WO2020195881A1 - Manufacturing method for polarizing film, and polarizing film - Google Patents

Manufacturing method for polarizing film, and polarizing film Download PDF

Info

Publication number
WO2020195881A1
WO2020195881A1 PCT/JP2020/010747 JP2020010747W WO2020195881A1 WO 2020195881 A1 WO2020195881 A1 WO 2020195881A1 JP 2020010747 W JP2020010747 W JP 2020010747W WO 2020195881 A1 WO2020195881 A1 WO 2020195881A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing film
group
liquid crystal
polarizing
Prior art date
Application number
PCT/JP2020/010747
Other languages
French (fr)
Japanese (ja)
Inventor
智煕 柳
東輝 金
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217031039A priority Critical patent/KR20210148141A/en
Publication of WO2020195881A1 publication Critical patent/WO2020195881A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a method for producing a polarizing film and a polarizing film.
  • Patent Document 1 describes a coating type polarizing film formed by coating a composition containing a polymerizable liquid crystal compound and a dichroic dye. According to the coating type polarizing film, it is easy to achieve thinning.
  • a method for producing a polarizing film including a base material and a polarizing film includes the following inventions.
  • a method for producing a polarizing film including a base material and a polarizing film includes (A) A step of applying an alignment film composition to the substrate to form a first coating film.
  • D A step of forming a polarizing film on the alignment film
  • a method for producing a polarizing film which comprises a step of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C.
  • step (d) A step of applying a polarizing film composition on the alignment film to form a second coating film.
  • D2 A step of drying the second coating film to form a second dry film.
  • step (D3) The method for producing a polarizing film according to [1] or [2], which comprises a step of curing the second dry film to form the polarizing film.
  • the polarizing film contains a dichroic dye and a polymer of a polymerizable liquid crystal compound.
  • the average value S 1ave of the order parameter is a polarizing film satisfying the relationship of the following formula (1a).
  • S 1ave ⁇ 0.998 (1a) [8] The polarizing film according to [7], wherein the order parameter difference ⁇ S 1 satisfies the relationship of the following formula (3a).
  • the present invention is a method for producing a polarizing film including a base material and a polarizing film.
  • E A method for producing a polarizing film, which comprises a step of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C.
  • a polarizing film including a base material, an alignment film, and a polarizing film in this order, and a polarizing film having good optical characteristics can be manufactured.
  • the substrate is preferably long.
  • a long polarizing film can be continuously produced.
  • the length of the base material in the longitudinal direction is usually 10 to 10000 m, preferably 100 to 2000 m.
  • the length of the base material in the lateral direction is usually 0.1 to 5 m, preferably 0.2 to 2 m.
  • the "long" base material refers to "a long base material rolled into a roll” and "a long base material unwound from a long roll-shaped base material”. The same applies to "long” when referring to a long alignment film and a long polarizing film.
  • the base material is not limited to a long length, but is preferably rectangular.
  • the base material is usually a resin base material.
  • the resin base material is usually a transparent resin base material.
  • the transparent resin base material means a base material having translucency capable of transmitting light, particularly visible light, and the translucency means a transmittance of 80% or more for light having a wavelength of 380 nm to 780 nm. Refers to characteristics.
  • the resin constituting the base material examples include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetyl cellulose, diacetyl cellulose, and Cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyether ketone; polyphenylene sulfide; and polyphenylene oxide and the like.
  • Cellulose ester is an esterified product of at least a part of the hydroxyl groups contained in cellulose and can be obtained from the market. Substrates containing cellulose esters are also available on the market. Commercially available substrates containing cellulose esters include Fujitac (registered trademark) film (Fuji Photo Film Co., Ltd.), KC8UX2M (Konica Minolta Opto Co., Ltd.), KC8UY (Konica Minolta Opto Co., Ltd.), and KC4UY (Konica Minolta Opto Co., Ltd.). Examples include Minolta Opto Co., Ltd.
  • the cyclic olefin-based resin includes a polymer of a cyclic olefin such as norbornene or a polycyclic norbornene-based monomer, or a copolymer thereof.
  • the cyclic olefin-based resin may contain a ring-opening structure, or may be a hydrogenated cyclic olefin-based resin containing a ring-opening structure.
  • the cyclic olefin resin may contain structural units derived from the chain olefin and the vinylized aromatic compound as long as the transparency is not significantly impaired and the hygroscopicity is not significantly increased.
  • the cyclic olefin resin may have a polar group introduced into its molecule. Examples of the chain olefin include ethylene and propylene, and examples of the vinylized aromatic compound include styrene, ⁇ -methylstyrene and alkyl-substituted styrene.
  • the cyclic olefin resin is a copolymer of a cyclic olefin and a chain olefin or a vinylized aromatic compound
  • the content of the structural unit derived from the cyclic olefin is based on the total structural unit of the copolymer. , Usually 50 mol% or less, preferably 15-50 mol%.
  • the cyclic olefin resin is a ternary copolymer of a cyclic olefin, a chain olefin, and a vinylized aromatic compound
  • the content of the structural unit derived from the chain olefin is the total structure of the copolymer. It is usually 5 to 80 mol% with respect to the unit, and the content ratio of the structural unit derived from the vinylized aromatic compound is usually 5 to 80 mol% with respect to the total structural unit of the copolymer.
  • Such a ternary copolymer has an advantage that the amount of expensive cyclic olefin used can be relatively reduced.
  • Cyclic olefin resin is available on the market.
  • Commercially available cyclic olefin resins are Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) and ZEONEX (registered trademark) ( As mentioned above, Zeon Corporation (manufactured by Nippon Zeon Corporation), Appel (registered trademark) (manufactured by Mitsui Chemicals Co., Ltd.) and the like can be mentioned.
  • Such a cyclic olefin resin can be used as a base material by forming a film by a known means such as a solvent casting method or a melt extrusion method.
  • the base materials containing a commercially available cyclic olefin resin are Scina (registered trademark), SCA40 (all manufactured by Sekisui Chemical Co., Ltd.), Zeonoa Film (registered trademark) (Optes Co., Ltd.), and Arton Film (registered trademark). ) (JSR Co., Ltd.) and the like.
  • the base material may be surface-treated.
  • the surface treatment of the base material includes, for example, corona or plasma treatment in a vacuum atmosphere to an atmospheric pressure atmosphere, laser treatment, ozone treatment, saponification treatment, flame treatment, coupling agent coating treatment, primer treatment, and reactivity. Examples thereof include treatment by a graft polymerization method in which a monomer or a reactive polymer is attached to the surface of a substrate and then irradiated with radiation, plasma or ultraviolet rays to cause a reaction. Of these, corona or plasma treatment in a vacuum atmosphere to an atmospheric pressure atmosphere is preferable.
  • a method of placing the base material between the opposing electrodes under a pressure near atmospheric pressure and generating corona or plasma to perform the surface treatment of the base material, facing each other a method in which a gas is passed between the electrodes, the gas is turned into plasma between the electrodes, and the plasmaized gas is blown onto the base material, and a method in which glow discharge plasma is generated under low pressure conditions to perform surface treatment on the base material.
  • a method in which a base material is placed between opposing electrodes under a pressure near atmospheric pressure to generate corona or plasma to perform surface treatment of the base material or a method in which gas is passed between the facing electrodes to conduct electrodes.
  • a method in which the gas is turned into plasma between them and the turned gas is blown onto the substrate is preferable.
  • Such surface treatment with corona or plasma is usually performed by a commercially available surface treatment apparatus.
  • the base material may have a protective film on the surface opposite to the surface on which the polarizing film composition is applied.
  • the protective film include films such as polyethylene, polyethylene terephthalate, polycarbonate and polyolefin, and films having an adhesive layer on the film. Of these, polyethylene terephthalate is preferable because it has a small thermal deformation during drying.
  • the thickness of the base material is preferably thin in that it is heavy enough to be handled practically, but if it is too thin, the strength tends to decrease and the workability tends to be inferior.
  • the thickness of the base material is usually 5 to 300 ⁇ m, preferably 20 to 200 ⁇ m.
  • the alignment film is (A) A step of applying an alignment film composition to the substrate to form a first coating film. (B) A step of drying the first coating film to form the first dry film. (C) A step of irradiating the first dry film with polarized light to form an alignment film. Is formed on the substrate through.
  • the alignment film has an orientation regulating force that orients the polymerizable liquid crystal compound contained in the polarizing film composition applied on the alignment film in a certain direction.
  • the polymerizable liquid crystal compound can be oriented so that its molecular major axis direction is parallel to the direction of the orientation regulating force.
  • the direction of the orientation regulating force of the alignment film is usually parallel or perpendicular to the polarization direction of the polarized light to be irradiated.
  • the alignment film preferably has solvent resistance that does not dissolve when the polarizing film composition is applied, and also has heat resistance in heat treatment for removing the solvent and aligning the dichroic dye.
  • the film thickness of the alignment film is, for example, 10 nm to 10000 nm, preferably 10 nm to 1000 nm, more preferably 500 nm or less, and more preferably 10 nm or more. Within the above range, the orientation regulating force is sufficiently exhibited.
  • the alignment film composition contains a polymer or monomer having a photoreactive group and a solvent.
  • a photoreactive group is a group that exhibits an orientation ability when irradiated with light. Specifically, a photoreactive group undergoes a photoreaction that is the origin of orientation ability, such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction by irradiation with light. To do.
  • the photoreactive groups those that cause a dimerization reaction or a photocrosslinking reaction are preferable because they are excellent in orientation.
  • a photoreactive group that undergoes a photodimerization reaction is preferable, and a photoalignment film having a relatively small amount of polarized light required for photoalignment and excellent thermal stability and temporal stability can be easily obtained.
  • Groups and chalcone groups are preferred.
  • the polymer having a photoreactive group a polymer having a cinnamoyl group such that the terminal portion of the side chain of the polymer has a cinnamon acid structure is particularly preferable.
  • the solvent of the alignment film composition is preferably one that dissolves a polymer and a monomer having a photoreactive group.
  • the solvent is water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve or alcohol such as propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, gamma butyrolactone, propylene glycol methyl.
  • Ester solvents such as ether acetate or ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone or methyl isobutyl ketone; non-chlorine aliphatic hydrocarbon solvents such as pentane, hexane or heptane; Non-chlorine aromatic hydrocarbon solvents such as toluene or xylene, nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran or dimethoxyethane; chlorine solvents such as chloroform or chlorobenzene; and the like can be mentioned. These solvents may be used alone or in combination.
  • the content of the polymer or monomer having a photoreactive group in the alignment film composition can be appropriately adjusted depending on the type of the polymer or monomer having a photoreactive group and the thickness of the photoalignment film to be produced, but is at least 0. It is preferably .2% by mass or more, and particularly preferably in the range of 0.3 to 10% by mass. Further, a polymer material such as polyvinyl alcohol or polyimide or a photosensitizer may be contained as long as the characteristics of the alignment film are not significantly impaired.
  • the first coating film is formed by applying the alignment film composition to the substrate.
  • the method for applying the alignment film composition to the substrate include a gravure coating method, a die coating method, an applicator method, a flexographic method and the like. According to these methods, the alignment film composition can be continuously applied to a long base material.
  • the gravure coating method, the die coating method and the flexographic method are preferable.
  • the first dry film is formed by drying the first coating film.
  • a film in which the content of the solvent contained in the first coating film is 50% by mass or less with respect to the total mass of the first coating film is referred to as a first dry film.
  • Examples of the method for drying the first coating film include a natural drying method, a ventilation drying method, a heat drying method, and a vacuum drying method.
  • a method that combines a ventilation drying method and a heat drying method is preferable.
  • the drying temperature is preferably 10 to 250 ° C, more preferably 25 to 200 ° C.
  • the drying time is preferably 10 seconds to 60 minutes, more preferably 30 seconds to 30 minutes. By drying, the solvent contained in the first coating film is removed.
  • the content of the solvent in the first dry film is preferably 30% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and particularly preferably 1% by mass or less.
  • the first dry film is irradiated with polarized light to form an alignment film having an orientation regulating force.
  • the angle formed by the direction of the alignment regulating force of the alignment film and the longitudinal direction of the alignment film is preferably 0 ° ⁇ 15 ° or 90 ° ⁇ 15 °, more preferably. Is 0 ° ⁇ 10 ° or 90 ° ⁇ 10 °, more preferably 0 ° ⁇ 5 ° or 90 ° ⁇ 5 °, and particularly preferably 0 ° ⁇ 1 ° or 90 ° ⁇ 1 °.
  • the direction of the orientation regulating force of the alignment film can be adjusted by the polarization direction of the polarized light to be irradiated.
  • the direction of the orientation regulating force can also be changed depending on the type of polymer having a photoreactive group.
  • the polarization direction of the polarization is preferably 0 ° ⁇ 15 °, more preferably 0 ° ⁇ 10 °, still more preferably 0 ° ⁇ 5 °, and particularly preferably 0 ° ⁇ 5 ° with respect to the longitudinal direction of the alignment film. It is 0 ° ⁇ 1 °.
  • the polarization direction of the polarized light is preferably 90 ° ⁇ 15 ° with respect to the longitudinal direction of the alignment film, which is more preferable. Is 90 ° ⁇ 10 °, more preferably 90 ° ⁇ 5 °, and particularly preferably 90 ° ⁇ 1 °.
  • Polarized light may be directly irradiated to the first dry film from the first dry film side, or may be irradiated by transmitting the base material from the base material side.
  • the wavelength of polarized light is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy.
  • ultraviolet rays having a wavelength in the range of 250 to 400 nm are preferable.
  • the polarized light source include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps, and metal halide lamps are preferable. These lamps are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • Polarized light is obtained, for example, by passing light from the light source through a polarizer.
  • a polarizer By adjusting the polarization angle of the polarizer, the direction of polarization can be arbitrarily adjusted.
  • the polarizer include a polarizing filter, a polarizing prism such as a Gran Thomson or a Granter, and a wire grid type polarizer.
  • the polarized light is preferably substantially parallel light.
  • the alignment film can induce the orientation of the liquid crystal material.
  • the orientation regulation direction of the alignment film is parallel to the longitudinal direction of the long substrate, the direction of the absorption axis is parallel to the longitudinal direction of the long substrate, for the production of a long polarizing film. It is useful.
  • the orientation regulation direction of the alignment film is orthogonal to the longitudinal direction of the long substrate, the direction of the absorption axis is orthogonal to the longitudinal direction of the long substrate for manufacturing a long polarizing film. It is useful.
  • Step (d)> The step (d) of forming the polarizing film on the alignment film is (D1) A step of applying a polarizing film composition on the alignment film to form a second coating film. (D2) A step of drying the second coating film to form a second dry film. (D3) The step of curing the second dry film to form the polarizing film is included.
  • the polarizing film composition preferably contains a dichroic dye and a polymerizable liquid crystal compound.
  • the polarizing film containing the polymerizable liquid crystal compound has improved strength and reduced color unevenness.
  • the viscosity of the polarizing film composition is preferably 10 mPa ⁇ s or less, more preferably 0.1 to 7 mPa ⁇ s, because the film thickness of the second coating film is less likely to be uneven.
  • the polarizing film composition may further contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, and the like.
  • the dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
  • the dichromatic dye preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • a dichroic dye examples include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye and an anthraquinone dye, and among them, the azo dye is preferable.
  • the azo dye examples include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye and a stilbene azo dye, and preferably a bisazo dye and a trisazo dye.
  • the dichroic dyes may be used alone or in combination, but it is preferable to combine three or more kinds. In particular, it is preferable to combine three or more kinds of azo compounds.
  • Examples of the azo dye include a compound represented by the formula (2) (hereinafter, in some cases, referred to as “compound (2)”).
  • a 1 (-N NA 2 )
  • p -N NA 3 (2)
  • a 1 and A 3 are independent of each other, a phenyl group which may have a substituent, a naphthyl group which may have a substituent, or a monovalent heterocyclic group which may have a substituent.
  • a 2 is a divalent 1,4-phenylene group which may have a substituent, a naphthalene-1,4-diyl group which may have a substituent, or a divalent group which may have a substituent.
  • p represents an integer of 1 to 4. If p is an integer of 2 or more, it may be the same or different and the plurality of A 2 independently of one another. ]
  • Examples of the monovalent heterocyclic group include a group obtained by removing one hydrogen atom from a heterocyclic compound such as quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole and benzoxazole.
  • Examples of the divalent heterocyclic group include a group obtained by removing two hydrogen atoms from the heterocyclic compound.
  • the unsubstituted amino group is -NH2). Specific examples of the alkyl group having 1 to 6 carbon atoms are the same as those exemplified by the substituent arbitrarily contained in the phenylene group of the compound (1).
  • the compounds represented by the following formulas (2-1) to (2-6) are preferable.
  • B 1 to B 20 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, and a substituted or unsubstituted amino group (substituted amino group and The definition of an unsubstituted amino group is as described above), and represents a chlorine atom or a trifluoromethyl group.
  • n1 to n4 represent integers of 0 to 3 independently of each other.
  • n1 is 2 or more, a plurality of B 2 may be the same or different independently of one another, if n2 is 2 or more, plural B 6 may be the same or different independently of each other, If n3 is 2 or more, plural B 9 may be the same or different independently of each other, when n4 is 2 or more, a plurality of B 14 may be the same or different independently of each other.
  • the anthraquinone dye is preferably a compound represented by the formula (2-7).
  • R 1 to R 8 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the oxazone dye is preferably a compound represented by the formula (2-8).
  • R 9 to R 15 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the acridine dye is preferably a compound represented by the formula (2-9).
  • R 16 to R 23 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
  • R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms represented by R x in the formula (2-7), the formula (2-8) and the formula (2-9) includes a methyl group, an ethyl group, a propyl group and a butyl group.
  • Pentyl group, hexyl group and the like, and examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xsilyl group and a naphthyl group.
  • the cyanine dye is preferably a compound represented by the formula (2-10) and a compound represented by the formula (2-11).
  • D 1 and D 2 represent groups represented by any of the formulas (2-10a) to (2-10d) independently of each other.
  • n5 represents an integer of 1 to 3.
  • D 3 and D 4 represent groups represented by any of the formulas (2-11a) to (2-11h) independently of each other.
  • n6 represents an integer of 1 to 3.
  • the content of the dichroic dye in the polarizing film composition is 0.1 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the solid content of the polarizing film composition from the viewpoint of improving the orientation of the dichroic dye.
  • the following is preferable, 0.1 parts by mass or more and 20 parts by mass or less is more preferable, 0.1 parts by mass or more and 10 parts by mass or less is further preferable, and 0.1 parts by mass or more and 5 parts by mass or less is particularly preferable.
  • the solid content means the total amount of the components excluding the solvent from the polarizing film composition.
  • the polymerizable liquid crystal compound is a compound having a polymerizable group and exhibiting liquid crystallinity.
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can undergo a polymerization reaction with an active radical, an acid, or the like generated from a photopolymerization initiator described later.
  • Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the liquid crystal compound may be a thermotropic liquid crystal or a riotropic liquid crystal, and may be a nematic liquid crystal or a smectic liquid crystal in the thermotropic liquid crystal.
  • a smectic liquid crystal compound is preferable in that higher polarization characteristics can be obtained, and a higher-order smectic liquid crystal compound is more preferable.
  • higher-order smectic liquid crystal compounds forming smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase or smectic L phase More preferably, a higher-order smectic liquid crystal compound forming a smectic B phase, smectic F phase or smectic I phase is more preferable.
  • a polarizing film having a higher degree of orientation order can be produced.
  • a polarizing film having such a high degree of orientation order can obtain a Bragg peak derived from a higher-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from the periodic structure of molecular orientation, and when the liquid crystal phase formed by the polymerizable liquid crystal compound is these higher-order smectic phases, the periodic interval is 3.0 to 6.0 ⁇ .
  • a membrane can be obtained.
  • Specific examples of such a compound include a compound represented by the following formula (B) (hereinafter, may be referred to as compound (B)) and the like.
  • the polymerizable liquid crystal compound may be used alone or in combination.
  • X 1 , X 2 and X 3 represent, independently of each other, a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent.
  • at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent. It is, -O - - -CH 2 constituting hexane-1,4-diyl group cycloheteroalkyl, - may be replaced by S- or -NR-.
  • R represents an alkyl group or a phenyl group having 1 to 6 carbon atoms.
  • R a and R b independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • U 1 represents a hydrogen atom or a polymerizable group.
  • U 2 represents a polymerizable group.
  • W 1 and W 2 independently represent a single bond, -O-, -S-, -COO- or -OCOO-.
  • V 1 and V 2 represent an alkanediyl group having 1 to 20 carbon atoms which may have a substituent independently of each other, and -CH 2- constituting the alkanediyl group is -O-,-. It may be replaced with S- or -NH-.
  • At least one of X 1 , X 2 and X 3 is preferably a 1,4-phenylene group which may have a substituent.
  • the 1,4-phenylene group which may have a substituent is preferably unsubstituted.
  • the cyclohexane-1,4-diyl group which may have a substituent is preferably a trans-cyclohexane-1,4-diyl group which may have a substituent, and is a substituent.
  • the trans-cyclohexane-1,4-diyl group which may have is preferably unsubstituted.
  • the substituents arbitrarily contained in the 1,4-phenylene group which may have a substituent or the cyclohexane-1,4-diyl group which may have a substituent are methyl group, ethyl group and butyl. Examples thereof include an alkyl group having 1 to 4 carbon atoms such as a group, a cyano group and a halogen atom.
  • Y 1 is preferably -CH 2 CH 2- , -COO- or a single bond
  • Y 2 is preferably -CH 2 CH 2- or -CH 2 O-.
  • U 2 is a polymerizable group.
  • U 1 is a hydrogen atom or a polymerizable group, preferably a polymerizable group. Both U 1 and U 2 are preferably polymerizable groups, and both are preferably photopolymerizable groups.
  • a polymerizable liquid crystal compound having a photopolymerizable group is advantageous in that it can be polymerized under lower temperature conditions.
  • the polymerizable groups represented by U 1 and U 2 may be different from each other independently of each other, but are preferably the same.
  • the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the alkanediyl groups represented by V 1 and V 2 include methylene group, ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, and pentane-. 1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane-1,14-diyl group Examples include groups and icosan-1,20-diyl groups.
  • V 1 and V 2 are preferably an alkanediyl group having 2 to 12 carbon atoms, and more preferably an alkanediyl group having 6 to 12 carbon atoms.
  • substituent arbitrarily contained in the alkanediyl group having 1 to 20 carbon atoms which may have a substituent include a cyano group and a halogen atom, and the alkanediyl group may be unsubstituted. It is preferably an unsubstituted and linear alkanediyl group, more preferably.
  • W 1 and W 2 are independent of each other, preferably single bond or —O—.
  • compound (B) examples include compounds represented by the formulas (1-1) to (1-23).
  • the cyclohexane-1,4-diyl group is preferably a trans form.
  • the exemplified compound (B) can be used alone or in combination for a long polarizing film.
  • the liquid crystal property may be temporarily maintained even at a temperature equal to or lower than the liquid crystal-crystal phase transition temperature.
  • the mixing ratio when the two kinds of polymerizable liquid crystal compounds are combined is usually 1:99 to 50:50, preferably 5:95 to 50:50, and more preferably 10:90 to 50:50. is there.
  • the compound (B) is, for example, Lub et all. Recl. Trav. Chim. It is produced by a known method described in Pays-Bas, 115, 321-328 (1996), or Japanese Patent No. 4719156.
  • the content ratio of the polymerizable liquid crystal compound in the polarizing film composition is usually 70 to 99.5 parts by mass with respect to 100 parts by mass of the solid content of the polarizing film composition from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is preferably 80 to 99 parts by mass, more preferably 80 to 94 parts by mass, and further preferably 80 to 90 parts by mass.
  • the solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound, and is preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound.
  • Solvents are alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone or Ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; toluene and Examples include aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile; ether solvents such as tetrahydr
  • the content of the solvent is preferably 50 to 98% by mass with respect to the total amount of the polarizing film composition.
  • the solid content in the polarizing film composition is preferably 2 to 50% by mass.
  • the viscosity of the polarizing film composition is low, so that the thickness of the polarizing film becomes substantially uniform, and the polarizing film tends to be less likely to be uneven. Further, the solid content can be determined in consideration of the thickness of the polarizing film to be produced.
  • the polymerization initiator is a compound such as a polymerizable liquid crystal compound that can initiate a polymerization reaction.
  • the polymerization initiator is preferably a photopolymerization initiator that generates active radicals by the action of light.
  • polymerization initiator examples include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts and sulfonium salts.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether.
  • Benzophenone compounds include, for example, benzophenone, methyl o-benzoyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3', 4,4'-tetra (tert-butylperoxycarbonyl). Examples thereof include benzophenone and 2,4,6-trimethylbenzophenone.
  • Alkylphenone compounds include, for example, diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl).
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
  • the triazine compounds include, for example, 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine and 2,4-bis (trichloromethyl) -6- (4-methoxynaphthyl).
  • a commercially available polymerization initiator can be used.
  • Commercially available polymerization initiators are Irgacure (registered trademark) 907, 184, 651, 819, 250 and 369 (manufactured by BASF Japan Ltd.); Sakeol (registered trademark) BZ, Z and BEE (Seiko Kagaku).
  • the polymerization initiator is preferably contained in the polarizing film composition.
  • the content of the polymerization initiator in the polarizing film composition is 100, from the viewpoint that the orientation of the polymerizable liquid crystal compound is not easily disturbed. It is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass with respect to the parts by mass.
  • the sensitizer is preferably a photosensitizer.
  • the sensitizer is, for example, a xanthone compound such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); an anthracene compound such as anthracene and an alkoxy group-containing anthracene (eg, dibutoxyanthracene, etc.); Examples include phenothiazine and rubrene.
  • the sensitizer is preferably contained in the polarizing film composition.
  • the content of the sensitizer in the polarizing film composition is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the content of the polymerizable liquid crystal compound. It is preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass.
  • the polymerization inhibitor is a radical scavenger such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (for example, butylcatechol, etc.), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxyradical. Thiophenols; ⁇ -naphthylamines, ⁇ -naphthols and the like.
  • the polymerization inhibitor is preferably contained in the polarizing film composition when the polarizing film composition contains a polymerizable liquid crystal compound.
  • the degree of progress of the polymerization reaction of the polymerizable liquid crystal compound can be controlled by the polymerization inhibitor.
  • the content of the sensitizer in the polarizing film composition is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the content of the polymerizable liquid crystal compound. It is preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass.
  • the leveling agent has a function of adjusting the fluidity of the polarizing film composition and flattening the coating film of the polarizing film composition, and examples thereof include a surfactant.
  • Preferred leveling agents include a leveling agent containing a polyacrylate compound as a main component and a leveling agent containing a fluorine atom-containing compound as a main component.
  • leveling agent containing a polyacrylate compound as a main component examples include "BYK-350, BYK-352, BYK-353, BYK-354, BYK-355, BYK-358N, BYK-361N, BYK-380, BYK-381 and , BYK-392 (manufactured by BYK Chemie) and the like.
  • leveling agent containing a fluorine atom-containing compound as a main component examples include Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, and F-.
  • the leveling agent is preferably contained in the polarizing film composition when the polarizing film composition contains a polymerizable liquid crystal compound.
  • the content of the leveling agent in the polarizing film composition is usually 0.3 parts by mass or more and 5 parts by mass or less, preferably 0.5 parts by mass or more and 3 parts by mass with respect to 100 parts by mass of the content of the polymerizable liquid crystal compound. It is less than a part.
  • the content of the leveling agent is within the above range, it is easy to horizontally orient the polymerizable liquid crystal compound, and the obtained long polarizing film tends to be smoother, which is preferable. If the content of the leveling agent with respect to the polymerizable liquid crystal compound exceeds the above range, the obtained polarizing film tends to be uneven, which is not preferable.
  • the polarizing film composition may contain two or more kinds of leveling agents.
  • the polarizing film composition may contain a polymerizable non-liquid crystal compound.
  • the crosslink density of the polymerization-reactive site can be increased and the strength of the polarizing film can be improved.
  • the polymerizable non-liquid crystal compound preferably has at least one polymerizable group in the group consisting of an acryloyl group, a methacryloyl group, and an isocyanate group. It is more preferable to have 2 or more and 10 or less polymerizable groups, and further preferably 3 or more and 8 or less polymerizable groups.
  • the content of the polymerizable non-liquid crystal compound in the polarizing film composition is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the solid content of the polarizing film composition. is there.
  • the second coating film is formed by applying the polarizing film composition on the alignment film.
  • Examples of the method of applying the polarizing film composition to the alignment film include the same method as the method of applying the alignment film composition.
  • the dichroic dye has a lyotropic liquid crystal property
  • the dichroic dye can be oriented by applying a shearing force.
  • the second coating film is dried to form the second dry film.
  • a film having a solvent content of 50% by mass or less in the second coating film with respect to the total mass of the second coating film is referred to as a second dry film.
  • the content of the solvent is preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
  • Examples of the method for drying the second coating film include the same method as the method for drying the first coating film.
  • the dichroic dye and the polymerizable liquid crystal compound are usually oriented by heating and drying the second coating film to transfer the dichroic dye and the polymerizable liquid crystal compound to the liquid crystal phase.
  • the liquid crystal phase is formed by heating the second dry film to a temperature at which these show the liquid crystal phase. Can be formed.
  • a liquid crystal phase may be formed.
  • the drying and heating for forming the liquid crystal phase may be performed by the same heating step.
  • the second dry film may be used as it is as a polarizing film, but when the second dry film contains a polymerizable liquid crystal compound, it is preferably cured by the step (d3).
  • Curing means that the polymerizable liquid crystal compound contained in the second dry film is polymerized, and examples of the polymerization method include heating and light irradiation, preferably light irradiation. By this curing, the dichroic dye contained in the second dry film can be fixed in an oriented state.
  • Curing is preferably performed in a state where a liquid crystal phase is formed on a polymerizable liquid crystal compound, and may be cured by irradiating light at a temperature indicating the liquid crystal phase.
  • Examples of light in light irradiation include visible light and ultraviolet light. Ultraviolet light is preferable because it is easy to handle.
  • the light may be directly irradiated to the second dry film, or may be irradiated through a long base material.
  • Examples of the light source for light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps, and metal halide lamps. preferable. These lamps are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • the thickness of the polarizing film is usually 5 ⁇ m or less, preferably 0.5 ⁇ m or more and 3 ⁇ m or less, and more preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the long polarizing film can be measured with an interference film thickness meter, a laser microscope, or a stylus type film thickness meter.
  • the long polarizing film preferably shows a Bragg peak in the X-ray diffraction measurement.
  • the production method of the present invention includes a step (e) of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C.
  • the timing of the step (e) is not limited as long as it is after the step (c) of forming the alignment film, and may be after the step (c) and before the step (d). , Simultaneously with step (d) or after step (d).
  • the angle formed by the direction of uniaxial stretching with the direction of the orientation regulating force of the alignment film is preferably within the range of 0 ° ⁇ 15 ° or 90 ° ⁇ 15 °, and more preferably 0 ° ⁇ . It is 10 ° or 90 ° ⁇ 10 °, more preferably 0 ° ⁇ 5 ° or 90 ° ⁇ 5 °, and particularly preferably 0 ° ⁇ 1 ° or 90 ° ⁇ 1 °.
  • Examples of the method of continuously uniaxially stretching the long alignment film laminate include a method of using a nip roll and a method of clipping both ends of the alignment film laminate and stretching in the width direction of the alignment film laminate.
  • the alignment film laminate is sandwiched between the pair of rolls of the nip roll composed of a pair of rolls, and the rotation speed of the pair of rolls is relatively changed, so that the alignment film laminate is uniaxial in the transport direction. Stretch.
  • the ambient temperature can be adjusted by uniaxially stretching the alignment film laminate in a heating furnace.
  • the ambient temperature is 60 ° C. to 150 ° C., preferably 65 ° C. to 100 ° C.
  • the temperature of the base material of the alignment film laminate during uniaxial stretching is preferably 60 ° C. to 150 ° C., more preferably 65 ° C. to 100 ° C.
  • the draw ratio of uniaxial stretching is preferably 1.01 to 1.5 times, more preferably 1.05 to 1.5 times, and 1.1 to 1.3 times. Is even more preferable.
  • the manufacturing method of the present invention can improve the order parameter (S 1 ) of the polarizing film, can improve the value of the luminosity factor correction polarization degree (Py), and can improve the surface. It is possible to easily obtain a uniform color within.
  • a polarizing film including a base material, an alignment film, and a polarizing film in this order can be produced, and a polarizing film having good optical characteristics can be produced.
  • a circular polarizing plate can be obtained by further adhering a 1 / 4 ⁇ wave plate to the polarizing film of the present invention.
  • a single-wafer-shaped polarizing film can be obtained by cutting it into a single-wafer shape.
  • the single-wafer shape excludes a film having a significantly different balance between the longitudinal direction and the lateral direction, and in the present specification, if the length in the longitudinal direction is 5 times or less the length in the lateral direction. It is called a single leaf.
  • the cutting can be performed by any method.
  • a preferred form of the polarizing film of the present invention includes a base material and a polarizing film, and the polarizing film contains a dichroic dye and a polymer of a polymerizable liquid crystal compound.
  • the average value (S 1ave ) of the order parameter (S 1 ) of the polarizing film of the present invention preferably satisfies the relationship of the following formula (1a), and more preferably satisfies the relationship of the following formula (1b).
  • the average value (S 1ave ) of the order parameter (S 1 ) of the polarizing film may be less than 1. S 1ave ⁇ 0.998 (1a) S 1ave ⁇ 0.999 (1b)
  • the order parameter (S 1 ) of the arbitrary region divides the arbitrary region of the polarizing film into a plurality of minute regions, the axis angle of the absorption axis of each minute region is ⁇ 1 , and the standard deviation of the axis angle ⁇ 1 of the minute region is ⁇ . Is the value defined by the equation (2).
  • the order parameter (S 1 ) and the average value (S 1ave ) of the order parameters are values obtained by the method described below.
  • the order parameter difference ( ⁇ S 1 ) of the polarizing film of the present invention in the direction orthogonal to the stretching direction (for example, the absorption axis direction) preferably satisfies the relationship of the following formula (3a), and more preferably of the following formula (3b). Meet the relationship. ⁇ S 1 ⁇ 0.0015 (3a) ⁇ S 1 ⁇ 0.0010 (3b)
  • the order parameter (S 1 ), the average value of the order parameters (S 1ave ), and the order parameter difference ( ⁇ S 1 ) can be measured as follows.
  • the polarizing film to be measured may be long or single-wafered. First, 20 measurement regions having an absorption axis direction of 1.7 mm and a transmission axis direction of 1.4 mm are set at equal intervals over the entire width of the polarizing film in the absorption axis direction. Each measurement region is further divided into 168 in the absorption axis direction and 128 in the transmission axis direction to set 21504 minute regions.
  • the absorption axis angle is measured using an absorption axis angle measuring meter (AXOMETRICS, AXoStep_Imaging Polarimeter). Then, the order parameter (S 1 ) is calculated for each measurement region according to the above equation (2).
  • the average value of 20 order parameters be the average value of order parameters (S 1ave) .
  • the order parameter difference ( ⁇ S 1 ) is calculated from the difference between the largest order parameter (S 1max ) and the smallest order parameter (S 1min ) among the order parameters calculated at 20 locations.
  • the luminosity factor correction polarization degree (Py) of the polarizing film of the present invention preferably satisfies the relationship of the following formula (6a), and more preferably satisfies the relationship of the following formula (6b).
  • the luminosity factor correction polarization degree (Py) of the polarizing film of the present invention may satisfy the relationship of the following formula (6c).
  • the luminosity factor correction transmittance (Ty) of the polarizing film of the present invention is usually 35% or more, preferably 40% or more, and more preferably 42% or more.
  • Ty is 35% or more, white brightness is improved, which is preferable.
  • the transmittance here includes the interfacial reflection loss due to the difference in refractive index between the base film and the air interface and the loss due to absorption of the base film itself. Further, when the polarizing film is provided with antiglare performance by anti-glare treatment or the like, it is a value measured by an integrating sphere including scattered light.
  • the first roll 210 in which the long base material is wound around the first winding core 210A is easily available from the market, for example.
  • Examples of the long base material available on the market in the form of such a roll include a film made of a cellulose ester, a cyclic olefin resin, a polyethylene terephthalate, or a polymethacrylic acid ester, among the base materials already exemplified.
  • the long base material is unwound from the first roll 210.
  • the method of unwinding the long base material is performed by installing an appropriate rotating means on the winding core 210A of the first roll 210 and rotating the first roll 210 by the rotating means.
  • an appropriate auxiliary roll 300 may be installed in the direction of transporting the long base material from the first roll 210, and the long base material may be unwound by the rotating means of the auxiliary roll 300.
  • the long base material may be unwound while applying an appropriate tension to the long base material.
  • the alignment film composition is coated on the surface of the long base material by the coating device 211A (step (a)).
  • the coating device 211A for continuously applying the alignment film composition in this way preferably has a gravure coating method, a die coating method, or a flexographic method.
  • the long base material on which the first coating film is formed has passed through the coating device 211A and is conveyed to the drying furnace 212A, and the first coating film is dried by the drying furnace 212A to form the first drying film (step). (B)).
  • the drying furnace 212A for example, a hot air drying furnace that combines a ventilation drying method and a heating drying method is used.
  • the set temperature of the drying furnace 212A is determined according to the type of solvent contained in the photoalignment film composition and the like.
  • the drying furnace 212A may consist of a plurality of zones having different set temperatures, or may have a plurality of drying furnaces having different set temperatures installed in series.
  • a long alignment film is obtained by irradiating the obtained first dry film with polarized light by the polarizing irradiation device 213A (step (c)). At that time, the polarized light is irradiated so that the direction of the orientation regulating force of the alignment film is the longitudinal direction of the long base material.
  • the long base material on which the long alignment film is formed is conveyed to the heating furnace 214, and the alignment film laminate composed of the long base material and the long alignment film is heated by the heating furnace.
  • the alignment film laminate is conveyed between the pair of nip rolls 215 and uniaxially stretched in the semimajor direction (step (e)).
  • the temperature of the heating furnace 214 is preferably 60 ° C. to 150 ° C., more preferably 65 ° C. to 100 ° C.
  • the draw ratio of uniaxial stretching by the nip roll 215 is preferably 1.01 to 1.5 times, more preferably 1.05 to 1.5 times, and further preferably 1.1 to 1.3 times. It is double.
  • the long base material on which the long alignment film is formed passes through the coating device 211B.
  • the polarizing film composition (containing the polymerizable liquid crystal compound) is coated on the long alignment film by the coating device 211B to form a second coating film (step d1).
  • a second drying film is formed (step d2).
  • the drying furnace 212B may consist of a plurality of zones having different set temperatures, or may have a plurality of drying furnaces having different set temperatures installed in series. ..
  • the polymerizable liquid crystal compound contained in the polarizing film composition forms a liquid crystal phase, and the dichroic dye is oriented.
  • the polymerizable liquid crystal compound contained in the second dry film forms a liquid crystal phase and is irradiated with light by the light irradiation device 213B, the polymerizable liquid crystal compound is polymerized while maintaining the liquid crystal phase and is long.
  • a polarizing film is formed (step d3).
  • the long polarizing film thus obtained is wound around the second winding core 220A, and the form of the second roll 220 is obtained.
  • the winding may be performed using an appropriate spacer.
  • the long base material is in the order of the coating device 211A, the drying furnace 212A, the polarizing irradiation device 213A, the heating furnace 214, the nip roll 215, the coating device 211B, the drying furnace 212B, and the light irradiation device 213B from the first roll 210.
  • a long polarizing film can be continuously produced in the Roll to Roll format.
  • a method of continuously manufacturing from a long base material to a long polarizing film is shown, but it can also be manufactured by another method.
  • the long base material is unwound from the first roll 210, passed through the coating device 211A, the drying furnace 212A, the polarizing irradiation device 213A, the heating furnace 214, and the nip roll 215 in this order, and wound around the winding core.
  • a roll-shaped elongated alignment film is continuously produced, and then the obtained roll-shaped elongated alignment film is unwound and passed through the coating device 211B, the drying furnace 212B and the light irradiation device 213B in this order.
  • a long polarizing film may be manufactured.
  • a circular polarizing plate may be manufactured by laminating, but a long circular polarizing plate is continuously manufactured by preparing a third roll in which a long retardation film is wound around a winding core. You can also do it.
  • the long polarizing film of the present invention is continuously unwound from the second roll 220, and the long position is continuously wound from the third roll 230 in which the long retardation film is wound.
  • the step of unwinding the retardation film, the step of continuously laminating a long polarizing film and a long retardation film to obtain a long circular polarizing plate, and the obtained long circular polarizing film. Is wound around a fourth winding core 240A to obtain a fourth roll 240. This method is so-called Roll to Roll bonding.
  • the long polarizing film and the long retardation film can be bonded together using an appropriate adhesive.
  • the long polarizing film obtained as described above can be cut as needed and used for various display devices.
  • the long polarizing film and the polarizing film cut out from the long polarizing film are usually attached to the display device via an adhesive or a pressure-sensitive adhesive.
  • the elongated polarizing film is continuously attached to the display device, and more preferably continuously attached to a plurality of display devices.
  • the display device is a device having a display element, and includes a light emitting element or a light emitting device as a light emitting source.
  • the display device including the long polarizing film of the present invention or the polarizing film cut out from the long polarizing film of the present invention is, for example, a liquid crystal display device, an organic electroluminescence (EL) display device, or an inorganic electroluminescence (EL) display.
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • electron emission display devices for example, electric field emission display device (FED), surface electric field emission display device (SED)), electronic paper (display device using electronic ink or electrophoresis element, plasma display device, projection type display device ( Examples thereof include a grating light valve (GLV) display device, a display device having a digital micromirror device (DMD)) and a piezoelectric ceramic display.
  • the liquid crystal display device includes a transmissive liquid crystal display device, a transflective liquid crystal display device, and a reflective one. It includes any of a type liquid crystal display device, a direct-view type liquid crystal display device, a projection type liquid crystal display device, and the like.
  • These display devices may be a display device for displaying a two-dimensional image or a three-dimensional image. It may be a three-dimensional display device.
  • the long polarizing film of the present invention and the polarizing film cut out from the long polarizing film of the present invention are particularly the organic electroluminescence (EL) display device and the inorganic electroluminescence (EL). ) Effectively used for display devices such as display devices and display devices including touch panels.
  • Example 1 ⁇ Preparation of alignment film composition> The following components were mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain an alignment film composition.
  • the following photo-oriented materials were synthesized by the method described in JP2013-33248. Photo-oriented material (2 parts): Solvent (98 parts): o-xylene
  • polarizing film composition ⁇ Preparation of polarizing film composition> The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a polarizing film composition.
  • dichroic dye the azo dye described in Examples of JP2013-101328A was used.
  • a long roll-shaped triacetyl cellulose film with a width of 640 mm (KC4UY-TAC thickness 40 ⁇ m manufactured by Konica Minolta Co., Ltd.) is continuously unwound at a speed of 8 m / min, and after plasma treatment is applied to the film surface, Slot Daiko
  • the alignment film composition was discharged at a flow rate of 16 ml / min using a tar to form a first coating film in a width of 400 mm at the center of the film (step (a)). Further, the solvent was removed by transporting the mixture in a ventilation drying oven set at 100 ° C. for 2 minutes to form a first drying film (step (b)).
  • the first dry film is irradiated with polarized UV light so as to be parallel to the transport direction of the film so as to have an intensity of 20 mJ / cm 2 (313 nm standard) to impart an orientation regulating force.
  • a long alignment film was formed (step (c)). The direction of the orientation regulating force of the long alignment film was orthogonal to the transport direction.
  • the obtained alignment film laminate of the long base material and the long alignment film was conveyed in a heating furnace set at 80 ° C. and having a pair of nip rolls inside over 0.5 minutes, and when passing through the nip rolls, 1 1. Uniaxial stretching was performed in the transport direction at a stretching ratio of 1 (step (e)). The nip roll was placed in a position to reach 0.3 minutes after being introduced into the heating furnace.
  • the polarizing film composition was discharged on the long alignment film of the alignment film laminate at a flow rate of 24 ml / min using a slot die coater, and a second coating film was formed in a width range of 400 mm at the center of the film (.
  • Step (d1) the solvent was removed by transporting the mixture in a ventilation drying oven set at 110 ° C. over 2 minutes to form a second drying film (step (d2)).
  • a long polarizing film was formed by irradiating UV light at 1000 mJ / cm 2 (365 nm standard) to cure the polymerizable liquid crystal compound contained in the second dry film (step (d3)).
  • it was continuously wound into a roll to obtain a long polarizing film of Example 1 having an absorption axis in a direction perpendicular to the transport direction.
  • the length of the long polarizing film in the longitudinal direction was 200 m.
  • the order parameter (S 1 ) was calculated for each measurement region according to the above equation (2).
  • the average value of the 20 order parameters was taken as the average value of the order parameters (S 1ave) .
  • the order parameter difference ( ⁇ S 1 ) was calculated from the difference between the largest order parameter (S 1max ) and the smallest order parameter (S 1min ) among the order parameters calculated at 20 locations.
  • Table 1 shows the average value (S 1ave ) of the order parameters calculated as described above and the order parameter difference ( ⁇ S 1 ).
  • the polarization degree and transmittance of the sample were measured as follows. Double beam for the transmittance (T1) in the transmission axis direction and the transmittance (T2) in the absorption axis direction using a spectrophotometer (UV-3150 manufactured by Shimadzu Corporation) with a folder with a polarizer set. It was measured in the wavelength range of 2 nm step 380 to 680 nm by the method. From the measured values of the transmittance (T1) in the transmission axis direction and the transmittance (T2) in the absorption axis direction of each wavelength, the single transmittance and the degree of polarization can be determined using the following equations (7) and (8).
  • the obtained long polarizing film was arranged so that the absorption axis was orthogonal to the iodine-PVA polarizing plate (SRW842A; manufactured by Sumitomo Chemical Co., Ltd.), and 40 cm ⁇ 40 cm on the direct backlight.
  • the color of the polarizing film was evaluated according to the following criteria by visually observing the inside of an arbitrary region of the above.
  • B Although there is partial unevenness, the unevenness is thin.
  • C There is partial unevenness, and the unevenness is clear.
  • D The unevenness is clear overall.
  • Example 2 The long polarizing film of Example 2 was manufactured by the same method as that of the long polarizing film of Example 1 except that the draw ratio of the uniaxial stretching in the step (e) was 1.2 times. The obtained long polarizing film was evaluated by the same method as in Example 1.
  • Example 3 In the first embodiment, the step (e) was performed at the timing after the step (c) and before the step (d1), whereas in the third embodiment, the step (e) was performed after the step (d3). Except for the points, the long polarizing film of Example 3 was manufactured by the same method as that of the long polarizing film of Example 1. The obtained long polarizing film was evaluated by the same method as in Example 1.
  • Example 4 In the second embodiment, the step (e) was performed at the timing after the step (c) and before the step (d1), whereas in the fourth embodiment, the step (e) was performed after the step (d3). Except for the points, the long polarizing film of Example 4 was manufactured by the same method as the method for manufacturing the long polarizing film of Example 2. The obtained long polarizing film was evaluated by the same method as in Example 1.
  • Comparative Example 1 The long polarizing film of Comparative Example 1 was manufactured by the same method as that of the long polarizing film of Example 1 except that the step (e) was not performed. The obtained long polarizing film was evaluated by the same method as in Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)

Abstract

A purpose of the the present invention is to provide a manufacturing method with which it is possible to manufacture a coating-type polarizing film that has superior optical characteristics and a uniform color within a surface thereof. The present invention provides a manufacturing method for a polarizing film that includes a substrate and a polarization film, said manufacturing method including: (a) a step in which the substrate is coated with an alignment film composition to form a first coating film; (b) a step in which the first coating film is dried to form a first dried film; (c) a step in which the first dried film is irradiated with polarized light to form an alignment film; (d) a step in which a polarization film is formed on the alignment film; and (e) a step in which an alignment film laminate including at least the substrate and the alignment film is uniaxially stretched in an atmosphere with a temperature of 60°C-150°C.

Description

偏光フィルムの製造方法及び偏光フィルムMethod of manufacturing polarizing film and polarizing film
 本発明は偏光フィルムの製造方法及び偏光フィルムに関する。 The present invention relates to a method for producing a polarizing film and a polarizing film.
 液晶表示装置や有機EL表示装置等のフラットパネル表示装置にはその光学補償を目的として偏光フィルム等の光学フィルムが使用されている。昨今のフラットパネル表示装置は、その薄膜化が強く要求されており、それに伴い偏光フィルムもより薄型のものが求められている。例えば特許文献1には、重合性液晶化合物と、二色性色素とを含む組成物を塗布して形成された塗布型の偏光フィルムが記載されている。塗布型の偏光フィルムによると、薄型化を達成しやすい。 Optical films such as polarizing films are used in flat panel display devices such as liquid crystal display devices and organic EL display devices for the purpose of optical compensation. In recent years, flat panel display devices are strongly required to be thinned, and accordingly, a thinner polarizing film is also required. For example, Patent Document 1 describes a coating type polarizing film formed by coating a composition containing a polymerizable liquid crystal compound and a dichroic dye. According to the coating type polarizing film, it is easy to achieve thinning.
特表2007-510946号公報Special Table 2007-510946
 本発明は、優れた光学特性を有し、面内で均一な色味である、塗布型の偏光フィルムを製造することができる製造方法を提供することを目的とする。また、優れた光学特性を有する、塗布型の偏光フィルムを提供することを目的とする。 An object of the present invention is to provide a manufacturing method capable of manufacturing a coating type polarizing film having excellent optical characteristics and a uniform color in the plane. Another object of the present invention is to provide a coating type polarizing film having excellent optical characteristics.
 本発明は以下の発明を含む。
 〔1〕 基材と偏光膜とを含む偏光フィルムの製造方法であって、
 (a)前記基材に配向膜組成物を塗布して第1塗布膜を形成する工程、
 (b)前記第1塗布膜を乾燥させて第1乾燥膜を形成する工程、
 (c)前記第1乾燥膜に偏光を照射して配向膜を形成する工程、
 (d)前記配向膜上に偏光膜を形成する工程、
 (e)前記基材と前記配向膜とを少なくとも含む配向膜積層体を、温度が60℃~150℃の雰囲気下で一軸延伸を行う工程、を含む、偏光フィルムの製造方法。
The present invention includes the following inventions.
[1] A method for producing a polarizing film including a base material and a polarizing film.
(A) A step of applying an alignment film composition to the substrate to form a first coating film.
(B) A step of drying the first coating film to form the first dry film.
(C) A step of irradiating the first dry film with polarized light to form an alignment film.
(D) A step of forming a polarizing film on the alignment film,
(E) A method for producing a polarizing film, which comprises a step of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C.
 〔2〕 前記一軸延伸を行う方向と前記配向膜の配向規制力の方向とのなす角度が0°±15°の範囲内、又は90°±15°の範囲内である、〔1〕に記載の偏光フィルムの製造方法。
 〔3〕 前記工程(d)は、
 (d1)前記配向膜上に偏光膜組成物を塗布して第2塗布膜を形成する工程、
 (d2)前記第2塗布膜を乾燥させて第2乾燥膜を形成する工程、
 (d3)前記第2乾燥膜を硬化させて前記偏光膜を形成する工程、を含む、〔1〕又は〔2〕に記載の偏光フィルムの製造方法。
[2] The angle formed by the direction of uniaxial stretching and the direction of the alignment restricting force of the alignment film is within the range of 0 ° ± 15 ° or 90 ° ± 15 °, according to [1]. Method for manufacturing polarizing film.
[3] In the step (d),
(D1) A step of applying a polarizing film composition on the alignment film to form a second coating film.
(D2) A step of drying the second coating film to form a second dry film.
(D3) The method for producing a polarizing film according to [1] or [2], which comprises a step of curing the second dry film to form the polarizing film.
 〔4〕 前記工程(d1)において、前記偏光膜組成物は二色性色素及び重合性液晶化合物を含む、〔3〕に記載の偏光フィルムの製造方法。
 〔5〕 前記工程(d3)において、前記第2乾燥膜に光照射して前記第2乾燥膜を硬化させる、〔3〕又は〔4〕に記載の偏光フィルムの製造方法。
 〔6〕 前記工程(e)において、前記一軸延伸は1.01倍~1.5倍の延伸倍率となるように行う、〔1〕~〔5〕のいずれか1項に記載の偏光フィルムの製造方法。
 〔7〕 基材と偏光膜とを含む偏光フィルムであって、
 前記偏光膜は、二色性色素と重合性液晶化合物の重合物とを含み、
 オーダーパラメータの平均値S1aveは、下記式(1a)の関係を満たす、偏光フィルム。
 S1ave≧0.998   (1a)
 〔8〕 オーダーパラメータ差ΔSは、下記式(3a)の関係を満たす、〔7〕に記載の偏光フィルム。
 ΔS≦0.0015   (3a)
 〔9〕 視感度補正単体偏光度Py〔%〕は、下記式(6a)の関係を満たす、〔7〕又は〔8〕に記載の偏光フィルム。
 Py≧97.0   (6a)
[4] The method for producing a polarizing film according to [3], wherein in the step (d1), the polarizing film composition contains a dichroic dye and a polymerizable liquid crystal compound.
[5] The method for producing a polarizing film according to [3] or [4], wherein in the step (d3), the second dry film is irradiated with light to cure the second dry film.
[6] The polarizing film according to any one of [1] to [5], wherein the uniaxial stretching is performed so as to have a stretching ratio of 1.01 to 1.5 times in the step (e). Production method.
[7] A polarizing film including a base material and a polarizing film.
The polarizing film contains a dichroic dye and a polymer of a polymerizable liquid crystal compound.
The average value S 1ave of the order parameter is a polarizing film satisfying the relationship of the following formula (1a).
S 1ave ≧ 0.998 (1a)
[8] The polarizing film according to [7], wherein the order parameter difference ΔS 1 satisfies the relationship of the following formula (3a).
ΔS 1 ≤ 0.0015 (3a)
[9] The polarizing film according to [7] or [8], wherein the luminosity factor correction simple substance polarization degree Py [%] satisfies the relationship of the following formula (6a).
Py ≧ 97.0 (6a)
 本発明によると、優れた光学特性を有し、面内で均一な色味である、塗布型の偏光フィルムを製造することができる。 According to the present invention, it is possible to produce a coating type polarizing film having excellent optical characteristics and a uniform color in the plane.
長尺偏光フィルムの連続的製造方法(Roll to Roll形式)の要部を表す模式図である。It is a schematic diagram which shows the main part of the continuous manufacturing method (Roll to Roll type) of a long polarizing film. 長尺円偏光板の連続的製造方法の要部を示す模式図である。It is a schematic diagram which shows the main part of the continuous manufacturing method of a long circular polarizing plate.
 [偏光フィルムの製造方法]
 本発明は、基材と偏光膜とを含む偏光フィルムの製造方法であって、
 (a)前記基材に配向膜組成物を塗布して第1塗布膜を形成する工程、
 (b)前記第1塗布膜を乾燥させて第1乾燥膜を形成する工程、
 (c)前記第1乾燥膜に偏光を照射して配向膜を形成する工程、
 (d)前記配向膜上に偏光膜を形成する工程、
 (e)前記基材と前記配向膜とを少なくとも含む配向膜積層体を、温度が60℃~150℃の雰囲気下で一軸延伸を行う工程、を含む、偏光フィルムの製造方法である。
[Manufacturing method of polarizing film]
The present invention is a method for producing a polarizing film including a base material and a polarizing film.
(A) A step of applying an alignment film composition to the substrate to form a first coating film.
(B) A step of drying the first coating film to form the first dry film.
(C) A step of irradiating the first dry film with polarized light to form an alignment film.
(D) A step of forming a polarizing film on the alignment film,
(E) A method for producing a polarizing film, which comprises a step of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C.
 上記製造方法によると、基材と、配向膜と、偏光膜とをこの順に含む偏光フィルムであって、良好な光学特性を有する偏光フィルムを製造することができる。 According to the above manufacturing method, a polarizing film including a base material, an alignment film, and a polarizing film in this order, and a polarizing film having good optical characteristics can be manufactured.
 <基材>
 基材は、好ましくは長尺である。長尺の基材を用いることにより、長尺の偏光フィルムを連続的に製造することが可能となる。長尺である場合、基材の長手方向の長さは、通常10~10000mであり、好ましくは100~2000mである。基材の短手方向の長さは、通常0.1~5mであり、好ましくは0.2~2mである。なお、本明細書において「長尺」の基材とは、「ロール状に巻かれた長尺の基材」及び「ロール状の長尺の基材から巻きだした長尺の基材」を含むものであり、長尺の配向膜及び長尺の偏光フィルムなどというときの「長尺」も同様である。なお、基材は、長尺に限定されることはないものの、矩形であることが好ましい。
<Base material>
The substrate is preferably long. By using a long base material, a long polarizing film can be continuously produced. In the case of a long base material, the length of the base material in the longitudinal direction is usually 10 to 10000 m, preferably 100 to 2000 m. The length of the base material in the lateral direction is usually 0.1 to 5 m, preferably 0.2 to 2 m. In the present specification, the "long" base material refers to "a long base material rolled into a roll" and "a long base material unwound from a long roll-shaped base material". The same applies to "long" when referring to a long alignment film and a long polarizing film. The base material is not limited to a long length, but is preferably rectangular.
 基材は、通常、樹脂基材である。樹脂基材は、通常、透明樹脂基材である。透明樹脂基材とは、光、特に可視光を透過できる透光性を有する基材を意味し、透光性とは、波長380nm~780nmにわたる光線に対しての透過率が80%以上となる特性をいう。 The base material is usually a resin base material. The resin base material is usually a transparent resin base material. The transparent resin base material means a base material having translucency capable of transmitting light, particularly visible light, and the translucency means a transmittance of 80% or more for light having a wavelength of 380 nm to 780 nm. Refers to characteristics.
 基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマーなどのポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネートなどのセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド;及びポリフェニレンオキシド等が挙げられる。好ましくは、セルロースエステル、環状オレフィン系樹脂、ポリカーボネート、ポリエーテルスルホン、ポリエチレンテレフタレート、又はポリメタクリル酸エステルである。 Examples of the resin constituting the base material include polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid ester; polyacrylic acid ester; triacetyl cellulose, diacetyl cellulose, and Cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyether ketone; polyphenylene sulfide; and polyphenylene oxide and the like. Preferred are cellulosic esters, cyclic olefin resins, polycarbonates, polyether sulfones, polyethylene terephthalates, or polymethacrylic acid esters.
 セルロースエステルは、セルロースに含まれる水酸基の少なくとも一部が、エステル化されたものであり、市場から入手することができる。また、セルロースエステルを含む基材も市場から入手することができる。市販のセルロースエステルを含む基材としては、フジタック(登録商標)フィルム(富士写真フイルム(株))、KC8UX2M(コニカミノルタオプト(株))、KC8UY(コニカミノルタオプト(株))及び、KC4UY(コニカミノルタオプト(株))等が挙げられる。 Cellulose ester is an esterified product of at least a part of the hydroxyl groups contained in cellulose and can be obtained from the market. Substrates containing cellulose esters are also available on the market. Commercially available substrates containing cellulose esters include Fujitac (registered trademark) film (Fuji Photo Film Co., Ltd.), KC8UX2M (Konica Minolta Opto Co., Ltd.), KC8UY (Konica Minolta Opto Co., Ltd.), and KC4UY (Konica Minolta Opto Co., Ltd.). Examples include Minolta Opto Co., Ltd.
 環状オレフィン系樹脂とは、ノルボルネン又は多環ノルボルネン系モノマー等の環状オレフィンの重合体、若しくはそれらの共重合体を含むものである。当該環状オレフィン系樹脂は、開環構造を含んでもよく、また、開環構造を含む環状オレフィン系樹脂を水素添加したものでもよい。また、当該環状オレフィン系樹脂は、透明性を著しく損なわず、著しく吸湿性を増大させない範囲で、鎖状オレフィン及びビニル化芳香族化合物に由来する構造単位を含んでいてもよい。また、当該環状オレフィン系樹脂は、その分子内に極性基が導入されていてもよい。
 鎖状オレフィンは、エチレン及びプロピレン等が挙げられ、ビニル化芳香族化合物は、スチレン、α-メチルスチレン及びアルキル置換スチレン等が挙げられる。
The cyclic olefin-based resin includes a polymer of a cyclic olefin such as norbornene or a polycyclic norbornene-based monomer, or a copolymer thereof. The cyclic olefin-based resin may contain a ring-opening structure, or may be a hydrogenated cyclic olefin-based resin containing a ring-opening structure. Further, the cyclic olefin resin may contain structural units derived from the chain olefin and the vinylized aromatic compound as long as the transparency is not significantly impaired and the hygroscopicity is not significantly increased. Further, the cyclic olefin resin may have a polar group introduced into its molecule.
Examples of the chain olefin include ethylene and propylene, and examples of the vinylized aromatic compound include styrene, α-methylstyrene and alkyl-substituted styrene.
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィン又はビニル化芳香族化合物との共重合体である場合、環状オレフィンに由来する構造単位の含有量は、共重合体の全構造単位に対して、通常50モル%以下であり、好ましくは15~50モル%である。 When the cyclic olefin resin is a copolymer of a cyclic olefin and a chain olefin or a vinylized aromatic compound, the content of the structural unit derived from the cyclic olefin is based on the total structural unit of the copolymer. , Usually 50 mol% or less, preferably 15-50 mol%.
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンと、ビニル化芳香族化合物との三元共重合体である場合、鎖状オレフィンに由来する構造単位の含有量は、共重合体の全構造単位に対して、通常5~80モル%であり、ビニル化芳香族化合物に由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%である。このような三元共重合体は、高価な環状オレフィンの使用量を比較的少なくすることができるという利点がある。 When the cyclic olefin resin is a ternary copolymer of a cyclic olefin, a chain olefin, and a vinylized aromatic compound, the content of the structural unit derived from the chain olefin is the total structure of the copolymer. It is usually 5 to 80 mol% with respect to the unit, and the content ratio of the structural unit derived from the vinylized aromatic compound is usually 5 to 80 mol% with respect to the total structural unit of the copolymer. Such a ternary copolymer has an advantage that the amount of expensive cyclic olefin used can be relatively reduced.
 環状オレフィン系樹脂は、市場から入手できる。市販の環状オレフィン系樹脂は、Topas(登録商標)(Ticona社製)、アートン(登録商標)(JSR(株)製)、ゼオノア(ZEONOR)(登録商標)及びゼオネックス(ZEONEX)(登録商標)(以上、日本ゼオン(株)製)、並びにアペル(登録商標)(三井化学(株)製)等が挙げられる。このような環状オレフィン系樹脂を、例えば、溶剤キャスト法、溶融押出法などの公知の手段により製膜して、基材とすることができる。市販の環状オレフィン系樹脂を含む基材は、エスシーナ(登録商標)及びSCA40(以上、積水化学工業(株)製)、ゼオノアフィルム(登録商標)(オプテス(株))及び、アートンフィルム(登録商標)(JSR(株))等が挙げられる。 Cyclic olefin resin is available on the market. Commercially available cyclic olefin resins are Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) and ZEONEX (registered trademark) ( As mentioned above, Zeon Corporation (manufactured by Nippon Zeon Corporation), Appel (registered trademark) (manufactured by Mitsui Chemicals Co., Ltd.) and the like can be mentioned. Such a cyclic olefin resin can be used as a base material by forming a film by a known means such as a solvent casting method or a melt extrusion method. The base materials containing a commercially available cyclic olefin resin are Scina (registered trademark), SCA40 (all manufactured by Sekisui Chemical Co., Ltd.), Zeonoa Film (registered trademark) (Optes Co., Ltd.), and Arton Film (registered trademark). ) (JSR Co., Ltd.) and the like.
 基材には、表面処理を施してもよい。基材の表面処理は、例えば、真空雰囲気下から大気圧雰囲気下でのコロナまたはプラズマ処理、レーザー処理、オゾン処理、ケン化処理、火炎処理、カップリング剤の塗布処理、プライマー処理及び、反応性モノマーや反応性を有するポリマーを基材表面に付着させた後に放射線、プラズマ又は紫外線を照射して反応させるグラフト重合法による処理などが挙げられる。中でも、真空雰囲気下から大気圧雰囲気下でのコロナまたはプラズマ処理が好ましい。 The base material may be surface-treated. The surface treatment of the base material includes, for example, corona or plasma treatment in a vacuum atmosphere to an atmospheric pressure atmosphere, laser treatment, ozone treatment, saponification treatment, flame treatment, coupling agent coating treatment, primer treatment, and reactivity. Examples thereof include treatment by a graft polymerization method in which a monomer or a reactive polymer is attached to the surface of a substrate and then irradiated with radiation, plasma or ultraviolet rays to cause a reaction. Of these, corona or plasma treatment in a vacuum atmosphere to an atmospheric pressure atmosphere is preferable.
 コロナまたはプラズマによる基材の表面処理としては、大気圧近傍の圧力下で、対向した電極間に基材を設置し、コロナまたはプラズマを発生させて、基材の表面処理を行う方法、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを基材に吹付ける方法、および、低圧条件下で、グロー放電プラズマを発生させて、基材の表面処理を行う方法が挙げられる。 As the surface treatment of the base material by corona or plasma, a method of placing the base material between the opposing electrodes under a pressure near atmospheric pressure and generating corona or plasma to perform the surface treatment of the base material, facing each other. A method in which a gas is passed between the electrodes, the gas is turned into plasma between the electrodes, and the plasmaized gas is blown onto the base material, and a method in which glow discharge plasma is generated under low pressure conditions to perform surface treatment on the base material. Can be mentioned.
 中でも、大気圧近傍の圧力下で、対向した電極間に基材を設置し、コロナまたはプラズマを発生させて、基材の表面処理を行う方法、または、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを基材に吹付ける方法が好ましい。かかるコロナまたはプラズマによる表面処理は、通常、市販の表面処理装置により行われる。 Among them, a method in which a base material is placed between opposing electrodes under a pressure near atmospheric pressure to generate corona or plasma to perform surface treatment of the base material, or a method in which gas is passed between the facing electrodes to conduct electrodes. A method in which the gas is turned into plasma between them and the turned gas is blown onto the substrate is preferable. Such surface treatment with corona or plasma is usually performed by a commercially available surface treatment apparatus.
 基材は、偏光膜組成物を塗布する面とは反対の面に保護フィルムを有していてもよい。
保護フィルムとしては、ポリエチレン、ポリエチレンテレフタレート、ポリカーボネート及びポリオレフィンなどのフィルム、並びに、当該フィルムにさらに粘着層を有するフィルム等が挙げられる。中でも、乾燥時における熱変形が小さいため、ポリエチレンテレフタレートが好ましい。保護フィルムを、偏光膜組成物を塗布する面とは反対の面に有することで、基材搬送時のフィルムのゆれや塗布面のわずかな振動を抑えることができ、塗膜の均一性を向上させることができる。
The base material may have a protective film on the surface opposite to the surface on which the polarizing film composition is applied.
Examples of the protective film include films such as polyethylene, polyethylene terephthalate, polycarbonate and polyolefin, and films having an adhesive layer on the film. Of these, polyethylene terephthalate is preferable because it has a small thermal deformation during drying. By having the protective film on the surface opposite to the surface on which the polarizing film composition is applied, it is possible to suppress the shaking of the film and slight vibration of the coated surface during substrate transportation, and improve the uniformity of the coating film. Can be made to.
 基材の厚さは、実用的な取扱いができる程度の重量である点では、薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。基材の厚さは、通常5~300μmであり、好ましくは20~200μmである。 The thickness of the base material is preferably thin in that it is heavy enough to be handled practically, but if it is too thin, the strength tends to decrease and the workability tends to be inferior. The thickness of the base material is usually 5 to 300 μm, preferably 20 to 200 μm.
 <工程(a)~(c)>
 配向膜は、
 (a)前記基材に配向膜組成物を塗布して第1塗布膜を形成する工程、
 (b)前記第1塗布膜を乾燥させて第1乾燥膜を形成する工程、
 (c)前記第1乾燥膜に偏光を照射して配向膜を形成する工程、
を経て基板上に形成される。配向膜は、その上に塗布する偏光膜組成物に含まれる重合性液晶化合物を一定の方向に配向させる配向規制力を有する。重合性液晶化合物は、その分子長軸方向が配向規制力の方向に対して平行となるように配向することができる。配向膜の配向規制力の方向は、通常、照射する偏光の偏光方向に対して平行又は垂直方向である。
<Steps (a) to (c)>
The alignment film is
(A) A step of applying an alignment film composition to the substrate to form a first coating film.
(B) A step of drying the first coating film to form the first dry film.
(C) A step of irradiating the first dry film with polarized light to form an alignment film.
Is formed on the substrate through. The alignment film has an orientation regulating force that orients the polymerizable liquid crystal compound contained in the polarizing film composition applied on the alignment film in a certain direction. The polymerizable liquid crystal compound can be oriented so that its molecular major axis direction is parallel to the direction of the orientation regulating force. The direction of the orientation regulating force of the alignment film is usually parallel or perpendicular to the polarization direction of the polarized light to be irradiated.
 配向膜は、偏光膜組成物の塗布等により溶解しない溶剤耐性を有し、また、溶剤の除去や二色性色素を配向させるための加熱処理における耐熱性を有するものが好ましい。配向膜の膜厚は、例えば10nm~10000nmであり、好ましくは10nm~1000nmであり、より好ましくは500nm以下であり、また、より好ましくは10nm以上である。上記範囲とすれば、配向規制力が十分に発現する。 The alignment film preferably has solvent resistance that does not dissolve when the polarizing film composition is applied, and also has heat resistance in heat treatment for removing the solvent and aligning the dichroic dye. The film thickness of the alignment film is, for example, 10 nm to 10000 nm, preferably 10 nm to 1000 nm, more preferably 500 nm or less, and more preferably 10 nm or more. Within the above range, the orientation regulating force is sufficiently exhibited.
 <配向膜組成物>
 配向膜組成物は、光反応性基を有するポリマー又はモノマー、及び溶剤を含有する。光反応性基とは、光を照射することにより配向能を示す基をいう。具体的に、光反応性基は、光を照射することで分子の配向誘起又は異性化反応、二量化反応、光架橋反応、あるいは光分解反応のような、配向能の起源となる光反応をする。当該光反応性基の中でも、二量化反応又は光架橋反応を起こすものが、配向性に優れる点で好ましい。以上のような反応を生じうる光反応性基としては、不飽和結合、特に二重結合を有するものが好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)、及び炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基が特に好ましい。
<Orientation film composition>
The alignment film composition contains a polymer or monomer having a photoreactive group and a solvent. A photoreactive group is a group that exhibits an orientation ability when irradiated with light. Specifically, a photoreactive group undergoes a photoreaction that is the origin of orientation ability, such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction by irradiation with light. To do. Among the photoreactive groups, those that cause a dimerization reaction or a photocrosslinking reaction are preferable because they are excellent in orientation. As the photoreactive group capable of causing the above reaction, an unsaturated bond, particularly a double bond is preferable, and a carbon-carbon double bond (C = C bond) and a carbon-nitrogen double bond (C) are preferable. A group having at least one selected from the group consisting of (= N bond), nitrogen-nitrogen double bond (N = N bond), and carbon-oxygen double bond (C = O bond) is particularly preferable.
 C=C結合を有する光反応性基としては例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基及びシンナモイル基などが挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基及び芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基及びホルマザン基などや、アゾキシベンゼンを基本構造とするものが挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基及びマレイミド基などが挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基及びハロゲン化アルキル基などの置換基を有していてもよい。 Examples of the photoreactive group having a C = C bond include a vinyl group, a polyene group, a stilbene group, a stillbazol group, a stillbazolium group, a chalcone group and a cinnamoyl group. Examples of the photoreactive group having a C = N bond include a group having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N = N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group and a formazan group, and those having an azoxylbenzene as a basic structure. Examples of the photoreactive group having a C = O bond include a benzophenone group, a coumarin group, an anthraquinone group and a maleimide group. These groups may have substituents such as an alkyl group, an alkoxy group, an allyl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group and an alkyl halide group.
 中でも、光二量化反応する光反応性基が好ましく、光配向に必要な偏光の照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。 Among them, a photoreactive group that undergoes a photodimerization reaction is preferable, and a photoalignment film having a relatively small amount of polarized light required for photoalignment and excellent thermal stability and temporal stability can be easily obtained. Groups and chalcone groups are preferred. As the polymer having a photoreactive group, a polymer having a cinnamoyl group such that the terminal portion of the side chain of the polymer has a cinnamon acid structure is particularly preferable.
 配向膜組成物の溶剤としては、光反応性基を有するポリマー及びモノマーを溶解するものが好ましい。該溶剤は、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ又はプロピレングリコールモノメチルエーテルなどのアルコール;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、ガンマーブチロラクトン、プロピレングリコールメチルエーテルアセテート又は乳酸エチルなどのエステル系溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン又はメチルイソブチルケトンなどのケトン系溶剤;ペンタン、ヘキサン又はヘプタンなどの非塩素系脂肪族炭化水素溶剤;トルエン又はキシレンなどの非塩素系芳香族炭化水素溶剤、アセトニトリルなどのニトリル系溶剤;テトラヒドロフラン又はジメトキシエタンなどのエーテル系溶剤;クロロホルム又はクロロベンゼンなどの塩素系溶剤;などが挙げられる。これら溶剤は、単独で用いてもよいし、組み合わせてもよい。 The solvent of the alignment film composition is preferably one that dissolves a polymer and a monomer having a photoreactive group. The solvent is water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve or alcohol such as propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, gamma butyrolactone, propylene glycol methyl. Ester solvents such as ether acetate or ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone or methyl isobutyl ketone; non-chlorine aliphatic hydrocarbon solvents such as pentane, hexane or heptane; Non-chlorine aromatic hydrocarbon solvents such as toluene or xylene, nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran or dimethoxyethane; chlorine solvents such as chloroform or chlorobenzene; and the like can be mentioned. These solvents may be used alone or in combination.
 配向膜組成物に対する、光反応性基を有するポリマー又はモノマーの含有量は、当該光反応性基を有するポリマー又はモノマーの種類や製造しようとする光配向膜の厚みによって適宜調節できるが、少なくとも0.2質量%以上とすることが好ましく、0.3~10質量%の範囲が特に好ましい。また、配向膜の特性が著しく損なわれない範囲で、ポリビニルアルコ-ルやポリイミドなどの高分子材料や光増感剤が含まれていてもよい。 The content of the polymer or monomer having a photoreactive group in the alignment film composition can be appropriately adjusted depending on the type of the polymer or monomer having a photoreactive group and the thickness of the photoalignment film to be produced, but is at least 0. It is preferably .2% by mass or more, and particularly preferably in the range of 0.3 to 10% by mass. Further, a polymer material such as polyvinyl alcohol or polyimide or a photosensitizer may be contained as long as the characteristics of the alignment film are not significantly impaired.
 <第1塗布膜>
 工程(a)において、配向膜組成物を基材に塗布することにより第1塗布膜が形成される。配向膜組成物を基材に塗布する方法としては、グラビアコーティング法、ダイコーティング法、アプリケータ法及びフレキソ法等が挙げられる。なお、これらの方法によると、長尺の基材に配向膜組成物を連続的に塗布することができる。好ましくは、グラビアコーティング法、ダイコーティング法及びフレキソ法である。
<First coating film>
In the step (a), the first coating film is formed by applying the alignment film composition to the substrate. Examples of the method for applying the alignment film composition to the substrate include a gravure coating method, a die coating method, an applicator method, a flexographic method and the like. According to these methods, the alignment film composition can be continuously applied to a long base material. The gravure coating method, the die coating method and the flexographic method are preferable.
 <第1乾燥膜>
 工程(b)において、第1塗布膜を乾燥することにより第1乾燥膜が形成される。本明細書においては、第1塗布膜の全質量に対して第1塗布膜が含有する溶剤の含有量が50質量%以下となったものを第1乾燥膜という。
<First dry membrane>
In the step (b), the first dry film is formed by drying the first coating film. In the present specification, a film in which the content of the solvent contained in the first coating film is 50% by mass or less with respect to the total mass of the first coating film is referred to as a first dry film.
 第1塗布膜を乾燥する方法は、自然乾燥法、通風乾燥法、加熱乾燥法及び減圧乾燥法等が挙げられる。好ましくは、通風乾燥法と加熱乾燥法とを組み合わせた方法である。乾燥温度は、10~250℃好ましく、25~200℃がさらに好ましい。乾燥時間は、10秒間~60分間が好ましく、30秒間~30分間がより好ましい。乾燥することで第1塗布膜に含まれる溶剤が除去される。 Examples of the method for drying the first coating film include a natural drying method, a ventilation drying method, a heat drying method, and a vacuum drying method. A method that combines a ventilation drying method and a heat drying method is preferable. The drying temperature is preferably 10 to 250 ° C, more preferably 25 to 200 ° C. The drying time is preferably 10 seconds to 60 minutes, more preferably 30 seconds to 30 minutes. By drying, the solvent contained in the first coating film is removed.
 第1乾燥膜における、溶剤の含有量は好ましくは30質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、特に好ましくは1質量%以下である。 The content of the solvent in the first dry film is preferably 30% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and particularly preferably 1% by mass or less.
 <配向膜>
 工程(c)において、第1乾燥膜に偏光を照射して配向規制力を有する配向膜が形成される。基材及び配向膜が長尺である場合、配向膜の配向規制力の方向と配向膜の長手方向とのなす角度が、好ましくは0°±15°または90°±15°であり、より好ましくは0°±10°または90°±10°であり、さらに好ましくは0°±5°または90°±5°であり、特に好ましくは0°±1°または90°±1°である。配向膜の配向規制力の方向は、照射する偏光の偏光方向によって調整することができる。配向規制力の方向は、光反応性基を有するポリマーの種類によっても変わりえる。
<Alignment film>
In the step (c), the first dry film is irradiated with polarized light to form an alignment film having an orientation regulating force. When the base material and the alignment film are long, the angle formed by the direction of the alignment regulating force of the alignment film and the longitudinal direction of the alignment film is preferably 0 ° ± 15 ° or 90 ° ± 15 °, more preferably. Is 0 ° ± 10 ° or 90 ° ± 10 °, more preferably 0 ° ± 5 ° or 90 ° ± 5 °, and particularly preferably 0 ° ± 1 ° or 90 ° ± 1 °. The direction of the orientation regulating force of the alignment film can be adjusted by the polarization direction of the polarized light to be irradiated. The direction of the orientation regulating force can also be changed depending on the type of polymer having a photoreactive group.
 前記配向膜の配向規制力の方向と配向膜の長手方向とが垂直になるように配向膜を形成する場合、偏光の偏光方向と配向膜の配向規制力の方向とが直交である際は、偏光の偏光方向は、配向膜の長手方向に対して、好ましくは0°±15°であり、より好ましくは0°±10°であり、さらに好ましくは0°±5°であり、特に好ましくは0°±1°である。一方、偏光の偏光方向と配向膜の配向規制力の方向とが平行である際は、偏光の偏光方向は、配向膜の長手方向に対して、好ましくは90°±15°であり、より好ましくは90°±10°であり、さらに好ましくは90°±5°であり、特に好ましくは90°±1°である。 When the alignment film is formed so that the direction of the alignment restricting force of the alignment film and the longitudinal direction of the alignment film are perpendicular to each other, when the polarization direction of the polarization and the direction of the alignment regulating force of the alignment film are orthogonal to each other, The polarization direction of the polarization is preferably 0 ° ± 15 °, more preferably 0 ° ± 10 °, still more preferably 0 ° ± 5 °, and particularly preferably 0 ° ± 5 ° with respect to the longitudinal direction of the alignment film. It is 0 ° ± 1 °. On the other hand, when the polarization direction of the polarized light and the direction of the orientation restricting force of the alignment film are parallel, the polarization direction of the polarized light is preferably 90 ° ± 15 ° with respect to the longitudinal direction of the alignment film, which is more preferable. Is 90 ° ± 10 °, more preferably 90 ° ± 5 °, and particularly preferably 90 ° ± 1 °.
 偏光は、第1乾燥膜側から第1乾燥膜に直接照射してもよいし、基材側から基材を透過させて照射してもよい。 Polarized light may be directly irradiated to the first dry film from the first dry film side, or may be irradiated by transmitting the base material from the base material side.
 偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収できる波長領域のものが好ましい。具体的には、波長250~400nmの範囲の紫外線が好ましい。偏光の光源は、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプが好ましい。これらのランプは、波長313nmの紫外線の発光強度が大きいため好ましい。 The wavelength of polarized light is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, ultraviolet rays having a wavelength in the range of 250 to 400 nm are preferable. Examples of the polarized light source include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps, and metal halide lamps are preferable. These lamps are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm.
 偏光は、例えば前記光源からの光を、偏光子を通過させることにより得られる。前記偏光子の偏光角を調整することにより、偏光の方向を任意に調整することができる。前記偏光子は、偏光フィルターやグラントムソン、グランテ-ラ-等の偏光プリズムやワイヤーグリッドタイプの偏光子が挙げられる。偏光は、実質的に平行光であると好ましい。 Polarized light is obtained, for example, by passing light from the light source through a polarizer. By adjusting the polarization angle of the polarizer, the direction of polarization can be arbitrarily adjusted. Examples of the polarizer include a polarizing filter, a polarizing prism such as a Gran Thomson or a Granter, and a wire grid type polarizer. The polarized light is preferably substantially parallel light.
 かくして、配向膜が得られる。配向膜は、液晶材料の配向を誘起することができる。配向膜の配向規制方向が長尺の基材の長手方向に対して平行であると、吸収軸の方向が長尺の基材の長手方向に対して平行である長尺の偏光フィルムの製造に有用である。配向膜の配向規制方向が長尺の基材の長手方向に対して直交であると、吸収軸の方向が長尺の基材の長手方向に対して直交である長尺の偏光フィルムの製造に有用である。 Thus, an alignment film is obtained. The alignment film can induce the orientation of the liquid crystal material. When the orientation regulation direction of the alignment film is parallel to the longitudinal direction of the long substrate, the direction of the absorption axis is parallel to the longitudinal direction of the long substrate, for the production of a long polarizing film. It is useful. When the orientation regulation direction of the alignment film is orthogonal to the longitudinal direction of the long substrate, the direction of the absorption axis is orthogonal to the longitudinal direction of the long substrate for manufacturing a long polarizing film. It is useful.
 <工程(d)>
 配向膜上に偏光膜を形成する工程(d)は、
 (d1)前記配向膜上に偏光膜組成物を塗布して第2塗布膜を形成する工程、
 (d2)前記第2塗布膜を乾燥させて第2乾燥膜を形成する工程、
 (d3)前記第2乾燥膜を硬化させて前記偏光膜を形成する工程、を含む。
<Step (d)>
The step (d) of forming the polarizing film on the alignment film is
(D1) A step of applying a polarizing film composition on the alignment film to form a second coating film.
(D2) A step of drying the second coating film to form a second dry film.
(D3) The step of curing the second dry film to form the polarizing film is included.
 <偏光膜組成物>
 偏光膜組成物は、好ましくは二色性色素及び重合性液晶化合物を含む。重合性液晶化合物を含む偏光膜は、強度が向上し、また、色ムラが減少する。偏光膜組成物の粘度は、第2塗布膜の膜厚にムラが生じにくくなるため、10mPa・s以下が好ましく、0.1~7mPa・sがより好ましい。偏光膜組成物は、さらに、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤、及び重合性非液晶化合物等を含んでもよい。
<Polarizing film composition>
The polarizing film composition preferably contains a dichroic dye and a polymerizable liquid crystal compound. The polarizing film containing the polymerizable liquid crystal compound has improved strength and reduced color unevenness. The viscosity of the polarizing film composition is preferably 10 mPa · s or less, more preferably 0.1 to 7 mPa · s, because the film thickness of the second coating film is less likely to be uneven. The polarizing film composition may further contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, and the like.
 <二色性色素>
 二色性色素とは、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する色素をいう。
<Dichroic pigment>
The dichroic dye refers to a dye having a property in which the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
 二色性色素は、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素は、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素及びアントラキノン色素などが挙げられるが、中でもアゾ色素が好ましい。アゾ色素は、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素及びスチルベンアゾ色素などが挙げられ、好ましくはビスアゾ色素及びトリスアゾ色素である。二色性色素は単独でも、組み合わせても良いが、3種類以上を組み合わせるのが好ましい。特に、3種類以上のアゾ化合物を組み合わせるのが好ましい。 The dichromatic dye preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a dichroic dye include an acridine dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye and an anthraquinone dye, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye and a stilbene azo dye, and preferably a bisazo dye and a trisazo dye. The dichroic dyes may be used alone or in combination, but it is preferable to combine three or more kinds. In particular, it is preferable to combine three or more kinds of azo compounds.
 アゾ色素は、例えば、式(2)で表される化合物(以下、場合により「化合物(2)」という。)が挙げられる。
  A(-N=N-A-N=N-A        (2)
[式(2)中、
 A及びAは、互いに独立に、置換基を有していてもよいフェニル基、置換基を有していてもよいナフチル基又は置換基を有していてもよい1価の複素環基を表す。Aは、置換基を有していてもよい1,4-フェニレン基、置換基を有していてもよいナフタレン-1,4-ジイル基又は置換基を有していてもよい2価の複素環基を表す。pは1~4の整数を表す。pが2以上の整数である場合、複数のAは互いに独立して同一でも異なっていてもよい。]
Examples of the azo dye include a compound represented by the formula (2) (hereinafter, in some cases, referred to as “compound (2)”).
A 1 (-N = NA 2 ) p -N = NA 3 (2)
[In equation (2),
A 1 and A 3 are independent of each other, a phenyl group which may have a substituent, a naphthyl group which may have a substituent, or a monovalent heterocyclic group which may have a substituent. Represents. A 2 is a divalent 1,4-phenylene group which may have a substituent, a naphthalene-1,4-diyl group which may have a substituent, or a divalent group which may have a substituent. Represents a heterocyclic group. p represents an integer of 1 to 4. If p is an integer of 2 or more, it may be the same or different and the plurality of A 2 independently of one another. ]
 1価の複素環基としては、キノリン、チアゾール、ベンゾチアゾール、チエノチアゾール、イミダゾール、ベンゾイミダゾール、オキサゾール及びベンゾオキサゾールなどの複素環化合物から1個の水素原子を除いた基が挙げられる。2価の複素環基としては、前記複素環化合物から2個の水素原子を除いた基が挙げられる。 Examples of the monovalent heterocyclic group include a group obtained by removing one hydrogen atom from a heterocyclic compound such as quinoline, thiazole, benzothiazole, thienothiazole, imidazole, benzimidazole, oxazole and benzoxazole. Examples of the divalent heterocyclic group include a group obtained by removing two hydrogen atoms from the heterocyclic compound.
 A及びAにおけるフェニル基、ナフチル基及び1価の複素環基、並びにAにおけるp-フェニレン基、ナフタレン-1,4-ジイル基及び2価の複素環基が任意に有する置換基としては、炭素数1~4のアルキル基;メトキシ基、エトキシ基及びブトキシ基などの炭素数1~4のアルコキシ基;トリフルオロメチル基などの炭素数1~4のフッ化アルキル基;シアノ基;ニトロ基;ハロゲン原子;アミノ基、ジエチルアミノ基及びピロリジノ基などの置換又は無置換アミノ基(置換アミノ基とは、炭素数1~6のアルキル基を1つ又は2つ有するアミノ基、あるいは2つの置換アルキル基が互いに結合して炭素数2~8のアルカンジイル基を形成しているアミノ基を意味する。無置換アミノ基は、-NH2である。)が挙げられる。なお、炭素数1~6のアルキル基の具体例は、化合物(1)のフェニレン基などが任意に有する置換基で例示したものと同じである。 As a substituent arbitrarily contained in the phenyl group, the naphthyl group and the monovalent heterocyclic group in A 1 and A 3 , and the p-phenylene group, the naphthalene-1,4-diyl group and the divalent heterocyclic group in A 2 . Is an alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group and a butoxy group; an alkyl group having 1 to 4 carbon atoms such as a trifluoromethyl group; a cyano group; Nitro group; Halogen atom; Substituent or unsubstituted amino group such as amino group, diethylamino group and pyrrolidino group (Substituted amino group is an amino group having one or two alkyl groups having 1 to 6 carbon atoms, or two It means an amino group in which substituted alkyl groups are bonded to each other to form an alcandiyl group having 2 to 8 carbon atoms. The unsubstituted amino group is -NH2). Specific examples of the alkyl group having 1 to 6 carbon atoms are the same as those exemplified by the substituent arbitrarily contained in the phenylene group of the compound (1).
 化合物(2)のなかでも、以下の式(2-1)~式(2-6)でそれぞれ表される化合物が好ましい。 Among the compounds (2), the compounds represented by the following formulas (2-1) to (2-6) are preferable.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 [式(2-1)~(2-6)中、
 B~B20は、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~4のアルコキシ基、シアノ基、ニトロ基、置換又は無置換のアミノ基(置換アミノ基及び無置換アミノ基の定義は前記のとおり)、塩素原子又はトリフルオロメチル基を表す。
 n1~n4は、互いに独立に0~3の整数を表す。
 n1が2以上である場合、複数のBは互いに独立して同一でも異なっていてもよく、 n2が2以上である場合、複数のBは互いに独立して同一でも異なっていてもよく、 n3が2以上である場合、複数のBは互いに独立して同一でも異なっていてもよく、 n4が2以上である場合、複数のB14は互いに独立して同一でも異なっていてもよい。
[In equations (2-1) to (2-6),
B 1 to B 20 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a cyano group, a nitro group, and a substituted or unsubstituted amino group (substituted amino group and The definition of an unsubstituted amino group is as described above), and represents a chlorine atom or a trifluoromethyl group.
n1 to n4 represent integers of 0 to 3 independently of each other.
If n1 is 2 or more, a plurality of B 2 may be the same or different independently of one another, if n2 is 2 or more, plural B 6 may be the same or different independently of each other, If n3 is 2 or more, plural B 9 may be the same or different independently of each other, when n4 is 2 or more, a plurality of B 14 may be the same or different independently of each other.
]
 前記アントラキノン色素は、式(2-7)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-I000003
The anthraquinone dye is preferably a compound represented by the formula (2-7).
Figure JPOXMLDOC01-appb-I000003
 [式(2-7)中、
 R~Rは、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SR又はハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。]
[In equation (2-7),
R 1 to R 8 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 前記オキサゾン色素は、式(2-8)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-I000004
The oxazone dye is preferably a compound represented by the formula (2-8).
Figure JPOXMLDOC01-appb-I000004
 [式(2-8)中、
 R~R15は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SR又はハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。]
[In equation (2-8),
R 9 to R 15 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 前記アクリジン色素は、式(2-9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-I000005
 [式(2-9)中、
 R16~R23は、互いに独立に、水素原子、-R、-NH、-NHR、-NR 、-SR又はハロゲン原子を表す。
 Rは、炭素数1~4のアルキル基又は炭素数6~12のアリール基を表す。]
The acridine dye is preferably a compound represented by the formula (2-9).
Figure JPOXMLDOC01-appb-I000005
[In equation (2-9),
R 16 to R 23 independently represent a hydrogen atom, -R x , -NH 2 , -NHR x , -NR x 2 , -SR x or a halogen atom.
R x represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 12 carbon atoms. ]
 式(2-7)、式(2-8)及び式(2-9)における、Rで表される炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基及びヘキシル基などが挙げられ、炭素数6~12のアリール基としては、フェニル基、トルイル基、キシリル基及びナフチル基などが挙げられる。 The alkyl group having 1 to 4 carbon atoms represented by R x in the formula (2-7), the formula (2-8) and the formula (2-9) includes a methyl group, an ethyl group, a propyl group and a butyl group. , Pentyl group, hexyl group and the like, and examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a toluyl group, a xsilyl group and a naphthyl group.
 前記シアニン色素は、式(2-10)で表される化合物及び式(2-11)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-I000006
The cyanine dye is preferably a compound represented by the formula (2-10) and a compound represented by the formula (2-11).
Figure JPOXMLDOC01-appb-I000006
 [式(2-10)中、
 D及びDは、互いに独立に、式(2-10a)~式(2-10d)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000007

 n5は1~3の整数を表す。]
[In equation (2-10),
D 1 and D 2 represent groups represented by any of the formulas (2-10a) to (2-10d) independently of each other.
Figure JPOXMLDOC01-appb-I000007

n5 represents an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 [式(2-11)中、
 D及びDは、互いに独立に、式(2-11a)~式(2-11h)のいずれかで表される基を表す。
Figure JPOXMLDOC01-appb-I000009

 n6は1~3の整数を表す。]
[In equation (2-11),
D 3 and D 4 represent groups represented by any of the formulas (2-11a) to (2-11h) independently of each other.
Figure JPOXMLDOC01-appb-I000009

n6 represents an integer of 1 to 3. ]
 偏光膜組成物における二色性色素の含有量は、二色性色素の配向を良好にする観点から、偏光膜組成物の固形分100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.1質量部以上20質量部以下がより好ましく、0.1質量部以上10質量部以下がさらに好ましく、0.1質量部以上5質量部以下が特に好ましい。ここで、固形分とは、偏光膜組成物から溶剤を除いた成分の合計量のことをいう。 The content of the dichroic dye in the polarizing film composition is 0.1 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the solid content of the polarizing film composition from the viewpoint of improving the orientation of the dichroic dye. The following is preferable, 0.1 parts by mass or more and 20 parts by mass or less is more preferable, 0.1 parts by mass or more and 10 parts by mass or less is further preferable, and 0.1 parts by mass or more and 5 parts by mass or less is particularly preferable. Here, the solid content means the total amount of the components excluding the solvent from the polarizing film composition.
 <重合性液晶化合物>
 重合性液晶化合物とは、重合性基を有し、かつ、液晶性を示す化合物である。重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカルや酸などによって重合反応し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性を示す化合物は、サーモトロピック性液晶でもリオトロピック液晶でもよく、また、サーモトロピック液晶における、ネマチック液晶でもスメクチック液晶でもよい。
<Polymerizable liquid crystal compound>
The polymerizable liquid crystal compound is a compound having a polymerizable group and exhibiting liquid crystallinity. The polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group that can undergo a polymerization reaction with an active radical, an acid, or the like generated from a photopolymerization initiator described later. Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The liquid crystal compound may be a thermotropic liquid crystal or a riotropic liquid crystal, and may be a nematic liquid crystal or a smectic liquid crystal in the thermotropic liquid crystal.
 重合性液晶化合物は、より高い偏光特性が得られるという点でスメクチック液晶化合物が好ましく、高次スメクチック液晶化合物がより好ましい。中でも、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相またはスメクチックL相を形成する高次スメクチック液晶化合物がより好ましく、スメクチックB相、スメクチックF相またはスメクチックI相を形成する高次スメクチック液晶化合物がより好ましい。重合性液晶化合物が形成する液晶相がこれらの高次スメクチック相であると、配向秩序度のより高い偏光膜を製造することができる。また、このように配向秩序度の高い偏光膜はX線回折測定においてヘキサチック相やクリスタル相といった高次構造由来のブラッグピークが得られる。当該ブラッグピークは、分子配向の周期構造に由来するピークであり、重合性液晶化合物が形成する液晶相がこれらの高次スメクチック相であると、その周期間隔が3.0~6.0Åである膜を得ることができる。このような化合物は、具体的には、下記式(B)で表される化合物(以下、化合物(B)ということがある。)等が挙げられる。当該重合性液晶化合物は、単独で用いてもよいし、組み合わせてもよい。 As the polymerizable liquid crystal compound, a smectic liquid crystal compound is preferable in that higher polarization characteristics can be obtained, and a higher-order smectic liquid crystal compound is more preferable. Among them, higher-order smectic liquid crystal compounds forming smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase or smectic L phase More preferably, a higher-order smectic liquid crystal compound forming a smectic B phase, smectic F phase or smectic I phase is more preferable. When the liquid crystal phase formed by the polymerizable liquid crystal compound is these higher-order smectic phases, a polarizing film having a higher degree of orientation order can be produced. In addition, a polarizing film having such a high degree of orientation order can obtain a Bragg peak derived from a higher-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement. The Bragg peak is a peak derived from the periodic structure of molecular orientation, and when the liquid crystal phase formed by the polymerizable liquid crystal compound is these higher-order smectic phases, the periodic interval is 3.0 to 6.0 Å. A membrane can be obtained. Specific examples of such a compound include a compound represented by the following formula (B) (hereinafter, may be referred to as compound (B)) and the like. The polymerizable liquid crystal compound may be used alone or in combination.
  U-V-W-X-Y-X-Y-X-W-V-U    (B)
 [式(B)中、
 X、X及びXは、互いに独立に、置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロヘキサン-1,4-ジイル基を表す。ただし、X、X及びXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基である。シクロへキサン-1,4-ジイル基を構成する-CH-は、-O-、-S-又は-NR-に置き換わっていてもよい。Rは、炭素数1~6のアルキル基又はフェニル基を表す。
 Y及びYは、互いに独立に、-CHCH-、-CHO-、-COO-、-OCOO-、単結合、-N=N-、-CR=CR-、-C≡C-又は-CR=N-を表す。R及びRは、互いに独立に、水素原子又は炭素数1~4のアルキル基を表す。
 Uは、水素原子又は重合性基を表す。
 Uは、重合性基を表す。
 W及びWは、互いに独立に、単結合、-O-、-S-、-COO-又は-OCOO-を表す。
 V及びVは、互いに独立に、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH-は、-O-、-S-又は-NH-に置き換わっていてもよい。]
U 1- V 1- W 1- X 1- Y 1- X 2- Y 2- X 3- W 2- V 2- U 2 (B)
[In formula (B),
X 1 , X 2 and X 3 represent, independently of each other, a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent. However, at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent. It is, -O - - -CH 2 constituting hexane-1,4-diyl group cycloheteroalkyl, - may be replaced by S- or -NR-. R represents an alkyl group or a phenyl group having 1 to 6 carbon atoms.
Y 1 and Y 2, independently of one another, -CH 2 CH 2 -, - CH 2 O -, - COO -, - OCOO-, a single bond, -N = N -, - CR a = CR b -, - It represents C≡C− or −CR a = N−. R a and R b independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
U 1 represents a hydrogen atom or a polymerizable group.
U 2 represents a polymerizable group.
W 1 and W 2 independently represent a single bond, -O-, -S-, -COO- or -OCOO-.
V 1 and V 2 represent an alkanediyl group having 1 to 20 carbon atoms which may have a substituent independently of each other, and -CH 2- constituting the alkanediyl group is -O-,-. It may be replaced with S- or -NH-. ]
 化合物(B)において、X、X及びXのうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基であることが好ましい。
 置換基を有していてもよい1,4-フェニレン基は、無置換であることが好ましい。置換基を有していてもよいシクロへキサン-1,4-ジイル基は、置換基を有していてもよいトランス-シクロへキサン-1,4-ジイル基であることが好ましく、置換基を有していてもよいトランス-シクロへキサン-1,4-ジイル基は無置換であることが好ましい。
In compound (B), at least one of X 1 , X 2 and X 3 is preferably a 1,4-phenylene group which may have a substituent.
The 1,4-phenylene group which may have a substituent is preferably unsubstituted. The cyclohexane-1,4-diyl group which may have a substituent is preferably a trans-cyclohexane-1,4-diyl group which may have a substituent, and is a substituent. The trans-cyclohexane-1,4-diyl group which may have is preferably unsubstituted.
 置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基は、メチル基、エチル基及びブチル基などの炭素数1~4のアルキル基、シアノ基およびハロゲン原子などが挙げられる。 The substituents arbitrarily contained in the 1,4-phenylene group which may have a substituent or the cyclohexane-1,4-diyl group which may have a substituent are methyl group, ethyl group and butyl. Examples thereof include an alkyl group having 1 to 4 carbon atoms such as a group, a cyano group and a halogen atom.
 Yは、-CHCH-、-COO-又は単結合であると好ましく、Yは、-CHCH-又は-CHO-であると好ましい。 Y 1 is preferably -CH 2 CH 2- , -COO- or a single bond, and Y 2 is preferably -CH 2 CH 2- or -CH 2 O-.
 Uは、重合性基である。Uは、水素原子又は重合性基であり、好ましくは重合性基である。U及びUは、ともに重合性基であると好ましく、ともに光重合性基であると好ましい。光重合性基を有する重合性液晶化合物は、より低温条件下で重合できる点で有利である。 U 2 is a polymerizable group. U 1 is a hydrogen atom or a polymerizable group, preferably a polymerizable group. Both U 1 and U 2 are preferably polymerizable groups, and both are preferably photopolymerizable groups. A polymerizable liquid crystal compound having a photopolymerizable group is advantageous in that it can be polymerized under lower temperature conditions.
 U及びUで表される重合性基は互いに独立して異なっていてもよいが、同一であると好ましい。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。 The polymerizable groups represented by U 1 and U 2 may be different from each other independently of each other, but are preferably the same. Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
 V及びVで表されるアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基及びイコサン-1,20-ジイル基などが挙げられる。V及びVは、好ましくは炭素数2~12のアルカンジイル基であり、より好ましくは炭素数6~12のアルカンジイル基である。
 置換基を有していてもよい炭素数1~20のアルカンジイル基が任意に有する置換基としては、シアノ基及びハロゲン原子などが挙げられるが、該アルカンジイル基は、無置換であることが好ましく、無置換且つ直鎖状のアルカンジイル基であることがより好ましい。
The alkanediyl groups represented by V 1 and V 2 include methylene group, ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, and pentane-. 1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane-1,14-diyl group Examples include groups and icosan-1,20-diyl groups. V 1 and V 2 are preferably an alkanediyl group having 2 to 12 carbon atoms, and more preferably an alkanediyl group having 6 to 12 carbon atoms.
Examples of the substituent arbitrarily contained in the alkanediyl group having 1 to 20 carbon atoms which may have a substituent include a cyano group and a halogen atom, and the alkanediyl group may be unsubstituted. It is preferably an unsubstituted and linear alkanediyl group, more preferably.
 W及びWは、互いに独立に、好ましくは単結合又は-O-である。 W 1 and W 2 are independent of each other, preferably single bond or —O—.
 化合物(B)の具体例は、式(1-1)~式(1-23)で表される化合物などが挙げられる。化合物(B)が、シクロヘキサン-1,4-ジイル基を有する場合、そのシクロヘキサン-1,4-ジイル基は、トランス体であることが好ましい。 Specific examples of the compound (B) include compounds represented by the formulas (1-1) to (1-23). When compound (B) has a cyclohexane-1,4-diyl group, the cyclohexane-1,4-diyl group is preferably a trans form.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 例示した化合物(B)の中でも、式(1-2)、式(1-3)、式(1-4)、式(1-6)、式(1-7)、式(1-8)、式(1-13)、式(1-14)及び式(1-15)でそれぞれ表される化合物からなる群より選ばれる少なくとも1種が好ましい。 Among the exemplified compounds (B), the formulas (1-2), formulas (1-3), formulas (1-4), formulas (1-6), formulas (1-7), and formulas (1-8) , At least one selected from the group consisting of the compounds represented by the formulas (1-13), (1-14) and (1-15), respectively.
 例示した化合物(B)は、単独又は組み合わせて、長尺偏光膜に用いることができる。
また、2種以上の重合性液晶化合物を組み合わせる場合には、少なくとも1種が化合物(B)であると好ましく、2種以上が化合物(B)であるとより好ましい。組み合わせることにより、液晶-結晶相転移温度以下の温度でも一時的に液晶性を保持することができる場合がある。2種類の重合性液晶化合物を組み合わせる場合の混合比は、通常、1:99~50:50であり、好ましくは5:95~50:50であり、より好ましくは10:90~50:50である。
The exemplified compound (B) can be used alone or in combination for a long polarizing film.
When combining two or more kinds of polymerizable liquid crystal compounds, it is preferable that at least one kind is the compound (B), and more preferably two or more kinds are the compound (B). By combining them, the liquid crystal property may be temporarily maintained even at a temperature equal to or lower than the liquid crystal-crystal phase transition temperature. The mixing ratio when the two kinds of polymerizable liquid crystal compounds are combined is usually 1:99 to 50:50, preferably 5:95 to 50:50, and more preferably 10:90 to 50:50. is there.
 化合物(B)は、例えば、Lub  et  al.  Recl.Trav.Chim.Pays-Bas,115,  321-328(1996)、又は特許第4719156号などに記載の公知方法で製造される。 The compound (B) is, for example, Lub et all. Recl. Trav. Chim. It is produced by a known method described in Pays-Bas, 115, 321-328 (1996), or Japanese Patent No. 4719156.
 偏光膜組成物における重合性液晶化合物の含有割合は、重合性液晶化合物の配向性を高くするという観点から、偏光膜組成物の固形分100質量部に対して、通常70~99.5質量部であり、好ましくは80~99質量部であり、より好ましくは80~94質量部であり、さらに好ましくは80~90質量部である。 The content ratio of the polymerizable liquid crystal compound in the polarizing film composition is usually 70 to 99.5 parts by mass with respect to 100 parts by mass of the solid content of the polarizing film composition from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is preferably 80 to 99 parts by mass, more preferably 80 to 94 parts by mass, and further preferably 80 to 90 parts by mass.
 <溶剤>
 溶剤は、重合性液晶化合物を完全に溶解し得るものが好ましく、また、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。
<Solvent>
The solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound, and is preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound.
 溶剤は、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル及びプロピレングリコールモノメチルエーテルなどのアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン又はプロピレングリコールメチルエーテルアセテート及び乳酸エチルなどのエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン及びメチルイソブチルケトンなどのケトン溶剤;ペンタン、ヘキサン及びヘプタンなどの脂肪族炭化水素溶剤;トルエン及びキシレンなどの芳香族炭化水素溶剤、アセトニトリルなどのニトリル溶剤;テトラヒドロフラン及びジメトキシエタンなどのエーテル溶剤;クロロホルム及びクロロベンゼンなどの塩素含有溶剤;などが挙げられる。これら溶剤は、単独で用いてもよいし、組み合わせてもよい。 Solvents are alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether and propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone or Ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; toluene and Examples include aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile; ether solvents such as tetrahydrofuran and dimethoxyethane; chlorine-containing solvents such as chloroform and chlorobenzene; and the like. These solvents may be used alone or in combination.
 溶剤の含有量は、前記偏光膜組成物の総量に対して50~98質量%が好ましい。換言すると、偏光膜組成物における固形分は、2~50質量%が好ましい。該固形分が50質量%以下であると、偏光膜組成物の粘度が低くなることから、偏光膜の厚みが略均一になることで、当該偏光膜にムラが生じにくくなる傾向がある。また、かかる固形分は、製造しようとする偏光膜の厚みを考慮して定めることができる。 The content of the solvent is preferably 50 to 98% by mass with respect to the total amount of the polarizing film composition. In other words, the solid content in the polarizing film composition is preferably 2 to 50% by mass. When the solid content is 50% by mass or less, the viscosity of the polarizing film composition is low, so that the thickness of the polarizing film becomes substantially uniform, and the polarizing film tends to be less likely to be uneven. Further, the solid content can be determined in consideration of the thickness of the polarizing film to be produced.
 <重合開始剤>
 重合開始剤は、重合性液晶化合物などの重合反応を開始できる化合物である。重合開始剤は、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。
<Polymerization initiator>
The polymerization initiator is a compound such as a polymerizable liquid crystal compound that can initiate a polymerization reaction. The polymerization initiator is preferably a photopolymerization initiator that generates active radicals by the action of light.
 重合開始剤は、例えばベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩及びスルホニウム塩などが挙げられる。 Examples of the polymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts and sulfonium salts.
 ベンゾイン化合物は、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル及びベンゾインイソブチルエーテルなどが挙げられる。 Examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether.
 ベンゾフェノン化合物は、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン及び2,4,6-トリメチルベンゾフェノンなどが挙げられる。 Benzophenone compounds include, for example, benzophenone, methyl o-benzoyl benzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3', 4,4'-tetra (tert-butylperoxycarbonyl). Examples thereof include benzophenone and 2,4,6-trimethylbenzophenone.
 アルキルフェノン化合物は、例えば、ジエトキシアセトフェノン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマーなどが挙げられる。 Alkylphenone compounds include, for example, diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl). Butane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1-one [4- (2-Hydroxyethoxy) phenyl] propan-1-one, 1-hydroxycyclohexylphenylketone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propan-1-one Benzyl and the like.
 アシルホスフィンオキサイド化合物は、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイドなどが挙げられる。 Examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
 トリアジン化合物は、例えば、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジン及び2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジンなどが挙げられる。 The triazine compounds include, for example, 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine and 2,4-bis (trichloromethyl) -6- (4-methoxynaphthyl). )-1,3,5-Triazine, 2,4-bis (trichloromethyl) -6- (4-methoxystyryl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [ 2- (5-Methylfuran-2-yl) ethenyl] -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (fran-2-yl) ethenyl] -1, 3,5-Triazine, 2,4-bis (trichloromethyl) -6- [2- (4-diethylamino-2-methylphenyl) ethenyl] -1,3,5-triazine and 2,4-bis (trichloromethyl) ) -6- [2- (3,4-dimethoxyphenyl) ethenyl] -1,3,5-triazine and the like.
 重合開始剤には市販のものを用いることができる。市販の重合開始剤は、イルガキュア(Irgacure)(登録商標)907、184、651、819、250及び、369(BASFジャパン(株)製);セイクオール(登録商標)BZ、Z及び、BEE(精工化学(株)製);カヤキュアー(kayacure)(登録商標)BP100及び、UVI-6992(ダウ社製);アデカオプトマーSP-152及び、SP-170((株)ADEKA製);TAZ-A及び、TAZ-PP(DKSHジャパン(株)製);及び、TAZ-104((株)三和ケミカル製)等が挙げられる。 A commercially available polymerization initiator can be used. Commercially available polymerization initiators are Irgacure (registered trademark) 907, 184, 651, 819, 250 and 369 (manufactured by BASF Japan Ltd.); Sakeol (registered trademark) BZ, Z and BEE (Seiko Kagaku). (Manufactured by Co., Ltd.); Kayacure (registered trademark) BP100 and UVI-6992 (manufactured by Dow); ADEKA PUTMER SP-152 and SP-170 (manufactured by ADEKA Corporation); TAZ-A and Examples thereof include TAZ-PP (manufactured by DKSH Japan Co., Ltd.); and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.).
 重合開始剤は、偏光膜組成物に重合性液晶化合物が含まれる場合に、偏光膜組成物に含まれると好ましい。偏光膜組成物に重合性液晶化合物が含まれる場合の、偏光膜組成物における重合開始剤の含有量は、重合性液晶化合物の配向を乱しにくいという観点から、重合性液晶化合物の含有量100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。 When the polarizing film composition contains a polymerizable liquid crystal compound, the polymerization initiator is preferably contained in the polarizing film composition. When the polarizing film composition contains a polymerizable liquid crystal compound, the content of the polymerization initiator in the polarizing film composition is 100, from the viewpoint that the orientation of the polymerizable liquid crystal compound is not easily disturbed. It is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass with respect to the parts by mass.
 <増感剤>
 増感剤は、光増感剤が好ましい。増感剤は、例えば、キサントン及びチオキサントンなどのキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントンなど);アントラセン及びアルコキシ基含有アントラセン(例えば、ジブトキシアントラセンなど)などのアントラセン化合物;フェノチアジン及びルブレンなどが挙げられる。
<Sensitizer>
The sensitizer is preferably a photosensitizer. The sensitizer is, for example, a xanthone compound such as xanthone and thioxanthone (eg, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, etc.); an anthracene compound such as anthracene and an alkoxy group-containing anthracene (eg, dibutoxyanthracene, etc.); Examples include phenothiazine and rubrene.
 増感剤は、偏光膜組成物に重合性液晶化合物が含まれる場合に、偏光膜組成物に含まれると好ましい。偏光膜組成物に重合性液晶化合物が含まれる場合の、偏光膜組成物における増感剤の含有量は、重合性液晶化合物の含有量100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。 When the polarizing film composition contains a polymerizable liquid crystal compound, the sensitizer is preferably contained in the polarizing film composition. When the polarizing film composition contains a polymerizable liquid crystal compound, the content of the sensitizer in the polarizing film composition is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the content of the polymerizable liquid crystal compound. It is preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass.
 <重合禁止剤>
 前記重合禁止剤は、ハイドロキノン、アルコキシ基含有ハイドロキノン、アルコキシ基含有カテコール(例えば、ブチルカテコールなど)、ピロガロール、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカルなどのラジカル捕捉剤;チオフェノール類;β-ナフチルアミン類及びβ-ナフトール類等が挙げられる。
<Polymerization inhibitor>
The polymerization inhibitor is a radical scavenger such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (for example, butylcatechol, etc.), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxyradical. Thiophenols; β-naphthylamines, β-naphthols and the like.
 重合禁止剤は、偏光膜組成物に重合性液晶化合物が含まれる場合に、偏光膜組成物に含まれると好ましい。重合禁止剤により、重合性液晶化合物の重合反応の進行度合いをコントロールすることができる。
 偏光膜組成物に重合性液晶化合物が含まれる場合の、偏光膜組成物における増感剤の含有量は、重合性液晶化合物の含有量100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。
The polymerization inhibitor is preferably contained in the polarizing film composition when the polarizing film composition contains a polymerizable liquid crystal compound. The degree of progress of the polymerization reaction of the polymerizable liquid crystal compound can be controlled by the polymerization inhibitor.
When the polarizing film composition contains a polymerizable liquid crystal compound, the content of the sensitizer in the polarizing film composition is usually 0.1 to 30 parts by mass with respect to 100 parts by mass of the content of the polymerizable liquid crystal compound. It is preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass.
 <レベリング剤>
 レベリング剤は、偏光膜組成物の流動性を調整し、偏光膜組成物の塗布膜をより平坦にする機能を有し、例えば、界面活性剤を挙げることができる。好ましいレベリング剤としては、ポリアクリレート化合物を主成分とするレベリング剤及びフッ素原子含有化合物を主成分とするレベリング剤が挙げられる。
<Leveling agent>
The leveling agent has a function of adjusting the fluidity of the polarizing film composition and flattening the coating film of the polarizing film composition, and examples thereof include a surfactant. Preferred leveling agents include a leveling agent containing a polyacrylate compound as a main component and a leveling agent containing a fluorine atom-containing compound as a main component.
 ポリアクリレート化合物を主成分とするレベリング剤としては、”BYK-350、BYK-352、BYK-353、BYK-354、BYK-355、BYK-358N、BYK-361N、BYK-380、BYK-381及び、BYK-392(BYK  Chemie社製)等が挙げられる。 Examples of the leveling agent containing a polyacrylate compound as a main component include "BYK-350, BYK-352, BYK-353, BYK-354, BYK-355, BYK-358N, BYK-361N, BYK-380, BYK-381 and , BYK-392 (manufactured by BYK Chemie) and the like.
 フッ素原子含有化合物を主成分とするレベリング剤としては、メガファック(登録商標)R-08、R-30、R-90、F-410、F-411、F-443、F-445、F-470、F-471、F-477、F-479、F-482、F-483(DIC(株)製);サーフロン(登録商標)S-381、S-382、S-383、S-393、SC-101、SC-105、KH-40及び、SA-100(AGCセイミケミカル(株)製);E1830及び、E5844((株)ダイキンファインケミカル研究所製);エフトップEF301、EF303、EF351及び、EF352(三菱マテリアル電子化成(株)製)等が挙げられる。 Examples of the leveling agent containing a fluorine atom-containing compound as a main component include Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, and F-. 470, F-471, F-477, F-479, F-482, F-483 (manufactured by DIC Corporation); Surflon (registered trademark) S-381, S-382, S-383, S-393, SC-101, SC-105, KH-40 and SA-100 (manufactured by AGC Seimi Chemical Co., Ltd.); E1830 and E5844 (manufactured by Daikin Fine Chemical Laboratory Co., Ltd.); Ftop EF301, EF303, EF351 and EF352 (manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.) and the like can be mentioned.
 レベリング剤は、偏光膜組成物に重合性液晶化合物が含まれる場合に、偏光膜組成物に含まれると好ましい。偏光膜組成物におけるレベリング剤の含有量は、重合性液晶化合物の含有量100質量部に対して、通常0.3質量部以上5質量部以下であり、好ましくは0.5質量部以上3質量部以下である。
 レベリング剤の含有量が前記の範囲内であると、重合性液晶化合物を水平配向させることが容易であり、かつ得られる長尺偏光膜がより平滑となる傾向があるため好ましい。重合性液晶化合物に対するレベリング剤の含有量が前記の範囲を超えると、得られる偏光膜にムラが生じやすい傾向があるため好ましくない。偏光膜組成物は、レベリング剤を2種類以上含有していてもよい。
The leveling agent is preferably contained in the polarizing film composition when the polarizing film composition contains a polymerizable liquid crystal compound. The content of the leveling agent in the polarizing film composition is usually 0.3 parts by mass or more and 5 parts by mass or less, preferably 0.5 parts by mass or more and 3 parts by mass with respect to 100 parts by mass of the content of the polymerizable liquid crystal compound. It is less than a part.
When the content of the leveling agent is within the above range, it is easy to horizontally orient the polymerizable liquid crystal compound, and the obtained long polarizing film tends to be smoother, which is preferable. If the content of the leveling agent with respect to the polymerizable liquid crystal compound exceeds the above range, the obtained polarizing film tends to be uneven, which is not preferable. The polarizing film composition may contain two or more kinds of leveling agents.
 <重合性非液晶化合物>
 偏光膜組成物は、重合性非液晶化合物を含有しても良い。重合性非液晶化合物を含有することで、重合反応性部位の架橋密度を高め、偏光膜の強度を向上させることができる。
<Polymerizable non-liquid crystal compound>
The polarizing film composition may contain a polymerizable non-liquid crystal compound. By containing the polymerizable non-liquid crystal compound, the crosslink density of the polymerization-reactive site can be increased and the strength of the polarizing film can be improved.
 重合性非液晶化合物は、アクリロイル基、メタクリロイル基、イソシアナート基からなる群のうち少なくとも1個以上の重合性基を有することが好ましい。より好ましくは2個以上10個以下の重合性基を有することが好ましく、更に好ましくは3個以上8個以下の重合性基を有することが好ましい。 The polymerizable non-liquid crystal compound preferably has at least one polymerizable group in the group consisting of an acryloyl group, a methacryloyl group, and an isocyanate group. It is more preferable to have 2 or more and 10 or less polymerizable groups, and further preferably 3 or more and 8 or less polymerizable groups.
 偏光膜組成物における重合性非液晶化合物の含有量は、偏光膜組成物の固形分100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部である。 The content of the polymerizable non-liquid crystal compound in the polarizing film composition is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the solid content of the polarizing film composition. is there.
 <第2塗布膜>
 工程(d1)において、偏光膜組成物を配向膜の上に塗布することにより第2塗布膜が形成される。
<Second coating film>
In the step (d1), the second coating film is formed by applying the polarizing film composition on the alignment film.
 偏光膜組成物を配向膜に塗布する方法は、配向膜組成物の塗布方法と同様の方法が挙げられる。二色性色素がリオトロピック液晶性を有する場合は、せん断力をかけて塗布することにより、二色性色素を配向させることができる。 Examples of the method of applying the polarizing film composition to the alignment film include the same method as the method of applying the alignment film composition. When the dichroic dye has a lyotropic liquid crystal property, the dichroic dye can be oriented by applying a shearing force.
 <第2乾燥膜>
 工程(d2)において、第2塗布膜を乾燥させて第2乾燥膜が形成される。本明細書においては、第2塗布膜の全質量に対して第2塗布膜における溶剤の含有量が50質量%以下となったものを第2乾燥膜という。該溶剤の含有量は好ましくは30質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、特に好ましくは1質量%以下である。
<Second dry membrane>
In the step (d2), the second coating film is dried to form the second dry film. In the present specification, a film having a solvent content of 50% by mass or less in the second coating film with respect to the total mass of the second coating film is referred to as a second dry film. The content of the solvent is preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and particularly preferably 1% by mass or less.
 第2塗布膜を乾燥する方法は、第1塗布膜を乾燥する方法と同様の方法が挙げられる。
第2塗布膜を加熱乾燥し、二色性色素及び重合性液晶化合物を液晶相に転移させることで、二色性色素及び重合性液晶化合物は、通常、配向する。
Examples of the method for drying the second coating film include the same method as the method for drying the first coating film.
The dichroic dye and the polymerizable liquid crystal compound are usually oriented by heating and drying the second coating film to transfer the dichroic dye and the polymerizable liquid crystal compound to the liquid crystal phase.
 乾燥後の第2乾燥膜に含まれる二色性色素及び重合性液晶化合物が液晶相を形成していない場合、これらが液晶相を示す温度にまで第2乾燥膜を加熱することで液晶相を形成することができる。第2乾燥膜に含まれる二色性色素及び重合性液晶化合物を溶液状態に転移する温度以上に加熱し、次いで該二色性色素又は重合性液晶化合物が液晶相を示す温度まで冷却することにより、液晶相を形成してもよい。 When the dichroic dye and the polymerizable liquid crystal compound contained in the second dry film after drying do not form a liquid crystal phase, the liquid crystal phase is formed by heating the second dry film to a temperature at which these show the liquid crystal phase. Can be formed. By heating the dichroic dye and the polymerizable liquid crystal compound contained in the second dry film to a temperature higher than the temperature at which the dichroic dye and the polymerizable liquid crystal compound are transferred to the solution state, and then cooling to a temperature at which the dichroic dye or the polymerizable liquid crystal compound exhibits a liquid crystal phase. , A liquid crystal phase may be formed.
 なお、上記乾燥と、上記液晶相を形成するための加熱は、同一の加熱工程によって行ってもよい。 The drying and heating for forming the liquid crystal phase may be performed by the same heating step.
 <偏光膜>
 第2乾燥膜は、そのまま偏光膜として用いてもよいが、第2乾燥膜に重合性液晶化合物が含まれる場合は、工程(d3)により硬化するのが好ましい。硬化するとは、第2乾燥膜に含まれる重合性液晶化合物が重合することであり、重合方法としては、加熱及び光照射が挙げられ、好ましくは光照射である。この硬化により、第2乾燥膜に含まれる二色性色素を配向した状態で固定することができる。
<Polarizing film>
The second dry film may be used as it is as a polarizing film, but when the second dry film contains a polymerizable liquid crystal compound, it is preferably cured by the step (d3). Curing means that the polymerizable liquid crystal compound contained in the second dry film is polymerized, and examples of the polymerization method include heating and light irradiation, preferably light irradiation. By this curing, the dichroic dye contained in the second dry film can be fixed in an oriented state.
 硬化は、重合性液晶化合物に液晶相を形成させた状態で行うのが好ましく、液晶相を示す温度で、光照射して硬化してもよい。 Curing is preferably performed in a state where a liquid crystal phase is formed on a polymerizable liquid crystal compound, and may be cured by irradiating light at a temperature indicating the liquid crystal phase.
 光照射における光は、可視光、及び紫外光が挙げられる。取り扱いやすい点で、紫外光が好ましい。光は、第2乾燥膜に直接照射してもよいし、長尺基材を透過させて照射してもよい。 Examples of light in light irradiation include visible light and ultraviolet light. Ultraviolet light is preferable because it is easy to handle. The light may be directly irradiated to the second dry film, or may be irradiated through a long base material.
 前記光照射の光源は、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプが好ましい。これらのランプは、波長313nmの紫外線の発光強度が大きいため好ましい。 Examples of the light source for light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps, and metal halide lamps. preferable. These lamps are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm.
 偏光膜の厚さは、通常5μm以下であり、好ましくは0.5μm以上3μm以下であり、より好ましくは1μm以上3μm以下である。長尺偏光膜の厚さは、干渉膜厚計やレーザー顕微鏡あるいは触針式膜厚計で測定することができる。また、長尺偏光膜は好ましくはX線回折測定においてブラッグピークを示す。 The thickness of the polarizing film is usually 5 μm or less, preferably 0.5 μm or more and 3 μm or less, and more preferably 1 μm or more and 3 μm or less. The thickness of the long polarizing film can be measured with an interference film thickness meter, a laser microscope, or a stylus type film thickness meter. In addition, the long polarizing film preferably shows a Bragg peak in the X-ray diffraction measurement.
 <工程(e)>
 本発明の製造方法は、上記基材と上記配向膜とを少なくとも含む配向膜積層体を、温度が60℃~150℃の雰囲気下で一軸延伸を行う工程(e)を含む。工程(e)は、配向膜を形成する工程(c)の後であれば、そのタイミングは限定されることはなく、工程(c)の後で工程(d)の前であってもよいし、工程(d)と同時であってもよいし、工程(d)の後であってもよい。
<Step (e)>
The production method of the present invention includes a step (e) of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C. The timing of the step (e) is not limited as long as it is after the step (c) of forming the alignment film, and may be after the step (c) and before the step (d). , Simultaneously with step (d) or after step (d).
 工程(e)において、一軸延伸を行う方向は配向膜の配向規制力の方向とのなす角度が好ましくは0°±15°または90°±15°の範囲内であり、より好ましくは0°±10°または90°±10°であり、さらに好ましくは0°±5°または90°±5°であり、特に好ましくは0°±1°または90°±1°である。 In the step (e), the angle formed by the direction of uniaxial stretching with the direction of the orientation regulating force of the alignment film is preferably within the range of 0 ° ± 15 ° or 90 ° ± 15 °, and more preferably 0 ° ±. It is 10 ° or 90 ° ± 10 °, more preferably 0 ° ± 5 ° or 90 ° ± 5 °, and particularly preferably 0 ° ± 1 ° or 90 ° ± 1 °.
 長尺の配向膜積層体を連続的に一軸延伸する方法としては、ニップロールを用いる方法、配向膜積層体の両端をクリップして配向膜積層体の幅方向に延伸する方法などが挙げられる。ニップロールを用いる方法では、一対のロールからなるニップロールの一対のロール間に配向膜積層体を挟圧して、一対のロールの回転速度を相対的に変えることで、配向膜積層体を搬送方向に一軸延伸する。 Examples of the method of continuously uniaxially stretching the long alignment film laminate include a method of using a nip roll and a method of clipping both ends of the alignment film laminate and stretching in the width direction of the alignment film laminate. In the method using a nip roll, the alignment film laminate is sandwiched between the pair of rolls of the nip roll composed of a pair of rolls, and the rotation speed of the pair of rolls is relatively changed, so that the alignment film laminate is uniaxial in the transport direction. Stretch.
 配向膜積層体を一軸延伸する際には、雰囲気温度を調整できる手段を用いる。例えば、配向膜積層体を加熱炉内で一軸延伸することにより雰囲気温度を調整することができる。
雰囲気温度は60℃~150℃とし、65℃~100℃であることが好ましい。さらには、一軸延伸時の配向膜積層体の基材の温度が60℃~150℃であることが好ましく、65℃~100℃であることがより好ましい。
When uniaxially stretching the alignment film laminate, a means capable of adjusting the ambient temperature is used. For example, the ambient temperature can be adjusted by uniaxially stretching the alignment film laminate in a heating furnace.
The ambient temperature is 60 ° C. to 150 ° C., preferably 65 ° C. to 100 ° C. Further, the temperature of the base material of the alignment film laminate during uniaxial stretching is preferably 60 ° C. to 150 ° C., more preferably 65 ° C. to 100 ° C.
 一軸延伸の延伸倍率は、1.01倍~1.5倍であることが好ましく、1.05倍~1.5倍であることがより好ましく、1.1倍~1.3倍であることがさらに好ましい。 The draw ratio of uniaxial stretching is preferably 1.01 to 1.5 times, more preferably 1.05 to 1.5 times, and 1.1 to 1.3 times. Is even more preferable.
 本発明の製造方法は、工程(e)を含むことにより、偏光フィルムのオーダーパラメータ(S)を向上させることができ、視感度補正偏光度(Py)の値を向上させることができ、面内で均一な色味を得やすくすることができる。 By including the step (e), the manufacturing method of the present invention can improve the order parameter (S 1 ) of the polarizing film, can improve the value of the luminosity factor correction polarization degree (Py), and can improve the surface. It is possible to easily obtain a uniform color within.
 <偏光フィルム>
 上記の方法によると、基材と、配向膜と、偏光膜とをこの順に含む偏光フィルムであって、良好な光学特性を有する偏光フィルムを製造することができる。本発明の偏光フィルムに、さらに1/4λ波長板を貼合することにより、円偏光板を得ることができる。
<Polarizing film>
According to the above method, a polarizing film including a base material, an alignment film, and a polarizing film in this order can be produced, and a polarizing film having good optical characteristics can be produced. A circular polarizing plate can be obtained by further adhering a 1 / 4λ wave plate to the polarizing film of the present invention.
 偏光フィルムは、長尺である場合、これを枚葉状に切断することで枚葉状の偏光フィルムが得られる。枚葉状とは、フィルムの長手方向と短手方向のバランスが著しく異なるものを除くものであり、本明細書においては、長手方向の長さが短手方向の長さの5倍以下であれば枚葉状という。切断は任意の方法で行うことができる。 When the polarizing film is long, a single-wafer-shaped polarizing film can be obtained by cutting it into a single-wafer shape. The single-wafer shape excludes a film having a significantly different balance between the longitudinal direction and the lateral direction, and in the present specification, if the length in the longitudinal direction is 5 times or less the length in the lateral direction. It is called a single leaf. The cutting can be performed by any method.
 本発明の偏光フィルムの好ましい形態は、基材と偏光膜とを含み、偏光膜は二色性色素と重合性液晶化合物の重合物とを含む。 A preferred form of the polarizing film of the present invention includes a base material and a polarizing film, and the polarizing film contains a dichroic dye and a polymer of a polymerizable liquid crystal compound.
 本発明の偏光フィルムのオーダーパラメータ(S)の平均値(S1ave)は、好ましくは下記式(1a)の関係を満たし、より好ましくは下記式(1b)の関係を満たす。偏光フィルムのオーダーパラメータ(S)の平均値(S1ave)は、1未満であってもよい。
 S1ave≧0.998   (1a)
 S1ave≧0.999   (1b)
The average value (S 1ave ) of the order parameter (S 1 ) of the polarizing film of the present invention preferably satisfies the relationship of the following formula (1a), and more preferably satisfies the relationship of the following formula (1b). The average value (S 1ave ) of the order parameter (S 1 ) of the polarizing film may be less than 1.
S 1ave ≧ 0.998 (1a)
S 1ave ≧ 0.999 (1b)
 任意領域のオーダーパラメータ(S)は、偏光フィルムの任意領域を複数の微小領域に区分し、各微小領域の吸収軸の軸角度をθ、微小領域の軸角度θの標準偏差をσとしたときに、式(2)で定義される値である。吸収軸の軸角度は二色性色素の配向方向に依存する。
 S=(3cosσ-1)/2   (2)
The order parameter (S 1 ) of the arbitrary region divides the arbitrary region of the polarizing film into a plurality of minute regions, the axis angle of the absorption axis of each minute region is θ 1 , and the standard deviation of the axis angle θ 1 of the minute region is σ. Is the value defined by the equation (2). The axis angle of the absorption axis depends on the orientation direction of the dichroic dye.
S 1 = (3cos 2 σ-1) / 2 (2)
 式(2)からわかるように、S=0の場合、二色性色素の配向方向に秩序がない状態を示し、S=1の場合、二色性色素が特定の方向に一致して配列している状態であることを示す。本明細書において、オーダーパラメータ(S)及びオーダーパラメータの平均値(S1ave)は、以下に記載の方法によって求める値とする。 As can be seen from the equation (2), when S 1 = 0, the orientation direction of the dichroic dye is not ordered, and when S 1 = 1, the dichroic dye coincides with a specific direction. Indicates that they are in an arrayed state. In the present specification, the order parameter (S 1 ) and the average value (S 1ave ) of the order parameters are values obtained by the method described below.
 本発明の偏光フィルムの、延伸方向に直交する方向(例えば吸収軸方向)のオーダーパラメータ差(ΔS)は、好ましくは下記式(3a)の関係を満たし、より好ましくは下記式(3b)の関係を満たす。
 ΔS≦0.0015   (3a)
 ΔS≦0.0010   (3b)
The order parameter difference (ΔS 1 ) of the polarizing film of the present invention in the direction orthogonal to the stretching direction (for example, the absorption axis direction) preferably satisfies the relationship of the following formula (3a), and more preferably of the following formula (3b). Meet the relationship.
ΔS 1 ≤ 0.0015 (3a)
ΔS 1 ≤ 0.0010 (3b)
 延伸方向に直交する方向のオーダーパラメータ差(ΔS)は、下記式(4)で定義されるように、延伸方向に直交する方向に並んだ複数の領域のオーダーパラメータ(S)の内、最大値S1maxと最小値S1minとの差で定義される値である。本明細書において、オーダーパラメータ差(ΔS)は、以下に記載の方法によって求める値とする。
 ΔS=S1max-S1min   (4)
The order parameter difference (ΔS 1 ) in the direction orthogonal to the stretching direction is, as defined by the following equation (4), among the order parameters (S 1 ) of a plurality of regions arranged in the direction orthogonal to the stretching direction. It is a value defined by the difference between the maximum value S 1max and the minimum value S 1min . In the present specification, the order parameter difference (ΔS 1 ) is a value obtained by the method described below.
ΔS 1 = S 1max −S 1min (4)
 オーダーパラメータ(S)、オーダーパラメータの平均値(S1ave)、およびオーダーパラメータ差(ΔS)は、以下のようにして測定できる。なお、測定対象の偏光フィルムは、長尺であってもよいし、枚葉状であってもよい。まず、吸収軸方向1.7mm×透過軸方向1.4mmの測定領域を、偏光フィルムの吸収軸方向の全幅にわたって等間隔に20か所設定する。各測定領域を、さらに吸収軸方向に168分割し、透過軸方向に128分割して21504個の微小領域を設定する。各微小領域について、吸収軸角度測定計(AXOMETRICS社、AxoStep_Imaging Polarimeter)を用いて吸収軸角度を測定する。そして、上記した式(2)にしたがって測定領域ごとにオーダーパラメータ(S)を算出する。 The order parameter (S 1 ), the average value of the order parameters (S 1ave ), and the order parameter difference (ΔS 1 ) can be measured as follows. The polarizing film to be measured may be long or single-wafered. First, 20 measurement regions having an absorption axis direction of 1.7 mm and a transmission axis direction of 1.4 mm are set at equal intervals over the entire width of the polarizing film in the absorption axis direction. Each measurement region is further divided into 168 in the absorption axis direction and 128 in the transmission axis direction to set 21504 minute regions. For each minute region, the absorption axis angle is measured using an absorption axis angle measuring meter (AXOMETRICS, AXoStep_Imaging Polarimeter). Then, the order parameter (S 1 ) is calculated for each measurement region according to the above equation (2).
 20個のオーダーパラメータの平均値をオーダーパラメータの平均値(S1ave)とする。20か所で算出したオーダーパラメータの内、最も大きいオーダーパラメータ(S1max)と最も小さいオーダーパラメータ(S1min)との差からオーダーパラメータ差(ΔS)を算出する。 Let the average value of 20 order parameters be the average value of order parameters (S 1ave) . The order parameter difference (ΔS 1 ) is calculated from the difference between the largest order parameter (S 1max ) and the smallest order parameter (S 1min ) among the order parameters calculated at 20 locations.
 本発明の偏光フィルムの視感度補正偏光度(Py)は、好ましくは下記式(6a)の関係を満たし、より好ましくは下記式(6b)の関係を満たす。本発明の偏光フィルムの視感度補正偏光度(Py)は下記式(6c)の関係を満たしていてもよい。 The luminosity factor correction polarization degree (Py) of the polarizing film of the present invention preferably satisfies the relationship of the following formula (6a), and more preferably satisfies the relationship of the following formula (6b). The luminosity factor correction polarization degree (Py) of the polarizing film of the present invention may satisfy the relationship of the following formula (6c).
 Py≧97.0   (6a)
 Py≧98.0   (6b)
 Py≦99.99  (6c)
Py ≧ 97.0 (6a)
Py ≧ 98.0 (6b)
Py ≤ 99.99 (6c)
 本発明の偏光フィルムの視感度補正透過率(Ty)は、通常35%以上であり、好ましくは40%以上であり、より好ましくは42%以上である。Tyが35%以上であると白輝度が向上するため好ましい。尚、ここでの透過率とは基材フィルムと空気界面での屈折率差に伴う界面反射損失分や基材フィルム自体の吸収による損失分も含む。また、アンチグレア処理等により偏光フィルムに防眩性能を付与した場合には、散乱光を含めて積分球により測定した値である。 The luminosity factor correction transmittance (Ty) of the polarizing film of the present invention is usually 35% or more, preferably 40% or more, and more preferably 42% or more. When Ty is 35% or more, white brightness is improved, which is preferable. The transmittance here includes the interfacial reflection loss due to the difference in refractive index between the base film and the air interface and the loss due to absorption of the base film itself. Further, when the polarizing film is provided with antiglare performance by anti-glare treatment or the like, it is a value measured by an integrating sphere including scattered light.
 <偏光フィルムの連続的製造方法>
 本発明の偏光フィルムは、長尺である場合、通常、Roll  to  Roll形式により連続的に製造する。図1を参照して、長尺偏光フィルムを、Roll  to  Roll形式により連続的に製造する方法の要部の一例を説明する。
<Continuous manufacturing method of polarizing film>
When the polarizing film of the present invention is long, it is usually produced continuously in the Roll to Roll format. With reference to FIG. 1, an example of a main part of a method for continuously producing a long polarizing film in the Roll to Roll format will be described.
 長尺基材が第1の巻芯210Aに巻き取られている第1ロール210は、例えば市場から容易に入手できる。このようなロールの形態で市場から入手できる長尺基材は、すでに例示した基材の中でも、セルロースエステル、環状オレフィン系樹脂、ポリエチレンテレフタレート又はポリメタクリル酸エステルからなるフィルムなどが挙げられる。 The first roll 210 in which the long base material is wound around the first winding core 210A is easily available from the market, for example. Examples of the long base material available on the market in the form of such a roll include a film made of a cellulose ester, a cyclic olefin resin, a polyethylene terephthalate, or a polymethacrylic acid ester, among the base materials already exemplified.
 続いて、前記第1ロール210から長尺基材を巻き出す。長尺基材を巻き出す方法は該第1ロール210の巻芯210Aに適当な回転手段を設置し、当該回転手段により第1ロール210を回転させることにより行われる。また、第1ロール210から長尺基材を搬送する方向に、適当な補助ロール300を設置し、当該補助ロール300の回転手段で長尺基材を巻き出す形式でもよい。さらに、第1の巻芯210A及び補助ロール300ともに回転手段を設置することで、長尺基材に適度な張力を付与しながら、長尺基材を巻き出す形式でもよい。 Subsequently, the long base material is unwound from the first roll 210. The method of unwinding the long base material is performed by installing an appropriate rotating means on the winding core 210A of the first roll 210 and rotating the first roll 210 by the rotating means. Further, an appropriate auxiliary roll 300 may be installed in the direction of transporting the long base material from the first roll 210, and the long base material may be unwound by the rotating means of the auxiliary roll 300. Further, by installing a rotating means for both the first winding core 210A and the auxiliary roll 300, the long base material may be unwound while applying an appropriate tension to the long base material.
 前記第1ロール210から巻き出された長尺基材は、塗布装置211Aを通過する際に、その表面上に塗布装置211Aにより配向膜組成物が塗布される(工程(a))。このように連続的に配向膜組成物を塗布する塗布装置211Aは、グラビアコーティング法、ダイコーティング法、フレキソ法が好ましい。 When the long base material unwound from the first roll 210 passes through the coating device 211A, the alignment film composition is coated on the surface of the long base material by the coating device 211A (step (a)). The coating device 211A for continuously applying the alignment film composition in this way preferably has a gravure coating method, a die coating method, or a flexographic method.
 塗布装置211Aを通過して第1塗布膜が形成された長尺基材は、乾燥炉212Aへ搬送され、乾燥炉212Aによって第1塗布膜が乾燥されて第1乾燥膜が形成される(工程(b))。乾燥炉212Aには、例えば、通風乾燥法と加熱乾燥法とを組み合わせた熱風式乾燥炉が用いられる。乾燥炉212Aの設定温度は、光配向膜組成物に含まれる溶剤の種類などに応じて定められる。乾燥炉212Aは、互いに異なる設定温度の、複数のゾーンからなるものであってもよいし、互いに異なる設定温度の複数の乾燥炉を直列に設置したものであってもよい。 The long base material on which the first coating film is formed has passed through the coating device 211A and is conveyed to the drying furnace 212A, and the first coating film is dried by the drying furnace 212A to form the first drying film (step). (B)). As the drying furnace 212A, for example, a hot air drying furnace that combines a ventilation drying method and a heating drying method is used. The set temperature of the drying furnace 212A is determined according to the type of solvent contained in the photoalignment film composition and the like. The drying furnace 212A may consist of a plurality of zones having different set temperatures, or may have a plurality of drying furnaces having different set temperatures installed in series.
 得られた第1乾燥膜に、偏光照射装置213Aによって偏光を照射することにより、長尺配向膜が得られる(工程(c))。その際、配向膜の配向規制力の方向が長尺基材の長手方向となるように偏光を照射する。 A long alignment film is obtained by irradiating the obtained first dry film with polarized light by the polarizing irradiation device 213A (step (c)). At that time, the polarized light is irradiated so that the direction of the orientation regulating force of the alignment film is the longitudinal direction of the long base material.
 長尺配向膜が形成された長尺基材は、加熱炉214へ搬送され、加熱炉によって長尺基材と長尺配向膜とからなる配向膜積層体が加熱される。加熱炉214内では、配向膜積層体は、一対のニップロール215間に搬送され、長軸方向に一軸延伸される(工程(e))。加熱炉214の温度は、好ましくは60℃~150℃であり、より好ましくは65℃~100℃である。ニップロール215により一軸延伸の延伸倍率は、好ましくは1.01倍~1.5倍であり、より好ましくは1.05倍~1.5倍であり、さらに好ましくは1.1倍~1.3倍である。 The long base material on which the long alignment film is formed is conveyed to the heating furnace 214, and the alignment film laminate composed of the long base material and the long alignment film is heated by the heating furnace. In the heating furnace 214, the alignment film laminate is conveyed between the pair of nip rolls 215 and uniaxially stretched in the semimajor direction (step (e)). The temperature of the heating furnace 214 is preferably 60 ° C. to 150 ° C., more preferably 65 ° C. to 100 ° C. The draw ratio of uniaxial stretching by the nip roll 215 is preferably 1.01 to 1.5 times, more preferably 1.05 to 1.5 times, and further preferably 1.1 to 1.3 times. It is double.
 続いて、長尺配向膜が形成された長尺基材は、塗布装置211Bを通過する。塗布装置211Bによって、長尺配向膜上に偏光膜組成物(重合性液晶化合物を含むもの)が塗布され、第2塗布膜が形成される(工程d1)。その後、乾燥炉212Bを通過することにより、第2乾燥膜が形成される(工程d2)。乾燥炉212Bは、乾燥炉212Aと同様に、互いに異なる設定温度の複数のゾーンからなるものであってもよいし、互いに異なる設定温度の複数の乾燥炉を直列に設置したものであってもよい。 Subsequently, the long base material on which the long alignment film is formed passes through the coating device 211B. The polarizing film composition (containing the polymerizable liquid crystal compound) is coated on the long alignment film by the coating device 211B to form a second coating film (step d1). Then, by passing through the drying furnace 212B, a second drying film is formed (step d2). Like the drying furnace 212A, the drying furnace 212B may consist of a plurality of zones having different set temperatures, or may have a plurality of drying furnaces having different set temperatures installed in series. ..
 乾燥炉212Bを通過することにより、偏光膜組成物に含まれる重合性液晶化合物が液晶相を形成し、二色性色素が配向する。第2乾燥膜に含まれる重合性液晶化合物が液晶相を形成した状態で、光照射装置213Bによって光を照射することにより、該重合性液晶化合物は液晶相を保持したまま重合して、長尺偏光膜が形成される(工程d3)。 By passing through the drying furnace 212B, the polymerizable liquid crystal compound contained in the polarizing film composition forms a liquid crystal phase, and the dichroic dye is oriented. When the polymerizable liquid crystal compound contained in the second dry film forms a liquid crystal phase and is irradiated with light by the light irradiation device 213B, the polymerizable liquid crystal compound is polymerized while maintaining the liquid crystal phase and is long. A polarizing film is formed (step d3).
 かくして得られた長尺偏光フィルムは、第2の巻芯220Aに巻き取られ、第2ロール220の形態が得られる。なお、巻き取る際には、適当なスペーサを用いた供巻きを行ってもよい。 The long polarizing film thus obtained is wound around the second winding core 220A, and the form of the second roll 220 is obtained. When winding, the winding may be performed using an appropriate spacer.
 このように、長尺基材が、第1ロール210から、塗布装置211A、乾燥炉212A、偏光照射装置213A、加熱炉214、ニップロール215、塗布装置211B、乾燥炉212B及び光照射装置213Bの順で通過することにより、Roll  to  Roll形式により連続的に長尺偏光フィルムを製造することができる。 In this way, the long base material is in the order of the coating device 211A, the drying furnace 212A, the polarizing irradiation device 213A, the heating furnace 214, the nip roll 215, the coating device 211B, the drying furnace 212B, and the light irradiation device 213B from the first roll 210. By passing through the film, a long polarizing film can be continuously produced in the Roll to Roll format.
 また、図1に示す製造方法では、長尺基材から長尺偏光フィルムまでを連続的に製造する方法を示したが、他の方法で製造することもできる。例えば、まず、長尺基材を第1ロール210から巻き出し、塗布装置211A、乾燥炉212A及び偏光照射装置213A、加熱炉214、ニップロール215をこの順で通過させ、これを巻芯に巻き取ることで、ロール状の長尺配向フィルムを連続的製造し、次いで得られたロール状の長尺配向フィルムを巻き出し、塗布装置211B、乾燥炉212B及び光照射装置213Bをこの順で通過させて長尺偏光フィルムを製造してもよい。 Further, in the manufacturing method shown in FIG. 1, a method of continuously manufacturing from a long base material to a long polarizing film is shown, but it can also be manufactured by another method. For example, first, the long base material is unwound from the first roll 210, passed through the coating device 211A, the drying furnace 212A, the polarizing irradiation device 213A, the heating furnace 214, and the nip roll 215 in this order, and wound around the winding core. As a result, a roll-shaped elongated alignment film is continuously produced, and then the obtained roll-shaped elongated alignment film is unwound and passed through the coating device 211B, the drying furnace 212B and the light irradiation device 213B in this order. A long polarizing film may be manufactured.
 第2ロール220の形態で、長尺偏光フィルムを製造した場合には、第2ロール220から長尺偏光フィルムを巻き出し、所定の寸法に裁断してから、裁断された偏光フィルムに位相差フィルムを貼合することにより円偏光板を製造してもよいが、長尺位相差フィルムが巻芯に巻き取られている第3ロールを準備することで、長尺円偏光板を連続的に製造することもできる。 When a long polarizing film is manufactured in the form of the second roll 220, the long polarizing film is unwound from the second roll 220, cut to a predetermined size, and then a retardation film is formed on the cut polarizing film. A circular polarizing plate may be manufactured by laminating, but a long circular polarizing plate is continuously manufactured by preparing a third roll in which a long retardation film is wound around a winding core. You can also do it.
 長尺の円偏光板を連続的に製造する方法について、図2を参照して説明する。かかる製造方法は、第2ロール220から連続的に本発明の長尺の偏光フィルムを巻き出すとともに、長尺の位相差フィルムが巻き取られている第3ロール230から連続的に長尺の位相差フィルムを巻き出す工程と、長尺の偏光フィルムと、長尺の位相差フィルムとを連続的に貼合して長尺の円偏光板を得る工程と、得られた長尺の円偏光フィルムを第4の巻芯240Aに巻き取り、第4ロール240を得る工程とからなる。この方法はいわゆるRoll  to  Roll貼合である。 A method for continuously producing a long circular polarizing plate will be described with reference to FIG. In such a manufacturing method, the long polarizing film of the present invention is continuously unwound from the second roll 220, and the long position is continuously wound from the third roll 230 in which the long retardation film is wound. The step of unwinding the retardation film, the step of continuously laminating a long polarizing film and a long retardation film to obtain a long circular polarizing plate, and the obtained long circular polarizing film. Is wound around a fourth winding core 240A to obtain a fourth roll 240. This method is so-called Roll to Roll bonding.
 長尺の偏光フィルムと、長尺の位相差フィルムとは、適当な接着剤を用いて貼合することができる。 The long polarizing film and the long retardation film can be bonded together using an appropriate adhesive.
 上記のようにして得られた長尺の偏光フィルムは、必要に応じて裁断し、さまざまな表示装置に用いることができる。長尺の偏光フィルム及び、長尺の偏光フィルムから切り出された偏光フィルムは、通常、接着剤又は感圧式接着剤を介して表示装置に貼合される。
好ましくは、長尺の偏光フィルムは連続的に表示装置に貼合され、より好ましくは連続的に複数の表示装置に貼合される。長尺の偏光フィルムを表示装置に連続的に貼合することで、長尺の偏光フィルム付表示装置が得られる。
The long polarizing film obtained as described above can be cut as needed and used for various display devices. The long polarizing film and the polarizing film cut out from the long polarizing film are usually attached to the display device via an adhesive or a pressure-sensitive adhesive.
Preferably, the elongated polarizing film is continuously attached to the display device, and more preferably continuously attached to a plurality of display devices. By continuously laminating a long polarizing film to a display device, a long polarizing film-attached display device can be obtained.
 表示装置は、表示素子を有する装置であり、発光源として発光素子又は発光装置を含む。本発明の長尺偏光フィルム又は、本発明の長尺偏光フィルムから切り出された偏光フィルムを備える表示装置は、例えば、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)及び圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置及び投写型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。本発明の長尺偏光フィルム及び、本発明の長尺偏光フィルムから切り出された偏光フィルムは、特に、有機エレクトロルミネッセンス(EL)表示装置及び、無機エレクトロルミネッセンス(EL)表示装置等の表示装置、並びに、タッチパネルを含む表示装置に有効に用いられる。 The display device is a device having a display element, and includes a light emitting element or a light emitting device as a light emitting source. The display device including the long polarizing film of the present invention or the polarizing film cut out from the long polarizing film of the present invention is, for example, a liquid crystal display device, an organic electroluminescence (EL) display device, or an inorganic electroluminescence (EL) display. Devices, electron emission display devices (for example, electric field emission display device (FED), surface electric field emission display device (SED)), electronic paper (display device using electronic ink or electrophoresis element, plasma display device, projection type display device ( Examples thereof include a grating light valve (GLV) display device, a display device having a digital micromirror device (DMD)) and a piezoelectric ceramic display. The liquid crystal display device includes a transmissive liquid crystal display device, a transflective liquid crystal display device, and a reflective one. It includes any of a type liquid crystal display device, a direct-view type liquid crystal display device, a projection type liquid crystal display device, and the like. These display devices may be a display device for displaying a two-dimensional image or a three-dimensional image. It may be a three-dimensional display device. The long polarizing film of the present invention and the polarizing film cut out from the long polarizing film of the present invention are particularly the organic electroluminescence (EL) display device and the inorganic electroluminescence (EL). ) Effectively used for display devices such as display devices and display devices including touch panels.
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部である。 Hereinafter, the present invention will be described in more detail by way of examples. Unless otherwise specified, "%" and "part" in the example are mass% and parts by mass.
 [実施例1]
 <配向膜組成物の調製>
 下記成分を混合し、得られた混合物を80℃で1時間攪拌することにより、配向膜組成物を得た。下記光配向性材料は、特開2013-33248号公報記載の方法で合成した。
光配向性材料(2部):
Figure JPOXMLDOC01-appb-I000014

溶剤(98部):o-キシレン
[Example 1]
<Preparation of alignment film composition>
The following components were mixed, and the obtained mixture was stirred at 80 ° C. for 1 hour to obtain an alignment film composition. The following photo-oriented materials were synthesized by the method described in JP2013-33248.
Photo-oriented material (2 parts):
Figure JPOXMLDOC01-appb-I000014

Solvent (98 parts): o-xylene
 <偏光膜組成物の調製>
 下記の成分を混合し、80℃で1時間攪拌することで、偏光膜組成物を得た。二色性色素には、特開2013-101328号公報の実施例に記載のアゾ系色素を用いた。
<Preparation of polarizing film composition>
The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a polarizing film composition. As the dichroic dye, the azo dye described in Examples of JP2013-101328A was used.
 〔重合性液晶化合物〕
Figure JPOXMLDOC01-appb-I000015
                 75部
Figure JPOXMLDOC01-appb-I000016
                 25部
[Polymerizable liquid crystal compound]
Figure JPOXMLDOC01-appb-I000015
75 copies
Figure JPOXMLDOC01-appb-I000016
25 copies
 〔二色性色素〕
Figure JPOXMLDOC01-appb-I000017
                  2.5部
Figure JPOXMLDOC01-appb-I000018
                  2.5部
Figure JPOXMLDOC01-appb-I000019
                  2.5部
[Dichroic pigment]
Figure JPOXMLDOC01-appb-I000017
2.5 copies
Figure JPOXMLDOC01-appb-I000018
2.5 copies
Figure JPOXMLDOC01-appb-I000019
2.5 copies
 〔他の成分〕
 重合開始剤;
2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;BASFジャパン(株)製)          6部
 レベリング剤;
ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)
                                  1.2部
 溶剤;o-キシレン                         250部
[Other ingredients]
Polymerization initiator;
2-Dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one (Irgacure 369; manufactured by BASF Japan Ltd.) 6-part leveling agent;
Polyacrylate compound (BYK-361N; manufactured by BYK-Chemie)
1.2 parts solvent; 250 parts of o-xylene
 <長尺偏光フィルムの製造>
 幅640mmのロール状の長尺トリアセチルセルロースフィルム(コニカミノルタ(株)製KC4UY-TAC  厚み40μm)を8m/minの速度で連続的に巻出し、フィルム表面にプラズマ処理を施した後に、スロットダイコーターを用いて配向膜組成物を16ml/minの流量で吐出して、フィルム中央部の幅400mm範囲に第1塗布膜を形成した(工程(a))。さらに、100℃に設定した通風乾燥炉中を2分間かけて搬送することで溶媒を除去し、第1乾燥膜(工程(b))を形成した。その後、フィルムの搬送方向に対して平行する方向になるように偏光UV光を第1乾燥膜に20mJ/cm2(313nm基準)の強度となるように照射することで配向規制力を付与して、長尺配向膜を形成した(工程(c))。長尺配向膜の配向規制力の方向は、搬送方向に対して直交方向であった。
<Manufacturing of long polarizing film>
A long roll-shaped triacetyl cellulose film with a width of 640 mm (KC4UY-TAC thickness 40 μm manufactured by Konica Minolta Co., Ltd.) is continuously unwound at a speed of 8 m / min, and after plasma treatment is applied to the film surface, Slot Daiko The alignment film composition was discharged at a flow rate of 16 ml / min using a tar to form a first coating film in a width of 400 mm at the center of the film (step (a)). Further, the solvent was removed by transporting the mixture in a ventilation drying oven set at 100 ° C. for 2 minutes to form a first drying film (step (b)). After that, the first dry film is irradiated with polarized UV light so as to be parallel to the transport direction of the film so as to have an intensity of 20 mJ / cm 2 (313 nm standard) to impart an orientation regulating force. , A long alignment film was formed (step (c)). The direction of the orientation regulating force of the long alignment film was orthogonal to the transport direction.
 得られた長尺基材と長尺配向膜との配向膜積層体を、80℃に設定した、内部に一対のニップロールを有する加熱炉中を0.5分かけて搬送し、ニップロール通過時に1.1倍の延伸倍率にて搬送方向に一軸延伸を行った(工程(e))。ニップロールは、加熱炉に導入された後、0.3分経過した後に到達する位置に配置されていた。 The obtained alignment film laminate of the long base material and the long alignment film was conveyed in a heating furnace set at 80 ° C. and having a pair of nip rolls inside over 0.5 minutes, and when passing through the nip rolls, 1 1. Uniaxial stretching was performed in the transport direction at a stretching ratio of 1 (step (e)). The nip roll was placed in a position to reach 0.3 minutes after being introduced into the heating furnace.
 その後、配向膜積層体の長尺配向膜上に、スロットダイコーターを用いて偏光膜組成物を24ml/minの流量で吐出し、フィルム中央部の幅400mm範囲に第2塗布膜を形成した(工程(d1))。さらに、110℃に設定した通風乾燥炉中を2分間かけて搬送することで溶媒を除去し、第2乾燥膜を形成した(工程(d2))。その後、UV光を1000mJ/cm2(365nm基準)で照射して第2乾燥膜に含まれる重合性液晶化合物を硬化させることで長尺偏光膜を形成した(工程(d3))。その後、連続的にロール状に巻き上げ、搬送方向に対して垂直方向に吸収軸を有する実施例1の長尺偏光フィルムを得た。長尺偏光フィルムの長手方向の長さは200mであった。 Then, the polarizing film composition was discharged on the long alignment film of the alignment film laminate at a flow rate of 24 ml / min using a slot die coater, and a second coating film was formed in a width range of 400 mm at the center of the film (. Step (d1)). Further, the solvent was removed by transporting the mixture in a ventilation drying oven set at 110 ° C. over 2 minutes to form a second drying film (step (d2)). Then, a long polarizing film was formed by irradiating UV light at 1000 mJ / cm 2 (365 nm standard) to cure the polymerizable liquid crystal compound contained in the second dry film (step (d3)). Then, it was continuously wound into a roll to obtain a long polarizing film of Example 1 having an absorption axis in a direction perpendicular to the transport direction. The length of the long polarizing film in the longitudinal direction was 200 m.
 <長尺偏光フィルムの評価>
 (1)オーダーパラメータの平均値(S1ave)及びオーダーパラメータ差(ΔS
 得られた長尺偏光フィルムの、塗工スタート部分から3mの位置において、幅方向1.7mm×長手方向1.4mmの測定領域を、長尺偏光フィルムの幅方向全幅にわたって等間隔に20か所設定した。各測定領域を、さらに幅方向に168分割し、長手方向に128分割して21504個の微小領域を設定した。各微小領域について、吸収軸角度測定計(AXOMETRICS社、AxoStep_Imaging Polarimeter)を用いて吸収軸角度を測定した。そして、上記した式(2)にしたがって測定領域ごとにオーダーパラメータ(S)を算出した。20個のオーダーパラメータの平均値をオーダーパラメータの平均値(S1ave)とした。そして、20か所で算出したオーダーパラメータの内、最も大きいオーダーパラメータ(S1max)と最も小さいオーダーパラメータ(S1min)との差からオーダーパラメータ差(ΔS)を算出した。以上のようにして算出したオーダーパラメータの平均値(S1ave)と、オーダーパラメータ差(ΔS)とを表1に示す。
<Evaluation of long polarizing film>
(1) Average value of order parameters (S 1ave ) and order parameter difference (ΔS 1 )
At a position 3 m from the coating start portion of the obtained long polarizing film, 20 measurement regions of 1.7 mm in the width direction × 1.4 mm in the longitudinal direction were provided at equal intervals over the entire width of the long polarizing film. I set it. Each measurement region was further divided into 168 in the width direction and 128 in the longitudinal direction to set 21504 minute regions. For each minute region, the absorption axis angle was measured using an absorption axis angle measuring meter (AXOMETRICS, AXoStep_Imaging Polarimeter). Then, the order parameter (S 1 ) was calculated for each measurement region according to the above equation (2). The average value of the 20 order parameters was taken as the average value of the order parameters (S 1ave) . Then, the order parameter difference (ΔS 1 ) was calculated from the difference between the largest order parameter (S 1max ) and the smallest order parameter (S 1min ) among the order parameters calculated at 20 locations. Table 1 shows the average value (S 1ave ) of the order parameters calculated as described above and the order parameter difference (ΔS 1 ).
 (2)偏光度及び透過率
 以下のようにして、サンプルの偏光度、及び透過率を測定した。透過軸方向の透過率(T1)及び吸収軸方向の透過率(T2)を、分光光度計((株)島津製作所製  UV-3150)に偏光子付フォルダーをセットした装置を用いて、ダブルビーム法により2nmステップ380~680nmの波長範囲で測定した。測定された各波長の透過軸方向の透過率(T1)及び吸収軸方向の透過率(T2)の値から、下記式(7)及び、式(8)を用いて単体透過率ならびに偏光度を算出し、JIS Z 8701の2度視野(C光源)により視感度補正を行い視感度補正偏光度(Py)、視感度補正透過率(Ty)ならびにLab表色系での色度(単体a及び単体b)を算出した。これらの内、視感度補正偏光度(Py)を表1に示す。
  単体透過率(%)=(T1+T2)/2              式(7)
  偏光度(%)={(T1-T2)/(T1+T2)}×100    式(8)
(2) Polarization degree and transmittance The polarization degree and transmittance of the sample were measured as follows. Double beam for the transmittance (T1) in the transmission axis direction and the transmittance (T2) in the absorption axis direction using a spectrophotometer (UV-3150 manufactured by Shimadzu Corporation) with a folder with a polarizer set. It was measured in the wavelength range of 2 nm step 380 to 680 nm by the method. From the measured values of the transmittance (T1) in the transmission axis direction and the transmittance (T2) in the absorption axis direction of each wavelength, the single transmittance and the degree of polarization can be determined using the following equations (7) and (8). Calculated and corrected for luminosity using the JIS Z 8701 2 degree field (C light source), luminosity correction polarization (Py), luminosity correction transmittance (Ty), and chromaticity in the Lab color system (single unit a and Single unit b) was calculated. Of these, the luminosity factor correction polarization degree (Py) is shown in Table 1.
Simplex transmittance (%) = (T1 + T2) / 2 Equation (7)
Polarization degree (%) = {(T1-T2) / (T1 + T2)} × 100 Equation (8)
 (3)目視ムラ
 得られた長尺偏光フィルムについて、ヨウ素-PVA偏光板(SRW842A;住友化学(株)製)と吸収軸が直交するように配置し、直下型バックライト上で、40cm×40cmの任意の領域内を目視で観察し以下の基準で偏光フィルムの色味の評価を行った。
 A:ムラ無しで良好な外観である。
 B:部分的ムラがあるものの、ムラが薄い。
 C:部分的ムラがあり、ムラがはっきりしている。
 D:全体的にムラがはっきりしている。
(3) Visual unevenness The obtained long polarizing film was arranged so that the absorption axis was orthogonal to the iodine-PVA polarizing plate (SRW842A; manufactured by Sumitomo Chemical Co., Ltd.), and 40 cm × 40 cm on the direct backlight. The color of the polarizing film was evaluated according to the following criteria by visually observing the inside of an arbitrary region of the above.
A: Good appearance without unevenness.
B: Although there is partial unevenness, the unevenness is thin.
C: There is partial unevenness, and the unevenness is clear.
D: The unevenness is clear overall.
 [実施例2]
 工程(e)における一軸延伸の延伸倍率が1.2倍であった点以外は、実施例1の長尺偏光フィルムの製造方法と同じ方法により、実施例2の長尺偏光フィルムを製造した。得られた長尺偏光フィルムについて、実施例1と同様の方法により評価を行った。
[Example 2]
The long polarizing film of Example 2 was manufactured by the same method as that of the long polarizing film of Example 1 except that the draw ratio of the uniaxial stretching in the step (e) was 1.2 times. The obtained long polarizing film was evaluated by the same method as in Example 1.
 [実施例3]
 実施例1では、工程(e)を工程(c)後であり工程(d1)前であるタイミングに行ったのに対して、実施例3では、工程(e)を工程(d3)後に行った点以外は、実施例1の長尺偏光フィルムの製造方法と同じ方法により、実施例3の長尺偏光フィルムを製造した。得られた長尺偏光フィルムについて、実施例1と同様の方法により評価を行った。
[Example 3]
In the first embodiment, the step (e) was performed at the timing after the step (c) and before the step (d1), whereas in the third embodiment, the step (e) was performed after the step (d3). Except for the points, the long polarizing film of Example 3 was manufactured by the same method as that of the long polarizing film of Example 1. The obtained long polarizing film was evaluated by the same method as in Example 1.
 [実施例4]
 実施例2では、工程(e)を工程(c)後であり工程(d1)前であるタイミングに行ったのに対して、実施例4では、工程(e)を工程(d3)後に行った点以外は、実施例2の長尺偏光フィルムの製造方法と同じ方法により、実施例4の長尺偏光フィルムを製造した。得られた長尺偏光フィルムについて、実施例1と同様の方法により評価を行った。
[Example 4]
In the second embodiment, the step (e) was performed at the timing after the step (c) and before the step (d1), whereas in the fourth embodiment, the step (e) was performed after the step (d3). Except for the points, the long polarizing film of Example 4 was manufactured by the same method as the method for manufacturing the long polarizing film of Example 2. The obtained long polarizing film was evaluated by the same method as in Example 1.
 [比較例1]
 工程(e)を行わなかった点以外は、実施例1の長尺偏光フィルムの製造方法と同じ方法により、比較例1の長尺偏光フィルムを製造した。得られた長尺偏光フィルムについて、実施例1と同様の方法により評価を行った。
[Comparative Example 1]
The long polarizing film of Comparative Example 1 was manufactured by the same method as that of the long polarizing film of Example 1 except that the step (e) was not performed. The obtained long polarizing film was evaluated by the same method as in Example 1.
Figure JPOXMLDOC01-appb-T000020

 表1の結果から、高い偏光性能を有し、ムラがなく面内で均一な色味である偏光フィルムを、200mロールで幅方向及び長手方向で均一に作製できることを確認した。
Figure JPOXMLDOC01-appb-T000020

From the results in Table 1, it was confirmed that a polarizing film having high polarization performance and uniform in-plane color can be produced uniformly in the width direction and the longitudinal direction with a 200 m roll.
 210 第1ロール、210A 巻芯、220 第2ロール、220A 巻芯、211A,211B 塗布装置、212A,212B 乾燥炉、213A 偏光照射装置、213B 光照射装置、214 加熱炉、215 ニップロール、300 補助ロール、230 第3ロール、230A 巻芯、240 第4ロール、240A 巻芯。 210 1st roll, 210A winding core, 220 2nd roll, 220A winding core, 211A, 211B coating device, 212A, 212B drying furnace, 213A polarized light irradiation device, 213B light irradiation device, 214 heating furnace, 215 nip roll, 300 auxiliary roll , 230 3rd roll, 230A winding core, 240 4th roll, 240A winding core.

Claims (9)

  1. 基材と偏光膜とを含む偏光フィルムの製造方法であって、
    (a)前記基材に配向膜組成物を塗布して第1塗布膜を形成する工程、
    (b)前記第1塗布膜を乾燥させて第1乾燥膜を形成する工程、
    (c)前記第1乾燥膜に偏光を照射して配向膜を形成する工程、
    (d)前記配向膜上に偏光膜を形成する工程、
    (e)前記基材と前記配向膜とを少なくとも含む配向膜積層体を、温度が60℃~150℃の雰囲気下で一軸延伸を行う工程、を含む、偏光フィルムの製造方法。
    A method for producing a polarizing film including a base material and a polarizing film.
    (A) A step of applying an alignment film composition to the substrate to form a first coating film.
    (B) A step of drying the first coating film to form the first dry film.
    (C) A step of irradiating the first dry film with polarized light to form an alignment film.
    (D) A step of forming a polarizing film on the alignment film,
    (E) A method for producing a polarizing film, which comprises a step of uniaxially stretching an alignment film laminate containing at least the base material and the alignment film in an atmosphere having a temperature of 60 ° C. to 150 ° C.
  2. 前記一軸延伸を行う方向と前記配向膜の配向規制力の方向とのなす角度が0°±15°の範囲内、又は90°±15°の範囲内である、請求項1に記載の偏光フィルムの製造方法。 The polarizing film according to claim 1, wherein the angle formed by the direction of uniaxial stretching and the direction of the alignment restricting force of the alignment film is within the range of 0 ° ± 15 ° or 90 ° ± 15 °. Manufacturing method.
  3. 前記工程(d)は、
    (d1)前記配向膜上に偏光膜組成物を塗布して第2塗布膜を形成する工程、
    (d2)前記第2塗布膜を乾燥させて第2乾燥膜を形成する工程、
    (d3)前記第2乾燥膜を硬化させて前記偏光膜を形成する工程、を含む、請求項1又は2に記載の偏光フィルムの製造方法。
    The step (d) is
    (D1) A step of applying a polarizing film composition on the alignment film to form a second coating film.
    (D2) A step of drying the second coating film to form a second dry film.
    (D3) The method for producing a polarizing film according to claim 1 or 2, which comprises a step of curing the second dry film to form the polarizing film.
  4. 前記工程(d1)において、前記偏光膜組成物は二色性色素及び重合性液晶化合物を含む、請求項3に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to claim 3, wherein in the step (d1), the polarizing film composition contains a dichroic dye and a polymerizable liquid crystal compound.
  5. 前記工程(d3)において、前記第2乾燥膜に光照射して前記第2乾燥膜を硬化させる、請求項3又は4に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to claim 3 or 4, wherein in the step (d3), the second dry film is irradiated with light to cure the second dry film.
  6. 前記工程(e)において、前記一軸延伸は1.01倍~1.5倍の延伸倍率となるように行う、請求項1~5のいずれか1項に記載の偏光フィルムの製造方法。 The method for producing a polarizing film according to any one of claims 1 to 5, wherein in the step (e), the uniaxial stretching is performed so as to have a stretching ratio of 1.01 to 1.5 times.
  7. 基材と偏光膜とを含む偏光フィルムであって、
    前記偏光膜は、二色性色素と重合性液晶化合物の重合物とを含み、
    オーダーパラメータの平均値S1aveは、下記式(1a)の関係を満たす、偏光フィルム。
    1ave≧0.998   (1a)
    A polarizing film containing a base material and a polarizing film.
    The polarizing film contains a dichroic dye and a polymer of a polymerizable liquid crystal compound.
    The average value S 1ave of the order parameter is a polarizing film satisfying the relationship of the following formula (1a).
    S 1ave ≧ 0.998 (1a)
  8. オーダーパラメータ差ΔSは、下記式(3a)の関係を満たす、請求項7に記載の偏光フィルム。
    ΔS≦0.0015   (3a)
    The polarizing film according to claim 7, wherein the order parameter difference ΔS 1 satisfies the relationship of the following formula (3a).
    ΔS 1 ≤ 0.0015 (3a)
  9. 視感度補正単体偏光度Py〔%〕は、下記式(6a)の関係を満たす、請求項7又は8に記載の偏光フィルム。
    Py≧97.0   (6a)
    The polarizing film according to claim 7 or 8, wherein the luminosity factor correction simple substance polarization degree Py [%] satisfies the relationship of the following formula (6a).
    Py ≧ 97.0 (6a)
PCT/JP2020/010747 2019-03-28 2020-03-12 Manufacturing method for polarizing film, and polarizing film WO2020195881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217031039A KR20210148141A (en) 2019-03-28 2020-03-12 Polarizing film manufacturing method and polarizing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062880A JP2020160394A (en) 2019-03-28 2019-03-28 Production method of polarizing film and polarizing film
JP2019-062880 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195881A1 true WO2020195881A1 (en) 2020-10-01

Family

ID=72609263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010747 WO2020195881A1 (en) 2019-03-28 2020-03-12 Manufacturing method for polarizing film, and polarizing film

Country Status (4)

Country Link
JP (1) JP2020160394A (en)
KR (1) KR20210148141A (en)
TW (1) TW202036057A (en)
WO (1) WO2020195881A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528758A (en) * 1998-10-28 2002-09-03 オプティヴァ インコーポレイテッド Dichroic polarizer and manufacturing method thereof
JP2009288440A (en) * 2008-05-28 2009-12-10 Nippon Oil Corp Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
JP2009294521A (en) * 2008-06-06 2009-12-17 Nippon Oil Corp Retardation film, method for manufacturing retardation film, sheet polarizer and liquid crystal display device
JP2013228706A (en) * 2012-03-30 2013-11-07 Sumitomo Chemical Co Ltd Circularly polarizing plate and method of manufacturing the same
JP2015165302A (en) * 2014-02-07 2015-09-17 住友化学株式会社 Manufacturing method of long polarization film
WO2017094253A1 (en) * 2015-11-30 2017-06-08 富士フイルム株式会社 Retardation film, method for producing same, polarizing plate provided with retardation film, and liquid crystal display
US20180355181A1 (en) * 2017-06-12 2018-12-13 Samsung Display Co. Ltd. Dye compound, polarizer using the dye compound, and display device using the dye compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763330B2 (en) 2003-11-06 2010-07-27 Sumitomo Chemical Co., Ltd. Dichroic guest-host polarizer comprising an oriented polymer film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528758A (en) * 1998-10-28 2002-09-03 オプティヴァ インコーポレイテッド Dichroic polarizer and manufacturing method thereof
JP2009288440A (en) * 2008-05-28 2009-12-10 Nippon Oil Corp Retardation film, method for manufacturing retardation film, polarizing plate, and liquid crystal display
JP2009294521A (en) * 2008-06-06 2009-12-17 Nippon Oil Corp Retardation film, method for manufacturing retardation film, sheet polarizer and liquid crystal display device
JP2013228706A (en) * 2012-03-30 2013-11-07 Sumitomo Chemical Co Ltd Circularly polarizing plate and method of manufacturing the same
JP2015165302A (en) * 2014-02-07 2015-09-17 住友化学株式会社 Manufacturing method of long polarization film
WO2017094253A1 (en) * 2015-11-30 2017-06-08 富士フイルム株式会社 Retardation film, method for producing same, polarizing plate provided with retardation film, and liquid crystal display
US20180355181A1 (en) * 2017-06-12 2018-12-13 Samsung Display Co. Ltd. Dye compound, polarizer using the dye compound, and display device using the dye compound

Also Published As

Publication number Publication date
JP2020160394A (en) 2020-10-01
KR20210148141A (en) 2021-12-07
TW202036057A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7010920B2 (en) Light absorption anisotropic film, three-dimensional light absorption anisotropic film and its manufacturing method
KR102652966B1 (en) Process for producing long polarizing film
JP7338945B2 (en) Polarizer
JP7195041B2 (en) Polarizing film, circularly polarizing plate and display device
US9599759B2 (en) Patterned polarizing film and its production process
JP7379443B2 (en) Manufacturing method of long retardation film
JP6299367B2 (en) Pattern polarizing film manufacturing method
JP2022008866A (en) Patterned polarizing film
JP2021182144A (en) Composite polarizing plate and liquid crystal display device
WO2019082745A1 (en) Polarizing film and method for manufacturing same
WO2020195881A1 (en) Manufacturing method for polarizing film, and polarizing film
JP2018106194A (en) Method for manufacturing patterned polarization film
WO2021256199A1 (en) Polarizing film, polarizing plate, optical layered product, elliptical polarizing plate, organic el display device, and flexible image display device
WO2022163398A1 (en) Polymerizable liquid crystal composition, polarizing membrane, polarizing film, circularly polarizing plate, and display device
WO2019198697A1 (en) Polymerizable liquid crystal composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778331

Country of ref document: EP

Kind code of ref document: A1