WO2020196562A1 - End part structure of optical fiber and semiconductor laser module - Google Patents

End part structure of optical fiber and semiconductor laser module Download PDF

Info

Publication number
WO2020196562A1
WO2020196562A1 PCT/JP2020/013161 JP2020013161W WO2020196562A1 WO 2020196562 A1 WO2020196562 A1 WO 2020196562A1 JP 2020013161 W JP2020013161 W JP 2020013161W WO 2020196562 A1 WO2020196562 A1 WO 2020196562A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
semiconductor laser
end structure
end cap
Prior art date
Application number
PCT/JP2020/013161
Other languages
French (fr)
Japanese (ja)
Inventor
早水 尚樹
橋本 博
那須 秀行
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2021509469A priority Critical patent/JP7479348B2/en
Publication of WO2020196562A1 publication Critical patent/WO2020196562A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • a configuration is disclosed in which laser light output from each of a plurality of semiconductor laser elements is focused on one end face of a multimode optical fiber and input, and then output from the other end face (see Patent Document 1).
  • a rectangular parallelepiped glass member is fused to the other end face.
  • Such a glass member is also called an end cap.
  • the end cap has a function of reducing the power density of the output laser beam at the interface between glass and air.
  • semiconductor laser modules are also used in industrial fields such as processing and welding.
  • a configuration is disclosed in a semiconductor laser module in which laser light output from a plurality of semiconductor laser elements is focused on one end face of an optical fiber and input to propagate the optical fiber (see Patent Document 2).
  • An end cap is provided on the end face of the optical fiber that inputs the laser light, and the power density of the laser light at the interface between glass and air is higher than the power density at the interface when the laser light is directly input to the end face of the optical fiber.
  • a technique for reducing the damage and suppressing the occurrence of damage to the end face of the optical fiber can be considered.
  • the unbound light may damage the member.
  • the fixing material may be damaged.
  • the coating of the optical fiber it may damage the coating.
  • the end structure of the optical fiber according to one aspect of the present invention is characterized in that the light treatment material contains a resin agent that scatters the light.
  • the end structure of the optical fiber according to one aspect of the present invention is further provided with a light absorber which is arranged on a part of the end face side of the optical fiber and the outer periphery of the end cap and at least fixes the optical fiber. It is a feature.
  • FIG. 1 is a schematic plan view of a semiconductor laser module having an end structure according to the first embodiment.
  • FIG. 2 is a schematic partial cutaway drawing of the end structure according to the first embodiment.
  • FIG. 3 is a diagram illustrating an input state of light in the end structure.
  • FIG. 4 is a schematic partial cutaway drawing of the end structure according to the second embodiment.
  • FIG. 5 is a schematic partial cutaway drawing of the end structure according to the third embodiment.
  • FIG. 1 is a schematic plan view of a semiconductor laser module having an end structure in the optical fiber according to the first embodiment.
  • the end structure of the optical fiber may be simply referred to as the end structure.
  • the semiconductor laser module 100 includes an end structure 10 arranged in the vicinity of the fourth lens 111.
  • the end structure 10 includes an optical fiber 11. One end of the optical fiber 11 opposite to the fourth lens 111 side extends to the outside of the package 101.
  • the semiconductor laser elements 104-1 to 104-6 are arranged at different heights from the bottom surface of the package 101 by the LD height adjusting plate 102. Further, the first lenses 106-1 to 106-6, the second lenses 107-1 to 107-6, and the mirrors 108-1 to 108-6 are arranged at the same height as one corresponding semiconductor laser element, respectively. There is.
  • a loose tube 114 is provided at the insertion portion of the optical fiber 112 into the package 101, and the boot 113 is externally fitted to a part of the package 101 so as to cover a part of the loose tube 114.
  • Each semiconductor laser element 104-1 to 104-6 is supplied with electric power from the lead pin 105 to output laser light.
  • Each of the output laser beams is regarded as substantially parallel light by the first lenses 106-1 to 106-6 and the second lenses 107-1 to 107-6, respectively.
  • each laser beam is reflected in the direction of the optical fiber 112 by one mirror 108-1 to 108-6 arranged at the corresponding height.
  • each laser beam is focused by the third lens 109 and the fourth lens 111. That is, the first lens 106-1 to 106-6, the second lens 107-1 to 107-6, the mirrors 108-1 to 108-6, the third lens 109, and the fourth lens 111 end each laser beam. It constitutes an optical system to be input to the structure 10.
  • Each laser beam focused by the fourth lens 111 is input to the end structure 10.
  • the optical fiber 11 guides each input laser beam and outputs it to the outside of the semiconductor laser module 100.
  • the package 101 which is a housing, is preferably made of a material having good thermal conductivity in order to suppress an internal temperature rise, and may be a metal member made of various metals.
  • the LD height adjusting plate 102 is fixed in the package 101, adjusts the height of the semiconductor laser elements 104-1 to 104-6, and the semiconductor laser elements 104-1 to 104-6 The optical paths of the output laser beams do not interfere with each other.
  • the LD height adjusting plate 102 may be integrally configured with the package 101.
  • the third lens 109 and the fourth lens 111 are, for example, cylindrical lenses having focal lengths of 12 mm and 5 mm and having orthogonal curvatures to each other, and condense the laser light output by the semiconductor laser elements 104-1 to 104-6. , Suitable for coupling to the optical fiber 112.
  • the positions of the third lens 109 and the fourth lens 111 with respect to the optical fiber 112 are such that, for example, the coupling efficiency of the laser light output by the semiconductor laser elements 104-1 to 104-6 to the optical fiber 112 is 85% or more. Has been adjusted.
  • the optical filter 110 is, for example, a low-pass filter that reflects light having a wavelength of 1060 nm to 1080 nm and transmits light having a wavelength of 900 nm to 1000 nm.
  • the optical filter 110 transmits the laser light output by the semiconductor laser elements 104-1 to 104-6, and the semiconductor laser elements 104-1 to 104-6 are irradiated with light having a wavelength of 1060 nm to 1080 nm from the outside. To prevent that.
  • the optical filter 110 is used to prevent the output laser light of the semiconductor laser elements 104-1 to 104-6 slightly reflected by the optical filter 110 from returning to the semiconductor laser elements 104-1 to 104-6. It is arranged at an angle to the optical axis.
  • the passing wavelength of the optical filter 110 is set to 1060 nm to 1080 nm, but the wavelength is not limited to this wavelength. Further, the optical filter 110 is not always necessary.
  • the boot 113 is inserted with the optical fiber 112 to prevent damage due to bending of the optical fiber 11.
  • the boot 113 may be a metal boot, but the material is not particularly limited, and rubber, various resins, plastic, or the like may be used. However, boots 113 are not always necessary.
  • the loose tube 114 is inserted with an optical fiber 11 to prevent damage due to bending of the optical fiber 11. Further, the loose tube 114 is fixed to the optical fiber 11 and as a result, the position of the optical fiber 11 is prevented from being displaced when a pulling force is applied to the optical fiber 11 in the longitudinal direction. May be good. However, the loose tube 114 is not always necessary.
  • FIG. 2 is a schematic partial cutaway view of the end structure 10.
  • the end structure 10 includes an optical fiber 11, an end cap 12, a light absorber 13, and a fixing material 14.
  • the optical fiber 11 is an optical fiber made of a quartz glass-based material, and is a coating 11c made of a core portion 11a, a clad portion 11b formed on the outer periphery of the core portion 11a, and a resin formed on the outer periphery of the clad portion 11b. And have. Further, the optical fiber 11 has an end face 11d. The coating 11c has been removed in the vicinity of the end face 11d, and the clad portion 11b is exposed.
  • the optical fiber 11 may be a multimode optical fiber having a core diameter of 105 ⁇ m in the core portion 11a and a clad diameter of 125 ⁇ m in the clad portion 11b, but may be a single mode optical fiber.
  • the NA of the optical fiber 11 is, for example, 0.15 to 0.22.
  • the end cap 12 includes a truncated cone-shaped output unit 12a and a cylindrical input unit 12b.
  • the output unit 12a has a circular bottom surface 12aa which is an upper bottom surface of the truncated cone shape and a side surface 12ab which is a side surface of the truncated cone as its surface.
  • the bottom surface 12aa of the end cap 12 is joined to the end surface 11d of the optical fiber 11. The joining may be a fusion connection, or the bottom surface 12aa and the end face 11d may be simply in contact with each other without being fused.
  • the bottom surface 12aa corresponds to the first surface and has a larger area than the end surface 11d. Since the diameter of the output portion 12a of the end cap 12 is reduced toward the bottom surface 12aa, it is easy to fuse and connect with the optical fiber 11.
  • the input portion 12b has, as its surface, one end face of a cylinder shape and an annular ring surface 12ba, a side surface 12bb which is a side surface of the cylinder shape, and a bottom surface 12bc of the other end face of the cylinder shape and a circular shape.
  • the bottom surface 12bc corresponds to a second surface located on the opposite side of the bottom surface 12aa, and has a larger area than the end surface 11d.
  • the shape of the light absorber 13 is not particularly limited, as the outer edge is, for example, a circular shape or a polygonal shape in a cross section perpendicular to the insertion hole 13a. Further, the cross-sectional shape of the insertion hole 13a is also circular or polygonal, and is not particularly limited. The outer edge may be polygonal and the insertion hole 13a may be circular.
  • the light absorber 13 is preferably connected to the package 101 via a good heat conductor (not shown).
  • the thermally good conductor is preferably made of a material having a thermal conductivity of 0.5 W / mK or more, and is made of, for example, solder or a thermally conductive adhesive.
  • the fixing material 14 is made of a UV curable resin such as an epoxy resin or a urethane resin.
  • the refractive index of the fixing material 14 is preferably equal to or higher than the refractive index of the clad portion 11b of the optical fiber 11 at 25 ° C., and is in the operating temperature range of the semiconductor laser module 100 (for example, 15 ° C. to 100 ° C.). It is more preferable that the refractive index is equal to or higher than the refractive index of the clad portion 11b of the optical fiber 11.
  • the difference in the specific refractive index with respect to the clad portion 11b is 0% or more and 10% or less.
  • the fixing material 14 has a thickness of 1 ⁇ m or more and 800 ⁇ m or less in a direction orthogonal to the longitudinal direction of the optical fiber 11. It is known that the UV curable resin can have a low refractive index by containing fluorine and a high refractive index by containing sulfur, and is used as a material for increasing or decreasing the refractive index. The refractive index can be adjusted by adjusting the content.
  • the laser beams L1a, L1b, and L1c are components of the laser beam L1.
  • AR (Anti-Reflection) coating 12c is provided on the bottom surface 12bc of the end cap 12. As a result, the reflection of the laser beams L1a, L1b, and L1c on the bottom surface 12bc is suppressed.
  • the bottom surface 12bc of the end cap 12 has a larger area than the end face 11d of the optical fiber 11.
  • the optical treatment material 12d is provided in the annular region around the region where the end surface 11d of the optical fiber 11 is joined. ing.
  • the laser beam L1 includes a laser beam L1a which is a component that is coupled to the core portion 11a of the optical fiber 11 and propagates through the core portion 11a. Further, the laser beam L1 includes a laser beam L1b which is a component that is not coupled to the core portion 11a of the optical fiber 11, but is coupled to the clad portion 11b and propagates in the clad mode.
  • the laser beam L1b propagated in the clad mode gradually leaks in the longitudinal direction, passes through the fixing material 14, and is absorbed by the light absorber 13.
  • the laser beam L1 contains a component that does not bind to the optical fiber 11, that is, a laser beam L1c that is unbound light.
  • the laser beam L1c reaches, for example, an annular region of the bottom surface 12aa around the region where the end faces 11d are joined.
  • the light processing material 12d scatters or reflects the laser beam L1c.
  • the light density is low even if the laser light L1c reaches the fixing material 14 or the coating 11c. Damage to the fixing material 14 and the coating 11c is suppressed.
  • the light processing material 12d is not particularly limited as long as it scatters or reflects the laser beam L1c.
  • the light treatment material 12d is a highly reflective coating made of a dielectric multilayer film or a metal film.
  • the reflectance of the highly reflective coating is preferably 80% or more, more preferably 95% or more.
  • the light treatment material 12d contains an inorganic adhesive as a main component.
  • the light treatment material 12d may be made of an inorganic adhesive.
  • the inorganic adhesive is, for example, a silicon-based adhesive or an alumina-based adhesive, and is formed into a ceramic-like film by being applied in an uncured state and then cured. Inorganic adhesives reflect and scatter light. Inorganic adhesives are preferable because they have high heat resistance. Further, when the inorganic adhesive uses an organic solvent, most of the organic solvent volatilizes during curing.
  • the light treatment material 12d contains a resin agent that scatters the laser beam L1c as a main component. Further, the light treatment material 12d may be made of a resin agent that scatters the laser beam L1c.
  • a resin for example, a silicone-based thermally conductive compound can be used.
  • a thermally conductive compound contains, for example, boron nitride as a filler, and the filler scatters and diffuses light.
  • a thermally conductive compound contains, for example, boron nitride as a filler, and is, for example, T644 manufactured by Comelix, USA.
  • the filler that scatters light is not limited to boron nitride, and other inorganic fillers may be used.
  • the light treatment material 12d contains an inorganic adhesive or a resin agent
  • the light treatment material 12d can be easily obtained by fusingly connecting the optical fiber 11 and the end cap 12 and then applying and curing the light treatment material 12d. It can be formed inexpensively. Further, the optical treatment material 12d can be easily provided so that there is no gap between the optical fiber 11 and the optical fiber 11.
  • the light processing material 12d is provided in the annular region of the side surface 12ab, the annular surface 12ba, and the bottom surface 12aa of the end cap 12.
  • the light treatment material may be provided, for example, only in the annular region of the bottom surface 12aa or a part of the region, or the annular region of the bottom surface 12aa and the side surface 12ab or the side surface of the end cap 12. It may be provided in a part of 12ab.
  • FIG. 4 is a schematic partial cutaway view of the end structure 10A according to the second embodiment. This end structure 10A can be used in place of the end structure 10 in the semiconductor laser module 100.
  • the end structure 10A includes an optical fiber 11, an end cap 12A, a light absorber 13A, a fixing material 14, and a light treatment material 12Ad.
  • the end cap 12A has a configuration in which the light processing material 12d is removed from the configuration of the end cap 12 shown in FIG.
  • the light absorber 13A has a structure in which an injection hole 13c is further provided in the structure of the light absorber 13 shown in FIG.
  • the injection hole 13c is formed so as to communicate with the recess 13b from the outer peripheral surface of the light absorber 13.
  • the light absorber 13A may be composed of a single tubular member, or may be composed of a combination of a plurality of members. Similar to FIG. 2, the fixing material 14 fixes the clad portion 11b of the optical fiber 11 and the light absorber 13A.
  • the recess 13b of the light absorber 13A is filled with the light treatment material 12Ad.
  • the light treatment material 12Ad is provided in the annular region around the side surface 12ab, the annular surface 12ba, and the bottom surface 12aa of the end cap 12A to which the end surface 11d of the optical fiber 11 is joined.
  • the unbound light that does not bind to the optical fiber 11 among the laser light L1 input from the bottom surface 12bc of the end cap 12A is emitted from the light processing material 12Ad. Is scattered or reflected. As a result, damage to the fixing material 14 and the coating 11c is suppressed.
  • the light treatment material 12Ad contains, for example, an inorganic adhesive as a main component or a resin agent that scatters unbound light, and the same material as the light treatment material 12d can be used.
  • the light treatment material 12Ad can be made into a state of being filled in the recess 13b by injecting it from the injection hole 13c in an uncured state and then curing it.
  • the light treatment material 12Ad may be provided, for example, only in the annular region of the bottom surface 12aa or a part of the region, or the annular region of the bottom surface 12aa and the end cap 12 It may be provided on the side surface 12ab or a part of the side surface 12ab.
  • the region where the light treatment material 12Ad is provided is not limited to these.
  • FIG. 5 is a schematic partial cutaway view of the end structure 10B according to the second embodiment.
  • This end structure 10A can be used in place of the end structure 10 in the semiconductor laser module 100.
  • the end structure 10B includes an optical fiber 11B, an end cap 12, a light absorber 13B, and a fixing material 14.
  • the optical fiber 11B has a configuration in which the clad portion 11b of the optical fiber 11 is replaced with the clad portion 11Bb.
  • the optical fiber 11B has a large diameter portion 11Bba whose diameter is partially increased in the longitudinal direction of the clad portion 11Bb.
  • the clad diameter of the large diameter portion 11Bba is the same as that of the end face 11Bd of the optical fiber 11B other than the large diameter portion 11Bba, and is, for example, 125 ⁇ m.
  • the large diameter portion 11Bba has a portion in which the clad diameter increases in a tapered shape as the distance from the end surface 11Bd, a portion in which the clad diameter has a constant large diameter, and a portion in which the clad diameter decreases in a tapered shape as the distance from the end surface 11Bd. It consists of a part to be used.
  • the clad diameter after the diameter is reduced is, for example, 125 ⁇ m.
  • the clad diameter of the constant large diameter portion is larger than 125 ⁇ m, for example, 500 ⁇ m.
  • the light absorber 13B has an insertion hole 13Ba in which the optical fiber 11B is arranged and a recess 13b in which the end cap 12 is arranged and is in communication with the insertion hole 13Ba.
  • the inner diameter of the insertion hole 13Ba is set to a size corresponding to the clad diameter of the large diameter portion 11Bba of the optical fiber 11B.
  • the light absorber 13B is fixed by the fixing material 14 at the large diameter portion 11Bba of the clad portion 11Bb.
  • the end cap 12 is provided with a light processing material 12d (not shown in FIG. 5).
  • the thickness is increased.
  • the power density of the laser beam is reduced as compared with the case where the diameter portion 11Bba is not provided. As a result, the occurrence of damage to the fixing material 14 can be further suppressed.
  • the large diameter portion 11Bba starts from the end surface 11d of the optical fiber 11, but the large diameter portion 11Bba may be separated from the end surface 11d. Further, in the present embodiment, both ends of the large diameter portion 11Bba are tapered, but at least one of both ends may be stepped.
  • the end caps 12 and 12A have a shape that is a combination of a cylindrical shape and a truncated cone shape, but the shape of the end cap is not limited to this, and may be, for example, a rectangular parallelepiped shape or a cylindrical shape.
  • the laser beam having a wavelength in the infrared region is taken as an example, but the wavelength is not limited to this.
  • the amount of energy absorbed by the fixing material is larger than that of the laser beam having a wavelength in the infrared region, and the effect of the present invention may become more remarkable. ..
  • the present invention is not limited by the above embodiment.
  • the present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the present invention can be used for optical fiber and semiconductor laser modules.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This end part structure (10) of an optical fiber (11) is provided with: an optical fiber (11) having a core part (11a) and a cladding part (11b) formed on the outer circumference of the core part (11a); and an end cap (12) having first surfaces (12aa, 12ab, 12ba) that are joined to the end face of the optical fiber (11) and have a larger surface area than an end face (11d) of the optical fiber (11), and a second surface (12bc) that is positioned facing the first surface (12aa) and has a larger surface area than the end face (11d) of the optical fiber (11), wherein light is incident from the second surface (12bc). A light processing material (12d) that scatters or reflects light that does not converge on the optical fiber (11) among the light incident to the end cap (12), is provided to at least a portion of regions surrounding the region to which the end face of the optical fiber (11) is connected, among the first surfaces (12aa, 12ab, 12ba).

Description

光ファイバにおける端部構造および半導体レーザモジュールEnd structure and semiconductor laser module in optical fiber
 本発明は、光ファイバにおける端部構造および半導体レーザモジュールに関する。 The present invention relates to an end structure in an optical fiber and a semiconductor laser module.
 複数の半導体レーザ素子のそれぞれから出力されたレーザ光をマルチモード光ファイバの一方の端面に集光させて入力し、他方の端面から出力させる構成が開示されている(特許文献1参照)。当該他方の端面には、直方体のガラス部材が融着されている。このようなガラス部材はエンドキャップとも呼ばれる。エンドキャップは、出力するレーザ光の、ガラスと空気との界面におけるパワー密度を低減する機能を有する。 A configuration is disclosed in which laser light output from each of a plurality of semiconductor laser elements is focused on one end face of a multimode optical fiber and input, and then output from the other end face (see Patent Document 1). A rectangular parallelepiped glass member is fused to the other end face. Such a glass member is also called an end cap. The end cap has a function of reducing the power density of the output laser beam at the interface between glass and air.
 一方、加工や溶接といった産業分野においても、半導体レーザモジュールが用いられている。半導体レーザモジュールにおいて、複数の半導体レーザ素子から出力されたレーザ光を光ファイバの一方の端面に集光させて入力し、光ファイバを伝搬させる構成が開示されている(特許文献2参照)。 On the other hand, semiconductor laser modules are also used in industrial fields such as processing and welding. A configuration is disclosed in a semiconductor laser module in which laser light output from a plurality of semiconductor laser elements is focused on one end face of an optical fiber and input to propagate the optical fiber (see Patent Document 2).
特開2004-128058号公報Japanese Unexamined Patent Publication No. 2004-128058 国際公開第2015/037725号International Publication No. 2015/037725
 レーザ光を入力する光ファイバの端面にエンドキャップを設け、ガラスと空気との界面におけるレーザ光のパワー密度を、レーザ光を直接的に光ファイバの端面に入力する場合の界面におけるパワー密度よりも低減し、光ファイバの端面の損傷の発生を抑制する技術が考えられる。しかしながら、この場合、エンドキャップに入力された光のうち前記光ファイバに結合しなかった非結合光が存在する場合がある。このような非結合光は、他の部材に到達すると、該部材を損傷させる場合がある。たとえば、非結合光が、光ファイバを固定部材に固着する固着材に到達すると、固着材を損傷させる場合がある。また、非結合光が、光ファイバの被覆に到達すると、被覆を損傷させる場合がある。 An end cap is provided on the end face of the optical fiber that inputs the laser light, and the power density of the laser light at the interface between glass and air is higher than the power density at the interface when the laser light is directly input to the end face of the optical fiber. A technique for reducing the damage and suppressing the occurrence of damage to the end face of the optical fiber can be considered. However, in this case, among the light input to the end cap, there may be unbound light that is not bonded to the optical fiber. When such unbound light reaches another member, it may damage the member. For example, when unbound light reaches a fixing material that fixes an optical fiber to a fixing member, the fixing material may be damaged. Also, when unbound light reaches the coating of the optical fiber, it may damage the coating.
 本発明は、上記に鑑みてなされたものであって、損傷の発生が抑制された光ファイバにおける端部構造および半導体レーザモジュールを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an end structure and a semiconductor laser module in an optical fiber in which the occurrence of damage is suppressed.
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る光ファイバにおける端部構造は、コア部と、前記コア部の外周に形成されたクラッド部とを有する光ファイバと、前記光ファイバの端面に接合された、前記光ファイバの端面よりも面積が広い第1面と、前記第1面とは反対側に位置し、前記光ファイバの端面よりも面積が広い第2面とを有し、前記第2面から光が入力されるエンドキャップと、を備え、前記第1面のうち、前記光ファイバの端面が接合された領域の周囲の領域の少なくとも一部に、前記エンドキャップに入力された光のうち前記光ファイバに結合しなかった光を散乱または反射する光処理材が設けられていることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the end structure of the optical fiber according to one aspect of the present invention includes an optical fiber having a core portion and a clad portion formed on the outer periphery of the core portion. , A first surface joined to the end face of the optical fiber, which has a larger area than the end face of the optical fiber, and a second surface, which is located on the opposite side of the first surface and has a larger area than the end face of the optical fiber. With an end cap having a surface and receiving light from the second surface, at least a part of the first surface around the region where the end faces of the optical fibers are joined. It is characterized in that a light processing material that scatters or reflects light that is not bonded to the optical fiber among the light input to the end cap is provided.
 本発明の一態様に係る光ファイバにおける端部構造は、前記光処理材は無機系接着剤、または光を反射する金属膜もしくは誘電体多層膜を含むことを特徴とする。 The end structure of the optical fiber according to one aspect of the present invention is characterized in that the light treatment material contains an inorganic adhesive, or a metal film or a dielectric multilayer film that reflects light.
 本発明の一態様に係る光ファイバにおける端部構造は、前記光処理材は前記光を散乱させる樹脂剤を含むことを特徴とする。 The end structure of the optical fiber according to one aspect of the present invention is characterized in that the light treatment material contains a resin agent that scatters the light.
 本発明の一態様に係る光ファイバにおける端部構造は、前記光ファイバの前記端面側の一部および前記エンドキャップの外周に配置され、少なくとも前記光ファイバを固定する光吸収体をさらに備えることを特徴とする。 The end structure of the optical fiber according to one aspect of the present invention is further provided with a light absorber which is arranged on a part of the end face side of the optical fiber and the outer periphery of the end cap and at least fixes the optical fiber. It is a feature.
 本発明の一態様に係る光ファイバにおける端部構造は、前記光ファイバと前記エンドキャップとは融着接続されていることを特徴とする。 The end structure of the optical fiber according to one aspect of the present invention is characterized in that the optical fiber and the end cap are fusion-bonded.
 本発明の一態様に係る光ファイバにおける端部構造は、前記光ファイバは、前記クラッド部の長手方向における一部が太径化された太径部を有することを特徴とする。 The end structure of the optical fiber according to one aspect of the present invention is characterized in that the optical fiber has a large diameter portion whose diameter is partially increased in the longitudinal direction of the clad portion.
 本発明の一態様に係る半導体レーザモジュールは、前記光ファイバにおける端部構造と、レーザ光を出力する半導体レーザ素子と、前記レーザ光を集光して前記端部構造の前記エンドキャップの前記第2面に入力させる光学系と、を備えることを特徴とする。 The semiconductor laser module according to one aspect of the present invention includes an end structure in the optical fiber, a semiconductor laser element that outputs laser light, and the first end cap of the end structure that collects the laser light. It is characterized by including an optical system for inputting on two surfaces.
 本発明によれば、損傷の発生が抑制された光ファイバにおける端部構造および半導体レーザモジュールを実現できるという効果を奏する。 According to the present invention, it is possible to realize an end structure and a semiconductor laser module in an optical fiber in which damage is suppressed.
図1は、実施形態1に係る端部構造を備えた半導体レーザモジュールの模式的な平面図である。FIG. 1 is a schematic plan view of a semiconductor laser module having an end structure according to the first embodiment. 図2は、実施形態1に係る端部構造の模式的な一部切欠図である。FIG. 2 is a schematic partial cutaway drawing of the end structure according to the first embodiment. 図3は、端部構造における光の入力状態を説明する図である。FIG. 3 is a diagram illustrating an input state of light in the end structure. 図4は、実施形態2に係る端部構造の模式的な一部切欠図である。FIG. 4 is a schematic partial cutaway drawing of the end structure according to the second embodiment. 図5は、実施形態3に係る端部構造の模式的な一部切欠図である。FIG. 5 is a schematic partial cutaway drawing of the end structure according to the third embodiment.
 以下、添付図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付し、重複説明を適宜省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合があることに留意する必要がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments described below. Further, in the description of the drawings, the same or corresponding elements are appropriately designated by the same reference numerals, and duplicate description will be omitted as appropriate. In addition, it should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, etc. may differ from the reality.
(実施形態1)
 図1は、実施形態1に係る光ファイバにおける端部構造を備えた半導体レーザモジュールの模式的な平面図である。なお、以下では、光ファイバにおける端部構造を、単に端部構造と記載する場合がある。
(Embodiment 1)
FIG. 1 is a schematic plan view of a semiconductor laser module having an end structure in the optical fiber according to the first embodiment. In the following, the end structure of the optical fiber may be simply referred to as the end structure.
 半導体レーザモジュール100は、筐体であるパッケージ101と、パッケージ101の内部に順に積載されたLD高さ調整板102と、サブマウント103-1~103-6と、6つの半導体レーザ素子104-1~104-6とを備える。パッケージ101は、蓋を備えるが、図1においては説明のために図示を省略している。半導体レーザモジュール100は、半導体レーザ素子104-1~104-6に電流を注入するリードピン105を備える。そして、半導体レーザモジュール100は、半導体レーザ素子104-1~104-6が出力するレーザ光の光路上に順に配置された光学素子である、第1レンズ106-1~106-6と、第2レンズ107-1~107-6と、ミラー108-1~108-6と、第3レンズ109と、光フィルタ110と、第4レンズ111とを備える。第1レンズ106-1~106-6、第2レンズ107-1~107-6、ミラー108-1~108-6、第3レンズ109、光フィルタ110、第4レンズ111は、それぞれパッケージ101の内部に固定されている。さらに、半導体レーザモジュール100は、第4レンズ111の近傍に配置された端部構造10を備える。端部構造10は、光ファイバ11を備える。光ファイバ11の第4レンズ111側とは反対側の一端は、パッケージ101の外部に延伸している。 The semiconductor laser module 100 includes a package 101 which is a housing, an LD height adjusting plate 102 which is sequentially loaded inside the package 101, submounts 103-1 to 103-6, and six semiconductor laser elements 104-1. It is provided with ~ 104-6. Package 101 includes a lid, but is not shown in FIG. 1 for the sake of explanation. The semiconductor laser module 100 includes a lead pin 105 that injects a current into the semiconductor laser elements 104-1 to 104-6. The semiconductor laser module 100 includes first lenses 106-1 to 106-6 and second lenses 106-1 to 106-6, which are optical elements sequentially arranged on the optical path of the laser light output by the semiconductor laser elements 104-1 to 104-6. It includes lenses 107-1 to 107-6, mirrors 108-1 to 108-6, a third lens 109, an optical filter 110, and a fourth lens 111. The first lens 106-1 to 106-6, the second lens 107-1 to 107-6, the mirror 108-1 to 108-6, the third lens 109, the optical filter 110, and the fourth lens 111 are each of the package 101. It is fixed inside. Further, the semiconductor laser module 100 includes an end structure 10 arranged in the vicinity of the fourth lens 111. The end structure 10 includes an optical fiber 11. One end of the optical fiber 11 opposite to the fourth lens 111 side extends to the outside of the package 101.
 半導体レーザ素子104-1~104-6は、LD高さ調整板102によってパッケージ101の底面から互いに異なる高さに配置されている。さらに、第1レンズ106-1~106-6、第2レンズ107-1~107-6、ミラー108-1~108-6は、それぞれ対応する1つの半導体レーザ素子と同じ高さに配置されている。また、光ファイバ112のパッケージ101への挿入部には、ルースチューブ114が設けられ、ルースチューブ114の一部を覆うように、パッケージ101の一部にブーツ113が外嵌されている。 The semiconductor laser elements 104-1 to 104-6 are arranged at different heights from the bottom surface of the package 101 by the LD height adjusting plate 102. Further, the first lenses 106-1 to 106-6, the second lenses 107-1 to 107-6, and the mirrors 108-1 to 108-6 are arranged at the same height as one corresponding semiconductor laser element, respectively. There is. A loose tube 114 is provided at the insertion portion of the optical fiber 112 into the package 101, and the boot 113 is externally fitted to a part of the package 101 so as to cover a part of the loose tube 114.
 各半導体レーザ素子104-1~104-6は、リードピン105から電力を供給されてレーザ光を出力する。出力された各レーザ光は、それぞれ第1レンズ106-1~106-6および第2レンズ107-1~107-6によって、略平行光とされる。つぎに、各レーザ光は、対応する高さに配置された1つのミラー108-1~108-6によって、光ファイバ112の方向に反射される。そして、各レーザ光は、第3レンズ109および第4レンズ111によって集光される。すなわち、第1レンズ106-1~106-6、第2レンズ107-1~107-6、ミラー108-1~108-6、第3レンズ109および第4レンズ111は、各レーザ光を端部構造10に入力させる光学系を構成している。 Each semiconductor laser element 104-1 to 104-6 is supplied with electric power from the lead pin 105 to output laser light. Each of the output laser beams is regarded as substantially parallel light by the first lenses 106-1 to 106-6 and the second lenses 107-1 to 107-6, respectively. Next, each laser beam is reflected in the direction of the optical fiber 112 by one mirror 108-1 to 108-6 arranged at the corresponding height. Then, each laser beam is focused by the third lens 109 and the fourth lens 111. That is, the first lens 106-1 to 106-6, the second lens 107-1 to 107-6, the mirrors 108-1 to 108-6, the third lens 109, and the fourth lens 111 end each laser beam. It constitutes an optical system to be input to the structure 10.
 端部構造10には、第4レンズ111によって集光された各レーザ光が入力される。光ファイバ11は、入力された各レーザ光を導波し、半導体レーザモジュール100の外部に出力する。 Each laser beam focused by the fourth lens 111 is input to the end structure 10. The optical fiber 11 guides each input laser beam and outputs it to the outside of the semiconductor laser module 100.
 つぎに、半導体レーザモジュール100の各構成要素についてより詳細に説明する。筐体であるパッケージ101は、内部の温度上昇を抑制するため、熱伝導性のよい材料からなることが好ましく、各種金属からなる金属部材であってよい。 Next, each component of the semiconductor laser module 100 will be described in more detail. The package 101, which is a housing, is preferably made of a material having good thermal conductivity in order to suppress an internal temperature rise, and may be a metal member made of various metals.
 LD高さ調整板102は、上述したように、パッケージ101内に固定されており、半導体レーザ素子104-1~104-6の高さを調節し、半導体レーザ素子104-1~104-6が出力するレーザ光の光路が互いに干渉しないようにしている。なお、LD高さ調整板102は、パッケージ101と一体として構成されていてもよい。 As described above, the LD height adjusting plate 102 is fixed in the package 101, adjusts the height of the semiconductor laser elements 104-1 to 104-6, and the semiconductor laser elements 104-1 to 104-6 The optical paths of the output laser beams do not interfere with each other. The LD height adjusting plate 102 may be integrally configured with the package 101.
 サブマウント103-1~103-6は、LD高さ調整板102上に固定されており、載置された半導体レーザ素子104-1~104-6の放熱を補助する。そのため、サブマウント103-1~103-6は、熱伝導性のよい材料からなることが好ましく、各種金属からなる金属部材であってよい。 The submounts 103-1 to 103-6 are fixed on the LD height adjusting plate 102, and assist the heat dissipation of the mounted semiconductor laser elements 104-1 to 104-6. Therefore, the submounts 103-1 to 103-6 are preferably made of a material having good thermal conductivity, and may be a metal member made of various metals.
 半導体レーザ素子104-1~104-6は、出力されるレーザ光の光強度が、1W以上、さらには、10W以上の高出力な半導体レーザ素子である。本実施形態において、半導体レーザ素子104-1~104-6の出力するレーザ光の光強度は、たとえば11Wである。また、半導体レーザ素子104-1~104-6は、たとえば、900nm~1000nmの波長のレーザ光を出力する。ただし、レーザ光の波長や強度は特に限定されない。なお、半導体レーザモジュール100は6つの半導体レーザ素子104-1~104-6を備えているが、6つ以外の複数でもよく、1つでもよい。 The semiconductor laser elements 104-1 to 104-6 are high-output semiconductor laser elements having an output laser light intensity of 1 W or more and further 10 W or more. In the present embodiment, the light intensity of the laser light output by the semiconductor laser devices 104-1 to 104-6 is, for example, 11 W. Further, the semiconductor laser elements 104-1 to 104-6 output laser light having a wavelength of, for example, 900 nm to 1000 nm. However, the wavelength and intensity of the laser beam are not particularly limited. Although the semiconductor laser module 100 includes six semiconductor laser elements 104-1 to 104-6, a plurality of semiconductor laser elements other than the six or one may be used.
 リードピン105は、不図示のボンディングワイヤを介して半導体レーザ素子104-1~104-6に電力を供給する。供給する電力は、一定の電圧であってよいが、変調電圧であってもよい。 The lead pin 105 supplies electric power to the semiconductor laser elements 104-1 to 104-6 via a bonding wire (not shown). The power to be supplied may be a constant voltage, but may be a modulated voltage.
 第1レンズ106-1~106-6は、たとえば焦点距離が0.3mmのシリンドリカルレンズである。第1レンズ106-1~106-6は、対応する1つの半導体レーザ素子の出力光を鉛直方向に略平行光とする位置に配置される。 The first lenses 106-1 to 106-6 are, for example, cylindrical lenses having a focal length of 0.3 mm. The first lenses 106-1 to 106-6 are arranged at positions where the output light of one corresponding semiconductor laser element is substantially parallel light in the vertical direction.
 第2レンズ107-1~107-6は、たとえば焦点距離が5mmのシリンドリカルレンズである。第2レンズ107-1~107-6は、半導体レーザ素子の出力光を水平方向に略平行光とする位置に配置される。 The second lenses 107-1 to 107-6 are, for example, cylindrical lenses having a focal length of 5 mm. The second lenses 107-1 to 107-6 are arranged at positions where the output light of the semiconductor laser element is substantially parallel light in the horizontal direction.
 ミラー108-1~108-6は、各種の金属膜、または誘電体膜を備えるミラーであってよく、半導体レーザ素子104-1~104-6の出力するレーザ光の波長において、反射率が高いほど好ましい。また、ミラー108-1~108-6は、対応する1つの半導体レーザ素子のレーザ光を光ファイバ112に好適に結合するように、反射方向を微調整することができる。 The mirrors 108-1 to 108-6 may be mirrors provided with various metal films or dielectric films, and have high reflectance at the wavelength of the laser beam output by the semiconductor laser elements 104-1 to 104-6. Is more preferable. Further, the mirrors 108-1 to 108-6 can finely adjust the reflection direction so that the laser beam of one corresponding semiconductor laser element is suitably coupled to the optical fiber 112.
 第3レンズ109と第4レンズ111とは、たとえばそれぞれ焦点距離が12mm、5mmの互いに曲率が直交したシリンドリカルレンズであり、半導体レーザ素子104-1~104-6が出力したレーザ光を集光し、光ファイバ112に好適に結合する。第3レンズ109と第4レンズ111とは、たとえば半導体レーザ素子104-1~104-6が出力したレーザ光の光ファイバ112への結合効率が85%以上となるように、光ファイバ112に対する位置が調整されている。 The third lens 109 and the fourth lens 111 are, for example, cylindrical lenses having focal lengths of 12 mm and 5 mm and having orthogonal curvatures to each other, and condense the laser light output by the semiconductor laser elements 104-1 to 104-6. , Suitable for coupling to the optical fiber 112. The positions of the third lens 109 and the fourth lens 111 with respect to the optical fiber 112 are such that, for example, the coupling efficiency of the laser light output by the semiconductor laser elements 104-1 to 104-6 to the optical fiber 112 is 85% or more. Has been adjusted.
 光フィルタ110は、たとえば波長1060nm~1080nmの光を反射し、900nm~1000nmの光を透過するローパスフィルタである。その結果、光フィルタ110は、半導体レーザ素子104-1~104-6が出力したレーザ光を透過するとともに、波長1060nm~1080nmの光が半導体レーザ素子104-1~104-6に外部から照射されることを防止する。また、光フィルタ110は、光フィルタ110でわずかに反射された半導体レーザ素子104-1~104-6の出力レーザ光が半導体レーザ素子104-1~104-6に戻らないように、レーザ光の光軸に対して角度をつけて配置されている。光フィルタ110の通過波長として、1060nm~1080nmとしたが、この波長に限定するものではない。また、光フィルタ110は必ずしも必要ではない。 The optical filter 110 is, for example, a low-pass filter that reflects light having a wavelength of 1060 nm to 1080 nm and transmits light having a wavelength of 900 nm to 1000 nm. As a result, the optical filter 110 transmits the laser light output by the semiconductor laser elements 104-1 to 104-6, and the semiconductor laser elements 104-1 to 104-6 are irradiated with light having a wavelength of 1060 nm to 1080 nm from the outside. To prevent that. Further, the optical filter 110 is used to prevent the output laser light of the semiconductor laser elements 104-1 to 104-6 slightly reflected by the optical filter 110 from returning to the semiconductor laser elements 104-1 to 104-6. It is arranged at an angle to the optical axis. The passing wavelength of the optical filter 110 is set to 1060 nm to 1080 nm, but the wavelength is not limited to this wavelength. Further, the optical filter 110 is not always necessary.
 ブーツ113は、光ファイバ112を挿通されており、光ファイバ11の曲げによる損傷を防止する。ブーツ113は、金属製のブーツであってよいが、材料は特に限定されず、ゴムや各種の樹脂、プラスチックなどであってもよい。ただし、ブーツ113は必ずしも必要ではない。 The boot 113 is inserted with the optical fiber 112 to prevent damage due to bending of the optical fiber 11. The boot 113 may be a metal boot, but the material is not particularly limited, and rubber, various resins, plastic, or the like may be used. However, boots 113 are not always necessary.
 ルースチューブ114は、光ファイバ11を挿通されており、光ファイバ11の曲げによる損傷を防止する。さらに、ルースチューブ114は、光ファイバ11と固着され、その結果、光ファイバ11に対して長手方向に引っ張る力が加えられた場合に、光ファイバ11の位置がずれることを防止する構成であってもよい。ただし、ルースチューブ114は必ずしも必要ではない。 The loose tube 114 is inserted with an optical fiber 11 to prevent damage due to bending of the optical fiber 11. Further, the loose tube 114 is fixed to the optical fiber 11 and as a result, the position of the optical fiber 11 is prevented from being displaced when a pulling force is applied to the optical fiber 11 in the longitudinal direction. May be good. However, the loose tube 114 is not always necessary.
(端部構造の構成)
 つぎに、端部構造10の構成について具体的に説明する。図2は、端部構造10の模式的な一部切欠図である。
(Structure of end structure)
Next, the configuration of the end structure 10 will be specifically described. FIG. 2 is a schematic partial cutaway view of the end structure 10.
 端部構造10は、光ファイバ11と、エンドキャップ12と、光吸収体13と、固着材14とを備えている。 The end structure 10 includes an optical fiber 11, an end cap 12, a light absorber 13, and a fixing material 14.
 光ファイバ11は、石英ガラス系材料からなる光ファイバであって、コア部11aと、コア部11aの外周に形成されたクラッド部11bと、クラッド部11bの外周に形成された樹脂からなる被覆11cとを有する。また、光ファイバ11は、端面11dを有する。被覆11cは、端面11dの近傍では除去されており、クラッド部11bが露出している。光ファイバ11は、コア部11aのコア径が105μm、クラッド部11bのクラッド径が125μmのマルチモード光ファイバであってよいが、シングルモード光ファイバであってもよい。光ファイバ11のNAは、たとえば0.15~0.22である。 The optical fiber 11 is an optical fiber made of a quartz glass-based material, and is a coating 11c made of a core portion 11a, a clad portion 11b formed on the outer periphery of the core portion 11a, and a resin formed on the outer periphery of the clad portion 11b. And have. Further, the optical fiber 11 has an end face 11d. The coating 11c has been removed in the vicinity of the end face 11d, and the clad portion 11b is exposed. The optical fiber 11 may be a multimode optical fiber having a core diameter of 105 μm in the core portion 11a and a clad diameter of 125 μm in the clad portion 11b, but may be a single mode optical fiber. The NA of the optical fiber 11 is, for example, 0.15 to 0.22.
 エンドキャップ12は、円錐台形状の出力部12aと、円柱形状の入力部12bとを備える。出力部12aは、その表面として、円錐台形状の上底面である円形状の底面12aaと、円錐台の側面である側面12abとを有する。エンドキャップ12の底面12aaは光ファイバ11の端面11dと接合している。接合は、融着接続による接合でもよいし、底面12aaと端面11dとが融着されずに単に当接した状態でもよい。底面12aaは第1面に相当し、端面11dよりも面積が大きい。エンドキャップ12の出力部12aは、底面12aaに向かって直径が縮径しているので、光ファイバ11と融着接続がしやすい。 The end cap 12 includes a truncated cone-shaped output unit 12a and a cylindrical input unit 12b. The output unit 12a has a circular bottom surface 12aa which is an upper bottom surface of the truncated cone shape and a side surface 12ab which is a side surface of the truncated cone as its surface. The bottom surface 12aa of the end cap 12 is joined to the end surface 11d of the optical fiber 11. The joining may be a fusion connection, or the bottom surface 12aa and the end face 11d may be simply in contact with each other without being fused. The bottom surface 12aa corresponds to the first surface and has a larger area than the end surface 11d. Since the diameter of the output portion 12a of the end cap 12 is reduced toward the bottom surface 12aa, it is easy to fuse and connect with the optical fiber 11.
 入力部12bは、その表面として、円柱形状の一方の端面であり円環状の円環面12baと、円柱形状の側面である側面12bbと、円柱形状の他方の端面であり円形状の底面12bcとを有する。底面12bcは、底面12aaの反対側に位置する第2面に相当し、端面11dよりも面積が大きい。 The input portion 12b has, as its surface, one end face of a cylinder shape and an annular ring surface 12ba, a side surface 12bb which is a side surface of the cylinder shape, and a bottom surface 12bc of the other end face of the cylinder shape and a circular shape. Has. The bottom surface 12bc corresponds to a second surface located on the opposite side of the bottom surface 12aa, and has a larger area than the end surface 11d.
 エンドキャップ12の材料は、光ファイバ11のコア部11aと同程度の屈折率を有する材料であることが好ましく、たとえば光ファイバ11のコア部11aと同じ石英系ガラス材料であることが好ましい。 The material of the end cap 12 is preferably a material having a refractive index similar to that of the core portion 11a of the optical fiber 11, and is preferably a quartz glass material having the same refractive index as the core portion 11a of the optical fiber 11, for example.
 エンドキャップ12は、底面12bcから、第4レンズ111で集光されたレーザ光L1が入力される。 The laser beam L1 focused by the fourth lens 111 is input to the end cap 12 from the bottom surface 12bc.
 光吸収体13は、筒状の部材であって、光ファイバ11の端面11d側の一部およびエンドキャップ12の外周に配置されている。光吸収体13は、光ファイバ11が配置される挿通孔13aと、挿通孔13aと連通しており、エンドキャップ12が配置される凹部13bとを有する。光吸収体13は、クラッド部11bと固着材14で固着される。光吸収体13は、単一の筒状の部材で構成されていてもよいし、複数の部材を組み合わせて構成されていてもよい。また、光吸収体13の形状については、外縁が挿通孔13aに垂直な断面においてたとえば円状や多角形状などであり、特に限定されない。また、挿通孔13aの断面形状についても円状や多角形状などであり、特に限定されない。外縁が多角形状で挿通孔13aが円状でもよい。 The light absorber 13 is a tubular member, and is arranged on a part of the end face 11d side of the optical fiber 11 and on the outer periphery of the end cap 12. The light absorber 13 has an insertion hole 13a in which the optical fiber 11 is arranged and a recess 13b which communicates with the insertion hole 13a and in which the end cap 12 is arranged. The light absorber 13 is fixed to the clad portion 11b by the fixing material 14. The light absorber 13 may be composed of a single tubular member, or may be composed of a combination of a plurality of members. The shape of the light absorber 13 is not particularly limited, as the outer edge is, for example, a circular shape or a polygonal shape in a cross section perpendicular to the insertion hole 13a. Further, the cross-sectional shape of the insertion hole 13a is also circular or polygonal, and is not particularly limited. The outer edge may be polygonal and the insertion hole 13a may be circular.
 光吸収体13は、レーザ光L1の波長において、光吸収性を有し、たとえばレーザ光L1の波長において、吸収率が30%以上、好ましくは70%以上である。その結果、光吸収体13は、光ファイバ11に入力したレーザ光L1のうち、クラッド部11bから漏洩したレーザ光を吸収する。また、光吸収体13は、光吸収により発生した熱を放熱するため、熱伝導性のよい材料からなることが好ましく、たとえばCu、Ni、ステンレス鋼、またはFeを含む金属部材、Ni、Cr、Tiを含む金属、もしくはCを含む表面メッキ層を備える部材、AlN、もしくはAlを含むセラミック部材、またはAlN、もしくはAlを含む表面を覆うセラミック層を備える部材からなることが好ましい。また、光吸収体13は、光吸収により発生した熱を放熱するため、パッケージ101に不図示の熱良導体を介して接続されていることが好ましい。熱良導体は、熱伝導率が0.5W/mK以上の材料からなることが好ましく、たとえばはんだや熱伝導性接着剤からなる。 The light absorber 13 has light absorption at the wavelength of the laser beam L1, and has an absorption rate of, for example, 30% or more, preferably 70% or more at the wavelength of the laser beam L1. As a result, the light absorber 13 absorbs the laser light leaked from the clad portion 11b of the laser light L1 input to the optical fiber 11. Further, since the light absorber 13 dissipates heat generated by light absorption, it is preferably made of a material having good thermal conductivity. For example, a metal member containing Cu, Ni, stainless steel, or Fe, Ni, Cr, etc. metal containing Ti or member comprising a surface plating layer containing C,, AlN, or ceramic member including an Al 2 O 3 or AlN, or be made of a member having a ceramic layer covering the surface including the Al 2 O 3, preferable. Further, in order to dissipate heat generated by light absorption, the light absorber 13 is preferably connected to the package 101 via a good heat conductor (not shown). The thermally good conductor is preferably made of a material having a thermal conductivity of 0.5 W / mK or more, and is made of, for example, solder or a thermally conductive adhesive.
 固着材14は、たとえばエポキシ樹脂、ウレタン系の樹脂などのUV硬化樹脂からなる。固着材14の屈折率は、25℃において光ファイバ11のクラッド部11bの屈折率と等しい、またはそれよりも高いことが好ましく、半導体レーザモジュール100の使用温度領域(たとえば、15℃~100℃)において、光ファイバ11のクラッド部11bの屈折率と等しい、またはそれよりも高いことがさらに好ましい。固着材14の屈折率は、たとえばクラッド部11bに対する比屈折率差が0%以上10%以下である。また、固着材14は、光ファイバ11の長手方向に直交する方向における厚さが1μm以上800μm以下とされていることが好ましい。なお、UV硬化樹脂は、例えば、フッ素を含有させることで低屈折率化でき、イオウを含有させることで高屈折率化できることが知られており、屈折率を高くする材料や、低くする材料の含有量を調整することで、屈折率を調整することができる。 The fixing material 14 is made of a UV curable resin such as an epoxy resin or a urethane resin. The refractive index of the fixing material 14 is preferably equal to or higher than the refractive index of the clad portion 11b of the optical fiber 11 at 25 ° C., and is in the operating temperature range of the semiconductor laser module 100 (for example, 15 ° C. to 100 ° C.). It is more preferable that the refractive index is equal to or higher than the refractive index of the clad portion 11b of the optical fiber 11. As for the refractive index of the fixing material 14, for example, the difference in the specific refractive index with respect to the clad portion 11b is 0% or more and 10% or less. Further, it is preferable that the fixing material 14 has a thickness of 1 μm or more and 800 μm or less in a direction orthogonal to the longitudinal direction of the optical fiber 11. It is known that the UV curable resin can have a low refractive index by containing fluorine and a high refractive index by containing sulfur, and is used as a material for increasing or decreasing the refractive index. The refractive index can be adjusted by adjusting the content.
 つぎに、エンドキャップ12のより具体的構成およびレーザ光L1の入力状態について、図3を参照して説明する。図3において、レーザ光L1a、L1b、L1cはレーザ光L1の成分である。 Next, a more specific configuration of the end cap 12 and an input state of the laser beam L1 will be described with reference to FIG. In FIG. 3, the laser beams L1a, L1b, and L1c are components of the laser beam L1.
 エンドキャップ12の底面12bcには、AR(Anti-Reflection)コーティング12cが設けられている。これにより、レーザ光L1a、L1b、L1cの底面12bcでの反射が抑制される。 AR (Anti-Reflection) coating 12c is provided on the bottom surface 12bc of the end cap 12. As a result, the reflection of the laser beams L1a, L1b, and L1c on the bottom surface 12bc is suppressed.
 エンドキャップ12の底面12bcは、光ファイバ11の端面11dよりも面積が大きい。その結果、レーザ光L1が集光されて端部構造10に入力する場合、光ファイバ11の端面11dに直接入力する場合よりも、エンドキャップ12の底面12bcに入力する方が、界面におけるレーザ光L1のビームのパワー密度が小さい状態で入力する。その結果、レーザ光L1のパワーによるガラスの損傷の発生が抑制される。 The bottom surface 12bc of the end cap 12 has a larger area than the end face 11d of the optical fiber 11. As a result, when the laser beam L1 is focused and input to the end structure 10, it is better to input the laser light to the bottom surface 12bc of the end cap 12 than to directly input to the end face 11d of the optical fiber 11. Input with the power density of the L1 beam low. As a result, the occurrence of damage to the glass due to the power of the laser beam L1 is suppressed.
 また、エンドキャップ12の側面12ab、円環面12ba、および、底面12aaのうち、光ファイバ11の端面11dが接合された領域の周囲にある円環状の領域には、光処理材12dが設けられている。 Further, among the side surface 12ab, the annular surface 12ba, and the bottom surface 12aa of the end cap 12, the optical treatment material 12d is provided in the annular region around the region where the end surface 11d of the optical fiber 11 is joined. ing.
 レーザ光L1には、光ファイバ11のコア部11aに結合してコア部11aを伝搬する成分であるレーザ光L1aが含まれている。また、レーザ光L1には、光ファイバ11のコア部11aに結合しないが、クラッド部11bに結合してクラッドモードで伝搬する成分であるレーザ光L1bが含まれている。なお、クラッドモードで伝搬したレーザ光L1bは、長手方向において徐々に漏洩し、固着材14を通過して光吸収体13に吸収される。 The laser beam L1 includes a laser beam L1a which is a component that is coupled to the core portion 11a of the optical fiber 11 and propagates through the core portion 11a. Further, the laser beam L1 includes a laser beam L1b which is a component that is not coupled to the core portion 11a of the optical fiber 11, but is coupled to the clad portion 11b and propagates in the clad mode. The laser beam L1b propagated in the clad mode gradually leaks in the longitudinal direction, passes through the fixing material 14, and is absorbed by the light absorber 13.
 さらに、レーザ光L1には、光ファイバ11に結合しない成分、すなわち非結合光であるレーザ光L1cが含まれている。レーザ光L1cはたとえば底面12aaのうち、端面11dが接合された領域の周囲にある円環状の領域に到達する。 Further, the laser beam L1 contains a component that does not bind to the optical fiber 11, that is, a laser beam L1c that is unbound light. The laser beam L1c reaches, for example, an annular region of the bottom surface 12aa around the region where the end faces 11d are joined.
 光処理材12dは、レーザ光L1cを散乱または反射する。その結果、レーザ光L1cが固着材14や被覆11cに到達することが抑制される、または散乱された光の場合、固着材14や被覆11cに到達しても光密度が低くなっているので、固着材14や被覆11cの損傷が抑制される。 The light processing material 12d scatters or reflects the laser beam L1c. As a result, in the case of light in which the laser beam L1c is suppressed from reaching the fixing material 14 or the coating 11c or is scattered, the light density is low even if the laser light L1c reaches the fixing material 14 or the coating 11c. Damage to the fixing material 14 and the coating 11c is suppressed.
 光処理材12dは、レーザ光L1cを散乱または反射するものであれば特に限定されない。たとえは、光処理材12dは、誘電体多層膜や金属膜からなる高反射コーティングである。高反射コーティングの反射率は80%以上が好ましく、95%以上がさらに好ましい。 The light processing material 12d is not particularly limited as long as it scatters or reflects the laser beam L1c. For example, the light treatment material 12d is a highly reflective coating made of a dielectric multilayer film or a metal film. The reflectance of the highly reflective coating is preferably 80% or more, more preferably 95% or more.
 たとえは、光処理材12dは、主成分として無機系接着剤を含む。また、光処理材12dは、無機系接着剤からなるものでもよい。無機系接着剤は、たとえばケイ素系やアルミナ系のものであり、未硬化の状態で塗布した後に硬化させることで、セラミック状の膜となる。無機系接着剤は光を反射したり散乱したりする。無機系接着剤は耐熱性が高いので好ましい。また、無機系接着剤が有機溶剤を使用するものである場合、有機溶剤は、硬化の際に殆どが揮発する。 For example, the light treatment material 12d contains an inorganic adhesive as a main component. Further, the light treatment material 12d may be made of an inorganic adhesive. The inorganic adhesive is, for example, a silicon-based adhesive or an alumina-based adhesive, and is formed into a ceramic-like film by being applied in an uncured state and then cured. Inorganic adhesives reflect and scatter light. Inorganic adhesives are preferable because they have high heat resistance. Further, when the inorganic adhesive uses an organic solvent, most of the organic solvent volatilizes during curing.
 たとえは、光処理材12dは、主成分としてレーザ光L1cを散乱させる樹脂剤を含む。また、光処理材12dは、レーザ光L1cを散乱させる樹脂剤からなるものでもよい。このような樹脂としては、たとえばシリコーン系の熱伝導性コンパウンドを使用できる。このような熱伝導性コンパウンドは、たとえば窒化ホウ素をフィラーとして含み、フィラーによって光が散乱され、拡散する。このような熱伝導性コンパウンドは、たとえば窒化ホウ素をフィラーとして含むものであり、たとえば米国コメリクス社製T644である。また、光を散乱するフィラーは、窒化ホウ素に限られず、他の無機フィラーでもよい。 For example, the light treatment material 12d contains a resin agent that scatters the laser beam L1c as a main component. Further, the light treatment material 12d may be made of a resin agent that scatters the laser beam L1c. As such a resin, for example, a silicone-based thermally conductive compound can be used. Such a thermally conductive compound contains, for example, boron nitride as a filler, and the filler scatters and diffuses light. Such a thermally conductive compound contains, for example, boron nitride as a filler, and is, for example, T644 manufactured by Comelix, USA. Further, the filler that scatters light is not limited to boron nitride, and other inorganic fillers may be used.
 また、光処理材12dが無機系接着剤や樹脂剤を含むものであれば、光ファイバ11とエンドキャップ12とを融着接続した後に、塗布して硬化させることによって光処理材12dを容易かつ安価に形成することができる。また、光ファイバ11との間に隙間ができないように光処理材12dを設けることが容易にできる。 Further, if the light treatment material 12d contains an inorganic adhesive or a resin agent, the light treatment material 12d can be easily obtained by fusingly connecting the optical fiber 11 and the end cap 12 and then applying and curing the light treatment material 12d. It can be formed inexpensively. Further, the optical treatment material 12d can be easily provided so that there is no gap between the optical fiber 11 and the optical fiber 11.
 なお、本実施形態では、光処理材12dは、エンドキャップ12の側面12ab、円環面12ba、および、底面12aaのうち円環状の領域に設けられている。しかし、光処理材は、たとえば底面12aaのうち円環状の領域または該領域の一部のみに設けられていてもよいし、底面12aaのうち円環状の領域と、エンドキャップ12の側面12abまたは側面12abの一部とに設けられていてもよい。 In the present embodiment, the light processing material 12d is provided in the annular region of the side surface 12ab, the annular surface 12ba, and the bottom surface 12aa of the end cap 12. However, the light treatment material may be provided, for example, only in the annular region of the bottom surface 12aa or a part of the region, or the annular region of the bottom surface 12aa and the side surface 12ab or the side surface of the end cap 12. It may be provided in a part of 12ab.
 以上説明したように、端部構造10では、固着材14や被覆11cの損傷が抑制される。 As described above, in the end structure 10, damage to the fixing material 14 and the coating 11c is suppressed.
(実施形態2)
 図4は、実施形態2に係る端部構造10Aの模式的な一部切欠図である。この端部構造10Aは、半導体レーザモジュール100において端部構造10に置き換えて使用することができる。
(Embodiment 2)
FIG. 4 is a schematic partial cutaway view of the end structure 10A according to the second embodiment. This end structure 10A can be used in place of the end structure 10 in the semiconductor laser module 100.
 端部構造10Aは、光ファイバ11と、エンドキャップ12Aと、光吸収体13Aと、固着材14と、光処理材12Adを備えている。 The end structure 10A includes an optical fiber 11, an end cap 12A, a light absorber 13A, a fixing material 14, and a light treatment material 12Ad.
 エンドキャップ12Aは、図3に示すエンドキャップ12の構成から、光処理材12dを削除した構成を有する。光吸収体13Aは、図2に示す光吸収体13の構成に、さらに注入孔13cを設けた構成を有する。注入孔13cは光吸収体13の外周面から凹部13bに連通するように形成されている。光吸収体13Aは、単一の筒状の部材で構成されていてもよいし、複数の部材を組み合わせて構成されていてもよい。固着材14は、図2と同様に、光ファイバ11のクラッド部11bと光吸収体13Aとを固着している。 The end cap 12A has a configuration in which the light processing material 12d is removed from the configuration of the end cap 12 shown in FIG. The light absorber 13A has a structure in which an injection hole 13c is further provided in the structure of the light absorber 13 shown in FIG. The injection hole 13c is formed so as to communicate with the recess 13b from the outer peripheral surface of the light absorber 13. The light absorber 13A may be composed of a single tubular member, or may be composed of a combination of a plurality of members. Similar to FIG. 2, the fixing material 14 fixes the clad portion 11b of the optical fiber 11 and the light absorber 13A.
 端部構造10Aでは、光吸収体13Aの凹部13bに光処理材12Adが充填されている。これによって、エンドキャップ12Aの側面12ab、円環面12ba、および、底面12aaのうち光ファイバ11の端面11dが接合された領域の周囲にある円環状の領域に、光処理材12Adが設けられている。その結果、端部構造10Aでは、端部構造10の場合と同様に、エンドキャップ12Aの底面12bcから入力されたレーザ光L1のうち、光ファイバ11に結合しない非結合光を、光処理材12Adが散乱または反射する。その結果、固着材14や被覆11cの損傷が抑制される。 In the end structure 10A, the recess 13b of the light absorber 13A is filled with the light treatment material 12Ad. As a result, the light treatment material 12Ad is provided in the annular region around the side surface 12ab, the annular surface 12ba, and the bottom surface 12aa of the end cap 12A to which the end surface 11d of the optical fiber 11 is joined. There is. As a result, in the end structure 10A, as in the case of the end structure 10, the unbound light that does not bind to the optical fiber 11 among the laser light L1 input from the bottom surface 12bc of the end cap 12A is emitted from the light processing material 12Ad. Is scattered or reflected. As a result, damage to the fixing material 14 and the coating 11c is suppressed.
 光処理材12Adは、たとえば主成分として無機系接着剤を含む、または非結合光を散乱させる樹脂剤を含むものであり、光処理材12dと同様のものが使用できる。光処理材12Adは、未硬化の状態で注入孔13cから注入した後に硬化させることで、凹部13bに充填された状態とすることができる。 The light treatment material 12Ad contains, for example, an inorganic adhesive as a main component or a resin agent that scatters unbound light, and the same material as the light treatment material 12d can be used. The light treatment material 12Ad can be made into a state of being filled in the recess 13b by injecting it from the injection hole 13c in an uncured state and then curing it.
 本実施形態においても、光処理材12Adは、たとえば底面12aaのうち円環状の領域または該領域の一部のみに設けられていてもよいし、底面12aaのうち円環状の領域と、エンドキャップ12の側面12abまたは側面12abの一部とに設けられていてもよい。ただし、光処理材12Adが設けられる領域はこれらに限定されない。 Also in the present embodiment, the light treatment material 12Ad may be provided, for example, only in the annular region of the bottom surface 12aa or a part of the region, or the annular region of the bottom surface 12aa and the end cap 12 It may be provided on the side surface 12ab or a part of the side surface 12ab. However, the region where the light treatment material 12Ad is provided is not limited to these.
(実施形態3)
 図5は、実施形態2に係る端部構造10Bの模式的な一部切欠図である。この端部構造10Aは、半導体レーザモジュール100において端部構造10に置き換えて使用することができる。
(Embodiment 3)
FIG. 5 is a schematic partial cutaway view of the end structure 10B according to the second embodiment. This end structure 10A can be used in place of the end structure 10 in the semiconductor laser module 100.
 端部構造10Bは、光ファイバ11Bと、エンドキャップ12と、光吸収体13Bと、固着材14とを備えている。 The end structure 10B includes an optical fiber 11B, an end cap 12, a light absorber 13B, and a fixing material 14.
 光ファイバ11Bは、光ファイバ11のクラッド部11bをクラッド部11Bbに置き換えた構成を有する。光ファイバ11Bは、クラッド部11Bbの長手方向における一部が太径化された太径部11Bbaを有する。太径部11Bbaは、クラッド径が、光ファイバ11Bの端面11Bdにおいては太径部11Bba以外の部分と同じであり、たとえば125μmである。太径部11Bbaは、端面11Bdから離間するにつれてクラッド径がテーパ状に拡径する部分と、クラッド径が一定の太径である部分と、端面11Bdから離間するにつれてクラッド径がテーパ状に縮径する部分とからなる。縮径した後のクラッド径はたとえば125μmである。一定の太径の部分のクラッド径は125μmより大きく、たとえば500μmである。 The optical fiber 11B has a configuration in which the clad portion 11b of the optical fiber 11 is replaced with the clad portion 11Bb. The optical fiber 11B has a large diameter portion 11Bba whose diameter is partially increased in the longitudinal direction of the clad portion 11Bb. The clad diameter of the large diameter portion 11Bba is the same as that of the end face 11Bd of the optical fiber 11B other than the large diameter portion 11Bba, and is, for example, 125 μm. The large diameter portion 11Bba has a portion in which the clad diameter increases in a tapered shape as the distance from the end surface 11Bd, a portion in which the clad diameter has a constant large diameter, and a portion in which the clad diameter decreases in a tapered shape as the distance from the end surface 11Bd. It consists of a part to be used. The clad diameter after the diameter is reduced is, for example, 125 μm. The clad diameter of the constant large diameter portion is larger than 125 μm, for example, 500 μm.
 光吸収体13Bは、光吸収体13と同様に、光ファイバ11Bが配置される挿通孔13Baと、挿通孔13Baと連通しており、エンドキャップ12が配置される凹部13bとを有する。挿通孔13Baの内径は、光ファイバ11Bの太径部11Bbaのクラッド径に対応した大きさとされている。光吸収体13Bは、クラッド部11Bbの太径部11Bbaにおいて固着材14で固着される。 Like the light absorber 13, the light absorber 13B has an insertion hole 13Ba in which the optical fiber 11B is arranged and a recess 13b in which the end cap 12 is arranged and is in communication with the insertion hole 13Ba. The inner diameter of the insertion hole 13Ba is set to a size corresponding to the clad diameter of the large diameter portion 11Bba of the optical fiber 11B. The light absorber 13B is fixed by the fixing material 14 at the large diameter portion 11Bba of the clad portion 11Bb.
 エンドキャップ12には、図3に示すエンドキャップと同様に、図5では不図示の光処理材12dが設けられている。 Similar to the end cap shown in FIG. 3, the end cap 12 is provided with a light processing material 12d (not shown in FIG. 5).
 端部構造10Bにおいても、端部構造10や10Aと同様に、固着材14や被覆11cの損傷が抑制される。 Also in the end structure 10B, damage to the fixing material 14 and the coating 11c is suppressed as in the end structure 10 and 10A.
 さらに、端部構造10Bでは、クラッドモードで伝搬したレーザ光(たとえば図2におけるレーザ光L1b)が太径部11Bbaの外周面に到達し、漏洩して固着材14を通過する際には、太径部11Bbaが無い場合よりも、レーザ光のパワー密度が低減される。その結果、固着材14の損傷の発生をより一層抑制できる。 Further, in the end structure 10B, when the laser beam propagated in the clad mode (for example, the laser beam L1b in FIG. 2) reaches the outer peripheral surface of the large diameter portion 11Bba, leaks and passes through the fixing material 14, the thickness is increased. The power density of the laser beam is reduced as compared with the case where the diameter portion 11Bba is not provided. As a result, the occurrence of damage to the fixing material 14 can be further suppressed.
 なお、本実施形態では、太径部11Bbaが光ファイバ11の端面11dから始まっているが、太径部11Bbaが端面11dから離れていてもよい。また、本実施形態では、太径部11Bbaの両端がテーパ状になっているが、両端の少なくとも一方がステップ状になっていてもよい。 In the present embodiment, the large diameter portion 11Bba starts from the end surface 11d of the optical fiber 11, but the large diameter portion 11Bba may be separated from the end surface 11d. Further, in the present embodiment, both ends of the large diameter portion 11Bba are tapered, but at least one of both ends may be stepped.
 また、上記実施形態では、エンドキャップ12、12Aは円柱形状と円錐台形状とを組み合わせた形状を有するが、エンドキャップの形状はこれには限定されず、たとえば直方体形状や円柱形状でもよい。 Further, in the above embodiment, the end caps 12 and 12A have a shape that is a combination of a cylindrical shape and a truncated cone shape, but the shape of the end cap is not limited to this, and may be, for example, a rectangular parallelepiped shape or a cylindrical shape.
 なお、上記実施形態では、赤外領域の波長のレーザ光を例に挙げたが、波長はこれに限定されない。例えば、緑色や青色のような短波長のレーザ光にあっては、固着材によるエネルギの吸収量が赤外領域の波長のレーザ光よりも大きく、本発明による効果がより顕著になる場合がある。 In the above embodiment, the laser beam having a wavelength in the infrared region is taken as an example, but the wavelength is not limited to this. For example, in the case of a short wavelength laser beam such as green or blue, the amount of energy absorbed by the fixing material is larger than that of the laser beam having a wavelength in the infrared region, and the effect of the present invention may become more remarkable. ..
 また、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited by the above embodiment. The present invention also includes a configuration in which the above-mentioned components are appropriately combined. Further, further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 本発明は、光ファイバおよび半導体レーザモジュールに利用することができる。 The present invention can be used for optical fiber and semiconductor laser modules.
10、10A、10B 端部構造
11、11B 光ファイバ
11a コア部
11b、11Bb クラッド部
11Bba 太径部
11c 被覆
11d、11Bd 端面
12、12A エンドキャップ
12a 出力部
12aa 底面
12ab 側面
12b 入力部
12ba 円環面
12bb 側面
12bc 底面
12c ARコーティング
12d、12Ad 光処理材
13、13A、13B 光吸収体
13a、13Ba 挿通孔
13b 凹部
13c 注入孔
14 固着材
100 半導体レーザモジュール
101 パッケージ
102 LD高さ調整板
103-1~103-6 サブマウント
104-1~104-6 半導体レーザ素子
105 リードピン
106-1~106-6 第1レンズ
107-1~107-6 第2レンズ
108-1~108-6 ミラー
109 第3レンズ
110 光フィルタ
111 第4レンズ
112 光ファイバ
113 ブーツ
114 ルースチューブ
L1、L1a、L1b、L1c レーザ光
10, 10A, 10B End structure 11, 11B Optical fiber 11a Core part 11b, 11Bb Clad part 11Bba Large diameter part 11c Coating 11d, 11Bd End surface 12, 12A End cap 12a Output part 12aa Bottom surface 12ab Side surface 12b Input part 12ba Circular surface 12bb Side surface 12bc Bottom surface 12c AR coating 12d, 12Ad Light treatment material 13, 13A, 13B Light absorber 13a, 13Ba Insertion hole 13b Recess 13c Injection hole 14 Fixing material 100 Semiconductor laser module 101 Package 102 LD Height adjustment plate 103-1 to 103-6 Submount 104-1 to 104-6 Semiconductor laser element 105 Lead pin 106-1 to 106-6 First lens 107-1 to 107-6 Second lens 108-1 to 108-6 Mirror 109 Third lens 110 Optical filter 111 4th lens 112 Optical fiber 113 Boot 114 Loose tube L1, L1a, L1b, L1c Laser light

Claims (7)

  1.  コア部と、前記コア部の外周に形成されたクラッド部とを有する光ファイバと、
     前記光ファイバの端面に接合された、前記光ファイバの端面よりも面積が広い第1面と、前記第1面とは反対側に位置し、前記光ファイバの端面よりも面積が広い第2面とを有し、前記第2面から光が入力されるエンドキャップと、
     を備え、前記第1面のうち、前記光ファイバの端面が接合された領域の周囲の領域の少なくとも一部に、前記エンドキャップに入力された光のうち前記光ファイバに結合しなかった光を散乱または反射する光処理材が設けられていることを特徴とする光ファイバにおける端部構造。
    An optical fiber having a core portion and a clad portion formed on the outer periphery of the core portion,
    A first surface joined to the end face of the optical fiber, which has a larger area than the end face of the optical fiber, and a second surface, which is located on the opposite side of the first surface and has a larger area than the end face of the optical fiber. And an end cap that receives light from the second surface,
    The light input to the end cap that is not bonded to the optical fiber is applied to at least a part of the region around the region to which the end faces of the optical fibers are joined in the first surface. An end structure in an optical fiber, characterized in that a light processing material that scatters or reflects is provided.
  2.  前記光処理材は無機系接着剤、または光を反射する金属膜もしくは誘電体多層膜を含むことを特徴とする請求項1に記載の光ファイバにおける端部構造。 The end structure in an optical fiber according to claim 1, wherein the light treatment material contains an inorganic adhesive or a metal film or a dielectric multilayer film that reflects light.
  3.  前記光処理材は前記光を散乱させる樹脂剤を含むことを特徴とする請求項1に記載の光ファイバにおける端部構造。 The end structure in an optical fiber according to claim 1, wherein the light treatment material contains a resin agent that scatters the light.
  4.  前記光ファイバの前記端面側の一部および前記エンドキャップの外周に配置され、少なくとも前記光ファイバを固定する光吸収体をさらに備えることを特徴とする請求項1~3のいずれか一つに記載の光ファイバにおける端部構造。 The invention according to any one of claims 1 to 3, further comprising at least a light absorber which is arranged on a part of the end face side of the optical fiber and the outer periphery of the end cap and fixes the optical fiber. End structure in optical fiber.
  5.  前記光ファイバと前記エンドキャップとは融着接続されていることを特徴とする請求項1~4のいずれか一つに記載の光ファイバにおける端部構造。 The end structure in an optical fiber according to any one of claims 1 to 4, wherein the optical fiber and the end cap are fusion-bonded.
  6.  前記光ファイバは、前記クラッド部の長手方向における一部が太径化された太径部を有することを特徴とする請求項1~5のいずれか一つに記載の光ファイバにおける端部構造。 The end structure in an optical fiber according to any one of claims 1 to 5, wherein the optical fiber has a large diameter portion in which a part of the clad portion in the longitudinal direction has a large diameter.
  7.  請求項1~6のいずれか一つに記載の光ファイバにおける端部構造と、
     レーザ光を出力する半導体レーザ素子と、
     前記レーザ光を集光して前記端部構造の前記エンドキャップの前記第2面に入力させる光学系と、
     を備えることを特徴とする半導体レーザモジュール。
    The end structure of the optical fiber according to any one of claims 1 to 6.
    A semiconductor laser element that outputs laser light and
    An optical system that collects the laser beam and inputs it to the second surface of the end cap of the end structure.
    A semiconductor laser module characterized by being equipped with.
PCT/JP2020/013161 2019-03-27 2020-03-24 End part structure of optical fiber and semiconductor laser module WO2020196562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509469A JP7479348B2 (en) 2019-03-27 2020-03-24 Optical fiber end structure and semiconductor laser module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-059981 2019-03-27
JP2019059981 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196562A1 true WO2020196562A1 (en) 2020-10-01

Family

ID=72611238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013161 WO2020196562A1 (en) 2019-03-27 2020-03-24 End part structure of optical fiber and semiconductor laser module

Country Status (2)

Country Link
JP (1) JP7479348B2 (en)
WO (1) WO2020196562A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203480079U (en) * 2013-09-27 2014-03-12 武汉锐科光纤激光器技术有限责任公司 End cap structure for reducing the entering of feedback light into optical fiber
WO2015037725A1 (en) * 2013-09-12 2015-03-19 古河電気工業株式会社 Semiconductor laser module
WO2015136924A1 (en) * 2014-03-12 2015-09-17 パナソニックIpマネジメント株式会社 Optical fiber device
JP2015176692A (en) * 2014-03-14 2015-10-05 スタンレー電気株式会社 Manufacturing method of light emitting device
KR20170117837A (en) * 2016-04-14 2017-10-24 (주)옵토닉스 Apparatus for opticcal fiber laser output using optical contact
JP2017223780A (en) * 2016-06-14 2017-12-21 株式会社フジクラ Optical device and laser apparatus
US10082630B1 (en) * 2017-11-08 2018-09-25 Lightel Technologies, Inc. Packaging of an optical fiber head in high-power laser applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037725A1 (en) * 2013-09-12 2015-03-19 古河電気工業株式会社 Semiconductor laser module
CN203480079U (en) * 2013-09-27 2014-03-12 武汉锐科光纤激光器技术有限责任公司 End cap structure for reducing the entering of feedback light into optical fiber
WO2015136924A1 (en) * 2014-03-12 2015-09-17 パナソニックIpマネジメント株式会社 Optical fiber device
JP2015176692A (en) * 2014-03-14 2015-10-05 スタンレー電気株式会社 Manufacturing method of light emitting device
KR20170117837A (en) * 2016-04-14 2017-10-24 (주)옵토닉스 Apparatus for opticcal fiber laser output using optical contact
JP2017223780A (en) * 2016-06-14 2017-12-21 株式会社フジクラ Optical device and laser apparatus
US10082630B1 (en) * 2017-11-08 2018-09-25 Lightel Technologies, Inc. Packaging of an optical fiber head in high-power laser applications

Also Published As

Publication number Publication date
JP7479348B2 (en) 2024-05-08
JPWO2020196562A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
EP3045947B1 (en) Semiconductor laser module
JP6147341B2 (en) Semiconductor laser module
US7306376B2 (en) Monolithic mode stripping fiber ferrule/collimator and method of making same
US9244234B2 (en) Optical receptacle and optical module
US20180259728A1 (en) Fluid control structure
WO2015155994A1 (en) Optical fiber assembly, optical coupling device, and optical fiber coupling device
US10985525B2 (en) Transmitter module
US20190079253A1 (en) Optical coupling assembly
US7397985B2 (en) High-power fused collimator and associated methods
WO2020196626A1 (en) Optical component and semiconductor laser module
WO2020184603A1 (en) Optical component and semiconductor laser module
WO2020196562A1 (en) End part structure of optical fiber and semiconductor laser module
US10061092B2 (en) Semiconductor laser module
JP7012414B2 (en) End structure and semiconductor laser module
JP2020181091A (en) Semiconductor laser module
WO2018151100A1 (en) Semiconductor laser module
JP2022154134A (en) Cladding propagation light removing mechanism
JP5856016B2 (en) Optical module
JP2019159112A (en) Method for manufacturing optical module and optical module
WO2011066216A1 (en) Clad metal substrates in optical packages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779736

Country of ref document: EP

Kind code of ref document: A1