WO2020196555A1 - マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法 - Google Patents

マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2020196555A1
WO2020196555A1 PCT/JP2020/013139 JP2020013139W WO2020196555A1 WO 2020196555 A1 WO2020196555 A1 WO 2020196555A1 JP 2020013139 W JP2020013139 W JP 2020013139W WO 2020196555 A1 WO2020196555 A1 WO 2020196555A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
substrate
film
mask blank
main surface
Prior art date
Application number
PCT/JP2020/013139
Other languages
English (en)
French (fr)
Inventor
秀明 楢原
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to SG11202109244U priority Critical patent/SG11202109244UA/en
Priority to KR1020217023666A priority patent/KR20210135993A/ko
Priority to US17/431,702 priority patent/US20220121109A1/en
Priority to JP2021509467A priority patent/JPWO2020196555A1/ja
Publication of WO2020196555A1 publication Critical patent/WO2020196555A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates

Definitions

  • the present invention relates to a substrate for a mask blank, a substrate with a conductive film, a substrate with a multilayer reflective film, a reflective mask blank, a reflective mask, and a method for manufacturing a semiconductor device.
  • a fine pattern is formed by using a photolithography method.
  • a number of transfer masks usually called photomasks, are used to form this fine pattern.
  • This transfer mask is generally a translucent glass substrate on which a fine pattern made of a metal thin film or the like is provided, and a photolithography method is also used in the production of this transfer mask.
  • a mask blank having a thin film (for example, a light-shielding film) for forming a transfer pattern (mask pattern) on a translucent substrate such as a glass substrate is used.
  • the method for producing a transfer mask using this mask blank includes a drawing step of drawing a desired pattern on a resist film formed on the mask blank, and after drawing, the resist film is developed to develop a desired resist pattern. It has a developing step of forming the resist pattern, an etching step of etching the thin film using the resist pattern as a mask, and a step of peeling and removing the remaining resist pattern.
  • a desired pattern is drawn on the resist film formed on the mask blank, and then a developing solution is supplied. As a result, the portion of the resist film that is soluble in the developing solution is dissolved, so that a resist pattern is formed.
  • a portion where the thin film not covered by the resist pattern is exposed is removed by dry etching or wet etching. As a result, a desired mask pattern is formed on the translucent substrate.
  • phase shift type mask As a type of transfer mask, a phase shift type mask is known in addition to a binary type mask having a light-shielding film pattern made of a chrome-based material on a conventional translucent substrate.
  • This phase shift type mask has a translucent substrate and a phase shift film formed on the translucent substrate.
  • This phase shift film has a predetermined phase difference, and is formed of, for example, a material containing a molybdenum silicide compound.
  • binary masks using a material containing a metallic silicide compound such as molybdenum as a light-shielding film have also come to be used.
  • These binary masks and phase shift masks are collectively referred to as transparent masks in the present specification.
  • the binary type mask blank and the phase shift type mask blank which are the original plates used for the transparent type mask, are generically referred to as a transparent type mask blank.
  • EUV lithography which is an exposure technique using extreme ultraviolet (hereinafter referred to as "EUV") light
  • EUV light refers to light in a wavelength band of a soft X-ray region or a vacuum ultraviolet region, and specifically, light having a wavelength of about 0.2 to 100 nm.
  • a transfer mask used in this EUV lithography a reflective mask has been proposed. In such a reflective mask, a multilayer reflective film that reflects the exposure light is formed on the substrate, and an absorber film that absorbs the exposure light is formed on the multilayer reflective film. A transfer pattern is formed on the absorber film of the reflective mask.
  • Patent Document 1 is a reflective mask blank having a multilayer reflective film that reflects exposure light and an absorber layer that absorbs exposure light formed on the multilayer reflective film on a substrate.
  • a reflective mask blank is disclosed, wherein the shape of the surface opposite to the surface on which the transfer pattern of the blank is formed has a convex surface. According to this reflective mask blank, it is disclosed that the problem of poor adsorption when the reflective mask is fixed to the mask stage of the exposure apparatus by the electrostatic chuck can be solved.
  • the reflective mask When the transfer pattern is transferred to an object to be transferred such as a semiconductor substrate by using the reflective mask, the reflective mask is in a state where the surface on the mask stage of the exposure apparatus on the side on which the transfer pattern is formed faces downward. It is set with. A conductive film for adsorbing the reflective mask to the mask stage of the exposure apparatus by an electrostatic chuck is formed on the surface (back surface) opposite to the side on which the transfer pattern of the reflective mask is formed.
  • the reflective mask when the reflective mask is set on the mask stage of the exposure apparatus, almost the entire back surface of the reflective mask is attracted to the mask stage of the exposure apparatus by the electrostatic chuck. While the mask stage of the exposure apparatus is flat, the back surface of the reflective mask is not completely flat and has irregularities. Therefore, the uneven shape of the back surface of the reflective mask is transferred to the surface (front surface) on the side where the transfer pattern of the reflective mask is formed.
  • the convex shape is pressed downward by the mask stage, so that the surface of the reflective mask facing the position of the convex shape has the height of the convex shape. It deforms downward by the amount.
  • the reflective mask is pulled upward toward the mask stage by the concave shape, so that the reflective mask facing the concave position The surface is deformed upward by the depth of the concave shape.
  • the conventional reflective mask changes the shape of the main surface on the side where the transfer pattern is formed before and after it is set on the mask stage of the exposure apparatus, so that it can be used as a transfer target such as a semiconductor substrate.
  • a transfer target such as a semiconductor substrate.
  • the shapes of the front surface and the back surface of the mask blank substrate are measured in advance by a surface shape measuring device, and the data obtained by the measurement is used. It is conceivable to calculate the surface shape of the mask blank substrate (or the reflective mask blank or the reflective mask) after being set on the mask stage of the exposure apparatus by simulation. If the surface shape of the mask blank substrate (or reflective mask blank, reflective mask) after being set on the mask stage can be known in advance by simulation, the shape of the transfer pattern drawn by the drawing device is corrected. Thereby, the shape of the transfer pattern after the reflective mask is set on the mask stage of the exposure apparatus can be controlled to be a desired shape.
  • the front and back surfaces of the mask blank substrate are not completely parallel. For this reason, in the conventional mask blank substrate, it is difficult to accurately correspond the surface shape data measured by the surface shape measuring device with the back surface shape data.
  • the surface shape of the mask blank substrate (or the reflective mask blank or the reflective mask) is measured by the surface shape measuring device, the surface is formed into a grid of a plurality of regions (for example, a region of 197 ⁇ m ⁇ 197 ⁇ m). The surface shape is measured for each divided region.
  • the shape data measured in a certain area on the front surface and the shape data on the back surface measured in a position facing the area are accurate. It was difficult to correspond to. Therefore, it is difficult to accurately calculate the surface shape of the mask blank substrate (or the reflective mask blank or the reflective mask) after being set on the mask stage by simulation.
  • the present invention has been made in view of the above circumstances, and is a mask blank substrate, a conductive substrate, and a multilayer reflection capable of accurately calculating the surface shape after being set on the mask stage of an exposure apparatus. It is an object of the present invention to provide a method for manufacturing a substrate with a film, a reflective mask blank, a reflective mask, and a semiconductor device.
  • a mask blank substrate having a substantially quadrangular planar shape and a size of 152 mm ⁇ 152 mm.
  • a first main surface which is a surface on which a transfer pattern is formed, and a second main surface, which is a surface facing the first main surface and fixed to a mask stage of an exposure apparatus, are provided.
  • the first main surface includes a first region located on the center side and a second region located outside the first region.
  • the second main surface includes a third region located on the center side and a fourth region located outside the third region.
  • the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region is less than 1.2 °.
  • a mask blank substrate having a PV value of 400 nm or less on the surfaces of the second region and the fourth region.
  • the second region and the fourth region are regions outside the region of 148 mm ⁇ 148 mm with respect to the center of the substrate, according to any one of (1) to (3).
  • a multilayer reflective film in which high refractive index layers and low refractive index layers are alternately laminated is provided on the first main surface of the mask blank substrate according to any one of (1) to (6). Substrate with multi-layer reflective film.
  • a method for manufacturing a semiconductor device which comprises a step of performing a lithography process using an exposure apparatus using the reflective mask according to (9) to form a transfer pattern on a transfer target.
  • FIG. 1 is a perspective view showing a mask blank substrate 10 according to the present embodiment.
  • FIG. 2 is a partial cross-sectional view of the mask blank substrate 10 of the present embodiment.
  • the mask blank substrate 10 (hereinafter, may be simply referred to as the substrate 10) is composed of a substantially quadrangular (preferably square) plate-like body having a size of 152 mm ⁇ 152 mm.
  • the mask blank substrate 10 has two main surfaces 12a and 12b and four end faces 14a to 14d.
  • the surface on the side where the thin film to be the transfer pattern is formed is referred to as the first main surface 12a.
  • the surface facing the first main surface 12a and electrostatically chucked by the mask stage of the exposure apparatus is referred to as the second main surface 12b.
  • the four end faces 14a to 14d are adjacent to the four sides of the first main surface 12a and the second main surface 12b, which are substantially quadrangular.
  • Each of the four end faces 14a to 14d has a side surface 16 and two chamfered surfaces 18a and 18b (see FIG. 2) formed between the side surface 16 and the main surfaces 12a and 12b.
  • the side surface 16 is a surface substantially perpendicular to the two main surfaces 12a and 12b, and is sometimes referred to as a "T surface".
  • the chamfered surfaces 18a and 18b are surfaces formed between the two main surfaces 12a and 12b and the side surface 16, and are surfaces formed by chamfering diagonally.
  • the chamfered surfaces 18a and 18b are sometimes referred to as "C surfaces”.
  • FIG. 3 is a plan view of the first main surface 12a. As shown in FIG. 3, the first main surface 12a includes a first region 20a located on the central side of the substrate 10 and a second region 20b located outside the first region 20a.
  • the first region 20a is a substantially quadrangular region and has a size of 132 mm ⁇ 132 mm or more.
  • “132 mm ⁇ 132 mm” is the size of the region where the transfer pattern is formed on the thin film when a transfer mask (for example, a reflective mask) is manufactured using the mask blank substrate 10.
  • “132 mm ⁇ 132 mm” is the size of a square region having a side of 132 mm with respect to the center of the substrate 10. The description of the following regions also indicates the size with respect to the center of the substrate 10.
  • the flatness of the first region 20a is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less.
  • the flatness is a numerical value (absolute value) representing the height difference from the highest point to the lowest point of the plane based on the least squares plane.
  • the second region 20b is a frame-shaped region located outside the first region 20a.
  • the second region 20b is preferably a region outside a substantially quadrangular 148 mm ⁇ 148 mm region located on the center side. “148 mm ⁇ 148 mm” is the size of a region where the flatness of the substrate 10 can be accurately measured by the surface shape measuring device.
  • the second region 20b is a region that does not include the chamfered surface 18a.
  • FIG. 4 is a plan view of the second main surface 12b (back surface). As shown in FIG. 4, the second main surface 12b includes a third region 20c located on the center side of the substrate 10 and a fourth region 20d located outside the third region 20c.
  • the third region 20c is a substantially quadrangular region, and preferably has a size of 142 mm ⁇ 142 mm or more.
  • “142 mm ⁇ 142 mm” means that the back surface of the transfer mask (for example, a reflective mask) manufactured by using the mask blank substrate 10 is flat, that is, the flatness of the back surface is equal to or less than a predetermined value.
  • the flatness of the third region 20c is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less.
  • the third region 20c preferably has a size of 146 mm ⁇ 146 mm or less.
  • “146 mm ⁇ 146 mm” can be the size of the region where the second main surface 12b is attracted to the mask stage of the exposure apparatus by the electrostatic chuck. Since the region not attracted by the electrostatic chuck is not required to have a high flatness, the third region 20c preferably has a size of 146 mm ⁇ 146 mm or less.
  • the fourth region 20d is a frame-shaped region located outside the third region 20c.
  • the fourth region 20d is preferably a region outside a substantially quadrangular 148 mm ⁇ 148 mm region located on the center side. “148 mm ⁇ 148 mm” is the size of a region where the flatness of the substrate 10 can be accurately measured by the surface shape measuring device.
  • the fourth region 20d is a region that does not include the chamfered surface 18b.
  • the mask blank substrate 10 of the present embodiment is characterized in that the angle ⁇ formed by the least squares plane of the first region 20a and the least squares plane of the third region 20c is less than 1.2 °.
  • the angle ⁇ formed by the least squares plane of the first region 20a and the least squares plane of the third region 20c is less than 1.2 °.
  • the surface shape of the entire surface (152 mm ⁇ 152 mm) of the first main surface 12a is measured by a surface shape measuring device.
  • a white interferometer for example, NewView6300 manufactured by Zygo
  • a laser interferometer for example, it is preferable to use "UltraFlat200" manufactured by Tropel.
  • the substrate 10 When measuring the surface shape of the substrate 10 with the surface shape measuring device, the substrate 10 is substantially upright (for example, the substrate 10 is tilted by 2 ° with respect to the vertical direction) in order to reduce the distortion of the substrate 10 due to gravity.
  • the measurement can be performed in the state of being allowed to).
  • the first main surface 12a is divided into a plurality of regions (for example, a region of 33 ⁇ m ⁇ 33 ⁇ m) in a grid shape by a surface shape measuring device. Then, for each divided region, an arbitrary reference plane set by the surface shape measuring device and a distance (height) from the reference plane to the first main surface 12a are measured. The set of height data measured for each region becomes the shape data of the first main surface 12a.
  • the shape data obtained by the measurement is used to obtain the least squares plane of the first region 20a.
  • the shape data of the second main surface 12b (back surface) is obtained by using the shape data of the first main surface 12a and the plate thickness data of the substrate 10. That is, by using the shape data (height data) measured in a certain region of the first main surface 12a and the plate thickness data of the substrate 10 measured in the same region, the second main surface 12b in that region
  • the shape data (height data) of the (back surface) can be obtained.
  • a laser interferometer can be used for measuring the thickness data of the substrate 10.
  • the shape data of the second main surface 12b (back surface) may be measured by using another method.
  • the shape data of the second main surface 12b (back surface) may be measured by using a three-dimensional shape measuring device.
  • the shape data obtained by the measurement is used to obtain the least squares plane of the third region 20c.
  • the reason why the angle ⁇ formed by the least squares plane of the first region 20a and the least squares plane of the third region 20c is less than 1.2 ° is as follows. Is.
  • the first main surface 12a is divided into a plurality of regions in a grid shape.
  • the size of one grid is Pg, if the condition "P ⁇ Pg" can be satisfied, the amount of deviation does not exceed Pg, so the shape data measured in a certain area on the surface of the substrate and that area It is possible to accurately correspond with the shape data of the back surface measured at the opposite positions.
  • the maximum value P of the amount of deviation when the plane is rotated by an angle ⁇ can be obtained. That is, the maximum value P of the amount of deviation is as shown in the following equation (3).
  • the Pg is preferably 33 ⁇ m or less, more preferably 24 ⁇ m or less, and further preferably 15 ⁇ m or less. If the size of the grid is made too small, it takes time to measure the shape data. Therefore, the Pg is preferably 9 ⁇ m or more.
  • the maximum value P of the amount of deviation is preferably Pg / 3 or less, and more preferably Pg / 5 or less.
  • the angle ⁇ formed by the least squares plane of the first region 20a and the least squares plane of the third region 20c is less than 1.2 °.
  • the angle ⁇ is preferably less than 1.0 °, more preferably less than 0.8 °. If the angle ⁇ formed by the least squares plane of the first region 20a and the least squares plane of the third region 20c is less than 1.2 °, the shape data measured in a certain region on the substrate surface and that region It is possible to accurately correspond with the shape data of the back surface measured at the opposite positions.
  • the shape data of the region on the center side excluding the outer peripheral portion not the entire surface of the first main surface 12a. That is, when calculating the least squares plane of the first main surface 12a, it is preferable to use the shape data of the first region 20a on the center side.
  • the size of the first region 20a is preferably 132 mm ⁇ 132 mm or more, which is the size of the region where the transfer pattern is formed.
  • the shape data of the region on the center side excluding the outer peripheral portion not the entire surface of the second main surface 12b. That is, when calculating the least squares plane of the second main surface 12b, it is preferable to use the shape data of the third region 20c on the center side.
  • the size of the third region 20c is preferably 142 mm ⁇ 142 mm or more, which is the size of the region where the back surface of the substrate 10 is required to be flat (the flatness is not more than a predetermined value).
  • the PV value of the surfaces of the second region 20b and the fourth region 20d is 400 nm or less, preferably 310 nm or less.
  • the PV value of the second region 20b is a numerical value (absolute value) representing the height difference from the highest point to the lowest point of the plane with reference to the least squares plane of the first region 20a.
  • the PV value of the fourth region 20d is a numerical value (absolute value) representing the height difference from the highest point to the lowest point of the plane with reference to the least squares plane of the third region 20c.
  • the reason why the PV value of the surface of the second region 20b and the fourth region 20d is 400 nm or less is as follows.
  • the surface shape measuring device can measure the uneven shape (height from the reference surface) of the substrate surface.
  • the inclination of the outer peripheral surface of the substrate is larger than a certain level, it may be difficult to accurately measure the uneven shape of the substrate surface by the surface shape measuring device.
  • the maximum value of the inclination at which the uneven shape of the substrate surface can be accurately measured by the surface shape measuring device is represented by the following equation (5).
  • X represents a horizontal distance (mm) on the substrate.
  • Z represents the height ( ⁇ m) of the substrate surface.
  • the second region 20b is a region outside the region of 148 mm ⁇ 148 mm located on the center side.
  • the width Wa of the chamfered surface 18a located on the outermost circumference of the first main surface 12a is 0.4 ⁇ 0.2 mm. Therefore, the size of the width of the second region 20b between them is as follows.
  • the fourth region 20d is a region outside the region of 148 mm ⁇ 148 mm located on the center side.
  • the width Wb of the chamfered surface 18b located on the outermost circumference of the second main surface 12b is 0.4 ⁇ 0.2 mm. Therefore, the size of the width of the fourth region 20d between them is as follows.
  • the width of the second region 20b and the fourth region 20d is 1.4 to 1.8 [mm].
  • the uneven shape of the substrate surface can be accurately measured by the surface shape measuring device.
  • the mask blank substrate 10 of the present embodiment may be a transmissive mask blank substrate or a reflective mask blank substrate.
  • the material of the substrate for the transmissive mask blank for ArF excimer laser exposure may be any material as long as it has translucency with respect to the exposure wavelength.
  • synthetic quartz glass is used.
  • Other materials may be aluminosilicate glass, soda lime glass, borosilicate glass, and non-alkali glass.
  • the material of the substrate for the reflective mask blank for EUV exposure those having a characteristic of low thermal expansion are preferable.
  • SiO 2- TiO 2- based glass binary system (SiO 2- TiO 2 ) and ternary system (SiO 2- TiO 2- SnO 2 etc.)
  • SiO 2- Al 2 O 3- Li 2 O system So-called multi-component glass such as the crystallized glass of No. 1 can be used.
  • a substrate such as silicon or metal can also be used.
  • the metal substrate include Invar alloys (Fe—Ni alloys) and the like.
  • a thin film (underlayer) made of a metal, an alloy, or a material containing at least one of oxygen, nitrogen, and carbon in any of these is formed on a substrate made of a multi-component glass material. It may be formed.
  • Ta tantalum
  • an alloy containing Ta or a Ta compound containing at least one of oxygen, nitrogen, and carbon in any of these is preferable.
  • the Ta compound include TaB, TaN, TaO, TaON, TaCON, TaBN, TaBO, TaBON, TaBCON, TaHf, TaHfO, TaHfN, TaHfON, TaHfCON, TaSi, TaSiO, TaSiN, TaSiN, TaSiN, and TaSiN. it can.
  • N nitrogen (N) -containing TaN, TaON, TaCON, TaBN, TaBON, TaBCON, TaHfN, TaHfON, TaHfCON, TaSiN, TaSiON, and TaSiCON are more preferable.
  • the processing method is not particularly limited. Further, the processing method for satisfying the condition that the PV value of the surfaces of the second region 20b and the fourth region 20d is 400 nm or less is not particularly limited.
  • the method for manufacturing the mask blank substrate 10 of the present embodiment uses the step of measuring the surface shape of the first main surface 12a and acquiring the shape data of the first main surface 12a and the plate thickness data of the substrate 10. From the step of calculating the shape data of the second main surface 12b and the shape data of the first main surface 12a and the second main surface 12b, the least squares plane of the first region 20a and the third region 20c is obtained.
  • the angle ⁇ formed by each of the desired steps, the least squares plane of the first region 20a, and the least squares plane of the third region 20c is less than 1.2 °, and the second region 20b and the fourth region It is preferable to have a step of selecting the substrate 10 having a PV value of the surface of 20d of 400 nm or less.
  • a conductive film 36 may be formed on the second main surface 12b of the selected substrate 10 to manufacture a substrate with a conductive film.
  • a substrate with a multilayer reflective film may be manufactured by forming a multilayer reflective film 32 in which high refractive index layers and low refractive index layers are alternately laminated on the first main surface 12a of the selected substrate 10.
  • a reflective mask blank may be produced by forming an absorber film 42 as a transfer pattern on the multilayer reflective film 32 or the protective film 34 on the first main surface 12a of the selected substrate 10.
  • a conductive film for adsorbing the transfer mask to the mask stage of the exposure apparatus by an electrostatic chuck may be formed on the second main surface 12b.
  • the region attracted to the mask stage by the electrostatic chuck is a region of 146 mm ⁇ 146 mm on the center side.
  • the shape data of the front surface and the back surface of the substrate 10 may be measured with the conductive film formed on the second main surface 12b of the substrate 10. That is, the shape data of the first main surface and the second main surface (back surface) of the conductive film-attached substrate may be measured by the surface shape measuring device. From the shape data obtained by the measurement, the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region may be obtained.
  • the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region may be less than 1.2 °.
  • the angle ⁇ is preferably less than 1.0 °, more preferably less than 0.8 °.
  • the plane shape is substantially quadrangular, the size is 152 mm ⁇ 152 mm, and the first main surface, which is the surface on which the transfer pattern is formed, and the mask stage of the exposure apparatus facing the first main surface.
  • a substrate with a conductive film which is provided with a second main surface which is a surface on the side to be electrostatically chucked, and a conductive film for electrostatic chuck is formed on the second main surface.
  • the first main surface includes a first region located on the center side and a second region located outside the first region.
  • the second main surface includes a third region located on the center side and a fourth region located outside the third region.
  • a substrate with a conductive film, wherein the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region is less than 1.2 °.
  • the method for manufacturing a substrate with a conductive film of the present embodiment includes a step of forming a conductive film on a second main surface of a mask blank substrate and a first main surface by measuring the surface shape of the first main surface.
  • the step of obtaining the minimum square planes of the first region and the third region from the shape data, and the angle ⁇ formed by the minimum square plane of the first region and the minimum square plane of the third region are 1.2 °. It is preferable to have a step of selecting a substrate with a conductive film which is less than.
  • a reflective mask blank may be produced by forming an absorber film as a transfer pattern on a multilayer reflective film or a protective film on the first main surface of the selected conductive film-attached substrate.
  • FIG. 6 is a schematic view showing the substrate 30 with a multilayer reflective film of the present embodiment.
  • the substrate 30 with a multilayer reflective film of the present embodiment has a configuration in which the multilayer reflective film 32 is formed on the first main surface 12a on the side where the transfer pattern of the mask blank substrate 10 is formed.
  • the multilayer reflective film 32 imparts a function of reflecting EUV light in a reflective mask for EUV lithography, and includes a multilayer film in which elements having different refractive indexes are periodically laminated.
  • the material of the multilayer reflective film 32 is not particularly limited as long as it reflects EUV light, but the reflectance of the multilayer reflective film 32 alone is usually 65% or more, and the upper limit is usually 73%.
  • a thin film made of a material having a high refractive index (high refractive index layer) and a thin film made of a material having a low refractive index (low refractive index layer) are alternately 40.
  • the multilayer reflective film 32 for EUV light having a wavelength of 13 to 14 nm a Mo / Si periodic laminated film in which Mo film and Si film are alternately laminated for about 40 cycles is preferable.
  • the multilayer reflective film used in the region of EUV light Ru / Si periodic multilayer film, Mo / Be periodic multilayer film, Mo compound / Si compound periodic multilayer film, Si / Nb periodic multilayer film, Si / Mo Examples thereof include a / Ru periodic multilayer film, a Si / Mo / Ru / Mo periodic multilayer film, and a Si / Ru / Mo / Ru periodic multilayer film.
  • the multilayer reflective film 32 can be formed by a method known in the art.
  • each layer can be formed by a magnetron sputtering method, an ion beam sputtering method, or the like.
  • a Si film having a thickness of about several nm is first formed on the substrate 10 using a Si target, and then the thickness is increased using the Mo target.
  • a Mo film of about several nm can be formed, and this can be laminated for 40 to 60 cycles to form a multilayer reflective film 32.
  • a protective film 34 (see FIG. 7) is formed to protect the multilayer reflective film 32 from dry etching and wet cleaning in the manufacturing process of the reflective mask for EUV lithography. May be done.
  • Examples of the material of the protective film 34 are Ru, Ru- (Nb, Zr, Y, B, Ti, La, Mo), Si- (Ru, Rh, Cr, B), Si, Zr, Nb, La, and Examples include materials containing at least one selected from the group consisting of B. Of these, when a material containing ruthenium (Ru) is used, the reflectance characteristics of the multilayer reflective film are improved. Specifically, as the material of the protective film 34, Ru and Ru- (Nb, Zr, Y, B, Ti, La, Mo) are preferable. Such a protective film is particularly effective when the absorber film contains a Ta-based material and the absorber film is patterned by dry etching of a Cl-based gas.
  • a conductive film 36 may be formed on the surface of the substrate 10 opposite to the surface in contact with the multilayer reflective film 32 for the purpose of the electrostatic chuck.
  • the electrical characteristics (sheet resistance) required for the conductive film 36 are usually 100 ⁇ / ⁇ or less.
  • the conductive film 36 can be formed by a known method.
  • the conductive film 36 can be formed by a magnetron sputtering method or an ion beam sputtering method using a target of a metal such as Cr or Ta or an alloy thereof.
  • the above-mentioned base layer may be formed between the substrate 10 and the multilayer reflective film 32.
  • the base layer can be formed for the purpose of improving the smoothness of the main surface of the substrate 10, reducing defects, improving the reflectance of the multilayer reflective film 32, reducing the stress of the multilayer reflective film 32, and the like.
  • the shape data of the front surface and the back surface of the substrate 10 are measured in a state where the multilayer reflective film 32 is formed on the first main surface 12a of the substrate 10 or a state where the multilayer reflective film 32 and the protective film 34 are formed. May be good. That is, the shape data of the first main surface and the second main surface (back surface) of the substrate with the multilayer reflective film may be measured by the surface shape measuring device. At this time, the shape data of the front surface and the back surface of the substrate 10 may be measured with the conductive film 36 formed on the second main surface 12b. From the shape data obtained by the measurement, the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region may be obtained.
  • the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region may be less than 1.2 °.
  • the angle ⁇ is preferably less than 1.0 °, more preferably less than 0.8 °.
  • the plane shape is substantially square, the size is 152 mm ⁇ 152 mm, and the first main surface, which is the surface on which the transfer pattern is formed, and the mask stage of the exposure apparatus facing the first main surface.
  • a second main surface which is a surface on the side to be electrostatically chucked, is provided, and the first main surface is provided with a multilayer reflective film that reflects EUV light and a protective film that protects the multilayer reflective film.
  • a substrate with a multilayer reflective film which is formed in order and has a conductive film for an electrostatic chuck formed on the second main surface.
  • the first main surface includes a first region located on the center side and a second region located outside the first region.
  • the second main surface includes a third region located on the center side and a fourth region located outside the third region.
  • the method for manufacturing a substrate with a multilayer reflective film of the present embodiment includes a step of forming a multilayer reflective film on the first main surface of a mask blank substrate and a surface shape of the first main surface on which the multilayer reflective film is formed.
  • the step of obtaining the minimum squared plane of the first region and the third region from each shape data of the surface, the minimum squared plane of the first region, and the minimum squared plane of the third region form an angle ⁇ of 1. It is preferable to have a step of selecting a substrate with a multilayer reflective film having a temperature of less than 2 °.
  • a conductive film may be formed on the second main surface of the selected substrate with a multilayer reflective film to manufacture the substrate with a conductive film.
  • a reflective mask blank may be produced by forming an absorber film as a transfer pattern on the multilayer reflective film or protective film of the selected substrate with the multilayer reflective film.
  • FIG. 7 is a schematic view showing the reflective mask blank 40 of the present embodiment.
  • the reflective mask blank 40 of the present embodiment has a configuration in which an absorber film 42 serving as a transfer pattern is formed on the protective film 34 of the substrate 30 with the multilayer reflective film.
  • the material of the absorber film 42 may be any material as long as it has a function of absorbing EUV light, and is not particularly limited.
  • Ta tantalum
  • the material containing Ta as a main component is, for example, an alloy of Ta.
  • a material containing Ta as a main component a material containing Ta and B, a material containing Ta and N, a material containing Ta and B, and further containing at least one of O and N, Ta and Si. Examples thereof include a material containing Ta, Si and N, a material containing Ta and Ge, and a material containing Ta, Ge and N.
  • the reflective mask blank of the present embodiment is not limited to the configuration shown in FIG. 7.
  • a resist film serving as a mask for patterning the absorber film 42 may be formed on the absorber film 42.
  • the resist film formed on the absorber film 42 may be a positive type or a negative type.
  • the resist film formed on the absorber film 42 may be for electron beam drawing or laser drawing.
  • a hard mask (etching mask) film may be formed between the absorber film 42 and the resist film.
  • the shape data of the front surface and the back surface may be measured with the absorber film 42 formed on the multilayer reflective film 32, or with the absorber film 42 and the hard mask film formed. That is, the shape data of the first main surface and the second main surface (back surface) of the reflective mask blank may be measured by the surface shape measuring device. At this time, the shape data of the front surface and the back surface of the substrate 10 may be measured with the conductive film 36 formed on the second main surface 12b. From the shape data obtained by the measurement, the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region may be obtained.
  • the angle ⁇ formed by the least squares plane of the first region and the least squares plane of the third region may be less than 1.2 °.
  • the angle ⁇ is preferably less than 1.0 °, more preferably less than 0.8 °.
  • the plane shape is substantially square, the size is 152 mm ⁇ 152 mm, and the first main surface, which is the surface on which the transfer pattern is formed, and the mask stage of the exposure device facing the first main surface.
  • a second main surface which is a surface on the side to be electrostatically chucked, is provided, and the first main surface includes a multilayer reflective film that reflects EUV light, a protective film that protects the multilayer reflective film, and the like.
  • the first main surface includes a first region located on the center side and a second region located outside the first region.
  • the second main surface includes a third region located on the center side and a fourth region located outside the third region.
  • the method for producing a reflective mask blank of the present embodiment includes a step of forming a multilayer reflective film, a protective film and an absorber film on the first main surface of the mask blank substrate, and a first step of forming the absorber film.
  • the step of measuring the surface shape of the main surface of the first main surface to obtain the shape data of the first main surface, the step of calculating the shape data of the second main surface using the plate thickness data of the substrate, and the first main A step of obtaining the minimum square plane of the first region and the third region from each shape data of the surface and the second main surface, the minimum square plane of the first region, and the minimum square plane of the third region. It is preferable to have a step of selecting a reflective mask blank in which the angle ⁇ formed by the data is less than 1.2 °.
  • the conductive film 36 may be formed on the second main surface of the selected reflective mask blank.
  • FIG. 8 is a schematic view showing the reflective mask 50 of the present embodiment.
  • the reflective mask 50 of the present embodiment has an absorber film pattern 52 obtained by patterning the absorber film 42 of the above reflective mask blank 40.
  • the exposure light is absorbed in a portion of the absorber film pattern 52, and the multilayer reflective film 32 (or the protective film 34) is exposed by removing the absorber film 42.
  • the exposure light is reflected.
  • the reflective mask 50 of the present embodiment can be used, for example, as a reflective mask for lithography using EUV light as exposure light.
  • a semiconductor device can be manufactured by a lithography process using the reflective mask 50 described above and an exposure device. Specifically, the absorber pattern 52 of the reflective mask 50 is transferred to the resist film formed on the semiconductor substrate. After that, a semiconductor device in which a pattern (circuit pattern or the like) is formed on the semiconductor substrate can be manufactured by going through necessary steps such as a developing step and a cleaning step.
  • a SiO 2- TiO 2 system glass substrate having a size of 152 mm ⁇ 152 mm and a thickness of 6.4 mm was prepared.
  • the front and back surfaces of the glass substrate were stepwise polished with cerium oxide abrasive grains and colloidal silica abrasive grains.
  • the surface of the glass substrate was treated with a low concentration of silicic acid.
  • the surface roughness of the obtained glass substrate was measured with an atomic force microscope. As a result, the root mean square roughness (Rq) of the surface of the glass substrate was 0.15 nm.
  • the surface shape (surface morphology, flatness) of the glass substrate was measured using a surface shape measuring device (UltraFlat200 manufactured by Tropel Co., Ltd.). The surface shape was measured at a point of 1024 ⁇ 1024 with respect to a region of 148 mm ⁇ 148 mm excluding the peripheral region of the glass substrate. As a result, the flatness of the surface of the glass substrate was 290 nm (convex shape).
  • the measurement result of the surface shape (flatness) of the glass substrate was stored in a computer as height information with respect to a certain reference plane for each measurement point.
  • the shape data of the back surface of the glass substrate was obtained using the plate thickness data of the glass substrate.
  • the shape of the glass substrate (back surface) in that area.
  • Data (height data) was obtained.
  • a laser interferometer was used to measure the thickness data of the glass substrate.
  • the angle ⁇ formed by the reference surface on the front surface of the glass substrate and the reference surface on the back surface was calculated.
  • the height information is compared with the reference value of 20 nm (convex shape) of the surface flatness required for the glass substrate for each measurement point, and the difference (required removal amount) is calculated by a computer. I calculated.
  • the height information including the angle ⁇ was compared with the reference value of the back surface flatness of 20 nm, and the difference (required removal amount) was calculated by a computer.
  • the conditions for local surface processing according to the required removal amount were set for each processing spot area on the surface of the glass substrate.
  • the dummy substrate was spot-processed for a certain period of time without moving the substrate in the same manner as in the actual processing.
  • the shape of the dummy substrate was measured with the same device as that used for measuring the shapes of the front surface and the back surface.
  • the processing volume of the spot per unit time was calculated.
  • the scanning speed at the time of raster scanning the glass substrate was determined according to the required removal amount obtained from the spot information and the information on the surface shape of the glass substrate.
  • the flatness of the front and back surfaces of the glass substrate is as described above by the magnetic viscoelastic fluid polishing (Magneto Rheological Finishing: MRF) processing method using a substrate finishing device using magnetic fluid (manufactured by QED Technologies).
  • MRF Magnetic Rheological Finishing
  • the surface shape was adjusted by performing a local surface processing treatment so as to be below the standard value.
  • the magnetic viscoelastic fluid used at this time contained an iron component.
  • the polishing slurry was an alkaline aqueous solution + an abrasive (about 2 wt%), and cerium oxide was used as the abrasive.
  • the maximum processing allowance was 150 nm, and the processing time was 30 minutes.
  • the glass substrate was immersed in a washing tank containing an aqueous hydrochloric acid solution having a concentration of about 10% (temperature of about 25 ° C.) for about 10 minutes, rinsed with pure water, and dried with isopropyl alcohol (IPA).
  • IPA isopropyl alcohol
  • Processing liquid Alkaline aqueous solution (NaOH) + Abrasive (concentration: about 2 wt%) Abrasive: colloidal silica, average particle size: about 70 nm Polishing surface plate rotation speed: Approximately 1 to 50 rpm Machining pressure: Approximately 0.1-10 kPa Polishing time: Approximately 1 to 10 minutes
  • the glass substrate was washed with an alkaline aqueous solution (NaOH) to obtain a mask blank substrate 10 for EUV exposure.
  • an alkaline aqueous solution NaOH
  • the shape (height) of the first main surface 12a of the obtained mask blank substrate 10 was measured using a surface shape measuring device (NewView6300 manufactured by Zygo). Specifically, a 148 mm ⁇ 148 mm region of the first main surface 12a was divided into 12 ⁇ m ⁇ 12 ⁇ m regions in a grid pattern, and the surface shape was measured for each divided region. Using the shape data obtained by the measurement, the least squares plane of the first region 20a was obtained. The flatness of the first region 20a was 20 nm.
  • the shape data of the second main surface 12b was obtained by using the shape data of the first main surface 12a and the plate thickness data of the substrate 10. Specifically, by using the shape data (height data) measured in a certain region of the first main surface 12a and the plate thickness data of the substrate 10 measured in the same region, a second in that region. The shape data (height data) of the main surface 12b (back surface) was obtained. A laser interferometer was used to measure the thickness data of the substrate 10. Using the shape data obtained by the measurement, the least squares plane of the third region 20c was obtained. The flatness of the third region 20c was 22 nm.
  • the PV values of the surfaces of the second region 20b and the fourth region 20d of the obtained mask blank substrate 10 were measured using a surface shape measuring device (NewView6300 manufactured by Zygo).
  • the second region 20b and the fourth region 20d are set to regions outside the 148 mm ⁇ 148 mm region located on the center side.
  • the PV value of the second region 20b was 302 nm.
  • the PV value of the fourth region 20d was 296 nm.
  • the mask blank substrate 10 is attracted to the mask stage of the exposure apparatus by an electrostatic chuck using the shape data of the first main surface 12a of the mask blank substrate 10 and the shape data of the second main surface 12b.
  • the shape of the first main surface 12a of the above was obtained by simulation. Specifically, by adding the shape data of the first main surface 12a and the shape data of the second main surface 12b for each measurement region, the first main surface after being adsorbed on the mask stage of the exposure apparatus is used. The shape (height) of the surface 12a was determined. Further, using the shape data of the first main surface 12a obtained by simulation, the data of the pattern drawn on the resist film formed on the absorber film described later was corrected.
  • a multilayer reflective film was formed by periodically laminating a Mo film / Si film on the first main surface 12a of the mask blank substrate 10, and a substrate with a multilayer reflective film was manufactured.
  • the Mo target and the Si target were used, and the Mo film and the Si film were alternately laminated on the substrate by ion beam sputtering (using Ar).
  • the film thickness of the Mo film is 2.8 nm.
  • the film thickness of the Si film is 4.2 nm.
  • the film thickness of the Mo / Si film in one cycle is 7.0 nm.
  • Such Mo / Si films were laminated for 40 cycles, and finally a Si film was formed with a film thickness of 4.0 nm to form a multilayer reflective film.
  • a protective film containing a Ru compound was formed on the multilayer reflective film. Specifically, a protective film made of a RuNb film is formed on a multilayer reflective film by DC magnetron sputtering in an Ar gas atmosphere using a RuNb target (Ru: 80 atomic%, Nb: 20 atomic%). did. The film thickness of the protective film was 2.5 nm.
  • An absorber film was formed on the protective film to produce a reflective mask blank. Specifically, an absorber film composed of a laminated film of TaBN (thickness 56 nm) and TaBO (thickness 14 nm) was formed by DC magnetron sputtering. The TaBN film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and N 2 gas using a TaB target. The TaBO film was formed by reactive sputtering in a mixed gas atmosphere of Ar gas and O 2 gas using a TaB target.
  • a resist film was formed on the absorber film of the reflective mask blank.
  • a pattern was drawn on the resist film using an electron beam drawing apparatus. When drawing the pattern, the above-mentioned corrected pattern data was used. After drawing the pattern, a predetermined development process was performed to form a resist pattern on the absorber film.
  • a pattern (absorbent pattern) was formed on the absorber film using the resist pattern as a mask. Specifically, the upper TaBO film was dry-etched with a fluorine-based gas (CF 4 gas), and then the lower TaBN film was dry-etched with a chlorine-based gas (Cl 2 gas).
  • CF 4 gas fluorine-based gas
  • Cl 2 gas chlorine-based gas
  • the EUV reflective mask was manufactured by removing the resist pattern remaining on the absorber film pattern with hot sulfuric acid. Using the manufactured reflective mask, a lithography process using an exposure device was performed to manufacture a semiconductor device. Specifically, the absorber pattern of the reflective mask was transferred to the resist film formed on the semiconductor substrate. After that, a semiconductor device in which a circuit pattern was formed on a semiconductor substrate was manufactured by going through necessary steps such as a developing step and a cleaning step. The circuit pattern was accurately formed as designed on the semiconductor substrate of the manufactured semiconductor device.
  • the angle ⁇ formed by the least squares plane of the first region 20a and the least squares plane of the third region 20c was 1.3 °.
  • the PV values on the surfaces of the second region 20b and the fourth region 20d were 421 nm.
  • a substrate with a conductive film, a substrate with a multilayer reflective film, a reflective mask blank, and a reflective mask were manufactured in the same manner as in the above examples.
  • a lithography process using an exposure device was performed to manufacture a semiconductor device.
  • the absorber pattern of the reflective mask was transferred to the resist film formed on the semiconductor substrate.
  • a semiconductor device in which a circuit pattern was formed on a semiconductor substrate was manufactured by going through necessary steps such as a developing step and a cleaning step. When the circuit pattern on the manufactured semiconductor substrate was inspected, it was confirmed that the circuit pattern was not formed exactly as designed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

露光装置のマスクステージにセットされた後の表面形状を正確に算出することのできるマスクブランク用基板を提供する。 マスクブランク用基板10は、転写パターンが形成される側の面である第1の主表面12aと、第1の主表面12aに対向し、露光装置のマスクステージに静電チャックされる側の面である第2の主表面12bとを備える。第1の主表面12aは、中心側に位置する第1の領域20aと、第1の領域20aの外側に位置する第2の領域20bを備える。第2の主表面12bは、中心側に位置する第3の領域20cと、第3の領域20cの外側に位置する第4の領域20dを備える。第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とのなす角度αが、1.2°未満である。第2の領域20b及び第4の領域20dの表面のPV値が、400nm以下である。

Description

マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
 本発明は、マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法に関する。
 一般に、半導体装置の製造工程では、フォトリソグラフィ法を用いて微細パターンの形成が行われる。この微細パターンの形成には、通常何枚ものフォトマスクと呼ばれている転写用マスクが使用される。この転写用マスクは、一般に透光性のガラス基板上に、金属薄膜等からなる微細パターンを設けたものであり、この転写用マスクの製造においても、フォトリソグラフィ法が用いられている。
 フォトリソグラフィ法による転写用マスクの製造には、ガラス基板等の透光性基板上に転写パターン(マスクパターン)を形成するための薄膜(例えば遮光膜など)を有するマスクブランクが用いられる。このマスクブランクを用いた転写用マスクの製造方法は、マスクブランク上に形成されたレジスト膜に対し、所望のパターン描画を施す描画工程と、描画後、前記レジスト膜を現像して所望のレジストパターンを形成する現像工程と、このレジストパターンをマスクとして前記薄膜をエッチングするエッチング工程と、残存するレジストパターンを剥離除去する工程とを有している。上記現像工程では、マスクブランク上に形成されたレジスト膜に対し、所望のパターンを描画した後、現像液を供給する。これにより、現像液に可溶なレジスト膜の部位が溶解するため、レジストパターンが形成される。上記エッチング工程では、このレジストパターンをマスクとして、ドライエッチング又はウェットエッチングによって、レジストパターンによって被覆されていない薄膜が露出した部位を除去する。これにより、所望のマスクパターンを透光性基板上に形成する。
 転写用マスクの種類としては、従来の透光性基板上にクロム系材料からなる遮光膜パターンを有するバイナリー型マスクのほかに、位相シフト型マスクが知られている。この位相シフト型マスクは、透光性基板と、透光性基板上に形成された位相シフト膜を有する。この位相シフト膜は、所定の位相差を有するものであり、例えばモリブデンシリサイド化合物を含む材料等によって形成される。また、モリブデン等の金属のシリサイド化合物を含む材料を遮光膜として用いるバイナリー型マスクも用いられるようになってきている。これら、バイナリー型マスク、位相シフト型マスクを総称して、本明細書では透過型マスクと称する。また、透過型マスクに使用される原版であるバイナリー型マスクブランク、位相シフト型マスクブランクを総称して、透過型マスクブランクと称する。
 また、近年、半導体産業において、半導体デバイスの高集積化に伴い、従来の紫外光を用いたフォトリソグラフィ法の転写限界を上回る微細パターンが必要とされてきている。このような微細パターンの形成を可能とするため、極紫外(Extreme Ultra Violet:以下、「EUV」と呼ぶ。)光を用いた露光技術であるEUVリソグラフィーが有望視されている。ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。このEUVリソグラフィーにおいて用いられる転写用マスクとして、反射型マスクが提案されている。このような反射型マスクは、基板上に露光光を反射する多層反射膜が形成され、該多層反射膜上に露光光を吸収する吸収体膜が形成されたものである。反射型マスクの吸収体膜には、転写パターンが形成されている。
 特許文献1には、基板上に、露光光を反射する多層反射膜と、該多層反射膜上に形成された露光光を吸収する吸収体層とを有する反射型マスクブランクであって、前記マスクブランクの転写パターンが形成された面とは反対側の面の形状が、凸面を有する形状であることを特徴とする反射型マスクブランクが開示されている。この反射型マスクブランクによれば、静電チャックにより反射型マスクを露光装置のマスクステージに固定する際の吸着不良の問題を解消できることが開示されている。
特開2008-103481号公報
 反射型マスクを用いて転写パターンを半導体基板等の被転写体に転写する際には、反射型マスクは、露光装置のマスクステージ上に、転写パターンが形成された側の面を下向きにした状態でセットされる。反射型マスクの転写パターンが形成された側とは反対側の面(裏面)には、反射型マスクを露光装置のマスクステージに静電チャックによって吸着するための導電膜が形成されている。
 したがって、反射型マスクが露光装置のマスクステージにセットされると、反射型マスクの裏面のほぼ全面が、静電チャックによって露光装置のマスクステージに吸着された状態となる。露光装置のマスクステージは平坦である一方、反射型マスクの裏面は完全には平坦ではなく、凹凸が存在する。そのため、反射型マスクの裏面の凹凸形状は、反射型マスクの転写パターンが形成された側の面(表面)に転写される。
 例えば、反射型マスクの裏面に凸形状が存在すると、その凸形状がマスクステージによって下方に押し付けられることにより、その凸形状の位置に対向する反射型マスクの表面が、その凸形状の高さの分だけ下方に変形する。
 反対に、例えば、反射型マスクの裏面に凹形状が存在すると、その凹形状の分だけ反射型マスクがマスクステージに向かって上方に引き上げられるため、その凹形状の位置に対向する反射型マスクの表面が、その凹形状の深さの分だけ上方に変形する。
 このように、従来の反射型マスクは、露光装置のマスクステージにセットされる前後で、転写パターンが形成された側の主表面の形状が変化してしまうため、半導体基板等の被転写体に転写パターンを正確に転写することが困難であるという問題があった。
 このような問題を解決するために、マスクブランク用基板(あるいは、反射型マスクブランク、反射型マスク)の表面及び裏面の形状を表面形状測定装置によって予め測定し、測定によって得られたデータから、シミュレーションによって露光装置のマスクステージにセットされた後のマスクブランク用基板(あるいは、反射型マスクブランク、反射型マスク)の表面形状を算出することが考えられる。マスクステージにセットされた後のマスクブランク用基板(あるいは、反射型マスクブランク、反射型マスク)の表面形状をシミュレーションによって予め知ることができれば、描画装置によって描画される転写パターンの形状に補正を加えることによって、反射型マスクが露光装置のマスクステージにセットされた後の転写パターンの形状が所望の形状となるように制御できる。
 しかし、マスクブランク用基板の表面及び裏面は、完全には平行になっていない。このため、従来のマスクブランク用基板では、表面形状測定装置によって測定した表面の形状データと、裏面の形状データとを正確に対応させることが困難であった。
 すなわち、表面形状測定装置によってマスクブランク用基板(あるいは、反射型マスクブランク、反射型マスク)の表面形状を測定する際には、その表面をグリッド状に複数の領域(例えば197μm×197μmの領域)に分割して、分割した領域毎に表面の形状を測定する。しかし、マスクブランク用基板の表面及び裏面は完全には平行になっていないため、表面のある領域で測定された形状データと、その領域に対向する位置で測定された裏面の形状データとを正確に対応させることが困難であった。このため、マスクステージにセットされた後のマスクブランク用基板(あるいは、反射型マスクブランク、反射型マスク)の表面形状を、シミュレーションによって正確に算出することが困難であった。
 本発明は上記のような事情に鑑みてなされたものであり、露光装置のマスクステージにセットされた後の表面形状を正確に算出することのできるマスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
(1)平面形状が略四角形であり、大きさが152mm×152mmであるマスクブランク用基板であって、
 転写パターンが形成される側の面である第1の主表面と、前記第1の主表面に対向し、露光装置のマスクステージに固定される側の面である第2の主表面とを備え、
 前記第1の主表面は、中心側に位置する第1の領域と、前記第1の領域の外側に位置する第2の領域を備えており、
 前記第2の主表面は、中心側に位置する第3の領域と、前記第3の領域の外側に位置する第4の領域を備えており、
 前記第1の領域の最小二乗平面と、前記第3の領域の最小二乗平面とのなす角度αが1.2°未満であり、
 前記第2の領域及び前記第4の領域の表面のPV値が400nm以下である、マスクブランク用基板。
(2)前記第1の領域は、前記転写パターンが形成される領域であり、前記基板の中心を基準とした132mm×132mm以上の大きさを有する、(1)に記載のマスクブランク用基板。
(3)前記第3の領域は、前記基板の中心を基準とした142mm×142mm以上の大きさを有する、(1)または(2)に記載のマスクブランク用基板。
(4)前記第2の領域及び前記第4の領域は、前記基板の中心を基準とした148mm×148mmの領域の外側の領域である、(1)から(3)のうちいずれかに記載のマスクブランク用基板。
(5)前記マスクブランク用基板は、反射型マスクブランク用基板である、(1)から(4)のうちいずれかに記載のマスクブランク用基板。
(6)(1)1から(5)のうちいずれかに記載のマスクブランク用基板の第2の主表面上に、導電膜を有する導電膜付き基板。
(7)(1)から(6)のうちいずれかに記載のマスクブランク用基板の第1の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する多層反射膜付き基板。
(8)(7)に記載の多層反射膜付き基板の前記多層反射膜上に、転写パターンとなる吸収体膜を有する反射型マスクブランク。
(9)(8)に記載の反射型マスクブランクにおける前記多層反射膜上に、前記吸収体膜がパターニングされた吸収体パターンを有する反射型マスク。
(10)(9)に記載の反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する半導体装置の製造方法。
マスクブランク用基板の斜視図である。 マスクブランク用基板の部分断面図である。 第1の主表面の平面図である。 第2の主表面の平面図である。 平面を回転させたとき、その平面上の点が移動する距離の最大値を計算するための模式図である。 多層反射膜付き基板を示す模式図である。 反射型マスクブランクを示す模式図である。 反射型マスクを示す模式図である。
 以下、本発明の実施形態について詳細に説明する。
[マスクブランク用基板]
 まず、本実施形態のマスクブランク用基板について説明する。
 図1は、本実施形態に係るマスクブランク用基板10を示す斜視図である。図2は、本実施形態のマスクブランク用基板10の部分断面図である。
 マスクブランク用基板10(以下、単に基板10と称することがある。)は、大きさが152mm×152mmの略四角形(好ましくは正方形)の板状体からなる。マスクブランク用基板10は、2つの主表面12a、12bと、4つの端面14a~14dを有する。本明細書では、転写パターンとなる薄膜が形成される側の面を、第1の主表面12aと呼ぶ。第1の主表面12aに対向し、露光装置のマスクステージに静電チャックされる側の面を、第2の主表面12bと呼ぶ。
 なお、本明細書において、「上」とあるのは、必ずしも鉛直方向における上側を意味するものではない。また、「下」とあるのは、必ずしも鉛直方向における下側を意味するものではない。これらの用語は、部材や部位の位置関係の説明のために便宜的に用いられているに過ぎない。
 4つの端面14a~14dは、略四角形の第1の主表面12a及び第2の主表面12bの4つの辺にそれぞれ隣接している。
 4つの端面14a~14dは、ぞれぞれ、側面16と、側面16と主表面12a、12bとの間に形成された2つの面取り面18a、18b(図2参照)とを有する。
 側面16は、2つの主表面12a、12bに略垂直な面であり、「T面」と呼ばれることがある。
 面取り面18a、18bは、2つの主表面12a、12bと側面16との間に形成された面であり、斜めに面取りされることで形成された面である。面取り面18a、18bは、「C面」と呼ばれることがある。
 図3は、第1の主表面12aの平面図である。
 図3に示すように、第1の主表面12aは、基板10の中心側に位置する第1の領域20aと、第1の領域20aの外側に位置する第2の領域20bを備えている。
 第1の領域20aは、略四角形の領域であり、132mm×132mm以上の大きさを有している。「132mm×132mm」は、マスクブランク用基板10を用いて転写用マスク(例えば反射型マスク)を製造したときに、薄膜に転写パターンが形成される領域の大きさである。「132mm×132mm」は、基板10の中心を基準とする1辺が132mmの正方形の領域の大きさである。なお、以下の領域の記載についても、基板10の中心を基準とした大きさを示す。
 第1の領域20aの平坦度は、100nm以下であることが好ましく、より好ましくは50nm以下、さらに好ましくは30nm以下である。平坦度とは、最小二乗平面を基準とした、平面の一番高い点から一番低い点の高低差を表す数値(絶対値)である。
 第2の領域20bは、第1の領域20aの外側に位置する枠状の領域である。第2の領域20bは、好ましくは、中心側に位置する略四角形の148mm×148mmの領域の外側の領域である。「148mm×148mm」は、表面形状測定装置によって基板10の平坦度を精密に測定することのできる領域の大きさである。なお、第2の領域20bは、面取り面18aを含まない領域である。
 図4は、第2の主表面12b(裏面)の平面図である。
 図4に示すように、第2の主表面12bは、基板10の中心側に位置する第3の領域20cと、第3の領域20cの外側に位置する第4の領域20dを備えている。
 第3の領域20cは、略四角形の領域であり、好ましくは、142mm×142mm以上の大きさを有している。「142mm×142mm」は、マスクブランク用基板10を用いて製造された転写用マスク(例えば反射型マスク)において、裏面が平坦であること、すなわち、裏面の平坦度が所定値以下であることが要求される領域の大きさである。第3の領域20cの平坦度は、100nm以下であることが好ましく、より好ましくは50nm以下、さらに好ましくは30nm以下である。
 第3の領域20cは、好ましくは、146mm×146mm以下の大きさを有している。「146mm×146mm」は、第2の主表面12bが静電チャックによって露光装置のマスクステージに吸着される領域の大きさとすることができる。静電チャックによって吸着されない領域はそれほど平坦度が高いことが要求されないため、第3の領域20cは、146mm×146mm以下の大きさを有していることが好ましい。
 第4の領域20dは、第3の領域20cの外側に位置する枠状の領域である。第4の領域20dは、好ましくは、中心側に位置する略四角形の148mm×148mmの領域の外側の領域である。「148mm×148mm」は、表面形状測定装置によって基板10の平坦度を精密に測定することのできる領域の大きさである。なお、第4の領域20dは、面取り面18bを含まない領域である。
 本実施形態のマスクブランク用基板10は、第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とのなす角度αが1.2°未満であることを特徴とする。以下、角度αの求め方について詳しく説明する。
 まず、表面形状測定装置によって、第1の主表面12aの全面(152mm×152mm)の表面形状を測定する。表面形状測定装置としては、白色干渉計、レーザー干渉計、レーザー変位計、超音波変位計、接触式変位計等を使用できるが、白色干渉計(例えば、Zygo社製 NewView6300)、レーザー干渉計(例えば、トロペル社製「UltraFlat200」)を用いることが好ましい。
 表面形状測定装置によって基板10の表面形状を測定する際には、重力による基板10の歪みを低減するため、基板10をほぼ直立させた状態(例えば、基板10を鉛直方向に対して2°傾斜させた状態)で測定を行うことができる。
 測定の際には、表面形状測定装置によって、第1の主表面12aがグリッド状に複数の領域(例えば33μm×33μmの領域)に分割される。そして、分割された領域毎に、表面形状測定装置によって設定される任意の基準面と、この基準面から第1の主表面12aまでの距離(高さ)が測定される。領域毎に測定された高さデータの集合が、第1の主表面12aの形状データとなる。
 第1の主表面12aの形状データを測定した後、測定によって得られた形状データを用いて、第1の領域20aの最小二乗平面を求める。例えば、測定の基準面をxy平面とし、その基準面からの高さ方向をz方向とした場合には、第1の領域20aの最小二乗平面がxyzの関数(a1x + b1y + c1z + d1 = 0)として求められる。
 次に、第1の主表面12aの形状データと、基板10の板厚データとを用いて、第2の主表面12b(裏面)の形状データを求める。すなわち、第1の主表面12aのある領域で測定された形状データ(高さデータ)と、同じ領域で測定された基板10の板厚データを用いることによって、その領域における第2の主表面12b(裏面)の形状データ(高さデータ)を求めることができる。基板10の板厚データの測定には、例えば、レーザー干渉計を使用することができる。
 なお、別の方法を用いて第2の主表面12b(裏面)の形状データを測定してもよい。例えば、三次元形状測定装置を用いて、第2の主表面12b(裏面)の形状データを測定してもよい。
 第2の主表面12bの形状データを測定した後、測定によって得られた形状データを用いて、第3の領域20cの最小二乗平面を求める。例えば、測定の基準面をxy平面とし、その基準面からの高さ方向をz方向とした場合には、第3の領域20cの最小二乗平面がxyzの関数(a2x + b2y + c2z + d2 = 0)として求められる。
 第1の領域20aの最小二乗平面(a1x + b1y + c1z + d1 = 0)と、第3の領域20cの最小二乗平面(a2x + b2y + c2z + d2 = 0)とがなす角度αは、例えば、以下の式(1)によって求めることができる。
Figure JPOXMLDOC01-appb-M000001
 本実施形態のマスクブランク用基板10において、第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とがなす角度αを1.2°未満とした理由は、以下の通りである。
 図5に示すように、1辺の長さLの平面を角度αだけ回転させた場合、回転後の平面の、回転前の平面への射影の長さは、L×cosαとなる。つまり、ある平面を角度αだけ回転させた場合、その平面上の点が移動する距離(ズレ量)の最大値Pは、以下の式(2)の通りとなる。
 P = L-L×cosα ・・・(2)
 前述した通り、表面形状測定装置によって第1の主表面12aの形状を測定する際には、第1の主表面12aがグリッド状に複数の領域に分割される。1つのグリッドの大きさをPgとした場合、「P < Pg」という条件を満たすことができれば、ズレ量がPgを超えないため、基板の表面のある領域で測定した形状データと、その領域に対向する位置で測定した裏面の形状データとを正確に対応させることができる。
 表面形状測定装置によって基板10の平坦度を精密に測定することのできる領域の大きさをLmとした場合、上記式(2)のLにLmを代入することによって、表面形状測定装置によって測定される平面を角度αだけ回転させたときのズレ量の最大値Pを求めることができる。すなわち、ズレ量の最大値Pは、以下の式(3)の通りとなる。
 P = Lm-Lm×cosα ・・・(3)
 上記式(3)と、前述の「P < Pg」という条件を組み合わせることによって、下記式(4)が得られる。
 Lm-Lm×cosα < Pg ・・・(4)
 上記式(4)のLmに148mm(=148000μm)を代入し、Pgに33μmを代入することによって、α < 1.2°という計算結果が得られる。グリッドの大きさを小さくすればするほど、より詳細な形状データが得られるため、Pgは33μm以下であることが好ましく、24μm以下であることがより好ましく、15μm以下であることがさらに好ましい。なお、グリッドの大きさを小さくし過ぎると、形状データの測定に時間がかかるため、Pgは、9μm以上であることが好ましい。また、ズレ量の最大値Pは、Pg/3以下であることが好ましく、Pg/5以下であることがより好ましい。
 この結果より、第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とがなす角度αは、1.2°未満である。角度αは、好ましくは1.0°未満であり、より好ましくは0.8°未満である。第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とがなす角度αが1.2°未満であれば、基板表面のある領域で測定した形状データと、その領域に対向する位置で測定した裏面の形状データとを正確に対応させることができる。
 一般的に、第1の主表面12aの外周部の領域では、基板10の端部の加工の影響等により、表面形状に乱れが生じていることが多い。したがって、最小二乗平面を計算する際には、第1の主表面12aの全面ではなく、外周部を除いた中心側の領域の形状データを用いることが好ましい。すなわち、第1の主表面12aの最小二乗平面を計算する際には、中心側の第1の領域20aの形状データを用いることが好ましい。第1の領域20aの大きさは、転写パターンが形成される領域の大きさである132mm×132mm以上であることが好ましい。
 また、第2の主表面12bの外周部の領域においても、基板10の端部の加工の影響等により、表面形状に乱れが生じていることが多い。したがって、最小二乗平面を計算する際には、第2の主表面12bの全面ではなく、外周部を除いた中心側の領域の形状データを用いることが好ましい。すなわち、第2の主表面12bの最小二乗平面を計算する際には、中心側の第3の領域20cの形状データを用いることが好ましい。第3の領域20cの大きさは、基板10の裏面が平坦であること(平坦度が所定値以下であること)が要求される領域の大きさである142mm×142mm以上であることが好ましい。
 本実施形態のマスクブランク用基板10において、第2の領域20b及び第4の領域20dの表面のPV値は400nm以下であり、好ましくは310nm以下である。第2の領域20bのPV値は、第1の領域20aの最小二乗平面を基準とした、平面の一番高い点から一番低い点の高低差を表す数値(絶対値)である。また、第4の領域20dのPV値は、第3の領域20cの最小二乗平面を基準とした、平面の一番高い点から一番低い点の高低差を表す数値(絶対値)である。第2の領域20b及び第4の領域20dの表面のPV値が400nm以下であるとした理由は、以下の通りである。
 表面形状測定装置によって、基板表面の凹凸形状(基準面からの高さ)を測定することができる。しかし、基板の外周部表面の傾斜が一定以上に大きい場合は、表面形状測定装置によって基板表面の凹凸形状を精密に測定することが難しい場合がある。表面形状測定装置によって基板表面の凹凸形状を精密に測定することのできる傾斜の最大値は、以下の式(5)で表される。
 Z = β × X ・・・(5)
 上記式(5)において、Xは、基板上の水平距離(mm)を表している。Zは、基板表面の高さ(μm)を表している。βは、表面形状測定装置によって決まる値であるが、表面形状測定装置によらずに本発明を適用可能とするために、βに小さい値を採用している。レーザー干渉計の場合には、例えばβ=0.2178であり、白色干渉計の場合にはそれよりも大きい値である。
 第1の主表面12a(152mm×152mm)において、第2の領域20bは、中心側に位置する148mm×148mmの領域の外側の領域である。第1の主表面12aの最外周に位置する面取り面18aの幅Waは、0.4±0.2mmである。したがって、それらの間にある第2の領域20bの幅の大きさは、以下の通りとなる。
 第2の領域20bの幅の最大値 =
   {152-148-(2×0.2)}/2 = 1.8[mm]
 第2の領域20bの幅の最小値 =
   {152-148-(2×0.6)}/2 = 1.4[mm]
 第2の主表面12b(152mm×152mm)において、第4の領域20dは、中心側に位置する148mm×148mmの領域の外側の領域である。第2の主表面12bの最外周に位置する面取り面18bの幅Wbは、0.4±0.2mmである。したがって、それらの間にある第4の領域20dの幅の大きさは、以下の通りとなる。
 第4の領域20dの幅の最大値 =
   {152-148-(2×0.2)}/2 = 1.8[mm]
 第4の領域20dの幅の最小値 =
   {152-148-(2×0.6)}/2 = 1.4[mm]
 したがって、第2の領域20b及び第4の領域20dの幅の大きさは、1.4~1.8[mm]である。
 上記式(5)に、β=0.2178、X=1.4~1.8を代入することによって、Z=0.305~0.392[μm]が得られる。この結果より、第2の領域20b及び第4の領域20dにおける高さの変化の絶対値が0.305~0.392[μm]よりも小さい場合、基板の外周部の傾斜が十分に小さいため、表面形状測定装置によって基板表面の凹凸形状を精密に測定することができる。
 つまり、第2の領域20b及び第4の領域20dの表面のPV値が400nm以下(好ましくは310nm以下)であれば、表面形状測定装置によって基板表面の凹凸形状を精密に測定することができる。
 本実施形態のマスクブランク用基板10は、透過型マスクブランク用基板であってもよく、反射型マスクブランク用基板であってもよい。
 ArFエキシマレーザー露光用の透過型マスクブランク用基板の材料としては、露光波長に対して透光性を有するものであれば何でもよい。一般的には、合成石英ガラスが使用される。その他の材料としては、アルミノシリケートガラス、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラスであっても構わない。
 EUV露光用の反射型マスクブランク用基板の材料としては、低熱膨張の特性を有するものが好ましい。例えば、SiO-TiO系ガラス(2元系(SiO-TiO)及び3元系(SiO-TiO-SnO等))、例えばSiO-Al-LiO系の結晶化ガラスなどの所謂、多成分系ガラスを使用することができる。また、上記ガラス以外にシリコンや金属などの基板を用いることもできる。前記金属基板の例としては、インバー合金(Fe-Ni系合金)などが挙げられる。
 上述のように、EUV露光用のマスクブランク用基板の場合、基板に低熱膨張の特性が要求されるため、多成分系ガラス材料を使用するが、合成石英ガラスと比較して高い平滑性を得にくいという問題がある。この問題を解決すべく、多成分系ガラス材料からなる基板上に、金属、合金からなる又はこれらのいずれかに酸素、窒素、炭素の少なくとも一つを含有した材料からなる薄膜(下地層)を形成してもよい。
 上記薄膜の材料としては、例えば、Ta(タンタル)、Taを含有する合金、又はこれらのいずれかに酸素、窒素、炭素の少なくとも一つを含有したTa化合物が好ましい。Ta化合物としては、例えば、TaB、TaN、TaO、TaON、TaCON、TaBN、TaBO、TaBON、TaBCON、TaHf、TaHfO、TaHfN、TaHfON、TaHfCON、TaSi、TaSiO、TaSiN、TaSiON、TaSiCONなどを適用することができる。これらTa化合物のうち、窒素(N)を含有するTaN、TaON、TaCON、TaBN、TaBON、TaBCON、TaHfN、TaHfON、TaHfCON、TaSiN、TaSiON、TaSiCONがより好ましい。
 本実施形態のマスクブランク用基板10において、第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とがなす角度αが1.2°未満であるという条件を満たすための加工方法は、特に限定されない。また、第2の領域20b及び第4の領域20dの表面のPV値が400nm以下であるという条件を満たすための加工方法は、特に限定されない。
 本実施形態のマスクブランク用基板10の製造方法は、第1の主表面12aの表面形状を測定して第1の主表面12aの形状データを取得する工程と、基板10の板厚データを用いて第2の主表面12bの形状データを算出する工程と、第1の主表面12a及び第2の主表面12bの各形状データから第1の領域20a及び第3の領域20cの最小二乗平面を各々求める工程と、第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とのなす角度αが1.2°未満であり、第2の領域20b及び前記第4の領域20dの表面のPV値が400nm以下である基板10を選定する工程とを有することが好ましい。
 また、選定された基板10の第2の主表面12b上に、導電膜36を形成して導電膜付き基板を製造してもよい。選定された基板10の第1の主表面12a上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜32を形成して多層反射膜付き基板を製造してもよい。選定された基板10の第1の主表面12a上の多層反射膜32又は保護膜34上に、転写パターンとなる吸収体膜42を形成して反射型マスクブランクを製造してもよい。
[導電膜付き基板]
 本実施形態のマスクブランク用基板10において、第2の主表面12b上に、転写用マスクを露光装置のマスクステージに静電チャックによって吸着するための導電膜が形成されてもよい。なお、第2の主表面12bにおいて、静電チャックによってマスクステージに吸着される領域は、中心側の146mm×146mmの領域である。
 基板10の第2の主表面12bに導電膜が形成された状態で、基板10の表面及び裏面の形状データを測定してもよい。つまり、導電膜付き基板の第1の主表面と、第2の主表面(裏面)の形状データを、表面形状測定装置によって測定してもよい。測定によって得られた形状データから、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とがなす角度αを求めてもよい。
 本実施形態の導電膜付き基板において、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とのなす角度αが1.2°未満であってもよい。また、角度αは、1.0°未満が好ましく、0.8°未満がより好ましい。
 すなわち、本発明は、以下の態様であってもよい。
 平面形状が略四角形であり、大きさが152mm×152mmであり、転写パターンが形成される側の面である第1の主表面と、前記第1の主表面に対向し、露光装置のマスクステージに静電チャックされる側の面である第2の主表面とを備え、前記第2の主表面には、静電チャック用の導電膜が形成されている導電膜付き基板であって、
 前記第1の主表面は、中心側に位置する第1の領域と、前記第1の領域の外側に位置する第2の領域を備えており、
 前記第2の主表面は、中心側に位置する第3の領域と、前記第3の領域の外側に位置する第4の領域を備えており、
 前記第1の領域の最小二乗平面と、前記第3の領域の最小二乗平面とのなす角度αが1.2°未満である、導電膜付き基板。
 本実施形態の導電膜付き基板の製造方法は、マスクブランク用基板の第2の主表面上に導電膜を形成する工程と、第1の主表面の表面形状を測定して第1の主表面の形状データを取得する工程と、基板の板厚データを用いて導電膜が形成された第2の主表面の形状データを算出する工程と、第1の主表面及び第2の主表面の各形状データから第1の領域及び第3の領域の最小二乗平面を各々求める工程と、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とのなす角度αが1.2°未満である導電膜付き基板を選定する工程とを有することが好ましい。
 また、選定された導電膜付き基板の第1の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を形成して多層反射膜付き基板を製造してもよい。選定された導電膜付き基板の第1の主表面上の多層反射膜又は保護膜上に、転写パターンとなる吸収体膜を形成して反射型マスクブランクを製造してもよい。
 [多層反射膜付き基板]
 次に、本実施形態の多層反射膜付き基板について説明する。
 図6は、本実施形態の多層反射膜付き基板30を示す模式図である。
 本実施形態の多層反射膜付き基板30は、上記のマスクブランク用基板10の転写パターンが形成される側の第1の主表面12a上に、多層反射膜32を形成した構成を有する。この多層反射膜32は、EUVリソグラフィー用反射型マスクにおいてEUV光を反射する機能を付与するものであり、屈折率の異なる元素が周期的に積層された多層膜を含む。
 多層反射膜32は、EUV光を反射する限りその材質は特に限定されないが、その単独での反射率は通常65%以上であり、上限は通常73%である。このような多層反射膜32は、一般的には、高屈折率の材料からなる薄膜(高屈折率層)と、低屈折率の材料からなる薄膜(低屈折率層)とが、交互に40~60周期程度積層された多層反射膜を含む。
 例えば、波長13~14nmのEUV光に対する多層反射膜32としては、Mo膜とSi膜とを交互に40周期程度積層したMo/Si周期積層膜が好ましい。その他、EUV光の領域で使用される多層反射膜の例として、Ru/Si周期多層膜、Mo/Be周期多層膜、Mo化合物/Si化合物周期多層膜、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜、及びSi/Ru/Mo/Ru周期多層膜が挙げられる。
 多層反射膜32は、当該技術分野において公知の方法によって形成できる。例えば、マグネトロンスパッタリング法や、イオンビームスパッタリング法などにより、各層を形成することができる。上述したMo/Si周期多層膜の場合、例えば、イオンビームスパッタリング法により、まずSiターゲットを用いて厚さ数nm程度のSi膜を基板10上に形成し、その後、Moターゲットを用いて厚さ数nm程度のMo膜を形成し、これを一周期として、40~60周期積層して、多層反射膜32を形成することができる。
 上記で形成された多層反射膜32の上に、EUVリソグラフィー用反射型マスクの製造工程におけるドライエッチングやウェット洗浄からの多層反射膜32の保護のため、保護膜34(図7を参照)が形成されてもよい。
 保護膜34の材料の例として、Ru、Ru-(Nb,Zr,Y,B,Ti,La,Mo),Si-(Ru,Rh,Cr,B),Si,Zr,Nb,La,及びBからなる群から選択される少なくとも1種を含む材料が挙げられる。これらのうち、ルテニウム(Ru)を含む材料を使用すると、多層反射膜の反射率特性が良好となる。具体的には、保護膜34の材料として、Ru、及び、Ru-(Nb,Zr,Y,B,Ti,La,Mo)が好ましい。このような保護膜は、特に、吸収体膜がTa系材料を含み、Cl系ガスのドライエッチングで当該吸収体膜をパターニングする場合に有効である。
 上述したように、基板10の多層反射膜32と接する面と反対側の面には、静電チャックの目的のために導電膜36(図7を参照)が形成されてもよい。尚、導電膜36に求められる電気的特性(シート抵抗)は、通常100Ω/□以下である。導電膜36は、公知の方法によって形成できる。例えば、導電膜36は、マグネトロンスパッタリング法やイオンビームスパッタリング法により、Cr、Ta等の金属やそれらの合金のターゲットを使用して形成することができる。
 基板10と多層反射膜32との間に、上述の下地層が形成されてもよい。下地層は、基板10の主表面の平滑性向上、欠陥低減、多層反射膜32の反射率向上、及び、多層反射膜32の応力低減等の目的で形成することができる。
 基板10の第1の主表面12aに、多層反射膜32が形成された状態、又は多層反射膜32及び保護膜34が形成された状態で、基板10の表面及び裏面の形状データを測定してもよい。つまり、多層反射膜付き基板の第1の主表面と、第2の主表面(裏面)の形状データを、表面形状測定装置によって測定してもよい。このとき、第2の主表面12bに導電膜36が形成された状態で、基板10の表面及び裏面の形状データを測定してもよい。測定によって得られた形状データから、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とがなす角度αを求めてもよい。
 本実施形態の多層反射膜付き基板において、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とのなす角度αが1.2°未満であってもよい。また、角度αは、1.0°未満が好ましく、0.8°未満がより好ましい。
 すなわち、本発明は、以下の態様であってもよい。
 平面形状が略四角形であり、大きさが152mm×152mmであり、転写パターンが形成される側の面である第1の主表面と、前記第1の主表面に対向し、露光装置のマスクステージに静電チャックされる側の面である第2の主表面とを備え、前記第1の主表面には、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜がこの順番で形成されており、前記第2の主表面には、静電チャック用の導電膜が形成されている多層反射膜付き基板であって、
 前記第1の主表面は、中心側に位置する第1の領域と、前記第1の領域の外側に位置する第2の領域を備えており、
 前記第2の主表面は、中心側に位置する第3の領域と、前記第3の領域の外側に位置する第4の領域を備えており、
 前記第1の領域の最小二乗平面と、前記第3の領域の最小二乗平面とのなす角度αが1.2°未満である、多層反射膜付き基板。
 本実施形態の多層反射膜付き基板の製造方法は、マスクブランク用基板の第1の主表面上に多層反射膜を形成する工程と、多層反射膜が形成された第1の主表面の表面形状を測定して第1の主表面の形状データを取得する工程と、基板の板厚データを用いて第2の主表面の形状データを算出する工程と、第1の主表面及び第2の主表面の各形状データから第1の領域及び第3の領域の最小二乗平面を各々求める工程と、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とのなす角度αが1.2°未満である多層反射膜付き基板を選定する工程とを有することが好ましい。
 また、選定された多層反射膜付き基板の第2の主表面上に、導電膜を形成して導電膜付き基板を製造してもよい。選定された多層反射膜付き基板の多層反射膜又は保護膜上に、転写パターンとなる吸収体膜を形成して反射型マスクブランクを製造してもよい。
 [反射型マスクブランク]
 次に、本実施形態の反射型マスクブランクについて説明する。
 図7は、本実施形態の反射型マスクブランク40を示す模式図である。
 本実施形態の反射型マスクブランク40は、上記の多層反射膜付き基板30の保護膜34上に、転写パターンとなる吸収体膜42を形成した構成を有する。
 吸収体膜42の材料は、EUV光を吸収する機能を有するものであればよく、特に限定されるものではない。例えば、Ta(タンタル)単体、又はTaを主成分とする材料を用いることが好ましい。Taを主成分とする材料は、例えば、Taの合金である。あるいは、Taを主成分とする材料の例として、TaとBを含む材料、TaとNを含む材料、TaとBを含み、更にOとNのうち少なくとも1つを含む材料、TaとSiを含む材料、TaとSiとNを含む材料、TaとGeを含む材料、及び、TaとGeとNを含む材料を挙げることができる。
 本実施形態の反射型マスクブランクは、図7に示す構成に限定されるものではない。例えば、吸収体膜42の上に、吸収体膜42をパターニングするためのマスクとなるレジスト膜を形成してもよい。吸収体膜42の上に形成するレジスト膜は、ポジ型でも、ネガ型でもよい。また、吸収体膜42の上に形成するレジスト膜は、電子線描画用でも、レーザー描画用でもよい。さらに、吸収体膜42とレジスト膜との間に、ハードマスク(エッチングマスク)膜を形成してもよい。
 多層反射膜32の上に、吸収体膜42が形成された状態、又は吸収体膜42及びハードマスク膜が形成された状態で、表面及び裏面の形状データを測定してもよい。つまり、反射型マスクブランクの第1の主表面と、第2の主表面(裏面)の形状データを、表面形状測定装置によって測定してもよい。このとき、第2の主表面12bに導電膜36が形成された状態で、基板10の表面及び裏面の形状データを測定してもよい。測定によって得られた形状データから、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とがなす角度αを求めてもよい。
 本実施形態の反射型マスクブランクにおいて、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とのなす角度αが1.2°未満であってもよい。また、角度αは、1.0°未満が好ましく、0.8°未満がより好ましい。
 すなわち、本発明は、以下の態様であってもよい。
 平面形状が略四角形であり、大きさが152mm×152mmであり、転写パターンが形成される側の面である第1の主表面と、前記第1の主表面に対向し、露光装置のマスクステージに静電チャックされる側の面である第2の主表面とを備え、前記第1の主表面には、EUV光を反射する多層反射膜と、前記多層反射膜を保護する保護膜と、EUV光を吸収する吸収体膜がこの順番で形成されており、前記第2の主表面には、静電チャック用の導電膜が形成されている反射型マスクブランクであって、
 前記第1の主表面は、中心側に位置する第1の領域と、前記第1の領域の外側に位置する第2の領域を備えており、
 前記第2の主表面は、中心側に位置する第3の領域と、前記第3の領域の外側に位置する第4の領域を備えており、
 前記第1の領域の最小二乗平面と、前記第3の領域の最小二乗平面とのなす角度αが1.2°未満である、反射型マスクブランク。
 本実施形態の反射型マスクブランクの製造方法は、マスクブランク用基板の第1の主表面上に多層反射膜、保護膜及び吸収体膜を形成する工程と、吸収体膜が形成された第1の主表面の表面形状を測定して第1の主表面の形状データを取得する工程と、基板の板厚データを用いて第2の主表面の形状データを算出する工程と、第1の主表面及び第2の主表面の各形状データから第1の領域及び第3の領域の最小二乗平面を各々求める工程と、第1の領域の最小二乗平面と、第3の領域の最小二乗平面とのなす角度αが1.2°未満である反射型マスクブランクを選定する工程とを有することが好ましい。
 また、選定された反射型マスクブランクの第2の主表面上に、導電膜36を形成してもよい。
[反射型マスク]
 次に、本実施形態の反射型マスク50について説明する。
 図8は、本実施形態の反射型マスク50を示す模式図である。
 本実施形態の反射型マスク50は、上記の反射型マスクブランク40の吸収体膜42をパターニングして得られた吸収体膜パターン52を有する。本実施形態の反射型マスク50は、吸収体膜パターン52のある部分では露光光が吸収され、吸収体膜42が除去されることで多層反射膜32(あるいは保護膜34)が露出した部分では露光光が反射される。これにより、本実施形態の反射型マスク50は、例えばEUV光を露光光として用いるリソグラフィー用の反射型マスクとして使用することができる。
[半導体装置の製造方法]
 上記で説明した反射型マスク50と、露光装置を使用したリソグラフィープロセスにより、半導体装置を製造することができる。具体的には、半導体基板上に形成されたレジスト膜に、反射型マスク50の吸収体パターン52を転写する。その後、現像工程や洗浄工程等の必要な工程を経ることにより、半導体基板上にパターン(回路パターン等)が形成された半導体装置を製造することができる。
[実施例]
  マスクブランク用基板10として、大きさが152mm×152mm、厚さが6.4mmのSiO-TiO系のガラス基板を準備した。両面研磨装置を用いて、当該ガラス基板の表面及び裏面を、酸化セリウム砥粒やコロイダルシリカ砥粒により段階的に研磨した。その後、当該ガラス基板の表面を、低濃度のケイフッ酸で処理した。得られたガラス基板の表面粗さを、原子間力顕微鏡で測定した。その結果、ガラス基板の表面の二乗平均平方根粗さ(Rq)は、0.15nmであった。
 当該ガラス基板の表面の形状(表面形態、平坦度)を、表面形状測定装置(トロペル社製  UltraFlat200)を用いて測定した。表面形状の測定は、ガラス基板の周縁領域を除外した148mm×148mmの領域に対して、1024×1024の地点で行った。その結果、ガラス基板の表面の平坦度は、290nm(凸形状)であった。ガラス基板の表面の形状(平坦度)の測定結果は、測定点ごとに、ある基準面に対する高さの情報としてコンピュータに保存した。また、ガラス基板の板厚データを用いて、ガラス基板の裏面の形状データを求めた。具体的には、ガラス基板のある領域で測定された形状データ(高さデータ)と、同じ領域で測定されたガラス基板の板厚データを用いることによって、その領域におけるガラス基板(裏面)の形状データ(高さデータ)を求めた。ガラス基板の板厚データの測定には、レーザー干渉計を使用した。ガラス基板の表面の基準面と、裏面の基準面とがなす角度αを計算によって求めた。角度αを考慮に入れて、測定点ごとに、高さの情報と、ガラス基板に必要な表面平坦度の基準値20nm(凸形状)とを比較し、その差分(必要除去量)をコンピュータで計算した。同様に、角度αを含め、高さの情報と、裏面平坦度の基準値20nmと比較し、その差分(必要除去量)をコンピュータで計算した。
 次に、ガラス基板の表面の加工スポット領域ごとに、必要除去量に応じた局所表面加工の条件を設定した。事前にダミー基板を用いて、実際の加工と同じように、ダミー基板を、一定時間、基板を移動させずにスポット加工した。そのダミー基板の形状を、上記の表面及び裏面の形状を測定する際に用いた装置と同じ装置で測定した。単位時間当たりのスポットの加工体積を算出した。そして、スポットの情報と、ガラス基板の表面形状の情報より得られた必要除去量に従い、ガラス基板をラスタ走査する際の走査スピードを決定した。
 設定した加工条件に従い、磁気流体による基板仕上げ装置(QED  Technologies社製)を用いて、磁気粘弾性流体研磨(Magneto Rheological Finishing : MRF)加工法により、ガラス基板の表面及び裏面の平坦度が上記の基準値以下となるように、局所表面加工処理をして表面形状を調整した。尚、このとき使用した磁気粘弾性流体は、鉄成分を含んでいた。研磨スラリーは、アルカリ水溶液+研磨剤(約2wt%)であり、研磨剤として酸化セリウムを使用した。最大の加工取り代は150nmであり、加工時間は30分であった。
 その後、ガラス基板を濃度約10%の塩酸水溶液(温度約25℃)が入った洗浄槽に約10分間浸漬した後、純水によるリンス、及び、イソプロピルアルコール(IPA)による乾燥を行った。
 次に、ガラス基板の表面及び裏面の仕上げ研磨を、以下の条件で行った。
 加工液:アルカリ水溶液(NaOH)+研磨剤(濃度:約2wt%)
 研磨剤:コロイダルシリカ、平均粒径:約70nm
 研磨定盤回転数:約1~50rpm
 加工圧力:約0.1~10kPa
 研磨時間:約1~10分
  その後、ガラス基板をアルカリ水溶液(NaOH)で洗浄し、EUV露光用のマスクブランク用基板10を得た。
  得られたマスクブランク用基板10の第1の主表面12aの形状(高さ)を、表面形状測定装置(Zygo社製  NewView6300)を用いて測定した。具体的には、第1の主表面12aの148mm×148mmの領域をグリッド状に12μm×12μmの領域に分割し、分割した領域毎に表面形状を測定した。測定によって得られた形状データを用いて、第1の領域20aの最小二乗平面を求めた。また、第1の領域20aの平坦度は、20nmであった。
 また、第1の主表面12aの形状データと、基板10の板厚データとを用いて、第2の主表面12b(裏面)の形状データを求めた。具体的には、第1の主表面12aのある領域で測定された形状データ(高さデータ)と、同じ領域で測定された基板10の板厚データを用いることによって、その領域における第2の主表面12b(裏面)の形状データ(高さデータ)を求めた。基板10の板厚データの測定には、レーザー干渉計を使用した。測定によって得られた形状データを用いて、第3の領域20cの最小二乗平面を求めた。また、第3の領域20cの平坦度は、22nmであった。
 第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とがなす角度αを計算によって求めた。その結果、α=0.73°であった。
 つぎに、得られたマスクブランク用基板10の第2の領域20b及び第4の領域20dの表面のPV値を、表面形状測定装置(Zygo社製  NewView6300)を用いて測定した。第2の領域20b及び第4の領域20dは、中心側に位置する148mm×148mmの領域の外側の領域に設定した。その結果、第2の領域20bのPV値は、302nmであった。第4の領域20dのPV値は、296nmであった。
 マスクブランク用基板10の第1の主表面12aの形状データと、第2の主表面12bの形状データを用いて、マスクブランク用基板10が露光装置のマスクステージに静電チャックによって吸着された後の第1の主表面12aの形状をシミュレーションによって求めた。具体的には、測定領域毎に第1の主表面12aの形状データと、第2の主表面12bの形状データを足し合わせることによって、露光装置のマスクステージに吸着された後の第1の主表面12aの形状(高さ)を求めた。また、シミュレーションによって求めた第1の主表面12aの形状データを用いて、後述の吸収体膜の上に形成されるレジスト膜に描画するパターンのデータを補正した。
 マスクブランク用基板10の第2の主表面12b(裏面)に、以下の条件で、CrNからなる裏面導電膜をマグネトロンスパッタリング法により形成した。
 (条件):Crターゲット、Ar+N2ガス雰囲気(Ar:N2=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm
 マスクブランク用基板10の第1の主表面12aに、Mo膜/Si膜を周期的に積層することで多層反射膜を形成し、多層反射膜付き基板を製造した。
 具体的には、MoターゲットとSiターゲットを使用し、イオンビームスパッタリング(Arを使用)により、基板上に、Mo膜及びSi膜を交互に積層した。Mo膜の膜厚は、2.8nmである。Si膜の膜厚は、4.2nmである。1周期のMo/Si膜の膜厚は、7.0nmである。このようなMo/Si膜を、40周期積層し、最後にSi膜を4.0nmの膜厚で成膜し、多層反射膜を形成した。
 多層反射膜の上に、Ru化合物を含む保護膜を形成した。具体的には、RuNbターゲット(Ru:80原子%、Nb:20原子%)を使用し、Arガス雰囲気にて、DCマグネトロンスパッタリングにより、多層反射膜の上に、RuNb膜からなる保護膜を形成した。保護膜の膜厚は、2.5nmであった。
 保護膜の上に吸収体膜を形成し、反射型マスクブランクを製造した。具体的には、TaBN(膜厚56nm)とTaBO(膜厚14nm)の積層膜からなる吸収体膜を、DCマグネトロンスパッタリングにより形成した。TaBN膜は、TaBターゲットを使用し、ArガスとNガスの混合ガス雰囲気における反応性スパッタリングにより形成した。TaBO膜は、TaBターゲットを使用し、ArガスとOガスの混合ガス雰囲気における反応性スパッタリングにより形成した。
 反射型マスクブランクの吸収体膜上に、レジスト膜を形成した。電子線描画装置を用いて、レジスト膜にパターンを描画した。パターンを描画する際には、上述の補正されたパターンデータを用いた。パターンを描画した後、所定の現像処理を行い、吸収体膜上にレジストパターンを形成した。
 レジストパターンをマスクとして、吸収体膜にパターン(吸収体パターン)を形成した。具体的には、フッ素系ガス(CFガス)により、上層のTaBO膜をドライエッチングした後、塩素系ガス(Clガス)により、下層のTaBN膜をドライエッチングした。
 吸収体膜パターン上に残ったレジストパターンを、熱硫酸で除去することで、EUV反射型マスクを製造した。製造した反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、半導体装置を製造した。具体的には、半導体基板上に形成されたレジスト膜に、反射型マスクの吸収体パターンを転写した。その後、現像工程や洗浄工程等の必要な工程を経ることにより、半導体基板上に回路パターンが形成された半導体装置を製造した。製造した半導体装置の半導体基板上には、回路パターンが設計通りに正確に形成されていた。
[比較例]
 比較例では、上記実施例と同様に、マスクブランク用基板を製造した。ただし、上記実施例における局所表面加工処理は行わなかった。
 比較例で製造したマスクブランク用基板において、第1の領域20aの最小二乗平面と、第3の領域20cの最小二乗平面とのなす角度αは、1.3°であった。
 比較例で製造したマスクブランク用基板において、第2の領域20b及び第4の領域20dの表面のPV値は、421nmであった。
 比較例で製造したマスクブランク用基板を用いて、上記実施例と同様に、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、及び反射型マスクを製造した。製造した反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、半導体装置を製造した。具体的には、半導体基板上に形成されたレジスト膜に、反射型マスクの吸収体パターンを転写した。その後、現像工程や洗浄工程等の必要な工程を経ることにより、半導体基板上に回路パターンが形成された半導体装置を製造した。製造した半導体基板上の回路パターンを検査したところ、回路パターンが設計通りに正確に形成されていない箇所が確認された。
10  マスクブランク用基板
12a 第1の主表面
12b 第2の主表面
20a 第1の領域
20b 第2の領域
20c 第3の領域
20d 第4の領域
30  多層反射膜付き基板
40  反射型マスクブランク
50  反射型マスク

Claims (10)

  1.  平面形状が略四角形であり、大きさが152mm×152mmであるマスクブランク用基板であって、
     転写パターンが形成される側の面である第1の主表面と、前記第1の主表面に対向し、露光装置のマスクステージに固定される側の面である第2の主表面とを備え、
     前記第1の主表面は、中心側に位置する第1の領域と、前記第1の領域の外側に位置する第2の領域を備えており、
     前記第2の主表面は、中心側に位置する第3の領域と、前記第3の領域の外側に位置する第4の領域を備えており、
     前記第1の領域の最小二乗平面と、前記第3の領域の最小二乗平面とのなす角度αが1.2°未満であり、
     前記第2の領域及び前記第4の領域の表面のPV値が400nm以下である、マスクブランク用基板。
  2.  前記第1の領域は、前記転写パターンが形成される領域であり、前記基板の中心を基準とした132mm×132mm以上の大きさを有する、請求項1に記載のマスクブランク用基板。
  3.  前記第3の領域は、前記基板の中心を基準とした142mm×142mm以上の大きさを有する、請求項1または請求項2に記載のマスクブランク用基板。
  4.  前記第2の領域及び前記第4の領域は、前記基板の中心を基準とした148mm×148mmの領域の外側の領域である、請求項1から請求項3のうちいずれか1項に記載のマスクブランク用基板。
  5.  前記マスクブランク用基板は、反射型マスクブランク用基板である、請求項1から請求項4のうちいずれか1項に記載のマスクブランク用基板。
  6.  請求項1から請求項5のうちいずれか1項に記載のマスクブランク用基板の第2の主表面上に、導電膜を有する導電膜付き基板。
  7.  請求項1から請求項6のうちいずれか1項に記載のマスクブランク用基板の第1の主表面上に、高屈折率層と低屈折率層とを交互に積層した多層反射膜を有する多層反射膜付き基板。
  8.  請求項7に記載の多層反射膜付き基板の前記多層反射膜上に、転写パターンとなる吸収体膜を有する反射型マスクブランク。
  9.  請求項8に記載の反射型マスクブランクにおける前記多層反射膜上に、前記吸収体膜がパターニングされた吸収体パターンを有する反射型マスク。
  10.  請求項9に記載の反射型マスクを用いて、露光装置を使用したリソグラフィープロセスを行い、被転写体上に転写パターンを形成する工程を有する半導体装置の製造方法。
PCT/JP2020/013139 2019-03-28 2020-03-24 マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法 WO2020196555A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11202109244U SG11202109244UA (en) 2019-03-28 2020-03-24 Mask blank substrate, substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method of manufacturing semiconductor device
KR1020217023666A KR20210135993A (ko) 2019-03-28 2020-03-24 마스크 블랭크용 기판, 도전막 부착 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크, 및 반도체 장치의 제조 방법
US17/431,702 US20220121109A1 (en) 2019-03-28 2020-03-24 Substrate for mask blank, substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP2021509467A JPWO2020196555A1 (ja) 2019-03-28 2020-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-063692 2019-03-28
JP2019063692 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196555A1 true WO2020196555A1 (ja) 2020-10-01

Family

ID=72610995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013139 WO2020196555A1 (ja) 2019-03-28 2020-03-24 マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法

Country Status (6)

Country Link
US (1) US20220121109A1 (ja)
JP (1) JPWO2020196555A1 (ja)
KR (1) KR20210135993A (ja)
SG (1) SG11202109244UA (ja)
TW (1) TWI834853B (ja)
WO (1) WO2020196555A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220058424A (ko) * 2020-10-30 2022-05-09 에이지씨 가부시키가이샤 Euvl용 유리 기판, 및 euvl용 마스크 블랭크
KR102292282B1 (ko) * 2021-01-13 2021-08-20 성균관대학교산학협력단 비등방성 기계적 팽창 기판 및 이를 이용한 크랙 기반 압력 센서

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029735A (ja) * 2002-03-29 2004-01-29 Hoya Corp 電子デバイス用基板、該基板を用いたマスクブランクおよび転写用マスク、並びにこれらの製造方法、研磨装置および研磨方法
JP2005301304A (ja) * 2002-03-29 2005-10-27 Hoya Corp マスクブランク用基板、マスクブランク、および転写用マスク
JP2011141536A (ja) * 2009-12-11 2011-07-21 Shin-Etsu Chemical Co Ltd フォトマスク用ガラス基板及びその製造方法
JP2012009833A (ja) * 2010-05-24 2012-01-12 Shin Etsu Chem Co Ltd 合成石英ガラス基板及びその製造方法
JP2016038573A (ja) * 2014-08-07 2016-03-22 旭硝子株式会社 マスクブランク用ガラス基板、および、その製造方法
JP2017107007A (ja) * 2015-12-08 2017-06-15 旭硝子株式会社 マスクブランク用のガラス基板、マスクブランク、およびフォトマスク

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3975321B2 (ja) * 2001-04-20 2007-09-12 信越化学工業株式会社 フォトマスク用シリカガラス系基板及びフォトマスク用シリカガラス系基板の平坦化方法
JP3895651B2 (ja) * 2002-08-12 2007-03-22 Hoya株式会社 不要膜除去装置および不要膜除去方法、並びにフォトマスクブランク製造方法
JP4958147B2 (ja) 2006-10-18 2012-06-20 Hoya株式会社 露光用反射型マスクブランク及び露光用反射型マスク、多層反射膜付き基板、並びに半導体装置の製造方法
JP5231918B2 (ja) * 2008-09-26 2013-07-10 Hoya株式会社 マスクブランク用基板の製造方法、及び両面研磨装置
JP4728414B2 (ja) * 2009-03-25 2011-07-20 Hoya株式会社 マスクブランク用基板、マスクブランク、フォトマスクおよび半導体デバイスの製造方法
WO2014050831A1 (ja) * 2012-09-28 2014-04-03 Hoya株式会社 多層反射膜付き基板の製造方法
SG11201508899TA (en) * 2013-08-30 2015-11-27 Hoya Corp Reflective mask blank, method for manufacturing reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP5780350B2 (ja) * 2013-11-14 2015-09-16 大日本印刷株式会社 蒸着マスク、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
US20170363952A1 (en) * 2014-12-19 2017-12-21 Hoya Corporation Mask blank substrate, mask blank, and methods for manufacturing them, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US10948814B2 (en) * 2016-03-23 2021-03-16 AGC Inc. Substrate for use as mask blank, and mask blank
JP6873758B2 (ja) * 2016-03-28 2021-05-19 Hoya株式会社 基板の製造方法、多層反射膜付き基板の製造方法、マスクブランクの製造方法、及び転写用マスクの製造方法
JP6803186B2 (ja) * 2016-09-30 2020-12-23 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、マスクブランク、転写用マスク及び半導体デバイスの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029735A (ja) * 2002-03-29 2004-01-29 Hoya Corp 電子デバイス用基板、該基板を用いたマスクブランクおよび転写用マスク、並びにこれらの製造方法、研磨装置および研磨方法
JP2005301304A (ja) * 2002-03-29 2005-10-27 Hoya Corp マスクブランク用基板、マスクブランク、および転写用マスク
JP2011141536A (ja) * 2009-12-11 2011-07-21 Shin-Etsu Chemical Co Ltd フォトマスク用ガラス基板及びその製造方法
JP2012009833A (ja) * 2010-05-24 2012-01-12 Shin Etsu Chem Co Ltd 合成石英ガラス基板及びその製造方法
JP2016038573A (ja) * 2014-08-07 2016-03-22 旭硝子株式会社 マスクブランク用ガラス基板、および、その製造方法
JP2017107007A (ja) * 2015-12-08 2017-06-15 旭硝子株式会社 マスクブランク用のガラス基板、マスクブランク、およびフォトマスク

Also Published As

Publication number Publication date
US20220121109A1 (en) 2022-04-21
SG11202109244UA (en) 2021-10-28
JPWO2020196555A1 (ja) 2020-10-01
TW202101534A (zh) 2021-01-01
KR20210135993A (ko) 2021-11-16
TWI834853B (zh) 2024-03-11

Similar Documents

Publication Publication Date Title
US10620527B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask blank, transmissive mask, reflective mask, and semiconductor device fabrication method
JP6195880B2 (ja) マスクブランク用基板の製造方法、多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、透過型マスクブランクの製造方法、透過型マスクの製造方法、及び半導体装置の製造方法
JP5073835B2 (ja) マスクブランク用基板
JP6678269B2 (ja) 反射型マスクブランク及び反射型マスク
TW202013057A (zh) 反射型光罩基底、反射型光罩、及半導體裝置之製造方法
WO2020196555A1 (ja) マスクブランク用基板、導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP7253373B2 (ja) マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、透過型マスクブランク、透過型マスク、及び半導体装置の製造方法
WO2020203338A1 (ja) マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、透過型マスクブランク、透過型マスク、及び半導体装置の製造方法
WO2022149417A1 (ja) マスクブランク用基板、多層反射膜付基板、マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776544

Country of ref document: EP

Kind code of ref document: A1