WO2020194737A1 - Method for producing electronic device, and electronic device - Google Patents

Method for producing electronic device, and electronic device Download PDF

Info

Publication number
WO2020194737A1
WO2020194737A1 PCT/JP2019/013854 JP2019013854W WO2020194737A1 WO 2020194737 A1 WO2020194737 A1 WO 2020194737A1 JP 2019013854 W JP2019013854 W JP 2019013854W WO 2020194737 A1 WO2020194737 A1 WO 2020194737A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electronic device
manufacturing
peeling
resin layer
Prior art date
Application number
PCT/JP2019/013854
Other languages
French (fr)
Japanese (ja)
Inventor
幸也 西岡
克彦 岸本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2019/013854 priority Critical patent/WO2020194737A1/en
Publication of WO2020194737A1 publication Critical patent/WO2020194737A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Definitions

  • the present invention relates to a method for manufacturing an electronic device and an electronic device.
  • a laminate including a resin layer, a thin transistor layer, a light emitting element layer and the like is formed on a glass substrate, and the back surface of the glass substrate to the lower surface of the resin layer are formed. Is irradiated with a laser beam to peel off the resin layer from the glass substrate. Then, a heat radiating layer containing graphite carbon, copper foil, or the like is bonded to the surface of the resin layer opposite to the surface facing the thin transistor layer via an adhesive layer for heat dissipation of the electronic device.
  • the release layer can be formed as a heat dissipation layer by peeling the resin layer and the release layer from the mother substrate.
  • the heat radiating layer can be formed without the adhesive layer, and the heat radiating property of the electronic device can be improved.
  • FIG. It is a flowchart which shows the manufacturing method of an OLED panel. It is sectional drawing which shows the structure of an OLED panel. It is a top view which shows the manufacturing method of the electronic device of Embodiment 1.
  • FIG. It is a flowchart which shows the manufacturing method of the electronic device of the modification of Embodiment 1. It is a top view which shows the manufacturing method of the electronic device of the modification of Embodiment 1. It is sectional drawing which shows the manufacturing method of the electronic device of the modification of Embodiment 1. It is a top view which shows the manufacturing method of the electronic device of Embodiment 2. It is a top view which shows the manufacturing method of the electronic device of the modification of Embodiment 2.
  • FIG. 3 As a method for manufacturing an electronic device according to an embodiment of the present invention, the manufacturing method shown in FIG. 3 will be taken as an example and will be described with reference to FIGS. 1 to 3.
  • “same layer” means that it is formed by the same process (deposition process)
  • “lower layer” means that it is formed by a process prior to the layer to be compared.
  • “upper layer” means that it is formed in a process after the layer to be compared.
  • FIG. 1 is a flowchart showing a manufacturing method of the electronic device of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of a display unit of an electronic device.
  • FIG. 3 is a plan view showing a method of manufacturing an electronic device.
  • an organic EL (Electro Luminescence) display device 2 as an electronic device will be described.
  • a plurality of display areas 41 (that is, an organic EL display device 2) are formed on one translucent substrate (mother substrate) 13. ..
  • a release layer AL is formed on a substrate 13 (step S1, first film forming step).
  • the resin layer 12 is formed so as to cover at least a part of the release layer AL (step S2, second film forming step).
  • the barrier layer 3 is formed so as to cover the entire surface of the resin layer 12 (step S3, third film forming step).
  • a thin transistor layer (also referred to as a TFT layer) 4 above the barrier layer 3 is formed (step S4, fourth film forming step).
  • a top emission type light emitting element layer (including a light emitting layer) 5 is formed (step S5).
  • the sealing layer 6 that covers the light emitting element layer is formed (step S6).
  • the laminated body 7 is cut out and the top film 14 is attached (step S7).
  • the release layer AL or the resin layer 12 is irradiated with light LV through the substrate 13.
  • the resin layer 12 and the peeling layer AL are peeled from the substrate 13 by inserting a blade such as a knife at the interface between the substrate 13 and the resin layer 12 and the peeling layer AL (step S8, peeling step).
  • the lower surface film 10 of FIG. 2 is attached to the lower surface of the resin layer 12 (step S9).
  • the laminate including the bottom film 10, the resin layer 12, the barrier layer 3, the thin transistor layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of individual pieces (step S10, division step). ..
  • the functional film 39 is attached to the obtained pieces (step S11).
  • an electronic circuit board (for example, an IC chip) is mounted on the non-display area of the individual piece to form an electronic device (step S12).
  • the substrate 13 for example, a glass substrate is used.
  • the substrate 13 may be an unused glass substrate, and the used glass substrate that has undergone the first film forming step to the peeling step described later may be reused.
  • the peeling layer AL is substantially completely peeled off, so that the cost of manufacturing the electronic device can be reduced by reusing it.
  • the release layer AL has a thickness of about 1 ⁇ m.
  • the release layer AL is preferably formed on the substrate 13 by a sputtering method or a PVD method.
  • the release layer AL formed by the sputtering method or the PVD method becomes a dense and uniform release layer AL.
  • the release layer AL contains graphite carbon.
  • graphite carbon By using graphite carbon as the release layer AL, the release layer AL bonded to the resin layer 12 can be used as the heat dissipation layer.
  • graphite carbon When graphite carbon is contained as the release layer AL, it is preferable to use graphite carbon formed in a direction in which the layer direction of the graphite carbon is parallel to the direction in which the resin layer 12 and the substrate 13 are laminated. Since the layer direction of graphite carbon is formed in a direction parallel to the direction in which the tree resin layer 12 and the substrate 13 are laminated, in the peeling step, the substrate 13 and the peeling layer AL are formed at the interface between the substrate 13 and the peeling layer AL. Even when the bond is not cut well, it can be peeled between the graphite carbon layers (between the graphite carbon layers) constituting the release layer AL.
  • an adhesive layer that contains graphite carbon as the release layer AL and is used to attach the heat radiation layer to the resin layer 12 by peeling from the substrate 13 in a state where the release layer AL is attached to the resin layer 12.
  • Graphite carbon can be formed as a heat dissipation layer without the need for it. Since the adhesive layer has a lower thermal conductivity than the release layer AL, the heat dissipation of the electronic device can be improved by forming the heat dissipation layer without using the adhesive layer. Further, since graphite carbon has a low thermal conductivity in the interlayer direction, the influence of heat due to the light LV given to the resin layer 12 during light irradiation such as in the peeling step (step S8) can be reduced. Incidentally, graphite carbon has a structure in which carbon surface to SP 2 bonded carbon atoms (graphene) are laminated.
  • Examples of the material of the resin layer 12 include polyimide and polyamide. Examples of the material of the top film 14 in step S7 include polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the barrier layer 3 is a layer that prevents foreign substances such as moisture and oxygen from reaching the thin transistor layer 4 and the light emitting device layer 5, and is, for example, a silicon oxide film, a silicon nitride film, or a silicon nitride film formed by a CVD method. It can be composed of a silicon oxynitride film or a laminated film thereof.
  • the thin transistor layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and a layer above the gate electrode GE.
  • the thin layer transistor Tr is configured to include the flattening film 21 of the upper layer, the semiconductor film 15, the inorganic insulating film 16, and the gate electrode GE.
  • the semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • LTPS low temperature polysilicon
  • FIG. 2 the thin layer transistor Tr having the semiconductor film 15 as a channel is shown in the top gate structure, but may have a bottom gate structure (for example, when the channel of the thin layer transistor is an oxide semiconductor).
  • the gate electrode GE, the capacitance electrode CE, and the source wiring SH are made of, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu). It is composed of a single-layer film or a laminated film of a metal containing at least one.
  • the inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • the flattening film (interlayer insulating film) 21 can be made of a coatable organic material such as polyimide or acrylic.
  • the light emitting element layer 5 (for example, the organic light emitting diode layer) has an anode 22 which is a layer above the flattening film 21, an anode edge cover 23 which covers the edge of the anode 22, and an EL (electroluminescence) which is a layer above the anode edge cover 23. )
  • a light emitting element (for example, OLED: organic light emitting diode) including a layer 24 and a cathode 25 above the EL layer 24 and including an island-shaped anode 22, an EL layer 24, and a cathode 25 for each subpixel.
  • the anode edge cover 23 (also referred to as a bank) can be made of a coatable organic material such as polyimide or acrylic.
  • the EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side.
  • the light emitting layer is formed in an island shape for each subpixel by a vapor deposition method or an inkjet method, but one or more layers of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer are solid. It may be a common layer of, or it may be non-formed.
  • the anode 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity.
  • the cathode 25 can be made of a translucent conductive material such as MgAg alloy (ultra-thin film) or ITO (Indium Tin Oxide).
  • the driving current between the anode 22 and the cathode 25 causes holes and electrons to recombine in the EL layer 24, and the excitons generated thereby fall to the ground state, so that light is emitted. It is released. Since the anode 22 is light-reflecting and the cathode 25 is translucent, the display light DL emitted from the EL layer 24 faces upward and becomes top emission.
  • the light emitting element layer 5 is not limited to the case of forming an OLED element, and may be formed of an inorganic light emitting diode or a quantum dot light emitting diode.
  • the sealing layer 6 is translucent, and has an inorganic sealing film 26 covering the cathode 25, an organic sealing film 27 above the inorganic sealing film 26, and an inorganic sealing film 28 covering the organic sealing film 27. And include.
  • the sealing layer 6 covering the light emitting element layer 5 prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
  • Each of the inorganic sealing films 26 and 28 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by a CVD method.
  • the organic sealing film 27 is a translucent organic film thicker than the inorganic sealing films 26 and 28, and can be made of a coatable organic material such as acrylic.
  • the lower surface film 10 is for realizing protection of the back surface of the display device by attaching it to the lower surface of the resin layer 12 after peeling off the support substrate, and examples of the material thereof include PET. Since the lower surface film 10 contains fine powder of an inorganic compound (AlN, diamond, etc.) having excellent thermal conductivity, the lower surface film 10 does not reduce the heat dissipation from the release layer AL, and the display device 2 It is possible to add a function that can dissipate heat to the outside of the.
  • the functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
  • step S1 first film formation step of FIG. 1
  • a release layer AL is formed on the substrate 13.
  • the display region 41 which will be described later, is formed so as to be laminated on the release layer AL.
  • step S2 (second film formation step) of FIG. 1
  • the resin layer 12 is formed so as to cover at least a part of the release layer AL.
  • the resin layer 12 is a portion that comes into contact with the substrate 13 and exists around a portion that contacts the release layer AL and a portion that contacts the release layer AL. And.
  • step S3 third film forming step of FIG. 1
  • the barrier layer 3 is formed so as to cover the upper surface and the end surface of the resin layer 12. As a result, it is possible to prevent water from penetrating into the resin layer 12, and it is possible to solve the problem that the release layer AL and the resin layer 12 are (unintentionally) separated by the step S8. ..
  • an electronic circuit layer is formed on the upper layer of the barrier layer 3.
  • the electronic circuit layer may be a thin transistor layer 4 or a touch panel layer (not shown).
  • the electronic circuit layer is a touch panel layer, it is not necessary to form the light emitting element layer 5 and the sealing layer 6 on the upper layer.
  • step S8 peeling step of FIG. 1
  • the resin layer 12 and the peeling layer AL are peeled from the substrate 13 at the molecular level by irradiating light LV from the lower surface of the substrate 13.
  • the release of the release layer AL from the substrate 13 is considered to be due to the difference in the bonding force of the graphite carbon.
  • graphite carbon it is considered that the bonds between carbons between layers are bonded by van der Waals force, and the bonds between carbons within the layer (inside the layer) are bonded by covalent bonds. There is. Further, when polyimide is used as the resin layer 12, the graphite carbon and the polyimide are bonded by a SAM bond (a bond having a stronger bonding force than the bonding force between layers in graphite carbon).
  • graphite carbon when used as the release layer AL, it is peeled off without remaining on the substrate 13 due to the difference in the bonding force of the graphite carbon, or is peeled off from the substrate 13 between the layers of the graphite carbon. As a result, the graphite carbon remains in close contact with the resin layer 12, so that it can be used as a heat dissipation layer.
  • the release layer AL When the release layer AL is irradiated with light LV, the bonding force between the substrate 13 and the release layer AL is reduced, and the release layer AL and the resin layer 12 are easily peeled from the substrate 13.
  • the resin layer 12 when the resin layer 12 is irradiated with light LV, the resin layer 12 is burned by the heat of the light LV, the bonding force between the substrate 13 and the resin layer 12 is reduced, and the resin layer 12 is easily peeled from the substrate 13. Become.
  • the resin layer 12 is not directly irradiated with light LV, and the resin layer 12 is not heated. Therefore, at the location where the resin layer 12 and the release layer AL come into contact with each other, it is possible to suppress the generation of carbides in the resin layer 12 due to light LV and the generation of traces of the resin layer 12 due to light LV. Then, by reducing the generation of traces or the generation of carbides due to irradiation with light LV, it is possible to suppress the clean environment (manufacturing process) from being contaminated by carbides.
  • the resin layer 12 is burned by irradiating the light LV from the lower surface of the substrate 13, and carbides of the resin layer 12 are generated on the lower surface of the resin layer 12. Since carbides are generated on the lower surface of the resin layer 12, when the resin layer 12 and the substrate 13 are peeled off, it becomes easy to insert a blade such as a knife at the interface between the resin layer 12 and the substrate 13. As a result, it becomes easy to create a trigger for peeling the substrate 13 from the resin layer 12.
  • the portion where the resin layer 12 and the substrate 13 come into contact with each other may be provided on the entire circumference of the portion where the resin layer 12 and the release layer AL come into contact with each other, or may be provided at least partially.
  • the release layer AL is provided in the present embodiment, unlike the above-mentioned conventional example, it is possible to prevent the occurrence of a defect in the above-mentioned delamination process and improve the yield in the manufacture of the electronic device. Can be done. Further, the release layer AL remains in the resin layer 12 and acts as a heat radiating layer, so that the steps required to form the heat radiating layer can be reduced. Further, when the release layer AL is used as the heat dissipation layer, the adhesive layer having lower thermal conductivity than the release layer AL is not formed, so that the heat dissipation in the electronic device can be improved.
  • the optical LV is preferably laser light.
  • the device for irradiating the laser beam may be, for example, an excimer laser irradiation device using XeCl gas or the like, a solid-state laser irradiation device using YAG (Yttrium Aluminum Garnet) or the like.
  • YAG Yttrium Aluminum Garnet
  • the excimer laser light is suitable for a line-shaped light source because the beam shape has high uniformity in the longitudinal direction.
  • the lower surface film 10 is attached to the resin layer 12 and the release layer AL.
  • the surface of the resin layer 12 and the release layer AL to which the lower surface film 10 is attached may have a difference in thickness between the resin layer 12 and the release layer AL in the stacking direction.
  • the difference in thickness between the resin layer 12 and the release layer AL in the lamination direction is smaller than the thickness in the lamination direction of the lower surface film 10, the difference in thickness in the lamination direction by attaching the lower surface film 10 Is gone.
  • step S10 dividing step of FIG. 1
  • the laminated body 7 including the barrier layer 3, the resin layer 12, and the substrate 13 is cut in the thickness direction of the laminated body 7 so as to pass through the end portion of the resin layer 12.
  • the end faces of the barrier layer 3 and the resin layer 12 are flush with each other.
  • the substrate 13 may be cut into strips, and the substrate 13 may be cut to a desired size (step S25). Then, after cutting, the substrate 13 is peeled off (step S26).
  • the resin layer 12 can come into contact with air and contain moisture. As a result, the adhesion between the resin layer 12 and the substrate 13 is lowered. As a result, even when an unreasonable tensile stress is generated in the resin layer 12 in the region where the substrate 13 cannot be irradiated with the laser, it is possible to prevent the resin layer 12 from being broken or other defects. Further, since the release layer AL (heat dissipation layer) is bonded to the resin layer 12, it is not necessary to form the heat dissipation layer. Further, since the heat radiating layer is formed without interposing the adhesive layer, the heat radiating property in the electronic device can be improved.
  • AL heat dissipation layer
  • FIG. 7 shows a case where the release layer AL is not formed in the display region 41.
  • the release layer AL may be formed in the display area 41.
  • the release layer AL heat dissipation layer
  • the heat radiating layer is formed without interposing the adhesive layer, the heat radiating property of the electronic device can be improved.
  • a terminal portion (not shown) is formed which is connected to the wiring provided in the electronic circuit layer and inputs a signal from the outside. Further, in the terminal portion, the wiring and the wiring for transmitting the electric signal are connected to a plurality of terminals provided in the terminal portion.
  • the release layer AL may be provided in the terminal region 43.
  • the release layer AL heat dissipation layer
  • the heat radiating layer is formed without interposing the adhesive layer, the heat radiating property of the electronic device can be improved.
  • the touch panel TP includes a touch panel unit TP1 and a terminal area 43.
  • the touch panel unit TP1 is a portion placed on the display surface of the organic EL display device 2 and actually has a touch panel function (in other words, a portion that accepts a user's operation). Further, in the touch panel TP, since the terminal region 43 in which the wiring connecting to each electrode is formed is outside the display region, it is not necessary to provide the release layer AL in the terminal region 43.
  • FIG. 10 is a plan view showing a method of manufacturing the display device of the third embodiment
  • FIG. 11 is a cross-sectional view showing the method of manufacturing the display device of the third embodiment.
  • the substrate and the release layer were peeled off (step 26).
  • the substrate and the release layer are peeled off (step S8), they may be separated (step S10).
  • the release layer AL is formed on the large-sized substrate 13, and the island-shaped first portion 12a (is formed on the release layer AL.
  • a resin layer 12 including a first display region 41a) and an island-shaped second portion 12b (corresponding to a second display region 41b) is formed.
  • a common barrier layer 3 is formed so as to cover the first part 12a and the second part 12b, and then a thin transistor layer including a region 4a overlapping the first part 12a and a region 4b overlapping the second part 12b is formed.
  • a light emitting element layer including a region 5a overlapping the first part 12a and a region 5b overlapping the second part 12b is formed, and a sealing layer 6 covering the light emitting element layer is formed.
  • a top film is formed on the first laminated body 7A including the first portion 12a and the barrier layer 3 on the divided substrate 13a and the second laminated body 7B including the second portion 12b and the barrier layer 3 on the divided substrate 13b.
  • the first laminated body 7A is cut in the thickness direction so as to pass through the end portion of the first portion 12a, and the second laminated body 7B is cut into the second laminated body 7B.
  • a cutting step of cutting in the thickness direction is performed so as to pass through the ends of the two parts 12b.
  • the release layer AL located below each of the first laminated body 7A and the second laminated body 7B is irradiated with light LV, and the first part 12a and the second laminated body 7B are separated.
  • the layer AL is peeled from the split substrate 13a, and the second part 12b and the peeled layer AL are peeled from the split substrate 13b.
  • the first laminated body 7A attached to the divided substrate 13a (glass substrate) and the second laminated body 7B attached to the divided substrate 13b (glass substrate) are separately transported and stored. Can be done.
  • the first laminated body 7A and the second laminated body 7B are much easier to transport and store than the laminated body in a state of being peeled off from the glass substrate (flexible state).
  • the barrier layer 3 covers the upper surfaces and end faces of the first portion 12a and the second portion 12b of the resin layer, foreign matter such as moisture is contained in the resin layers 12a and 12b. It is possible to prevent permeation, and it is said that the substrate 13a and the substrate 13b and the first part 12a or the second part 12b of the resin layer are (unintentionally) separated by the step S8 (peeling step). The problem can be solved. For example, it is possible to prevent an accident in which the first portion 12a of the resin layer is peeled off from the substrate 13a during the transportation work of the first laminated body 7A, and the first laminated body 7A falls and is damaged.
  • the resin layer 12 is separated and formed into two parts, the first part 12a and the second part 12b, but the present invention is not limited to this, and the resin layer 12 may be divided into three or more parts. Further, in steps S4 to S6, a device corresponding to a plurality of panels is formed on the first part 12a, and a device corresponding to the plurality of panels is formed on the second part 12b, and in step S10, the first stacking is performed. A plurality of electronic devices (flexible panels) may be obtained from each of the body 7A and the second laminated body 7B. Further, the first display area 41a and the second display area 41b may be further divided into a plurality of display areas.
  • a flexible backlight unit 50 is arranged on the back surface of the resin layer 12, the resin layer 12 is made of transparent polyimide, a pixel electrode PE is formed on the thin transistor layer 4, and the pixel electrode PE is formed.
  • a liquid crystal layer 35 that functions as a shutter is arranged between the flexible facing substrate 37 (color filter substrate).
  • the electro-optical element included in the electronic device according to the present embodiment is not particularly limited.
  • the display device according to the present embodiment include an organic EL display provided with an OLED (Organic Light Emitting Diode) as an electro-optical element, an inorganic EL display provided with an inorganic light emitting diode as an electro-optical element, and electro-optical.
  • the element include a QLED display provided with a QLED (Quantum dot Light Emitting Diode).
  • the present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
  • a method for manufacturing an electronic device comprising a peeling step of peeling the peeling layer and the resin layer.
  • Mode 2 The method for manufacturing an electronic device according to mode 1, wherein in the second film forming step, a resin layer is laminated so as to cover the entire surface of the peeling layer.
  • a dividing step of dividing the laminate including the resin layer and the barrier layer in the thickness direction of the laminate so as to pass through the end portion of the resin layer is included.
  • Mode 4 The method for manufacturing an electronic device according to mode 3, wherein in the dividing step, the release layer and the mother substrate are divided in addition to the laminated body.
  • Mode 5 The method for manufacturing an electronic device according to mode 3 or 4, wherein in the first film forming step, the release layer is formed so as to be superimposed on the installation position of the alignment marker in the dividing step.
  • any one of the modes 3 to 5 which is connected to the wiring provided in the electronic circuit layer and forms the peeling layer so as to be superimposed on the terminal region where a signal is input from the outside. The method of manufacturing the electronic device described.
  • a resin layer including the island-shaped first part and the island-shaped second part is formed, and in the third film forming step, the first part and the second part are covered in common.
  • a barrier layer is formed, and in the fourth film forming step, the electronic circuit layer including a region overlapping the first part and a region overlapping the second part is formed, and the fourth forming step and the peeling step are performed.
  • the barrier layer, the peeling layer, and the mother substrate so as to pass through a portion outside the first part and the second part in a plan view and in contact with the barrier layer and the peeling layer.
  • the first laminated body including the first part and the barrier layer is cut in the thickness direction of the first laminated body so as to pass through the end portion of the first part.
  • Mode 9 The item according to any one of Modes 1 to 8, wherein after the peeling step, the resin layer and the mother substrate from which the peeling layer is peeled are sequentially subjected to the first film forming step to the peeling step. How to make an electronic device.
  • Mode 10 The method for manufacturing an electronic device according to any one of modes 1 to 9, wherein the release layer contains graphite carbon.
  • Mode 11 The method for manufacturing an electronic device according to any one of modes 1 to 10, wherein the laser beam irradiating the release layer is an excimer laser.
  • Mode 12 The method for manufacturing an electronic device according to any one of modes 1 to 10, wherein the laser beam irradiating the release layer is a solid-state laser.
  • Module 13 The method for manufacturing an electronic device according to any one of aspects 1 to 12, wherein the electronic circuit layer is a thin transistor layer.
  • Mode 14 The method for manufacturing an electronic device according to mode 13, wherein the electronic circuit layer has a light emitting element layer formed above the thin transistor layer.
  • Mode 15 The method for manufacturing an electronic device according to mode 12, wherein a liquid crystal layer is formed on the electronic circuit layer above the thin transistor layer.
  • Module 16 The method for manufacturing an electronic device according to any one of aspects 1 to 12, wherein the electronic circuit layer is a touch panel layer.
  • Mode 17 The method for manufacturing an electronic device according to any one of modes 1 to 16, wherein the release layer is formed by a PVD method or a sputtering method.
  • Module 18 An electronic device in which a resin layer, a barrier layer, and an electronic circuit layer are sequentially laminated, and the resin layer comes into contact with graphite carbon on a surface of the resin layer opposite to the surface facing the barrier layer. Electronic devices.

Abstract

The present invention provides a method for producing an electronic device, wherein: an island-shaped release layer (AL) is formed on a substrate (13); a resin layer (12) is superposed thereon so as to cover the entire surface of the release layer (AL); a barrier layer (3) is formed so as to cover the resin layer (12); an electronic circuit layer is formed on top of the barrier layer (3); and the release layer (AL) and the resin layer (12) are separated from the substrate (13).

Description

電子デバイスの製造方法および電子デバイスManufacturing method of electronic device and electronic device
 本発明は、電子デバイスの製造方法および電子デバイスに関する。 The present invention relates to a method for manufacturing an electronic device and an electronic device.
 可撓性を有する電子デバイスを製造する場合では、例えば、ガラス基板上に、樹脂層、薄層トランジスタ層、および発光素子層等を含む積層体を形成し、ガラス基板の裏面から樹脂層の下面にレーザ光を照射してガラス基板から樹脂層を剥離する。そして、樹脂層における薄層トランジスタ層と対向する面の反対側の面には、電子デバイスの放熱のために、粘着層を介してグラファイトカーボンまたは銅箔等を含む放熱層が貼合される。 In the case of manufacturing a flexible electronic device, for example, a laminate including a resin layer, a thin transistor layer, a light emitting element layer and the like is formed on a glass substrate, and the back surface of the glass substrate to the lower surface of the resin layer are formed. Is irradiated with a laser beam to peel off the resin layer from the glass substrate. Then, a heat radiating layer containing graphite carbon, copper foil, or the like is bonded to the surface of the resin layer opposite to the surface facing the thin transistor layer via an adhesive layer for heat dissipation of the electronic device.
特開2004-349543号公報(2004年12月9日公開)Japanese Unexamined Patent Publication No. 2004-349543 (published on December 9, 2004)
 レーザ光によるデラミネーションの工程によってガラス基板から樹脂層を剥離する前記従来の手法では、レーザ光の熱により不具合(例えば樹脂層が炭化した炭化物が樹脂層またはガラス基板へ付着すること等)が発生するという問題がある。また、放熱層は、当該放熱層より熱伝導性の低い粘着層を介して樹脂層へ貼合されるため、電子デバイスの放熱層を用いた放熱性について、改善の余地があった。 In the conventional method of peeling the resin layer from the glass substrate by the process of delamination by the laser beam, a defect (for example, carbonized carbonized resin layer adheres to the resin layer or the glass substrate) occurs due to the heat of the laser beam. There is a problem of doing. Further, since the heat radiating layer is bonded to the resin layer via an adhesive layer having a lower thermal conductivity than the heat radiating layer, there is room for improvement in heat radiating property using the heat radiating layer of the electronic device.
 母基板上に島状の剥離層を形成する第1成膜工程と、前記剥離層の少なくとも一部を覆うように、樹脂層を積層させる第2成膜工程と、前記樹脂層を覆うように、バリア層を形成する第3成膜工程と、前記バリア層の上層に電子回路層を形成する第4成膜工程と、前記剥離層に対してレーザ光を照射し、前記母基板から、前記剥離層および前記樹脂層を剥離する剥離工程と、を含む。 A first film forming step of forming an island-shaped peeling layer on a mother substrate, a second film forming step of laminating resin layers so as to cover at least a part of the peeling layer, and covering the resin layer. The third film forming step of forming the barrier layer, the fourth film forming step of forming the electronic circuit layer on the upper layer of the barrier layer, and the release layer being irradiated with laser light, from the mother substrate, the above. It includes a peeling step of peeling the peeling layer and the resin layer.
 母基板から樹脂層および剥離層を剥離させることにより剥離層を放熱層として形成できる。それにより、放熱層を粘着層なしに形成することができ、電子デバイスの放熱性を向上させることができる。 The release layer can be formed as a heat dissipation layer by peeling the resin layer and the release layer from the mother substrate. As a result, the heat radiating layer can be formed without the adhesive layer, and the heat radiating property of the electronic device can be improved.
OLEDパネルの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an OLED panel. OLEDパネルの構成を示す断面図である。It is sectional drawing which shows the structure of an OLED panel. 実施形態1の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of Embodiment 1. FIG. 実施形態1の変形例の電子デバイスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electronic device of the modification of Embodiment 1. 実施形態1の変形例の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of the modification of Embodiment 1. 実施形態1の変形例の電子デバイスの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electronic device of the modification of Embodiment 1. 実施形態2の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of Embodiment 2. 実施形態2の変形例の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of the modification of Embodiment 2. 実施形態2の変形例の電子デバイスの表示部の別構成を示す断面図である。It is sectional drawing which shows another structure of the display part of the electronic device of the modification of Embodiment 2. 実施形態3の電子デバイスの製造方法を示す平面図である。It is a top view which shows the manufacturing method of the electronic device of Embodiment 3. 実施形態3の電子デバイスの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the electronic device of Embodiment 3. 電子デバイスの表示部の別構成を示す断面図である。It is sectional drawing which shows another structure of the display part of an electronic device.
 〔実施形態1〕
 本発明の一実施の形態に係る電子デバイスの製造方法として、図3に示す製造方法を例にとり、図1~3を参照し説明する。以下においては、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
[Embodiment 1]
As a method for manufacturing an electronic device according to an embodiment of the present invention, the manufacturing method shown in FIG. 3 will be taken as an example and will be described with reference to FIGS. 1 to 3. In the following, "same layer" means that it is formed by the same process (deposition process), and "lower layer" means that it is formed by a process prior to the layer to be compared. And "upper layer" means that it is formed in a process after the layer to be compared.
 図1は、実施形態1の電子デバイスの製造方法を示すフローチャートである。図2は電子デバイスの表示部の構成例を示す断面図である。図3は、電子デバイスの製造方法を示す平面図である。なお、以下の説明では、電子デバイスとしての有機EL(Electro Luminescence:エレクトロルミネッセンス)表示装置2を製造する場合について説明する。 FIG. 1 is a flowchart showing a manufacturing method of the electronic device of the first embodiment. FIG. 2 is a cross-sectional view showing a configuration example of a display unit of an electronic device. FIG. 3 is a plan view showing a method of manufacturing an electronic device. In the following description, a case of manufacturing an organic EL (Electro Luminescence) display device 2 as an electronic device will be described.
 実施形態1に係る電子デバイスは、図3に示すように、1枚の透光性を備えた基板(母基板)13に複数の表示領域41(つまり、有機EL表示装置2)が形成される。 In the electronic device according to the first embodiment, as shown in FIG. 3, a plurality of display areas 41 (that is, an organic EL display device 2) are formed on one translucent substrate (mother substrate) 13. ..
 実施形態1に係る電子デバイスの製造方法は、基板13に剥離層ALを形成する(ステップS1、第1成膜工程)。次いで、剥離層ALの少なくとも一部を覆うように樹脂層12を形成する(ステップS2、第2成膜工程)。次いで、樹脂層12の全面を覆うように、バリア層3を形成する(ステップS3、第3成膜工程)。次いで、バリア層3よりも上層の薄層トランジスタ層(TFT層とも称する)4を形成する(ステップS4、第4成膜工程)。次いで、トップエミッション型の発光素子層(発光層を含む)5を形成する(ステップS5)。次いで、発光素子層を覆う封止層6を形成する(ステップS6)。次いで、積層体7の切り出しおよび上面フィルム14の貼り付けを行う(ステップS7)。 In the method for manufacturing an electronic device according to the first embodiment, a release layer AL is formed on a substrate 13 (step S1, first film forming step). Next, the resin layer 12 is formed so as to cover at least a part of the release layer AL (step S2, second film forming step). Next, the barrier layer 3 is formed so as to cover the entire surface of the resin layer 12 (step S3, third film forming step). Next, a thin transistor layer (also referred to as a TFT layer) 4 above the barrier layer 3 is formed (step S4, fourth film forming step). Next, a top emission type light emitting element layer (including a light emitting layer) 5 is formed (step S5). Next, the sealing layer 6 that covers the light emitting element layer is formed (step S6). Next, the laminated body 7 is cut out and the top film 14 is attached (step S7).
 次いで、基板13越しに剥離層ALまたは樹脂層12に光LVを照射する。そして、基板13と、樹脂層12および剥離層ALと、の界面にナイフ等の刃を挿入することにより、基板13から樹脂層12および剥離層ALを剥離する(ステップS8、剥離工程)。 Next, the release layer AL or the resin layer 12 is irradiated with light LV through the substrate 13. Then, the resin layer 12 and the peeling layer AL are peeled from the substrate 13 by inserting a blade such as a knife at the interface between the substrate 13 and the resin layer 12 and the peeling layer AL (step S8, peeling step).
 次いで、樹脂層12の下面に、図2の下面フィルム10を貼り付ける(ステップS9)。次いで、下面フィルム10、樹脂層12、バリア層3、薄層トランジスタ層4、発光素子層5、封止層6を含む積層体を分断し、複数の個片を得る(ステップS10、分断工程)。次いで、得られた個片に機能フィルム39を貼り付ける(ステップS11)。次いで、個片の非表示領域に電子回路基板(例えば、ICチップ)をマウントして電子デバイスとする(ステップS12)。なお、前記各ステップは、後述の電子デバイス製造装置が行う。 Next, the lower surface film 10 of FIG. 2 is attached to the lower surface of the resin layer 12 (step S9). Next, the laminate including the bottom film 10, the resin layer 12, the barrier layer 3, the thin transistor layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of individual pieces (step S10, division step). .. Next, the functional film 39 is attached to the obtained pieces (step S11). Next, an electronic circuit board (for example, an IC chip) is mounted on the non-display area of the individual piece to form an electronic device (step S12). Each of the above steps is performed by an electronic device manufacturing apparatus described later.
 基板13には、例えばガラス基板が用いられる。基板13は、未使用のガラス基板であってよく、後述する第1成膜工程~剥離工程までを実施した使用済みのガラス基板を再度利用してよい。後述する第1成膜工程~剥離工程までを実施したガラス基板では、剥離層ALが略完全に剥離しているため、再利用することにより、電子デバイスを製造するコストを低減できる。 For the substrate 13, for example, a glass substrate is used. The substrate 13 may be an unused glass substrate, and the used glass substrate that has undergone the first film forming step to the peeling step described later may be reused. In the glass substrate obtained from the first film forming step to the peeling step described later, the peeling layer AL is substantially completely peeled off, so that the cost of manufacturing the electronic device can be reduced by reusing it.
 剥離層ALは、1μm程度の厚みを有する。剥離層ALは、スパッタリング法、またはPVD法により基板13に形成されることが好適である。スパッタリング法、またはPVD法により形成された剥離層ALは、緻密で均一な剥離層ALとなる。 The release layer AL has a thickness of about 1 μm. The release layer AL is preferably formed on the substrate 13 by a sputtering method or a PVD method. The release layer AL formed by the sputtering method or the PVD method becomes a dense and uniform release layer AL.
 剥離層ALは、グラファイトカーボンを含むことが好適である。グラファイトカーボンを剥離層ALとして用いることで、樹脂層12に貼合した剥離層ALを放熱層とすることができる。 It is preferable that the release layer AL contains graphite carbon. By using graphite carbon as the release layer AL, the release layer AL bonded to the resin layer 12 can be used as the heat dissipation layer.
 剥離層ALとしてグラファイトカーボンを含む場合において、グラファイトカーボンの層方向が、樹脂層12と基板13とが積層する方向に並行な方向に形成されたグラファイトカーボンを用いることが好適である。グラファイトカーボンの層方向が樹樹脂層12と基板13とが積層する方向に並行な方向に形成されることにより、剥離工程において、基板13と剥離層ALと界面において、基板13と剥離層ALとの結合がうまく切断できなかった場合であっても、剥離層ALを構成するグラファイトカーボンの層間(グラファイトカーボンの層と層との間)で剥離することができる。 When graphite carbon is contained as the release layer AL, it is preferable to use graphite carbon formed in a direction in which the layer direction of the graphite carbon is parallel to the direction in which the resin layer 12 and the substrate 13 are laminated. Since the layer direction of graphite carbon is formed in a direction parallel to the direction in which the tree resin layer 12 and the substrate 13 are laminated, in the peeling step, the substrate 13 and the peeling layer AL are formed at the interface between the substrate 13 and the peeling layer AL. Even when the bond is not cut well, it can be peeled between the graphite carbon layers (between the graphite carbon layers) constituting the release layer AL.
 剥離層ALとしてグラファイトカーボンを含み、かつ、剥離層ALが樹脂層12に貼合した状態で基板13から剥離することにより、放熱層を樹脂層12に貼合するために用いる粘着層を使用せずに、グラファイトカーボンを放熱層として形成できる。粘着層は、剥離層ALに比べ熱伝導率が低いため、粘着層を使用せず放熱層を形成することにより電子デバイスの放熱性を向上させることができる。さらに、グラファイトカーボンは、層間方向の熱伝導率が低いため、剥離工程(ステップS8)などの光照射時に樹脂層12へ与える光LVによる熱の影響を小さくできる。なお、グラファイトカーボンは、炭素が面状にSP結合した炭素原子(グラフェン)が積層した構造である。 Use an adhesive layer that contains graphite carbon as the release layer AL and is used to attach the heat radiation layer to the resin layer 12 by peeling from the substrate 13 in a state where the release layer AL is attached to the resin layer 12. Graphite carbon can be formed as a heat dissipation layer without the need for it. Since the adhesive layer has a lower thermal conductivity than the release layer AL, the heat dissipation of the electronic device can be improved by forming the heat dissipation layer without using the adhesive layer. Further, since graphite carbon has a low thermal conductivity in the interlayer direction, the influence of heat due to the light LV given to the resin layer 12 during light irradiation such as in the peeling step (step S8) can be reduced. Incidentally, graphite carbon has a structure in which carbon surface to SP 2 bonded carbon atoms (graphene) are laminated.
 樹脂層12の材料としては、例えば、ポリイミド、ポリアミド等が挙げられる。ステップS7の上面フィルム14の材料としては、例えばポリエチレンテレフタレート(PET)が挙げられる。 Examples of the material of the resin layer 12 include polyimide and polyamide. Examples of the material of the top film 14 in step S7 include polyethylene terephthalate (PET).
 バリア層3は、水分、酸素等の異物が薄層トランジスタ層4や発光素子層5に到達することを防ぐ層であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。 The barrier layer 3 is a layer that prevents foreign substances such as moisture and oxygen from reaching the thin transistor layer 4 and the light emitting device layer 5, and is, for example, a silicon oxide film, a silicon nitride film, or a silicon nitride film formed by a CVD method. It can be composed of a silicon oxynitride film or a laminated film thereof.
 薄層トランジスタ層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量電極CEと、容量電極CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層のソース配線SHと、ソース配線SHよりも上層の平坦化膜21とを含み、半導体膜15、無機絶縁膜16、およびゲート電極GEを含むように薄層トランジスタTrが構成される。 The thin transistor layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE above the inorganic insulating film 16, and a layer above the gate electrode GE. The inorganic insulating film 18, the capacitive electrode CE above the inorganic insulating film 18, the inorganic insulating film 20 above the capacitive electrode CE, the source wiring SH above the inorganic insulating film 20, and the source wiring SH above the inorganic insulating film 20. The thin layer transistor Tr is configured to include the flattening film 21 of the upper layer, the semiconductor film 15, the inorganic insulating film 16, and the gate electrode GE.
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。なお、図2では、半導体膜15をチャネルとする薄層トランジスタTrがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、薄層トランジスタのチャネルが酸化物半導体の場合)。 The semiconductor film 15 is composed of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor. In FIG. 2, the thin layer transistor Tr having the semiconductor film 15 as a channel is shown in the top gate structure, but may have a bottom gate structure (for example, when the channel of the thin layer transistor is an oxide semiconductor).
 ゲート電極GE、容量電極CE、ソース配線SHは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。 The gate electrode GE, the capacitance electrode CE, and the source wiring SH are made of, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), and copper (Cu). It is composed of a single-layer film or a laminated film of a metal containing at least one.
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。 The inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
 平坦化膜(層間絶縁膜)21は、例えば、ポリイミド、アクリル等の塗布可能な有機材料によって構成することができる。 The flattening film (interlayer insulating film) 21 can be made of a coatable organic material such as polyimide or acrylic.
 発光素子層5(例えば、有機発光ダイオード層)は、平坦化膜21よりも上層のアノード22と、アノード22のエッジを覆うアノードエッジカバー23と、アノードエッジカバー23よりも上層のEL(エレクトロルミネッセンス)層24と、EL層24よりも上層のカソード25とを含み、サブピクセルごとに、島状のアノード22、EL層24、およびカソード25を含む発光素子(例えば、OLED:有機発光ダイオード)と、これを駆動するサブ画素回路とが設けられる。アノードエッジカバー23(バンクとも称する)は、例えば、ポリイミド、アクリル等の塗布可能な有機材料によって構成することができる。 The light emitting element layer 5 (for example, the organic light emitting diode layer) has an anode 22 which is a layer above the flattening film 21, an anode edge cover 23 which covers the edge of the anode 22, and an EL (electroluminescence) which is a layer above the anode edge cover 23. ) A light emitting element (for example, OLED: organic light emitting diode) including a layer 24 and a cathode 25 above the EL layer 24 and including an island-shaped anode 22, an EL layer 24, and a cathode 25 for each subpixel. , A sub-pixel circuit for driving this is provided. The anode edge cover 23 (also referred to as a bank) can be made of a coatable organic material such as polyimide or acrylic.
 EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、サブピクセルごとに島状に形成されるが、正孔注入層、正孔輸送層、電子輸送層、電子注入層の1以上の層については、ベタ状の共通層とすることもあるし、非形成とすることもある。 The EL layer 24 is composed of, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side. The light emitting layer is formed in an island shape for each subpixel by a vapor deposition method or an inkjet method, but one or more layers of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer are solid. It may be a common layer of, or it may be non-formed.
 アノード(陽極)22は、例えば、ITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する。カソード25は、MgAg合金(極薄膜)、ITO(Indium Tin Oxide)等の透光性の導電材で構成することができる。 The anode 22 is composed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity. The cathode 25 can be made of a translucent conductive material such as MgAg alloy (ultra-thin film) or ITO (Indium Tin Oxide).
 発光素子層5がOLED層である場合、アノード22およびカソード25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。アノード22が光反射性であり、カソード25が透光性であるため、EL層24から放出された表示光DLは上方に向かい、トップエミッションとなる。 When the light emitting element layer 5 is an OLED layer, the driving current between the anode 22 and the cathode 25 causes holes and electrons to recombine in the EL layer 24, and the excitons generated thereby fall to the ground state, so that light is emitted. It is released. Since the anode 22 is light-reflecting and the cathode 25 is translucent, the display light DL emitted from the EL layer 24 faces upward and becomes top emission.
 発光素子層5は、OLED素子を構成する場合に限られず、無機発光ダイオードあるいは量子ドット発光ダイオードを構成してもよい。 The light emitting element layer 5 is not limited to the case of forming an OLED element, and may be formed of an inorganic light emitting diode or a quantum dot light emitting diode.
 封止層6は透光性であり、カソード25を覆う無機封止膜26と、無機封止膜26よりも上層の有機封止膜27と、有機封止膜27を覆う無機封止膜28とを含む。発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防いでいる。 The sealing layer 6 is translucent, and has an inorganic sealing film 26 covering the cathode 25, an organic sealing film 27 above the inorganic sealing film 26, and an inorganic sealing film 28 covering the organic sealing film 27. And include. The sealing layer 6 covering the light emitting element layer 5 prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
 無機封止膜26・28はそれぞれ、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、無機封止膜26・28よりも厚い透光性有機膜であり、アクリル等の塗布可能な有機材料によって構成することができる。 Each of the inorganic sealing films 26 and 28 can be composed of, for example, a silicon oxide film, a silicon nitride film, a silicon nitride film, or a laminated film thereof formed by a CVD method. The organic sealing film 27 is a translucent organic film thicker than the inorganic sealing films 26 and 28, and can be made of a coatable organic material such as acrylic.
 下面フィルム10は、支持基板を剥離した後に樹脂層12の下面に貼り付けることで、表示デバイスの裏面保護を実現するためのものであり、その材料としては、PET等が挙げられる。なお、下面フィルム10が熱伝導性に優れた無機化合物(AlNまたはダイヤモンド等)の微細粉末を含有することで、下面フィルム10に、剥離層ALからの放熱性を低下させることなく、表示装置2の外部に放熱させることができる機能を付与することができる。機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能等を有する。 The lower surface film 10 is for realizing protection of the back surface of the display device by attaching it to the lower surface of the resin layer 12 after peeling off the support substrate, and examples of the material thereof include PET. Since the lower surface film 10 contains fine powder of an inorganic compound (AlN, diamond, etc.) having excellent thermal conductivity, the lower surface film 10 does not reduce the heat dissipation from the release layer AL, and the display device 2 It is possible to add a function that can dissipate heat to the outside of the. The functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
 図1のステップS1(第1成膜工程)では、基板13上に剥離層ALを形成する。なお、後述する表示領域41は、剥離層ALに積層するように形成する。 In step S1 (first film formation step) of FIG. 1, a release layer AL is formed on the substrate 13. The display region 41, which will be described later, is formed so as to be laminated on the release layer AL.
 図1のステップS2(第2成膜工程)では、剥離層ALの少なくとも一部を覆うように、樹脂層12を形成する。剥離層ALの少なくとも一部を樹脂層12にて覆うことにより、樹脂層12は、剥離層ALに接触する部位と、剥離層ALに接触する部位の周囲に存在する、基板13に接触する部位と、を備える。 In step S2 (second film formation step) of FIG. 1, the resin layer 12 is formed so as to cover at least a part of the release layer AL. By covering at least a part of the release layer AL with the resin layer 12, the resin layer 12 is a portion that comes into contact with the substrate 13 and exists around a portion that contacts the release layer AL and a portion that contacts the release layer AL. And.
 図1のステップS3(第3成膜工程)では、樹脂層12の上面および端面を覆うようにバリア層3を形成する。これにより、樹脂層12に水分が浸透することを防ぐことができ、ステップS8までの間に剥離層ALと樹脂層12とが(意図せず)分離してしまうという問題を解消することができる。 In step S3 (third film forming step) of FIG. 1, the barrier layer 3 is formed so as to cover the upper surface and the end surface of the resin layer 12. As a result, it is possible to prevent water from penetrating into the resin layer 12, and it is possible to solve the problem that the release layer AL and the resin layer 12 are (unintentionally) separated by the step S8. ..
 図1のステップS4(第4成膜工程)では、バリア層3の上層に電子回路層を形成する。電子回路層は、薄層トランジスタ層4であってよく、タッチパネル層(不図示)であってよい。なお、電子回路層がタッチパネル層である場合には、その上層に発光素子層5および封止層6を形成する必要はない。 In step S4 (fourth film formation step) of FIG. 1, an electronic circuit layer is formed on the upper layer of the barrier layer 3. The electronic circuit layer may be a thin transistor layer 4 or a touch panel layer (not shown). When the electronic circuit layer is a touch panel layer, it is not necessary to form the light emitting element layer 5 and the sealing layer 6 on the upper layer.
 図1のステップS8(剥離工程)では、基板13の下面から光LVを照射することにより基板13から樹脂層12および剥離層ALを分子レベルで剥離する。 In step S8 (peeling step) of FIG. 1, the resin layer 12 and the peeling layer AL are peeled from the substrate 13 at the molecular level by irradiating light LV from the lower surface of the substrate 13.
 剥離層ALとしてグラファイトカーボンを用いた場合における基板13から剥離層ALの剥離は、グラファイトカーボンの結合力の差により剥離すると考えられる。 When graphite carbon is used as the release layer AL, the release of the release layer AL from the substrate 13 is considered to be due to the difference in the bonding force of the graphite carbon.
 具体的には、グラファイトカーボンにおいて、層間における炭素同士の結合は、ファンデルワールス力により結合し、層内(層の内部)における炭素同士の結合は、共有結合により結合していると考えられている。また、樹脂層12としてポリイミドを用いた場合では、グラファイトカーボンとポリイミドとの間で、SAM結合(グラファイトカーボンにおける層間の結合力より強い結合力を有する結合)により結合する。 Specifically, in graphite carbon, it is considered that the bonds between carbons between layers are bonded by van der Waals force, and the bonds between carbons within the layer (inside the layer) are bonded by covalent bonds. There is. Further, when polyimide is used as the resin layer 12, the graphite carbon and the polyimide are bonded by a SAM bond (a bond having a stronger bonding force than the bonding force between layers in graphite carbon).
 そのため、剥離層ALとしてグラファイトカーボンを用いた場合では、グラファイトカーボンの結合力の差により、基板13に残留せず剥離する、または、グラファイトカーボンの層間で基板13から剥離する。それにより、グラファイトカーボンは樹脂層12に密着したまま残留するため、放熱層とすることができる。 Therefore, when graphite carbon is used as the release layer AL, it is peeled off without remaining on the substrate 13 due to the difference in the bonding force of the graphite carbon, or is peeled off from the substrate 13 between the layers of the graphite carbon. As a result, the graphite carbon remains in close contact with the resin layer 12, so that it can be used as a heat dissipation layer.
 剥離層ALに光LVを照射した場合では、基板13と剥離層ALとの結合力が低下し、基板13から剥離層ALおよび樹脂層12を剥離しやすくなる。一方、樹脂層12に光LVを照射した場合では、光LVの熱により樹脂層12が焼かれ、基板13と樹脂層12との結合力が低下し、基板13から樹脂層12を剥離しやすくなる。 When the release layer AL is irradiated with light LV, the bonding force between the substrate 13 and the release layer AL is reduced, and the release layer AL and the resin layer 12 are easily peeled from the substrate 13. On the other hand, when the resin layer 12 is irradiated with light LV, the resin layer 12 is burned by the heat of the light LV, the bonding force between the substrate 13 and the resin layer 12 is reduced, and the resin layer 12 is easily peeled from the substrate 13. Become.
 なお、樹脂層12と剥離層ALとが接触する箇所では、樹脂層12に光LVが直接照射されず、樹脂層12に熱が加えらない。そのため、樹脂層12と剥離層ALとが接触する箇所では、光LVによる樹脂層12の炭化物の発生、および光LVによる樹脂層12の痕跡の発生を抑制できる。そして光LVを照射することによる痕跡の発生または炭化物の発生を低減することにより、クリーン環境(製造工程)を炭化物により汚染されることを抑制できる。さらに、炭化物の発生を低減することにより、発生した炭化物を洗浄などにより除去することが不要となる、炭化物を発生しなくするために特殊な糊を使用することが不要となる、および、炭化物が発生しなくなるような加工することが不要となる、等により部材およびプロセスコストを抑制できる。 At the place where the resin layer 12 and the release layer AL come into contact with each other, the resin layer 12 is not directly irradiated with light LV, and the resin layer 12 is not heated. Therefore, at the location where the resin layer 12 and the release layer AL come into contact with each other, it is possible to suppress the generation of carbides in the resin layer 12 due to light LV and the generation of traces of the resin layer 12 due to light LV. Then, by reducing the generation of traces or the generation of carbides due to irradiation with light LV, it is possible to suppress the clean environment (manufacturing process) from being contaminated by carbides. Further, by reducing the generation of carbides, it is not necessary to remove the generated carbides by washing or the like, it is not necessary to use a special glue to prevent the generation of carbides, and the carbides are generated. It is possible to suppress the member and process costs by eliminating the need for processing that does not occur.
 一方、樹脂層12と基板13とが接触する箇所では、光LVを基板13の下面から照射することにより樹脂層12が焼かれ、樹脂層12の炭化物が樹脂層12の下面に発生する。樹脂層12の下面に炭化物が発生することにより、樹脂層12と基板13とを剥離する際に、樹脂層12と基板13との界面にナイフ等の刃を挿入しやすくなる。それにより、樹脂層12から基板13を剥離するきっかけを作りやすくなる。 On the other hand, at the place where the resin layer 12 and the substrate 13 come into contact with each other, the resin layer 12 is burned by irradiating the light LV from the lower surface of the substrate 13, and carbides of the resin layer 12 are generated on the lower surface of the resin layer 12. Since carbides are generated on the lower surface of the resin layer 12, when the resin layer 12 and the substrate 13 are peeled off, it becomes easy to insert a blade such as a knife at the interface between the resin layer 12 and the substrate 13. As a result, it becomes easy to create a trigger for peeling the substrate 13 from the resin layer 12.
 そこで、基板13と剥離層ALとが接触する箇所の周囲に樹脂層12と基板13とが接触する箇所を設けることにより、基板13から樹脂層12または剥離層ALを剥離するきっかけを得ることができる。さらに、炭化物の発生を抑制することもできる。そこで、樹脂層12と基板13とが接触する箇所は、樹脂層12と剥離層ALとが接触する箇所の全周に備えてもよく、少なくとも一部に備えていてもよい。 Therefore, by providing a portion where the resin layer 12 and the substrate 13 come into contact with each other around the portion where the substrate 13 and the release layer AL come into contact, it is possible to obtain a trigger for peeling the resin layer 12 or the release layer AL from the substrate 13. it can. Furthermore, the generation of carbides can be suppressed. Therefore, the portion where the resin layer 12 and the substrate 13 come into contact with each other may be provided on the entire circumference of the portion where the resin layer 12 and the release layer AL come into contact with each other, or may be provided at least partially.
 以上のように、本実施形態では、剥離層ALを設けているため、上記従来例と異なり、上述のデラミネーションの工程での不具合の発生を防いで、電子デバイスの製造における歩留まりを向上することができる。さらに、剥離層ALが樹脂層12に残留し、放熱層として作用することにより、放熱層を形成するために要する工程等を低減できる。さらに、剥離層ALを放熱層として用いる場合では、剥離層ALより熱伝導性の低い粘着層を形成しないため、電子デバイスにおける放熱性を向上させることができる。 As described above, since the release layer AL is provided in the present embodiment, unlike the above-mentioned conventional example, it is possible to prevent the occurrence of a defect in the above-mentioned delamination process and improve the yield in the manufacture of the electronic device. Can be done. Further, the release layer AL remains in the resin layer 12 and acts as a heat radiating layer, so that the steps required to form the heat radiating layer can be reduced. Further, when the release layer AL is used as the heat dissipation layer, the adhesive layer having lower thermal conductivity than the release layer AL is not formed, so that the heat dissipation in the electronic device can be improved.
 光LVは、レーザ光であることが好適である。レーザ光を照射する装置としては、例えば、XeClガスなどを用いたエキシマレーザ照射装置、YAG(Yttrium Aluminum Garnet)などを用いた固体レーザ照射装置であってよい。レーザ光としてエキシマレーザを用いることにより、非常に高出力の紫外レーザ光を得ることができる。さらに、エキシマレーザ光は、ビーム形状が長手方向の均一性が高いため、ライン状光源に適している。また、レーザ光として、YAGなどを用いた固体レーザ(半導体励起固体レーザ)を用いることにより、装置価格およびランニングコストの面で、エキシマレーザよりも比較的安価なライン状光源を実現できる。 The optical LV is preferably laser light. The device for irradiating the laser beam may be, for example, an excimer laser irradiation device using XeCl gas or the like, a solid-state laser irradiation device using YAG (Yttrium Aluminum Garnet) or the like. By using an excimer laser as the laser beam, it is possible to obtain a very high output ultraviolet laser beam. Further, the excimer laser light is suitable for a line-shaped light source because the beam shape has high uniformity in the longitudinal direction. Further, by using a solid-state laser (semiconductor-pumped solid-state laser) using YAG or the like as the laser light, it is possible to realize a line-shaped light source that is relatively cheaper than an excimer laser in terms of equipment cost and running cost.
 また、図1のステップS9では、樹脂層12および剥離層ALに下面フィルム10を貼付する。樹脂層12および剥離層ALにおける下面フィルム10を貼付する面は、樹脂層12と、剥離層ALと、の積層方向の厚みに差が生じる場合がある。しかし、樹脂層12と、剥離層ALと、の積層方向の厚みの差は、下面フィルム10の積層方向の厚さに比べて小さいため、下面フィルム10を貼付することにより積層方向の厚みの差がなくなる。 Further, in step S9 of FIG. 1, the lower surface film 10 is attached to the resin layer 12 and the release layer AL. The surface of the resin layer 12 and the release layer AL to which the lower surface film 10 is attached may have a difference in thickness between the resin layer 12 and the release layer AL in the stacking direction. However, since the difference in thickness between the resin layer 12 and the release layer AL in the lamination direction is smaller than the thickness in the lamination direction of the lower surface film 10, the difference in thickness in the lamination direction by attaching the lower surface film 10 Is gone.
 図1のステップS10(分断工程)では、バリア層3、樹脂層12、および基板13を含む積層体7を、樹脂層12の端部を通るよう積層体7の厚み方向に切断する。これにより、バリア層3、および樹脂層12の端面が面一となる。 In step S10 (dividing step) of FIG. 1, the laminated body 7 including the barrier layer 3, the resin layer 12, and the substrate 13 is cut in the thickness direction of the laminated body 7 so as to pass through the end portion of the resin layer 12. As a result, the end faces of the barrier layer 3 and the resin layer 12 are flush with each other.
 (変形例)
 実施形態1の変形例として、図4~6に示すように、基板13を短冊状に切断してよく、基板13を所望の大きさに切断してよい(ステップS25)。そして、切断後、基板13を剥離する(ステップS26)。
(Modification example)
As a modification of the first embodiment, as shown in FIGS. 4 to 6, the substrate 13 may be cut into strips, and the substrate 13 may be cut to a desired size (step S25). Then, after cutting, the substrate 13 is peeled off (step S26).
 なお、基板13の裏面にキズまたは異物などが存在した場合には、基板13にレーザを照射できない領域が生じる。そして、基板13にレーザを照射できない領域においては、樹脂層12から基板13を剥離するため、樹脂層12を無理に引っ張ることにより、樹脂層12が破れるなどの不良が発生する場合がある。 If there are scratches or foreign matter on the back surface of the substrate 13, there will be a region where the laser cannot be applied to the substrate 13. Then, in the region where the substrate 13 cannot be irradiated with the laser, since the substrate 13 is peeled off from the resin layer 12, defects such as tearing of the resin layer 12 may occur by forcibly pulling the resin layer 12.
 そこで、基板13を短冊状に分断することにより、樹脂層12が空気に触れ、水分を含むことができる。それにより、樹脂層12と基板13との密着性が低くなる。その結果、基板13にレーザを照射できない領域において、樹脂層12に無理な引っ張り応力が生じた場合であっても、樹脂層12が破れるなどの不良の発生を防ぐことができる。さらに、樹脂層12に剥離層AL(放熱層)が貼合しているため、放熱層を形成する必要がなくなる。また、放熱層は、粘着層を介さず形成されるため、電子デバイスにおける放熱性を向上させることができる。 Therefore, by dividing the substrate 13 into strips, the resin layer 12 can come into contact with air and contain moisture. As a result, the adhesion between the resin layer 12 and the substrate 13 is lowered. As a result, even when an unreasonable tensile stress is generated in the resin layer 12 in the region where the substrate 13 cannot be irradiated with the laser, it is possible to prevent the resin layer 12 from being broken or other defects. Further, since the release layer AL (heat dissipation layer) is bonded to the resin layer 12, it is not necessary to form the heat dissipation layer. Further, since the heat radiating layer is formed without interposing the adhesive layer, the heat radiating property in the electronic device can be improved.
 〔実施形態2〕
 実施形態2として、図7に示すように、表示領域41、額縁領域42、および端子領域43を備えたフレキシブルパネル40において、分断マーカ等のアライメントマーカ44の位置に剥離層ALを設置してもよい。図7では、表示領域41に剥離層ALを形成しない場合を図示した。しかし、フレキシブルパネル40に良好な視認性が求められる場合等には、表示領域41に剥離層ALを形成してもよい。アライメントマーカ44の位置に剥離層ALを設置することにより、アライメントマーカ44に樹脂層12の炭化物およびレーザ跡の発生等による位置合わせ不良を抑制できる。さらに、樹脂層12に剥離層AL(放熱層)が貼合しているため、放熱層を形成する必要がなくなる。また、放熱層は、粘着層を介さず形成されるため、電子デバイスの放熱性を向上させることができる。
[Embodiment 2]
As the second embodiment, as shown in FIG. 7, in the flexible panel 40 provided with the display area 41, the frame area 42, and the terminal area 43, even if the release layer AL is installed at the position of the alignment marker 44 such as the division marker. Good. FIG. 7 shows a case where the release layer AL is not formed in the display region 41. However, when the flexible panel 40 is required to have good visibility, the release layer AL may be formed in the display area 41. By installing the release layer AL at the position of the alignment marker 44, it is possible to suppress misalignment due to the generation of carbides and laser traces of the resin layer 12 on the alignment marker 44. Further, since the release layer AL (heat dissipation layer) is bonded to the resin layer 12, it is not necessary to form the heat dissipation layer. Further, since the heat radiating layer is formed without interposing the adhesive layer, the heat radiating property of the electronic device can be improved.
 また、端子領域43には、電子回路層に設けられた配線に接続され、外部からの信号を入力する端子部(不図示)が形成されている。さらに端子部は、端子部に設けられた複数の端子に、上記配線と上記電信号を伝送する配線とが接続されている。 Further, in the terminal region 43, a terminal portion (not shown) is formed which is connected to the wiring provided in the electronic circuit layer and inputs a signal from the outside. Further, in the terminal portion, the wiring and the wiring for transmitting the electric signal are connected to a plurality of terminals provided in the terminal portion.
 (変形例)
 実施形態2の変形例として、図8および9に示す様に、端子領域43に剥離層ALを設置してもよい。図8では、端子領域43に剥離層ALを備えることにより、アライメントマーカ44に樹脂層12の炭化物およびレーザ跡の発生等によるアライメントマーカ44の読み取り性の低下を抑制できる。それにより、実装端子との位置合わせが容易にできるため、実装不良を抑制し、あるいは、実装工程を簡素化できる。その結果、実装端子の実装におけるコストを削減することができる。さらに、樹脂層12に剥離層AL(放熱層)が貼合しているため、放熱層を形成する必要がなくなる。また、放熱層は、粘着層を介さず形成されるため、電子デバイスの放熱性を向上させることができる。
(Modification example)
As a modification of the second embodiment, as shown in FIGS. 8 and 9, the release layer AL may be provided in the terminal region 43. In FIG. 8, by providing the release layer AL in the terminal region 43, it is possible to suppress a decrease in readability of the alignment marker 44 due to the generation of carbides and laser traces of the resin layer 12 on the alignment marker 44. As a result, the alignment with the mounting terminal can be easily performed, so that mounting defects can be suppressed or the mounting process can be simplified. As a result, the cost of mounting the mounting terminal can be reduced. Further, since the release layer AL (heat dissipation layer) is bonded to the resin layer 12, it is not necessary to form the heat dissipation layer. Further, since the heat radiating layer is formed without interposing the adhesive layer, the heat radiating property of the electronic device can be improved.
 また、図9に示すように、タッチパネルTPは、タッチパネル部TP1と端子領域43とを備える。タッチパネル部TP1は、有機EL表示装置2の表示面上に載置される部分であって、実際にタッチパネル機能を有する部分(換言すれば、ユーザの操作を受け付ける部分)である。また、タッチパネルTPにおいて、各電極と接続する配線が形成された端子領域43は、表示領域外にあるため、端子領域43においては、剥離層ALを設けなくてもよい。 Further, as shown in FIG. 9, the touch panel TP includes a touch panel unit TP1 and a terminal area 43. The touch panel unit TP1 is a portion placed on the display surface of the organic EL display device 2 and actually has a touch panel function (in other words, a portion that accepts a user's operation). Further, in the touch panel TP, since the terminal region 43 in which the wiring connecting to each electrode is formed is outside the display region, it is not necessary to provide the release layer AL in the terminal region 43.
 〔実施形態3〕
 図10は実施形態3の表示デバイスの製造方法を示す平面図であり、図11は実施形態3の表示デバイスの製造方法を示す断面図である。なお、図11では、図4の製造フローに示すように、分断した後(ステップS25)、基板および剥離層を剥離した(ステップ26)。しかし、図1に示すように、基板および剥離層を剥離した後(ステップS8)、分断してもよい(ステップS10)。
[Embodiment 3]
FIG. 10 is a plan view showing a method of manufacturing the display device of the third embodiment, and FIG. 11 is a cross-sectional view showing the method of manufacturing the display device of the third embodiment. In FIG. 11, as shown in the manufacturing flow of FIG. 4, after the division (step S25), the substrate and the release layer were peeled off (step 26). However, as shown in FIG. 1, after the substrate and the release layer are peeled off (step S8), they may be separated (step S10).
 実施形態3では、図10の(a)および図11の(a)に示すように、大判の基板13上に剥離層ALを形成し、剥離層AL上に、島状の第1部12a(第1の表示領域41aに対応)および島状の第2部12b(第2の表示領域41bに対応)を含む樹脂層12を形成する。次いで、第1部12aおよび第2部12bを覆うように共通のバリア層3を形成し、次いで、第1部12aと重なる領域4aおよび第2部12bと重なる領域4bを含む薄層トランジスタ層を形成する。次いで、第1部12aと重なる領域5aおよび第2部12bと重なる領域5bを含む発光素子層を形成し、発光素子層を覆う封止層6を形成する。 In the third embodiment, as shown in (a) of FIG. 10 and (a) of FIG. 11, the release layer AL is formed on the large-sized substrate 13, and the island-shaped first portion 12a (is formed on the release layer AL. A resin layer 12 including a first display region 41a) and an island-shaped second portion 12b (corresponding to a second display region 41b) is formed. Next, a common barrier layer 3 is formed so as to cover the first part 12a and the second part 12b, and then a thin transistor layer including a region 4a overlapping the first part 12a and a region 4b overlapping the second part 12b is formed. Form. Next, a light emitting element layer including a region 5a overlapping the first part 12a and a region 5b overlapping the second part 12b is formed, and a sealing layer 6 covering the light emitting element layer is formed.
 次いで、図10の(b)および図11の(b)、(c)に示すように、平面視における第1部12aよりも外側にあってバリア層3および剥離部ALが接触する部分を通るように、封止層6、バリア層3、剥離層ALおよび基板13を切断し、平面視における第2部12bよりも外側にあってバリア層3および剥離層ALが接触する部分を通るように、封止層6、バリア層3、剥離層ALおよび基板13を切断するプレカット工程を行う。その後、分割基板13a上の、第1部12aおよびバリア層3を含む第1積層体7Aと、分割基板13b上の、第2部12bおよびバリア層3を含む第2積層体7Bそれぞれに上面フィルム14を張り付ける。 Next, as shown in (b) of FIG. 10 and (b) and (c) of FIG. 11, it passes through a portion outside the first portion 12a in a plan view and in contact with the barrier layer 3 and the peeling portion AL. As described above, the sealing layer 6, the barrier layer 3, the release layer AL and the substrate 13 are cut so as to pass through the portion outside the second portion 12b in the plan view where the barrier layer 3 and the release layer AL are in contact with each other. , A precut step of cutting the sealing layer 6, the barrier layer 3, the release layer AL and the substrate 13 is performed. After that, a top film is formed on the first laminated body 7A including the first portion 12a and the barrier layer 3 on the divided substrate 13a and the second laminated body 7B including the second portion 12b and the barrier layer 3 on the divided substrate 13b. Paste 14 on it.
 次いで、図10の(c)および図11の(d)のように、第1積層体7Aを、第1部12aの端部を通るよう厚み方向に切断し、第2積層体7Bを、第2部12bの端部を通るよう厚み方向に切断する切り出し工程を行う。次いで、図11の(e)、(f)のように、第1積層体7Aおよび第2積層体7Bそれぞれの下側に位置する剥離層ALに光LVを照射し、第1部12aおよび剥離層ALを分割基板13aから剥離し、第2部12bおよび剥離層ALを分割基板13bから剥離する。 Next, as shown in (c) of FIG. 10 and (d) of FIG. 11, the first laminated body 7A is cut in the thickness direction so as to pass through the end portion of the first portion 12a, and the second laminated body 7B is cut into the second laminated body 7B. A cutting step of cutting in the thickness direction is performed so as to pass through the ends of the two parts 12b. Next, as shown in FIGS. 11 (e) and 11 (f), the release layer AL located below each of the first laminated body 7A and the second laminated body 7B is irradiated with light LV, and the first part 12a and the second laminated body 7B are separated. The layer AL is peeled from the split substrate 13a, and the second part 12b and the peeled layer AL are peeled from the split substrate 13b.
 実施形態3では、分割基板13a(ガラス基板)に付着した状態の第1積層体7Aと、分割基板13b(ガラス基板)に付着した状態の第2積層体7Bとを別々に運搬、保管することができる。第1積層体7Aおよび第2積層体7Bは、ガラス基板から剥がされた状態(可撓状態)の積層体と比較して運搬、保管が格段に容易である。 In the third embodiment, the first laminated body 7A attached to the divided substrate 13a (glass substrate) and the second laminated body 7B attached to the divided substrate 13b (glass substrate) are separately transported and stored. Can be done. The first laminated body 7A and the second laminated body 7B are much easier to transport and store than the laminated body in a state of being peeled off from the glass substrate (flexible state).
 図11の(c)に示すように、バリア層3が、樹脂層の第1部12aおよび第2部12bそれぞれの上面および端面を覆っているため、樹脂層12a・12bに水分等の異物が浸透することを防ぐことができ、ステップS8(剥離工程)までの間に基板13aおよび基板13bと、樹脂層の第1部12aあるいは第2部12bとが(意図せず)分離してしまうという問題を解消することができる。例えば、第1積層体7Aの運搬作業中に、樹脂層の第1部12aが基板13aから剥がれ、第1積層体7Aが落下して破損するといったアクシデントを防ぐことができる。 As shown in FIG. 11 (c), since the barrier layer 3 covers the upper surfaces and end faces of the first portion 12a and the second portion 12b of the resin layer, foreign matter such as moisture is contained in the resin layers 12a and 12b. It is possible to prevent permeation, and it is said that the substrate 13a and the substrate 13b and the first part 12a or the second part 12b of the resin layer are (unintentionally) separated by the step S8 (peeling step). The problem can be solved. For example, it is possible to prevent an accident in which the first portion 12a of the resin layer is peeled off from the substrate 13a during the transportation work of the first laminated body 7A, and the first laminated body 7A falls and is damaged.
 実施形態3では、樹脂層12を第1部12aおよび第2部12bの2つに分離形成しているが、これに限定されず、3つ以上に分割してもよい。また、ステップS4~S6において、第1部12a上に複数パネルに対応するデバイスを形成するとともに、第2部12b上に複数パネルに対応するデバイスを形成しておき、ステップS10において、第1積層体7Aおよび第2積層体7Bそれぞれから複数の電子デバイス(可撓性パネル)を得る構成でもよい。また、第1の表示領域41aおよび第2の表示領域41bは、さらに複数の表示領域に分割して形成されていてもよい。 In the third embodiment, the resin layer 12 is separated and formed into two parts, the first part 12a and the second part 12b, but the present invention is not limited to this, and the resin layer 12 may be divided into three or more parts. Further, in steps S4 to S6, a device corresponding to a plurality of panels is formed on the first part 12a, and a device corresponding to the plurality of panels is formed on the second part 12b, and in step S10, the first stacking is performed. A plurality of electronic devices (flexible panels) may be obtained from each of the body 7A and the second laminated body 7B. Further, the first display area 41a and the second display area 41b may be further divided into a plurality of display areas.
 前記各実施形態は、図12に示す、可撓性の液晶表示デバイスにも適用可能である。この場合、例えば、樹脂層12の背面に可撓性のバックライトユニット50を配し、樹脂層12を透明ポリイミドで構成し、薄層トランジスタ層4に画素電極PEを形成し、画素電極PEと可撓性の対向基板37(カラーフィルタ基板)との間に、シャッターとして機能する液晶層35を配する。前記各実施形態によれば、剥離工程において樹脂層12の下面が劣化しにくいため、表示光DL(バックライト光)が樹脂層12の下面を通過する液晶表示デバイスにも好適といえる。 Each of the above embodiments is also applicable to the flexible liquid crystal display device shown in FIG. In this case, for example, a flexible backlight unit 50 is arranged on the back surface of the resin layer 12, the resin layer 12 is made of transparent polyimide, a pixel electrode PE is formed on the thin transistor layer 4, and the pixel electrode PE is formed. A liquid crystal layer 35 that functions as a shutter is arranged between the flexible facing substrate 37 (color filter substrate). According to each of the above embodiments, since the lower surface of the resin layer 12 is less likely to deteriorate in the peeling step, it can be said that it is also suitable for a liquid crystal display device in which the display light DL (backlight light) passes through the lower surface of the resin layer 12.
 〔まとめ〕
 本実施形態にかかる電子デバイスが備える電気光学素子(電流によって輝度や透過率が制御される電気光学素子)は特に限定されるものではない。本実施形態にかかる表示装置としては、例えば、電気光学素子としてOLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機ELディスプレイ、電気光学素子として無機発光ダイオードを備えた無機ELディスプレイ、電気光学素子としてQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等が挙げられる。
[Summary]
The electro-optical element (electro-optical element whose brightness and transmittance are controlled by an electric current) included in the electronic device according to the present embodiment is not particularly limited. Examples of the display device according to the present embodiment include an organic EL display provided with an OLED (Organic Light Emitting Diode) as an electro-optical element, an inorganic EL display provided with an inorganic light emitting diode as an electro-optical element, and electro-optical. Examples of the element include a QLED display provided with a QLED (Quantum dot Light Emitting Diode).
 本発明は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 〔態様1〕
 母基板上に島状の剥離層を形成する第1成膜工程と、前記剥離層の少なくとも一部を覆うように、樹脂層を積層させる第2成膜工程と、前記樹脂層を覆うように、バリア層を形成する第3成膜工程と、前記バリア層の上層に電子回路層を形成する第4成膜工程と、前記剥離層に対してレーザ光を照射し、前記母基板から、前記剥離層および前記樹脂層を剥離する剥離工程と、を含む電子デバイスの製造方法。
[Aspect 1]
A first film forming step of forming an island-shaped peeling layer on a mother substrate, a second film forming step of laminating resin layers so as to cover at least a part of the peeling layer, and covering the resin layer. The third film forming step of forming the barrier layer, the fourth film forming step of forming the electronic circuit layer on the upper layer of the barrier layer, and the release layer being irradiated with laser light, from the mother substrate, the above. A method for manufacturing an electronic device, comprising a peeling step of peeling the peeling layer and the resin layer.
 〔様態2〕
 前記第2成膜工程では、前記剥離層の全面を覆うように、樹脂層を積層させる様態1に記載の電子デバイスの製造方法。
[Mode 2]
The method for manufacturing an electronic device according to mode 1, wherein in the second film forming step, a resin layer is laminated so as to cover the entire surface of the peeling layer.
 〔様態3〕
 前記第4成膜工程と前記剥離工程との間に、前記樹脂層および前記バリア層を含む積層体を、前記樹脂層の端部を通るよう前記積層体の厚み方向に分断する分断工程を含む様態1または2に記載の電子デバイスの製造方法。
[Mode 3]
Between the fourth film forming step and the peeling step, a dividing step of dividing the laminate including the resin layer and the barrier layer in the thickness direction of the laminate so as to pass through the end portion of the resin layer is included. The method for manufacturing an electronic device according to mode 1 or 2.
 〔様態4〕
 前記分断工程では、前記積層体に加えて前記剥離層および前記母基板も分断する様態3に記載の電子デバイスの製造方法。
[Mode 4]
The method for manufacturing an electronic device according to mode 3, wherein in the dividing step, the release layer and the mother substrate are divided in addition to the laminated body.
 〔様態5〕
 前記第1成膜工程では、前記分断工程でのアライメントマーカの設置位置に重畳するように前記剥離層を形成する様態3または4に記載の電子デバイスの製造方法。
[Mode 5]
The method for manufacturing an electronic device according to mode 3 or 4, wherein in the first film forming step, the release layer is formed so as to be superimposed on the installation position of the alignment marker in the dividing step.
 〔様態6〕
 前記第1成膜工程では、前記電子回路層に設けられた配線に接続され、外部から信号を入力する端子領域に重畳するように前記剥離層を形成する様態3~5のいずれか1項に記載の電子デバイスの製造方法。
[Mode 6]
In the first film forming step, any one of the modes 3 to 5 which is connected to the wiring provided in the electronic circuit layer and forms the peeling layer so as to be superimposed on the terminal region where a signal is input from the outside. The method of manufacturing the electronic device described.
 〔様態7〕
 前記第2成膜工程では、島状の第1部および島状の第2部を含む樹脂層を形成し、前記第3成膜工程では、前記第1部および前記第2部を覆う共通のバリア層を形成し、前記第4成膜工程では、前記第1部と重なる領域および前記第2部と重なる領域を含む前記電子回路層を形成し、前記第4成膜工程と前記剥離工程との間に、平面視において前記第1部および前記第2部よりも外側にあって前記バリア層および前記剥離層が接触する部分を通るように、前記バリア層、前記剥離層、および前記母基板を切断するプレカット工程を含む様態1に記載の電子デバイスの製造方法。
[Mode 7]
In the second film forming step, a resin layer including the island-shaped first part and the island-shaped second part is formed, and in the third film forming step, the first part and the second part are covered in common. A barrier layer is formed, and in the fourth film forming step, the electronic circuit layer including a region overlapping the first part and a region overlapping the second part is formed, and the fourth forming step and the peeling step are performed. The barrier layer, the peeling layer, and the mother substrate so as to pass through a portion outside the first part and the second part in a plan view and in contact with the barrier layer and the peeling layer. The method for manufacturing an electronic device according to mode 1, which includes a pre-cutting step of cutting.
 〔様態8〕
 前記プレカット工程と前記剥離工程との間に、前記第1部および前記バリア層を含む第1積層体を、前記第1部の端部を通るように前記第1積層体の厚み方向に切断し、前記第2部および前記バリア層を含む第2積層体を、前記第2部の端部が通るように前記第2積層体の厚み方向に切断する切だし工程を含む様態7に記載の電子デバイスの製造方法。
[Mode 8]
Between the precut step and the peeling step, the first laminated body including the first part and the barrier layer is cut in the thickness direction of the first laminated body so as to pass through the end portion of the first part. The electron according to mode 7, further comprising a cutting step of cutting the second laminated body including the second part and the barrier layer in the thickness direction of the second laminated body so that the end portion of the second part passes through. How to make the device.
 〔様態9〕
 前記剥離工程の後に、前記樹脂層および前記剥離層が剥離された前記母基板に対して、前記第1成膜工程~前記剥離工程を順次行う、様態1~8のいずれか1項に記載の電子デバイスの製造方法。
[Mode 9]
The item according to any one of Modes 1 to 8, wherein after the peeling step, the resin layer and the mother substrate from which the peeling layer is peeled are sequentially subjected to the first film forming step to the peeling step. How to make an electronic device.
 〔様態10〕
 前記剥離層は、グラファイトカーボンを含む、様態1~9のいずれか1項に記載の電子デバイスの製造方法。
[Mode 10]
The method for manufacturing an electronic device according to any one of modes 1 to 9, wherein the release layer contains graphite carbon.
 〔様態11〕
 前記剥離層に対して照射するレーザ光は、エキシマレーザである、様態1~10のいずれか1項に記載の電子デバイスの製造方法。
[Mode 11]
The method for manufacturing an electronic device according to any one of modes 1 to 10, wherein the laser beam irradiating the release layer is an excimer laser.
 〔様態12〕
 前記剥離層に対して照射するレーザ光は、固体レーザである、様態1~10のいずれか1項に記載の電子デバイスの製造方法。
[Mode 12]
The method for manufacturing an electronic device according to any one of modes 1 to 10, wherein the laser beam irradiating the release layer is a solid-state laser.
 〔様態13〕
 前記電子回路層は、薄層トランジスタ層である様態1~12のいずれか1項に記載の電子デバイスの製造方法。
[Mode 13]
The method for manufacturing an electronic device according to any one of aspects 1 to 12, wherein the electronic circuit layer is a thin transistor layer.
 〔様態14〕
 前記電子回路層は、前記薄層トランジスタ層よりも上層に発光素子層が形成される様態13に記載の電子デバイスの製造方法。
[Mode 14]
The method for manufacturing an electronic device according to mode 13, wherein the electronic circuit layer has a light emitting element layer formed above the thin transistor layer.
 〔様態15〕
 前記電子回路層は、前記薄層トランジスタ層よりも上層に液晶層が形成される様態12に記載の電子デバイスの製造方法。
[Mode 15]
The method for manufacturing an electronic device according to mode 12, wherein a liquid crystal layer is formed on the electronic circuit layer above the thin transistor layer.
 〔様態16〕
 前記電子回路層は、タッチパネル層である様態1~12のいずれか1項に記載の電子デバイスの製造方法。
[Mode 16]
The method for manufacturing an electronic device according to any one of aspects 1 to 12, wherein the electronic circuit layer is a touch panel layer.
 〔様態17〕
 前記剥離層はPVD法、またはスパッタリング法により形成される、様態1~16のいずれか1項に記載の電子デバイスの製造方法。
[Mode 17]
The method for manufacturing an electronic device according to any one of modes 1 to 16, wherein the release layer is formed by a PVD method or a sputtering method.
 〔様態18〕
 樹脂層と、バリア層と、電子回路層と、を順次積層した電子デバイスであって、前記樹脂層は、前記樹脂層における前記バリア層と対向する面の反対側の面において、グラファイトカーボンと接触する、電子デバイス。
[Mode 18]
An electronic device in which a resin layer, a barrier layer, and an electronic circuit layer are sequentially laminated, and the resin layer comes into contact with graphite carbon on a surface of the resin layer opposite to the surface facing the barrier layer. Electronic devices.
2 有機EL表示装置
3 バリア層
4 薄膜トランジスタ層(電子回路層)
5 発光素子層
6 封止層
7 積層体
7A 第1積層体
7B 第2積層体
10 下面フィルム
12、12a・12b 樹脂層
13 基板
13a、13b 分割基板
14 上面フィルム
15 半導体膜
16、16・18・20、18、20 無機絶縁膜
21 平坦化膜
22 アノード
23 アノードエッジカバー
25 カソード
26、26・28、28 無機封止膜
27 有機封止膜
35 液晶層
37 対向基板
39 機能フィルム
41 表示領域
42 額縁領域
43 端子領域
44 アライメントマーカ
50 バックライトユニット
AL 剥離層
LV 光
TP タッチパネル(電子回路層)
TP1 タッチパネル部
2 Organic EL display device 3 Barrier layer 4 Thin film transistor layer (electronic circuit layer)
5 Light emitting element layer 6 Sealing layer 7 Laminated body 7A First laminated body 7B Second laminated body 10 Bottom film 12, 12a / 12b Resin layer 13 Substrate 13a, 13b Divided substrate 14 Top film 15 Semiconductor film 16, 16.18. 20, 18, 20 Inorganic insulating film 21 Flattening film 22 Anode 23 Anode edge cover 25 Cathode 26, 26.28, 28 Inorganic sealing film 27 Organic sealing film 35 Liquid crystal layer 37 Opposing substrate 39 Functional film 41 Display area 42 Frame Area 43 Terminal area 44 Alignment marker 50 Backlight unit AL Peeling layer LV Optical TP Touch film (electronic circuit layer)
TP1 touch panel

Claims (18)

  1.  母基板上に島状の剥離層を形成する第1成膜工程と、
     前記剥離層の少なくとも一部を覆うように、樹脂層を積層させる第2成膜工程と、
     前記樹脂層を覆うように、バリア層を形成する第3成膜工程と、
     前記バリア層の上層に電子回路層を形成する第4成膜工程と、
     前記剥離層に対してレーザ光を照射し、前記母基板から、前記剥離層および前記樹脂層を剥離する剥離工程と、
     を含む電子デバイスの製造方法。
    The first film formation step of forming an island-shaped release layer on the mother substrate, and
    A second film forming step of laminating a resin layer so as to cover at least a part of the peeling layer,
    A third film forming step of forming a barrier layer so as to cover the resin layer, and
    A fourth film forming step of forming an electronic circuit layer on the upper layer of the barrier layer, and
    A peeling step of irradiating the peeling layer with a laser beam to peel the peeling layer and the resin layer from the mother substrate.
    A method of manufacturing an electronic device including.
  2.  前記第2成膜工程では、前記剥離層の全面を覆うように、樹脂層を積層させる請求項1に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 1, wherein in the second film forming step, a resin layer is laminated so as to cover the entire surface of the release layer.
  3.  前記第4成膜工程と前記剥離工程との間に、前記樹脂層および前記バリア層を含む積層体を、前記樹脂層の端部を通るよう前記積層体の厚み方向に分断する分断工程を含む請求項1または2に記載の電子デバイスの製造方法。 Between the fourth film forming step and the peeling step, a dividing step of dividing the laminate including the resin layer and the barrier layer in the thickness direction of the laminate so as to pass through the end portion of the resin layer is included. The method for manufacturing an electronic device according to claim 1 or 2.
  4.  前記分断工程では、前記積層体に加えて前記剥離層および前記母基板も分断する請求項3に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 3, wherein in the dividing step, the release layer and the mother substrate are divided in addition to the laminate.
  5.  前記第1成膜工程では、前記分断工程でのアライメントマーカの設置位置に重畳するように前記剥離層を形成する請求項3または4に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 3 or 4, wherein in the first film forming step, the peeling layer is formed so as to be superimposed on the installation position of the alignment marker in the dividing step.
  6.  前記第1成膜工程では、
     前記電子回路層に設けられた配線に接続され、外部から信号を入力する端子領域に重畳するように前記剥離層を形成する請求項3~5のいずれか1項に記載の電子デバイスの製造方法。
    In the first film forming step,
    The method for manufacturing an electronic device according to any one of claims 3 to 5, which is connected to a wiring provided in the electronic circuit layer and forms the peeling layer so as to be superimposed on a terminal region for inputting a signal from the outside. ..
  7.  前記第2成膜工程では、島状の第1部および島状の第2部を含む樹脂層を形成し、
     前記第3成膜工程では、前記第1部および前記第2部を覆う共通のバリア層を形成し、
     前記第4成膜工程では、前記第1部と重なる領域および前記第2部と重なる領域を含む前記電子回路層を形成し、
     前記第4成膜工程と前記剥離工程との間に、平面視において前記第1部および前記第2部よりも外側にあって前記バリア層および前記剥離層が接触する部分を通るように、前記バリア層、前記剥離層、および前記母基板を切断するプレカット工程を含む請求項1に記載の電子デバイスの製造方法。
    In the second film forming step, a resin layer containing an island-shaped first portion and an island-shaped second portion is formed.
    In the third film forming step, a common barrier layer covering the first part and the second part is formed.
    In the fourth film forming step, the electronic circuit layer including the region overlapping the first portion and the region overlapping the second portion is formed.
    Between the fourth film forming step and the peeling step, the barrier layer and the peeling layer come into contact with each other on the outside of the first part and the second part in a plan view. The method for manufacturing an electronic device according to claim 1, further comprising a precut step of cutting the barrier layer, the peeling layer, and the mother substrate.
  8.  前記プレカット工程と前記剥離工程との間に、前記第1部および前記バリア層を含む第1積層体を、前記第1部の端部を通るように前記第1積層体の厚み方向に切断し、前記第2部および前記バリア層を含む第2積層体を、前記第2部の端部が通るように前記第2積層体の厚み方向に切断する切だし工程を含む請求項7に記載の電子デバイスの製造方法。 Between the pre-cutting step and the peeling step, the first laminated body including the first part and the barrier layer is cut in the thickness direction of the first laminated body so as to pass through the end portion of the first part. The seventh aspect of the present invention includes a cutting step of cutting the second laminated body including the second part and the barrier layer in the thickness direction of the second laminated body so that the end portion of the second part passes through. Manufacturing method of electronic devices.
  9.  前記剥離工程の後に、前記樹脂層および前記剥離層が剥離された前記母基板に対して、前記第1成膜工程~前記剥離工程を順次行う、請求項1~8のいずれか1項に記載の電子デバイスの製造方法。 The method according to any one of claims 1 to 8, wherein after the peeling step, the resin layer and the mother substrate from which the peeling layer has been peeled are sequentially subjected to the first film forming step to the peeling step. How to make electronic devices.
  10.  前記剥離層は、グラファイトカーボンを含む、請求項1~9のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 9, wherein the release layer contains graphite carbon.
  11.  前記剥離層に対して照射するレーザ光は、エキシマレーザである、請求項1~10のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 10, wherein the laser beam irradiating the release layer is an excimer laser.
  12.  前記剥離層に対して照射するレーザ光は、固体レーザである、請求項1~10のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 10, wherein the laser beam irradiating the release layer is a solid-state laser.
  13.  前記電子回路層は、薄層トランジスタ層である請求項1~12のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 12, wherein the electronic circuit layer is a thin transistor layer.
  14.  前記電子回路層は、前記薄層トランジスタ層よりも上層に発光素子層が形成される請求項13に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 13, wherein the electronic circuit layer has a light emitting element layer formed above the thin transistor layer.
  15.  前記電子回路層は、前記薄層トランジスタ層よりも上層に液晶層が形成される請求項13に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 13, wherein a liquid crystal layer is formed on the electronic circuit layer above the thin transistor layer.
  16.  前記電子回路層は、タッチパネル層である請求項1~12のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 12, wherein the electronic circuit layer is a touch panel layer.
  17.  前記剥離層はPVD法、またはスパッタリング法により形成される、請求項1~16のいずれか1項に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to any one of claims 1 to 16, wherein the release layer is formed by a PVD method or a sputtering method.
  18.  樹脂層と、バリア層と、電子回路層と、を順次積層した電子デバイスであって、
     前記樹脂層は、前記樹脂層における前記バリア層と対向する面の反対側の面において、グラファイトカーボンと接触する、電子デバイス。
    An electronic device in which a resin layer, a barrier layer, and an electronic circuit layer are sequentially laminated.
    An electronic device in which the resin layer comes into contact with graphite carbon on a surface of the resin layer opposite to the surface facing the barrier layer.
PCT/JP2019/013854 2019-03-28 2019-03-28 Method for producing electronic device, and electronic device WO2020194737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013854 WO2020194737A1 (en) 2019-03-28 2019-03-28 Method for producing electronic device, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013854 WO2020194737A1 (en) 2019-03-28 2019-03-28 Method for producing electronic device, and electronic device

Publications (1)

Publication Number Publication Date
WO2020194737A1 true WO2020194737A1 (en) 2020-10-01

Family

ID=72611740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013854 WO2020194737A1 (en) 2019-03-28 2019-03-28 Method for producing electronic device, and electronic device

Country Status (1)

Country Link
WO (1) WO2020194737A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065891A (en) * 1992-06-19 1994-01-14 Mitsubishi Electric Corp Manufacture of thin-film solar cell
JP2006344618A (en) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp Structure containing functional film, and manufacturing method of functional film
JP2011100985A (en) * 2009-10-06 2011-05-19 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2016005901A (en) * 2014-05-29 2016-01-14 パナソニックIpマネジメント株式会社 Resin substrate with support substrate and production method thereof, and electronic device using resin substrate
JP2017108053A (en) * 2015-12-11 2017-06-15 株式会社Screenホールディングス Method of manufacturing electronic device and laminate
US20180047619A1 (en) * 2016-08-11 2018-02-15 Infineon Technologies Ag Method of manufacturing a template wafer
JP6492140B1 (en) * 2017-09-22 2019-03-27 ジオマテック株式会社 Resin substrate laminate and method of manufacturing electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065891A (en) * 1992-06-19 1994-01-14 Mitsubishi Electric Corp Manufacture of thin-film solar cell
JP2006344618A (en) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp Structure containing functional film, and manufacturing method of functional film
JP2011100985A (en) * 2009-10-06 2011-05-19 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2016005901A (en) * 2014-05-29 2016-01-14 パナソニックIpマネジメント株式会社 Resin substrate with support substrate and production method thereof, and electronic device using resin substrate
JP2017108053A (en) * 2015-12-11 2017-06-15 株式会社Screenホールディングス Method of manufacturing electronic device and laminate
US20180047619A1 (en) * 2016-08-11 2018-02-15 Infineon Technologies Ag Method of manufacturing a template wafer
JP6492140B1 (en) * 2017-09-22 2019-03-27 ジオマテック株式会社 Resin substrate laminate and method of manufacturing electronic device

Similar Documents

Publication Publication Date Title
KR101759029B1 (en) Method for manufacturing display device
JP2009117181A (en) Organic el display device, and manufacturing method thereof
US20170338441A1 (en) Display device and manufacturing method thereof
WO2018179261A1 (en) Sticking method and sticking device
WO2019146115A1 (en) Display device and method for manufacturing display device
KR102152743B1 (en) Method for producing top-emission organic electroluminescence display device, and cover material for formation of top-emission organic electroluminescence display device
WO2015030124A1 (en) Top-emission organic electroluminescence display device and production method therefor
JP5049213B2 (en) Organic EL panel and manufacturing method thereof
WO2018179332A1 (en) Display device, display device manufacturing method, and display device manufacturing apparatus
WO2018179132A1 (en) Display device production method, display device, display device production apparatus, and deposition apparatus
WO2019186845A1 (en) Display device and method for manufacturing display device
WO2018179216A1 (en) Method for manufacturing el device
WO2019106935A1 (en) Display device
JP2009064590A (en) Method for manufacturing organic el display panel
JP2019020509A (en) Display and method for manufacturing display
WO2019064591A1 (en) Display device and method for manufacturing display device
JP5329147B2 (en) Manufacturing method of organic EL display device
US11551975B2 (en) Method for manufacturing electronic device
WO2020194737A1 (en) Method for producing electronic device, and electronic device
WO2019069352A1 (en) Method for manufacturing display device, and apparatus for manufacturing display device
WO2018179266A1 (en) Method for manufacturing el device and apparatus for manufacturing el device
WO2018158841A1 (en) Method for manufacturing el device, el device, apparatus for manufacturing el device, and mounting apparatus
WO2019030819A1 (en) El device production method
WO2020183588A1 (en) Method for manufacturing electronic device
JP2018160314A (en) Method of manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP