by weight or less.
 重合開始剤としては例えば、2-オキソグルタル酸、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、22-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、フェニルグリオキシリックアシッドメチルエステル、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、トリアリ-ルスルフォニウム ヘキサフルオロフォスフェート、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等の光重合開始剤;アゾイソブチロニトリル、アゾイソ酪酸メチル、アゾビスジメチルバレロニトリル等のアゾ系重合開始剤;過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム等の過酸化物系重合開始剤;といった熱重合開始剤が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよく、その配合量は、その種類に応じて異なるが、ゲルの強度と生体適合性の観点から、ゲル重量に対して0.005重量%以上1重量%以下が好ましく、0.01重量%以上0.5重量%以下がより好ましい。 Examples of the polymerization initiator include 2-oxoglutaric acid, 2-hydroxy-2-methyl-1-phenyl-propane-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2. -Methyl-1-propan-1-one, 22-hirodoxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propane-1-one, 1-Hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, Phenylglycolic acid methyl ester, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], triallyl sulfonium hexafluorophosphate, bis (2,6) -Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and other photopolymerization initiators; azoisobutyronitrile, methyl azoisobutyrate, azobisdimethylvaleronitrile and other azo-based polymerization initiators; benzoyl peroxide, Examples thereof include thermal polymerization initiators such as peroxide-based polymerization initiators such as potassium persulfate and ammonium persulfate. These may be used alone or in combination of two or more, and the blending amount thereof varies depending on the type, but from the viewpoint of gel strength and biocompatibility, the gel weight It is preferably 0.005% by weight or more and 1% by weight or less, and more preferably 0.01% by weight or more and 0.5% by weight or less.
 多官能性の架橋剤としては例えば、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリグリシジルイソシアヌレート、ペンタエリスリトールテトラグリシジルエーテル、ソルビトールヘキサグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリ(n=2~5)グリセロールポリグリシジルエーテル、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート等の多価エポキシ化合物;4,4’-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、2,2-ビスハイドロキシメチルブタノール-トリス〔3-(1-アジリジニル)プロピオネート〕及び2,4,6-トリス(1’-アジリジニル)-1,3,5-トリアジン等の多価アジリジン化合物;が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよく、その配合量は、その種類に応じて異なるが、ゲルの強度と生体適合性の観点から、ゲル重量に対して0.05重量%以上1重量%以下が好ましく、0.1重量%以上0.5重量%以下がより好ましい。 Examples of the polyfunctional cross-linking agent include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerin diglycidyl ether, glycerin triglycidyl ether, triglycidyl isocyanurate, pentaerythritol tetraglycidyl ether, sorbitol hexaglycidyl ether, and polyethylene glycol. Polyvalent epoxy compounds such as diglycidyl ether, polypropylene glycol diglycidyl ether, poly (n = 2-5) glycerol polyglycidyl ether, diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate; 4,4'-bis (ethyleneiminocarbonylamino) diphenylmethane, 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate] and 2,4,6-tris (1'-aziridinyl) -1 , 3,5-Triazine and other polyvalent glycerin compounds; These may be used alone or in combination of two or more, and the blending amount thereof varies depending on the type, but from the viewpoint of gel strength and biocompatibility, the gel weight It is preferably 0.05% by weight or more and 1% by weight or less, and more preferably 0.1% by weight or more and 0.5% by weight or less.
 保湿剤としては例えば、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ペンタエリスリトール、ネオペンチルグリコール、マルチトール、ラクチトール、パラチニット、エリスリトール、ソルビトール、マンニトール、キシリトール、キシロース、グルコース、ラクトース、マンノース、マルトース、ガラクトース、フルクトース、イノシトール、ラフィノース、トレハロース、トリメチルグリシン、シクロデキストリン、ポリエチレングリコール、ポリプロピレングリコール等の多価アルコール類;グルコマンナン、プルラン、デンプン類、ヒアルロン酸、コラーゲン、ムコ多糖類、コンドロイチン硫酸等の水溶性高分子;アミノ酸、尿素、ピロリドンカルボン酸ナトリウム、ベタイン、ホエイ、オリーブスクワラン等が挙げられる。その配合量は、その種類に応じて異なるが、超音波伝搬効率の観点からゲル重量に対して1重量%以上20重量%以下が好ましく、配合量を増やす場合は、ゲル強度の観点から同量の水分を減らすことが好ましい。 Moisturizers include, for example, glycerin, diglycerin, triglycerin, polyglycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, pentaerythritol, neopentyl glycol, martitol, lactitol, palatinit, erythritol, sorbitol, mannitol, etc. Polyhydric alcohols such as xylitol, xylose, glucose, lactose, mannitol, maltose, galactose, fructose, inositol, raffinose, trehalose, trimethylglycin, cyclodextrin, polyethylene glycol, polypropylene glycol; glucomannan, purulan, starches, hyaluronic acid , Collagen, mucopolysaccharide, water-soluble polymer such as chondroitin sulfate; amino acids, urea, sodium pyrrolidone carboxylate, betaine, whey, olive squalane and the like. The blending amount varies depending on the type, but is preferably 1% by weight or more and 20% by weight or less with respect to the gel weight from the viewpoint of ultrasonic propagation efficiency, and when the blending amount is increased, the same amount is used from the viewpoint of gel strength. It is preferable to reduce the water content of the gel.
 賦形剤としては例えば、カオリン、酸化チタン、無水ケイ酸、酸化亜鉛、ベントナイト、スメクタイト等を単独又は2種以上の組み合わせで用いることができる。しかし、これらの賦形剤は含水ゲルの超音波伝搬効率を低下させるため、その配合量は、その種類に応じて異なるが、ゲル重量に対して10重量%以下が好ましく、5重量%以下がより好ましい。 As the excipient, for example, kaolin, titanium oxide, silicic anhydride, zinc oxide, bentonite, smectite and the like can be used alone or in combination of two or more. However, since these excipients reduce the ultrasonic propagation efficiency of the hydrogel, the blending amount thereof varies depending on the type, but is preferably 10% by weight or less, preferably 5% by weight or less, based on the gel weight. More preferred.
 安定化剤としては例えば、エデト酸塩、パラオキシ安息香酸エステル、酒石酸、酢酸トコフェロール、アスコルビン酸、亜硫酸水素ナトリウム等を単独又は2種以上の組み合わせで用いることができる。その配合量は、その種類に応じて異なるが、多すぎると物理架橋が進まずにゲル強度が低下する恐れがあるので、ゲル重量に対して5重量%以下が好ましい。 As the stabilizer, for example, edetate, paraoxybenzoic acid ester, tartaric acid, tocopherol acetate, ascorbic acid, sodium bisulfite and the like can be used alone or in combination of two or more. The blending amount varies depending on the type, but if it is too large, physical cross-linking may not proceed and the gel strength may decrease, so 5% by weight or less is preferable with respect to the gel weight.
 また、含水ゲル部3のpHは、皮膚刺激性の点からpH4.0以上7.5以下の範囲が好ましく、さらにはpH5.0以上7.0以下の範囲がより好ましい。 Further, the pH of the hydrogel portion 3 is preferably in the range of pH 4.0 or more and 7.5 or less, and more preferably in the range of pH 5.0 or more and 7.0 or less from the viewpoint of skin irritation.
 また、必要に応じて防腐剤、抗酸化剤、可塑剤、乳化剤、界面活性剤等をさらに配合させることができる。 In addition, preservatives, antioxidants, plasticizers, emulsifiers, surfactants, etc. can be further added as needed.
 以上、本発明に係る一つの実施形態について詳細に説明したが、本発明はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々変形可能である。また用途としても、超音波送受信器だけでなく、超音波受信器及び超音波送信器にも好適に用いられる。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment and can be variously modified without departing from the spirit of the present invention. It is also suitably used not only for ultrasonic transmitters and receivers but also for ultrasonic receivers and ultrasonic transmitters.
 本開示に係る別の実施形態について図2を参照しながら説明する。なお本実施形態における固体状接触媒体14は超音波送受信器用に用いられるものを示す。図2に示すように、ゲルシート11は、一方の主面に形成された粘着層12とそれ以外のゲル層13を有する。 Another embodiment according to the present disclosure will be described with reference to FIG. The solid contact medium 14 in the present embodiment is used for an ultrasonic transmitter / receiver. As shown in FIG. 2, the gel sheet 11 has an adhesive layer 12 formed on one main surface and a gel layer 13 on the other side.
 本実施形態に係る超音波送受信器の超音波放射面に粘着される固体状接触媒体は、イオン結合により架橋してヒドロゲルを形成する水溶性高分子成分を少なくとも1種類含むゲルシート11を含み、ゲルシート11の一方の主面が貼付対象物、すなわち本実施形態においては超音波送受信器の超音波放射面に対して貼付および再剥離可能な粘着層12から形成され、粘着層12に含まれ、粘着性を発現する少なくとも1種類の成分はポリ(メタ)アクリル酸類である。 The solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver according to the present embodiment includes a gel sheet 11 containing at least one water-soluble polymer component that is crosslinked by ionic bonding to form a hydrogel, and is a gel sheet. One main surface of 11 is formed of an adhesive layer 12 that can be attached and re-peelable to an object to be attached, that is, the ultrasonic radiation surface of the ultrasonic transmitter / receiver in the present embodiment, and is contained in the adhesive layer 12 and adheres. At least one component that expresses sex is poly (meth) acrylic acid.
 ゲルシート11を超音波放射面に粘着させた超音波送受信器を走査した際に、ゲル層13を形成するイオン結合が局所的な応力によって破断しても、解離したイオンがゲル層13中を動けるため、粘着層12とゲル層13との間の接合点においても再結合可能となるので、粘着層12とゲル層13との剥離を起点にゲルシート11が破壊されてしまうことを抑制することができる。また、イオン結合により架橋してゲル層13を形成する水溶性高分子成分が粘着層12にも含まれるようになり、粘着性を発現するポリ(メタ)アクリル酸類とイオン結合により架橋することで、ゲル層13へ粘着性を発現する成分の溶出を防ぐことができるので、時間の経過とともに粘着層12とゲル層13が均質化してしまうことを抑制することができる。 When scanning the ultrasonic transmitter / receiver with the gel sheet 11 adhered to the ultrasonic radiation surface, even if the ionic bonds forming the gel layer 13 are broken by local stress, the dissociated ions can move in the gel layer 13. Therefore, recombination is possible even at the joint point between the adhesive layer 12 and the gel layer 13, so that it is possible to prevent the gel sheet 11 from being destroyed starting from the peeling of the adhesive layer 12 and the gel layer 13. it can. In addition, the adhesive layer 12 also contains a water-soluble polymer component that is crosslinked by ionic bonding to form the gel layer 13, and is crosslinked with poly (meth) acrylic acids that exhibit adhesiveness by ionic bonding. Since the elution of the component exhibiting adhesiveness to the gel layer 13 can be prevented, it is possible to prevent the adhesive layer 12 and the gel layer 13 from being homogenized with the passage of time.
 なお、イオン結合が水和環境において可逆的に再結合可能であるという原理は、主に金属錯体分野における分子の自己組織化に関する公知の文献等において広く知られており、本開示においても、その原理を用いることで発明の効果が発現される。 The principle that an ionic bond can be reversibly recombined in a hydrated environment is widely known mainly in known literatures and the like regarding self-assembly of molecules in the field of metal complexes, and is also widely known in the present disclosure. The effect of the invention is expressed by using the principle.
 また、ポリ(メタ)アクリル酸類が粘着層12に含まれ、粘着性を発現することで、ゲルシート11を超音波放射面に粘着させた超音波送受信器を走査した際にも、破断することの無い強度でかつ、被検体の凹凸に追従できる柔軟性でかつゲルシート11が剥がれることの無い良好な粘着性を有する粘着層12を形成することができる。 In addition, poly (meth) acrylic acids are contained in the adhesive layer 12 and exhibit adhesiveness, so that the gel sheet 11 is broken even when scanned by an ultrasonic transmitter / receiver in which the gel sheet 11 is adhered to the ultrasonic radiation surface. It is possible to form the adhesive layer 12 which has no strength, is flexible enough to follow the unevenness of the subject, and has good adhesiveness so that the gel sheet 11 does not peel off.
 なお、ポリ(メタ)アクリル酸類は一般的に湿布等のゲル層の形成に用いられており、強度、粘着性、生体適合性に優れていることが知られている。 Poly (meth) acrylic acids are generally used for forming gel layers such as poultices, and are known to have excellent strength, adhesiveness, and biocompatibility.
 ゲル層13を形成する多価イオン源と水溶性高分子成分としては特に制限はなく、公知の多価イオン源と水溶性高分子を用いることができる。なお、本開示における多価イオン源とは、水溶液中において2以上の価数をもつ無機陽イオンを放出する化合物又はこれらの塩である。 The multivalent ion source and the water-soluble polymer component forming the gel layer 13 are not particularly limited, and a known multivalent ion source and the water-soluble polymer can be used. The multivalent ion source in the present disclosure is a compound or a salt thereof that releases an inorganic cation having a valence of 2 or more in an aqueous solution.
 ゲル層13を形成する多価イオン源としては、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、カドミウム、ジルコニウム、鉛、カルシウム等の多価金属を含む化合物又はこれらの塩が挙げられる。具体的には、例えば、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、水酸化アルミニウムマグネシウム、水酸化塩化ジルコニウム等の多価金属水酸化物;酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、アルミン酸ナトリウム等の多価金属酸化物;硫酸アルミニウム、硫酸カリウムアルミニウム、硫酸ナトリウムアルミニウム、硫酸アルミニウムアンモニウム、炭酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸カルシウム、炭酸カルシウム、塩化カルシウム、硫酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、硫酸亜鉛、炭酸亜鉛、塩化亜鉛、(メタ)ケイ酸アルミン酸マグネシウム、合成ヒドロタルサイト、塩化酸化ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムカリウム、硫酸ジルコニウム、硝酸ジルコニウム等の多価金属無機塩;酢酸アルミニウム、酢酸カルシウム、酢酸マグネシウム、酢酸亜鉛、酢酸ジルコニウム、乳酸アルミニウム、乳酸カルシウム、リン酸カルシウム、ステアリン酸アルミニウム、ミリスチン酸アルミニウム、アルミニウムグリシネート、安息香酸アルミニウム、チオグリコール酸のカルシウム及びマグネシウム等のアルカリ土類金属塩;チタントリエタノールアミネート、チタンラクテート等の多価金属有機塩;等が挙げられる。多価イオン源、すなわち物理架橋を形成する架橋剤としては、入手の容易性及び溶解性の観点から、アルミニウムの無機酸塩及びカルシウムの無機酸塩が好ましく、硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム、塩化カルシウム、乳酸カルシウムがより好ましい。また、これらの1種又は2種以上を併用しても良い。多価イオン源は、配合量が少なすぎるとゲルシート11の強度が不足し、配合量が多すぎるとゲルシート11の柔軟性が低下することから、その配合量は、その種類に応じて異なるが、ゲル層13の重量に対して10mmol/kg以上200mmol/kg以下が好ましい。同じく、ゲル層13の重量に対して20mmol/kg以上200mmol/kg以下であることがより好ましい。 Examples of the polyvalent ion source forming the gel layer 13 include compounds containing polyvalent metals such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, zirconium, lead and calcium, or salts thereof. Can be mentioned. Specifically, for example, polyvalent metal hydroxides such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, aluminum magnesium hydroxide, zirconium chloride; aluminum oxide, calcium oxide, magnesium oxide, etc. Polyvalent metal oxides such as zinc oxide and sodium aluminate; aluminum sulfate, potassium aluminum sulfate, sodium aluminum sulfate, aluminum ammonium sulfate, aluminum carbonate, aluminum nitrate, aluminum chloride, polyaluminum chloride, calcium sulfate, calcium carbonate, calcium chloride , Magnesium sulfate, magnesium carbonate, magnesium chloride, zinc sulfate, zinc carbonate, zinc chloride, magnesium (meth) silicate aluminate, synthetic hydrotalcite, zirconium chloride, ammonium zirconium carbonate, sodium zirconium carbonate, potassium zirconium carbonate, sulfate Polyvalent metal inorganic salts such as zirconium and zirconium nitrate; aluminum acetate, calcium acetate, magnesium acetate, zinc acetate, zirconium acetate, aluminum lactate, calcium lactate, calcium phosphate, aluminum stearate, aluminum myristate, aluminum glycinate, aluminum benzoate , Alkaline earth metal salts such as calcium and magnesium of thioglycolic acid; polyvalent metal organic salts such as titanium triethanolaluminate and titanium lactate; and the like. As a polyvalent ion source, that is, a cross-linking agent for forming a physical cross-linking, an inorganic acid salt of aluminum and an inorganic acid salt of calcium are preferable from the viewpoint of availability and solubility, and aluminum sulfate, aluminum chloride, and potassium aluminum sulfate. And sodium aluminum sulfate, calcium chloride, calcium lactate are more preferred. Moreover, you may use these 1 type or 2 or more types together. If the blending amount of the multivalent ion source is too small, the strength of the gel sheet 11 will be insufficient, and if the blending amount is too large, the flexibility of the gel sheet 11 will decrease. Therefore, the blending amount varies depending on the type. It is preferably 10 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer 13. Similarly, it is more preferably 20 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer 13.
 また、本実施形態に係る超音波送受信器の超音波放射面に粘着される固体状接触媒体は、前記イオン結合を形成する多価イオン源が、カルシウムおよびアルミニウムのうちの少なくとも1種類を含む化合物又はこれらの塩であることが好ましい。それらのイオンは、マグネシウム、チタン、亜鉛、ジルコニウム等のイオンよりもイオン半径が小さいことからゲル層13中を動きやすいため、ゲルシート11を粘着させた超音波送受信器を走査した際に、局所的な応力によりイオン結合が破断しても、イオンが再結合しやすく、かつイオン結合の結合長が短くなることから強固なイオン結合を形成するため、2層間(粘着層12とゲル層13)で剥離しない、超音波送受信器の超音波放射面に粘着される固体状接触媒体を提供することができる。 Further, the solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver according to the present embodiment is a compound in which the polyvalent ion source forming the ionic bond contains at least one of calcium and aluminum. Alternatively, these salts are preferable. Since these ions have a smaller ionic radius than ions such as magnesium, titanium, zinc, and zirconium, they easily move in the gel layer 13. Therefore, when scanning the ultrasonic transmitter / receiver to which the gel sheet 11 is adhered, they are localized. Even if the ionic bond is broken due to excessive stress, the ions are easily rebonded and the bond length of the ionic bond is shortened, so that a strong ionic bond is formed. Therefore, the two layers (adhesive layer 12 and gel layer 13) are used. It is possible to provide a solid contact medium that does not peel off and adheres to the ultrasonic radiation surface of the ultrasonic transmitter / receiver.
 ゲル層13を形成する水溶性高分子成分としては例えば、ポリ(メタ)アクリル酸類;カルボキシメチルセルロース類、カルボキシエチルセルロース類等のアニオン性セルロース誘導体;ジェランガム類、ペクチン類、キサンタンガム類、カラギーナン類、アルギン酸類等の多糖類;アニオン性の澱粉誘導体;等が挙げられ、これらの少なくとも1種または2種以上の高分子を使用できる。なかでも、超音波送受信器の超音波放射面に粘着されたうえで走査に耐えられるゲル強度、走査を効率よく行うための低摩擦性、皮膚の凹凸及びその動きに追従可能な柔軟性を兼ね備える観点から、カルボキシメチルセルロース類、ジェランガム類、カラギーナン類、及びアルギン酸類からなる群から選ばれる少なくとも1種または2種以上が好ましい。カラギーナン類としては例えば、ラムダカラギーナン、イオタカラギーナン、カッパカラギーナン、ミュー成分及びニュー成分を含有するカラギーナンが挙げられ、ポリ(メタ)アクリル酸とイオン結合により架橋できるイオタカラギーナンを少なくとも含有することが好ましい。イオタカラギーナンは、市販のもの、例えばカラギーナンCSI-1(三栄源エスエフアイ株式会社製);カラギーナンCS-2(伊那食品工業株式会社製);ゲニュービスコJ-J、ゲニューゲルCJ、ゲニュービスコPJ-JPE(いずれもコペンハーゲンペクチンファクトリー社製);などを使用することができる。ゲル層13を形成する水溶性高分子成分の含有量は、その種類に応じて異なるが、ゲルに適度な柔軟性と粘着性及び皮膚への追随性を付与する観点から、好ましくはゲル層13のゲル重量に対して0.5重量%以上10重量%以下である。 Examples of the water-soluble polymer component forming the gel layer 13 include poly (meth) acrylic acids; anionic cellulose derivatives such as carboxymethyl celluloses and carboxyethyl celluloses; gellan gums, pectins, xanthan gums, carrageenans, and alginic acids. Etc., such as polysaccharides; anionic starch derivatives; etc., and at least one or more of these polymers can be used. Among them, it has gel strength that can withstand scanning after being adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver, low friction for efficient scanning, and flexibility that can follow the unevenness of the skin and its movement. From the viewpoint, at least one or more selected from the group consisting of carboxymethyl celluloses, gellan gums, carrageenans, and alginic acids is preferable. Examples of carrageenans include lambda carrageenan, iota carrageenan, kappa carrageenan, and carrageenan containing a mu component and a new component, and it is preferable to contain at least iota carrageenan that can be crosslinked with poly (meth) acrylic acid by an ionic bond. Iota Carrageenan is commercially available, for example, Carrageenan CSI-1 (manufactured by Saneigen SFI Co., Ltd.); Carrageenan CS-2 (manufactured by Ina Food Industry Co., Ltd.); Geneubisco JJ, Geneugel CJ, Geneubisco PJJ-JPE Also manufactured by Copenhagen Pectin Factory); etc. can be used. The content of the water-soluble polymer component forming the gel layer 13 varies depending on the type thereof, but is preferably the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and followability to the skin. It is 0.5% by weight or more and 10% by weight or less with respect to the gel weight of.
 また、本実施形態に係る超音波送受信器の超音波放射面に粘着される固体状接触媒体は、前記イオン結合により架橋してゲル層13を形成する水溶性高分子成分が、カルボキシメチルセルロース類、アルギン酸類、または脱アセチル化ジェランガム類であることが好ましい。 Further, in the solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver according to the present embodiment, the water-soluble polymer component that is crosslinked by the ionic bond to form the gel layer 13 is carboxymethyl cellulose. It is preferably alginic acid or deacetylated gellan gum.
 それらの成分は強固なイオン結合に由来する高強度と、主鎖の糖骨格に由来する柔軟性を兼ね備えたゲル層13を形成することができるため、2層間(粘着層12とゲル層13)で剥離しない超音波送受信器の超音波放射面に粘着される固体状接触媒体を提供することができる。 Since these components can form a gel layer 13 having both high strength derived from a strong ionic bond and flexibility derived from the sugar skeleton of the main chain, two layers (adhesive layer 12 and gel layer 13). It is possible to provide a solid contact medium that adheres to the ultrasonic radiation surface of an ultrasonic transmitter / receiver that does not peel off.
 カルボキシメチルセルロース類としては、カルボキシメチルセルロースまたはその塩が挙げられ、カルボキシメチルセルロースの塩としては、ナトリウム塩及びカリウム塩などのアルカリ金属塩並びにアンモニウム塩から選ばれる1種又は2種以上が挙げられる。イオン架橋を良好に形成させる観点から、カルボキシメチルセルロースナトリウムが好ましい。また、カルボキシメチルセルロース又はその塩のエーテル化度は、適度なゲル強度を保持して皮膚への追随性を高める観点、及びゲルの安定性を確保する観点から、好ましくは0.6~1.2であり、より好ましくは0.7~1.1である。また、適度なゲル強度を保持して皮膚への追随性を高める観点、及びゲルの安定性を確保する観点から、1重量%水溶液としたときの25℃における粘度が、B型粘度計による測定において、好ましくは1,500~7,000mPa・sである。その含有量は、その種類に応じて異なるが、ゲルに適度な柔軟性と粘着性及び皮膚への追随性を付与する観点から、好ましくはゲル層13のゲル重量に対して0.1重量%以上5重量%以下である。 Examples of carboxymethyl celluloses include carboxymethyl cellulose or a salt thereof, and examples of the salt of carboxymethyl cellulose include one or more selected from alkali metal salts such as sodium salt and potassium salt and ammonium salts. Sodium carboxymethyl cellulose is preferable from the viewpoint of forming ionic crosslinks satisfactorily. The degree of etherification of carboxymethyl cellulose or a salt thereof is preferably 0.6 to 1.2 from the viewpoint of maintaining an appropriate gel strength to enhance the followability to the skin and ensuring the stability of the gel. It is more preferably 0.7 to 1.1. Further, from the viewpoint of maintaining an appropriate gel strength to improve the followability to the skin and ensuring the stability of the gel, the viscosity at 25 ° C. when a 1 wt% aqueous solution is used is measured by a B-type viscometer. It is preferably 1,500 to 7,000 mPa · s. The content thereof varies depending on the type, but is preferably 0.1% by weight based on the gel weight of the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and skin followability to the gel. It is 5% by weight or less.
 アルギン酸類としては、アルギン酸並びにアルギン酸ナトリウム、アルギン酸カリウム、アルギン酸カルシウム、アルギン酸アンモニウム等のアルギン酸塩が挙げられる。これらアルギン酸類の中でも、架橋性の観点からアルギン酸ナトリウムを使用することが好ましい。これらアルギン酸類の1重量%水溶液としたときの25℃における粘度は、B型粘度計による測定において、好ましくは100~1,000mPa・sである。また、本実施形態におけるアルギン酸又はその塩におけるグルロン酸(G)とマンニュロン酸(M)の比率M/Gは、0.5~2.0が好ましく、0.5~1.5がさらに好ましい。その含有量は、その種類に応じて異なるが、ゲルに適度な柔軟性と粘着性及び皮膚への追随性を付与する観点から、好ましくはゲル層13のゲル重量に対して0.1重量%以上10重量%以下である。 Examples of alginic acids include alginic acid and alginates such as sodium alginate, potassium alginate, calcium alginate, and ammonium alginate. Among these alginates, it is preferable to use sodium alginate from the viewpoint of crosslinkability. The viscosity of these alginic acids at 25 ° C. as a 1 wt% aqueous solution is preferably 100 to 1,000 mPa · s as measured by a B-type viscometer. The ratio M / G of gluronic acid (G) and mannuronic acid (M) in alginic acid or a salt thereof in the present embodiment is preferably 0.5 to 2.0, more preferably 0.5 to 1.5. The content thereof varies depending on the type, but is preferably 0.1% by weight based on the gel weight of the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and skin followability to the gel. It is 10% by weight or less.
 脱アセチル化ジェランガムとしては市販のもの、例えば三栄源エフ・エフ・アイ株式会社製のゲルアップ(登録商標)K-S、ケルコ社製のケルコゲル(登録商標)AFTなどを挙げることができる。その含有量は、その種類に応じて異なるが、ゲルに適度な柔軟性と粘着性及び皮膚への追随性を付与する観点から、好ましくはゲル層13のゲル重量に対して0.1重量%以上5重量%以下である。 Examples of the deacetylated gellan gum include commercially available gel-up (registered trademark) KS manufactured by Saneigen FFI Co., Ltd., and Kelco gel (registered trademark) AFT manufactured by Kelco. The content thereof varies depending on the type, but is preferably 0.1% by weight based on the gel weight of the gel layer 13 from the viewpoint of imparting appropriate flexibility, adhesiveness and skin followability to the gel. It is 5% by weight or less.
 また、本実施形態に係る超音波送受信器の超音波放射面に粘着される固体状接触媒体は、ゲル層13を形成する水溶性高分子成分が、ゲル層13の重量に対して1重量%以上含まれることが好ましい。 Further, in the solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver according to the present embodiment, the water-soluble polymer component forming the gel layer 13 is 1% by weight based on the weight of the gel layer 13. It is preferable that the above is included.
 粘着層12とゲル層13の間の接合点において再結合可能な点が増加するため、2層間(粘着層12とゲル層13)で剥離しない超音波送受信器の超音波放射面に粘着される固体状接触媒体を提供することができる。 Since the number of rebondable points increases at the junction between the adhesive layer 12 and the gel layer 13, it is adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver that does not peel off between the two layers (adhesive layer 12 and gel layer 13). A solid contact medium can be provided.
 また、ゲル層13を構成する成分としては他に、任意の含水量および、公知の保湿剤、賦形剤、安定化剤などを用いることができる。 In addition, as the components constituting the gel layer 13, any water content and known moisturizers, excipients, stabilizers and the like can be used.
 ゲル層13の含水量としては、粘着層12の重量に対して10重量%以上90重量%以下の水を含有することが好ましく、30重量%以上80%重量%以下の水を含有することがより好ましい。水の含有量が10重量%未満の場合、超音波伝搬を阻害してしまう恐れがある。一方で、水の含有量が90重量%を超えるとゲル層13の強度および粘着性が低下し、固体状接触媒体を使用中に破断してしまう恐れがある。 The water content of the gel layer 13 is preferably 10% by weight or more and 90% by weight or less, and preferably 30% by weight or more and 80% by weight or less of water with respect to the weight of the adhesive layer 12. More preferred. If the water content is less than 10% by weight, ultrasonic propagation may be hindered. On the other hand, if the water content exceeds 90% by weight, the strength and adhesiveness of the gel layer 13 will decrease, and the solid contact medium may break during use.
 ゲル層13の保湿剤としては例えば、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ペンタエリスリトール、ネオペンチルグリコール、マルチトール、ラクチトール、パラチニット、エリスリトール、ソルビトール、マンニトール、キシリトール、キシロース、グルコース、ラクトース、マンノース、マルトース、ガラクトース、フルクトース、イノシトール、ラフィノース、トレハロース、トリメチルグリシン、シクロデキストリン、ポリエチレングリコール、ポリプロピレングリコール等の多価アルコール類;グルコマンナン、プルラン、デンプン類、コラーゲン、ムコ多糖類、コンドロイチン硫酸等の水溶性高分子;アミノ酸、尿素、ベタイン、ホエイ、オリーブスクワラン等が挙げられる。その配合量は、その種類に応じて異なるが、適度な保湿効果と非粘着性を両立する観点から、ゲル層13のゲル重量に対して0.5重量%以上30重量%以下が好ましい。 Examples of the moisturizing agent for the gel layer 13 include glycerin, diglycerin, triglycerin, polyglycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, pentaerythritol, neopentyl glycol, martitol, lactitol, palatinit, and erythritol. Polyhydric alcohols such as sorbitol, mannitol, xylitol, xylose, glucose, lactose, mannose, maltose, galactose, fructose, inositol, raffinose, trehalose, trimethylglycin, cyclodextrin, polyethylene glycol, polypropylene glycol; glucomannan, purulan, starch Classes, water-soluble polymers such as collagen, mucopolysaccharide, chondroitin sulfate; amino acids, urea, betaine, whey, olive squalane and the like. The blending amount varies depending on the type, but is preferably 0.5% by weight or more and 30% by weight or less with respect to the gel weight of the gel layer 13 from the viewpoint of achieving both an appropriate moisturizing effect and non-adhesiveness.
 ゲル層13の賦形剤としては例えば、カオリン、酸化チタン、無水ケイ酸、酸化亜鉛、ベントナイト、スメクタイト等を1種又は2種以上の組み合わせで用いることができる。しかし、これらの賦形剤は含水ゲルの超音波伝搬効率を低下させるため、その配合量は、ゲル層13のゲル重量に対して10重量%以下が好ましく、5重量%以下がより好ましい。 As the excipient of the gel layer 13, for example, kaolin, titanium oxide, silicic anhydride, zinc oxide, bentonite, smectite and the like can be used in one kind or a combination of two or more kinds. However, since these excipients reduce the ultrasonic propagation efficiency of the hydrogel, the blending amount thereof is preferably 10% by weight or less, more preferably 5% by weight or less, based on the gel weight of the gel layer 13.
 ゲル層13の安定化剤としては例えば、エデト酸塩、パラオキシ安息香酸エステル、酒石酸、酢酸トコフェロール、アスコルビン酸、亜硫酸水素ナトリウム等を1種又は2種以上の組み合わせで用いることができる。 As the stabilizer of the gel layer 13, for example, edetate, paraoxybenzoic acid ester, tartaric acid, tocopherol acetate, ascorbic acid, sodium bisulfite and the like can be used in one kind or a combination of two or more kinds.
 また、ゲル層13のpHは、皮膚刺激性とイオン結合の再結合性を維持する観点から、pH5.0~7.5の範囲が好ましく、さらにはpH6.0~7.0の範囲がより好ましい。 The pH of the gel layer 13 is preferably in the range of pH 5.0 to 7.5, and more preferably in the range of pH 6.0 to 7.0, from the viewpoint of maintaining skin irritation and ionic bond recombination. preferable.
 また、必要に応じて防腐剤、抗酸化剤、可塑剤、乳化剤、界面活性剤等をさらに配合させることができる。 In addition, preservatives, antioxidants, plasticizers, emulsifiers, surfactants, etc. can be further added as needed.
 また、ゲル層13は、被検体に対して非粘着性であることが好ましい。非粘着性であることで、超音波送受信器をゲルシート11を介して効率的に走査することができる。なお、非粘着性は「JIS K 6894」記載の定義に基づき、ゲルシート11を被検体に接触させ、くっつかない、またはくっつきにくいかどうかで判断される。また本開示における非粘着性は、動摩擦係数に基づいて定義することが可能である。その動摩擦係数は、10mm角シリコンセンサーを装着した触覚測定装置(装置名:KES-SE-SR-U、カトーテック株式会社製)を用いて、ゲル層13の動摩擦係数を測定し、得られた摩擦係数の変動データの平均値と定義する。なお、センサーの移動速度は1mm/秒、荷重は200gf、試験片の大きさは縦50mm×横100mmとした。この場合、ゲル層13の動摩擦係数は1.0以下が好ましい。 Further, the gel layer 13 is preferably non-adhesive to the subject. Due to its non-adhesiveness, the ultrasonic transmitter / receiver can be efficiently scanned through the gel sheet 11. The non-adhesiveness is determined based on the definition described in "JIS K 6894" based on whether the gel sheet 11 is brought into contact with the subject and does not stick or does not stick easily. In addition, the non-adhesiveness in the present disclosure can be defined based on the coefficient of dynamic friction. The coefficient of dynamic friction was obtained by measuring the coefficient of dynamic friction of the gel layer 13 using a tactile measuring device (device name: KES-SE-SR-U, manufactured by Kato Tech Co., Ltd.) equipped with a 10 mm square silicon sensor. It is defined as the average value of the fluctuation data of the friction coefficient. The moving speed of the sensor was 1 mm / sec, the load was 200 gf, and the size of the test piece was 50 mm in length × 100 mm in width. In this case, the coefficient of dynamic friction of the gel layer 13 is preferably 1.0 or less.
 粘着層12に含まれるポリ(メタ)アクリル酸類としては例えば、ポリ(メタ)アクリル酸、その塩またはその部分中和物のうち、1種または2種以上を組み合わせることができる。ポリ(メタ)アクリル酸としては、その分子量及び直鎖状、分岐鎖状等の形状には特に制限はないが、重量平均分子量1万以上1000万以下のものを用いることが好ましい。重量平均分子量1万以下であると、粘着層12からポリ(メタ)アクリル酸が溶出する恐れがあり、重量平均分子量1000万以上であると粘度が高くなり、製造時の作業性に問題が生じる恐れがある。なお、通常のアクリル酸を重合して得られた重合体のほか、カルボキシビニルポリマー等のアクリル酸重合体を一部架橋したものも組み合わせても良い。なお、重量平均分子量は、標準物質としてポリエチレンオキサイドを用い、GPC(ゲル・パーミエーション・クロマトグラフィー)法によって測定することができる。 As the poly (meth) acrylic acid contained in the adhesive layer 12, for example, one or more of poly (meth) acrylic acid, a salt thereof or a partially neutralized product thereof can be combined. The poly (meth) acrylic acid is not particularly limited in its molecular weight and its shape such as linear or branched chain, but it is preferable to use a poly (meth) acrylic acid having a weight average molecular weight of 10,000 or more and 10 million or less. If the weight average molecular weight is 10,000 or less, poly (meth) acrylic acid may be eluted from the adhesive layer 12, and if the weight average molecular weight is 10 million or more, the viscosity becomes high, which causes a problem in workability during manufacturing. There is a fear. In addition to the polymer obtained by polymerizing ordinary acrylic acid, a polymer obtained by partially cross-linking an acrylic acid polymer such as a carboxyvinyl polymer may be combined. The weight average molecular weight can be measured by a GPC (gel permeation chromatography) method using polyethylene oxide as a standard substance.
 ポリ(メタ)アクリル酸塩としては、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸カリウム等のポリ(メタ)アクリル酸の一価金属塩;ポリ(メタ)アクリル酸モノエタノールアミン、ポリ(メタ)アクリル酸ジエタノールアミン、ポリ(メタ)アクリル酸トリエタノールアミン等のポリ(メタ)アクリル酸のアミン塩;ポリ(メタ)アクリル酸のアンモニウム塩;等が挙げられる。ポリ(メタ)アクリル酸とポリ(メタ)アクリル酸塩とを組み合わせて使用する場合、これらの配合比(重量比)は、ポリ(メタ)アクリル酸:ポリ(メタ)アクリル酸塩が1:9~9:1が好ましく、2:8~8:2がより好ましい。 Examples of the poly (meth) acrylate include monovalent metal salts of poly (meth) acrylic acid such as sodium poly (meth) acrylate and potassium poly (meth) acrylate; monoethanolamine poly (meth) acrylate, and poly. Amine salts of poly (meth) acrylic acid such as diethanolamine (meth) acrylic acid and triethanolamine poly (meth) acrylic acid; ammonium salts of poly (meth) acrylic acid; and the like can be mentioned. When poly (meth) acrylic acid and poly (meth) acrylate are used in combination, the compounding ratio (weight ratio) of these is 1: 9 for poly (meth) acrylic acid: poly (meth) acrylate. ~ 9: 1 is preferable, and 2: 8 to 8: 2 is more preferable.
 また、粘着層12の粘着性および強度調整のために、ポリ(メタ)アクリル酸を部分中和してポリ(メタ)アクリル酸塩が上記比率になるようにしたものを用いてもよい。ポリ(メタ)アクリル酸部分中和物を使用する場合、中和度は10%以上60%以下が好ましい。 Further, in order to adjust the adhesiveness and strength of the adhesive layer 12, poly (meth) acrylic acid may be partially neutralized so that the poly (meth) acrylic acid salt has the above ratio. When a poly (meth) acrylic acid partially neutralized product is used, the degree of neutralization is preferably 10% or more and 60% or less.
 ポリ(メタ)アクリル酸類の配合量は、粘着層12の重量に対して、1重量%以上20重量%以下が好ましく、2重量%以上10重量%以下がより好ましい。配合量が1重量%未満だと粘着力が不足する恐れがあり、20重量%を超えると粘度が高くなり、製造時の作業性に問題が生じる恐れがある。 The blending amount of the poly (meth) acrylic acid is preferably 1% by weight or more and 20% by weight or less, and more preferably 2% by weight or more and 10% by weight or less with respect to the weight of the adhesive layer 12. If the blending amount is less than 1% by weight, the adhesive strength may be insufficient, and if it exceeds 20% by weight, the viscosity becomes high, which may cause a problem in workability during manufacturing.
 また、本実施形態に係る超音波送受信器の超音波放射面に粘着される固体状接触媒体は、ポリ(メタ)アクリル酸類が、粘着層12の重量に対して2重量%以上10重量%以下含まれることを特徴とする、超音波送受信器の超音波放射面に貼付可能な固体状接触媒体であることが好ましい。配合量が2重量%以上10重量%以下であることで、粘着層12とゲル層13の間の接合点において再結合可能な点が増加し、製造時の作業性が極めて良好なため、2層間(粘着層12とゲル層13)で剥離しない超音波送受信器の超音波放射面に粘着される固体状接触媒体を提供することができる。 Further, in the solid contact medium adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver according to the present embodiment, poly (meth) acrylic acids are 2% by weight or more and 10% by weight or less with respect to the weight of the adhesive layer 12. It is preferably a solid contact medium that can be attached to the ultrasonic radiation surface of the ultrasonic transmitter / receiver, which is characterized by being contained. When the blending amount is 2% by weight or more and 10% by weight or less, the number of points that can be recombined at the joint point between the adhesive layer 12 and the gel layer 13 increases, and the workability during manufacturing is extremely good. It is possible to provide a solid contact medium that does not peel off between layers (adhesive layer 12 and gel layer 13) and is adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver.
 また、粘着層12はポリ(メタ)アクリル酸類を含めば、それを構成する成分の組成については特に制限はなく、任意の含水量および、公知の水溶性高分子、架橋剤、保湿剤、賦形剤、安定化剤などから構成することができる。 Further, the adhesive layer 12 is not particularly limited in the composition of the components constituting the adhesive layer 12 as long as it contains poly (meth) acrylic acids, and has an arbitrary water content, a known water-soluble polymer, a cross-linking agent, a moisturizing agent, and an excipient. It can be composed of a shaping agent, a stabilizer and the like.
 粘着層12の含水量としては、粘着層12の重量に対して10重量%以上90重量%以下の水を含有することが好ましく、30重量%以上80%重量%以下の水を含有することがより好ましい。水の含有量が10重量%未満の場合、超音波伝搬を阻害してしまう恐れがある。一方で、水の含有量が90重量%を超えると粘着層12の強度および粘着性が低下し、固体状接触媒体を使用中に破断してしまう恐れがある。 The water content of the adhesive layer 12 is preferably 10% by weight or more and 90% by weight or less, preferably 30% by weight or more and 80% by weight or less, based on the weight of the adhesive layer 12. More preferred. If the water content is less than 10% by weight, ultrasonic propagation may be hindered. On the other hand, if the water content exceeds 90% by weight, the strength and adhesiveness of the adhesive layer 12 are lowered, and the solid contact medium may be broken during use.
 粘着層12の水溶性高分子としては例えば、ポリビニルピロリドン、ゼラチン、カルボキシメチルセルロース類、カルボキシエチルセルロース類、アルギン酸類、ジェランガム類、ペクチン類、キサンタンガム類、カラギーナン類、ポリビニルアルコール、無水マレイン酸共重合体、カルボキシメチルスターチナトリウム、グルコマンナン、キシログルカン類、カルボキシル基を有する天然ゴム等を挙げることができ、これらの1種または2種以上の高分子を使用できる。なお、多価イオン源により架橋する水溶性高分子をポリ(メタ)アクリル酸類と使用する場合、ポリ(メタ)アクリル酸類の機能を阻害する恐れがあるため、多価イオン源により架橋する水溶性高分子の配合量は、その種類に応じて異なるが、ポリ(メタ)アクリル酸類の重量に対して150重量%以下が好ましく、100重量%以下がより好ましい。 Examples of the water-soluble polymer of the adhesive layer 12 include polyvinylpyrrolidone, gelatin, carboxymethyl cellulose, carboxyethyl cellulose, alginic acid, gellan gum, pectin, xanthan gum, carrageenan, polyvinyl alcohol, maleic anhydride copolymer, and the like. Examples thereof include carboxymethyl starch sodium, glucomannan, xylglucans, natural rubber having a carboxyl group, and one or more of these polymers can be used. When a water-soluble polymer crosslinked by a polyvalent ion source is used with poly (meth) acrylic acids, the function of the poly (meth) acrylic acids may be impaired. Therefore, the water-soluble polymer crosslinked by the polyvalent ion source. The blending amount of the polymer varies depending on the type, but is preferably 150% by weight or less, more preferably 100% by weight or less, based on the weight of the poly (meth) acrylic acids.
 粘着層12の架橋剤、すなわちイオン結合を形成する多価イオン源としては例えば、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、カドミウム、ジルコニウム、鉛、カルシウム等の多価金属を含む化合物又はこれらの塩が挙げられる。具体的には、例えば、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛、水酸化アルミニウムマグネシウム、水酸化塩化ジルコニウム等の多価金属水酸化物;酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、アルミン酸ナトリウム等の多価金属酸化物;硫酸アルミニウム、硫酸カリウムアルミニウム、硫酸アルミニウムアンモニウム、硫酸ナトリウムアルミニウム、炭酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸カルシウム、炭酸カルシウム、塩化カルシウム、硫酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、硫酸亜鉛、炭酸亜鉛、塩化亜鉛、(メタ)ケイ酸アルミン酸マグネシウム、合成ヒドロタルサイト、塩化酸化ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムカリウム、硫酸ジルコニウム、硝酸ジルコニウム等の多価金属無機塩;酢酸アルミニウム、酢酸カルシウム、酢酸マグネシウム、酢酸亜鉛、酢酸ジルコニウム、乳酸アルミニウム、乳酸カルシウム、リン酸カルシウム、ステアリン酸アルミニウム、ミリスチン酸アルミニウム、アルミニウムグリシネート、安息香酸アルミニウム、チオグリコール酸のカルシウム及びマグネシウム等のアルカリ土類金属塩;チタントリエタノールアミネート、チタンラクテート等の多価金属有機塩;等が挙げられる。物理架橋を形成する架橋剤としては、入手の容易性及び溶解性の観点から、アルミニウムの無機酸塩及びカルシウムの無機酸塩が好ましく、硫酸アルミニウム、塩化アルミニウム、硫酸カリウムアルミニウム及び硫酸ナトリウムアルミニウム、塩化カルシウム、乳酸カルシウムがより好ましい。また、これらの1種又は2種以上を併用しても良く、配合量が少なすぎるとゲルの強度が不足し、配合量が多すぎるとゲルの柔軟性が低下することから、その配合量は、その種類に応じて異なるが、粘着層12のゲル重量に対して0.1重量%以上5重量%以下が好ましい。 As a cross-linking agent for the adhesive layer 12, that is, a multivalent ion source forming an ionic bond, for example, polyvalents such as aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, cadmium, zirconium, lead, and calcium. Examples include compounds containing metals or salts thereof. Specifically, for example, polyvalent metal hydroxides such as aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide, aluminum magnesium hydroxide, zirconium chloride; aluminum oxide, calcium oxide, magnesium oxide, etc. Polyvalent metal oxides such as zinc oxide and sodium aluminate; aluminum sulfate, potassium aluminum sulfate, aluminum ammonium sulfate, sodium aluminum sulfate, aluminum carbonate, aluminum nitrate, aluminum chloride, polyaluminum chloride, calcium sulfate, calcium carbonate, calcium chloride , Magnesium sulfate, magnesium carbonate, magnesium chloride, zinc sulfate, zinc carbonate, zinc chloride, magnesium (meth) silicate aluminate, synthetic hydrotalcite, zirconium chloride, ammonium zirconium carbonate, sodium zirconium carbonate, potassium zirconium carbonate, sulfate Polyvalent metal inorganic salts such as zirconium and zirconium nitrate; aluminum acetate, calcium acetate, magnesium acetate, zinc acetate, zirconium acetate, aluminum lactate, calcium lactate, calcium phosphate, aluminum stearate, aluminum myristate, aluminum glycinate, aluminum benzoate , Alkaline earth metal salts such as calcium and magnesium of thioglycolic acid; polyvalent metal organic salts such as titanium triethanolaluminate and titanium lactate; and the like. As the cross-linking agent for forming the physical cross-linking, an inorganic acid salt of aluminum and an inorganic acid salt of calcium are preferable from the viewpoint of availability and solubility, and aluminum sulfate, aluminum chloride, potassium aluminum sulfate and sodium aluminum sulfate, chloride. Calcium and calcium lactate are more preferable. In addition, one or more of these may be used in combination. If the blending amount is too small, the strength of the gel will be insufficient, and if the blending amount is too large, the flexibility of the gel will decrease. Although it varies depending on the type, 0.1% by weight or more and 5% by weight or less is preferable with respect to the gel weight of the adhesive layer 12.
 粘着層12の保湿剤としては例えば、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ペンタエリスリトール、ネオペンチルグリコール、マルチトール、ラクチトール、パラチニット、エリスリトール、ソルビトール、マンニトール、キシリトール、キシロース、グルコース、ラクトース、マンノース、マルトース、ガラクトース、フルクトース、イノシトール、ラフィノース、トレハロース、トリメチルグリシン、シクロデキストリン、ポリエチレングリコール、ポリプロピレングリコール等の多価アルコール類;グルコマンナン、プルラン、デンプン類、コラーゲン、ムコ多糖類等の水溶性高分子;アミノ酸、尿素、ベタイン、ホエイ、オリーブスクワラン等が挙げられる。その配合量は、その種類に応じて異なるが、適度な保湿効果と超音波伝搬性を確保する観点から、粘着層12のゲル重量に対して1重量%以上40重量%以下が好ましい。 Examples of the moisturizing agent for the adhesive layer 12 include glycerin, diglycerin, triglycerin, polyglycerin, ethylene glycol, propylene glycol, 1,3-butylene glycol, pentaerythritol, neopentyl glycol, martitol, lactitol, palatinit, and erythritol. Polyhydric alcohols such as sorbitol, mannitol, xylitol, xylose, glucose, lactose, mannose, maltose, galactose, fructose, inositol, raffinose, trehalose, trimethylglycin, cyclodextrin, polyethylene glycol, polypropylene glycol; glucomannan, purulan, starch , Collagen, water-soluble polymers such as mucopolysaccharide; amino acids, urea, betaine, whey, olive squalane and the like. The blending amount varies depending on the type, but is preferably 1% by weight or more and 40% by weight or less with respect to the gel weight of the adhesive layer 12 from the viewpoint of ensuring an appropriate moisturizing effect and ultrasonic wave propagation.
 粘着層12の賦形剤としては例えば、カオリン、酸化チタン、無水ケイ酸、酸化亜鉛、ベントナイト、スメクタイト等を1種又は2種以上の組み合わせで用いることができる。しかし、これらの賦形剤は含水ゲルの超音波伝搬効率を低下させるため、その配合量は、粘着層12のゲル重量に対して10重量%以下が好ましく、5重量%以下がより好ましい。 As the excipient of the adhesive layer 12, for example, kaolin, titanium oxide, silicic anhydride, zinc oxide, bentonite, smectite and the like can be used in one kind or a combination of two or more kinds. However, since these excipients reduce the ultrasonic propagation efficiency of the hydrogel, the blending amount thereof is preferably 10% by weight or less, more preferably 5% by weight or less, based on the gel weight of the adhesive layer 12.
 粘着層12の安定化剤としては例えば、エデト酸塩、パラオキシ安息香酸エステル、酒石酸、酢酸トコフェロール、アスコルビン酸、亜硫酸水素ナトリウム等を1種又は2種以上の組み合わせで用いることができる。その配合量は、その種類に応じて異なるが、多すぎると架橋が進まずにゲル強度が低下する恐れがあるので、粘着層12のゲル重量に対して5重量%以下が好ましい。 As the stabilizer of the adhesive layer 12, for example, edetate, paraoxybenzoic acid ester, tartaric acid, tocopherol acetate, ascorbic acid, sodium bisulfite and the like can be used in one kind or a combination of two or more kinds. The blending amount varies depending on the type, but if it is too large, cross-linking may not proceed and the gel strength may decrease. Therefore, the blending amount is preferably 5% by weight or less with respect to the gel weight of the adhesive layer 12.
 また、必要に応じて防腐剤、抗酸化剤、可塑剤、乳化剤、界面活性剤等をさらに配合させることができる。 In addition, preservatives, antioxidants, plasticizers, emulsifiers, surfactants, etc. can be further added as needed.
 また、強度向上等のために、ゲルシート11は、疎水性または親水性である公知の繊維又は多孔性樹脂フィルムないしシートに含浸されていても良い。 Further, the gel sheet 11 may be impregnated with a known hydrophobic or hydrophilic fiber or porous resin film or sheet in order to improve the strength or the like.
 以上、本発明に係る一つの実施形態について詳細に説明したが、本発明はこの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々変形可能である。また貼付対象物としても、超音波送受信器だけでなく、超音波受信器及び超音波送信器の超音波放射面および超音波受信面および、それらの両方、のいずれにも好適に用いられる。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment and can be variously modified without departing from the spirit of the present invention. Further, as the object to be attached, it is suitably used not only for the ultrasonic transmitter / receiver but also for any of the ultrasonic radiation surface and the ultrasonic reception surface of the ultrasonic receiver and the ultrasonic transmitter, and both of them.
 以下、本開示の具体的な実施例を比較例とともに示し、本開示をさらに詳細に説明する。本実施例に係る形状保持材としては、表1に示すa,b,c,d,e,f,gを用いた。なお、a,b,c,d,e,f,gの厚み(mm)、密度(g/cc)、種類、材質、性質、公定水分量はそれぞれ表1に示す通りである。なお、使用した形状保持材の厚みは、シンワ測定株式会社製のデジタルマイクロメーター(品番:79523)により測定し、無作為に選んだ10点の測定値の平均値を用いた。使用した形状保持材の密度は、その目付(g/m)と厚みから算出した。材質については、表1に示す通り、疎水性の形状保持材は、親水性の材質を含まない。 Hereinafter, specific examples of the present disclosure will be shown together with comparative examples, and the present disclosure will be described in more detail. As the shape-retaining material according to this embodiment, a, b, c, d, e, f, and g shown in Table 1 were used. The thickness (mm), density (g / cc), type, material, property, and official water content of a, b, c, d, e, f, and g are as shown in Table 1, respectively. The thickness of the shape-retaining material used was measured by a digital micrometer (product number: 79523) manufactured by Shinwa Rules Co., Ltd., and the average value of 10 randomly selected points was used. The density of the shape-retaining material used was calculated from its basis weight (g / m 2 ) and thickness. As for the material, as shown in Table 1, the hydrophobic shape-retaining material does not include a hydrophilic material.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例に係る含水ゲル部に使用するゲルとしては、後述する三種類のゲルA,ゲルB,ゲルCを用いた。以下、ゲルA,ゲルB,ゲルCの製造方法を具体的に説明する。 As the gel used for the hydrogel portion according to this example, three types of gels A, B, and C, which will be described later, were used. Hereinafter, the methods for producing gel A, gel B, and gel C will be specifically described.
(ゲルAの製造方法)
 精製水7gに脱アセチル化ジェランガム(富士フイルム和光純薬株式会社製)0.25g、プロピレングリコール(林純薬工業株式会社製)1.1g、ポリエチレングリコール400(林純薬工業株式会社製)0.01g、酸化チタン(ケニス株式会社製)0.2gを投入し、長さ3.5cm×直径6mmの円筒型スターラーを用いて400rpmで1分間撹拌後、精製水2gに塩化カルシウム(関東化学株式会社製)0.04g、エデト酸ナトリウム(東京化成工業株式会社製)0.04gを溶解させた水溶液を0.1ml/秒で滴下することでゲルAの原液を調製した。20%ひずみ時圧縮応力と動摩擦係数を測定する際には、このゲルAの原液をポリエステルフィルム上に所定のサイズになるように塗工、切断して、試験片とした。
(Manufacturing method of gel A)
Deacetylated gellan gum (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.25 g, propylene glycol (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) 1.1 g, polyethylene glycol 400 (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) 0 in 7 g of purified water Add 1.01 g and 0.2 g of titanium oxide (manufactured by KENIS, Ltd.), stir for 1 minute at 400 rpm using a cylindrical stirrer with a length of 3.5 cm and a diameter of 6 mm, and then add calcium chloride (Kanto Chemical Co., Inc.) to 2 g of purified water. A stock solution of Gel A was prepared by dropping an aqueous solution prepared by dissolving 0.04 g of (manufactured by the company) and 0.04 g of sodium edetate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) at 0.1 ml / sec. When measuring the compressive stress at 20% strain and the coefficient of kinetic friction, the undiluted solution of Gel A was coated and cut on a polyester film to a predetermined size to obtain a test piece.
(ゲルBの製造方法)
 精製水8gにアルギン酸ナトリウム500~600(富士フイルム和光純薬株式会社製)0.3g、プロピレングリコール(林純薬工業株式会社製)1.3g、ポリエチレングリコール400(林純薬工業株式会社製)0.01g、酸化チタン(ケニス株式会社製)0.2gを投入し、長さ3.5cm×直径6mmの円筒型スターラーを用いて400rpmで1分間撹拌後、精製水2gに塩化カルシウム(関東化学株式会社製)0.07g、エデト酸ナトリウム(東京化成工業株式会社製)0.05gを溶解させた水溶液を0.1ml/秒で滴下することでゲルBの原液を調製した。20%ひずみ時圧縮応力と動摩擦係数を測定する際には、このゲルBの原液をポリエステルフィルム上に所定のサイズになるように塗工、切断して、試験片とした。
(Gel B manufacturing method)
Sodium alginate 500-600 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.3 g, propylene glycol (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) 1.3 g, polyethylene glycol 400 (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) in 8 g of purified water Add 0.01 g and 0.2 g of titanium oxide (manufactured by Kennis Co., Ltd.), stir for 1 minute at 400 rpm using a cylindrical stirrer with a length of 3.5 cm and a diameter of 6 mm, and then add calcium chloride (Kanto Chemical Co., Inc.) to 2 g of purified water. A stock solution of Gel B was prepared by dropping an aqueous solution prepared by dissolving 0.07 g of (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 0.05 g of sodium alginate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) at 0.1 ml / sec. When measuring the compressive stress at 20% strain and the coefficient of kinetic friction, the undiluted solution of Gel B was applied onto a polyester film to a predetermined size and cut to obtain a test piece.
(ゲルCの製造方法)
 精製水8gにカルボキシメチルセルロース(東京化成工業株式会社製)0.3g、プロピレングリコール(林純薬工業株式会社製)1.3g、酸化チタン(ケニス株式会社製)0.05gを投入し、長さ3.5cm×直径6mmの円筒型スターラーを用いて400rpmで1分間撹拌後、精製水2gに硫酸カリウムアルミニウム(関東化学株式会社製)0.11g、エデト酸ナトリウム(東京化成工業株式会社製)0.05gを溶解させた水溶液を0.1ml/秒で滴下することでゲルCの原液を調製した。20%ひずみ時圧縮応力と動摩擦係数を測定する際には、このゲルCの原液をポリエステルフィルム上に所定のサイズになるように塗工、切断して、試験片とした。
(Gel C manufacturing method)
To 8 g of purified water, 0.3 g of carboxymethyl cellulose (manufactured by Tokyo Chemical Industry Co., Ltd.), 1.3 g of propylene glycol (manufactured by Hayashi Junyaku Kogyo Co., Ltd.), and 0.05 g of titanium oxide (manufactured by KENIS, Ltd.) are added to length. After stirring at 400 rpm for 1 minute using a 3.5 cm × 6 mm diameter cylindrical stirrer, 0.11 g of potassium aluminum sulfate (manufactured by Kanto Chemical Co., Inc.) and 0 of sodium edetate (manufactured by Tokyo Chemical Industry Co., Ltd.) are added to 2 g of purified water. A stock solution of Gel C was prepared by dropping an aqueous solution in which 0.05 g was dissolved at 0.1 ml / sec. When measuring the compressive stress at 20% strain and the coefficient of kinetic friction, the undiluted solution of Gel C was coated and cut on a polyester film to a predetermined size to obtain a test piece.
 試験片となったゲルA,B,Cのそれぞれの20%ひずみ時圧縮応力と動摩擦係数を測定したところ、それぞれ、ゲルA:30kPaと1.5、ゲルB:1kPaと0.8、ゲル:C:40kPaと2.0、であった。 When the compressive stress and dynamic friction coefficient at 20% strain of each of the gels A, B, and C used as the test pieces were measured, gel A: 30 kPa and 1.5, gel B: 1 kPa and 0.8, and gel: C: 40 kPa and 2.0.
 20%ひずみ時圧縮応力の測定方法としては、直径10mmの球型圧縮子を装着した圧縮試験機(装置名:KES-G5、カトーテック株式会社製)を用いて、20%ひずみ時圧縮応力を測定した。試験片の大きさは縦50mm×横100mm、圧縮子の移動速度は2mm/秒とし、変形量が試料の厚みの20%となった時点での応力を、本開示における20%ひずみ時圧縮応力とした。 As a method for measuring the compressive stress at 20% strain, a compression tester (device name: KES-G5, manufactured by Kato Tech Co., Ltd.) equipped with a spherical compressor with a diameter of 10 mm is used to measure the compressive stress at 20% strain. It was measured. The size of the test piece is 50 mm in length × 100 mm in width, the moving speed of the compressor is 2 mm / sec, and the stress at the time when the amount of deformation becomes 20% of the thickness of the sample is the compressive stress at 20% strain in the present disclosure. And said.
 10mm角シリコンセンサーを装着した触覚測定装置(装置名:KES-SE-SR-U、カトーテック株式会社製)を用いて、各実施例の固体状接触媒体の動摩擦係数を測定した。その結果を表2,3に示す。なお、センサーの移動速度は1mm/秒、荷重は200gf、試験片の大きさは縦50mm×横100mmとした。得られた摩擦係数の変動データの平均値を本開示における動摩擦係数とした。 The dynamic friction coefficient of the solid contact medium of each example was measured using a tactile measuring device (device name: KES-SE-SR-U, manufactured by Kato Tech Co., Ltd.) equipped with a 10 mm square silicon sensor. The results are shown in Tables 2 and 3. The moving speed of the sensor was 1 mm / sec, the load was 200 gf, and the size of the test piece was 50 mm in length × 100 mm in width. The average value of the obtained fluctuation data of the friction coefficient was used as the dynamic friction coefficient in the present disclosure.
 各実施例に係る固体状接触媒体としては、前述した製造方法によって製造されたゲルA,B,Cを、各形状保持材に含侵させ、縦50mm、横100mmの大きさの固体状接触媒体を作製した。含水ゲル部3の厚みは、1mm、0.5mm、0.4mm、0.1mmとなるようにゲルA,B,Cを塗工し、表2,3の実施例1~24および比較例1~8にそれぞれ示す固体状接触媒体を作製した。 As the solid contact medium according to each embodiment, gels A, B, and C produced by the above-mentioned production method are impregnated into each shape-retaining material, and the solid contact medium having a size of 50 mm in length and 100 mm in width is used. Was produced. Gels A, B, and C are coated so that the thickness of the water-containing gel portion 3 is 1 mm, 0.5 mm, 0.4 mm, and 0.1 mm, and Examples 1 to 24 and Comparative Example 1 in Tables 2 and 3 are applied. The solid contact media shown in 8 to 8 were prepared.
 各実施例に係る固体状接触媒体の強度試験としては、ボランティア1名の前腕に作製した固体状接触媒体を貼付し、超音波送受信器を含水ゲル部3を介して20往復走査した際の破断有無を評価した。その結果を表2,3に示す。破断有無は、試験後に超音波送受信器に破断したゲルが付着していれば破断有、付着していなければ破断無として、目視により判断した。なお、超音波送受信器は日本シグマックス株式会社製のポケットエコー mirucoを用いた。 As a strength test of the solid contact medium according to each example, the solid contact medium prepared was attached to the forearm of one volunteer, and the ultrasonic transmitter / receiver was broken when 20 reciprocating scans were performed through the hydrogel portion 3. The presence or absence was evaluated. The results are shown in Tables 2 and 3. The presence or absence of breakage was visually judged as having breakage if the broken gel had adhered to the ultrasonic transmitter / receiver after the test, and as having no breakage if it had not adhered. As the ultrasonic transmitter / receiver, a pocket echo miruco manufactured by Nippon Sigmax Co., Ltd. was used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2,3に示したように、本実施例で示した非水溶性の形状保持材と、含水ゲル部と、を含み、含水ゲル部は、形状保持材の両主面に形成された外層部と、形状保持材に含侵された含侵部と、を含み、含水ゲル部の厚みが0.1mm以上0.5mm以下で、形状保持材の厚みが、0.01mm以上0.2mm以下で、形状保持材の厚みが含水ゲル部の厚みの10%以上40%以下で、前記形状保持材が密度0.1g/cc以上0.3g/cc以下であることで、超音波送受信器を含水ゲル部を介して走査した際の前記含水ゲル部への変形応力が形状保持材2によって緩和されるため、高強度でかつ低摩擦力の固体状接触媒体が得られる。 As shown in Tables 2 and 3, the water-insoluble shape-retaining material shown in this example and the water-containing gel portion are included, and the water-containing gel portion is an outer layer formed on both main surfaces of the shape-retaining material. The thickness of the water-containing gel portion is 0.1 mm or more and 0.5 mm or less, and the thickness of the shape-retaining material is 0.01 mm or more and 0.2 mm or less, including the portion and the impregnated portion impregnated by the shape-retaining material. The thickness of the shape-retaining material is 10% or more and 40% or less of the thickness of the hydrogel portion, and the density of the shape-retaining material is 0.1 g / cc or more and 0.3 g / cc or less. Since the deformation stress on the water-containing gel portion when scanning through the water-containing gel portion is relaxed by the shape-retaining material 2, a solid contact medium having high strength and low frictional force can be obtained.
 以下、本開示の具体的な実施例を比較例とともに示し、本開示をさらに詳細に説明する。 Hereinafter, specific examples of the present disclosure will be shown together with comparative examples, and the present disclosure will be described in more detail.
 (粘着層の製造方法)
 適量の精製水に、表4~6に記載の粘着層において粘着性を発現する成分としてポリアクリル酸ナトリウム(重合度22000~70000)(富士フイルム和光純薬株式会社製)を、表4に記載の割合で溶解させ、硫酸カリウムアルミニウム(関東化学株式会社製)1.5重量%、グリセリン(林純薬工業株式会社製)15重量%、酸化チタン(ケニス株式会社製)2重量%、エデト酸ナトリウム(東京化成工業株式会社製)1重量%を均一に混合した水溶液を0.1ml/秒で滴下することで、粘着層の原液を調製した。粘着層を製造する際は、この原液を離形フィルム上に所定のサイズになるように塗工、切断した。
(Manufacturing method of adhesive layer)
Table 4 shows sodium polyacrylate (degree of polymerization 22000 to 70000) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as a component that exhibits adhesiveness in the adhesive layers shown in Tables 4 to 6 in an appropriate amount of purified water. Aluminum sulfate (manufactured by Kanto Chemical Co., Inc.) 1.5% by weight, glycerin (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) 15% by weight, titanium oxide (manufactured by KENIS, Ltd.) 2% by weight, edetic acid A stock solution of the adhesive layer was prepared by dropping an aqueous solution uniformly mixed with 1% by weight of sodium (manufactured by Tokyo Kasei Kogyo Co., Ltd.) at 0.1 ml / sec. When producing the adhesive layer, this undiluted solution was applied on a release film to a predetermined size and cut.
 (ゲル層の製造方法)
 適量の精製水に、表4~6に記載の、ゲル層を形成する成分を、表4~6に記載の割合で溶解させ、さらに表4に記載の多価イオン源を表4に記載の割合、プロピレングリコール(林純薬工業株式会社製)10重量%、エデト酸ナトリウム(東京化成工業株式会社製)を表4に記載の多価イオン源の重量の9割となる重量%を均一に混合した水溶液を0.1ml/秒で滴下することで、ゲル層の原液を調製した。ゲル層を製造する際は、この原液を離形フィルム上に所定のサイズになるように塗工、切断した。
(Manufacturing method of gel layer)
The components forming the gel layer shown in Tables 4 to 6 are dissolved in an appropriate amount of purified water at the ratios shown in Tables 4 to 6, and the polyvalent ion sources shown in Table 4 are shown in Table 4. Uniformly, 10% by weight of propylene glycol (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) and 90% by weight of sodium edetate (manufactured by Tokyo Kasei Kogyo Co., Ltd.), which is 90% of the weight of the polyvalent ion source shown in Table 4. The undiluted solution of the gel layer was prepared by dropping the mixed aqueous solution at 0.1 ml / sec. When producing the gel layer, this undiluted solution was applied onto a release film to a predetermined size and cut.
 (ゲルシートの製造方法)
 上記製造方法により製造した粘着層とゲル層を貼り合わせることで、試験片とした。なお、ゲル化が不十分であると貼り合わせに失敗する恐れがあるため、貼り合わせは、粘着層については製造後、ゲル層については製造から1時間後に行った。
(Manufacturing method of gel sheet)
A test piece was obtained by laminating the adhesive layer and the gel layer produced by the above production method. If the gelation is insufficient, the bonding may fail. Therefore, the bonding was performed after the production of the adhesive layer and one hour after the production of the gel layer.
(粘着層とゲル層の剥離強度の測定方法)
 粘着層とゲル層を貼り合わせた直後に、実施例A1~A84及び比較例A1,A2について粘着層とゲル層の初期剥離強度を測定した。
その結果を表4~6「ゲル層と粘着層間の剥離強度」の列に示す。粘着層とゲル層の厚みはそれぞれ0.1mm、ゲルシートのサイズは縦50mm、横100mmとした。粘着層とゲル層の初期剥離強度は、引張り試験機(オリエンテック社製、RTE-10)を用いて測定した。測定は、粘着層とゲル層を積層した試験片の粘着層を片方の測定冶具に固定し、もう片方の冶具にはゲル層のみを固定し、300mm/分の速度で引き剥がすT型剥離試験にて実施した。引き剥がしから20、30、40、50、60mmでの引張り力の平均を剥離強度とした(単位:gf/20mm)。
(Measuring method of peel strength between adhesive layer and gel layer)
Immediately after the adhesive layer and the gel layer were bonded together, the initial peel strength of the adhesive layer and the gel layer was measured for Examples A1 to A84 and Comparative Examples A1 and A2.
The results are shown in the columns of Tables 4 to 6 “Peel strength between gel layer and adhesive layer”. The thickness of the adhesive layer and the gel layer were 0.1 mm, respectively, and the size of the gel sheet was 50 mm in length and 100 mm in width. The initial peel strength of the adhesive layer and the gel layer was measured using a tensile tester (manufactured by Orientec, RTE-10). The measurement is a T-type peeling test in which the adhesive layer of the test piece in which the adhesive layer and the gel layer are laminated is fixed to one measuring jig, and only the gel layer is fixed to the other jig and peeled off at a speed of 300 mm / min. It was carried out at. The average of the tensile strengths at 20, 30, 40, 50, and 60 mm from the peeling was taken as the peeling strength (unit: gf / 20 mm).
(粘着力持続性の測定方法)
 粘着力持続性については、ゲルシートを製造直後と、製造から48時間後における粘着力(剥離強度)を測定、比較することにより評価した。粘着力(剥離強度)の測定は引張り試験機(オリエンテック社製、RTE-10)を用いて測定した。測定方法としては、超音波送受信器の放射面を模したシリコーンゴムシート(十川ゴム株式会社製)の上に作製したゲルシートを試験片とし、ゲルシートを片方の測定冶具に固定し、もう片方の冶具にはシリコーンゴムシートを固定し、300mm/分の速度でゲルシートをシリコーンゴムシートから引き剥がす90度剥離試験にて実施した。引き剥がしから20、30、40、50、60mmでの引張り力の平均を粘着力(剥離強度)(gf/20mm)とした。なお、48時間後粘着力(剥離強度)は、乾燥を防ぐため、作製した試験片の上下を離形フィルムで挟み、アルミフィルムでラミネートして48時間放置したものを用いて測定した。この結果を表4~6に示す。
(Measuring method of adhesive strength persistence)
The adhesive strength persistence was evaluated by measuring and comparing the adhesive strength (peeling strength) immediately after the production of the gel sheet and 48 hours after the production. The adhesive strength (peeling strength) was measured using a tensile tester (RTE-10, manufactured by Orientec Co., Ltd.). As a measurement method, a gel sheet prepared on a silicone rubber sheet (manufactured by Togawa Rubber Co., Ltd.) that imitates the radiation surface of an ultrasonic transmitter / receiver is used as a test piece, the gel sheet is fixed to one measuring tool, and the other tool is used. A silicone rubber sheet was fixed to the surface, and the gel sheet was peeled off from the silicone rubber sheet at a speed of 300 mm / min in a 90-degree peeling test. The average of the tensile forces at 20, 30, 40, 50, and 60 mm from the peeling was taken as the adhesive force (peeling strength) (gf / 20 mm). The adhesive strength (peeling strength) after 48 hours was measured by sandwiching the upper and lower parts of the prepared test piece with a release film, laminating with an aluminum film, and leaving it for 48 hours in order to prevent drying. The results are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4~6に示したように、本実施例で示した多価イオン源によるイオン結合により架橋してヒドロゲルを形成する水溶性高分子成分を少なくとも1種類含むゲルシートであって、前記ゲルシートの一方の主面が超音波送受信器の超音波放射面に対して再剥離可能な粘着層から形成され、前記粘着層に含まれ、粘着性を発現する少なくとも1種類の成分はポリ(メタ)アクリル酸類である、ゲルシートを含むことで、2層間で剥離せず、2層の均質化を抑制可能な、超音波送受信器の超音波放射面に粘着される固体状接触媒体が得られる。 As shown in Tables 4 to 6, the gel sheet contains at least one kind of water-soluble polymer component that forms a hydrogel by cross-linking by ionic bonding by the polyvalent ion source shown in this example, and is one of the gel sheets. The main surface of is formed from an adhesive layer that can be peeled off from the ultrasonic radiation surface of the ultrasonic transmitter / receiver, and at least one component contained in the adhesive layer and exhibiting adhesiveness is poly (meth) acrylic acid. By including the gel sheet, a solid contact medium that does not peel off between the two layers and can suppress homogenization of the two layers and is adhered to the ultrasonic radiation surface of the ultrasonic transmitter / receiver can be obtained.
 以上のように、本発明に係る固体状接触媒体は、特に超音波送信器用、超音波受信器用、および超音波送受信器用の固体状接触媒体として有用である。これを利用した固体状接触媒体は超音波診断業務の効率を向上することができる。 As described above, the solid-state contact medium according to the present invention is particularly useful as a solid-state contact medium for an ultrasonic transmitter, an ultrasonic receiver, and an ultrasonic transmitter / receiver. A solid contact medium utilizing this can improve the efficiency of ultrasonic diagnostic work.
 また、本発明に係る固体状接触媒体は貼付対象物、特に超音波送信器、超音波受信器、および超音波送受信器の超音波放射面、および超音波受信面に粘着される固体状接触媒体として有用である。これを利用した固体状接触媒体は超音波診断業務の効率を向上することができる。 Further, the solid contact medium according to the present invention is a solid contact medium that is adhered to an object to be attached, particularly an ultrasonic transmitter, an ultrasonic receiver, an ultrasonic radiation surface of an ultrasonic transmitter / receiver, and an ultrasonic reception surface. It is useful as. A solid contact medium utilizing this can improve the efficiency of ultrasonic diagnostic work.
1…固体状接触媒体
2…形状保持材
3…含水ゲル部
4…外層部
5…含侵部
11…ゲルシート
12…粘着層
13…ゲル層
14…固体状接触媒体
1 ... Solid contact medium 2 ... Shape-retaining material 3 ... Hydrous gel part 4 ... Outer layer part 5 ... Immersion part 11 ... Gel sheet 12 ... Adhesive layer 13 ... Gel layer 14 ... Solid contact medium

Claims (11)

  1.  非水溶性の形状保持材と、物理架橋を形成する成分を含む含水ゲル部と、を含み、
     前記含水ゲル部は、前記形状保持材の両主面に形成された外層部と、前記形状保持材に含侵された含侵部と、を含み、
     前記含水ゲル部の厚みが0.1mm以上0.5mm以下で、
     前記形状保持材の厚みが0.01mm以上0.2mm以下で、
     前記形状保持材の厚みが前記含水ゲル部の厚みの10%以上40%以下で、
     前記形状保持材が密度0.1g/cc以上0.3g/cc以下である、
     固体状接触媒体。
    It contains a water-insoluble shape-retaining material and a hydrogel portion containing a component that forms a physical crosslink.
    The water-containing gel portion includes an outer layer portion formed on both main surfaces of the shape-retaining material and an impregnated portion impregnated by the shape-retaining material.
    The thickness of the hydrogel portion is 0.1 mm or more and 0.5 mm or less.
    When the thickness of the shape-retaining material is 0.01 mm or more and 0.2 mm or less,
    When the thickness of the shape-retaining material is 10% or more and 40% or less of the thickness of the hydrogel portion,
    The shape-retaining material has a density of 0.1 g / cc or more and 0.3 g / cc or less.
    Solid contact medium.
  2.  前記含水ゲル部の20%ひずみ時圧縮応力が1kPa以上30kPa以下であり、
     かつ前記含水ゲル部の動摩擦係数が1.5以下である、
     請求項1に記載の固体状接触媒体。
    The compressive stress at 20% strain of the hydrogel portion is 1 kPa or more and 30 kPa or less.
    Moreover, the coefficient of kinetic friction of the hydrogel portion is 1.5 or less.
    The solid contact medium according to claim 1.
  3.  前記形状保持材が親水性の材質を含む、請求項1または2に記載の固体状接触媒体。 The solid contact medium according to claim 1 or 2, wherein the shape-retaining material contains a hydrophilic material.
  4.  前記形状保持材が、ポリアクリル酸類、ポリビニルアルコール類、及びレーヨンからなる群から選択される少なくとも一種を含む、請求項1~3の何れか一項に記載の固体状接触媒体。 The solid contact medium according to any one of claims 1 to 3, wherein the shape-retaining material contains at least one selected from the group consisting of polyacrylic acids, polyvinyl alcohols, and rayon.
  5.  イオン結合により架橋してヒドロゲルを形成する水溶性高分子成分を少なくとも1種類含むゲルシートを含み、
     前記ゲルシートの一方の主面が、貼付対象物に対して、貼付および再剥離可能な粘着層から形成され、
     前記粘着層は、粘着性を発現する少なくとも1種類の成分としてポリ(メタ)アクリル酸類を含む、
     固体状接触媒体。
    It contains a gel sheet containing at least one water-soluble polymer component that is crosslinked by ionic bonding to form a hydrogel.
    One main surface of the gel sheet is formed of an adhesive layer that can be attached and peeled off from the object to be attached.
    The adhesive layer contains poly (meth) acrylic acids as at least one component that exhibits adhesiveness.
    Solid contact medium.
  6.  前記水溶性高分子成分が、
     カルボキシメチルセルロース類、アルギン酸類、および脱アセチル化ジェランガム類からなる群から選択される少なくとも1種を含む、請求項5に記載の固体状接触媒体。
    The water-soluble polymer component
    The solid contact medium of claim 5, comprising at least one selected from the group consisting of carboxymethyl celluloses, alginic acids, and deacetylated gellan gums.
  7.  前記ゲルシートが前記イオン結合を形成する多価イオン源を含み、
     前記多価イオン源が、カルシウムおよびアルミニウムのうちの少なくとも1種類を含む化合物又はこれらの塩である、請求項5または6に記載の固体状接触媒体。
    The gel sheet contains a multivalent ion source that forms the ionic bond.
    The solid contact medium according to claim 5 or 6, wherein the multivalent ion source is a compound containing at least one of calcium and aluminum or a salt thereof.
  8.  前記ゲルシートの他方の主面が、ゲル層から形成され、
     前記水溶性高分子成分が、
     前記ゲル層の重量に対して0.5重量%以上10重量%以下含まれる、請求項5~7のいずれか一項に記載の固体状接触媒体。
    The other main surface of the gel sheet is formed from the gel layer
    The water-soluble polymer component
    The solid contact medium according to any one of claims 5 to 7, which is contained in an amount of 0.5% by weight or more and 10% by weight or less based on the weight of the gel layer.
  9.  前記ポリ(メタ)アクリル酸類が、前記粘着層の重量に対して2重量%以上10重量%以下含まれる、請求項5~8のいずれか一項に記載の固体状接触媒体。 The solid contact medium according to any one of claims 5 to 8, wherein the poly (meth) acrylic acid is contained in an amount of 2% by weight or more and 10% by weight or less based on the weight of the adhesive layer.
  10.  前記ゲルシートが前記イオン結合を形成する多価イオン源を含み、
     前記ゲルシートの他方の主面が、ゲル層から形成され、
     前記多価イオン源が、
     前記ゲル層の重量に対して20mmol/kg以上200mmol/kg以下含まれる、請求項5~9のいずれか一項に記載の固体状接触媒体。
    The gel sheet contains a multivalent ion source that forms the ionic bond.
    The other main surface of the gel sheet is formed from the gel layer
    The multivalent ion source
    The solid contact medium according to any one of claims 5 to 9, which contains 20 mmol / kg or more and 200 mmol / kg or less with respect to the weight of the gel layer.
  11.  前記ゲルシートの他方の主面が、ゲル層から形成され、
     前記ゲル層は、被検体に対して非粘着性である、請求項5~10のいずれか一項に記載の固体状接触媒体。
    The other main surface of the gel sheet is formed from the gel layer
    The solid contact medium according to any one of claims 5 to 10, wherein the gel layer is non-adhesive to a subject.
PCT/JP2020/013412 2019-03-27 2020-03-25 Solid state contact medium WO2020196652A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019059618A JP2022081704A (en) 2019-03-27 2019-03-27 Solid contact medium
JP2019-059618 2019-03-27
JP2019-059617 2019-03-27
JP2019059617A JP2022081703A (en) 2019-03-27 2019-03-27 Solid state contact medium

Publications (1)

Publication Number Publication Date
WO2020196652A1 true WO2020196652A1 (en) 2020-10-01

Family

ID=72608540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013412 WO2020196652A1 (en) 2019-03-27 2020-03-25 Solid state contact medium

Country Status (1)

Country Link
WO (1) WO2020196652A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089128A (en) * 2021-04-20 2021-07-09 合肥学院 Preparation method of polyacrylic acid/cellulose hydrogel fiber, prepared hydrogel fiber and application thereof
CN114164644A (en) * 2021-12-06 2022-03-11 青岛海赛尔新材料科技有限公司 Hydrogel type alginate fiber spunlace non-woven fabric and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304109A (en) * 1988-06-02 1989-12-07 Takiron Co Ltd Gellike elastomer and contacting medium for ultrasonic diagnostic probe prepared thereof
JPH08319213A (en) * 1995-05-23 1996-12-03 Pacific Corp Self-adhesive pack sheet for beauty and medical treatment
JP2003313110A (en) * 2002-04-23 2003-11-06 Nitto Denko Corp Skin pressure-sensitive adhesive sheet
JP3154406U (en) * 2005-03-24 2009-10-15 アイエスピー・ジャパン株式会社 Attached sheet
JP2012176180A (en) * 2011-02-28 2012-09-13 Takiron Co Ltd Mounting spacer of probe for ultrasonic diagnosis
JP2015151394A (en) * 2014-02-17 2015-08-24 コスメディ製薬株式会社 Cosmetic gel sheet, and production method thereof
JP2017513688A (en) * 2014-04-24 2017-06-01 ソノファスト, インク.Sonofast, Inc. Conductive media pads for ultrasonic probes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304109A (en) * 1988-06-02 1989-12-07 Takiron Co Ltd Gellike elastomer and contacting medium for ultrasonic diagnostic probe prepared thereof
JPH08319213A (en) * 1995-05-23 1996-12-03 Pacific Corp Self-adhesive pack sheet for beauty and medical treatment
JP2003313110A (en) * 2002-04-23 2003-11-06 Nitto Denko Corp Skin pressure-sensitive adhesive sheet
JP3154406U (en) * 2005-03-24 2009-10-15 アイエスピー・ジャパン株式会社 Attached sheet
JP2012176180A (en) * 2011-02-28 2012-09-13 Takiron Co Ltd Mounting spacer of probe for ultrasonic diagnosis
JP2015151394A (en) * 2014-02-17 2015-08-24 コスメディ製薬株式会社 Cosmetic gel sheet, and production method thereof
JP2017513688A (en) * 2014-04-24 2017-06-01 ソノファスト, インク.Sonofast, Inc. Conductive media pads for ultrasonic probes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089128A (en) * 2021-04-20 2021-07-09 合肥学院 Preparation method of polyacrylic acid/cellulose hydrogel fiber, prepared hydrogel fiber and application thereof
CN113089128B (en) * 2021-04-20 2023-06-13 合肥学院 Preparation method of polyacrylic acid/cellulose hydrogel fiber, prepared hydrogel fiber and application thereof
CN114164644A (en) * 2021-12-06 2022-03-11 青岛海赛尔新材料科技有限公司 Hydrogel type alginate fiber spunlace non-woven fabric and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US20150305709A1 (en) Conductive medium pad for ultrasound probe
WO2020196652A1 (en) Solid state contact medium
Steck et al. Topological adhesion. I. Rapid and strong topohesives
US9333723B2 (en) Adhesive composition
JP2008508916A5 (en)
CA3138675A1 (en) Dry double-sided material for adhesion of wet tissues and devices
CN101454027A (en) Curable hydrophilic compositions
WO2006001313A1 (en) Gel, process for producing the same, water-absorbing resin, lubricating material, and substrate for cell culture
WO2018062029A1 (en) Gel sheet
CN111635480A (en) Anti-swelling hydrogel material and preparation method thereof
CN109970999A (en) A kind of chitosan/polysulfonate acidic group beet basic ion is for valence double-network hydrogel and preparation method thereof
CN112830994A (en) Strong hydrogen bond and cation pi synergistic high-adhesion composite hydrogel and preparation method thereof
Yi et al. Bioinspired adhesive and self-healing bacterial cellulose hydrogels formed by a multiple dynamic crosslinking strategy for sealing hemostasis
JP2009270032A (en) Hydrogel and method for producing it
JP2020019842A (en) Hydrogel
JP2017155171A (en) Composite sheet for water absorption containing bacterial cellulose and hydrophilic polymer
Shen et al. Simple preparation of a waterborne polyurethane crosslinked hydrogel adhesive with satisfactory mechanical properties and adhesion properties
JP2022081703A (en) Solid state contact medium
JP4202526B2 (en) Method for producing aqueous gel laminate roll
JP2020179605A (en) Hydrous gel sheet
JP2022081704A (en) Solid contact medium
JP2021151299A (en) Solid contact medium
JP2021151298A (en) Solid contact medium
JP2013501768A (en) Ultrasonic contact medium
EP3330310A1 (en) Hydrogel composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP