WO2020195175A1 - Substrate processing device and transfer control method therefor - Google Patents

Substrate processing device and transfer control method therefor Download PDF

Info

Publication number
WO2020195175A1
WO2020195175A1 PCT/JP2020/004018 JP2020004018W WO2020195175A1 WO 2020195175 A1 WO2020195175 A1 WO 2020195175A1 JP 2020004018 W JP2020004018 W JP 2020004018W WO 2020195175 A1 WO2020195175 A1 WO 2020195175A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
processing unit
liquid film
processing
Prior art date
Application number
PCT/JP2020/004018
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 河原
橋本 光治
憲幸 菊本
周武 墨
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020217029410A priority Critical patent/KR102658643B1/en
Priority to CN202080020635.1A priority patent/CN113557591A/en
Priority to KR1020247005771A priority patent/KR20240027875A/en
Publication of WO2020195175A1 publication Critical patent/WO2020195175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to a substrate processing apparatus for transporting a substrate between a plurality of processing units, and particularly to control of transport in a state where a liquid film is formed on the surface of the substrate.
  • Patent Document 1 in the transfer between processing systems in which the substrate is treated with a liquid, the substrate is immersed in the liquid stored in the transport tray or is filled on the entire upper surface. It is transported in a state of being.
  • a part of the surface of the substrate may be exposed to the surrounding atmosphere during the transfer due to acceleration / deceleration and vibration on the transfer path, reduction due to volatilization of the liquid, and the like. This causes product defects.
  • exposure of the surface immediately causes pattern collapse, so even a short time is not acceptable.
  • the present invention has been made in view of the above problems, and in a substrate processing apparatus that conveys a substrate with the substrate surface covered with a liquid film, it prevents the substrate surface from being exposed due to vibration during transportation, volatilization of liquid, or the like.
  • the purpose is to provide a technology that can be used.
  • a first processing unit that supplies a liquid to the substrate and covers the surface of the substrate with a liquid film, and the substrate that supports the liquid film.
  • a transport mechanism that transports the liquid film, a second processing unit that receives the substrate transported by the transport mechanism and executes a predetermined process, an imaging unit that images the liquid film formed on the surface of the substrate, and the above.
  • the transport mechanism is based on the difference between a plurality of images captured by the imaging unit at different times from the formation of the liquid film to the delivery of the substrate to the second processing unit by the transfer mechanism. It is equipped with a control unit that controls the operation of.
  • a first processing unit that supplies a liquid to the substrate and covers the surface of the substrate with a liquid film and the substrate that supports the liquid film are received and a predetermined process is executed.
  • the liquid is used in a transfer control method for a substrate processing apparatus having a second processing unit and a transfer mechanism for transporting the substrate between the first processing unit and the second processing unit.
  • the liquid film is imaged at different times from the time the film is formed until the substrate is carried into the second processing unit, and the operation of the transport mechanism is based on the difference between the plurality of images captured. To control.
  • the liquid film on the surface of the substrate being transported is imaged, and the operation of the transport mechanism is controlled based on the difference between the images captured at different times. Therefore, it is possible to detect a change in the state of the liquid film on the substrate surface and reflect it in the transfer control. For example, it is possible to suppress the transport speed in order to reduce vibration, or to replenish the liquid if the thickness of the liquid film is reduced. As a result, the substrate surface can be stably covered with the liquid film and transported, and the substrate surface can be prevented from being exposed.
  • the substrate can be conveyed in a stable state of the liquid film on the surface of the substrate. Is. This makes it possible to prevent the substrate surface from being exposed due to vibration during transportation, volatilization of the liquid, or the like.
  • FIG. 1A and 1B are diagrams showing a schematic configuration of an embodiment of a substrate processing apparatus according to the present invention. More specifically, FIG. 1A is a plan view showing a substrate processing apparatus 1 according to an embodiment of the present invention, and FIG. 1B is a side view showing a substrate processing apparatus 1. It should be noted that these figures do not show the appearance of the device, but are schematic views showing the internal structure of the device in an easy-to-understand manner by excluding the outer wall panel of the device and other partial configurations.
  • the substrate processing device 1 is, for example, an apparatus installed in a clean room for performing a predetermined process on a substrate.
  • the "board" in the present embodiment includes a semiconductor substrate, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for an optical disk, and a magnetic disk.
  • Various substrates such as substrates and substrates for photomagnetic disks can be applied.
  • a substrate processing apparatus mainly used for processing a semiconductor substrate will be described as an example with reference to the drawings. However, it is also applicable to the processing of various substrates exemplified above.
  • the substrate processing apparatus 1 includes a substrate processing unit 10 that processes the substrate S, and an indexer unit 20 that is coupled to the substrate processing unit 10.
  • the indexer unit 20 includes a container holding unit 21 and an indexer robot 22.
  • the indexer unit 20 can hold a plurality of containers C for accommodating the substrate S.
  • a FOUP Front Opening Unified Pod
  • SMIF Standard Mechanical Interface
  • OC Open Cassette
  • the indexer robot 22 accesses the container C held by the container holding portion 21 to take out the unprocessed substrate S from the container C or store the processed substrate in the container C.
  • a plurality of substrates S are housed in each container C in a substantially horizontal posture.
  • the indexer robot 22 includes a base portion 221, an articulated arm 222, and a hand 223.
  • the base portion 221 is fixed to the device housing.
  • the articulated arm 222 is rotatably provided around a vertical axis with respect to the base portion 221.
  • the hand 223 is attached to the tip of the articulated arm 222.
  • the hand 223 has a structure in which the substrate S can be placed and held on the upper surface thereof. Since an indexer robot having such an articulated arm and a hand for holding a substrate is known, detailed description thereof will be omitted.
  • the substrate processing unit 10 includes a center robot 15 arranged substantially in the center in a plan view, and a plurality of substrate processing units arranged so as to surround the center robot 15. Specifically, a plurality of (four in this example) substrate processing units 11A, 12A, 13A, and 14A are arranged facing the space in which the center robot 15 is arranged. Each of these substrate processing units 11A to 14A executes a predetermined process on the substrate S. When these processing units have the same function, parallel processing of a plurality of boards becomes possible. It is also possible to combine processing units having different functions so that different processes are sequentially executed on one substrate.
  • the substrate processing apparatus 1 of this embodiment is used for a series of treatments in which the substrate S is wet-treated with a predetermined treatment liquid and then the substrate S is dried.
  • two of the four substrate processing units, 11A and 12A are responsible for wet processing on the substrate S, and internally have a configuration for enabling this.
  • the other two substrate processing units 13A and 14A carry out a process (drying process) of removing the residual liquid from the substrate S after the wet process and drying the substrate S, and internally have a configuration for enabling this. I have.
  • the substrate processing main body that executes the processing on the substrate S is housed in a processing chamber provided with an openable / closable shutter on the side surface facing the center robot 15. That is, the substrate processing unit 11A has a processing chamber 110 and a shutter 111 provided on the side surface of the processing chamber 110 facing the center robot 15.
  • the shutter 111 is provided so as to cover an opening (not shown) provided on the side surface of the processing chamber 110 facing the center robot 15.
  • the shutter 111 is opened, the opening is exposed, and the substrate S can be carried in and out through the opening. Further, when the processing for the substrate S is executed in the processing chamber 110, the shutter 111 is closed to block the atmosphere in the processing chamber 110 from the outside.
  • the substrate processing unit 12A has a processing chamber 120 and a shutter 121 provided on the side surface of the processing chamber 120 facing the center robot 15.
  • the substrate processing unit 13A has a processing chamber 130 and a shutter 131 provided on a side surface of the processing chamber 130 facing the center robot 15.
  • the substrate processing unit 14A has a processing chamber 140 and a shutter 141 provided on the side surface of the processing chamber 140 facing the center robot 15.
  • a set of substrate processing units arranged in the horizontal direction in this way is arranged in a plurality of stages (two stages in this example) in the vertical direction. That is, as shown in FIG. 1B, the substrate processing unit 11B is provided below the substrate processing unit 11A.
  • the configuration and function of the substrate processing unit 11B are the same as those of the substrate processing unit 11A.
  • a substrate processing unit 12B having the same configuration and the same function as the substrate processing unit 12A is provided below the substrate processing unit 12A.
  • a substrate processing unit 13B (FIG. 2) is provided below the substrate processing unit 13A, and a substrate processing unit (not shown) is also provided below the substrate processing unit 14A.
  • the number of stages of the substrate processing unit is not limited to 2 illustrated here and is arbitrary. Further, the number of substrate processing units arranged per stage is not limited to the above.
  • FIG. 2 is a diagram showing the configuration and installation environment of the center robot.
  • the center robot 15 can receive the unprocessed substrate S from the indexer robot 22, and can deliver the processed substrate S to the indexer robot 22. More specifically, the center robot 15 includes a base portion 151, an elevating portion 152, a rotating portion 153, a telescopic arm 154, and a hand 155.
  • the base portion 151 is fixed to the bottom frame of the substrate processing portion 10 and supports each configuration of the center robot 15.
  • the elevating portion 152 is attached to the base portion 151, and the rotating portion 153 is attached to the upper part of the elevating portion 152.
  • the elevating part 152 can be expanded and contracted in the vertical direction, and the rotating part 153 is moved up and down by this expansion and contraction movement.
  • the rotating portion 153 is rotatable around a vertical axis with respect to the elevating portion 152.
  • the base of the telescopic arm 154 is attached to the rotating portion 153, and the hand 155 is attached to the tip of the telescopic arm 154.
  • the telescopic arm 154 expands and contracts in a predetermined range in the horizontal direction.
  • the hand 155 has a structure in which the substrate S can be placed and held on the upper surface thereof, and the substrate S can be delivered to and from the hand 223 of the indexer robot 22. Since a hand mechanism having such a structure is known, detailed description thereof will be omitted.
  • the substrate S held by the hand 155 can be moved in the horizontal direction.
  • the direction of horizontal movement of the substrate S can be defined by rotating the rotating portion 153 with respect to the elevating portion 152.
  • the height of the substrate S, that is, the vertical position can be adjusted by raising and lowering the rotating portion 153 by the elevating portion 152.
  • a support member 156 extending upward is attached to the rotating portion 153.
  • the support member 156 is attached to the side surface of the rotating portion 153 on the side surface opposite to the extension direction of the expansion / contraction arm 154 so as not to interfere with the expansion / contraction of the hand 155.
  • a CCD camera 157 is attached to the upper end of the support member 156.
  • the optical axis direction of the CCD camera 157 is slightly downward from the horizontal direction, and the substrate S held by the hand 155 is viewed from diagonally above and captured in the imaging field of view. As a result, the upper surface of the substrate S is imaged.
  • the imaging data is transmitted to the control unit 90.
  • the rotating portion 153 is provided with a replenishing liquid nozzle 158.
  • the replenisher nozzle 158 opens downward above the substrate S held by the hand 155.
  • the replenisher liquid nozzle 158 is connected to a low surface tension liquid supply unit (described later) (not shown), and supplies the low surface tension liquid supplied from the low surface tension liquid supply unit to the substrate S as needed.
  • the processing for the substrate S is executed as follows.
  • the untreated substrate S is housed in the container C placed on the container holding portion 21.
  • the indexer robot 22 takes out one unprocessed substrate S from the container C and hands it over to the center robot 15.
  • the center robot 15 carries the received substrate S into a substrate processing unit that executes processing on the substrate S.
  • the center robot 15 adjusts the height of the rotating portion 153 by the elevating portion 152 to process the substrate S held by the hand 155.
  • the shutter 111 is opened and the telescopic arm 154 extends toward the opening on the side surface of the processing chamber 110, the substrate S is carried into the processing chamber 110.
  • the shutter 111 is closed and the processing on the substrate S is executed in the processing chamber 110.
  • the substrate S can be carried into another substrate processing unit in the same manner.
  • the telescopic arm 154 enters the processing chamber 110 in which the shutter 111 is opened and the processed substrate S is taken out.
  • the taken-out substrate S may be carried into another substrate processing unit to execute a new process, or may be returned to the container C via the indexer robot 22. The specific processing sequence in this embodiment will be described in detail later.
  • the center robot 15 is installed in the transport space TS whose sides and upper side are separated from the external space by the partition wall 101.
  • the substrate processing unit 11A is attached to the side portion of the partition wall 101 so that the side surface of the processing chamber 110 provided with the shutter 111 faces the transport space TS. The same applies to other substrate processing units.
  • the substrate processing device 1 is provided with a control unit 90 for controlling the operation of each part of the device.
  • the control unit 90 includes at least a CPU (Central Processing Unit) 91 and a memory 92.
  • the CPU 91 causes each part of the device to execute a predetermined operation by executing a control program prepared in advance.
  • the memory 92 stores a control program to be executed by the CPU 91, data generated by the execution, and the like.
  • the operations of the indexer robot 22 and the center robot 15 described above, the operations related to the opening and closing of the shutter in each processing chamber, various processing on the substrate S, and the like are controlled by the CPU 91 that executes the control program.
  • FIG. 3A and 3B are diagrams showing a substrate processing unit that performs wet processing. More specifically, FIG. 3A is a diagram showing the configuration of the substrate processing unit 11A, and FIG. 3B is a diagram for explaining the operation of the substrate processing unit 11A. Although the configuration of the substrate processing unit 11A will be described here, the configurations of the other substrate processing units 11B, 12A and the like that execute the wet processing are basically the same.
  • the substrate processing unit 11A includes a wet processing unit 30 as a substrate processing main body in the processing chamber 110.
  • the wet treatment unit 30 supplies a treatment liquid to the upper surface of the substrate S to perform surface treatment, cleaning, and the like of the substrate S. Further, in order to prevent the upper surface of the substrate S carried out after the wet treatment from being exposed to the surrounding atmosphere, the wet treatment unit 30 covers the upper surface of the substrate S after the wet treatment with a liquid film of a low surface tension liquid. The liquid film formation process is also performed.
  • the wet processing unit 30 includes a substrate holding unit 31, a splash guard 32, a processing liquid supply unit 33, and a low surface tension liquid supply unit 34. These operations are controlled by the control unit 90.
  • the substrate holding portion 31 has a disk-shaped spin chuck 311 having a diameter substantially equal to that of the substrate S, and a plurality of chuck pins 312 are provided on the peripheral edge of the spin chuck 311. When the chuck pin 312 abuts on the peripheral edge of the substrate S to support the substrate S, the spin chuck 311 can hold the substrate S in a horizontal posture while being separated from the upper surface thereof.
  • the spin chuck 311 is supported so that the upper surface is horizontal by a rotary support shaft 313 extending downward from the central portion of the lower surface thereof.
  • the rotary support shaft 313 is rotatably supported by a rotary mechanism 314 attached to the bottom of the processing chamber 110.
  • the rotation mechanism 314 has a built-in rotation motor (not shown), and when the rotation motor rotates in response to a control command from the control unit 90, the spin chuck 311 directly connected to the rotation support shaft 313 is indicated by a one-point chain line. Rotate around the vertical axis. In FIGS. 3A and 3B, the vertical direction is the vertical direction. As a result, the substrate S is rotated around the vertical axis while maintaining the horizontal posture.
  • a splash guard 32 is provided so as to surround the substrate holding portion 31 from the side.
  • the splash guard 32 has a substantially tubular cup 321 provided so as to cover the peripheral edge portion of the spin chuck 311 and a liquid receiving portion 322 provided below the outer peripheral portion of the cup 321.
  • the cup 321 moves up and down in response to a control command from the control unit 90.
  • the cup 321 has a lower position in which the upper end of the cup 321 is lowered below the peripheral edge of the substrate S held by the spin chuck 311 as shown in FIG. 3A and an upper end of the cup 321 as shown in FIG. 3B. It moves up and down with and from an upper position located above the peripheral edge of the substrate S.
  • the cup 321 When the cup 321 is in the lower position, as shown in FIG. 3A, the substrate S held by the spin chuck 311 is exposed to the outside of the cup 321. Therefore, for example, it is possible to prevent the cup 321 from becoming an obstacle when the substrate S is carried in and out of the spin chuck 311.
  • the cup 321 when the cup 321 is in the upper position, as shown in FIG. 3B, it surrounds the peripheral edge portion of the substrate S held by the spin chuck 311.
  • the processing liquid that is shaken off from the peripheral edge of the substrate S when the liquid is supplied which will be described later, is prevented from being scattered in the processing chamber 110, and the processing liquid can be reliably recovered. That is, the droplets of the processing liquid that are shaken off from the peripheral edge of the substrate S by the rotation of the substrate S adhere to the inner wall of the cup 321 and flow downward, and are collected by the liquid receiving portion 322 arranged below the cup 321. It is collected.
  • a plurality of stages of cups may be provided concentrically.
  • a rotation support shaft 332 is rotatably provided with respect to a base 331 fixed to the processing chamber 110, and a nozzle 334 is further provided at the tip of an arm 333 extending horizontally from the rotation support shaft 332. It has an attached structure.
  • the arm 333 swings as the rotation support shaft 332 rotates in response to a control command from the control unit 90.
  • the nozzle 334 at the tip of the arm 333 moves between the retracted position retracted from above the substrate S to the side as shown in FIG. 3A and the processing position above the substrate S as shown in FIG. 3B.
  • the nozzle 334 is connected to a processing liquid supply unit (not shown) provided in the control unit 90.
  • a processing liquid supply unit (not shown) provided in the control unit 90.
  • the treatment liquid is discharged from the nozzle 334 toward the substrate S.
  • the spin chuck 311 rotates at a relatively low speed to rotate the substrate S, and the nozzle 33 positioned above the rotation center of the substrate S supplies the processing liquid Lq.
  • the upper surface Sa of the substrate S is treated with the treatment liquid Lq.
  • the treatment liquid Lq a liquid having various functions such as a developing solution, an etching solution, a cleaning solution, and a rinsing solution can be used, and the composition thereof is arbitrary. Further, the treatment may be executed by combining a plurality of types of treatment liquids.
  • the low surface tension liquid supply unit 34 also has a configuration corresponding to the treatment liquid supply unit 33. That is, the low surface tension liquid supply unit 34 has a base 341, a rotation support shaft 342, an arm 343, a nozzle 344, and the like, and these configurations are the same as those corresponding to those in the processing liquid supply unit 33. ..
  • the arm 343 swings as the rotation support shaft 342 rotates in response to a control command from the control unit 90.
  • the nozzle 344 at the tip of the arm 343 supplies a low surface tension liquid for forming a liquid film on the upper surface Sa of the substrate S after the wet treatment.
  • the wet substrate S after the wet treatment has entered the pattern in the process of drying.
  • the surface tension of the liquid may cause pattern collapse.
  • a method for preventing this a method of replacing the liquid in the pattern with a liquid having a lower surface tension and then drying, and a sublimation drying method in which the upper surface Sa of the substrate is covered with a solid sublimation substance to sublimate the sublimation substance.
  • the liquid covering the upper surface Sa of the substrate is preferably a liquid having a lower surface tension than the treatment liquid from the viewpoint of more reliably preventing pattern collapse due to surface tension.
  • a liquid having such properties is referred to as a "low surface tension liquid”.
  • the upper surface Sa of the substrate is covered with a liquid film of a low surface tension liquid for transportation.
  • the liquid film is formed as follows. As shown in FIG. 3B, the low surface tension liquid Lq supplied from the low surface tension liquid supply unit (not shown) provided in the control unit 90 is discharged from the nozzle 343 in a state where the substrate S is rotated at a predetermined rotation speed. By being discharged, the upper surface Sa of the substrate is covered with the liquid film LF of the low surface tension liquid.
  • the low surface tension liquid it is desirable that the liquid has good miscibility with the treatment liquid used for the wet treatment and has a lower surface tension than this.
  • the treatment liquid contains water as a main component, isopropyl alcohol (IPA) can be preferably used. In this way, the entire upper surface Sa of the substrate is covered with the liquid film LF of the low surface tension liquid.
  • IPA isopropyl alcohol
  • a CCD camera 351 and an illumination light source 352 are arranged above the substrate S held by the spin chuck 311.
  • the optical axis direction of the CCD camera 351 is slightly downward from the horizontal direction. Therefore, the CCD camera 351 has a bird's-eye view of the substrate S held by the spin chuck 311 from diagonally above and is included in the imaging field of view.
  • the illumination light source 352 irradiates the illumination light for imaging toward the substrate S. As a result, the upper surface of the substrate S is imaged.
  • the imaging data is transmitted to the control unit 90.
  • the substrate S carried out from the substrate processing unit 11A with the upper surface Sa covered with the liquid film LF is conveyed to the substrate processing unit 13A and undergoes drying treatment. That is, the substrate processing unit 13A has a function of performing a drying process of removing the liquid film LF formed on the upper surface Sa of the substrate S carried in the horizontal posture and drying the substrate S as the substrate processing. As the drying treatment, supercritical drying is applied in which the substrate S is covered with a supercritical fluid and then the supercritical fluid is vaporized and removed (without going through a liquid phase).
  • the configuration of the substrate processing unit 13A will be described here, the configurations of the other substrate processing units 13B, 14A, etc. that execute the drying process are basically the same.
  • FIG. 4 is a diagram showing a substrate processing unit that executes supercritical drying processing. More specifically, FIG. 4 is a side sectional view showing the internal structure of the substrate processing unit 13A. Since the principle of supercritical drying treatment and the basic configuration required for it are known, detailed description thereof will be omitted here.
  • the substrate processing unit 13A includes a high-pressure chamber 130, and a drying processing unit 40 as an execution body of the drying processing is provided inside the high-pressure chamber 130.
  • a stage 41 for mounting the substrate S is installed in the high pressure chamber 130.
  • the stage 41 holds the substrate S whose upper surface Sa is covered with a liquid film by suction holding or mechanical holding. Since the high pressure chamber 130 has a high pressure, the internal structure is relatively simple to withstand the high pressure, and a member capable of withstanding the high pressure is used.
  • a rotary support shaft 42 extends downward in the center of the lower surface of the stage 41.
  • the rotary support shaft 42 is inserted through the bottom surface of the high pressure chamber 130 via a high pressure seal rotation introduction mechanism 43.
  • the rotation shaft 431 of the high-pressure seal rotation introduction mechanism 43 is connected to the rotation mechanism 432. Therefore, when the rotation mechanism 432 operates in response to the control command from the control unit 90, the substrate S rotates together with the stage 41 around the rotation axis in the vertical direction indicated by the alternate long and short dash line.
  • a fluid dispersion member 44 is provided above the stage 41 inside the high pressure chamber 130.
  • the fluid dispersion member 44 is provided with a plurality of through holes 442 that penetrate vertically through the flat plate-shaped closing plate 441.
  • Carbon dioxide gas is supplied from the carbon dioxide supply unit 45 to the upper part of the high-pressure chamber 130 as needed, and the carbon dioxide gas is rectified by the fluid dispersion member 44 and uniformly supplied from above the substrate S toward the substrate S. Will be done.
  • nitrogen is introduced into the high pressure chamber 130 from the nitrogen supply unit 46 as needed.
  • Nitrogen is used in various forms as required, that is, as a gas at room temperature or a temperature rise, or as a cooled and liquefied liquid nitrogen, such as purging the gas in the high-pressure chamber 130 or cooling the inside of the chamber. It is supplied according to the purpose.
  • a discharge mechanism 48 is connected to the high pressure chamber 130.
  • the discharge mechanism 48 has a function of discharging various fluids such as gas and liquid introduced into the high pressure chamber 130.
  • the discharge mechanism 48 includes piping, a valve, a pump, and the like for this purpose. This allows the fluid in the high pressure chamber 130 to be expelled quickly if necessary.
  • control unit 90 has a configuration for detecting the pressure and temperature in the high pressure chamber 130 and a configuration for controlling these to a predetermined value. That is, the control unit 90 has a function of controlling the pressure and temperature in the high pressure chamber 130 to predetermined target values.
  • the substrate processing apparatus 1 is an apparatus that sequentially executes a wet treatment and a drying treatment on the substrate S.
  • the main flow of this process is as follows. That is, after the substrate S is conveyed to the substrate processing unit that executes the wet treatment and is treated with the treatment liquid, a liquid film is formed by the low surface tension liquid, and this substrate S is applied to the substrate processing unit that executes the drying treatment. It is conveyed to remove the liquid film and the substrate S is dried.
  • the specific processing contents will be described below.
  • the substrate processing unit 11A executes the wet treatment and the substrate processing unit 13A executes the drying treatment on one substrate S.
  • the combination of the substrate processing unit that executes the wet treatment and the substrate processing unit that executes the drying treatment is not limited to this, and is arbitrary.
  • the substrate processing unit 11A or the like that executes the wet treatment is referred to as a “wet treatment unit”
  • the substrate treatment unit 13A or the like that executes the drying treatment is referred to as a “wet treatment unit”. It may be referred to as a "drying processing unit".
  • FIG. 5 is a flowchart showing the operation of this substrate processing device. This operation is realized by the CPU 91 executing a control program prepared in advance to cause each part of the device to perform a predetermined operation.
  • the indexer robot 22 takes out one unprocessed substrate S from one of the containers C containing the unprocessed substrate (step S101). Then, the substrate S is handed over from the indexer robot 22 to the center robot 15 (step S102). The center robot 15 carries the substrate S into the substrate processing unit (wet processing unit) 11A that executes the wet processing (step S103).
  • the substrate processing unit 11A into which the substrate S has been carried performs wet processing on the substrate S (step S104).
  • the content of the wet treatment is that the treatment liquid is supplied to the substrate S to process and clean the upper surface Sa of the substrate.
  • a liquid film forming process for forming a liquid film LF with a low surface tension liquid is executed on the substrate S after the wet treatment (step S105).
  • the substrate S on which the liquid film LF is formed on the upper surface Sa by the liquid film forming process is taken out from the substrate processing unit 11A by the center robot 15 and carried into the substrate processing unit (drying processing unit) 13A for executing the drying process. .. That is, the transfer process of transferring the substrate S from the substrate processing unit 11A to the substrate processing unit 13A is performed (step S106). Since various modes can be considered as the transfer process, they will be described in detail later.
  • the substrate processing unit 13A into which the substrate S has been carried executes a drying treatment for removing the adhering liquid to the substrate S and drying the substrate S (step S107).
  • a supercritical drying process using a supercritical fluid is executed. That is, carbon dioxide is introduced into the high-pressure chamber 130 from the carbon dioxide supply unit 45, and the carbon dioxide is liquefied when the pressure inside the chamber is sufficiently increased.
  • liquid carbon dioxide may be introduced into the high pressure chamber 130.
  • the liquid carbon dioxide covers the upper surface Sa of the substrate. Liquefied carbon dioxide dissolves organic solvents well. Therefore, the liquid such as IPA remaining in the pattern is replaced by liquid carbon dioxide.
  • the temperature and pressure in the high-pressure chamber 130 are adjusted to conditions that bring carbon dioxide into a supercritical state.
  • carbon dioxide in the high-pressure chamber 130 becomes a supercritical fluid.
  • a fluid in a supercritical state has extremely high fluidity and low surface tension.
  • the supercritical fluid generated from carbon dioxide dissolves organic solvents such as IPA and acetone well. Therefore, the supercritical fluid of carbon dioxide penetrates deep into the fine pattern and carries away the remaining organic solvent component from the pattern.
  • One of the reasons why carbon dioxide is suitable for supercritical drying treatment is that it becomes supercritical at relatively low pressure and low temperature.
  • the inside of the high-pressure chamber 130 is rapidly depressurized, so that the supercritical fluid is directly vaporized and removed from the substrate S without passing through the liquid phase.
  • the substrate S is in a dry state with the liquid component completely removed.
  • the problem of pattern collapse due to the surface tension of the liquid in the pattern is avoided by replacing the liquid component remaining in the pattern with the supercritical fluid and vaporizing the supercritical fluid directly.
  • the processed substrate S is taken out from the substrate processing unit 13A by the center robot 15 (step S108).
  • the removed substrate S after processing is delivered from the center robot 15 to the indexer robot 22 (step S109).
  • the indexer robot 22 accommodates the substrate S in one of the containers C (step S110).
  • the container C in which the processed substrate S is housed may be the container in which the untreated board S is housed, or may be another container.
  • step S111 If there is a substrate to be further processed (YES in step S111), the process returns to step S101, and the above processing is executed for the next substrate S. If there is no substrate to be processed (NO in step S111), the processing ends.
  • processing for a plurality of substrates is executed in parallel. That is, while one substrate S is being processed in one substrate processing unit, at least one of the transfer of other substrates by the indexer robot 22 and the center robot 15 and the substrate processing by the other substrate processing unit at the same time. It is possible to execute one in parallel.
  • the indexer robot 22 can newly access the container C and take out another substrate. .. Further, for example, after one substrate S is carried into the substrate processing unit 11A in step S103, the center robot 15 carries another substrate into another substrate processing unit, or is processed by another substrate processing unit. It is possible to carry out the board.
  • the processing on a plurality of boards can be performed in parallel by appropriately adjusting the operation sequence of each part of the device for processing each board S. And proceed. By doing so, it is possible to improve the processing throughput of the substrate processing apparatus 1 as a whole.
  • the specific operation sequence needs to be appropriately determined according to the processing specifications, the time required for each of the above steps, the possibility of simultaneous processing, and the like.
  • the purpose of the transfer process is to carry out the substrate S on which the liquid film LF is formed on the upper surface Sa from the substrate processing unit 11A and transfer it to the substrate processing unit 13A while maintaining the liquid film LF, that is, without exposing the upper surface Sa of the substrate. It is to be.
  • images captured by the CCD camera 351 provided in the substrate processing unit 11A and the CCD camera 157 provided in the center robot 15 are used.
  • FIG. 6 is a flowchart showing the first aspect of the transfer process.
  • the substrate S immediately after the liquid film forming process is imaged by the CCD camera 351 (step S201).
  • the liquid film LF formed by covering the upper surface Sa of the substrate is actually imaged. It is desirable that the entire liquid film LF covering the upper surface Sa of the substrate is captured in the image.
  • the captured image data is stored in the memory 92 of the control unit 90 as reference data.
  • the hand 155 of the center robot 15 enters the processing chamber 110 to hold the substrate S (step S202), and the hand 155 moves horizontally to start the transfer of the substrate S (step S203).
  • the liquid film LF of the upper surface Sa of the substrate is imaged at any time by the CCD camera 157 provided in the center robot 15 (step S204). It is desirable that the position, size, and elevation angle of the substrate S occupied in the image are the same between the image captured by the CCD camera 157 and the image captured by the CCD camera 351.
  • the image obtained by imaging is compared with the reference image captured first. That is, the difference between the image newly captured by the CCD camera 157 and the image captured by the CCD camera 351 in the processing chamber 110 is obtained (step S205).
  • the absolute value of the difference for each pixel between both images is integrated in the image, and it is determined whether or not there is a significant difference depending on whether or not the value exceeds a predetermined reference amount (threshold value). Can be done.
  • the difference in the thickness of the liquid film appears as a difference in the reflectance on the surface and the occurrence of interference fringes. Such a difference can be detected by obtaining the difference between the images.
  • the main changes that can occur in the liquid film during transportation are the shaking of the liquid level due to vibration and the decrease in the amount of liquid due to liquid falling or volatilization. For these, it is effective to replenish the substrate S with a low surface tension liquid. Therefore, when there is a significant change in the liquid film (YES in step S206), a predetermined amount of low surface tension liquid is replenished from the replenishment liquid nozzle 158 provided in the center robot 15 (step S207). This makes it possible to prevent the liquid film from breaking due to a decrease in the amount of liquid. If no significant change is observed (NO in step S206), no liquid replenishment is performed.
  • step S208 The above steps S204 to S207 are repeated until the substrate S reaches the target position, that is, the inside of the high-pressure chamber 130 of the substrate processing unit 13A (NO in step S208). Therefore, while the substrate S is transferred, the state of the liquid film LF is constantly monitored, and if necessary, the low surface tension liquid is replenished. As a result, the liquid film on the substrate S is stably maintained.
  • the target position is reached (YES in step S208)
  • the substrate S is transferred from the center robot 15 to the stage 41 in the high pressure chamber 130 (step S209), whereby the transfer of the substrate S is completed.
  • FIG. 7 is a flowchart showing the second aspect of the transfer process.
  • step S221 is provided instead of step S207 in the first aspect. Since the processing contents other than this are the same as those in the first aspect, the same processing is designated by the same reference numerals and the description thereof will be omitted.
  • step S221 executed in the second aspect instead of the liquid replenishment in the first aspect, the transfer speed of the substrate S by the center robot 15 is changed.
  • the liquid in a case where the low surface tension liquid drops from the substrate S due to vibration or sudden acceleration / deceleration, the liquid can be suppressed by transporting the substrate S more slowly. That is, in this case, the transport speed may be reduced.
  • the transport speed may be reduced.
  • the decrease in the amount of liquid due to the volatilization of the liquid appears as a decrease in the film thickness of the liquid film in the entire substrate S. In such a case, it is preferable to increase the transport speed and complete the transport in a shorter time.
  • the replenisher nozzle 158 can be omitted.
  • FIG. 8 is a flowchart showing a third aspect of the transfer process.
  • FIG. 9 is a flowchart showing a substrate processing operation including this transfer processing.
  • the operation itself of the substrate processing also needs to be modified due to the difference in the contents of the transfer processing.
  • the same reference numerals are given to the processes having the same contents as those described above, and the description thereof will be omitted.
  • an exception flag for differentiating the subsequent processes is set (step). S231). In this case, the transfer of the substrate S is interrupted.
  • step S121 for determining whether or not the exception flag is set is added after the transfer processing (step S106). If the flag is set (YES in step S121), the center robot 15 returns the substrate S to the wet processing unit 11A (step S122). At the same time, the exception flag is reset (step S123). Then, the liquid film forming process (step S105) is executed again in the wet processing unit 11A, and then the transfer process is executed again (step S106).
  • the liquid film LF on the substrate S is changed, the liquid film LF is reformed by the substrate processing unit 11A. If the exception flag is not set (NO in step S121), there is no significant change in the liquid film LF, so the drying process (step S107) is continuously executed. By doing so, it is possible to avoid being carried into the substrate processing unit 13A in a state where the liquid film LF is torn. That is, the substrate S can be transferred while the liquid film LF is stably maintained. In addition, also in this aspect, it is possible to omit the replenishment liquid nozzle 158 when it is carried out independently.
  • FIG. 10 is a flowchart showing a fourth aspect of the transfer process. Also in FIG. 10, the same contents as those of the transfer process shown in FIG. 6 are designated by the same reference numerals and the description thereof will be omitted.
  • the image of the liquid film is taken by the CCD camera 351 in step S201, the image is compared with the ideal image prepared in advance. That is, the difference between the captured image and the ideal image can be obtained (step S241).
  • the ideal image is an image corresponding to an ideal state in which the upper surface Sa of the substrate S is uniformly covered with a liquid film LF having a predetermined thickness.
  • This process is a process for verifying whether or not an appropriate liquid film LF is formed on the substrate S. That is, in the substrate S after the wet treatment, it may be difficult to form a uniform liquid film due to surface irregularities and changes in wettability as a result of the treatment. In particular, when the surface of the substrate after treatment has liquid repellency, it is difficult to support a uniform liquid film. In addition, an appropriate liquid film may not be formed from the beginning depending on the operation abnormality of the device configuration for forming the liquid film and the holding mode of the substrate S. By comparing the image of the substrate S immediately after the formation of the liquid film with the ideal image, such an abnormality can be detected immediately. Further, the liquid supply amount for forming the liquid film and the rotation speed of the substrate S may be adjusted based on the magnitude of the difference from the ideal image.
  • step S243 If there is a significant difference between the captured image and the ideal image (YES in step S242), the transfer process is stopped after an appropriate error process (step S243).
  • the content of the error processing is arbitrary, and for example, it is conceivable to notify the operator of the occurrence of an abnormality, display and output the image at this time, and the like. It is desirable that the processing on the substrate S in which the abnormality is detected is continued even if the processing is stopped.
  • step S2 If no abnormality is detected (NO in step S242), the transfer process after step S202 is executed using the captured image as a reference image.
  • the transfer process of the first aspect is executed, but the process of the second or third aspect may be executed.
  • a plurality of reference amounts may be set for the magnitude of the difference between the image captured by the CCD camera 157 and the reference image, and the subsequent processing may be changed depending on the magnitude of the difference.
  • the process shown in FIG. 10 may be partially modified as follows.
  • the liquid film LF is imaged by the CCD camera 351 in the processing chamber 110 at a plurality of different times between the time when the liquid film LF is formed on the substrate S and the time when the transfer is started.
  • liquid replenishment or appropriate error handling step S243. I do.
  • the images of a plurality of liquid films captured at different times from the formation of the liquid film LF on the substrate S to the end of the transfer are compared, and the result is obtained. Subsequent transport operations are determined accordingly. Therefore, the fluctuation of the liquid film due to vibration or volatilization during transportation can be detected without delay, and the transportation operation can be changed according to the situation. By doing so, in the present embodiment, it is possible to transport the substrate in a state where the liquid film is stably formed on the surface. As a result, it is possible to prevent the substrate surface from being exposed due to vibration during transportation, volatilization of the liquid, or the like.
  • the substrate processing unit 11A or the like which is a wet processing unit functions as the "first processing unit” of the present invention
  • the substrate processing unit 13A or the like which is a drying processing unit of the present invention. It functions as a "second processing unit”.
  • the center robot 15 functions as the "transport mechanism” of the present invention.
  • the processing chamber 110 functions as the "processing chamber” of the present invention.
  • the hand 155 functions as the "holding member” of the present invention.
  • the CCD cameras 157 and 351 function as the “second camera” and the “first camera” of the present invention, respectively, and these constitute the “imaging unit” of the present invention.
  • the replenisher liquid nozzle 158 functions as the "liquid supply mechanism” of the present invention.
  • the control unit 90 functions as the "control unit” of the present invention.
  • the image of the liquid film captured by the camera 351 immediately after the formation of the liquid film corresponds to the "pre-transport image" referred to in the present invention.
  • the substrate processing unit 11A, the substrate processing unit 13A, and the center robot 15 corresponding to the "first processing unit", the "second processing unit", and the "conveying mechanism" of the present invention are contained in one housing. It is housed in the box and constitutes an integrated processing system.
  • the present invention is also applicable to a processing system having a first processing unit and a second processing unit provided independently of each other and a transport mechanism for transporting a substrate between them.
  • the image of the liquid film captured by the CCD camera 351 in the processing chamber 110 is used as the reference image, but the reference image is not limited to this.
  • an image captured by the CCD camera 157 at the initial stage of transportation may be used as a reference image.
  • the CCD camera 351 in the processing chamber 110 is unnecessary for the purpose of observing the state of the liquid film during transportation.
  • the CCD camera 157 is configured to move integrally with the hand 155, the positional relationship between the substrate S held by the hand 155 and the CCD camera 157 does not change at each stage during transportation. According to such a configuration, mutual alignment is not required in comparison between images, and the accuracy of difference calculation can be further improved.
  • the CCD camera 157 is attached to the center robot 15 that moves together with the substrate S when the substrate S is conveyed.
  • the substrate S to be transported may be imaged by a camera fixedly provided at a position where the transport path of the substrate S can be seen.
  • the substrate S provided with a fine pattern it is not permissible to expose the surface of the substrate even for a short time in order to prevent the pattern from collapsing. Therefore, in this case, it is preferable to arrange a plurality of cameras on the transport path so that the liquid film transported together with the substrate S can be imaged at short time intervals.
  • a mechanism for making the camera follow the movement of the substrate S may be provided.
  • center robot 15 may be further provided with a configuration for receiving and collecting the liquid falling from the substrate S being conveyed.
  • the first processing unit forms a liquid film on the substrate in the processing chamber, and the imaging unit is in the processing chamber. It may be configured to have a first camera provided. According to such a configuration, it is possible to take an image of the liquid film immediately after formation, and for example, it is possible to evaluate the state of the liquid film after that with reference to the liquid film contained in this image.
  • the transport mechanism may have a holding member for holding the substrate
  • the imaging unit may have a second camera provided in the transport mechanism and moving together with the holding member.
  • control unit may differ in the time required for transportation from the first processing unit to the second processing unit depending on whether the difference obtained from a plurality of images exceeds a predetermined reference amount or not.
  • causes of change in the liquid film include vibration during transportation, sudden acceleration / deceleration, volatilization of liquid components, etc., and it may be possible to suppress the change in the liquid film by changing the transfer speed.
  • the transport mechanism has a liquid supply mechanism that supplies liquid to the substrate to be transported, and the control unit supplies the substrate to the liquid supply mechanism when the difference obtained from a plurality of images exceeds a predetermined reference amount. It may be configured to supply the liquid to the device. According to such a configuration, by replenishing the liquid constituting the liquid film as needed, it is possible to continue the transfer while maintaining the liquid film on the substrate. In particular, when the liquid film is made of a highly volatile material, the decrease in the thickness of the liquid film due to volatilization during transportation may cause the exposure of the substrate surface. This problem can be solved by providing a mechanism for replenishing the liquid in the transport portion.
  • the control unit causes the transport mechanism to return the substrate to the first processing unit, and the first processing unit reshaps the liquid film. It may be configured to allow. According to such a configuration, since the liquid film is reshaped in the first processing unit having the configuration necessary for forming the liquid film, it is not necessary to separately provide a configuration for replenishing the liquid during transportation. , It is possible to prevent the liquid film from breaking during transportation.
  • the liquid constituting the liquid film may be an organic solvent
  • the second processing unit may be configured to perform supercritical drying treatment on the substrate. Since the supercritical drying process is carried out under high pressure, a dedicated high pressure environment is required. In addition, parts that can withstand high pressure need to be used. Therefore, it is realistic that the wet treatment is performed in a place different from the wet treatment that can be performed under normal pressure. In such a case, it is necessary to transport the substrate after the wet treatment, but by applying the present invention, it is possible to transport the substrate without exposing the surface of the substrate. From the viewpoint of affinity with supercritical fluid, it is preferable to use an organic solvent for forming a liquid film, but a highly volatile organic solvent is easily lost during transportation. By observing the state of the liquid film by applying the present invention, it is possible to carry the substrate while reliably covering the surface of the substrate with the liquid film even in such a case.
  • the plurality of images may include a pre-transfer image captured before the substrate is started to be transferred by the transfer mechanism.
  • the control unit can determine whether or not to start the transfer of the substrate by the transfer mechanism based on the difference between the ideal image corresponding to the substrate in which the liquid film is ideally supported and the image before transfer. .. By doing so, it is possible to prevent the substrate from being transported without being covered with an appropriate liquid film.
  • the present invention can be applied to a general substrate processing technique in which a substrate is transported between processing units that execute different processes with the substrate surface covered with a liquid film. For example, it is suitable for a process of drying a substrate after a wet process by a supercritical drying process.
  • Substrate processing device 11A Wet processing unit, substrate processing unit (first processing unit) 13A Drying processing unit, substrate processing unit (second processing unit) 15 Center robot (conveyance mechanism) 90 Control unit (control unit) 110 Processing chamber (chamber) 130 High pressure chamber 155 Hand (holding member) 157 CCD camera (imaging unit, second camera) 351 CCD camera (imaging unit, first camera) 158 Replenisher liquid nozzle (liquid supply mechanism) LF liquid film S substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A substrate processing device 1 which transfers a substrate with a substrate surface coated with a liquid film is provided with: a first processing unit 11A which, in order to prevent exposure of the substrate surface due to vibrations, evaporation of liquid and the like during transfer, supplies a liquid to the substrate S and coats the substrate surface with a liquid film; a transfer mechanism 15 which transfers the substrate carrying the liquid film; a second processing unit 13A which receives the substrate transferred by the transfer mechanism and performs a predetermined process; an image capture unit 157 which captures an image of the liquid film formed on the substrate surface; and a control unit 90 which controls the operation of the transfer mechanism on the basis of a difference between a plurality of images captured by the image capture unit at mutually different times between when the liquid film was formed and when the substrate is loaded into the second processing unit by the transfer mechanism.

Description

基板処理装置およびその搬送制御方法Substrate processing equipment and its transfer control method
 この発明は、複数の処理部の間で基板を搬送する基板処理装置に関し、特に基板表面に液膜が形成された状態での搬送の制御に関するものである。 The present invention relates to a substrate processing apparatus for transporting a substrate between a plurality of processing units, and particularly to control of transport in a state where a liquid film is formed on the surface of the substrate.
 半導体基板や表示パネル用ガラス基板などの基板の製造プロセスにおいては、異なる処理をそれぞれ個別の処理部で実行するために、複数の処理部の間で基板の搬送が必要になる。この場合において、搬送中の基板表面の露出に起因する表面の酸化や、搬送経路上の浮遊物の基板表面への付着、さらには基板に形成された微細パターンの倒壊等の問題を未然に防止する必要がある。このため、基板の表面を液膜で覆った状態で搬送が行われるケースがある。 In the manufacturing process of substrates such as semiconductor substrates and glass substrates for display panels, it is necessary to transfer the substrates between multiple processing units in order to execute different processing in individual processing units. In this case, problems such as surface oxidation due to exposure of the substrate surface during transfer, adhesion of suspended matter on the transfer path to the substrate surface, and collapse of fine patterns formed on the substrate are prevented. There is a need to. For this reason, there are cases where the transfer is performed with the surface of the substrate covered with a liquid film.
 例えば、特許文献1に記載の従来技術では、それぞれ基板を液体により処理する処理システム間の搬送において、基板は、搬送トレイに溜められた液体に浸漬された状態で、あるいは上面全体に液盛りされた状態で搬送される。 For example, in the prior art described in Patent Document 1, in the transfer between processing systems in which the substrate is treated with a liquid, the substrate is immersed in the liquid stored in the transport tray or is filled on the entire upper surface. It is transported in a state of being.
特開2010-182817号公報JP-A-2010-182817
 基板の搬送においては、搬送経路上での加減速や振動、また液体の揮発による減少等に起因して、搬送中に基板表面の一部が周囲雰囲気に露出してしまうことがあり得る。このことは製品不良の原因となる。特に、微細パターンが形成された基板では、表面が露出することは直ちにパターン倒壊を引き起こすため、たとえ短時間であっても許容されるものではない。 In the transfer of the substrate, a part of the surface of the substrate may be exposed to the surrounding atmosphere during the transfer due to acceleration / deceleration and vibration on the transfer path, reduction due to volatilization of the liquid, and the like. This causes product defects. In particular, in a substrate on which a fine pattern is formed, exposure of the surface immediately causes pattern collapse, so even a short time is not acceptable.
 上記従来技術は、基板を搬送トレイに収容しているためある程度安定した搬送が期待されるが、上記のような振動、液体の揮発等に起因する一時的な基板表面の露出まで防止する機能を有するものではない。 In the above-mentioned conventional technique, since the substrate is housed in the transport tray, stable transport is expected to some extent, but the function of preventing the temporary exposure of the substrate surface due to the vibration, volatilization of liquid, etc. I don't have it.
 この発明は上記課題に鑑みなされたものであり、基板表面を液膜で覆った状態で基板を搬送する基板処理装置において、搬送中の振動や液体の揮発等に起因する基板表面の露出を防止することのできる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and in a substrate processing apparatus that conveys a substrate with the substrate surface covered with a liquid film, it prevents the substrate surface from being exposed due to vibration during transportation, volatilization of liquid, or the like. The purpose is to provide a technology that can be used.
 この発明に係る基板処理装置の一の態様は、上記目的を達成するため、基板に液体を供給して前記基板の表面を液膜で覆う第1処理部と、前記液膜を担持する前記基板を搬送する搬送機構と、前記搬送機構により搬送される前記基板を受け入れて所定の処理を実行する第2処理部と、前記基板の表面に形成された前記液膜を撮像する撮像部と、前記液膜が形成されてから前記搬送機構により前記基板が前記第2処理部へ搬入されるまでの間の互いに異なる時刻にそれぞれ前記撮像部により撮像された複数の画像の差に基づき、前記搬送機構の動作を制御する制御部とを備えている。 In one aspect of the substrate processing apparatus according to the present invention, in order to achieve the above object, a first processing unit that supplies a liquid to the substrate and covers the surface of the substrate with a liquid film, and the substrate that supports the liquid film. A transport mechanism that transports the liquid film, a second processing unit that receives the substrate transported by the transport mechanism and executes a predetermined process, an imaging unit that images the liquid film formed on the surface of the substrate, and the above. The transport mechanism is based on the difference between a plurality of images captured by the imaging unit at different times from the formation of the liquid film to the delivery of the substrate to the second processing unit by the transfer mechanism. It is equipped with a control unit that controls the operation of.
 また、この発明の他の一の態様は、基板に液体を供給して前記基板の表面を液膜で覆う第1処理部と、前記液膜を担持する前記基板を受け入れて所定の処理を実行する第2処理部と、前記第1処理部と前記第2処理部との間で前記基板を搬送する搬送機構とを有する基板処理装置の搬送制御方法において、上記目的を達成するため、前記液膜が形成されてから前記基板が前記第2処理部へ搬入されるまでの間の互いに異なる時刻にそれぞれ前記液膜を撮像し、撮像された複数の画像の差に基づき、前記搬送機構の動作を制御する。 Further, in another aspect of the present invention, a first processing unit that supplies a liquid to the substrate and covers the surface of the substrate with a liquid film and the substrate that supports the liquid film are received and a predetermined process is executed. In order to achieve the above object, the liquid is used in a transfer control method for a substrate processing apparatus having a second processing unit and a transfer mechanism for transporting the substrate between the first processing unit and the second processing unit. The liquid film is imaged at different times from the time the film is formed until the substrate is carried into the second processing unit, and the operation of the transport mechanism is based on the difference between the plurality of images captured. To control.
 このように構成された発明では、搬送中の基板表面の液膜が撮像され、異なる時刻に撮像された画像間の差に基づき搬送機構の動作が制御される。このため、基板表面の液膜の状態の変化を検知し、それを搬送制御に反映させることが可能である。例えば、振動を低減するために搬送速度を抑制したり、液膜の厚さが低下すれば液体を補充したりすることが可能である。これにより、基板表面を安定的に液膜で覆った状態で搬送することができ、基板表面の露出を防止することができる。 In the invention configured in this way, the liquid film on the surface of the substrate being transported is imaged, and the operation of the transport mechanism is controlled based on the difference between the images captured at different times. Therefore, it is possible to detect a change in the state of the liquid film on the substrate surface and reflect it in the transfer control. For example, it is possible to suppress the transport speed in order to reduce vibration, or to replenish the liquid if the thickness of the liquid film is reduced. As a result, the substrate surface can be stably covered with the liquid film and transported, and the substrate surface can be prevented from being exposed.
 上記のように、本発明によれば、搬送中の基板表面の液膜を撮像しその変化を搬送制御に反映させるので、基板表面の液膜を安定させた状態で基板を搬送することが可能である。これにより、搬送中の振動や液体の揮発等に起因する基板表面の露出を防止することができる。 As described above, according to the present invention, since the liquid film on the surface of the substrate being conveyed is imaged and the change is reflected in the transfer control, the substrate can be conveyed in a stable state of the liquid film on the surface of the substrate. Is. This makes it possible to prevent the substrate surface from being exposed due to vibration during transportation, volatilization of the liquid, or the like.
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。 The above and other objectives and novel features of the present invention will become more completely apparent by reading the following detailed description with reference to the accompanying drawings. However, the drawings are for illustration purposes only and do not limit the scope of the invention.
本発明に係る基板処理装置の一実施形態の概略構成を示す図である。It is a figure which shows the schematic structure of one Embodiment of the substrate processing apparatus which concerns on this invention. 本発明に係る基板処理装置の一実施形態の概略構成を示す図である。It is a figure which shows the schematic structure of one Embodiment of the substrate processing apparatus which concerns on this invention. センターロボットの構成および設置環境を示す図である。It is a figure which shows the structure and installation environment of a center robot. 湿式処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs a wet process. 湿式処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs a wet process. 超臨界乾燥処理を実行する基板処理ユニットを示す図である。It is a figure which shows the substrate processing unit which performs supercritical drying processing. この基板処理装置の動作を示すフローチャートである。It is a flowchart which shows the operation of this substrate processing apparatus. 移送処理の第1の態様を示すフローチャートである。It is a flowchart which shows the 1st aspect of the transfer process. 移送処理の第2の態様を示すフローチャートである。It is a flowchart which shows the 2nd aspect of the transfer process. 移送処理の第3の態様を示すフローチャートである。It is a flowchart which shows the 3rd mode of the transfer process. 第3の態様の移送処理を含む基板処理動作を示すフローチャートである。It is a flowchart which shows the substrate processing operation including the transfer process of the 3rd aspect. 移送処理の第4の態様を示すフローチャートである。It is a flowchart which shows the 4th aspect of the transfer process.
 図1Aおよび図1Bは本発明に係る基板処理装置の一実施形態の概略構成を示す図である。より具体的には、図1Aは本発明の一実施形態である基板処理装置1を示す平面図であり、図1Bは基板処理装置1を示す側面図である。なお、これらの図は装置の外観を示すものではなく、装置の外壁パネルやその他の一部構成を除外することで、その内部構造をわかりやすく示した模式図である。この基板処理装置1は、例えばクリーンルーム内に設置されて、基板に対し所定の処理を施すための装置である。 1A and 1B are diagrams showing a schematic configuration of an embodiment of a substrate processing apparatus according to the present invention. More specifically, FIG. 1A is a plan view showing a substrate processing apparatus 1 according to an embodiment of the present invention, and FIG. 1B is a side view showing a substrate processing apparatus 1. It should be noted that these figures do not show the appearance of the device, but are schematic views showing the internal structure of the device in an easy-to-understand manner by excluding the outer wall panel of the device and other partial configurations. The substrate processing device 1 is, for example, an apparatus installed in a clean room for performing a predetermined process on a substrate.
 ここで、本実施形態における「基板」としては、半導体基板、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板を適用可能である。以下では主として半導体基板の処理に用いられる基板処理装置を例に採って図面を参照して説明する。しかしながら、上に例示した各種の基板の処理にも同様に適用可能である。 Here, the "board" in the present embodiment includes a semiconductor substrate, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for plasma display, a substrate for FED (Field Emission Display), a substrate for an optical disk, and a magnetic disk. Various substrates such as substrates and substrates for photomagnetic disks can be applied. In the following, a substrate processing apparatus mainly used for processing a semiconductor substrate will be described as an example with reference to the drawings. However, it is also applicable to the processing of various substrates exemplified above.
 図1Aに示すように、基板処理装置1は、基板Sに対して処理を施す基板処理部10と、この基板処理部10に結合されたインデクサ部20とを備えている。インデクサ部20は、容器保持部21とインデクサロボット22とを備えている。インデクサ部20は、基板Sを収容するための容器C複数個保持することができる。容器Cとしては、複数の基板Sを密閉した状態で収容するFOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Interface)ポッド、OC(Open Cassette)などを用いることができる。インデクサロボット22は、容器保持部21に保持された容器Cにアクセスして、未処理の基板Sを容器Cから取り出したり、処理済みの基板を容器Cに収納したりする。各容器Cには、複数枚の基板Sがほぼ水平な姿勢で収容されている。 As shown in FIG. 1A, the substrate processing apparatus 1 includes a substrate processing unit 10 that processes the substrate S, and an indexer unit 20 that is coupled to the substrate processing unit 10. The indexer unit 20 includes a container holding unit 21 and an indexer robot 22. The indexer unit 20 can hold a plurality of containers C for accommodating the substrate S. As the container C, a FOUP (Front Opening Unified Pod), a SMIF (Standard Mechanical Interface) pod, an OC (Open Cassette), or the like that accommodates a plurality of substrates S in a sealed state can be used. The indexer robot 22 accesses the container C held by the container holding portion 21 to take out the unprocessed substrate S from the container C or store the processed substrate in the container C. A plurality of substrates S are housed in each container C in a substantially horizontal posture.
 インデクサロボット22は、ベース部221と、多関節アーム222と、ハンド223とを備える。ベース部221は装置筐体に固定されている。多関節アーム222は、ベース部221に対し鉛直軸周りに回動可能に設けられる。多関節アーム222の先端に、ハンド223が取り付けられる。ハンド223はその上面に基板Sを載置して保持することができる構造となっている。このような多関節アームおよび基板保持用のハンドを有するインデクサロボットは公知であるので詳しい説明を省略する。 The indexer robot 22 includes a base portion 221, an articulated arm 222, and a hand 223. The base portion 221 is fixed to the device housing. The articulated arm 222 is rotatably provided around a vertical axis with respect to the base portion 221. The hand 223 is attached to the tip of the articulated arm 222. The hand 223 has a structure in which the substrate S can be placed and held on the upper surface thereof. Since an indexer robot having such an articulated arm and a hand for holding a substrate is known, detailed description thereof will be omitted.
 基板処理部10は、平面視においてほぼ中央に配置されたセンターロボット15と、このセンターロボット15を取り囲むように配置された複数の基板処理ユニットとを備えている。具体的には、センターロボット15が配置された空間に面して複数の(この例では4つの)基板処理ユニット11A,12A,13A,14Aが配置されている。これらの基板処理ユニット11A~14Aは、それぞれ基板Sに対して所定の処理を実行するものである。これらの処理ユニットを同一の機能のものとした場合には、複数基板の並列処理が可能となる。また、機能の異なる処理ユニットを組み合わせて、1つの基板に対し異なる処理を順番に実行するように構成することもできる。 The substrate processing unit 10 includes a center robot 15 arranged substantially in the center in a plan view, and a plurality of substrate processing units arranged so as to surround the center robot 15. Specifically, a plurality of (four in this example) substrate processing units 11A, 12A, 13A, and 14A are arranged facing the space in which the center robot 15 is arranged. Each of these substrate processing units 11A to 14A executes a predetermined process on the substrate S. When these processing units have the same function, parallel processing of a plurality of boards becomes possible. It is also possible to combine processing units having different functions so that different processes are sequentially executed on one substrate.
 後述するように、この実施形態の基板処理装置1は、基板Sを所定の処理液により湿式処理した後、基板Sを乾燥させるという一連の処理に使用される。この目的のために、4つの基板処理ユニットのうち2つの基板処理ユニット11A,12Aは、基板Sに対する湿式処理を担い、これを可能とするための構成を内部に備えている。また、他の2つの基板処理ユニット13A,14Aは、湿式処理後の基板Sから残存液を除去し基板Sを乾燥させる処理(乾燥処理)を担い、これを可能とするための構成を内部に備えている。 As will be described later, the substrate processing apparatus 1 of this embodiment is used for a series of treatments in which the substrate S is wet-treated with a predetermined treatment liquid and then the substrate S is dried. For this purpose, two of the four substrate processing units, 11A and 12A, are responsible for wet processing on the substrate S, and internally have a configuration for enabling this. Further, the other two substrate processing units 13A and 14A carry out a process (drying process) of removing the residual liquid from the substrate S after the wet process and drying the substrate S, and internally have a configuration for enabling this. I have.
 各基板処理ユニット11A~14Aでは、基板Sに対する処理を実行する基板処理主体が、センターロボット15に面する側面に開閉自在のシャッターが設けられた処理チャンバ内に収容されている。すなわち、基板処理ユニット11Aは、処理チャンバ110と、処理チャンバ110のうちセンターロボット15に面する側面に設けられたシャッター111とを有する。シャッター111は処理チャンバ110のセンターロボット15に面する側面に設けられた開口部(不図示)を覆うように設けられている。シャッター111が開かれると開口部が露出し、該開口部を介して基板Sの搬入および搬出が可能となる。また、処理チャンバ110内で基板Sに対する処理が実行される際には、シャッター111が閉じられることで、処理チャンバ110内の雰囲気が外部から遮断される。 In each of the substrate processing units 11A to 14A, the substrate processing main body that executes the processing on the substrate S is housed in a processing chamber provided with an openable / closable shutter on the side surface facing the center robot 15. That is, the substrate processing unit 11A has a processing chamber 110 and a shutter 111 provided on the side surface of the processing chamber 110 facing the center robot 15. The shutter 111 is provided so as to cover an opening (not shown) provided on the side surface of the processing chamber 110 facing the center robot 15. When the shutter 111 is opened, the opening is exposed, and the substrate S can be carried in and out through the opening. Further, when the processing for the substrate S is executed in the processing chamber 110, the shutter 111 is closed to block the atmosphere in the processing chamber 110 from the outside.
 同様に、基板処理ユニット12Aは、処理チャンバ120と、処理チャンバ120のうちセンターロボット15に面する側面に設けられたシャッター121とを有する。また、基板処理ユニット13Aは、処理チャンバ130と、処理チャンバ130のうちセンターロボット15に面する側面に設けられたシャッター131とを有する。また、基板処理ユニット14Aは、処理チャンバ140と、処理チャンバ140のうちセンターロボット15に面する側面に設けられたシャッター141とを有する。 Similarly, the substrate processing unit 12A has a processing chamber 120 and a shutter 121 provided on the side surface of the processing chamber 120 facing the center robot 15. Further, the substrate processing unit 13A has a processing chamber 130 and a shutter 131 provided on a side surface of the processing chamber 130 facing the center robot 15. Further, the substrate processing unit 14A has a processing chamber 140 and a shutter 141 provided on the side surface of the processing chamber 140 facing the center robot 15.
 そして、このように水平方向に配置された基板処理ユニットのセットが上下方向に複数段(この例では2段)配置されている。すなわち、図1Bに示すように、基板処理ユニット11Aの下方には基板処理ユニット11Bが設けられている。基板処理ユニット11Bの構成および機能は、基板処理ユニット11Aと同じである。また、基板処理ユニット12Aの下方には、基板処理ユニット12Aと同一構成、同一機能の基板処理ユニット12Bが設けられている。同様に、基板処理ユニット13Aの下部にも基板処理ユニット13B(図2)が、また基板処理ユニット14Aの下部にも不図示の基板処理ユニットが設けられる。なお、基板処理ユニットの段数は、ここに例示する2に限定されず任意である。また1段当たりの基板処理ユニットの配設数も上記に限定されない。 Then, a set of substrate processing units arranged in the horizontal direction in this way is arranged in a plurality of stages (two stages in this example) in the vertical direction. That is, as shown in FIG. 1B, the substrate processing unit 11B is provided below the substrate processing unit 11A. The configuration and function of the substrate processing unit 11B are the same as those of the substrate processing unit 11A. Further, below the substrate processing unit 12A, a substrate processing unit 12B having the same configuration and the same function as the substrate processing unit 12A is provided. Similarly, a substrate processing unit 13B (FIG. 2) is provided below the substrate processing unit 13A, and a substrate processing unit (not shown) is also provided below the substrate processing unit 14A. The number of stages of the substrate processing unit is not limited to 2 illustrated here and is arbitrary. Further, the number of substrate processing units arranged per stage is not limited to the above.
 図2はセンターロボットの構成および設置環境を示す図である。センターロボット15は、インデクサロボット22から未処理の基板Sを受け取ることができ、かつ処理済みの基板Sをインデクサロボット22に受け渡すことができる。より具体的には、センターロボット15は、基台部151と、昇降部152と、回転部153と、伸縮アーム154と、ハンド155とを備えている。基台部151は、基板処理部10の底部フレームに固定されており、センターロボット15の各構成を支持している。昇降部152は基台部151に取り付けられ、昇降部152の上部に回転部153が取り付けられている。昇降部152は鉛直方向に伸縮自在となっており、この伸縮運動により回転部153を昇降させる。 FIG. 2 is a diagram showing the configuration and installation environment of the center robot. The center robot 15 can receive the unprocessed substrate S from the indexer robot 22, and can deliver the processed substrate S to the indexer robot 22. More specifically, the center robot 15 includes a base portion 151, an elevating portion 152, a rotating portion 153, a telescopic arm 154, and a hand 155. The base portion 151 is fixed to the bottom frame of the substrate processing portion 10 and supports each configuration of the center robot 15. The elevating portion 152 is attached to the base portion 151, and the rotating portion 153 is attached to the upper part of the elevating portion 152. The elevating part 152 can be expanded and contracted in the vertical direction, and the rotating part 153 is moved up and down by this expansion and contraction movement.
 回転部153は、昇降部152に対して鉛直軸周りに回動可能となっている。回転部153には伸縮アーム154の基部が取り付けられ、伸縮アーム154の先端部にハンド155が取り付けられている。伸縮アーム154は水平方向に所定の範囲で伸縮する。ハンド155は、その上面に基板Sを載置して保持することができ、しかも、インデクサロボット22のハンド223との間で基板Sの受け渡しが可能な構造となっている。このような構造のハンド機構は公知であるので、詳しい説明を省略する。 The rotating portion 153 is rotatable around a vertical axis with respect to the elevating portion 152. The base of the telescopic arm 154 is attached to the rotating portion 153, and the hand 155 is attached to the tip of the telescopic arm 154. The telescopic arm 154 expands and contracts in a predetermined range in the horizontal direction. The hand 155 has a structure in which the substrate S can be placed and held on the upper surface thereof, and the substrate S can be delivered to and from the hand 223 of the indexer robot 22. Since a hand mechanism having such a structure is known, detailed description thereof will be omitted.
 伸縮アーム154が水平方向に伸縮することで、ハンド155に保持した基板Sを水平方向に移動させることができる。また、回転部153が昇降部152に対し回動することで、基板Sの水平移動の方向を規定することができる。また、昇降部152が回転部153を昇降させることで、基板Sの高さ、すなわち鉛直方向位置を調整することができる。 By expanding and contracting the telescopic arm 154 in the horizontal direction, the substrate S held by the hand 155 can be moved in the horizontal direction. Further, the direction of horizontal movement of the substrate S can be defined by rotating the rotating portion 153 with respect to the elevating portion 152. Further, the height of the substrate S, that is, the vertical position can be adjusted by raising and lowering the rotating portion 153 by the elevating portion 152.
 回転部153には、上向きに延びる支持部材156が取り付けられている。ハンド155の伸縮と干渉しないように、支持部材156は、回転部153の側面で伸縮アーム154の伸長方向とは反対側に取り付けられている。支持部材156の上端にはCCDカメラ157が取り付けられている。CCDカメラ157の光軸方向は水平方向から少し下方を向いており、ハンド155に保持された基板Sを斜め上方から俯瞰して撮像視野に収めている。これにより、基板Sの上面が撮像される。撮像データは制御ユニット90に送信される。 A support member 156 extending upward is attached to the rotating portion 153. The support member 156 is attached to the side surface of the rotating portion 153 on the side surface opposite to the extension direction of the expansion / contraction arm 154 so as not to interfere with the expansion / contraction of the hand 155. A CCD camera 157 is attached to the upper end of the support member 156. The optical axis direction of the CCD camera 157 is slightly downward from the horizontal direction, and the substrate S held by the hand 155 is viewed from diagonally above and captured in the imaging field of view. As a result, the upper surface of the substrate S is imaged. The imaging data is transmitted to the control unit 90.
 また、回転部153には補充液ノズル158が設けられている。補充液ノズル158はハンド155に保持される基板Sの上方で下向きに開口している。補充液ノズル158は図示しない低表面張力液供給部(後述)に接続されており、必要に応じて低表面張力液供給部から供給される低表面張力液を基板Sに供給する。 Further, the rotating portion 153 is provided with a replenishing liquid nozzle 158. The replenisher nozzle 158 opens downward above the substrate S held by the hand 155. The replenisher liquid nozzle 158 is connected to a low surface tension liquid supply unit (described later) (not shown), and supplies the low surface tension liquid supplied from the low surface tension liquid supply unit to the substrate S as needed.
 上記のように構成された基板処理装置1では、次のようにして基板Sに対する処理が実行される。初期状態では、容器保持部21に載置された容器Cに未処理の基板Sが収容されている。インデクサロボット22は、容器Cから1枚の未処理基板Sを取り出してセンターロボット15に受け渡す。センターロボット15は、受け取った基板Sを、当該基板Sに対する処理を実行する基板処理ユニットに搬入する。 In the substrate processing apparatus 1 configured as described above, the processing for the substrate S is executed as follows. In the initial state, the untreated substrate S is housed in the container C placed on the container holding portion 21. The indexer robot 22 takes out one unprocessed substrate S from the container C and hands it over to the center robot 15. The center robot 15 carries the received substrate S into a substrate processing unit that executes processing on the substrate S.
 例えば基板処理ユニット11Aに基板Sを搬入する場合、図2に示すように、センターロボット15は、昇降部152により回転部153の高さを調整して、ハンド155に保持した基板Sを基板処理ユニット11Aの処理チャンバ110側面のシャッター111の高さに位置決めする。シャッター111が開かれ、伸縮アーム154が処理チャンバ110側面の開口部に向かって伸長することで、基板Sが処理チャンバ110へ搬入される。伸縮アーム154が退避した後、シャッター111が閉じられて、処理チャンバ110内で基板Sに対する処理が実行される。他の基板処理ユニットへの基板Sの搬入も同様にして行うことができる。 For example, when the substrate S is carried into the substrate processing unit 11A, as shown in FIG. 2, the center robot 15 adjusts the height of the rotating portion 153 by the elevating portion 152 to process the substrate S held by the hand 155. Positioned at the height of the shutter 111 on the side surface of the processing chamber 110 of the unit 11A. When the shutter 111 is opened and the telescopic arm 154 extends toward the opening on the side surface of the processing chamber 110, the substrate S is carried into the processing chamber 110. After the telescopic arm 154 is retracted, the shutter 111 is closed and the processing on the substrate S is executed in the processing chamber 110. The substrate S can be carried into another substrate processing unit in the same manner.
 一方、基板処理ユニット11Aから処理済みの基板Sを取り出す際には、シャッター111が開かれた処理チャンバ110に伸縮アーム154が進入して処理済みの基板Sを取り出す。取り出された基板Sについては、他の基板処理ユニットに搬入されて新たな処理が実行されてもよく、またインデクサロボット22を介して容器Cに戻されてもよい。この実施形態における具体的な処理シーケンスについては後に詳しく説明する。 On the other hand, when the processed substrate S is taken out from the substrate processing unit 11A, the telescopic arm 154 enters the processing chamber 110 in which the shutter 111 is opened and the processed substrate S is taken out. The taken-out substrate S may be carried into another substrate processing unit to execute a new process, or may be returned to the container C via the indexer robot 22. The specific processing sequence in this embodiment will be described in detail later.
 図2に示すように、センターロボット15は、側方および上方が隔壁101により外部空間から隔てられた搬送空間TSに設置されている。基板処理ユニット11Aは、処理チャンバ110のシャッター111が設けられた側面を搬送空間TSに臨ませて隔壁101の側部に取り付けられている。他の基板処理ユニットも同様である。 As shown in FIG. 2, the center robot 15 is installed in the transport space TS whose sides and upper side are separated from the external space by the partition wall 101. The substrate processing unit 11A is attached to the side portion of the partition wall 101 so that the side surface of the processing chamber 110 provided with the shutter 111 faces the transport space TS. The same applies to other substrate processing units.
 上記の他、基板処理装置1には、装置各部の動作を制御するための制御ユニット90が設けられている。制御ユニット90は、少なくともCPU(Central Processing Unit)91と、メモリ92とを含む。CPU91は、予め用意された制御プログラムを実行することで、装置各部に所定の動作を実行させる。また、メモリ92は、CPU91が実行すべき制御プログラムや、その実行により生じるデータ等を記憶する。上記したインデクサロボット22およびセンターロボット15の動作、各処理チャンバにおけるシャッターの開閉や基板Sに対する各種処理等に関わる動作は、制御プログラムを実行するCPU91によって制御される。 In addition to the above, the substrate processing device 1 is provided with a control unit 90 for controlling the operation of each part of the device. The control unit 90 includes at least a CPU (Central Processing Unit) 91 and a memory 92. The CPU 91 causes each part of the device to execute a predetermined operation by executing a control program prepared in advance. Further, the memory 92 stores a control program to be executed by the CPU 91, data generated by the execution, and the like. The operations of the indexer robot 22 and the center robot 15 described above, the operations related to the opening and closing of the shutter in each processing chamber, various processing on the substrate S, and the like are controlled by the CPU 91 that executes the control program.
 図3Aおよび図3Bは湿式処理を実行する基板処理ユニットを示す図である。より具体的には、図3Aは基板処理ユニット11Aの構成を示す図であり、図3Bは基板処理ユニット11Aの動作を説明するための図である。ここでは基板処理ユニット11Aの構成について説明するが、湿式処理を実行する他の基板処理ユニット11B,12A等の構成も基本的に同じである。 3A and 3B are diagrams showing a substrate processing unit that performs wet processing. More specifically, FIG. 3A is a diagram showing the configuration of the substrate processing unit 11A, and FIG. 3B is a diagram for explaining the operation of the substrate processing unit 11A. Although the configuration of the substrate processing unit 11A will be described here, the configurations of the other substrate processing units 11B, 12A and the like that execute the wet processing are basically the same.
 基板処理ユニット11Aは、基板処理主体としての湿式処理部30を処理チャンバ110内に備えている。湿式処理部30は、基板Sの上面に処理液を供給して基板Sの表面処理や洗浄等を行う。また、湿式処理後に搬出される基板Sの上面が周囲雰囲気に露出するのを防止するために、湿式処理部30は、湿式処理後の基板Sの上面を低表面張力液の液膜で覆う、液膜形成処理を併せて実行する。 The substrate processing unit 11A includes a wet processing unit 30 as a substrate processing main body in the processing chamber 110. The wet treatment unit 30 supplies a treatment liquid to the upper surface of the substrate S to perform surface treatment, cleaning, and the like of the substrate S. Further, in order to prevent the upper surface of the substrate S carried out after the wet treatment from being exposed to the surrounding atmosphere, the wet treatment unit 30 covers the upper surface of the substrate S after the wet treatment with a liquid film of a low surface tension liquid. The liquid film formation process is also performed.
 この目的のために、湿式処理部30は、基板保持部31、スプラッシュガード32、処理液供給部33および低表面張力液供給部34を備えている。これらの動作は制御ユニット90により制御される。基板保持部31は、基板Sとほぼ同等の直径を有する円板状のスピンチャック311を有し、スピンチャック311の周縁部には複数のチャックピン312が設けられている。チャックピン312が基板Sの周縁部に当接して基板Sを支持することにより、スピンチャック311はその上面から離間させた状態で基板Sを水平姿勢に保持することができる。 For this purpose, the wet processing unit 30 includes a substrate holding unit 31, a splash guard 32, a processing liquid supply unit 33, and a low surface tension liquid supply unit 34. These operations are controlled by the control unit 90. The substrate holding portion 31 has a disk-shaped spin chuck 311 having a diameter substantially equal to that of the substrate S, and a plurality of chuck pins 312 are provided on the peripheral edge of the spin chuck 311. When the chuck pin 312 abuts on the peripheral edge of the substrate S to support the substrate S, the spin chuck 311 can hold the substrate S in a horizontal posture while being separated from the upper surface thereof.
 スピンチャック311は、その下面中央部から下向きに延びる回転支軸313により上面が水平となるように支持されている。回転支軸313は、処理チャンバ110の底部に取り付けられた回転機構314により回転自在に支持されている。回転機構314は、図示しない回転モータを内蔵しており、制御ユニット90からの制御指令に応じて回転モータが回転することで、回転支軸313に直結されたスピンチャック311が1点鎖線で示す鉛直軸周りに回転する。図3Aおよび図3Bにおいては上下方向が鉛直方向である。これにより、基板Sが水平姿勢のまま鉛直軸周りに回転される。 The spin chuck 311 is supported so that the upper surface is horizontal by a rotary support shaft 313 extending downward from the central portion of the lower surface thereof. The rotary support shaft 313 is rotatably supported by a rotary mechanism 314 attached to the bottom of the processing chamber 110. The rotation mechanism 314 has a built-in rotation motor (not shown), and when the rotation motor rotates in response to a control command from the control unit 90, the spin chuck 311 directly connected to the rotation support shaft 313 is indicated by a one-point chain line. Rotate around the vertical axis. In FIGS. 3A and 3B, the vertical direction is the vertical direction. As a result, the substrate S is rotated around the vertical axis while maintaining the horizontal posture.
 基板保持部31を側方から取り囲むように、スプラッシュガード32が設けられる。スプラッシュガード32は、スピンチャック311の周縁部を覆うように設けられた概略筒状のカップ321と、カップ321の外周部の下方に設けられた液受け部322とを有している。カップ321は制御ユニット90からの制御指令に応じて昇降する。カップ321は、図3Aに示すようにカップ321の上端部がスピンチャック311に保持された基板Sの周縁部よりも下方まで下降した下方位置と、図3Bに示すようにカップ321の上端部が基板Sの周縁部よりも上方に位置する上方位置との間で昇降移動する。 A splash guard 32 is provided so as to surround the substrate holding portion 31 from the side. The splash guard 32 has a substantially tubular cup 321 provided so as to cover the peripheral edge portion of the spin chuck 311 and a liquid receiving portion 322 provided below the outer peripheral portion of the cup 321. The cup 321 moves up and down in response to a control command from the control unit 90. The cup 321 has a lower position in which the upper end of the cup 321 is lowered below the peripheral edge of the substrate S held by the spin chuck 311 as shown in FIG. 3A and an upper end of the cup 321 as shown in FIG. 3B. It moves up and down with and from an upper position located above the peripheral edge of the substrate S.
 カップ321が下方位置にあるときには、図3Aに示すように、スピンチャック311に保持される基板Sがカップ321外に露出した状態になっている。このため、例えばスピンチャック311への基板Sの搬入および搬出時にカップ321が障害となることが防止される。 When the cup 321 is in the lower position, as shown in FIG. 3A, the substrate S held by the spin chuck 311 is exposed to the outside of the cup 321. Therefore, for example, it is possible to prevent the cup 321 from becoming an obstacle when the substrate S is carried in and out of the spin chuck 311.
 また、カップ321が上方位置にあるときには、図3Bに示すように、スピンチャック311に保持される基板Sの周縁部を取り囲むことになる。これにより、後述する液供給時に基板Sの周縁部から振り切られる処理液が処理チャンバ110内に飛散することが防止され、処理液を確実に回収することが可能となる。すなわち、基板Sが回転することで基板Sの周縁部から振り切られる処理液の液滴はカップ321の内壁に付着して下方へ流下し、カップ321の下方に配置された液受け部322により集められて回収される。複数の処理液を個別に回収するために、複数段のカップが同心に設けられてもよい。 Further, when the cup 321 is in the upper position, as shown in FIG. 3B, it surrounds the peripheral edge portion of the substrate S held by the spin chuck 311. As a result, the processing liquid that is shaken off from the peripheral edge of the substrate S when the liquid is supplied, which will be described later, is prevented from being scattered in the processing chamber 110, and the processing liquid can be reliably recovered. That is, the droplets of the processing liquid that are shaken off from the peripheral edge of the substrate S by the rotation of the substrate S adhere to the inner wall of the cup 321 and flow downward, and are collected by the liquid receiving portion 322 arranged below the cup 321. It is collected. In order to collect the plurality of treatment liquids individually, a plurality of stages of cups may be provided concentrically.
 処理液供給部33は、処理チャンバ110に固定されたベース331に対し回動支軸332が回動自在に設けられ、さらに、回動支軸332から水平に伸びるアーム333の先端にノズル334が取り付けられた構造を有している。回動支軸332が制御ユニット90からの制御指令に応じて回動することによりアーム333が揺動する。これにより、アーム333先端のノズル334が、図3Aに示すように基板Sの上方から側方へ退避した退避位置と、図3Bに示すように基板S上方の処理位置との間を移動する。 In the processing liquid supply unit 33, a rotation support shaft 332 is rotatably provided with respect to a base 331 fixed to the processing chamber 110, and a nozzle 334 is further provided at the tip of an arm 333 extending horizontally from the rotation support shaft 332. It has an attached structure. The arm 333 swings as the rotation support shaft 332 rotates in response to a control command from the control unit 90. As a result, the nozzle 334 at the tip of the arm 333 moves between the retracted position retracted from above the substrate S to the side as shown in FIG. 3A and the processing position above the substrate S as shown in FIG. 3B.
 ノズル334は、制御ユニット90に設けられた処理液供給部(図示省略)に接続されている。処理液供給部から適宜の処理液が送出されると、ノズル334から基板Sに向けて処理液が吐出される。図3Bに示すように、スピンチャック311が比較的低速で回転することで基板Sを回転させながら、基板Sの回転中心の上方に位置決めされたノズル33が処理液Lqを供給する。これにより、基板Sの上面Saが処理液Lqにより処理される。処理液Lqとしては、現像液、エッチング液、洗浄液、リンス液等の各種の機能を有する液体を用いることができ、その組成は任意である。また複数種の処理液が組み合わされて処理が実行されてもよい。 The nozzle 334 is connected to a processing liquid supply unit (not shown) provided in the control unit 90. When an appropriate treatment liquid is delivered from the treatment liquid supply unit, the treatment liquid is discharged from the nozzle 334 toward the substrate S. As shown in FIG. 3B, the spin chuck 311 rotates at a relatively low speed to rotate the substrate S, and the nozzle 33 positioned above the rotation center of the substrate S supplies the processing liquid Lq. As a result, the upper surface Sa of the substrate S is treated with the treatment liquid Lq. As the treatment liquid Lq, a liquid having various functions such as a developing solution, an etching solution, a cleaning solution, and a rinsing solution can be used, and the composition thereof is arbitrary. Further, the treatment may be executed by combining a plurality of types of treatment liquids.
 低表面張力液供給部34も、処理液供給部33と対応する構成を有している。すなわち、低表面張力液供給部34は、ベース341、回動支軸342、アーム343、ノズル344等を有しており、これらの構成は、処理液供給部33において対応するものと同等である。回動支軸342が制御ユニット90からの制御指令に応じて回動することにより、アーム343が揺動する。アーム343先端のノズル344は、湿式処理後の基板Sの上面Saに対して液膜を形成するための低表面張力液を供給する。 The low surface tension liquid supply unit 34 also has a configuration corresponding to the treatment liquid supply unit 33. That is, the low surface tension liquid supply unit 34 has a base 341, a rotation support shaft 342, an arm 343, a nozzle 344, and the like, and these configurations are the same as those corresponding to those in the processing liquid supply unit 33. .. The arm 343 swings as the rotation support shaft 342 rotates in response to a control command from the control unit 90. The nozzle 344 at the tip of the arm 343 supplies a low surface tension liquid for forming a liquid film on the upper surface Sa of the substrate S after the wet treatment.
 上記した図3Bの説明における「処理液Lq」、「アーム333」、「ノズル334」をそれぞれ「低表面張力液Lq」、「アーム343」、「ノズル344」と読み替えることにより、低表面張力液供給部34の動作が説明される。ただし吐出されるのは低表面張力液であり、一般に処理液とは異なる種類の液体である。 By replacing "treatment liquid Lq", "arm 333", and "nozzle 334" in the above description of FIG. 3B with "low surface tension liquid Lq", "arm 343", and "nozzle 344", respectively, the low surface tension liquid The operation of the supply unit 34 will be described. However, it is a low surface tension liquid that is discharged, and is generally a different type of liquid from the treatment liquid.
 処理対象となる基板上面Saが、微細な凹凸パターン(以下、単に「パターン」という)を形成されたものであるとき、湿式処理後の濡れた基板Sが乾燥する過程において、パターン内に入り込んだ液体の表面張力によりパターン倒壊が生じるおそれがある。これを防止するための方法としては、パターン内の液体をより表面張力の低い液体に置換してから乾燥させる方法、基板上面Saを昇華性物質の固体で覆い昇華性物質を昇華させる昇華乾燥法、本実施形態で採用する超臨界乾燥法などがある。 When the upper surface Sa of the substrate to be treated has a fine uneven pattern (hereinafter, simply referred to as “pattern”) formed, the wet substrate S after the wet treatment has entered the pattern in the process of drying. The surface tension of the liquid may cause pattern collapse. As a method for preventing this, a method of replacing the liquid in the pattern with a liquid having a lower surface tension and then drying, and a sublimation drying method in which the upper surface Sa of the substrate is covered with a solid sublimation substance to sublimate the sublimation substance. , There is a supercritical drying method adopted in this embodiment.
 高温、高圧状態を必要とする超臨界乾燥処理を行うためには、湿式処理を行うチャンバとは別の高圧チャンバを必要とする。このため、湿式処理後の基板Sを高圧チャンバへ搬送する必要が生じる。搬送中の基板表面の露出に起因するパターン倒壊を避けるため、基板上面Saを液体または固体で覆っておくことが望ましい。このとき基板上面Saを覆う液体は、表面張力によるパターン倒壊をより確実に防止するという観点から、処理液よりも表面張力の小さい液体であることが望ましい。本明細書ではこのような性質の液体を「低表面張力液」と称している。 In order to perform supercritical drying treatment that requires high temperature and high pressure conditions, a high pressure chamber different from the chamber that performs wet treatment is required. Therefore, it becomes necessary to transport the substrate S after the wet treatment to the high-pressure chamber. It is desirable to cover the upper surface Sa of the substrate with a liquid or solid in order to avoid pattern collapse due to exposure of the surface of the substrate during transportation. At this time, the liquid covering the upper surface Sa of the substrate is preferably a liquid having a lower surface tension than the treatment liquid from the viewpoint of more reliably preventing pattern collapse due to surface tension. In the present specification, a liquid having such properties is referred to as a "low surface tension liquid".
 この実施形態では、基板上面Saを低表面張力液の液膜で覆った状態で搬送を行う。液膜は以下のようにして形成される。図3Bに示すように基板Sが所定の回転速度で回転された状態で、制御ユニット90に設けられた低表面張力液供給部(図示省略)から供給される低表面張力液Lqがノズル343から吐出されることで、基板上面Saは低表面張力液の液膜LFで覆われた状態となる。低表面張力液としては、湿式処理に用いられる処理液との混和性が良く、かつこれよりも表面張力が小さいものが望ましい。例えば処理液が水を主成分とするものであるとき、イソプロピルアルコール(IPA)を好適に利用可能である。こうして、基板上面Saの全体が、低表面張力液の液膜LFで覆われた状態となる。 In this embodiment, the upper surface Sa of the substrate is covered with a liquid film of a low surface tension liquid for transportation. The liquid film is formed as follows. As shown in FIG. 3B, the low surface tension liquid Lq supplied from the low surface tension liquid supply unit (not shown) provided in the control unit 90 is discharged from the nozzle 343 in a state where the substrate S is rotated at a predetermined rotation speed. By being discharged, the upper surface Sa of the substrate is covered with the liquid film LF of the low surface tension liquid. As the low surface tension liquid, it is desirable that the liquid has good miscibility with the treatment liquid used for the wet treatment and has a lower surface tension than this. For example, when the treatment liquid contains water as a main component, isopropyl alcohol (IPA) can be preferably used. In this way, the entire upper surface Sa of the substrate is covered with the liquid film LF of the low surface tension liquid.
 また、処理チャンバ110内において、スピンチャック311に保持される基板Sの上方には、CCDカメラ351および照明光源352が配置されている。CCDカメラ351の光軸方向は水平方向から少し下方を向いている。したがって、CCDカメラ351はスピンチャック311に保持される基板Sを斜め上方から俯瞰して撮像視野に収めている。照明光源352は、撮像のための照明光を基板Sに向けて照射する。これにより、基板Sの上面が撮像される。撮像データは制御ユニット90に送信される。 Further, in the processing chamber 110, a CCD camera 351 and an illumination light source 352 are arranged above the substrate S held by the spin chuck 311. The optical axis direction of the CCD camera 351 is slightly downward from the horizontal direction. Therefore, the CCD camera 351 has a bird's-eye view of the substrate S held by the spin chuck 311 from diagonally above and is included in the imaging field of view. The illumination light source 352 irradiates the illumination light for imaging toward the substrate S. As a result, the upper surface of the substrate S is imaged. The imaging data is transmitted to the control unit 90.
 上面Saが液膜LFで覆われた状態で基板処理ユニット11Aから搬出される基板Sは、基板処理ユニット13Aに搬送されて乾燥処理を受ける。すなわち基板処理ユニット13Aは、基板処理として、水平姿勢で搬入される基板Sの上面Saに形成されている液膜LFを除去し、基板Sを乾燥させる乾燥処理を実行する機能を有する。乾燥処理としては、基板Sを超臨界流体で覆ってから超臨界流体を(液相を介することなく)気化させ除去する、超臨界乾燥が適用される。ここでは基板処理ユニット13Aの構成について説明するが、乾燥処理を実行する他の基板処理ユニット13B,14A等の構成も基本的に同じである。 The substrate S carried out from the substrate processing unit 11A with the upper surface Sa covered with the liquid film LF is conveyed to the substrate processing unit 13A and undergoes drying treatment. That is, the substrate processing unit 13A has a function of performing a drying process of removing the liquid film LF formed on the upper surface Sa of the substrate S carried in the horizontal posture and drying the substrate S as the substrate processing. As the drying treatment, supercritical drying is applied in which the substrate S is covered with a supercritical fluid and then the supercritical fluid is vaporized and removed (without going through a liquid phase). Although the configuration of the substrate processing unit 13A will be described here, the configurations of the other substrate processing units 13B, 14A, etc. that execute the drying process are basically the same.
 図4は超臨界乾燥処理を実行する基板処理ユニットを示す図である。より具体的には、図4は基板処理ユニット13Aの内部構造を示す側面断面図である。超臨界乾燥処理の原理およびそのために必要な基本構成は公知であるため、ここでは詳しい説明を省略する。基板処理ユニット13Aは高圧チャンバ130を備え、その内部に、乾燥処理の実行主体としての乾燥処理部40が設けられている。乾燥処理部40では、基板Sを載置するためのステージ41が高圧チャンバ130内に設置されている。ステージ41は吸着保持または機械的保持により、上面Saが液膜に覆われた基板Sを保持する。高圧チャンバ130は高圧となるため、これに耐えるために内部構成は比較的簡素であり、また高圧に耐え得る部材が使用される。 FIG. 4 is a diagram showing a substrate processing unit that executes supercritical drying processing. More specifically, FIG. 4 is a side sectional view showing the internal structure of the substrate processing unit 13A. Since the principle of supercritical drying treatment and the basic configuration required for it are known, detailed description thereof will be omitted here. The substrate processing unit 13A includes a high-pressure chamber 130, and a drying processing unit 40 as an execution body of the drying processing is provided inside the high-pressure chamber 130. In the drying processing unit 40, a stage 41 for mounting the substrate S is installed in the high pressure chamber 130. The stage 41 holds the substrate S whose upper surface Sa is covered with a liquid film by suction holding or mechanical holding. Since the high pressure chamber 130 has a high pressure, the internal structure is relatively simple to withstand the high pressure, and a member capable of withstanding the high pressure is used.
 ステージ41の下面中央には回転支軸42が下向きに延びている。回転支軸42は高圧チャンバ130の底面に高圧シール回転導入機構43を介して挿通されている。高圧シール回転導入機構43の回転軸431は回転機構432に接続されている。このため、制御ユニット90からの制御指令に応じて回転機構432が作動すると、基板Sがステージ41と共に、1点鎖線で示す鉛直方向の回転軸周りに回転する。 A rotary support shaft 42 extends downward in the center of the lower surface of the stage 41. The rotary support shaft 42 is inserted through the bottom surface of the high pressure chamber 130 via a high pressure seal rotation introduction mechanism 43. The rotation shaft 431 of the high-pressure seal rotation introduction mechanism 43 is connected to the rotation mechanism 432. Therefore, when the rotation mechanism 432 operates in response to the control command from the control unit 90, the substrate S rotates together with the stage 41 around the rotation axis in the vertical direction indicated by the alternate long and short dash line.
 高圧チャンバ130の内部でステージ41の上方には流体分散部材44が設けられている。流体分散部材44は、平板状の閉塞板441に対し上下に貫通する貫通孔442を複数設けたものである。高圧チャンバ130の上部には二酸化炭素供給部45から二酸化炭素ガスが必要に応じて供給され、二酸化炭素ガスは流体分散部材44により整流されて、基板Sの上方から均一に基板Sに向けて供給される。 A fluid dispersion member 44 is provided above the stage 41 inside the high pressure chamber 130. The fluid dispersion member 44 is provided with a plurality of through holes 442 that penetrate vertically through the flat plate-shaped closing plate 441. Carbon dioxide gas is supplied from the carbon dioxide supply unit 45 to the upper part of the high-pressure chamber 130 as needed, and the carbon dioxide gas is rectified by the fluid dispersion member 44 and uniformly supplied from above the substrate S toward the substrate S. Will be done.
 また、高圧チャンバ130内には窒素供給部46から窒素が必要に応じて導入される。窒素は必要に応じて種々の形態で、つまり常温または昇温されたガスとして、あるいは冷却されて液化した液体窒素として、高圧チャンバ130内のガスをパージしたりチャンバ内を冷却したりする等の目的に応じて供給される。 Further, nitrogen is introduced into the high pressure chamber 130 from the nitrogen supply unit 46 as needed. Nitrogen is used in various forms as required, that is, as a gas at room temperature or a temperature rise, or as a cooled and liquefied liquid nitrogen, such as purging the gas in the high-pressure chamber 130 or cooling the inside of the chamber. It is supplied according to the purpose.
 さらに、高圧チャンバ130には排出機構48が接続されている。排出機構48は、高圧チャンバ130内に導入される気体や液体等の各種流体を排出する機能を有する。排出機構48は、このための配管やバルブ、ポンプ等を備える。これにより、必要な場合には高圧チャンバ130内の流体を速やかに排出することができる。 Further, a discharge mechanism 48 is connected to the high pressure chamber 130. The discharge mechanism 48 has a function of discharging various fluids such as gas and liquid introduced into the high pressure chamber 130. The discharge mechanism 48 includes piping, a valve, a pump, and the like for this purpose. This allows the fluid in the high pressure chamber 130 to be expelled quickly if necessary.
 図示を省略するが、制御ユニット90は、高圧チャンバ130内の圧力や温度を検出するための構成およびこれらを所定値に制御するための構成を有している。すなわち、制御ユニット90は、高圧チャンバ130内の圧力および温度を所定の目標値に制御する機能を有している。 Although not shown, the control unit 90 has a configuration for detecting the pressure and temperature in the high pressure chamber 130 and a configuration for controlling these to a predetermined value. That is, the control unit 90 has a function of controlling the pressure and temperature in the high pressure chamber 130 to predetermined target values.
 次に、上記のように構成された基板処理装置1の動作について説明する。これまでに説明したように、この基板処理装置1は基板Sに対し湿式処理および乾燥処理を順番に実行する装置である。この処理の主な流れは次の通りである。すなわち、湿式処理を実行する基板処理ユニットに基板Sを搬送して処理液による処理を行った後、低表面張力液による液膜を形成し、乾燥処理を実行する基板処理ユニットにこの基板Sを搬送して液膜を除去し基板Sを乾燥させる。以下、具体的な処理内容について説明する。 Next, the operation of the substrate processing device 1 configured as described above will be described. As described above, the substrate processing apparatus 1 is an apparatus that sequentially executes a wet treatment and a drying treatment on the substrate S. The main flow of this process is as follows. That is, after the substrate S is conveyed to the substrate processing unit that executes the wet treatment and is treated with the treatment liquid, a liquid film is formed by the low surface tension liquid, and this substrate S is applied to the substrate processing unit that executes the drying treatment. It is conveyed to remove the liquid film and the substrate S is dried. The specific processing contents will be described below.
 ここでは1つの基板Sに対し基板処理ユニット11Aが湿式処理を実行し、基板処理ユニット13Aが乾燥処理を実行するものとして説明する。しかしながら、湿式処理を実行する基板処理ユニットと乾燥処理を実行する基板処理ユニットとの組み合わせはこれに限定されるものではなく任意である。また、以下の説明においては、各基板処理ユニットの役割を明示するために、湿式処理を実行する基板処理ユニット11A等を「湿式処理ユニット」と、また乾燥処理を実行する基板処理ユニット13A等を「乾燥処理ユニット」と、それぞれ称することがある。 Here, it is assumed that the substrate processing unit 11A executes the wet treatment and the substrate processing unit 13A executes the drying treatment on one substrate S. However, the combination of the substrate processing unit that executes the wet treatment and the substrate processing unit that executes the drying treatment is not limited to this, and is arbitrary. Further, in the following description, in order to clarify the role of each substrate processing unit, the substrate processing unit 11A or the like that executes the wet treatment is referred to as a “wet treatment unit”, and the substrate treatment unit 13A or the like that executes the drying treatment is referred to as a “wet treatment unit”. It may be referred to as a "drying processing unit".
 図5はこの基板処理装置の動作を示すフローチャートである。この動作は、CPU91が予め準備された制御プログラムを実行して装置各部に所定の動作を行わせることにより実現される。最初に、インデクサロボット22が未処理基板を収容する容器Cの1つから1枚の未処理基板Sを取り出す(ステップS101)。そして、基板Sはインデクサロボット22からセンターロボット15に受け渡される(ステップS102)。センターロボット15は、湿式処理を実行する基板処理ユニット(湿式処理ユニット)11Aに基板Sを搬入する(ステップS103)。 FIG. 5 is a flowchart showing the operation of this substrate processing device. This operation is realized by the CPU 91 executing a control program prepared in advance to cause each part of the device to perform a predetermined operation. First, the indexer robot 22 takes out one unprocessed substrate S from one of the containers C containing the unprocessed substrate (step S101). Then, the substrate S is handed over from the indexer robot 22 to the center robot 15 (step S102). The center robot 15 carries the substrate S into the substrate processing unit (wet processing unit) 11A that executes the wet processing (step S103).
 基板Sが搬入された基板処理ユニット11Aは、基板Sに対し湿式処理を実行する(ステップS104)。湿式処理の内容は、先に説明したように、基板Sに処理液を供給して基板上面Saの加工や洗浄を行うというものである。湿式処理後の基板Sに対しては、低表面張力液による液膜LFを形成するための液膜形成処理が実行される(ステップS105)。 The substrate processing unit 11A into which the substrate S has been carried performs wet processing on the substrate S (step S104). As described above, the content of the wet treatment is that the treatment liquid is supplied to the substrate S to process and clean the upper surface Sa of the substrate. A liquid film forming process for forming a liquid film LF with a low surface tension liquid is executed on the substrate S after the wet treatment (step S105).
 液膜形成処理により上面Saに液膜LFが形成された基板Sは、センターロボット15により基板処理ユニット11Aから取り出されて、乾燥処理を実行する基板処理ユニット(乾燥処理ユニット)13Aに搬入される。すなわち、基板処理ユニット11Aから基板処理ユニット13Aに基板Sを移送する、移送処理が行われる(ステップS106)。移送処理としては各種の態様が考えられるため、それらについては後にまとめて詳述する。 The substrate S on which the liquid film LF is formed on the upper surface Sa by the liquid film forming process is taken out from the substrate processing unit 11A by the center robot 15 and carried into the substrate processing unit (drying processing unit) 13A for executing the drying process. .. That is, the transfer process of transferring the substrate S from the substrate processing unit 11A to the substrate processing unit 13A is performed (step S106). Since various modes can be considered as the transfer process, they will be described in detail later.
 基板Sが搬入された基板処理ユニット13Aは、基板Sに対し、付着している液体を除去して基板Sを乾燥させる乾燥処理を実行する(ステップS107)。基板処理ユニット13Aでは、超臨界流体を用いた超臨界乾燥処理が実行される。すなわち、高圧チャンバ130内に二酸化炭素供給部45から二酸化炭素が導入され、チャンバ内圧が十分に高められることで二酸化炭素が液化する。または、液状の二酸化炭素が高圧チャンバ130に導入されてもよい。液状の二酸化炭素は基板上面Saを覆う。液化した二酸化炭素は有機溶剤をよく溶かす。したがって、パターン内に残存するIPA等の液体は液状の二酸化炭素によって置換される。 The substrate processing unit 13A into which the substrate S has been carried executes a drying treatment for removing the adhering liquid to the substrate S and drying the substrate S (step S107). In the substrate processing unit 13A, a supercritical drying process using a supercritical fluid is executed. That is, carbon dioxide is introduced into the high-pressure chamber 130 from the carbon dioxide supply unit 45, and the carbon dioxide is liquefied when the pressure inside the chamber is sufficiently increased. Alternatively, liquid carbon dioxide may be introduced into the high pressure chamber 130. The liquid carbon dioxide covers the upper surface Sa of the substrate. Liquefied carbon dioxide dissolves organic solvents well. Therefore, the liquid such as IPA remaining in the pattern is replaced by liquid carbon dioxide.
 続いて、高圧チャンバ130内の温度および圧力が、二酸化炭素を超臨界状態とする条件に調整される。これにより高圧チャンバ130内の二酸化炭素が超臨界流体となる。超臨界状態の流体は極めて流動性が高く表面張力が小さい。特に二酸化炭素から生成された超臨界流体は、IPA、アセトン等の有機溶剤をよく溶かす。このため、二酸化炭素の超臨界流体は、微細なパターンの奥深くまで入り込み、残存する有機溶剤成分をパターン内から運び去る。比較的低圧、低温で超臨界状態となる点も、二酸化炭素が超臨界乾燥処理に適している理由の1つである。 Subsequently, the temperature and pressure in the high-pressure chamber 130 are adjusted to conditions that bring carbon dioxide into a supercritical state. As a result, carbon dioxide in the high-pressure chamber 130 becomes a supercritical fluid. A fluid in a supercritical state has extremely high fluidity and low surface tension. In particular, the supercritical fluid generated from carbon dioxide dissolves organic solvents such as IPA and acetone well. Therefore, the supercritical fluid of carbon dioxide penetrates deep into the fine pattern and carries away the remaining organic solvent component from the pattern. One of the reasons why carbon dioxide is suitable for supercritical drying treatment is that it becomes supercritical at relatively low pressure and low temperature.
 そして、高圧チャンバ130内が急激に減圧されることにより、超臨界流体は液相を経ることなく直接気化し基板Sから除去される。これにより、基板Sは液体成分が完全に除去されて乾燥した状態となる。パターン内に残存する液体成分が超臨界流体によって置換され、超臨界流体が直接気化することにより、パターン内の液体の表面張力に起因するパターン倒壊の問題は回避される。 Then, the inside of the high-pressure chamber 130 is rapidly depressurized, so that the supercritical fluid is directly vaporized and removed from the substrate S without passing through the liquid phase. As a result, the substrate S is in a dry state with the liquid component completely removed. The problem of pattern collapse due to the surface tension of the liquid in the pattern is avoided by replacing the liquid component remaining in the pattern with the supercritical fluid and vaporizing the supercritical fluid directly.
 処理後の基板Sは、センターロボット15により基板処理ユニット13Aから取り出される(ステップS108)。取り出された処理後の基板Sはセンターロボット15からインデクサロボット22へ受け渡される(ステップS109)。インデクサロボット22は基板Sを容器Cの1つへ収容する(ステップS110)。処理済みの基板Sが収容される容器Cは、未処理状態の当該基板Sが収容されていた容器でもよく、また別容器でもよい。 The processed substrate S is taken out from the substrate processing unit 13A by the center robot 15 (step S108). The removed substrate S after processing is delivered from the center robot 15 to the indexer robot 22 (step S109). The indexer robot 22 accommodates the substrate S in one of the containers C (step S110). The container C in which the processed substrate S is housed may be the container in which the untreated board S is housed, or may be another container.
 さらに処理すべき基板がある場合には(ステップS111においてYES)、ステップS101に戻り、次の基板Sに対し上記した処理が実行される。処理すべき基板がなければ(ステップS111においてNO)、処理は終了する。 If there is a substrate to be further processed (YES in step S111), the process returns to step S101, and the above processing is executed for the next substrate S. If there is no substrate to be processed (NO in step S111), the processing ends.
 以上、1枚の基板Sを処理する場合の流れについて説明したが、実際の装置では複数基板に対する処理が並行して実行される。すなわち、1枚の基板Sが1つの基板処理ユニット内で処理を受けている間、同時にインデクサロボット22およびセンターロボット15による他の基板の搬送、ならびに他の基板処理ユニットによる基板処理のうち少なくとも1つを並行して実行することが可能である。 The flow of processing one substrate S has been described above, but in an actual device, processing for a plurality of substrates is executed in parallel. That is, while one substrate S is being processed in one substrate processing unit, at least one of the transfer of other substrates by the indexer robot 22 and the center robot 15 and the substrate processing by the other substrate processing unit at the same time. It is possible to execute one in parallel.
 より具体的には、例えばステップS102において基板Sがインデクサロボット22からセンターロボット15に受け渡された後では、インデクサロボット22は新たに容器Cにアクセスして他の基板を取り出すことが可能である。また例えば、ステップS103において1枚の基板Sが基板処理ユニット11Aに搬入された後、センターロボット15は他の基板を他の基板処理ユニットに搬入する、あるいは他の基板処理ユニットで処理された他の基板を搬出することが可能である。 More specifically, for example, after the substrate S is handed over from the indexer robot 22 to the center robot 15 in step S102, the indexer robot 22 can newly access the container C and take out another substrate. .. Further, for example, after one substrate S is carried into the substrate processing unit 11A in step S103, the center robot 15 carries another substrate into another substrate processing unit, or is processed by another substrate processing unit. It is possible to carry out the board.
 したがって、複数枚の基板Sに対し順次処理を行う必要がある場合には、各基板Sを処理するための装置各部の動作シーケンスを適宜に調節することで、複数枚の基板への処理を並行して進行させる。こうすることで、基板処理装置1全体としての処理のスループットを向上させることが可能となる。具体的な動作シーケンスは、処理の仕様、上記各ステップの所要時間や同時処理の可否等に応じて適切に定められる必要がある。 Therefore, when it is necessary to sequentially process a plurality of boards S, the processing on a plurality of boards can be performed in parallel by appropriately adjusting the operation sequence of each part of the device for processing each board S. And proceed. By doing so, it is possible to improve the processing throughput of the substrate processing apparatus 1 as a whole. The specific operation sequence needs to be appropriately determined according to the processing specifications, the time required for each of the above steps, the possibility of simultaneous processing, and the like.
 次に、上記した基板処理における移送処理(図5のステップS106)の幾つかの態様について説明する。移送処理の目的は、上面Saに液膜LFが形成された基板Sを基板処理ユニット11Aから搬出し、液膜LFを維持したまま、つまり基板上面Saを露出させることなく基板処理ユニット13Aまで搬送することである。この目的のために、この実施形態では、基板処理ユニット11Aに設けられたCCDカメラ351およびセンターロボット15に設けられたCCDカメラ157により撮像される画像が使用される。 Next, some aspects of the transfer process (step S106 in FIG. 5) in the above-mentioned substrate process will be described. The purpose of the transfer process is to carry out the substrate S on which the liquid film LF is formed on the upper surface Sa from the substrate processing unit 11A and transfer it to the substrate processing unit 13A while maintaining the liquid film LF, that is, without exposing the upper surface Sa of the substrate. It is to be. For this purpose, in this embodiment, images captured by the CCD camera 351 provided in the substrate processing unit 11A and the CCD camera 157 provided in the center robot 15 are used.
 図6は移送処理の第1の態様を示すフローチャートである。最初に、基板処理ユニット11Aの処理チャンバ110内において、液膜形成処理直後の基板SがCCDカメラ351により撮像される(ステップS201)。このとき、実際には基板上面Saを覆って形成された液膜LFが撮像される。基板上面Saを覆う液膜LFの全体が画像に収められることが望ましい。撮像された画像のデータは、基準データとして制御ユニット90のメモリ92に保存される。 FIG. 6 is a flowchart showing the first aspect of the transfer process. First, in the processing chamber 110 of the substrate processing unit 11A, the substrate S immediately after the liquid film forming process is imaged by the CCD camera 351 (step S201). At this time, the liquid film LF formed by covering the upper surface Sa of the substrate is actually imaged. It is desirable that the entire liquid film LF covering the upper surface Sa of the substrate is captured in the image. The captured image data is stored in the memory 92 of the control unit 90 as reference data.
 続いて、センターロボット15のハンド155が処理チャンバ110内に進入して基板Sを保持し(ステップS202)、ハンド155が水平移動することで基板Sの搬送が開始される(ステップS203)。搬送中、センターロボット15に設けられたCCDカメラ157により随時、基板上面Saの液膜LFが撮像される(ステップS204)。CCDカメラ157により撮像される画像とCCDカメラ351により撮像される画像との間で、画像内に占める基板Sの位置、大きさおよび仰角が同じであることが望ましい。 Subsequently, the hand 155 of the center robot 15 enters the processing chamber 110 to hold the substrate S (step S202), and the hand 155 moves horizontally to start the transfer of the substrate S (step S203). During the transfer, the liquid film LF of the upper surface Sa of the substrate is imaged at any time by the CCD camera 157 provided in the center robot 15 (step S204). It is desirable that the position, size, and elevation angle of the substrate S occupied in the image are the same between the image captured by the CCD camera 157 and the image captured by the CCD camera 351.
 撮像により得られた画像は最初に撮像された基準画像と比較される。すなわち、CCDカメラ157により新たに撮像された画像と、処理チャンバ110内でCCDカメラ351により撮像された画像との差分が求められる(ステップS205)。その結果、両画像に有意な差異があれば、基板S上の液膜LFに何らかの変化があったと考えられる。例えば両画像間で画素ごとの差分の絶対値を画像内で積算し、その値が予め定められた基準量(閾値)を超えるか否かにより、有意な差があるか否かを判断することができる。液膜の厚さの違いは表面での反射率の変動や干渉縞の発生状況の違いとなって現れる。画像の差分を求めることでこのような違いを検出することができる。 The image obtained by imaging is compared with the reference image captured first. That is, the difference between the image newly captured by the CCD camera 157 and the image captured by the CCD camera 351 in the processing chamber 110 is obtained (step S205). As a result, if there is a significant difference between the two images, it is considered that there was some change in the liquid film LF on the substrate S. For example, the absolute value of the difference for each pixel between both images is integrated in the image, and it is determined whether or not there is a significant difference depending on whether or not the value exceeds a predetermined reference amount (threshold value). Can be done. The difference in the thickness of the liquid film appears as a difference in the reflectance on the surface and the occurrence of interference fringes. Such a difference can be detected by obtaining the difference between the images.
 搬送中の液膜に起こり得る変化としては、振動に伴う液面の揺れ、落液や揮発による液量の減少が主なものと考えられる。これらに対しては、低表面張力液を基板Sに補充することが有効である。そこで、液膜の有意な変化があった場合には(ステップS206においてYES)、センターロボット15に設けられた補充液ノズル158から所定量の低表面張力液が補充される(ステップS207)。これにより、液量の減少に起因する液膜の破れを防止することができる。有意な変化が見られなかった場合には(ステップS206においてNO)、液補充は行われない。 It is considered that the main changes that can occur in the liquid film during transportation are the shaking of the liquid level due to vibration and the decrease in the amount of liquid due to liquid falling or volatilization. For these, it is effective to replenish the substrate S with a low surface tension liquid. Therefore, when there is a significant change in the liquid film (YES in step S206), a predetermined amount of low surface tension liquid is replenished from the replenishment liquid nozzle 158 provided in the center robot 15 (step S207). This makes it possible to prevent the liquid film from breaking due to a decrease in the amount of liquid. If no significant change is observed (NO in step S206), no liquid replenishment is performed.
 基板Sが目標位置、つまり基板処理ユニット13Aの高圧チャンバ130内に到達するまで、上記したステップS204~S207が繰り返される(ステップS208においてNO)。したがって、基板Sが移送される間、液膜LFの状態が常時監視され、必要であれば低表面張力液の補充が行われる。これにより、基板S上の液膜が安定に維持される。目標位置に到達すると(ステップS208においてYES)、基板Sはセンターロボット15から高圧チャンバ130内のステージ41に移載され(ステップS209)、これにより基板Sの移送が完了する。 The above steps S204 to S207 are repeated until the substrate S reaches the target position, that is, the inside of the high-pressure chamber 130 of the substrate processing unit 13A (NO in step S208). Therefore, while the substrate S is transferred, the state of the liquid film LF is constantly monitored, and if necessary, the low surface tension liquid is replenished. As a result, the liquid film on the substrate S is stably maintained. When the target position is reached (YES in step S208), the substrate S is transferred from the center robot 15 to the stage 41 in the high pressure chamber 130 (step S209), whereby the transfer of the substrate S is completed.
 図7は移送処理の第2の態様を示すフローチャートである。この態様では、第1の態様におけるステップS207に代えてステップS221が設けられている。これ以外の処理内容は第1の態様と同じであるので、同一処理には同一符号を付して説明を省略する。第1の態様における液補充に代えて第2の態様で実行されるステップS221では、センターロボット15による基板Sの搬送速度が変更される。 FIG. 7 is a flowchart showing the second aspect of the transfer process. In this aspect, step S221 is provided instead of step S207 in the first aspect. Since the processing contents other than this are the same as those in the first aspect, the same processing is designated by the same reference numerals and the description thereof will be omitted. In step S221 executed in the second aspect instead of the liquid replenishment in the first aspect, the transfer speed of the substrate S by the center robot 15 is changed.
 例えば振動や急な加減速によって基板Sから低表面張力液が落下するようなケースでは、基板Sをよりゆっくり搬送することにより落液を抑制することができる。すなわち、この場合には搬送速度を低下させればよい。例えば液膜の表面が波打っているような場合には、振動により液膜LFが揺れていると見なすことができる。一方、液体の揮発による液量の減少は、基板S全体での液膜の膜厚低下となって現れる。このような場合には搬送速度を増加させて、より短時間で搬送を完了させることが好ましい。なお、この態様を単独で実施する場合においては、補充液ノズル158については省くことも可能である。 For example, in a case where the low surface tension liquid drops from the substrate S due to vibration or sudden acceleration / deceleration, the liquid can be suppressed by transporting the substrate S more slowly. That is, in this case, the transport speed may be reduced. For example, when the surface of the liquid film is wavy, it can be considered that the liquid film LF is swaying due to vibration. On the other hand, the decrease in the amount of liquid due to the volatilization of the liquid appears as a decrease in the film thickness of the liquid film in the entire substrate S. In such a case, it is preferable to increase the transport speed and complete the transport in a shorter time. When this aspect is carried out independently, the replenisher nozzle 158 can be omitted.
 図8は移送処理の第3の態様を示すフローチャートである。また、図9はこの移送処理を含む基板処理動作を示すフローチャートである。この態様では、移送処理の内容の違いに起因して、基板処理の動作自体にも改変が必要となる。ここでも、先に説明した処理と同一内容の処理については同一符号を付して説明を省略する。図8に示すように、第3の態様の移送処理では、ステップS206において液膜の画像に有意な変化があった場合には、以後の処理を異ならせるための例外フラグがセットされる(ステップS231)。この場合、基板Sの移送は中断される。 FIG. 8 is a flowchart showing a third aspect of the transfer process. Further, FIG. 9 is a flowchart showing a substrate processing operation including this transfer processing. In this aspect, the operation itself of the substrate processing also needs to be modified due to the difference in the contents of the transfer processing. Here, too, the same reference numerals are given to the processes having the same contents as those described above, and the description thereof will be omitted. As shown in FIG. 8, in the transfer process of the third aspect, if there is a significant change in the image of the liquid film in step S206, an exception flag for differentiating the subsequent processes is set (step). S231). In this case, the transfer of the substrate S is interrupted.
 図9に示すように、この態様の基板処理では、移送処理(ステップS106)の後に例外フラグがセットされているか否かを判断するステップS121が追加されている。フラグがセットされている場合には(ステップS121においてYES)、センターロボット15は基板Sを湿式処理ユニット11Aに戻し入れる(ステップS122)。これとともに、例外フラグはリセットされる(ステップS123)。そして、湿式処理ユニット11Aで液膜形成処理(ステップS105)が再度実行されてから、再び移送処理が実行される(ステップS106)。 As shown in FIG. 9, in the substrate processing of this embodiment, step S121 for determining whether or not the exception flag is set is added after the transfer processing (step S106). If the flag is set (YES in step S121), the center robot 15 returns the substrate S to the wet processing unit 11A (step S122). At the same time, the exception flag is reset (step S123). Then, the liquid film forming process (step S105) is executed again in the wet processing unit 11A, and then the transfer process is executed again (step S106).
 この態様では、基板S上の液膜LFに変化があった場合、基板処理ユニット11Aで液膜LFが再形成される。例外フラグがセットされていなければ(ステップS121においてNO)、液膜LFに大きな変化はないので、引き続き乾燥処理(ステップS107)が実行される。このようにすることで、液膜LFに破れが生じた状態で基板処理ユニット13Aに搬入されることは回避される。すなわち、安定的に液膜LFを維持した状態で基板Sを移送することができる。なお、この態様においても、単独で実施するに場合には補充液ノズル158を省くことが可能である。 In this embodiment, when the liquid film LF on the substrate S is changed, the liquid film LF is reformed by the substrate processing unit 11A. If the exception flag is not set (NO in step S121), there is no significant change in the liquid film LF, so the drying process (step S107) is continuously executed. By doing so, it is possible to avoid being carried into the substrate processing unit 13A in a state where the liquid film LF is torn. That is, the substrate S can be transferred while the liquid film LF is stably maintained. In addition, also in this aspect, it is possible to omit the replenishment liquid nozzle 158 when it is carried out independently.
 図10は移送処理の第4の態様を示すフローチャートである。図10においても、図6に示す移送処理と同一の内容については同一符号を付して説明を省略する。この態様では、ステップS201においてCCDカメラ351による液膜の撮像が行われると、その画像が予め準備されている理想画像と比較される。すなわち、撮像された画像と理想画像との差分が求められる(ステップS241)。理想画像とは、基板Sの上面Saが所定厚さの液膜LFにより一様に覆われた理想的な状態に対応する画像である。 FIG. 10 is a flowchart showing a fourth aspect of the transfer process. Also in FIG. 10, the same contents as those of the transfer process shown in FIG. 6 are designated by the same reference numerals and the description thereof will be omitted. In this aspect, when the image of the liquid film is taken by the CCD camera 351 in step S201, the image is compared with the ideal image prepared in advance. That is, the difference between the captured image and the ideal image can be obtained (step S241). The ideal image is an image corresponding to an ideal state in which the upper surface Sa of the substrate S is uniformly covered with a liquid film LF having a predetermined thickness.
 この処理は、基板Sに適切な液膜LFが形成されているか否かを検証するための処理である。すなわち、湿式処理後の基板Sでは、処理の結果として表面の凹凸や濡れ性の変化が生じることに起因して、一様な液膜を形成することが困難な場合が生じ得る。特に処理後の基板表面が撥液性を有する状態であると、一様な液膜を担持させることが難しい。また、液膜を形成するための装置構成の動作異状や基板Sの保持態様によって、当初から適切な液膜が形成されていない場合もあり得る。液膜形成直後の基板Sの画像を理想画像と比較することで、このような異状を直ちに検知することができる。また、理想画像との差分の大きさに基づき、液膜形成のための液供給量や基板Sの回転速度を調整するようにしてもよい。 This process is a process for verifying whether or not an appropriate liquid film LF is formed on the substrate S. That is, in the substrate S after the wet treatment, it may be difficult to form a uniform liquid film due to surface irregularities and changes in wettability as a result of the treatment. In particular, when the surface of the substrate after treatment has liquid repellency, it is difficult to support a uniform liquid film. In addition, an appropriate liquid film may not be formed from the beginning depending on the operation abnormality of the device configuration for forming the liquid film and the holding mode of the substrate S. By comparing the image of the substrate S immediately after the formation of the liquid film with the ideal image, such an abnormality can be detected immediately. Further, the liquid supply amount for forming the liquid film and the rotation speed of the substrate S may be adjusted based on the magnitude of the difference from the ideal image.
 撮像された画像と理想画像との間に有意な差異があれば(ステップS242においてYES)、適宜のエラー処理(ステップS243)を経て移送処理は中止される。エラー処理の内容は任意であり、例えばオペレータに異状発生を報知する、このときの画像を表示出力する等が考えられる。異状が検知された基板Sについては処理が中止されても、異状のない基板に対する処理は継続されることが望ましい。 If there is a significant difference between the captured image and the ideal image (YES in step S242), the transfer process is stopped after an appropriate error process (step S243). The content of the error processing is arbitrary, and for example, it is conceivable to notify the operator of the occurrence of an abnormality, display and output the image at this time, and the like. It is desirable that the processing on the substrate S in which the abnormality is detected is continued even if the processing is stopped.
 異状が検知されなければ(ステップS242においてNO)、撮像された画像を基準画像としてステップS202以降の移送処理が実行される。ここでは第1の態様の移送処理を実行することとしているが、第2または第3の態様の処理が実行されてもよい。 If no abnormality is detected (NO in step S242), the transfer process after step S202 is executed using the captured image as a reference image. Here, the transfer process of the first aspect is executed, but the process of the second or third aspect may be executed.
 また、上記各態様の処理は適宜組み合わされてもよい。例えば、CCDカメラ157により撮像された画像と基準画像との差分の大きさについて複数の基準量を設定しておき、差分の大きさによって以後の処理が変わるようにしてもよい。 Further, the processes of each of the above embodiments may be combined as appropriate. For example, a plurality of reference amounts may be set for the magnitude of the difference between the image captured by the CCD camera 157 and the reference image, and the subsequent processing may be changed depending on the magnitude of the difference.
 現実の基板処理においては、後続の処理の都合等により、処理チャンバ110に基板Sが載置されその上面Saに液膜LFが形成されてから基板Sの搬送が開始されるまでに、長時間待機する場合があり得る。こうした状況への対応として、例えば図10に示す処理を部分的に変更し、以下のようにしてもよい。基板Sに液膜LFが形成されてから搬送が開始されるまでの間の互いに異なる複数の時刻において、処理チャンバ110内のCCDカメラ351により液膜LFを撮像する。それらの画像を比較し、撮像された最新の画像と理想画像または最初に撮像された画像との間で液膜に有意な差異が認められるとき、液体の補充または適宜のエラー処理(ステップS243)を行う。 In actual substrate processing, due to the convenience of subsequent processing, etc., it takes a long time from the time when the substrate S is placed in the processing chamber 110 and the liquid film LF being formed on the upper surface Sa of the substrate S until the transfer of the substrate S is started. It may wait. As a response to such a situation, for example, the process shown in FIG. 10 may be partially modified as follows. The liquid film LF is imaged by the CCD camera 351 in the processing chamber 110 at a plurality of different times between the time when the liquid film LF is formed on the substrate S and the time when the transfer is started. When these images are compared and a significant difference is found in the liquid film between the latest image captured and the ideal image or the first image captured, liquid replenishment or appropriate error handling (step S243). I do.
 このように、本実施形態の基板処理においては、基板Sに液膜LFが形成されてから搬送を終了するまでの間の異なる時刻で撮像された複数の液膜の画像を比較し、その結果に応じて以後の搬送動作が定められる。このため、搬送中の振動や揮発による液膜の変動を遅滞なく検知し、状況に応じて搬送動作を変更することができる。こうすることで、本実施形態では、表面に液膜を安定的に形成した状態で基板を搬送することが可能である。その結果、搬送中の振動や液体の揮発等に起因する基板表面の露出を防止することができる。 As described above, in the substrate processing of the present embodiment, the images of a plurality of liquid films captured at different times from the formation of the liquid film LF on the substrate S to the end of the transfer are compared, and the result is obtained. Subsequent transport operations are determined accordingly. Therefore, the fluctuation of the liquid film due to vibration or volatilization during transportation can be detected without delay, and the transportation operation can be changed according to the situation. By doing so, in the present embodiment, it is possible to transport the substrate in a state where the liquid film is stably formed on the surface. As a result, it is possible to prevent the substrate surface from being exposed due to vibration during transportation, volatilization of the liquid, or the like.
 以上説明したように、上記実施形態においては、湿式処理ユニットである基板処理ユニット11A等が本発明の「第1処理部」として機能し、乾燥処理ユニットである基板処理ユニット13A等が本発明の「第2処理部」として機能している。そして、センターロボット15が本発明の「搬送機構」として機能している。また、処理チャンバ110が本発明の「処理チャンバ」として機能している。 As described above, in the above embodiment, the substrate processing unit 11A or the like which is a wet processing unit functions as the "first processing unit" of the present invention, and the substrate processing unit 13A or the like which is a drying processing unit of the present invention. It functions as a "second processing unit". The center robot 15 functions as the "transport mechanism" of the present invention. Further, the processing chamber 110 functions as the "processing chamber" of the present invention.
 また、上記実施形態では、ハンド155が本発明の「保持部材」として機能している。そして、CCDカメラ157、351がそれぞれ本発明の「第2カメラ」、「第1カメラ」として機能しており、これらが本発明の「撮像部」を構成する。また、補充液ノズル158が本発明の「液体供給機構」として機能している。また、制御ユニット90が本発明の「制御部」として機能している。そして、液膜形成直後にカメラ351により撮像される液膜の画像が、本発明にいう「搬送前画像」に相当している。 Further, in the above embodiment, the hand 155 functions as the "holding member" of the present invention. The CCD cameras 157 and 351 function as the "second camera" and the "first camera" of the present invention, respectively, and these constitute the "imaging unit" of the present invention. Further, the replenisher liquid nozzle 158 functions as the "liquid supply mechanism" of the present invention. Further, the control unit 90 functions as the "control unit" of the present invention. The image of the liquid film captured by the camera 351 immediately after the formation of the liquid film corresponds to the "pre-transport image" referred to in the present invention.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態は、本発明の「第1処理部」、「第2処理部」、「搬送機構」にそれぞれ相当する基板処理ユニット11A、基板処理ユニット13A、センターロボット15が1つの筐体に収められて一体の処理システムを構成するものである。しかしながら、本発明は、互いに独立して設けられた第1処理部および第2処理部と、これらの間で基板を搬送する搬送機構とを有する処理システムに対しても適用可能である。 The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the substrate processing unit 11A, the substrate processing unit 13A, and the center robot 15 corresponding to the "first processing unit", the "second processing unit", and the "conveying mechanism" of the present invention are contained in one housing. It is housed in the box and constitutes an integrated processing system. However, the present invention is also applicable to a processing system having a first processing unit and a second processing unit provided independently of each other and a transport mechanism for transporting a substrate between them.
 また、上記実施形態では処理チャンバ110内のCCDカメラ351により撮像された液膜の画像が基準画像とされているが、基準画像はこれに限定されない。例えば、搬送の初期段階でCCDカメラ157により撮像された画像が基準画像とされてもよい。その場合には、搬送中の液膜の状態を観察するという目的においては処理チャンバ110内のCCDカメラ351は不要である。また、特にCCDカメラ157がハンド155と一体的に移動するように構成されていれば、搬送中の各段階においてハンド155に保持される基板SとCCDカメラ157との位置関係が不変となる。このような構成によれば、画像間の比較において相互の位置合わせが不要であり、また差分算出の精度をより向上させることができる。 Further, in the above embodiment, the image of the liquid film captured by the CCD camera 351 in the processing chamber 110 is used as the reference image, but the reference image is not limited to this. For example, an image captured by the CCD camera 157 at the initial stage of transportation may be used as a reference image. In that case, the CCD camera 351 in the processing chamber 110 is unnecessary for the purpose of observing the state of the liquid film during transportation. Further, in particular, if the CCD camera 157 is configured to move integrally with the hand 155, the positional relationship between the substrate S held by the hand 155 and the CCD camera 157 does not change at each stage during transportation. According to such a configuration, mutual alignment is not required in comparison between images, and the accuracy of difference calculation can be further improved.
 また、上記実施形態では、基板Sの搬送時に基板Sと共に移動するセンターロボット15にCCDカメラ157が取り付けられている。これに代えて、例えば基板Sの搬送経路を見通せる位置に固定的に設けられたカメラにより、搬送される基板Sを撮像するようにしてもよい。特に微細パターンが設けられた基板Sでは、パターン倒壊を防止するためには、たとえ短時間といえども基板表面が露出することは許容されない。したがって、この場合には搬送経路上に複数のカメラを配置し、基板Sと共に搬送される液膜を短い時間間隔で撮像することが可能な状態としておくことが好ましい。もしくは、カメラを基板Sの移動に追従させるための機構が設けられてもよい。 Further, in the above embodiment, the CCD camera 157 is attached to the center robot 15 that moves together with the substrate S when the substrate S is conveyed. Instead of this, for example, the substrate S to be transported may be imaged by a camera fixedly provided at a position where the transport path of the substrate S can be seen. In particular, in the substrate S provided with a fine pattern, it is not permissible to expose the surface of the substrate even for a short time in order to prevent the pattern from collapsing. Therefore, in this case, it is preferable to arrange a plurality of cameras on the transport path so that the liquid film transported together with the substrate S can be imaged at short time intervals. Alternatively, a mechanism for making the camera follow the movement of the substrate S may be provided.
 また、センターロボット15に、搬送中の基板Sから落下する液体を受け止め回収するための構成がさらに設けられてもよい。 Further, the center robot 15 may be further provided with a configuration for receiving and collecting the liquid falling from the substrate S being conveyed.
 以上、具体的な実施形態を例示して説明してきたように、本発明において、例えば、第1処理部は、処理チャンバ内で基板に対する液膜の形成を行い、撮像部は、処理チャンバ内に設けられた第1カメラを有する構成とされてよい。このような構成によれば、形成直後の液膜を撮像することが可能であり、例えばこの画像に含まれる液膜を基準として以後の液膜の状態を評価することができる。 As described above, as described by exemplifying specific embodiments, in the present invention, for example, the first processing unit forms a liquid film on the substrate in the processing chamber, and the imaging unit is in the processing chamber. It may be configured to have a first camera provided. According to such a configuration, it is possible to take an image of the liquid film immediately after formation, and for example, it is possible to evaluate the state of the liquid film after that with reference to the liquid film contained in this image.
 また例えば、搬送機構が基板を保持する保持部材を有し、撮像部は搬送機構に設けられて保持部材と共に移動する第2カメラを有していてよい。このような構成によれば、搬送中の各時刻において随時撮像を行うことができ、基板上の液膜の変化を遅滞なく検知して必要な対策を講じることが可能となる。 Further, for example, the transport mechanism may have a holding member for holding the substrate, and the imaging unit may have a second camera provided in the transport mechanism and moving together with the holding member. According to such a configuration, it is possible to take an image at any time at each time during transportation, and it is possible to detect a change in the liquid film on the substrate without delay and take necessary measures.
 また例えば、制御部は、複数の画像から求めた差分が予め定められた基準量を超える場合と超えない場合との間で、第1処理部から第2処理部までの搬送にかかる時間を異ならせてよい。液膜の変化の原因として搬送中の振動や急な加減速、液体成分の揮発等があり、搬送速度を変化させることによって液膜の変化を抑えることが可能となる場合がある。 Further, for example, the control unit may differ in the time required for transportation from the first processing unit to the second processing unit depending on whether the difference obtained from a plurality of images exceeds a predetermined reference amount or not. You can let me. Causes of change in the liquid film include vibration during transportation, sudden acceleration / deceleration, volatilization of liquid components, etc., and it may be possible to suppress the change in the liquid film by changing the transfer speed.
 また例えば、搬送機構は、搬送される基板に液体を供給する液体供給機構を有し、制御部は、複数の画像から求めた差分が予め定められた基準量を超えると、液体供給機構に基板への液体の供給を行わせる構成であってよい。このような構成によれば、必要に応じて液膜を構成する液体を補充することで、基板上の液膜を維持しつつ搬送を継続することができる。特に液膜が揮発性の高い材料で構成されている場合には、搬送中の揮発により液膜の厚みが減少することが基板表面の露出の原因となり得る。搬送部に液体を補充する機構を設けることで、この問題を解消することが可能である。 Further, for example, the transport mechanism has a liquid supply mechanism that supplies liquid to the substrate to be transported, and the control unit supplies the substrate to the liquid supply mechanism when the difference obtained from a plurality of images exceeds a predetermined reference amount. It may be configured to supply the liquid to the device. According to such a configuration, by replenishing the liquid constituting the liquid film as needed, it is possible to continue the transfer while maintaining the liquid film on the substrate. In particular, when the liquid film is made of a highly volatile material, the decrease in the thickness of the liquid film due to volatilization during transportation may cause the exposure of the substrate surface. This problem can be solved by providing a mechanism for replenishing the liquid in the transport portion.
 また例えば、制御部は、複数の画像から求めた差分が予め定められた基準量を超えると、搬送機構に基板を第1処理部に戻させ、第1処理部に液膜の再形成を行わせるように構成されてよい。このような構成によれば、液膜を形成するのに必要な構成を備える第1処理部で液膜の再形成を行うので、搬送中に液体を補充するための構成を別途設けなくても、搬送中の液膜の破れを防止することができる。 Further, for example, when the difference obtained from a plurality of images exceeds a predetermined reference amount, the control unit causes the transport mechanism to return the substrate to the first processing unit, and the first processing unit reshaps the liquid film. It may be configured to allow. According to such a configuration, since the liquid film is reshaped in the first processing unit having the configuration necessary for forming the liquid film, it is not necessary to separately provide a configuration for replenishing the liquid during transportation. , It is possible to prevent the liquid film from breaking during transportation.
 また例えば、液膜を構成する液体が有機溶剤であり、第2処理部は基板に対し超臨界乾燥処理を実行する構成であってよい。超臨界乾燥処理は高圧下で実施されるため専用の高圧環境が必要となる。また高圧に耐える部品が用いられる必要がある。したがって常圧下で実施可能な湿式処理とは別の場所で行われるのが現実的である。このような場合に、湿式処理後の基板の搬送が必要となってくるが、本発明を適用することで、基板表面を露出させることなく搬送することが可能となる。超臨界流体との親和性の点から液膜形成には有機溶剤が使用されることが好ましいが、揮発性の高い有機溶剤は搬送中に失われやすい。本発明の適用により液膜の状態を観察することで、このようなケースにおいても基板表面を確実に液膜で覆いつつ搬送することが可能である。 Further, for example, the liquid constituting the liquid film may be an organic solvent, and the second processing unit may be configured to perform supercritical drying treatment on the substrate. Since the supercritical drying process is carried out under high pressure, a dedicated high pressure environment is required. In addition, parts that can withstand high pressure need to be used. Therefore, it is realistic that the wet treatment is performed in a place different from the wet treatment that can be performed under normal pressure. In such a case, it is necessary to transport the substrate after the wet treatment, but by applying the present invention, it is possible to transport the substrate without exposing the surface of the substrate. From the viewpoint of affinity with supercritical fluid, it is preferable to use an organic solvent for forming a liquid film, but a highly volatile organic solvent is easily lost during transportation. By observing the state of the liquid film by applying the present invention, it is possible to carry the substrate while reliably covering the surface of the substrate with the liquid film even in such a case.
 また例えば、複数の画像は、基板が搬送機構により搬送開始されるよりも前に撮像された搬送前画像を含むものであってよい。このような構成によれば、搬送開始時点で基板表面が適切に液膜で覆われていたか否かを把握することが可能であり、状況に応じて必要な措置を講じることが可能となる。例えば制御部は、液膜が理想的に担持された状態の基板に対応する理想画像と搬送前画像との差に基づき、搬送機構による基板の搬送を開始するか否かを判断することができる。こうすることで、表面が適切な液膜で覆われないまま基板が搬送に供されることを回避することが可能となる。 Further, for example, the plurality of images may include a pre-transfer image captured before the substrate is started to be transferred by the transfer mechanism. With such a configuration, it is possible to grasp whether or not the substrate surface is appropriately covered with the liquid film at the start of transportation, and it is possible to take necessary measures depending on the situation. For example, the control unit can determine whether or not to start the transfer of the substrate by the transfer mechanism based on the difference between the ideal image corresponding to the substrate in which the liquid film is ideally supported and the image before transfer. .. By doing so, it is possible to prevent the substrate from being transported without being covered with an appropriate liquid film.
 この発明は、互いに異なる処理を実行する処理部の間での基板の搬送を、基板表面を液膜で覆った状態で行う基板処理技術全般に適用することができる。例えば、湿式処理後の基板を超臨界乾燥処理により乾燥させる処理に好適である。 The present invention can be applied to a general substrate processing technique in which a substrate is transported between processing units that execute different processes with the substrate surface covered with a liquid film. For example, it is suitable for a process of drying a substrate after a wet process by a supercritical drying process.
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 The invention has been described above according to a specific embodiment, but this description is not intended to be interpreted in a limited sense. With reference to the description of the invention, various variations of the disclosed embodiments, as well as other embodiments of the present invention, will be apparent to those familiar with the art. Therefore, the appended claims are considered to include such modifications or embodiments without departing from the true scope of the invention.
 1 基板処理装置
 11A 湿式処理ユニット、基板処理ユニット(第1処理部)
 13A 乾燥処理ユニット、基板処理ユニット(第2処理部)
 15 センターロボット(搬送機構)
 90 制御ユニット(制御部)
 110 処理チャンバ(チャンバ)
 130 高圧チャンバ
 155 ハンド(保持部材)
 157 CCDカメラ(撮像部、第2カメラ)
 351 CCDカメラ(撮像部、第1カメラ)
 158 補充液ノズル(液体供給機構)
 LF 液膜
 S 基板
1 Substrate processing device 11A Wet processing unit, substrate processing unit (first processing unit)
13A Drying processing unit, substrate processing unit (second processing unit)
15 Center robot (conveyance mechanism)
90 Control unit (control unit)
110 Processing chamber (chamber)
130 High pressure chamber 155 Hand (holding member)
157 CCD camera (imaging unit, second camera)
351 CCD camera (imaging unit, first camera)
158 Replenisher liquid nozzle (liquid supply mechanism)
LF liquid film S substrate

Claims (10)

  1.  基板に液体を供給して前記基板の表面を液膜で覆う第1処理部と、
     前記液膜を担持する前記基板を搬送する搬送機構と、
     前記搬送機構により搬送される前記基板を受け入れて所定の処理を実行する第2処理部と、
     前記基板の表面に形成された前記液膜を撮像する撮像部と、
     前記液膜が形成されてから前記搬送機構により前記基板が前記第2処理部へ搬入されるまでの間の互いに異なる時刻にそれぞれ前記撮像部により撮像された複数の画像の差に基づき、前記搬送機構の動作を制御する制御部と
    を備える基板処理装置。
    A first processing unit that supplies a liquid to the substrate and covers the surface of the substrate with a liquid film,
    A transport mechanism that transports the substrate that supports the liquid film, and
    A second processing unit that receives the substrate transported by the transport mechanism and executes a predetermined process,
    An imaging unit that images the liquid film formed on the surface of the substrate, and
    The transport is based on the difference between a plurality of images imaged by the imaging unit at different times from the formation of the liquid film to the delivery of the substrate to the second processing unit by the transfer mechanism. A substrate processing device including a control unit that controls the operation of the mechanism.
  2.  前記第1処理部は、処理チャンバ内で前記基板に対する前記液膜の形成を行い、
     前記撮像部は、前記処理チャンバ内に設けられた第1カメラを有する、請求項1に記載の基板処理装置。
    The first processing unit forms the liquid film on the substrate in the processing chamber.
    The substrate processing apparatus according to claim 1, wherein the imaging unit has a first camera provided in the processing chamber.
  3.  前記搬送機構は、前記基板を保持する保持部材を有し、
     前記撮像部は、前記搬送機構に設けられて前記保持部材と共に移動する第2カメラを有する、請求項1または2に記載の基板処理装置。
    The transport mechanism has a holding member that holds the substrate.
    The substrate processing apparatus according to claim 1 or 2, wherein the imaging unit has a second camera provided in the transport mechanism and moves together with the holding member.
  4.  前記制御部は、前記複数の画像から求めた差分が予め定められた基準量を超える場合と超えない場合との間で、前記第1処理部から前記第2処理部までの搬送にかかる時間を異ならせる請求項1ないし3のいずれかに記載の基板処理装置。 The control unit determines the time required for transportation from the first processing unit to the second processing unit between the case where the difference obtained from the plurality of images exceeds a predetermined reference amount and the case where the difference does not exceed a predetermined reference amount. The substrate processing apparatus according to any one of claims 1 to 3.
  5.  前記搬送機構は、搬送される前記基板に前記液体を供給する液体供給機構を有し、
     前記制御部は、前記複数の画像から求めた差分が予め定められた基準量を超えると、前記液体供給機構に前記基板への前記液体の供給を行わせる、請求項1ないし3のいずれかに記載の基板処理装置。
    The transport mechanism has a liquid supply mechanism that supplies the liquid to the substrate to be transported.
    According to any one of claims 1 to 3, the control unit causes the liquid supply mechanism to supply the liquid to the substrate when the difference obtained from the plurality of images exceeds a predetermined reference amount. The substrate processing apparatus described.
  6.  前記制御部は、前記複数の画像から求めた差分が予め定められた基準量を超えると、前記搬送機構に前記基板を前記第1処理部に戻させ、前記第1処理部に前記液膜の再形成を行わせる請求項1ないし3のいずれかに記載の基板処理装置。 When the difference obtained from the plurality of images exceeds a predetermined reference amount, the control unit causes the transport mechanism to return the substrate to the first processing unit, and causes the first processing unit to display the liquid film. The substrate processing apparatus according to any one of claims 1 to 3, wherein the reshaping is performed.
  7.  前記液体は有機溶剤であり、前記第2処理部は前記基板に対し超臨界乾燥処理を実行する、請求項1ないし6のいずれかに記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 6, wherein the liquid is an organic solvent, and the second processing unit executes a supercritical drying treatment on the substrate.
  8.  前記複数の画像は、前記基板が前記搬送機構により搬送開始されるよりも前に撮像された搬送前画像を含む請求項1ないし7のいずれかに記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 7, wherein the plurality of images include a pre-transport image captured before the substrate is started to be transported by the transport mechanism.
  9.  前記制御部は、前記液膜を理想的に担持した状態の前記基板に対応する理想画像と前記搬送前画像との差に基づき、前記搬送機構による前記基板の搬送を開始するか否かを判断する請求項8に記載の基板処理装置。 The control unit determines whether or not to start the transfer of the substrate by the transfer mechanism based on the difference between the ideal image corresponding to the substrate in a state where the liquid film is ideally supported and the image before transfer. The substrate processing apparatus according to claim 8.
  10.  基板に液体を供給して前記基板の表面を液膜で覆う第1処理部と、前記液膜を担持する前記基板を受け入れて所定の処理を実行する第2処理部と、前記第1処理部と前記第2処理部との間で前記基板を搬送する搬送機構とを有する基板処理装置の搬送制御方法において、
     前記液膜が形成されてから前記基板が前記第2処理部へ搬入されるまでの間の互いに異なる時刻にそれぞれ前記液膜を撮像し、撮像された複数の画像の差に基づき、前記搬送機構の動作を制御する、基板処理装置の搬送制御方法。
    A first processing unit that supplies a liquid to a substrate and covers the surface of the substrate with a liquid film, a second processing unit that receives the substrate that supports the liquid film and executes a predetermined processing, and the first processing unit. In a transfer control method for a substrate processing apparatus having a transfer mechanism for transporting the substrate between the and the second processing unit.
    The liquid film is imaged at different times from the time when the liquid film is formed until the substrate is carried into the second processing unit, and the transport mechanism is based on the difference between the plurality of images taken. A transfer control method for a substrate processing device that controls the operation of.
PCT/JP2020/004018 2019-03-26 2020-02-04 Substrate processing device and transfer control method therefor WO2020195175A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217029410A KR102658643B1 (en) 2019-03-26 2020-02-04 Substrate processing device and its transport control method
CN202080020635.1A CN113557591A (en) 2019-03-26 2020-02-04 Substrate processing apparatus and transfer control method thereof
KR1020247005771A KR20240027875A (en) 2019-03-26 2020-02-04 Substrate processing device and transfer control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058734A JP7261052B2 (en) 2019-03-26 2019-03-26 SUBSTRATE PROCESSING APPARATUS AND TRANSPORT CONTROL METHOD THEREOF
JP2019-058734 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195175A1 true WO2020195175A1 (en) 2020-10-01

Family

ID=72608544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004018 WO2020195175A1 (en) 2019-03-26 2020-02-04 Substrate processing device and transfer control method therefor

Country Status (5)

Country Link
JP (1) JP7261052B2 (en)
KR (2) KR20240027875A (en)
CN (1) CN113557591A (en)
TW (1) TWI756625B (en)
WO (1) WO2020195175A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553643B1 (en) * 2021-05-17 2023-07-13 세메스 주식회사 Apparatus for treating substrate and robot for transferring substrate
KR102640371B1 (en) * 2021-09-03 2024-02-27 엘에스이 주식회사 Substrate transfer apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120064727A1 (en) * 2010-09-15 2012-03-15 Samsung Electronics Co., Ltd. Substrate treatment equipment and method of treating substrate using the same
US20170345680A1 (en) * 2016-05-27 2017-11-30 Semes Co., Ltd. Transfer unit, and apparatus and method for treating substrate
JP2018147994A (en) * 2017-03-03 2018-09-20 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
WO2018216476A1 (en) * 2017-05-24 2018-11-29 東京エレクトロン株式会社 Substrate treatment device and substrate treatment method
JP2019087687A (en) * 2017-11-09 2019-06-06 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP2020017618A (en) * 2018-07-25 2020-01-30 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514700B2 (en) * 2005-12-13 2010-07-28 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JP5088335B2 (en) 2009-02-04 2012-12-05 東京エレクトロン株式会社 Substrate transfer apparatus and substrate processing system
JP5575691B2 (en) * 2011-04-06 2014-08-20 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD
JP5661022B2 (en) * 2011-11-21 2015-01-28 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and computer-readable storage medium storing substrate processing program
JP6002112B2 (en) * 2013-11-07 2016-10-05 東京エレクトロン株式会社 Substrate defect analysis apparatus, substrate processing system, substrate defect analysis method, program, and computer storage medium
JP6204879B2 (en) * 2014-06-25 2017-09-27 株式会社Screenホールディングス Substrate processing apparatus, jig, and teaching method
JP6537992B2 (en) * 2016-03-30 2019-07-03 東京エレクトロン株式会社 Substrate processing apparatus, control method for substrate processing apparatus, and substrate processing system
JP2018036235A (en) * 2016-09-02 2018-03-08 株式会社Screenホールディングス Substrate checkup device, substrate processing device, substrate checkup method, and substrate processing method
JP6842952B2 (en) * 2017-02-28 2021-03-17 株式会社Screenホールディングス Substrate processing equipment and substrate processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120064727A1 (en) * 2010-09-15 2012-03-15 Samsung Electronics Co., Ltd. Substrate treatment equipment and method of treating substrate using the same
US20170345680A1 (en) * 2016-05-27 2017-11-30 Semes Co., Ltd. Transfer unit, and apparatus and method for treating substrate
JP2018147994A (en) * 2017-03-03 2018-09-20 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
WO2018216476A1 (en) * 2017-05-24 2018-11-29 東京エレクトロン株式会社 Substrate treatment device and substrate treatment method
JP2019087687A (en) * 2017-11-09 2019-06-06 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP2020017618A (en) * 2018-07-25 2020-01-30 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP2020161609A (en) 2020-10-01
KR20240027875A (en) 2024-03-04
KR20210126693A (en) 2021-10-20
KR102658643B1 (en) 2024-04-18
TWI756625B (en) 2022-03-01
JP7261052B2 (en) 2023-04-19
TW202040637A (en) 2020-11-01
CN113557591A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
JP4654119B2 (en) Coating / developing apparatus and coating / developing method
WO2020195175A1 (en) Substrate processing device and transfer control method therefor
US10289005B2 (en) Unit for supplying liquid, apparatus for treating a substrate, and method for treating a substrate
JP6728358B2 (en) Substrate processing apparatus, substrate processing method and storage medium
TWI742661B (en) Substrate processing apparatus
JP2023001147A (en) Substrate processing apparatus
JP5859888B2 (en) Substrate processing apparatus and substrate processing method
JP2001237179A (en) Coating film forming equipment
JP2009032712A (en) Substrate conveyance and processing apparatus
JP2009094406A (en) Coating/developing apparatus, coating/developing method, and storage medium
JP7183094B2 (en) Substrate processing method and substrate processing apparatus
JP4872448B2 (en) Coating, developing device, coating, developing method and storage medium.
JP2007036268A (en) Substrate processing method and substrate processor
JP2002016041A (en) Liquid processing apparatus
JP2004072120A (en) Method and device for development, and method and device for treating liquid
JP2022155713A (en) Substrate drying device and substrate processing device
JP2024034960A (en) Substrate drying device, substrate processing apparatus, and substrate drying method
JP2005340845A (en) Substrate treatment apparatus, substrate treatment method, and method for manufacturing substrate
JP3847767B2 (en) Substrate processing method and substrate processing apparatus
JP2002016037A (en) Liquid treatment apparatus
JPH0562963A (en) Drying device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217029410

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778307

Country of ref document: EP

Kind code of ref document: A1