WO2020195460A1 - Pressure-sensitive member and pressure detection device - Google Patents

Pressure-sensitive member and pressure detection device Download PDF

Info

Publication number
WO2020195460A1
WO2020195460A1 PCT/JP2020/007488 JP2020007488W WO2020195460A1 WO 2020195460 A1 WO2020195460 A1 WO 2020195460A1 JP 2020007488 W JP2020007488 W JP 2020007488W WO 2020195460 A1 WO2020195460 A1 WO 2020195460A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive
electrodes
base material
conductive member
Prior art date
Application number
PCT/JP2020/007488
Other languages
French (fr)
Japanese (ja)
Inventor
義尚 谷口
渡部 弘也
邦明 鈴木
恭志 北村
広之 管野
徳地 直之
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2021508830A priority Critical patent/JPWO2020195460A1/ja
Publication of WO2020195460A1 publication Critical patent/WO2020195460A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress

Definitions

  • the present invention relates to a pressure sensitive member and a pressure detecting device.
  • a detection device including a resistance change detection type pressure sensitive member whose resistance value (electrical resistance value) changes when a pressing force is applied is widely known. Since such a detection device has a simple configuration and a good feel when touched, application to a touch panel of an electronic device such as a tactile sensor of a robot or a mobile information terminal is being studied as a pressure sensor. ..
  • Patent Document 1 discloses a detection device in which an elastic substrate, a pressure-sensitive conductive sheet, a pair of electrodes, and a rigid substrate are laminated in this order from the side on which an external force acts.
  • the elastic substrate is a substrate having elasticity that is deformed by the action of an external force and recovers to the original shape when the external force is unloaded.
  • a non-conductive elastomer such as silicon rubber. It is made of resin or the like.
  • the pressure-sensitive conductive sheet a conductor formed by dispersing conductive particles such as carbon particles in a non-conductive elastomer resin and deformed by an external force is used.
  • One aspect of the present invention is to provide a pressure sensitive member capable of stably detecting a pressing force applied from the outside with high sensitivity.
  • One aspect of the pressure-sensitive member according to the present invention is an elastic base material that has an action surface on which a pressing force acts and is elastically deformable by the pressing force, and a transmission surface of the elastic base material on the side opposite to the acting surface.
  • the pressure-sensitive conductive member is provided with a pair of electrodes and a pressure-sensitive conductive member provided on the transmission surface so as to be electrically connectable to the pair of electrodes, and the pressure-sensitive conductive member changes the pressing force. Due to the elastic deformation, the electric resistance value between the pair of electrodes changes.
  • One aspect of the pressure-sensitive member according to the present invention can stably detect a pressing force applied from the outside with high sensitivity.
  • FIG. 1 is a cross-sectional view taken along the line II of FIG. It is explanatory drawing which shows the change of the resistance value of a pressure-sensitive conductive member. It is explanatory drawing which shows an example of the state which a pressure sensitive member is pressed. It is explanatory drawing which shows an example of the state which the pressure-sensitive member which arranged the electrode under the pressure-sensitive conductive member is pressed. It is a perspective view of the pressure detection device which applied the pressure sensitive member.
  • FIG. 7 is a sectional view taken along line II-II of FIG. It is a figure explaining the indentation test. It is a figure which shows the relationship between the pressure and resistance of Example 1, Comparative Example 1 and 2. It is a figure which shows the relationship between the pressure and resistance of the comparative example 3.
  • each member in the drawing may differ from the actual scale.
  • a three-dimensional Cartesian coordinate system in three axial directions (X-axis direction, Y-axis direction, Z-axis direction) is used, the length direction of the sensitive member is the X-axis direction, and the width direction of the pressure-sensitive member is the Y-axis.
  • the direction is defined as the height direction of the pressure sensitive member in the Z-axis direction.
  • the elastic base material side of the pressure sensitive member is the + Z axis direction, and the opposite direction is the ⁇ Z axis direction.
  • the + Z-axis direction may be referred to as up
  • the ⁇ Z-axis direction may be referred to as down.
  • the tilde "-" indicating a numerical range in the present specification means that the numerical values described before and after the tilde are included as the lower limit value and the upper limit value.
  • FIG. 1 is a perspective view showing an example of the configuration of the pressure-sensitive member according to the embodiment
  • FIG. 2 is an exploded perspective view of the pressure-sensitive member according to the embodiment
  • FIG. 3 is FIG. 1II. It is a cross-sectional view.
  • the pressure-sensitive member 10 includes an elastic base material 11, an adhesive layer 12, a pair of electrodes 13A and 13B, an adhesive layer 14, a pressure-sensitive conductive member 15, and a rigid group.
  • the material 16 is provided, and the electrode 13A and the electrode 13B are electrically connected.
  • each member constituting the pressure sensitive member 10 will be described.
  • the elastic base material 11 is a plate-shaped member that is formed in a rectangular shape in a plan view and can be elastically deformed by a pressing force.
  • the elastic base material 11 is a substrate having elasticity that is deformed by the action of the pressing force and recovers to the original shape when the pressing force is released.
  • the elastic base material 11 has a pair of main surfaces parallel to each other, the main surface on which the pressing force acts is the acting surface 111, and the main surface opposite to the acting surface 111 is the transmission surface 112 that transmits the pressing force. is there.
  • the elastic base material 11 can be formed by using an elastomer or a synthetic resin.
  • the material for forming the elastomer include natural rubber, silicone rubber, chloroprene rubber, isoprene rubber, butyl rubber, acrylic rubber, nitrile rubber, urethane rubber, polyisobutylene rubber, butadiene rubber, styrene-butadiene rubber, and ethylene-propylene rubber. Chlorosulfonated polyethylene rubber, epichlorohydrin rubber, polyester rubber, fluororubber, and modified products thereof can be used.
  • the synthetic resin a flexible epoxy resin or the like can be used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • silicone rubber is preferable.
  • the elastic base material 11 has high elasticity and can have good adhesion to the adhesive layer 12. Further, since the elastic base material 11 is deformed at the point of action of the pressing force and can receive the pressing force without moving the point of action, the pressing force is transferred from the transmission surface 112 to the electrodes 13A and 13B. It is accurately transmitted to the pressure-sensitive conductive member 15.
  • the thickness of the elastic base material 11 is preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 ⁇ m to 75 ⁇ m, and even more preferably 25 ⁇ m to 50 ⁇ m. When the thickness of the elastic base material 11 is in the range of 10 ⁇ m to 100 ⁇ m, the elastic base material 11 has sufficient strength and can have elasticity.
  • the adhesive layer 12 is provided on the transmission surface 112 on the side opposite to the working surface 111 of the elastic base material 11, and is provided between the elastic base material 11 and the electrodes 13A and 13B.
  • the adhesive layer 12 has a function of increasing the adhesive force between the elastic base material 11 and the electrodes 13A and 13B, and fixes the electrodes 13A and 13B.
  • a triazine thiol compound can be used.
  • a triazine thiol compound for example, a triazine ring having a thiol group (-SH group) or an alkali metal salt of a thiol group can be used. Any one of the functional groups may have another structure such as a dibutylamino group or an anirino group.
  • Specific examples of the triazinethiol compound include 6- (3-triethoxysilylpropylamino) -1,3,5-triazine-2,4-dithiol and 2,6-diazide-4- ⁇ 3- (tri).
  • sodium salts examples include 2,4,6-trimercapto-1,3,5-triazine monosodium salt and the like. These may be used alone or in combination of two or more. In addition, 1,3,5-triazine is also referred to as s-triazine.
  • the thickness of the adhesive layer 12 is about 1 nm to 100 nm.
  • the adhesive layer 12 may be formed by using a general adhesive. In this case, the thickness of the adhesive layer 12 is preferably 1 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 15 ⁇ m, and even more preferably 5 ⁇ m to 10 ⁇ m.
  • the pair of electrodes 13A and 13B are provided on the transmission surface 112 of the elastic base material 11 via the adhesive layer 12.
  • the electrodes 13A and 13B are provided so as to face each other in a state of being insulated from each other, and have a comb tooth electrode having a tip formed in a comb tooth shape.
  • the electrodes 13A and 13B are terminals to which the main body portions 131A and 131B formed linearly in the X-axis direction, the tip portions 132A and 132B (comb tooth electrodes) formed in a comb shape, and the external wiring are connected. It has parts 133A and 133B.
  • the terminal portions 133A and 133B are formed in a rectangular shape and are provided at the positions of the ends of the elastic base material 11 on the ⁇ X axis direction side in a plan view.
  • the adhesive layer 14 is not coated on the terminal portions 133A and 133B. Further, in the present embodiment, as shown in FIG. 3, the rigid base material 16 is not arranged so as to face each other.
  • the electrodes 13A and 13B may be composed of a composite film in which the material forming the electrodes 13A and 13B is used as a conductive member and dispersed in a binder such as a synthetic resin. At that time, when a synthetic resin is used as the binder, it is preferable to use an elastomer similar to that of the elastic base material 11. As a result, the electrodes 13A and 13B having the tip portions 132A and 132B that easily follow the local deformation of the elastic base material 11 can be obtained.
  • the thickness of the adhesive layer 14 can be appropriately designed and is preferably 0.08 mm to 0.12 mm. When the thickness of the pressure-sensitive adhesive layer 14 is within the range of 0.05 mm to 0.20 mm, the pressure-sensitive adhesive layer 14 has sufficient adhesive strength and can suppress the thickness of the pressure-sensitive member 10.
  • the thickness of the pressure-sensitive conductive member 15 is preferably 0.1 mm to 10 mm, more preferably 0.5 mm to 5 mm, and even more preferably 0.7 mm to 3 mm. When the thickness of the pressure-sensitive conductive member 15 is within the range of 0.1 mm to 10 mm, the pressure-sensitive conductive member 15 can have sufficient strength and elasticity.
  • Examples of the material for forming the rigid base material 16 include polyamide (PA), polyimide (PI), polybutylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), and polyethersulfone (PES).
  • Synthetic resins such as polystyrene (PS), polymethylmethacrylate (PMMA), polyethylenenitrile, polyetheretherketone (PEEk), polyphenylene sulfide (PPS), phenol, epoxy (with glass filler) and polycarbonate (PC) can be used. It can. These may be used alone or in combination of two or more. Among these, it is preferable to use polyimide, polyethylene terephthalate, or the like from the viewpoint of heat resistance and the like.
  • the thickness of the rigid base material 16 can be appropriately designed and depends on the type of material, but if it is a synthetic resin material having low rigidity, it is preferably 0.5 mm to 1.5 mm, and a metal having high rigidity. If it is a material, it is preferably 0.1 mm to 0.5 mm. Within this range, the rigid base material 16 can have sufficient strength.
  • An elastic base material 11 cut out to a predetermined size in a plan view is prepared.
  • the surface of the prepared elastic base material 11 is washed with a cleaning liquid such as water, alcohol, or acetone to remove dirt, foreign substances, and the like adhering to the surface of the elastic base material 11.
  • a molecular adhesive containing a triazine compound is applied to the transmission surface 112 of the elastic base material 11 and dried to form the adhesive layer 12.
  • a coating liquid (paste) containing a conductive material such as Ag particles and Cu particles is applied to the surface of the adhesive layer 12 to form electrodes 13A and 13B.
  • the electrodes 13A and 13B are fixed by the adhesive layer 12.
  • a metal plating film is formed by a method using electroless plating, electroplating, sputtering, or vapor deposition. A method of forming the above may be used.
  • the pressure-sensitive conductive member 15 is installed on the surfaces of the tips 132A and 132B of the electrodes 13A and 13B, a part of the electrodes 13A and 13B and the pressure-sensitive conductive member 15 are placed on the transmission surface 112.
  • the adhesive layer 14 is provided so as to cover and.
  • the rigid base material 16 is installed on the surface of the adhesive layer 14, and the adhesive layer 14 is sandwiched between the elastic base material 11 and the rigid base material 16.
  • the pressure sensitive member 10 according to the present embodiment can be obtained.
  • the electrodes 13A and 13B and the conductive material 151 are hardly in contact with each other, and the electrodes 13A and 13B are almost in contact with each other. Since it is not conducting, the pressure-sensitive conductive member 15 has a high resistance value.
  • the formed conduction path becomes three-dimensionally larger or smaller, so that the pressing force can be detected by the resistance value.
  • the pressing force acting on the pressure-sensitive conductive member 15 is attenuated and becomes smaller, so that the conductive materials 151 in the pressure-sensitive conductive member 15 are separated from each other. There is almost no change in the distance between the conductive materials 151 before the pressing force is applied. Alternatively, a small tensile stress is generated on the lower surface of the pressure-sensitive conductive member 15, and the distance between the conductive materials 151 tends to increase. Therefore, on the lower surface side of the pressure-sensitive conductive member 15, a conduction path is hardly formed in the pressure-sensitive conductive member 15.
  • the action surface 111 of the elastic base material 11 is as shown in FIG.
  • the pressing force acting on the pressure-sensitive conductive member 15 the pressing force applied to the acting surface 111 can be applied to the pressure-sensitive conductive member 15 from the transmission surface 112 before the pressing force is attenuated.
  • the pressing force acting on the pressure-sensitive conductive member 15 deforms the electrodes 13A and 13B of the pressure-sensitive conductive member 15 so as to crush the vicinity regions on the installation surface side, so that the electrodes of the pressure-sensitive conductive member 15 are crushed.
  • the pressure-sensitive member 10 maintains the pressing force applied to the working surface 111 of the elastic base material 11 as much as possible on the installation surface side of the electrodes 13A and 13B of the pressure-sensitive conductive member 15. Since it can be transmitted in the state of being pressed, it is possible to increase the detection sensitivity and suppress the variation in the magnitude of the pressing force. Therefore, the pressure-sensitive member 10 can stably detect the pressing force applied from the outside with high sensitivity.
  • the electrodes 13A and 13B are provided between the elastic base material 11 and the pressure-sensitive conductive member 15, so that the thickness of the pressure-sensitive conductive member 15 becomes the working surface 111 of the elastic base material 11. It can be transmitted to the electrodes 13A and 13B without reducing the magnitude of the applied pressing force. Therefore, since the pressure-sensitive member 10 can increase the thickness of the pressure-sensitive conductive member 15, the range in which the pressing force can be received can be expanded.
  • the pressure-sensitive member 10 can stably detect the pressing force applied from the outside with high sensitivity, and can have a simple structure and a good feel when touched. Therefore, the pressure-sensitive member 10 can be suitably used as a pressure detection device (pressure-sensitive sensor) for a tactile sensor of a robot, a touch panel of an electronic device, or the like.
  • a pressure detection device pressure-sensitive sensor
  • electronic devices include devices equipped with touch panels such as information mobile terminals, mobile phones, personal computers, digital cameras, video cameras, car navigation systems, electronic organizers, calculators, and videophones.
  • the connecting portion 31 sandwiches the elastic base material 11 of the pressure-sensitive member 10, the adhesive layer 12, and one end portions (-Y-axis direction) of the electrodes 13A and 13B, and is electrically connectably connected to the electrodes 13A and 13B. ing.
  • the connection unit 31 has a function of flowing a current flowing through the electrodes 13A and 13B to the detection unit 32 via the wiring 34 while connecting to the electrodes 13A and 13B, respectively.
  • the elastic base material 11 of the pressure sensitive member 10 When the elastic base material 11 of the pressure sensitive member 10 is pressed and a current change (change in resistance value) occurs in the electrodes 13A and 13B, the current between the electrodes 13A and 13B is detected via the connection portion 31 and the wiring 34. The process of being sent to the unit 32 and converted into an electric signal is performed. Then, the pressure value is calculated by detecting the change in the resistance value of the pressure sensitive member 10.
  • the pressure detecting device 30 includes the pressure sensitive member 10, when the pressure sensitive member 10 is pressed, the pressing pressure can be stably detected with high sensitivity.
  • the pressure-sensitive member 10 does not have to include the adhesive layer 12 when the electrodes 13A and 13B can be fixed to the transmission surface 112 even if the adhesive layer 12 is not particularly provided.
  • the adhesive layer 12 may be formed on at least a part of the transmission surface 112 in contact with the electrodes 13A and 13B as long as the electrodes 13A and 13B can be fixed.
  • An elastic base material 11 (see FIG. 1) cut out to a predetermined size from silicone rubber (“ultra-thin SR sheet”, manufactured by AS ONE Corporation, thickness 0.1 mm) was prepared.
  • the prepared elastic base material 11 is immersed in an ethanol solution, washed for 30 seconds, subjected to corona discharge for 20 seconds, and then a molecular adhesive is applied to one main surface of the elastic base material 11 and dried.
  • An adhesive layer 12 (see FIG. 3) was formed. After that, Ag ink (“SSP2801”, manufactured by Toyobo Co., Ltd.) is applied to the surface of the adhesive layer 12, and as shown in FIG.
  • a pair of electrodes 13A and 13B arranged so that the tips have a comb-like shape. was formed.
  • the pressure-sensitive conductive member 15 is arranged at the tip portions of the pair of electrodes 13A and 13B, and a double-sided adhesive tape (“No.7082”, manufactured by Teraoka Seisakusho Co., Ltd.) is attached as the adhesive layer 14 to the double-sided adhesive tape.
  • Comparative Examples 1 to 3 In Comparative Examples 1 to 3, the same method as in Example 1 was performed except that a known pressure-sensitive member was used as the pressure-sensitive member.
  • a known pressure-sensitive member a pressure-sensitive member in which a pressure-sensitive conductive member and an adhesive layer are laminated on a rigid substrate on which a pair of electrodes are formed, and an elastic substrate is further laminated is used.
  • the difference between the pressure-sensitive member 10 of Example 1 and the pressure-sensitive members of Comparative Examples 1 to 3 is that the positions where the pair of electrodes are formed are different.
  • the pressure-sensitive member of one embodiment can detect a small pressing force with high sensitivity and stability at an early stage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Push-Button Switches (AREA)

Abstract

This pressure-sensitive member comprises: an elastic base material that has an action surface on which a pressing force acts, and that is elastically deformable by the pressing force; a pair of electrodes provided on a transmission surface of the elastic base material, such surface being on the side opposite the action surface; and a pressure-sensitive electroconductive member provided on the transmission surface so as to be electrically connectable to the pair of electrodes. The pressure-sensitive electroconductive member elastically deforms due to changes in the pressing force, and the deformation changes the electric resistance between the pair of electrodes.

Description

感圧部材及び圧力検出装置Pressure sensitive member and pressure detector
 本発明は、感圧部材及び圧力検出装置に関する。 The present invention relates to a pressure sensitive member and a pressure detecting device.
 押圧力が加えられることにより抵抗値(電気抵抗値)が変化する抵抗変化検出型の感圧部材等を備える検出装置が広く知られている。このような検出装置は、構成が簡便であり、触れた時の感触も良いため、感圧センサとして、ロボットの触覚センサや携帯情報端末等の電子機器のタッチパネル等への応用が検討されている。 A detection device including a resistance change detection type pressure sensitive member whose resistance value (electrical resistance value) changes when a pressing force is applied is widely known. Since such a detection device has a simple configuration and a good feel when touched, application to a touch panel of an electronic device such as a tactile sensor of a robot or a mobile information terminal is being studied as a pressure sensor. ..
 このような抵抗変化検出型の感圧部材として、感圧性の導電ゴムの裏面に電極を形成した検出装置がある(例えば、特許文献1参照)。特許文献1には、弾性基板と、感圧導電シートと、一対の電極と、剛性基板とを、外力が作用する側からこの順に積層された検出装置が開示されている。 As such a resistance change detection type pressure sensitive member, there is a detection device in which an electrode is formed on the back surface of a pressure sensitive conductive rubber (see, for example, Patent Document 1). Patent Document 1 discloses a detection device in which an elastic substrate, a pressure-sensitive conductive sheet, a pair of electrodes, and a rigid substrate are laminated in this order from the side on which an external force acts.
 特許文献1の検出装置では、弾性基板は、外力が作用することによって変形し、外力が除荷されると元の形状に回復する弾性を有する基板であり、例えばシリコンゴム等の非導電性エラストマー樹脂等で形成されている。感圧導電シートとしては、非導電性エラストマー樹脂に、炭素粒子などの導電性粒子を分散させて形成され、外力によって変形する導電体が用いられている。 In the detection device of Patent Document 1, the elastic substrate is a substrate having elasticity that is deformed by the action of an external force and recovers to the original shape when the external force is unloaded. For example, a non-conductive elastomer such as silicon rubber. It is made of resin or the like. As the pressure-sensitive conductive sheet, a conductor formed by dispersing conductive particles such as carbon particles in a non-conductive elastomer resin and deformed by an external force is used.
日本国特開2013-108832号公報Japanese Patent Application Laid-Open No. 2013-108832
 しかしながら、特許文献1の検出装置は、外力が直接作用する弾性基板を非導電性エラストマー樹脂等で形成し、弾性基板と一対の電極との間に感圧導電シートを配置している。そのため、弾性基板に加わる外力が一対の電極に対してダイレクトに伝わり難い。よって、特許文献1の検出装置では、外力に対する感度を高くできず、外力を安定して検出できなかった。 However, in the detection device of Patent Document 1, an elastic substrate on which an external force acts directly is formed of a non-conductive elastomer resin or the like, and a pressure-sensitive conductive sheet is arranged between the elastic substrate and a pair of electrodes. Therefore, it is difficult for the external force applied to the elastic substrate to be directly transmitted to the pair of electrodes. Therefore, the detection device of Patent Document 1 cannot increase the sensitivity to the external force and cannot stably detect the external force.
 本発明の一態様は、外部から加わる押圧力を高感度で安定して検出することができる感圧部材を提供することを目的とする。 One aspect of the present invention is to provide a pressure sensitive member capable of stably detecting a pressing force applied from the outside with high sensitivity.
 本発明に係る感圧部材の一態様は、押圧力の作用する作用面を有し、前記押圧力で弾性変形可能な弾性基材と、前記弾性基材の前記作用面と反対側の伝達面に設けられた、一対の電極と、前記一対の電極と電気的に接続可能に前記伝達面に設けられた感圧導電性部材と、を備え、前記感圧導電性部材が前記押圧力の変化により弾性変形し、前記一対の電極間の電気抵抗値が変化する。 One aspect of the pressure-sensitive member according to the present invention is an elastic base material that has an action surface on which a pressing force acts and is elastically deformable by the pressing force, and a transmission surface of the elastic base material on the side opposite to the acting surface. The pressure-sensitive conductive member is provided with a pair of electrodes and a pressure-sensitive conductive member provided on the transmission surface so as to be electrically connectable to the pair of electrodes, and the pressure-sensitive conductive member changes the pressing force. Due to the elastic deformation, the electric resistance value between the pair of electrodes changes.
 本発明に係る感圧部材の一態様は、外部から加わる押圧力を高感度で安定して検出することができる。 One aspect of the pressure-sensitive member according to the present invention can stably detect a pressing force applied from the outside with high sensitivity.
一実施形態に係る感圧部材の構成の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the pressure sensitive member which concerns on one Embodiment. 一実施形態に係る感圧部材を分解斜視図である。It is an exploded perspective view of the pressure sensitive member which concerns on one Embodiment. 図1のI-I断面図である。FIG. 1 is a cross-sectional view taken along the line II of FIG. 感圧導電性部材の抵抗値の変化を示す説明図である。It is explanatory drawing which shows the change of the resistance value of a pressure-sensitive conductive member. 感圧部材が押圧されている状態の一例を示す説明図である。It is explanatory drawing which shows an example of the state which a pressure sensitive member is pressed. 感圧導電性部材の下側に電極が配置された感圧部材が押圧されている状態の一例を示す説明図である。It is explanatory drawing which shows an example of the state which the pressure-sensitive member which arranged the electrode under the pressure-sensitive conductive member is pressed. 感圧部材を適用した圧力検出装置の斜視図である。It is a perspective view of the pressure detection device which applied the pressure sensitive member. 図7のII-II断面図である。FIG. 7 is a sectional view taken along line II-II of FIG. 押し込み試験を説明する図である。It is a figure explaining the indentation test. 実施例1、比較例1及び2の圧力と抵抗との関係を示す図である。It is a figure which shows the relationship between the pressure and resistance of Example 1, Comparative Example 1 and 2. 比較例3の圧力と抵抗との関係を示す図である。It is a figure which shows the relationship between the pressure and resistance of the comparative example 3.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。図面における各部材の縮尺は実際とは異なる場合がある。本明細書では、3軸方向(X軸方向、Y軸方向、Z軸方向)の3次元直交座標系を用い、感部材の長さ方向をX軸方向、感圧部材の幅方向をY軸方向とし、感圧部材の高さ方向をZ軸方向とする。感圧部材の弾性基材側を+Z軸方向とし、その反対方向を-Z軸方向とする。以下の説明において、+Z軸方向を上といい、-Z軸方向を下という場合がある。本明細書において数値範囲を示すチルダ「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in order to facilitate understanding of the description, the same components are designated by the same reference numerals in each drawing, and duplicate description will be omitted. The scale of each member in the drawing may differ from the actual scale. In the present specification, a three-dimensional Cartesian coordinate system in three axial directions (X-axis direction, Y-axis direction, Z-axis direction) is used, the length direction of the sensitive member is the X-axis direction, and the width direction of the pressure-sensitive member is the Y-axis. The direction is defined as the height direction of the pressure sensitive member in the Z-axis direction. The elastic base material side of the pressure sensitive member is the + Z axis direction, and the opposite direction is the −Z axis direction. In the following description, the + Z-axis direction may be referred to as up, and the −Z-axis direction may be referred to as down. Unless otherwise specified, the tilde "-" indicating a numerical range in the present specification means that the numerical values described before and after the tilde are included as the lower limit value and the upper limit value.
<感圧部材>
 第1の実施形態に係る感圧部材について説明する。図1は、一実施形態に係る感圧部材の構成の一例を示す斜視図であり、図2は、一実施形態に係る感圧部材を分解斜視図であり、図3は、図1のI-I断面図である。図1~図3に示すように、感圧部材10は、弾性基材11と、接着層12と、一対の電極13A及び13Bと、粘着層14と、感圧導電性部材15と、剛性基材16とを備え、電極13Aと電極13Bとを電気的に接続する。以下、感圧部材10を構成する各部材について説明する。
<Pressure sensitive member>
The pressure sensitive member according to the first embodiment will be described. FIG. 1 is a perspective view showing an example of the configuration of the pressure-sensitive member according to the embodiment, FIG. 2 is an exploded perspective view of the pressure-sensitive member according to the embodiment, and FIG. 3 is FIG. 1II. It is a cross-sectional view. As shown in FIGS. 1 to 3, the pressure-sensitive member 10 includes an elastic base material 11, an adhesive layer 12, a pair of electrodes 13A and 13B, an adhesive layer 14, a pressure-sensitive conductive member 15, and a rigid group. The material 16 is provided, and the electrode 13A and the electrode 13B are electrically connected. Hereinafter, each member constituting the pressure sensitive member 10 will be described.
 弾性基材11は、図1及び図2に示すように、平面視において矩形状に形成され、押圧力で弾性変形可能な板状部材である。弾性基材11は、押圧力が作用することによって変形し、押圧力が除荷されると元の形状に回復する弾性を有する基板である。弾性基材11は、互いに平行な一対の主面を有し、押圧力の作用する主面が作用面111であり、作用面111とは反対側の主面が押圧力を伝える伝達面112である。 As shown in FIGS. 1 and 2, the elastic base material 11 is a plate-shaped member that is formed in a rectangular shape in a plan view and can be elastically deformed by a pressing force. The elastic base material 11 is a substrate having elasticity that is deformed by the action of the pressing force and recovers to the original shape when the pressing force is released. The elastic base material 11 has a pair of main surfaces parallel to each other, the main surface on which the pressing force acts is the acting surface 111, and the main surface opposite to the acting surface 111 is the transmission surface 112 that transmits the pressing force. is there.
 弾性基材11は、エラストマーや合成樹脂を用いて形成することができる。エラストマーを形成する材料としては、例えば、天然ゴム、シリコーンゴム、クロロプレンゴム、イソプレンゴム、ブチルゴム、アクリルゴム、ニトリルゴム、ウレタンゴム、ポリイソブチレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、エピクロルヒドリンゴム、ポリエステルゴム、フッ素ゴム、及びこれらの変性体等を用いることができる。合成樹脂としては、柔軟性エポキシ樹脂等を用いることができる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。中でも、シリコーンゴムが好ましい。シリコーンゴムを用いることで、弾性基材11は、弾性が高く、接着層12との密着性を良好とすることができる。また、弾性基材11は、押圧力の作用点で弾性基材11が変形し、作用点が移動することなく押圧力を受け止めることができるので、押圧力は伝達面112から電極13A及び13Bと感圧導電性部材15に的確に伝達される。 The elastic base material 11 can be formed by using an elastomer or a synthetic resin. Examples of the material for forming the elastomer include natural rubber, silicone rubber, chloroprene rubber, isoprene rubber, butyl rubber, acrylic rubber, nitrile rubber, urethane rubber, polyisobutylene rubber, butadiene rubber, styrene-butadiene rubber, and ethylene-propylene rubber. Chlorosulfonated polyethylene rubber, epichlorohydrin rubber, polyester rubber, fluororubber, and modified products thereof can be used. As the synthetic resin, a flexible epoxy resin or the like can be used. These may be used individually by 1 type, and may be used in combination of 2 or more type. Of these, silicone rubber is preferable. By using silicone rubber, the elastic base material 11 has high elasticity and can have good adhesion to the adhesive layer 12. Further, since the elastic base material 11 is deformed at the point of action of the pressing force and can receive the pressing force without moving the point of action, the pressing force is transferred from the transmission surface 112 to the electrodes 13A and 13B. It is accurately transmitted to the pressure-sensitive conductive member 15.
 弾性基材11の厚さは、10μm~100μmであることが好ましく、20μm~75μmであることがより好ましく、25μm~50μmであることがさらに好ましい。弾性基材11の厚さが10μm~100μmの範囲内であれば、弾性基材11は十分な強度を有すると共に、弾性を有することができる。 The thickness of the elastic base material 11 is preferably 10 μm to 100 μm, more preferably 20 μm to 75 μm, and even more preferably 25 μm to 50 μm. When the thickness of the elastic base material 11 is in the range of 10 μm to 100 μm, the elastic base material 11 has sufficient strength and can have elasticity.
 接着層12は、図3に示すように、弾性基材11の作用面111と反対側の伝達面112に設けられ、弾性基材11と電極13A及び13Bとの間に設けられる。接着層12は、弾性基材11と電極13A及び13Bとの接着力を高める機能を有し、電極13A及び13Bを固着する。 As shown in FIG. 3, the adhesive layer 12 is provided on the transmission surface 112 on the side opposite to the working surface 111 of the elastic base material 11, and is provided between the elastic base material 11 and the electrodes 13A and 13B. The adhesive layer 12 has a function of increasing the adhesive force between the elastic base material 11 and the electrodes 13A and 13B, and fixes the electrodes 13A and 13B.
 接着層12は、トリアジン系化合物を含む。接着層12としては、トリアジン系化合物を含む分子接着剤を用いて形成される。 The adhesive layer 12 contains a triazine compound. The adhesive layer 12 is formed by using a molecular adhesive containing a triazine compound.
 トリアジン系化合物としては、トリアジンチオール化合物を用いることができる。トリアジンチオール化合物として、例えば、トリアジン環にチオール基(-SH基)又はチオール基のアルカリ金属塩がついたものを用いることができる。官能基の何れか一つは、ジブチルアミノ基、アニリノ基等の他の構造を有していてもよい。トリアジンチオール化合物の具体例としては、例えば、6-(3-トリエトキシシリルプロピルアミノ)-1,3,5-トリアジン-2,4-ジチオール、2,6-ジアジド-4-{3-(トリエトキシシリル)プロピルアミノ}-1,3,5-トリアジン、2-トリエトキシシリルプロピルアミノ-4-チオール-6-チオール-1,3,5-トリアジン、2-トリエトキシシリルプロピルアミノ-4-アジド-6-アジド-1,3,5-トリアジン、2-トリエトキシシリルプロピルアミノ-4-アミノエチルアミノ-6-アミノエチルアミノ-1,3,5-トリアジン、2-トリヒドロキシシリルプロピルアミノ-4-チオール-6-チオール-1,3,5-トリアジン、2-トリヒドロキシシリルプロピルアミノ-4-アジド-6-アジド-1,3,5-トリアジン、2-トリヒドロキシシリルプロピルアミノ-4-アミノエチルアミノ-6-アミノエチルアミノ-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)一1,3,5-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2,4,6-トリス(モノクロロメチル)-1,3,5-トリアジン、2,4,6-トリス(ジクロロメチル)-1,3,5-トリアジン、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-n-プロピル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(α,α,β-トリクロロエチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4-エポキシフェニル)-4、6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(p-クロロフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-〔1-(p-メトキシフェニル)-2,4-ブタジエニル〕-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-スチリル-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(p-メトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(p-i-プロピルオキシスチリル)-4、6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-フェニルチオ-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-ベンジルチオ-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、4-(o-ブロモ-p-N,N-(ジエトキシカルボニルアミノ)-フェニル)-2,6-ジ(トリクロロメチル)-1,3,5-トリアジン、2,4,6-トリス(ジブロモメチル)-1,3,5-トリアジン、2,4,6-トリス(トリブロモメチル)-1,3,5-トリアジン、2-メチル-4,6-ビス(トリブロモメチル)-1,3,5-トリアジン、2-メトキシ-4,6-ビス(トリブロモメチル)-1,3,5-トリアジン、2,4,6-トリメルカプト-1,3,5-トリアジン、2-ジブチルアミノ-4,6-ジメルカプト-1,3,5-トリアジン、2-アニリノ-4,6-ジメルカプト-1,3,5-トリアジン及びこれらのナトリウム塩等が挙げられる。これらのナトリウム塩としては、2,4,6-トリメルカプト-1,3,5-トリアジンモノナトリウム塩等が挙げられる。これらは、一種単独で用いてもよいし、二種以上を併用してもよい。なお、1,3,5-トリアジンは、s-トリアジンともいう。 As the triazine compound, a triazine thiol compound can be used. As the triazine thiol compound, for example, a triazine ring having a thiol group (-SH group) or an alkali metal salt of a thiol group can be used. Any one of the functional groups may have another structure such as a dibutylamino group or an anirino group. Specific examples of the triazinethiol compound include 6- (3-triethoxysilylpropylamino) -1,3,5-triazine-2,4-dithiol and 2,6-diazide-4- {3- (tri). Ethoxysilyl) propylamino} -1,3,5-triazine, 2-triethoxysilylpropylamino-4-thiol-6-thiol-1,3,5-triazine, 2-triethoxysilylpropylamino-4-azide -6-Azido-1,3,5-triazine, 2-triethoxysilylpropylamino-4-aminoethylamino-6-aminoethylamino-1,3,5-triazine, 2-trihydroxysilylpropylamino-4 -Tiol-6-thiol-1,3,5-triazine, 2-trihydroxysilylpropylamino-4-azido-6-azido-1,3,5-triazine, 2-trihydroxysilylpropylamino-4-amino Ethylamino-6-aminoethylamino-1,3,5-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxy) Naftyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl) 1,3,5-triazine, 2- (4-ethoxycarbonylnaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2,4,6-tris (monochloromethyl) -1,3,5-triazine, 2,4 6-Tris (dichloromethyl) -1,3,5-triazine, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2-methyl-4,6-bis (trichloromethyl)- 1,3,5-Triazine, 2-n-propyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (α, α, β-trichloroethyl) -4,6-bis (Trichloromethyl) -1,3,5-triazine, 2-phenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (p-methoxyphenyl) -4,6-bis ( Trichloromethyl) -1,3,5-triazine, 2- (3,4-epylphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (p-chlorophenyl) -4 , 6-bis (trichloromethyl) -1,3,5-triazine, 2- [1- (p-methoxyphenyl) -2,4-butadienyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2-styryl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (p-methoxystyryl)- 4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (pi-propyloxystyryl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (P-Trill) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine , 2-Phenylthio-4,6-bis (trichloromethyl) -1,3,5-triazine, 2-benzylthio-4,6-bis (trichloromethyl) -1,3,5-triazine, 4- (o-) Bromo-p-N, N- (diethoxycarbonylamino) -phenyl) -2,6-di (trichloromethyl) -1,3,5-triazine, 2,4,6-tris (dibromomethyl) -1, 3,5-Triazine, 2,4,6-tris (tribromomethyl) -1,3,5-triazine, 2-methyl-4,6-bis (tribromomethyl) -1,3,5-triazine, 2-methoxy-4,6-bis (tribromomethyl) -1,3,5-triazine, 2,4,6-trimercapto-1,3,5-triazine, 2-dibutylamino-4,6-dimercapto Examples thereof include -1,3,5-triazine, 2-anilino-4,6-dimercapto-1,3,5-triazine and sodium salts thereof. Examples of these sodium salts include 2,4,6-trimercapto-1,3,5-triazine monosodium salt and the like. These may be used alone or in combination of two or more. In addition, 1,3,5-triazine is also referred to as s-triazine.
 接着層12は、トリアジン系化合物を含む分子接着剤を用いて形成されるので、接着層12の厚さは、1nm~100nm程度である。なお、接着層12は、一般的な接着剤を用いて形成してもよい。この場合、接着層12の厚さは、1μm~20μmであることが好ましく、3μm~15μmであることがより好ましく、5μm~10μmであることがさらに好ましい。 Since the adhesive layer 12 is formed by using a molecular adhesive containing a triazine compound, the thickness of the adhesive layer 12 is about 1 nm to 100 nm. The adhesive layer 12 may be formed by using a general adhesive. In this case, the thickness of the adhesive layer 12 is preferably 1 μm to 20 μm, more preferably 3 μm to 15 μm, and even more preferably 5 μm to 10 μm.
 一対の電極13A及び13Bは、図1及び図2に示すように、弾性基材11の伝達面112に接着層12を介して設けられている。図3に示すように、電極13A及び13Bは、互いに絶縁された状態で対向して設けられており、その先端が櫛歯状に形成された櫛歯電極を有している。電極13A及び13Bは、X軸方向に直線状に形成された本体部131A及び131Bと、櫛歯状に形成された先端部132A及び132B(櫛歯電極)と、外部の配線が連結される端子部133A及び133Bとを有する。 As shown in FIGS. 1 and 2, the pair of electrodes 13A and 13B are provided on the transmission surface 112 of the elastic base material 11 via the adhesive layer 12. As shown in FIG. 3, the electrodes 13A and 13B are provided so as to face each other in a state of being insulated from each other, and have a comb tooth electrode having a tip formed in a comb tooth shape. The electrodes 13A and 13B are terminals to which the main body portions 131A and 131B formed linearly in the X-axis direction, the tip portions 132A and 132B (comb tooth electrodes) formed in a comb shape, and the external wiring are connected. It has parts 133A and 133B.
 本体部131A及び131Bは、細長いパターン状に形成され、弾性基材11のY軸方向の辺の中間を通り、かつ弾性基材11のX軸方向の辺(Y軸方向の辺に直交する辺)に平行な中心線に対して略対称となるように設けられている。その両端側には、先端部132A及び132Bと端子部133A及び133Bとが電気的に接続されて形成されている。 The main body portions 131A and 131B are formed in an elongated pattern, pass through the middle of the Y-axis direction side of the elastic base material 11, and the X-axis direction side of the elastic base material 11 (the side orthogonal to the Y-axis direction side). ) Is provided so as to be substantially symmetrical with respect to the center line parallel to). The tip portions 132A and 132B and the terminal portions 133A and 133B are electrically connected to each other on both ends thereof.
 先端部132A及び132Bは、平面視において+X軸方向側であって感圧導電性部材15の位置に設けられ、先端部132A及び132Bの、複数の櫛歯がX軸方向に沿って、交互に配列されて、互いに絶縁されるように配置されている。この櫛歯間のギャップは狭い間隔となっている。 The tip portions 132A and 132B are provided at the position of the pressure-sensitive conductive member 15 on the + X-axis direction side in a plan view, and a plurality of comb teeth of the tip portions 132A and 132B are alternately provided along the X-axis direction. They are arranged so that they are insulated from each other. The gap between the comb teeth is narrow.
 端子部133A及び133Bは、矩形の形状に形成され、平面視において、-X軸方向側の弾性基材11の端部の位置に設けられる。この端子部133A及び133Bには、粘着層14が被覆されていない。また、本実施形態では、図3に示すように、剛性基材16も対向して配置されていない。 The terminal portions 133A and 133B are formed in a rectangular shape and are provided at the positions of the ends of the elastic base material 11 on the −X axis direction side in a plan view. The adhesive layer 14 is not coated on the terminal portions 133A and 133B. Further, in the present embodiment, as shown in FIG. 3, the rigid base material 16 is not arranged so as to face each other.
 電極13A及び13Bの本体部131A及び131Bの大部分は、弾性基材11と粘着層14との間に配置され、先端部132A及び132Bは、弾性基材11と感圧導電性部材15との間に配置されている。すなわち、電極13A及び13Bの本体部131A及び131Bの大部分と先端部132A及び132Bは、これらを挟持するように弾性基材11と粘着層14又は感圧導電性部材15との間に配置されている。 Most of the main bodies 131A and 131B of the electrodes 13A and 13B are arranged between the elastic base material 11 and the adhesive layer 14, and the tip portions 132A and 132B are formed by the elastic base material 11 and the pressure-sensitive conductive member 15. It is placed in between. That is, most of the main bodies 131A and 131B of the electrodes 13A and 13B and the tip portions 132A and 132B are arranged between the elastic base material 11 and the adhesive layer 14 or the pressure-sensitive conductive member 15 so as to sandwich them. ing.
 電極13A及び13Bを形成する材料としては、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、アルミニウム(Al)、錫(Sn)、鉛(Pb)、クロム(Cr)及びコバルト(Co)等の各種金属;これらの合金;カーボンブラック、グラファイト(黒鉛)、カーボンナノチューブ、カーボンファイバー(炭素繊維)、及びフラーレン等の炭素系材料等が挙げられる。電極13A及び13Bを形成する材料は、これらを、一種単独で用いてもよいし、二種以上を併用してもよい。これらの中でも、接続の安定性、製造コストの低減、及び作製のし易さ等の点から、電極13A及び13Bを形成する材料としては、Ag又はCuを用いることが好ましい。電極13A及び13Bは、1つの金属層で形成されていてもよいし、複数の金属層を積層して構成されていてもよい。 Materials for forming the electrodes 13A and 13B include gold (Au), silver (Ag), copper (Cu), nickel (Ni), iron (Fe), aluminum (Al), tin (Sn), and lead (Pb). , Various metals such as chromium (Cr) and cobalt (Co); alloys thereof; carbon-based materials such as carbon black, graphite (graphite), carbon nanotubes, carbon fiber (carbon fiber), and fullerene. As the materials forming the electrodes 13A and 13B, these may be used alone or in combination of two or more. Among these, Ag or Cu is preferably used as the material for forming the electrodes 13A and 13B from the viewpoints of connection stability, reduction of manufacturing cost, ease of manufacturing, and the like. The electrodes 13A and 13B may be formed of one metal layer, or may be formed by laminating a plurality of metal layers.
 また、電極13A及び13Bは、電極13A及び13Bを形成する材料を導電性部材として用い、合成樹脂等のバインダーに分散させたコンポジット皮膜で構成してもよい。その際に、バインダーとして合成樹脂を用いる場合は、弾性基材11と同様なエラストマーを用いるのが好適である。これにより、弾性基材11の局所的な変形に追従し易い先端部132A及び132Bを有する電極13A及び13Bが得られる。 Further, the electrodes 13A and 13B may be composed of a composite film in which the material forming the electrodes 13A and 13B is used as a conductive member and dispersed in a binder such as a synthetic resin. At that time, when a synthetic resin is used as the binder, it is preferable to use an elastomer similar to that of the elastic base material 11. As a result, the electrodes 13A and 13B having the tip portions 132A and 132B that easily follow the local deformation of the elastic base material 11 can be obtained.
 電極13A及び13Bの厚さは、1μm~50μmであることが好ましく、5μm~30μmであることがより好ましく、10μm~20μmであることがさらに好ましい。電極13A及び13Bの厚さが1μm~50μmの範囲内であれば、導電性を十分確保できる。また、電極13A及び13Bの厚さは、流す電流の大きさに対応して決められるが、50μm以上にしてもよい。 The thickness of the electrodes 13A and 13B is preferably 1 μm to 50 μm, more preferably 5 μm to 30 μm, and even more preferably 10 μm to 20 μm. When the thickness of the electrodes 13A and 13B is within the range of 1 μm to 50 μm, sufficient conductivity can be ensured. The thickness of the electrodes 13A and 13B is determined according to the magnitude of the flowing current, but may be 50 μm or more.
 粘着層14は、弾性基材11の伝達面112側に、電極13A及び13B(本体部131A及び131Bの大部分)と、感圧導電性部材15を被覆するように設けられる。 The adhesive layer 14 is provided on the transmission surface 112 side of the elastic base material 11 so as to cover the electrodes 13A and 13B (most of the main bodies 131A and 131B) and the pressure-sensitive conductive member 15.
 粘着層14としては、例えば、シリコーン系粘着剤、アクリル系粘着剤、及びウレタン系粘着剤等を用いることができる。粘着層14は、上記の何れかの粘着材を用いて形成された両面粘着シートや上記の何れかの粘着材と不織布からなる両面粘着テープを用いることが好ましい。粘着層14を両面粘着シートや両面粘着テープとすることで、弾性基材11の伝達面112と剛性基材16との密着性を向上させることができる。 As the adhesive layer 14, for example, a silicone-based adhesive, an acrylic-based adhesive, a urethane-based adhesive, or the like can be used. For the adhesive layer 14, it is preferable to use a double-sided adhesive sheet formed by using any of the above-mentioned adhesive materials or a double-sided adhesive tape made of any of the above-mentioned adhesive materials and a non-woven fabric. By using the adhesive layer 14 as a double-sided adhesive sheet or double-sided adhesive tape, the adhesion between the transmission surface 112 of the elastic base material 11 and the rigid base material 16 can be improved.
 粘着層14の厚さは、適宜設計可能であり、0.08mm~0.12mmであることが好ましい。粘着層14の厚さが0.05mm~0.20mmの範囲内であれば、粘着層14は、十分な粘着力を有すると共に、感圧部材10の厚さを抑えることができる。 The thickness of the adhesive layer 14 can be appropriately designed and is preferably 0.08 mm to 0.12 mm. When the thickness of the pressure-sensitive adhesive layer 14 is within the range of 0.05 mm to 0.20 mm, the pressure-sensitive adhesive layer 14 has sufficient adhesive strength and can suppress the thickness of the pressure-sensitive member 10.
 感圧導電性部材15は、電極13A及び13Bの先端部132A及び132Bと粘着層14との間に配置され、先端部132A及び132Bの表面に、感圧部材10の高さ方向(Z軸方向)に積層するように設けられ、電極13A及び13Bと電気的に接続可能としている。感圧導電性部材15は、弾性変形可能であり、押圧力の変化により弾性変形して、その部分の抵抗値が低下する機能を有する。そして、この感圧導電性部材15に接触している電極13A及び13B同士が通電するようになり、電極13A及び13B間の電気抵抗値が押圧力に応じて変化することになる。すなわち、押圧力の変化に応じて、感圧導電性部材15の抵抗値が変化すると共に、感圧導電性部材15と電極13A及び13Bとの接触抵抗も変化するので、押圧力の変化を抵抗値変化として捉えることができる。 The pressure-sensitive conductive member 15 is arranged between the tip portions 132A and 132B of the electrodes 13A and 13B and the adhesive layer 14, and is placed on the surface of the tip portions 132A and 132B in the height direction (Z-axis direction) of the pressure-sensitive member 10. ) Is provided so as to be laminated with the electrodes 13A and 13B. The pressure-sensitive conductive member 15 is elastically deformable, and has a function of elastically deforming due to a change in pressing force to reduce the resistance value of the portion. Then, the electrodes 13A and 13B in contact with the pressure-sensitive conductive member 15 are energized, and the electric resistance value between the electrodes 13A and 13B changes according to the pressing force. That is, the resistance value of the pressure-sensitive conductive member 15 changes according to the change in the pressing force, and the contact resistance between the pressure-sensitive conductive member 15 and the electrodes 13A and 13B also changes, so that the change in the pressing force is resisted. It can be regarded as a value change.
 感圧導電性部材15は、円錐台形(切頭円錐形)に形成され、大きい面が電極13A及び13Bと接し、小さい面が粘着層14と接するように配置されている。これにより、押圧力を加える面積を広くできると共に、電極13A及び13Bの先端部132A及び132Bへの単位面積当たりの荷重が強まる。 The pressure-sensitive conductive member 15 is formed in a conical trapezoidal shape (faceted conical shape), and is arranged so that a large surface is in contact with the electrodes 13A and 13B and a small surface is in contact with the adhesive layer 14. As a result, the area to which the pressing force is applied can be widened, and the load per unit area of the electrodes 13A and 13B on the tip portions 132A and 132B is increased.
 感圧導電性部材15は、平面視においてその上面が電極13A及び13Bの先端部132A及び132Bを覆う大きさとなるように形成される。感圧導電性部材15の上面が先端部132A及び132Bの全面を覆うように形成されることで、弾性基材11に加えられた押圧力を感圧導電性部材15に確実に伝えられる。 The pressure-sensitive conductive member 15 is formed so that the upper surface thereof covers the tips 132A and 132B of the electrodes 13A and 13B in a plan view. By forming the upper surface of the pressure-sensitive conductive member 15 so as to cover the entire surfaces of the tip portions 132A and 132B, the pressing force applied to the elastic base material 11 is reliably transmitted to the pressure-sensitive conductive member 15.
 感圧導電性部材15は、粒子状の導電性材料151をエラストマー152に含有する導電性エラストマーを用いて形成できる。感圧導電性部材15が、導電性材料151を含有する導電性エラストマーであれば、導電性材料151による導通に加え、押圧力に対して変形及び復元がし易い。感圧導電性部材15は、導電性材料151をエラストマー152中にほぼ均一に分散させて含むことが好ましい。 The pressure-sensitive conductive member 15 can be formed by using a conductive elastomer containing a particulate conductive material 151 in the elastomer 152. If the pressure-sensitive conductive member 15 is a conductive elastomer containing the conductive material 151, it is easily deformed and restored by a pressing force in addition to the conduction by the conductive material 151. The pressure-sensitive conductive member 15 preferably contains the conductive material 151 dispersed substantially uniformly in the elastomer 152.
 導電性材料151としては、金属粒子や炭素系材料等の導電性を有する材料を用いることができる。金属粒子や炭素系材料としては、上述の電極13A及び13Bと同様の材料を用いることができる。 As the conductive material 151, a material having conductivity such as metal particles or a carbon-based material can be used. As the metal particles and the carbon-based material, the same materials as the above-mentioned electrodes 13A and 13B can be used.
 導電性材料151の平均粒子径としては、0.05μm~200μmが好ましく、0.5μm~60μmがより好ましく、1.0μm~30μmがさらに好ましい。導電性材料151の平均粒子径が0.05μm~200μmの範囲内であれば、導電性材料151の凝集を抑えてエラストマー152内での分散性を高めることができる。また、感圧導電性部材15が弾性変形した際に、導電性材料151の感圧導電性部材15内での移動が相対的に小さくなることを抑えることで、弾性変形による抵抗の変化が緩慢になるのを低減できる。なお、平均粒子径とは、有効径による体積平均粒径をいい、平均粒子径は、例えば、レーザ回折・散乱法又は動的光散乱法等によって測定される。 The average particle size of the conductive material 151 is preferably 0.05 μm to 200 μm, more preferably 0.5 μm to 60 μm, and even more preferably 1.0 μm to 30 μm. When the average particle size of the conductive material 151 is in the range of 0.05 μm to 200 μm, the aggregation of the conductive material 151 can be suppressed and the dispersibility in the elastomer 152 can be enhanced. Further, when the pressure-sensitive conductive member 15 is elastically deformed, the change in resistance due to the elastic deformation is slowed down by suppressing the movement of the conductive material 151 in the pressure-sensitive conductive member 15 from becoming relatively small. Can be reduced. The average particle size means a volume average particle size based on an effective diameter, and the average particle size is measured by, for example, a laser diffraction / scattering method or a dynamic light scattering method.
 エラストマー152としては、弾性基材11と同様のエラストマーを用いることができる。 As the elastomer 152, the same elastomer as the elastic base material 11 can be used.
 感圧導電性部材15は、図4に示すように、押圧部材等による押圧力が作用していない状態では、互いに接触する導電性材料151の数は少なく、導電経路がほとんど形成されていない(図4中、白丸参照)ので、感圧導電性部材15は、非常に大きな抵抗値を有する。そして、感圧導電性部材15に押圧力が作用すると、導電性材料151は互いに接近し、互いに接触する導電性材料151の数が多くなるので、感圧導電性部材15の平面方向及び垂直方向等に導電経路(図4中、黒丸参照)が形成され、感圧導電性部材15の抵抗値が小さくなる。このように、押圧力によって感圧導電性部材15は変形し、導電性材料151同士が接触又は離間することで、感圧導電性部材15の抵抗値が変化する。 As shown in FIG. 4, the pressure-sensitive conductive member 15 has a small number of conductive materials 151 in contact with each other in a state where the pressing force by the pressing member or the like is not applied, and almost no conductive path is formed ( (See white circles in FIG. 4), so that the pressure-sensitive conductive member 15 has a very large resistance value. Then, when a pressing force acts on the pressure-sensitive conductive member 15, the conductive materials 151 approach each other and the number of conductive materials 151 in contact with each other increases, so that the pressure-sensitive conductive member 15 is in the plane direction and the vertical direction. A conductive path (see black circles in FIG. 4) is formed in the like, and the resistance value of the pressure-sensitive conductive member 15 becomes small. In this way, the pressure-sensitive conductive member 15 is deformed by the pressing force, and the conductive materials 151 come into contact with each other or are separated from each other, so that the resistance value of the pressure-sensitive conductive member 15 changes.
 感圧導電性部材15は、ゴム硬度が30~70の範囲内であることが好ましく、50~60の範囲内であることがより好ましい。ゴム硬度が40~70の範囲内であれば、感圧導電性部材15は十分な強度を有することができ、高い復元力を発揮できる。なお、ゴム硬度とは、日本工業規格JIS K6301で規定された値である。 The pressure-sensitive conductive member 15 preferably has a rubber hardness in the range of 30 to 70, and more preferably in the range of 50 to 60. When the rubber hardness is in the range of 40 to 70, the pressure-sensitive conductive member 15 can have sufficient strength and can exhibit a high restoring force. The rubber hardness is a value defined by Japanese Industrial Standard JIS K6301.
 感圧導電性部材15の厚さは、0.1mm~10mmであることが好ましく、0.5mm~5mmであることがより好ましく、0.7mm~3mmであることがさらに好ましい。感圧導電性部材15の厚さが0.1mm~10mmの範囲内であれば、感圧導電性部材15は十分な強度を有すると共に、弾性を有することができる。 The thickness of the pressure-sensitive conductive member 15 is preferably 0.1 mm to 10 mm, more preferably 0.5 mm to 5 mm, and even more preferably 0.7 mm to 3 mm. When the thickness of the pressure-sensitive conductive member 15 is within the range of 0.1 mm to 10 mm, the pressure-sensitive conductive member 15 can have sufficient strength and elasticity.
 剛性基材16は、粘着層14を弾性基材11と狭持するように設けられ、押圧力を確実に受け止めて感圧導電性部材15の変形が確実に行われるための機能を有している。剛性基材16は、例えば、板状のものである。なお、本実施形態では、感圧部材10は、剛性基材16を備えるが、例えば、何かの筐体に貼り付けて使用する場合は、感圧部材10は、剛性基材16を備えていなくてもよい。 The rigid base material 16 is provided so as to sandwich the adhesive layer 14 with the elastic base material 11, and has a function of reliably receiving the pressing force and reliably deforming the pressure-sensitive conductive member 15. There is. The rigid base material 16 is, for example, a plate-shaped one. In the present embodiment, the pressure-sensitive member 10 includes the rigid base material 16, but for example, when the pressure-sensitive member 10 is attached to some housing and used, the pressure-sensitive member 10 includes the rigid base material 16. It does not have to be.
 剛性基材16を形成する材料としては、ポリアミド(PA)、ポリイミド(PI)、ポリブチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ポリエチレンニトリル、ポリエーテルエーテルケトン(PEEk)、ポリフェニレンサルファイド(PPS)、フェノール、エポキシ(ガラスフィラー入り)及びポリカーボネート(PC)等の合成樹脂を用いることができる。これらは、一種単独で用いてもよいし、二種以上を併用してもよい。これらの中でも、耐熱性等の観点から、ポリイミド、又はポリエチレンテレフタレート等を用いることが好ましい。 Examples of the material for forming the rigid base material 16 include polyamide (PA), polyimide (PI), polybutylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherimide (PEI), and polyethersulfone (PES). Synthetic resins such as polystyrene (PS), polymethylmethacrylate (PMMA), polyethylenenitrile, polyetheretherketone (PEEk), polyphenylene sulfide (PPS), phenol, epoxy (with glass filler) and polycarbonate (PC) can be used. it can. These may be used alone or in combination of two or more. Among these, it is preferable to use polyimide, polyethylene terephthalate, or the like from the viewpoint of heat resistance and the like.
 剛性基材16を形成する材料としては、上記の合成樹脂以外に、Al、Mg、Cu、Ni、Co、Cr、Fe、Zn、Pb、及びTi等の金属、及びこれらの合金;Al、Mg、Si、Ge、及びBe等の金属酸化物;窒化珪素(Si3N4)、窒化ボロン(BN)、及び炭化珪素(SiC)等の金属窒化物;ガラス材料等を用いることもできる。 In addition to the above synthetic resin, the material for forming the rigid base material 16 includes metals such as Al, Mg, Cu, Ni, Co, Cr, Fe, Zn, Pb, and Ti, and alloys thereof; Al, Mg. , Si, Ge, Be, and other metal oxides; metal nitrides such as silicon nitride (Si3N4), boron nitride (BN), and silicon carbide (SiC); glass materials and the like can also be used.
 剛性基材16の厚さは、適宜設計可能であり、材料の種類にもよるが、剛性の弱い合成樹脂材料であれば、0.5mm~1.5mmであることが好ましく、剛性の強い金属材料であれば、0.1mm~0.5mmであることが好ましい。この範囲内であれば、剛性基材16は十分な強度を有することができる。 The thickness of the rigid base material 16 can be appropriately designed and depends on the type of material, but if it is a synthetic resin material having low rigidity, it is preferably 0.5 mm to 1.5 mm, and a metal having high rigidity. If it is a material, it is preferably 0.1 mm to 0.5 mm. Within this range, the rigid base material 16 can have sufficient strength.
 本実施形態に係る感圧部材10の製造方法について説明する。平面視において所定の大きさに切り出した弾性基材11を準備する。準備した弾性基材11の表面を水やアルコール、アセトン等の洗浄液で洗浄し、弾性基材11の表面に付着している汚れや異物等を除去する。その後、弾性基材11の伝達面112に、トリアジン系化合物を含む分子接着剤を塗布して乾燥することで、接着層12を形成する。その後、接着層12の表面に、Ag粒子やCu粒子等の導電性を有する材料を含む塗布液(ペースト)を塗布して、電極13A及び13Bを形成する。電極13A及び13Bは接着層12により固着される。電極13A及び13Bの形成方法としては、導電性を有する材料を含む塗布液を塗布する塗布法の他に、無電解めっき法、電気めっき法、スパッタ、又は蒸着を用いる方法等により、金属めっき皮膜を形成する方法等を用いてもよい。 The manufacturing method of the pressure sensitive member 10 according to the present embodiment will be described. An elastic base material 11 cut out to a predetermined size in a plan view is prepared. The surface of the prepared elastic base material 11 is washed with a cleaning liquid such as water, alcohol, or acetone to remove dirt, foreign substances, and the like adhering to the surface of the elastic base material 11. After that, a molecular adhesive containing a triazine compound is applied to the transmission surface 112 of the elastic base material 11 and dried to form the adhesive layer 12. After that, a coating liquid (paste) containing a conductive material such as Ag particles and Cu particles is applied to the surface of the adhesive layer 12 to form electrodes 13A and 13B. The electrodes 13A and 13B are fixed by the adhesive layer 12. As a method for forming the electrodes 13A and 13B, in addition to a coating method in which a coating liquid containing a conductive material is applied, a metal plating film is formed by a method using electroless plating, electroplating, sputtering, or vapor deposition. A method of forming the above may be used.
 次に、平面視において、電極13A及び13Bの先端部132A及び132Bの表面に感圧導電性部材15を設置した後、伝達面112に、電極13A及び13Bの一部と感圧導電性部材15とを被覆するように粘着層14を設ける。その後、粘着層14の表面に剛性基材16を設置して、弾性基材11と剛性基材16とで粘着層14を挟み込む。 Next, in a plan view, after the pressure-sensitive conductive member 15 is installed on the surfaces of the tips 132A and 132B of the electrodes 13A and 13B, a part of the electrodes 13A and 13B and the pressure-sensitive conductive member 15 are placed on the transmission surface 112. The adhesive layer 14 is provided so as to cover and. After that, the rigid base material 16 is installed on the surface of the adhesive layer 14, and the adhesive layer 14 is sandwiched between the elastic base material 11 and the rigid base material 16.
 これにより、本実施形態に係る感圧部材10が得られる。 As a result, the pressure sensitive member 10 according to the present embodiment can be obtained.
 感圧部材10は、上述の通り、弾性基材11と、電極13A及び13Bと、感圧導電性部材15とを備え、弾性基材11は押圧力の作用する作用面111を有する。電極13A及び13Bと感圧導電性部材15は、弾性基材11の伝達面112から下方向に電極13A及び13Bと感圧導電性部材15との順に積層されている。感圧導電性部材15は、エラストマー152に導電性材料151を分散して含んだ状態で構成されている。図5に示すように、感圧部材10に押圧部材等により押圧力が作用していない状態では、電極13A及び13Bと導電性材料151は殆ど接触しておらず、電極13A及び13B同士は殆ど導通していないため、感圧導電性部材15は高い抵抗値を有する。 As described above, the pressure-sensitive member 10 includes an elastic base material 11, electrodes 13A and 13B, and a pressure-sensitive conductive member 15, and the elastic base material 11 has an action surface 111 on which a pressing force acts. The electrodes 13A and 13B and the pressure-sensitive conductive member 15 are laminated in the order of the electrodes 13A and 13B and the pressure-sensitive conductive member 15 downward from the transmission surface 112 of the elastic base material 11. The pressure-sensitive conductive member 15 is configured in a state in which the conductive material 151 is dispersed and contained in the elastomer 152. As shown in FIG. 5, when the pressing force is not applied to the pressure sensitive member 10 by the pressing member or the like, the electrodes 13A and 13B and the conductive material 151 are hardly in contact with each other, and the electrodes 13A and 13B are almost in contact with each other. Since it is not conducting, the pressure-sensitive conductive member 15 has a high resistance value.
 感圧部材10に押圧部材等により押圧力が作用すると、感圧導電性部材15の上面側には圧縮応力が生じ、下面側は押圧力が減衰して小さくなる。上面側は、この圧縮応力の作用により、感圧導電性部材15中に含まれる導電性材料151同士が近接し始め、導電性材料151が密な状態となる。これにより、電極13A及び13Bと導電性材料151が接触し、導通経路が多数形成され、感圧導電性部材15の抵抗値は低くなる。感圧部材に作用する押圧力の大きさによって、形成される導通経路が三次元的に大きくなったり小さくなったりするため、押圧力を抵抗値により検出することができる。一方、感圧導電性部材15の下面側は、感圧導電性部材15に作用する押圧力が減衰して小さくなるため、感圧導電性部材15中の導電性材料151同士は離間した状態のままであり、押圧力が作用する前と導電性材料151同士の距離は殆ど変化しない。または、感圧導電性部材15の下面に小さい引張応力が生じ、導電性材料151同士の距離が大きくなり易い。そのため、感圧導電性部材15の下面側では、感圧導電性部材15内に導通経路が殆ど形成されない。 When a pressing force acts on the pressure-sensitive member 10 by a pressing member or the like, a compressive stress is generated on the upper surface side of the pressure-sensitive conductive member 15, and the pressing force is attenuated and becomes smaller on the lower surface side. On the upper surface side, due to the action of this compressive stress, the conductive materials 151 contained in the pressure-sensitive conductive member 15 begin to come close to each other, and the conductive materials 151 become dense. As a result, the electrodes 13A and 13B come into contact with the conductive material 151, a large number of conduction paths are formed, and the resistance value of the pressure-sensitive conductive member 15 becomes low. Depending on the magnitude of the pressing force acting on the pressure-sensitive member, the formed conduction path becomes three-dimensionally larger or smaller, so that the pressing force can be detected by the resistance value. On the other hand, on the lower surface side of the pressure-sensitive conductive member 15, the pressing force acting on the pressure-sensitive conductive member 15 is attenuated and becomes smaller, so that the conductive materials 151 in the pressure-sensitive conductive member 15 are separated from each other. There is almost no change in the distance between the conductive materials 151 before the pressing force is applied. Alternatively, a small tensile stress is generated on the lower surface of the pressure-sensitive conductive member 15, and the distance between the conductive materials 151 tends to increase. Therefore, on the lower surface side of the pressure-sensitive conductive member 15, a conduction path is hardly formed in the pressure-sensitive conductive member 15.
 また、感圧部材10は、伝達面112から下方向に電極13A及び13Bと感圧導電性部材15との順に積層されているので、図5に示すように、弾性基材11の作用面111に押圧力が作用すると、作用面111に加わった押圧力が減衰する前に伝達面112から感圧導電性部材15に作用させることができる。また、感圧導電性部材15に作用した押圧力によって、感圧導電性部材15の電極13A及び13Bの設置面側の近傍領域が潰れるように変形することで、感圧導電性部材15の電極13A及び13Bの設置面側に圧縮応力が働き、感圧導電性部材15内、特に感圧導電性部材15の電極13A及び13Bの設置面側の近傍領域を通電させることができる。これにより、一対の電極13A及び13B同士の間を流れる電流を生じさせることができる。 Further, since the pressure-sensitive member 10 is laminated in the order of the electrodes 13A and 13B and the pressure-sensitive conductive member 15 downward from the transmission surface 112, the action surface 111 of the elastic base material 11 is as shown in FIG. When the pressing force acts on the pressure-sensitive conductive member 15, the pressing force applied to the acting surface 111 can be applied to the pressure-sensitive conductive member 15 from the transmission surface 112 before the pressing force is attenuated. Further, the pressing force acting on the pressure-sensitive conductive member 15 deforms the electrodes 13A and 13B of the pressure-sensitive conductive member 15 so as to crush the vicinity regions on the installation surface side, so that the electrodes of the pressure-sensitive conductive member 15 are crushed. Compressive stress acts on the installation surface side of 13A and 13B, and the inside of the pressure-sensitive conductive member 15, in particular, the vicinity region of the electrodes 13A and 13B of the pressure-sensitive conductive member 15 on the installation surface side can be energized. As a result, a current flowing between the pair of electrodes 13A and 13B can be generated.
 一方、例えば、図6に示すように、感圧部材が、弾性基材11の伝達面112から、感圧導電性部材15と、粘着層14と、電極13A及び13Bと、剛性基材16とをこの順に積層し、感圧導電性部材15の下側に電極13A及び13Bが配置されているとする。この場合、押圧力が感圧導電性部材15で減衰して電極に伝わり、電流が流れることになる。そのため、作用面111に加わった押圧力に対する感度が高くなり難い傾向にある。また、電極13A及び13Bの感圧導電性部材15との接触面には、引張応力が働くため、感圧導電性部材15内の導電性材料151同士の間隔が狭くなり難く、導通が取れ難くなる可能性がある。 On the other hand, for example, as shown in FIG. 6, the pressure-sensitive member includes the pressure-sensitive conductive member 15, the adhesive layer 14, the electrodes 13A and 13B, and the rigid base material 16 from the transmission surface 112 of the elastic base material 11. Are laminated in this order, and the electrodes 13A and 13B are arranged under the pressure-sensitive conductive member 15. In this case, the pressing force is attenuated by the pressure-sensitive conductive member 15 and transmitted to the electrodes, so that a current flows. Therefore, the sensitivity to the pressing force applied to the working surface 111 tends to be difficult to increase. Further, since tensile stress acts on the contact surfaces of the electrodes 13A and 13B with the pressure-sensitive conductive member 15, it is difficult to narrow the distance between the conductive materials 151 in the pressure-sensitive conductive member 15 and it is difficult to obtain continuity. There is a possibility of becoming.
 よって、感圧部材10は、上述の通り、弾性基材11の作用面111に加わった押圧力を感圧導電性部材15の電極13A及び13Bの設置面側に押圧力の大きさを極力維持した状態で伝えることができるので、検出感度を高めると共に、押圧力の大きさのばらつきを抑えることができる。したがって、感圧部材10は、外部から加わる押圧力を高感度で安定して検出することができる。 Therefore, as described above, the pressure-sensitive member 10 maintains the pressing force applied to the working surface 111 of the elastic base material 11 as much as possible on the installation surface side of the electrodes 13A and 13B of the pressure-sensitive conductive member 15. Since it can be transmitted in the state of being pressed, it is possible to increase the detection sensitivity and suppress the variation in the magnitude of the pressing force. Therefore, the pressure-sensitive member 10 can stably detect the pressing force applied from the outside with high sensitivity.
 また、感圧部材10は、電極13A及び13Bを弾性基材11と感圧導電性部材15との間に設けることで、感圧導電性部材15の厚みが弾性基材11の作用面111に加わった押圧力の大きさを低減することなく、電極13A及び13Bに伝えることができる。そのため、感圧部材10は、感圧導電性部材15の厚さを厚くすることができるので、押圧力を受けられる範囲を広げることができる。 Further, in the pressure-sensitive member 10, the electrodes 13A and 13B are provided between the elastic base material 11 and the pressure-sensitive conductive member 15, so that the thickness of the pressure-sensitive conductive member 15 becomes the working surface 111 of the elastic base material 11. It can be transmitted to the electrodes 13A and 13B without reducing the magnitude of the applied pressing force. Therefore, since the pressure-sensitive member 10 can increase the thickness of the pressure-sensitive conductive member 15, the range in which the pressing force can be received can be expanded.
 感圧部材10は、弾性基材11と電極13A及び13Bとの間に、トリアジン系化合物を含む接着層12を含むことができる。これにより、感圧部材10は、弾性基材11と電極13A及び13Bとの接着力を高めることができる。そのため、感圧部材10は、弾性基材11に繰り返しの変形動作が加わったとしても、弾性基材11と電極13A及び13Bとの剥離を抑制することができる。 The pressure-sensitive member 10 can include an adhesive layer 12 containing a triazine-based compound between the elastic base material 11 and the electrodes 13A and 13B. As a result, the pressure-sensitive member 10 can increase the adhesive force between the elastic base material 11 and the electrodes 13A and 13B. Therefore, the pressure-sensitive member 10 can suppress the peeling of the elastic base material 11 and the electrodes 13A and 13B even if the elastic base material 11 is repeatedly deformed.
 感圧部材10は、伝達面112に、粘着層14と剛性基材16とを有し、粘着層14は弾性基材11の伝達面112に電極13A及び13Bと感圧導電性部材15を被覆し、剛性基材16は粘着層14を弾性基材11と挟持するように設けることができる。感圧導電性部材15は、弾性基材11と剛性基材16との間に挟み込んだ状態で配置されるので、押圧力を剛性基材16で受け止めて感圧導電性部材15に確実に伝えることができる。よって、感圧部材10は、感圧導電性部材15に押圧力を安定して伝えることができる。 The pressure-sensitive member 10 has an adhesive layer 14 and a rigid base material 16 on the transmission surface 112, and the pressure-sensitive member 10 covers the transmission surfaces 112 of the elastic base material 11 with electrodes 13A and 13B and the pressure-sensitive conductive member 15. However, the rigid base material 16 can be provided so as to sandwich the adhesive layer 14 with the elastic base material 11. Since the pressure-sensitive conductive member 15 is arranged so as to be sandwiched between the elastic base material 11 and the rigid base material 16, the pressing force is received by the rigid base material 16 and reliably transmitted to the pressure-sensitive conductive member 15. be able to. Therefore, the pressure-sensitive member 10 can stably transmit the pressing force to the pressure-sensitive conductive member 15.
 また、感圧部材10は、剛性基材16を備えることで、強度が向上し、形状が保持し易くなるため、感圧部材10の取り扱い易さを向上させることができる。 Further, since the pressure-sensitive member 10 is provided with the rigid base material 16, the strength is improved and the shape is easily maintained, so that the ease of handling of the pressure-sensitive member 10 can be improved.
 感圧部材10は、感圧導電性部材15として、エラストマー152に導電性材料151を含有する導電性エラストマーを用いることができる。感圧導電性部材15が導電性エラストマーであれば、導電性材料151による導通に加え、押圧力に対して変形及び復元がし易いので、電極13A及び13B同士の間を通電させ易くすることができると共に、押圧力に対する応答性を向上させることができる。 As the pressure-sensitive member 10, as the pressure-sensitive conductive member 15, a conductive elastomer containing the conductive material 151 in the elastomer 152 can be used. If the pressure-sensitive conductive member 15 is a conductive elastomer, in addition to being conducted by the conductive material 151, it is easily deformed and restored by a pressing force, so that it is possible to easily energize between the electrodes 13A and 13B. At the same time, the responsiveness to the pressing force can be improved.
 感圧部材10は、電極13A及び13Bを、平面視において、感圧導電性部材15の位置にある先端部132A及び132Bの形状を櫛歯状に形成できる。電極13A及び13Bは、先端部132A及び132Bの形状を櫛歯状に形成し、複数の櫛歯をX軸方向に沿って交互に配列させることで、先端部132A及び132Bの間隔を略均等に狭い状態を維持できる。そのため、弾性基材11の作用面111に押圧力が作用して感圧導電性部材15が変形した際、感圧導電性部材15の導通が取れた部分で電極13A及び13B同士が通電し易くなる。よって、押圧力が弾性基材11の作用面111に加わった際に、電極13A及び13B間に導通が取り易くなる。 The pressure-sensitive member 10 can form the electrodes 13A and 13B in a comb-teeth shape at the tips 132A and 132B located at the position of the pressure-sensitive conductive member 15 in a plan view. The electrodes 13A and 13B form the shapes of the tip portions 132A and 132B in a comb-like shape, and by arranging a plurality of comb teeth alternately along the X-axis direction, the distance between the tip portions 132A and 132B is substantially even. Can be maintained in a narrow state. Therefore, when a pressing force acts on the working surface 111 of the elastic base material 11 and the pressure-sensitive conductive member 15 is deformed, the electrodes 13A and 13B are likely to be energized at the portion where the pressure-sensitive conductive member 15 is conductive. Become. Therefore, when a pressing force is applied to the working surface 111 of the elastic base material 11, conduction can be easily taken between the electrodes 13A and 13B.
 一実施形態に係る感圧部材10は、上記にように、外部から加わる押圧力を高感度で安定して検出でき、簡単な構成で、触れた時の感触も良好とすることができる。そのため、感圧部材10は、圧力検出装置(感圧センサ)として、ロボットの触覚センサ、又は電子機器のタッチパネル等に好適に用いることができる。電子機器としては、例えば、情報携帯端末、携帯電話、パーソナルコンピューター、デジタルカメラ、ビデオカメラ、カーナビゲーション、電子手帳、電卓、テレビ電話等のタッチパネルを備えた機器等が挙げられる。 As described above, the pressure-sensitive member 10 according to the first embodiment can stably detect the pressing force applied from the outside with high sensitivity, and can have a simple structure and a good feel when touched. Therefore, the pressure-sensitive member 10 can be suitably used as a pressure detection device (pressure-sensitive sensor) for a tactile sensor of a robot, a touch panel of an electronic device, or the like. Examples of electronic devices include devices equipped with touch panels such as information mobile terminals, mobile phones, personal computers, digital cameras, video cameras, car navigation systems, electronic organizers, calculators, and videophones.
<圧力検出装置>
 一実施形態に係る感圧部材10を適用した圧力検出装置について説明する。図7は、感圧部材10を適用した圧力検出装置の斜視図であり。図8は、図7のII-II断面図である。図7及び図8に示すように、圧力検出装置30は、感圧部材10と、接続部31と、検出部32とを備える。
<Pressure detector>
A pressure detecting device to which the pressure sensitive member 10 according to the embodiment is applied will be described. FIG. 7 is a perspective view of a pressure detecting device to which the pressure sensitive member 10 is applied. FIG. 8 is a sectional view taken along line II-II of FIG. As shown in FIGS. 7 and 8, the pressure detecting device 30 includes a pressure sensitive member 10, a connecting portion 31, and a detecting portion 32.
 接続部31は、感圧部材10の弾性基材11、接着層12、並びに電極13A及び13Bの一端部(-Y軸方向)を挟持し、電極13A及び13Bと電気的に接続可能に連結されている。接続部31は、電極13A及び13Bのそれぞれと接続しつつ、電極13A及び13Bに流れる電流を配線34を介して検出部32に流す機能を有している。 The connecting portion 31 sandwiches the elastic base material 11 of the pressure-sensitive member 10, the adhesive layer 12, and one end portions (-Y-axis direction) of the electrodes 13A and 13B, and is electrically connectably connected to the electrodes 13A and 13B. ing. The connection unit 31 has a function of flowing a current flowing through the electrodes 13A and 13B to the detection unit 32 via the wiring 34 while connecting to the electrodes 13A and 13B, respectively.
 検出部32は、接続部31と配線34を介して感圧部材10と接続されている。検出部32は、接続部31から送られてきた電流を電気信号として検知することで、感圧部材10での抵抗値の変化を検出する。 The detection unit 32 is connected to the pressure sensitive member 10 via the connection unit 31 and the wiring 34. The detection unit 32 detects a change in the resistance value of the pressure-sensitive member 10 by detecting the current sent from the connection unit 31 as an electric signal.
 感圧部材10の弾性基材11が押圧されて、電極13A及び13Bに電流変化(抵抗値の変化)が生じると、電極13A及び13B間の電流は、接続部31及び配線34を介して検出部32に送られ、電気信号に変換される処理が行われる。そして、感圧部材10での抵抗値の変化を検知して圧力値を算出する。 When the elastic base material 11 of the pressure sensitive member 10 is pressed and a current change (change in resistance value) occurs in the electrodes 13A and 13B, the current between the electrodes 13A and 13B is detected via the connection portion 31 and the wiring 34. The process of being sent to the unit 32 and converted into an electric signal is performed. Then, the pressure value is calculated by detecting the change in the resistance value of the pressure sensitive member 10.
 圧力検出装置30は、感圧部材10を備えているので、感圧部材10が押圧された際、押圧力を高感度で安定して検出することができる。 Since the pressure detecting device 30 includes the pressure sensitive member 10, when the pressure sensitive member 10 is pressed, the pressing pressure can be stably detected with high sensitivity.
(変形例)
 本実施形態では、接着層12が特になくても、伝達面112に電極13A及び13Bを固着できる場合等には、感圧部材10は接着層12を備えなくてもよい。
(Modification example)
In the present embodiment, the pressure-sensitive member 10 does not have to include the adhesive layer 12 when the electrodes 13A and 13B can be fixed to the transmission surface 112 even if the adhesive layer 12 is not particularly provided.
 本実施形態では、接着層12は、電極13A及び13Bを固着できれば、伝達面112のうちの、電極13A及び13Bと接する部分の少なくとも一部に形成されていてもよい。 In the present embodiment, the adhesive layer 12 may be formed on at least a part of the transmission surface 112 in contact with the electrodes 13A and 13B as long as the electrodes 13A and 13B can be fixed.
 本実施形態では、電極13A及び13Bは、先端部132A及び132Bを櫛歯電極とし、それぞれ対向させているが、これに限るものでは無い。例えば、電極13A及び13Bは、先端部132A及び132Bを平面視において渦巻き状に形成し、それぞれ絶縁性を保ちながら対向して配置させてもよいし、ミアンダ形状に形成された電極をそれぞれ絶縁性を保ちながら対向して配置させても良い。 In the present embodiment, the electrodes 13A and 13B have the tip portions 132A and 132B as comb tooth electrodes and face each other, but the present invention is not limited to this. For example, the electrodes 13A and 13B may have the tip portions 132A and 132B formed in a spiral shape in a plan view and may be arranged to face each other while maintaining the insulating property, or the electrodes formed in the meander shape may be respectively insulated. It may be arranged so as to face each other while maintaining the above.
 本実施形態では、剛性基材16は、布等で形成されていてもよい。 In the present embodiment, the rigid base material 16 may be made of cloth or the like.
 以下、実施例及び比較例を示して実施形態を更に具体的に説明するが、実施形態はこれらの実施例及び比較例により限定されるものではない。 Hereinafter, embodiments will be described in more detail with reference to Examples and Comparative Examples, but the embodiments are not limited to these Examples and Comparative Examples.
<実施例1>
[感圧部材の作製]
 シリコーンゴム(「極薄SRシート」、アズワン社製、厚さ0.1mm)から所定の大きさに切り出した弾性基材11(図1参照)を準備した。この準備した弾性基材11をエタノール溶液に浸漬して30秒間洗浄して、コロナ放電を20秒行った後、弾性基材11の一方の主面に分子接着剤を塗布して乾燥することで、接着層12(図3参照)を形成した。その後、接着層12の表面に、Agインク(「SSP2801」、東洋紡社製)を塗布して、図2に示すように、先端が櫛歯状となるように配置された一対の電極13A及び13Bを形成した。その後、一対の電極13A及び13Bの先端部分に、感圧導電性部材15を配置し、粘着層14として両面粘着テープ(「No.7082」、寺岡製作所社製)を貼り付け、両面粘着テープの上にフェノール樹脂からなる剛性基材16(「スミライトPL-1147」、住友ベークライト社製、厚さ:1mm)を貼り合わせた。これにより、図1に示す感圧部材10を作製した。
<Example 1>
[Manufacturing of pressure sensitive member]
An elastic base material 11 (see FIG. 1) cut out to a predetermined size from silicone rubber (“ultra-thin SR sheet”, manufactured by AS ONE Corporation, thickness 0.1 mm) was prepared. The prepared elastic base material 11 is immersed in an ethanol solution, washed for 30 seconds, subjected to corona discharge for 20 seconds, and then a molecular adhesive is applied to one main surface of the elastic base material 11 and dried. , An adhesive layer 12 (see FIG. 3) was formed. After that, Ag ink (“SSP2801”, manufactured by Toyobo Co., Ltd.) is applied to the surface of the adhesive layer 12, and as shown in FIG. 2, a pair of electrodes 13A and 13B arranged so that the tips have a comb-like shape. Was formed. After that, the pressure-sensitive conductive member 15 is arranged at the tip portions of the pair of electrodes 13A and 13B, and a double-sided adhesive tape (“No.7082”, manufactured by Teraoka Seisakusho Co., Ltd.) is attached as the adhesive layer 14 to the double-sided adhesive tape. A rigid base material 16 made of phenol resin (“Sumilite PL-1147”, manufactured by Sumitomo Bakelite Co., Ltd., thickness: 1 mm) was laminated on top. As a result, the pressure-sensitive member 10 shown in FIG. 1 was produced.
[押し込み時の圧力及び抵抗の評価]
 図9に示すように、作製した感圧部材10を試験台51の上に設置した後、感圧部材10の一対の電極を配線52で測定機53につなぎ、感圧部材50の弾性基材11の上に圧子54を載せた。その後、圧子54にピン55を当てて荷重計56で押し込み速度0.1mm/分として押し込み、押し込んでいる時の時間と圧力及び抵抗値との関係を測定し、圧力と抵抗値との関係を求めた。圧力と抵抗値との関係を図10に示す。
[Evaluation of pressure and resistance during pushing]
As shown in FIG. 9, after the produced pressure-sensitive member 10 is installed on the test table 51, a pair of electrodes of the pressure-sensitive member 10 are connected to the measuring machine 53 by wiring 52, and the elastic base material of the pressure-sensitive member 50 is connected. The indenter 54 was placed on the eleven. After that, the pin 55 is applied to the indenter 54 and pushed in with a load meter 56 at a pushing speed of 0.1 mm / min, the relationship between the time when pushing is measured and the pressure and resistance value is measured, and the relationship between pressure and resistance value is measured. I asked. The relationship between the pressure and the resistance value is shown in FIG.
<比較例1~3>
 比較例1~3において、感圧部材として、公知の感圧部材を用いたこと以外は、実施例1と同様な方法で行った。公知の感圧部材として、一対の電極が形成された剛性基板上に感圧導電性部材と粘着層が積層され、更に弾性基板が積層されている感圧部材を用いた。なお、実施例1の感圧部材10と比較例1~3の感圧部材との違いは、一対の電極が形成されている位置が異なっているところである。つまり、実施例1の感圧部材10は、弾性基材11と感圧導電性部材15との間に設けられており、比較例1~3の感圧部材は、剛性基板と感圧導電性部材との間に設けられている。また、比較例1では、インターリンク社製の「FSR-402」を用い、比較例2では、ALHPA社製の「MF01-N-221-A01」を用い、比較例3では、マルサンネーム社製の「MK-C」を用いた。圧力(荷重)と抵抗値との関係を、比較例1及び2については図10に示し、比較例3については図11に示す。
<Comparative Examples 1 to 3>
In Comparative Examples 1 to 3, the same method as in Example 1 was performed except that a known pressure-sensitive member was used as the pressure-sensitive member. As a known pressure-sensitive member, a pressure-sensitive member in which a pressure-sensitive conductive member and an adhesive layer are laminated on a rigid substrate on which a pair of electrodes are formed, and an elastic substrate is further laminated is used. The difference between the pressure-sensitive member 10 of Example 1 and the pressure-sensitive members of Comparative Examples 1 to 3 is that the positions where the pair of electrodes are formed are different. That is, the pressure-sensitive member 10 of the first embodiment is provided between the elastic base material 11 and the pressure-sensitive conductive member 15, and the pressure-sensitive members of the comparative examples 1 to 3 are the rigid substrate and the pressure-sensitive conductive member 15. It is provided between the members. Further, in Comparative Example 1, "FSR-402" manufactured by Interlink was used, in Comparative Example 2, "MF01-N-221-A01" manufactured by ALHPA was used, and in Comparative Example 3, manufactured by Marusan Name Co., Ltd. was used. "MK-C" was used. The relationship between the pressure (load) and the resistance value is shown in FIG. 10 for Comparative Examples 1 and 2, and shown in FIG. 11 for Comparative Example 3.
 図10及び図11に示すように、比較例1~3では、最低でも12kPa以上の圧力がかからないと抵抗は下がらず、圧力が最低でも40kPa以上の圧力にならないと、抵抗が安定しなかったことが確認された。一方、実施例1では、約3kPaの圧力で抵抗は下がり、約16kPaの圧力で抵抗が安定していたことが確認された。 As shown in FIGS. 10 and 11, in Comparative Examples 1 to 3, the resistance did not decrease unless a pressure of at least 12 kPa or more was applied, and the resistance was not stable unless the pressure reached at least 40 kPa or more. Was confirmed. On the other hand, in Example 1, it was confirmed that the resistance decreased at a pressure of about 3 kPa and the resistance was stable at a pressure of about 16 kPa.
 よって、一実施形態の感圧部材は、小さい押圧力でも早期に高感度で安定して検出することができるといえる。 Therefore, it can be said that the pressure-sensitive member of one embodiment can detect a small pressing force with high sensitivity and stability at an early stage.
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiment has been described, but the above embodiment is presented as an example, and the present invention is not limited by the above embodiment. The above-described embodiment can be implemented in various other forms, and various combinations, omissions, replacements, changes, etc. can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 本出願は、2019年3月25日に日本国特許庁に出願した特願2019-57497号に基づく優先権を主張するものであり、特願2019-57497号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2019-57497 filed with the Japan Patent Office on March 25, 2019, and the entire contents of Japanese Patent Application No. 2019-57497 are incorporated in this application. ..
 10、50 感圧部材
 11 弾性基材
 111 作用面
 112 伝達面
 12 接着層
 13A、13B 電極
 131A、131B 本体部
 132A、132B 先端部
 14 粘着層
 15 感圧導電性部材
 16 剛性基材
 30 圧力検出装置
 31 接続部
 32 検出部
 34 配線
10, 50 Pressure-sensitive member 11 Elastic base material 111 Working surface 112 Transmission surface 12 Adhesive layer 13A, 13B Electrodes 131A, 131B Main body 132A, 132B Tip part 14 Adhesive layer 15 Pressure-sensitive conductive member 16 Rigid base material 30 Pressure detection device 31 Connection part 32 Detection part 34 Wiring

Claims (6)

  1.  押圧力の作用する作用面を有し、前記押圧力で弾性変形可能な弾性基材と、
     前記弾性基材の前記作用面と反対側の伝達面に設けられた、一対の電極と、
     前記一対の電極と電気的に接続可能に前記伝達面に設けられた感圧導電性部材と、を備え、
     前記感圧導電性部材が前記押圧力の変化により弾性変形し、前記一対の電極間の電気抵抗値が変化することを特徴とする感圧部材。
    An elastic base material having an action surface on which a pressing force acts and elastically deformable by the pressing force,
    A pair of electrodes provided on the transmission surface of the elastic substrate opposite to the action surface,
    A pressure-sensitive conductive member provided on the transmission surface so as to be electrically connectable to the pair of electrodes is provided.
    A pressure-sensitive member, characterized in that the pressure-sensitive conductive member is elastically deformed by a change in the pressing force, and an electric resistance value between the pair of electrodes changes.
  2.  前記弾性基材と前記電極との間に、トリアジン系化合物を含む接着層を含むことを特徴とする請求項1に記載の感圧部材。 The pressure-sensitive member according to claim 1, wherein an adhesive layer containing a triazine-based compound is contained between the elastic base material and the electrode.
  3.  前記感圧導電性部材が、エラストマーに導電性材料を含有する導電性エラストマーであることを特徴とする請求項1又は2に記載の感圧部材。 The pressure-sensitive member according to claim 1 or 2, wherein the pressure-sensitive conductive member is a conductive elastomer containing a conductive material in the elastomer.
  4.  前記伝達面に、前記電極及び前記感圧導電性部材を被覆するように設けられる粘着層と、
     前記粘着層を前記弾性基材と狭持するように設けられる剛性基材と、
    を有することを特徴とする請求項1~3の何れか一項に記載の感圧部材。
    An adhesive layer provided on the transmission surface so as to cover the electrode and the pressure-sensitive conductive member, and
    A rigid base material provided so as to sandwich the adhesive layer with the elastic base material,
    The pressure-sensitive member according to any one of claims 1 to 3, wherein the pressure-sensitive member has.
  5.  前記一対の電極は、平面視において、前記感圧導電性部材の位置における形状が櫛歯状に形成されていることを特徴とする請求項1~4の何れか一項に記載の感圧部材。 The pressure-sensitive member according to any one of claims 1 to 4, wherein the pair of electrodes are formed in a comb-teeth shape at a position of the pressure-sensitive conductive member in a plan view. ..
  6.  請求項1~5の何れか一項に記載の感圧部材と、
     前記感圧部材からの信号を取り出す接続部と、
     前記接続部に接続されて、前記信号を処理する検出部と、
    を備えることを特徴とする圧力検出装置。
    The pressure-sensitive member according to any one of claims 1 to 5.
    A connection part that takes out a signal from the pressure sensitive member,
    A detection unit that is connected to the connection unit and processes the signal,
    A pressure detection device comprising.
PCT/JP2020/007488 2019-03-25 2020-02-25 Pressure-sensitive member and pressure detection device WO2020195460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021508830A JPWO2020195460A1 (en) 2019-03-25 2020-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057497 2019-03-25
JP2019-057497 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020195460A1 true WO2020195460A1 (en) 2020-10-01

Family

ID=72609187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007488 WO2020195460A1 (en) 2019-03-25 2020-02-25 Pressure-sensitive member and pressure detection device

Country Status (2)

Country Link
JP (1) JPWO2020195460A1 (en)
WO (1) WO2020195460A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513408A (en) * 2003-01-07 2006-04-20 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. Pressure sensor composed of elastic sensor layer with microstructured surface
JP2009298063A (en) * 2008-06-16 2009-12-24 Nippon Zeon Co Ltd Laminate and wiring substrate
JP2012159463A (en) * 2011-02-02 2012-08-23 Canon Chemicals Inc Pressure-sensitive sensor body
US20120256720A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Bending sensor and method for fabricating the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19533756A1 (en) * 1995-09-12 1997-03-13 Fraunhofer Ges Forschung Electronic component for static and dynamic pressure detection
JPH1183644A (en) * 1997-09-08 1999-03-26 Toyo Polymer Kk Pressure-sensitive sensor
GB2335310B (en) * 1998-03-11 2001-09-19 Draftex Ind Ltd Force-responsive detectors and systems
JP2001195945A (en) * 2000-01-06 2001-07-19 Polymatech Co Ltd Pressure-sensitive conductive sensor
JP5700838B2 (en) * 2009-08-28 2015-04-15 日本写真印刷株式会社 Pressure detection device
JP5636290B2 (en) * 2011-01-12 2014-12-03 キヤノン化成株式会社 Pressure sensor
JP2014163815A (en) * 2013-02-26 2014-09-08 Seiko Epson Corp Force detection device, and robot
JP2017009559A (en) * 2015-06-26 2017-01-12 ヤマハ株式会社 Distortion sensor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513408A (en) * 2003-01-07 2006-04-20 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. Pressure sensor composed of elastic sensor layer with microstructured surface
JP2009298063A (en) * 2008-06-16 2009-12-24 Nippon Zeon Co Ltd Laminate and wiring substrate
JP2012159463A (en) * 2011-02-02 2012-08-23 Canon Chemicals Inc Pressure-sensitive sensor body
US20120256720A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Bending sensor and method for fabricating the same

Also Published As

Publication number Publication date
JPWO2020195460A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
TWI578859B (en) Printed circuit board and method for manufacturing the same
JP6269337B2 (en) Probe pin and electronic device using the same
TWI545472B (en) Pressure detecting unit and information input device having pressure detecting unit
JP2011076172A (en) Mounting structure for touch input device equipped with pressure sensitive sensor
EP2006869A1 (en) Film-type switching element
WO2020195461A1 (en) Pressure-sensitive member and pressure detection device
JP5281551B2 (en) Capacitive input device
JP2007315875A (en) Pressure-sensitive sensor
WO2020195460A1 (en) Pressure-sensitive member and pressure detection device
KR102325435B1 (en) Method for bonding flexible sensor on fpcb, and fpcb bonded flexible sensor
JP2006226829A (en) Inspection method of probe head and electron device
CN106066182B (en) Encoder scale and methods of making and attaching same
JP2012104714A (en) Emi gasket
JP2008091950A (en) Electrical device
JP2017009559A (en) Distortion sensor element
JP6454439B1 (en) Pressure sensor
JP6066049B2 (en) Device for direct contact of contact means and accessory connection device for pressure measuring cell
CN109642126B (en) Pressure-sensitive adhesive tape, method for manufacturing same, and electronic device including same
WO2012008541A1 (en) Contact probe and probe unit
JP2020140894A (en) Connecting device and manufacturing method thereof
JP6882096B2 (en) Piezoelectric power generator
KR101178791B1 (en) Resistive tactile sensor and method of manufacturing thereof
JP2015215306A (en) Pressure sensitive sensor and manufacturing method thereof
JP3797399B2 (en) Multilayer probe contact for ultra fine pitch inspection
JP2019086448A (en) Sensor sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776406

Country of ref document: EP

Kind code of ref document: A1