WO2020194712A1 - 眼科用レンズ及び眼科用レンズの製造方法 - Google Patents

眼科用レンズ及び眼科用レンズの製造方法 Download PDF

Info

Publication number
WO2020194712A1
WO2020194712A1 PCT/JP2019/013802 JP2019013802W WO2020194712A1 WO 2020194712 A1 WO2020194712 A1 WO 2020194712A1 JP 2019013802 W JP2019013802 W JP 2019013802W WO 2020194712 A1 WO2020194712 A1 WO 2020194712A1
Authority
WO
WIPO (PCT)
Prior art keywords
ophthalmic lens
phase difference
region
optical axis
distance
Prior art date
Application number
PCT/JP2019/013802
Other languages
English (en)
French (fr)
Inventor
智裕 川崎
陽介 奥平
啓 伊藤
良一 左高
正宏 水田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/013802 priority Critical patent/WO2020194712A1/ja
Publication of WO2020194712A1 publication Critical patent/WO2020194712A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the present invention relates to an ophthalmic lens such as an intraocular lens and a method for manufacturing an ophthalmic lens.
  • Intraocular lens that is loaded into the eyeball instead of the crystalline lens after removal of the crystalline lens
  • intraocular lens Phakic Intraocular lens, PIL
  • An intraocular lens that is used in contact with the eyeball of the lens is used.
  • a multifocal type ophthalmic lens is also used to supplement the focal adjustment ability of the eye.
  • a multifocal ophthalmic lens having a central refraction region that provides one refraction focusing ability and a diffraction region that provides near diffraction focusing ability and far diffraction focusing ability. Lenses have also been proposed (see Patent Document 1).
  • the ophthalmic lens of the first aspect of the present invention is an ophthalmic lens worn in or near the eyeball, and is a first region that transmits light and forms an image on the retina while being worn on the eyeball. And a second region, the first region intersects the optical axis of the ophthalmic lens and monotonically increases with respect to light rays passing through the first region according to the distance from the optical axis of the ophthalmic lens.
  • a first phase difference that decreases monotonically is added, and the second region is located at a position farther from the optical axis than the first region, and is a distance from the optical axis with respect to a light ray passing through the second region.
  • a second phase difference that increases or decreases according to the above and continuously changes is added, and the first phase difference and the second phase difference increase or decrease eight times or more in total according to the distance from the optical axis.
  • the ophthalmic lens according to the first aspect is produced by a processing apparatus.
  • FIG. 1 (a) shows the top view
  • FIG. 1 (b) shows the sectional view.
  • FIG. 3A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the first embodiment and the distance from the optical axis.
  • FIG. 3B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the first embodiment.
  • FIG. 4A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of Modification 1 and the distance from the optical axis.
  • FIG. 4B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the first modification.
  • FIG. 5A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the second modification and the distance from the optical axis.
  • FIG. 5B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of the second modification.
  • FIG. 6A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of Comparative Example 1 and the distance from the optical axis.
  • FIG. 6B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with the ophthalmic lens of Comparative Example 1.
  • FIG. 7A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 3 and the distance from the optical axis.
  • FIG. 7B is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 3 mm in the eyeball to which the ophthalmic lens of the modified example 3 is attached.
  • FIG. 7 (c) is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 4 mm, similar to FIG. 7 (b).
  • FIG. 8A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 4 and the distance from the optical axis.
  • FIG. 8B is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 3 mm in the eyeball to which the ophthalmic lens of the modified example 4 is attached.
  • FIG. 8 (c) is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 4 mm, which is the same as in FIG. 8 (b).
  • FIG. 8A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 4 and the distance from the optical axis.
  • FIG. 8B is a diagram showing an MTF of an image formed on the retina when the pupil diameter
  • FIG. 9A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 5 and the distance from the optical axis.
  • FIG. 9B is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 3 mm in the eyeball to which the ophthalmic lens of the modified example 5 is attached.
  • FIG. 9C is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 4 mm, which is the same as in FIG. 9B.
  • FIG. 10A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 6 and the distance from the optical axis.
  • FIG. 10A is a diagram showing the relationship between the phase difference added to the aberration-free imaging ray by the ophthalmic lens of the modified example 6 and the distance from the optical axis.
  • FIG. 10B is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 3 mm in the eyeball to which the ophthalmic lens of the modified example 6 is attached.
  • FIG. 10 (c) is a diagram showing an MTF of an image formed on the retina when the pupil diameter is 4 mm, similar to FIG. 10 (b).
  • FIG. 11A is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with a conventional single focus type ophthalmic lens.
  • FIG. 11B is a diagram showing an MTF of an image formed on the retina in an eyeball equipped with a conventional double focus type ophthalmic lens.
  • FIG. 12 is a diagram showing an example of the function f ⁇ (x) of the equation (2).
  • FIG. 1 is a diagram showing an intraocular lens 10 as an example of an ophthalmic lens according to an embodiment of the present invention
  • FIG. 1 (a) is a top view
  • FIG. 1 (b) is FIG. 1 (a).
  • the cross-sectional view on the Y axis is shown.
  • the intraocular lens 10 has two refracting surfaces, a light incident surface 11 and a light emitting surface 12.
  • the incident surface 11 is a spherical surface
  • the injection surface 12 is a surface having smooth irregularities with respect to the reference surface 13 which is a spherical surface.
  • the optical axis AX of the intraocular lens 10 is the axis of rotational symmetry of the entrance surface 11 and the emission surface 12 (or the reference surface 13).
  • the radius r0 of the intraocular lens 10 is, for example, about 2.5 mm to 3.0 mm.
  • the intraocular lens 10 may have a support portion (not shown) around the intraocular lens 10.
  • the X-axis and the Y-axis shown in FIG. 1A are axes in an arbitrary direction that are in a plane perpendicular to the optical axis AX and are orthogonal to each other. For any one point Q on the injection surface 12, the distance from the optical axis is defined as the distance r, and the azimuth angle from the X axis centered on the optical axis AX is ⁇ .
  • FIG. 2 is a diagram showing a cross section of the eyeball 100 loaded with the intraocular lens 10 of the first embodiment.
  • the intraocular lens 10 shown in FIG. 2 is a lens loaded in the eyeball 100 in place of a crystalline lens (not shown) extracted from the eyeball, and is a vitreous body originally at a position where the crystalline lens is arranged. It is arranged between 32 and the anterior chamber 31. An iris 36 is arranged inside the anterior chamber 31.
  • the intraocular lens 10 is arranged so that its optical axis AX substantially coincides with the center line EX of the eyeball on a straight line connecting the center of the cornea 30 and the center of the macula 35, but it does not necessarily have to coincide exactly. ..
  • the intraocular lens 10 is a lens having the same refractive power as the original crystalline lens, and the light rays L1 and L2 from an object in the outside world (not shown) are refracted by the cornea 30, and the anterior chamber 31, the intraocular lens 10, And through the lens 32, an image is formed at an imaging point 34 near the center of the yellow spot 35 on the retina 33.
  • the two rays L1 and L2 shown in FIG. 2 are examples, and in reality, a large number of rays (imaging rays) emitted from an object and entering the incident surface are the above-mentioned cornea 30, the intraocular lens 10, and the like. The image is formed at the imaging point 34 on the retina 33.
  • the aberration-free imaging ray is referred to as an aberration-free imaging ray.
  • the amount of smooth unevenness of the injection surface 12 shown in FIG. 1B with respect to the reference surface 13 is determined according to the distance from the optical axis AX in the direction away from the optical axis AX, as will be described later. Therefore, the uneven shape described above is, for example, a shape rotationally symmetric with respect to the optical axis AX.
  • the uneven shape of the injection surface 12 is exaggerated in the direction of the optical axis AX.
  • the distance from the reference surface 13 to the injection surface 12 in each portion of the injection surface 12 is referred to as the height H of the injection surface 12, and the side where the injection surface 12 is separated from the intraocular lens 10 is a positive reference numeral. Expressed as.
  • the phase difference of light is (2 ⁇ / wavelength) times the optical path length difference.
  • the wavelength of the passing light beam is 0.55 [ ⁇ m]
  • the light ray passing through the portion of the ejection surface 12 having a height of H [ ⁇ m] passes through the portion having a height of 0 [ ⁇ m].
  • FIG. 3A shows the relationship between the phase differences P1 and P2 added to the aberration-free imaging light by the ejection surface 12 of the ophthalmic lens 10 of the first embodiment and the distance r from the optical axis AX. It is a figure.
  • the height H of the injection surface 12 is higher than the reference surface 13 in the region near the optical axis AX. There is. Therefore, the phase difference P1 has a positive value in the region near the optical axis AX.
  • the phase difference P1 decreases monotonically as the distance r from the optical axis AX increases, and the first minimum value MP1 is set at a position where the distance r from the optical axis AX becomes r1 (about 0.6 mm as an example). Take. Then, in the region where the distance r from the optical axis AX is r1 or more, the phase difference P2 repeats increasing and decreasing according to the distance r from the optical axis AX.
  • the region in which the distance r from the optical axis AX is within r1 is referred to as the first region Z1
  • the region in which the distance r from the optical axis AX is r1 or more is referred to as the second region Z2. That is, the first region Z1 adds a first phase difference P1 that monotonically decreases with respect to the light rays passing through the first region Z1 according to the distance r from the optical axis AX
  • the second region Z2 provides the second region Z2.
  • a second phase difference P2 that is increased or decreased a plurality of times according to the distance r from the optical axis AX and is continuous is added to the passing light beam.
  • phase differences P1 and P2 are also collectively referred to as phase differences P1 and P2.
  • the optical axis AX intersects the injection surface 12 in the first region Z1, that is, the first region Z1 intersects the optical axis AX.
  • the first phase difference P1 and the second phase difference P2 are continuous at the boundary BL between the first region Z1 and the first region Z2, and have a minimum value MP1.
  • the aberration-free imaging ray when the first phase difference P1 and the second phase difference P2 are 0 produces an image of an object at infinity without aberration from the macula 35 to 0.21 [mm. ] Is set to form an image at a position distant from the cornea 30 side. This is done by optimizing the shapes and arrangements of the incident surface 11 and the reference surface 13 of the intraocular lens 10 by a known method.
  • the eyeball 100 loaded with the intraocular lens 10 has eyeballs 100 to 1.79. [m] An image of a distant object is imaged on the macula 35 without aberration.
  • the phase differences P1 and P2 added to the light rays transmitted through the intraocular lens 10 by the height H of the ejection surface 12 are cos with respect to the distance r from the optical axis represented by the equation (1). It is an amount according to the function Pa (r) represented by the function. ... (1)
  • f ⁇ in the equation (1) is a function represented by the following equation (2). ... (2)
  • sgn (x) is a function that returns the sign of the argument x.
  • the constant Ps is a constant representing the magnitude of the component of the function f ⁇ (cos (x)) using the cos function for the square of the distance r from the optical axis.
  • phase difference P1, P2 in accordance with the period determined by the constant r s increases or decreases according to the change in the distance r from the optical axis AX.
  • the constant r s is 1.053 [mm]
  • the phase differences P1 and P2 are increased or decreased eight times in total.
  • the intraocular lens 10 can increase the depth of focus of the optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32.
  • FIG. 3B shows an imaging point 34 in the eyeball 100 (an optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous body 32) loaded with the intraocular lens 10 of the first embodiment.
  • a graph showing the simulation results at each defocus position (Defocus Position) of an MTF (Modulation Transfer Function) at a predetermined spatial frequency (eg, about 50 [LP / mm]) of an image formed on a nearby retina 33. Is.
  • the intraocular lens 10 of the first embodiment adds a function as a multifocal filter for transmitted transmitted light. Therefore, in the simulation, the -1st order diffracted light (diffracted light to which a negative refractive power is added) from the multifocal filter formed by the first region Z1 and the first region Z2 is on the horizontal axis of FIG. 3 (b).
  • the condition of the intraocular lens 10 is set so that the defocus position is focused at the position of 0 [mm]. Specifically, this is done by finely adjusting the position of the intraocular lens 10 and the shapes of the incident surface 11 and the reference surface 13. This also applies to the simulation of the intraocular lens 10 such as each modification described later.
  • FIG. 3B shows the MTF when the pupil diameter (diameter of the opening of the iris 36) is 3 mm.
  • the pupil diameter of the human eyeball 100 is about 3 to 4 mm in a bright environment and about 6 mm in a dark environment.
  • the vertical axis of the graph represents the modulation transfer rate (MTF) of the spatial frequency component (eg, about 50 [LP / mm]) of the image on the retina 33, and the horizontal axis represents the amount of defocus in the center line EX direction (eg, about 50 [LP / mm]).
  • the length of 0.36 [mm] on the horizontal axis corresponds to the refractive power of 1 diopter. Therefore, for example, when an image of an object at infinity is formed at a position of 0 [mm] on the horizontal axis, an image of an object 1 m away from the eyeball 100 is located at a position of -0.36 [mm] on the horizontal axis. It is formed. This also applies to the simulation of the intraocular lens 10 such as each modification described later.
  • the intraocular lens 10 of the first embodiment functions as a multifocal filter for transmitted light transmitted through the intraocular lens 10. That is, the intraocular lens 10 of the first embodiment divides a plurality of light rays (luminous flux) passing through the first region Z1 and the second region Z2 into a plurality of light fluxes. Then, with the 0th-order diffracted light as a reference (0 diopter), a refractive power (addition) of ⁇ 0.75 diopters is added to the -1st-order diffracted light among the plurality of light beams divided into wave planes, and +0 to the +1st-order diffracted light. The refractive power (addition) of .75 diopters is added. The refractive power of 0.75 diopters corresponds to a relative position of about 0.27 [mm] as the defocus position shown on the horizontal axis of FIG. 3 (b).
  • FIG. 11A is a diagram showing an MTF when a conventional single focus type intraocular lens is attached to the eyeball as a comparative example.
  • the pupil diameter used in the simulation and the number of spatial frequencies of the image on the retina 33 are the same as in FIG. 3 (b). Note that FIG. 11A shows the simulation results in the two cases of the pupil diameter of 3 mm and the pupil diameter of 4 mm.
  • the intraocular lens 10 of the present embodiment is relatively high in a wide range of about ⁇ 0.6 [mm] to 0 [mm] as the defocus position. It can be seen that the value of MTF can be obtained.
  • the range of this defocus position corresponds to the range of the distance from the eyeball 100 from 50 [cm] to infinity as the distance to the object, and the object at a wide distance is placed on the retina 33 with relatively high contrast. Can be imaged. That is, the intraocular lens 10 of the first embodiment increases the depth of focus of the optical system including the cornea 30, the anterior chamber 31, the intraocular lens 10, and the vitreous 32.
  • FIG. 11B is a diagram showing an MTF when a conventional bifocal intraocular lens is attached to the eyeball as a comparative example.
  • the pupil diameter and the number of spatial frequencies of the image on the retina 33 used in the simulation are the same as in the case of FIG. 11A.
  • the MTF value can be increased especially at the defocus position 0 [mm] and the defocus position -0.8 [mm], but for example, the defocus position ⁇ 0.
  • the value of MTF at 4 [mm] is low.
  • the intraocular lens 10 of the present embodiment has a relatively high MTF in a wide range of about ⁇ 0.6 [mm] to 0 [mm] as the defocus position, as shown in FIG. 3 (b). It turns out that the value of can be obtained. Since the pupil diameter of 3 mm is generally the pupil diameter in a bright place such as outdoors in the daytime, the intraocular lens 10 of the present embodiment has an infinite distance from the eyeball 100 from 50 [cm] in a bright place. A good image can be obtained for a wide range of objects up to a long distance.
  • FIG. 4A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modification 1 and the distance r from the optical axis AX.
  • the configuration of the intraocular lens 10 of the first modification is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, only the differences from the first embodiment described above will be described below. ..
  • the phase differences P1 and P2 are increased or decreased 11 times in total. As the number of times of this increase / decrease increases, the refractive power (addition) applied to each diffracted light transmitted by the first region Z1 and the second region Z2 as the multifocal filter also increases from the case of the above-described first embodiment. Become stronger.
  • the refractive power (addition) of -1 diopter is added to the -1st order diffracted light among the plurality of light beams divided on the wave surface with the 0th order diffracted light as a reference (0 diopter), and the +1 diopter is added to the +1 diopter.
  • the refractive power of 1 diopter corresponds to a relative position of about 0.36 [mm] as the defocus position shown on the horizontal axis of FIG. 4 (b).
  • FIG. 4B shows the defocus of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the modification 1. It is a graph which shows the simulation result at a position. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 1 has an image MTF at each defocus position of 0 [mm], -0.36 [mm], and -0.72 [mm] and its vicinity. It can be increased, that is, the depth of focus can be increased. This is because phase differences P1 and P2 that increase or decrease 11 times according to the distance r from the optical axis AX are added to the light rays that pass through the first region Z1 and the second region Z2, and the phase differences P1 and P2 are multiplexed. This is because it functions as a focus filter.
  • the phase differences P1 and P2 are increased or decreased 16 times in total. As the number of times of this increase / decrease increases, the refractive power (addition) applied to each diffracted light transmitted by the first region Z1 and the second region Z2 as the multifocal filter also increases in the above-described first embodiment and modified examples. It becomes stronger than the case of 1.
  • the refractive power (addition) of -1.5 dioptres is added to the -1st-order diffracted light among the plurality of light beams divided on the wave surface with the 0th-order diffracted light as a reference (0 diopter), and the +1 next time A refractive power (addition) of +1.5 diopters is added to the folding light.
  • the refractive power of 1 diopter corresponds to a relative position of about 0.50 [mm] as the defocus position shown on the horizontal axis of FIG. 4 (b).
  • FIG. 5B shows each defocus of the MTF at a predetermined spatial frequency of the image formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of the second modification. It is a graph which shows the simulation result at a position. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 2 has an MTF of the image at each defocus position of 0 [mm], -0.50 [mm], and -1 [mm] and its vicinity. Can be enhanced.
  • the distance from the eyeball 100 corresponds to infinity, 66 [cm], and 33 [cm], respectively, as the distance to the object. That is, the depth of focus of the eyeball 100 can be increased by the intraocular lens 10 of the modification 2.
  • phase differences P1 and P2 that increase or decrease 16 times according to the distance r from the optical axis AX are added to the light rays that pass through the first region Z1 and the second region Z2, and the phase differences P1 and P2 are multiplexed. This is because it functions as a focus filter.
  • FIG. 6A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light by the ejection surface 12 of the intraocular lens 10 of Comparative Example 1 and the distance r from the optical axis AX. Is.
  • the configuration of the intraocular lens 10 of Comparative Example 1 is almost the same as the configuration of the intraocular lens 10 of the first embodiment described above, but differs from the first embodiment described above in the following points.
  • the value of the constant r s is the 1.255 [mm], it is greater than the value of the constant r s in the first embodiment and the modifications described above.
  • the refractive power (addition) applied to each of the diffracted light transmitted by the first region Z1 and the second region Z2 as the multifocal filter is also weaker than in the case of the first embodiment and each modification described above. ..
  • the refractive power (addition) of ⁇ 0.5 dioptre is added to the -1st-order diffracted light among the plurality of light beams divided on the wave surface with the 0th-order diffracted light as a reference (0 diopter), and the +1 next time.
  • a refractive power (addition) of +0.5 diopters is added to the folding light.
  • the refractive power of 0.5 diopters corresponds to a relative position of about 0.18 [mm] as the defocus position shown on the horizontal axis of FIG. 6 (b).
  • FIG. 6B shows the MTFs of the images formed on the retina 33 near the imaging point 34 in the eyeball 100 loaded with the intraocular lens 10 of Comparative Example 1 at a predetermined spatial frequency. It is a graph which shows the simulation result at a focus position. The conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of Comparative Example 1 can increase the MTF of the image at the defocus position of 0 to ⁇ 0.36 [mm].
  • the range of this defocus position corresponds to the range in which the distance from the eyeball 100 is from 1 [m] to infinity as the distance to the object. Therefore, the intraocular lens 10 of Comparative Example 1 cannot improve the contrast of the image with respect to an object at a short distance of less than 1 [m] from the eyeball 100.
  • the intraocular lens 10 of Comparative Example 1 has phase differences P1 and P2 added to the light rays passing through the first region Z1 and the second region Z2 only five times according to the distance r from the optical axis AX. This is because it does not increase or decrease, and therefore the refractive power (addition) applied as a multifocal filter is weak.
  • the phase differences P1 and P2 added to the light rays passing through the first region Z1 and the second region Z2 are from the optical axis AX. Increase or decrease 8 times or more in total according to the distance r. With this configuration, it is possible to give an appropriate multiplex effect to the light rays transmitted through the first region Z1 and the second region Z2, and it is possible to realize an ophthalmic lens 10 having an increased depth of focus.
  • the refractive power (addition) added to the transmitted light becomes too strong. Therefore, in reality, the refractive power (addition) applied to the ⁇ 1st-order diffracted light by the first region Z1 and the second region Z2 may be up to about ⁇ 2 diopters.
  • the eyeball 100 provided with the intraocular lens 10 has an improved MTF for an image of an object from a distance of 25 [cm] from the eyeball 100 (+4 diopters) to infinity (0 diopters).
  • the degree of addition of ⁇ 2 diopters corresponds to 22 times as the number of times of increase / decrease of the phase differences P1 and P2 with the change of the distance r from the optical axis AX.
  • the second region Z2 is added to the transmitted light beam in the range where the distance r from the optical axis AX is 1.5 mm or more and 3 mm or less.
  • the phase difference P2 increases or decreases 7 times or more according to the distance r from the optical axis AX.
  • FIG. 7A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modification 3 and the distance r from the optical axis AX. Is. Since the configuration of the intraocular lens 10 of the modification 2 is almost the same as the configuration of the intraocular lens 10 of the modification 1 described above, only the differences from the modification 1 described above will be described below.
  • phase differences P1 and P2 that the ejection surface 12 of the intraocular lens 10 of the modified example 3 shown in FIG. 7A adds to the aberration-free imaging light beam are the functions Pb (r) of the following equation (3). It is represented by. ... (3)
  • the first term on the right side of equation (3) is the argument of the cos function, which is the argument of the function f ⁇ on the right side of equation (1), plus an arbitrary initial phase b.
  • the second term of the right side of formula (3) is a Gaussian function with respect to the distance r from the optical axis AX, is a constant P g is a constant representing the magnitude of the components of the Gaussian function, constant r g is the Gaussian function Is a constant that represents the width of the distribution of.
  • the phase differences P1 and P2 increase or decrease 11 times in total. Therefore, as in the above-described modification 1, in the first region Z1 and the second region Z2, the refractive power (addition) of -1 diopter is added to the -1st-order diffracted light with reference to the 0th-order diffracted light, and +1. A refractive power (addition) of +1 diopter is added to the next diffracted light.
  • the phase difference P1, P2 to the extent of a distance r from the optical axis AX up to 2 times the constant r g is the width of the Gaussian distribution
  • the second term of equation (3) Gauss The component by the function is added.
  • the second fluctuation width W2 of the second phase difference P2 in the second region Z2 is twice the above constant P s , but the phase difference P1 in the first region Z1.
  • FIG. 7 (b) and 7 (c) show the image formed on the retina 33 near the imaging point 34 at a predetermined spatial frequency in the eyeball 100 loaded with the intraocular lens 10 of the modification 3. It is a graph which shows the simulation result at each defocus position of MTF.
  • FIG. 7B shows the simulation results for each case with a pupil diameter of 3 mm
  • FIG. 7C shows the simulation results for each case with a pupil diameter of 4 mm.
  • the conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 3 is 0 [, similar to the intraocular lens 10 of the modified example 1 shown in FIG. 4 (b).
  • the MTF of the image can be increased, that is, the depth of focus can be increased.
  • the intraocular lens 10 of the modified example 3 is an intermediate position of each of the above defocus positions as compared with the intraocular lens 10 of the modified example 1 shown in FIG. 4 (b), which is -0.18 [mm],-. It can be seen that the MTF of the image can be relatively increased even at each defocus position of 0.55 [mm]. Further, in the simulation result when the pupil diameter is 4 mm shown in FIG. 7 (c), the MTF of the image is enhanced at each defocus position of -0.18 [mm] and -0.55 [mm]. I understand.
  • FIG. 8A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 4 and the distance r from the optical axis AX. Is. Since the configuration of the intraocular lens 10 of the modification 4 is almost the same as the configuration of the intraocular lens 10 of the modification 3 described above, only the differences from the modification 3 described above will be described below.
  • FIG. 8 (b) and 8 (c) show the image formed on the retina 33 near the imaging point 34 at a predetermined spatial frequency in the eyeball 100 loaded with the intraocular lens 10 of the modification 4. It is a graph which shows the simulation result at each defocus position of MTF.
  • FIG. 8B shows the simulation results for each case with a pupil diameter of 3 mm
  • FIG. 8C shows the simulation results for each case with a pupil diameter of 4 mm.
  • the conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 4 had a relatively low MTF in the intraocular lens 10 of the above-mentioned modified example 1 -0.18 [mm. ], It can be seen that the MTF can be increased even at each defocus position of -0.55 [mm].
  • FIG. 9A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 5 and the distance r from the optical axis AX. Is. Since the configuration of the intraocular lens 10 of the modification 5 is almost the same as the configuration of the intraocular lens 10 of the modification 3 described above, only the differences from the modification 3 described above will be described below.
  • FIG. 9 (b) and 9 (c) show the image formed on the retina 33 near the imaging point 34 at a predetermined spatial frequency in the eyeball 100 loaded with the intraocular lens 10 of the modified example 5. It is a graph which shows the simulation result at each defocus position of MTF.
  • FIG. 9B shows the simulation results for each case with a pupil diameter of 3 mm
  • FIG. 9C shows the simulation results for each case with a pupil diameter of 4 mm.
  • the conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the intraocular lens 10 of the modified example 5 had a relatively low MTF in the intraocular lens 10 of the above-mentioned modified example 1 -0.18 [mm. ], It can be seen that the MTF can be increased even at each defocus position of -0.55 [mm].
  • FIG. 10A is a diagram showing the relationship between the phase differences P1 and P2 added to the aberration-free imaging light beam by the ejection surface 12 of the intraocular lens 10 of the modified example 6 and the distance r from the optical axis AX. Is. Since the configuration of the intraocular lens 10 of the modification 6 is almost the same as the configuration of the intraocular lens 10 of the modification 3 described above, only the differences from the modification 3 described above will be described below.
  • FIG. 10 (b) and 10 (c) show the image formed on the retina 33 near the imaging point 34 at a predetermined spatial frequency in the eyeball 100 loaded with the intraocular lens 10 of the modification 6. It is a graph which shows the simulation result at each defocus position of MTF.
  • FIG. 10B shows the simulation results for each case with a pupil diameter of 3 mm
  • FIG. 10C shows the simulation results for each case with a pupil diameter of 4 mm.
  • the conditions of the simulation are the same as those of the simulation shown in FIG. 3 (b) above.
  • the first fluctuation width W1 of the first phase difference P1 is 2 [rad] or more than the second fluctuation width W2 of the second phase difference P2. It is increasing.
  • the first region Z1 has a position of 2 [rad] or more with respect to a light ray passing through at least a part of the first region Z1 (for example, a light ray passing through the optical axis AX) as compared with a light ray passing through the second region Z2.
  • a phase difference is added.
  • the intraocular lenses 10 of the modified examples 3, the modified examples 4, and the modified examples 5 have a multifocal effect due to the light rays transmitted through the second region Z2 and a depth of focus expanding effect due to the light rays transmitted through the first region Z1. Together, the depth of focus can be further increased.
  • cos (2 ⁇ r 2 / r s 2 ) in the formula (1) may be expressed as cos (ar 2 ) by substituting 2 ⁇ / r s 2 with a. it can.
  • cos (2 ⁇ r 2 / r s 2- b) in the equation (3) can also be expressed as cos (ar 2- b).
  • the function f ⁇ in the equations (1) and (3) is a function that increases the inclination of the cos function, which is an argument, near the 0 cross point. Therefore, f ⁇ (cos (ar 2 )) can also be expressed by, for example, the equation (4). ... (4)
  • j is an arbitrary natural number
  • m is a natural number larger than about 3
  • g j is an arbitrary number.
  • f ⁇ (cos (ar 2 -b )) for example, it may be represented by the formula (5). ... (5) Therefore, in the second phase difference P2 in the first embodiment and each modification, the distance r from the optical axis AX, an arbitrary constant a, and an arbitrary constant b are used, and j in the equation (5) is 0. of, it can also be interpreted to include components represented by cos ⁇ ar 2 -b ⁇ .
  • the term of the square of the distance r (r 2 ) included in the argument of the cos function in the equations (1), (3), (4), and (5) is not necessarily the square of the distance r. It does not have to be, and it may be any of the distance r from the 1.5th power to the 2.5th power.
  • the value of the constant a in the above equations (4) and (5) is a parameter that determines the amount corresponding to the period of the cos function included in the equations (4) and (5), and therefore, the first region. It is a parameter that determines the refractive power of the above-mentioned multifocal filter formed by Z1 and the second region Z2.
  • the second term of the equation (3) is not limited to the Gaussian function described above, and may be a sinc function with respect to the distance r from the optical axis or a function represented by the “power power” of the sinc function.
  • the phase difference P1 in the first region Z1 may be a function based on the above-mentioned Gaussian function or sin function plus another function. That is, the first phase difference P1 may include a component represented by a Gaussian function or a sinc function.
  • the shape of the height H is designed by making the shape of the height H of the injection surface 12 in the first phase difference P1, that is, the first region Z1 a shape based on the Gaussian function and the sinc function that are mathematically easy to handle. And easy to manufacture.
  • the amount of the phase differences P1 and P2 added to the transmitted light rays by the first region Z1 and the second region Z2 is a function of the above equations (1), (3), (4), and (5).
  • the shape is not limited to the above shape, and other shapes may be used.
  • the phase differences P1 and P2 may be increased or decreased twice or more in the range from the optical axis AX to 1.5 mm according to the distance from the optical axis AX. As a result, an appropriate multifocal effect can be given to the transmitted light rays, and the depth of focus can be further increased.
  • the second fluctuation width W2 of the second phase difference P2 is 1.5 [rad] or more and 3.5 [rad] or less in the range where the distance r from the optical axis AX is 1 mm to 1.5 mm (described above).
  • the range of the value of the constant Ps may be twice as large as 0.75 to 1.75 [rad]).
  • the amount of the second phase difference P2 added to the transmitted light ray by the second region Z2 is mainly cos with respect to the square of the distance r from the optical axis AX. It changes in proportion to (ar 2 ). Therefore, the cycle of increase / decrease of the phase differences P1 and P2 according to the distance r from the optical axis AX is substantially inversely proportional to the distance r from the optical axis AX. This relationship is similar to the period of the lens height of the so-called Blaze type diffractive lens.
  • the -1st-order diffracted light and the + 1st-order diffracted light generated by dividing the wave plane by the second region Z2 have the distance r from the optical axis AX.
  • Approximately equal refractive power is applied regardless of.
  • the -1st-order diffracted light and the + 1st-order diffracted light can be focused at predetermined focus positions (defocus positions), respectively.
  • the cycle of increase / decrease of the second phase difference P2 does not have to be substantially inversely proportional to the distance r from the optical axis AX.
  • different refractive powers are applied to the -1st-order diffracted light and the + 1st-order diffracted light generated by dividing the wave plane by the first region Z1 and the second region Z2 according to the distance r from the optical axis AX.
  • aberrations corresponding to so-called spherical aberrations are added to the -1st-order diffracted light and the + 1st-order diffracted light, and each of them is focused in a range having a width in the center line EX direction from a predetermined focus position.
  • the cycle of increase / decrease of the second phase difference P2 may be monotonically increasing or monotonically decreasing with respect to the distance r from the optical axis AX.
  • the cycle of increase / decrease of the second phase difference P2 is constant and does not have to change with respect to the distance r from the optical axis AX.
  • the shape of the incident surface 11 and the reference surface 13 of the intraocular lens 10 may be a so-called aspherical surface such as an ellipsoidal surface, an eccentric surface, a hyperboloid or a paraboloid, instead of a spherical surface, and may be a concave surface or a convex surface. It may be flat or flat. Further, the uneven shape may be formed on the incident surface 11 instead of the injection surface 12, or may be formed on both the incident surface 11 and the injection surface 12.
  • the intraocular lens 10 is made of, for example, an acrylic resin material (for example, a copolymer of acrylate and methacrylate), hydrogel, or silicone. Further, the ophthalmic lens (eg, intraocular lens 10) may be a flexible lens made of a foldable flexible material (eg, acrylic resin material, silicone), and is a lens made of a hard material. You may.
  • the refractive index of the material constituting the intraocular lens 10 is not limited to 1.494 described above, and may be any other value.
  • the pupil diameter is 3 mm. It is necessary that the first region Z1 and the second region exist in an appropriate area ratio inside. Therefore, the distance r1 from the optical axis AX at the boundary BL between the first region Z1 and the second region Z2 may be 0.4 mm or more and 0.8 mm or less. If the distance r1 is smaller than 0.4 mm, the area of the first region Z1 becomes smaller, and a sufficient depth of focus expansion effect may not be obtained. On the other hand, when the distance r1 is larger than 0.8 mm, the area of the second region Z2 becomes small, and a sufficient multiplex effect may not be obtained.
  • the height H (phase difference P1, P2) of the ejection surface 12 is determined according to the distance r from the optical axis AX, that is, with respect to the optical axis AX. It is assumed that it has a rotationally symmetric shape. However, the phase differences P1 and P2 do not necessarily have to be rotationally symmetric with respect to the optical axis AX in order to correct astigmatism caused by the shape of the cornea 30.
  • the phase differences P1 and P2 may have a shape that is twice symmetrical with respect to the optical axis AX, or may have a shape that is three times symmetrical.
  • the value of r in the equations (1) and (2) is shown in the equation (6).
  • the height P2 may be determined by replacing it with r'.
  • r' r ⁇ ⁇ 1 + g ⁇ sin (2 ⁇ - ⁇ ) ⁇ ⁇ ⁇ ⁇ (6)
  • g is a constant of about 0 or more and 0.5 or less
  • is the azimuth angle of any one point Q on the injection surface 12 as described above
  • is an arbitrary initial phase.
  • the first phase difference P1 added to the transmitted light by the first region Z1 is assumed to decrease monotonically according to the distance r from the optical axis.
  • the phase difference P1 may increase monotonically according to the distance r from the optical axis.
  • the phase differences P1 and P2 shown in FIG. 3A and the like may have their symbols inverted (inverted in the vertical axis direction).
  • the boundary BL between the first region Z1 and the second region Z2 is the position where the phase differences P1 and P2, which increase monotonically according to the distance r from the optical axis, take the first maximum value. Become.
  • the first phase difference P1 and the second phase difference P2 are assumed to be continuous at the boundary BL.
  • the first phase difference P1 and the second phase difference P2 may change discontinuously at the boundary BL.
  • the scattered light generated by a sudden change in the phase difference is reduced, and the intraocular lens 10 provides a clearer field of view. Can be realized.
  • the first phase difference P1 added to the transmitted light by the first region Z1 is assumed to continuously change according to the distance r from the optical axis.
  • the phase difference P1 may change discretely according to the distance r from the optical axis.
  • the scattered light generated by the sudden change in the phase difference is reduced, and the intraocular lens 10 that provides a clearer field of view is realized. be able to.
  • the phase differences P1 and P2 are not only continuous but also smoothly continuous at the boundary BL between the first region Z1 and the second region Z2. good. In this case, it is possible to realize an intraocular lens 10 that reduces scattered light generated by a sudden change in the phase difference near the boundary BL and provides a clearer field of view.
  • the phase differences P1 and P2 are added by changing the height H of the incident surface 11 or the ejection surface 12 of the intraocular lens 10.
  • the method of adding the phase differences P1 and P2 is not limited to this method.
  • a phase difference may be added by changing the shape (height) of the internal surface on which the lenses face each other.
  • the above phase difference can be added by providing a refractive index fluctuation portion in the first region Z1 and the second region Z2 of the intraocular lens 10 whose refractive index changes with respect to the distance r from the optical axis AX. can do.
  • the intraocular lens 10 can be formed by using a material (eg, silicone, acrylic resin, etc.) whose refractive index changes concentrically around the optical axis AX.
  • the refractive power of the actual intraocular lens 10 varies from person to person. Strictly speaking, it is different from the refractive power of. Therefore, in the simulation using the Navarro model, the thickness of the intraocular lens 10 and the radius of curvature of the incident surface 11 and the reference surface 13 are appropriately changed so that the imaging point 34 (focus) coincides with the retina 33 of the Navarro model. Then perform the simulation.
  • any intraocular lens corresponds to one of the intraocular lenses 10 of the first embodiment or each modification. .. That is, the refractive index and shape of the intraocular lens are numerically attached to the Navarro model, and the radius of curvature of the incident surface 11 and the reference surface 13 of the intraocular lens is appropriately changed to form the imaging point 34 (focus). Is matched on the retina 33 of the Navarro model. Under that condition, it can be determined whether or not the phase differences P1 and P2 of the light rays passing through the first region Z1 and the second region Z2 have the above phase difference.
  • the ophthalmic lens in the present embodiment is not limited to the intraocular lens 10 (IOL) loaded in the eyeball 100 instead of the crystalline lens, but is an implantable contact lens (IPL) loaded between the iris 36 and the crystalline lens. ) May be.
  • the intraocular lens for a so-called piggy bag which is additionally loaded for correction with respect to the eyeball 100 to which the intraocular lens is attached, may be used.
  • it may be a corneal inlay or a corneal inlay loaded into the cornea.
  • the ophthalmic lens may be a contact lens worn on the outside of the cornea 30.
  • the user can wear a contact lens having the configuration described in the present embodiment and an existing intraocular lens (eg, a single focus type IOL) on the eye and use them in combination.
  • ophthalmic lenses can be used for various vision correction applications such as IOLs that can be used for both pseudo-lens and crystalline lenses.
  • the ophthalmic lens may be a spectacle lens worn away from the eyeball.
  • the ophthalmic lens (intraocular lens) 10 of the above first embodiment and each modification is an ophthalmic lens 10 worn in or near the eyeball, and emits light while being attached to the eyeball. It includes a first region Z1 and a second region Z2 that transmit and form an image on the retina 33. Then, the first region intersects the optical axis AX of the ophthalmic lens 10 and monotonically increases or decreases with respect to the light rays passing through the first region Z1 according to the distance r from the optical axis AX of the ophthalmic lens 10.
  • the first phase difference P1 is added, and the second region Z2 is located at a position farther from the optical axis AX than the first region Z1 and is at a distance r from the optical axis AX with respect to a light ray passing through the second region Z2.
  • a second phase difference P2 that increases or decreases accordingly and changes continuously is added, and the first phase difference P1 and the second phase difference P2 increase or decrease eight times or more in total according to the distance r from the optical axis AX. ..
  • the first phase difference P1 and the second phase difference P2 increase or decrease twice or more according to the distance r from the optical axis AX in the range where the distance r from the optical axis AX is up to 1.5 mm. Therefore, it is possible to add a more appropriate multifocal effect to the light rays transmitted through the first region Z1 and the second region Z2.
  • the first phase difference P1 and the second phase difference P2 are continuous at the boundary BL between the first region Z1 and the second region Z2, and have a minimum value or a maximum value at the boundary BL. This makes it possible to realize an intraocular lens 10 that reduces scattered light generated by a sudden change in phase difference and provides a clearer field of view.
  • the first region Z1 is configured to add a phase difference of 2 [rad] or more to the light rays passing through at least a part of the first region Z1 as compared with the light rays passing through the second region Z2.
  • the depth of focus can be further increased by the combination of the multifocal effect of the light rays transmitted through the second region Z2 and the depth of focus expansion effect of the light rays transmitted through the first region Z1.
  • the method for manufacturing the ophthalmic lens 10 is the method for manufacturing the ophthalmic lens described in the above-described first embodiment and each modification, and the ophthalmic lens is manufactured by using design data indicating the lens shape of the ophthalmic lens. It is provided with a processing process manufactured by a processing apparatus (eg, mold processing apparatus, cutting apparatus, polishing apparatus, etc.).
  • the method for manufacturing an ophthalmic lens includes a design process for designing the lens shape and generating the design data.
  • the above design data can be generated by converting information (eg, design conditions) such as the above phase differences P1 and P2 into a lens shape (surface shape) and a refractive index distribution.
  • the lens set includes a plurality of ophthalmic lenses having different depths of focus and the number of focal points (eg, multiple focal points such as two or three focal points) of the ophthalmic lens of the present embodiment.
  • the present invention is not limited to the above contents. Other aspects considered within the scope of the technical idea of the present invention are also included within the scope of the present invention. In this embodiment, all or a part of the above-described embodiments may be combined.
  • Ophthalmic lens Intraocular lens
  • 100 Eyeball
  • 11 Incident surface
  • 12 Ejection surface
  • 13 Reference surface
  • AX Optical axis
  • r Distance from optical axis
  • Z1 First region
  • BL boundary
  • P1 1st phase difference
  • P2 2nd phase difference
  • W1 1st fluctuation width
  • W2 2nd fluctuation width
  • 30 cornea
  • 31 anterior chamber
  • 32 vitreous body
  • Retina 35: Yellow spot
  • 36 Iris

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Prostheses (AREA)

Abstract

眼科用レンズは、眼球内または眼球近傍に装着される眼科用レンズにおいて、眼球に装着された状態で、光を透過して網膜上に像を形成せしめる第1領域および第2領域を備え、第1領域は、眼科用レンズの光軸と交差するとともに、第1領域を通る光線に対し、眼科用レンズの光軸からの距離に応じて単調増加または単調減少する第1位相差を付加し、第2領域は、第1領域よりも光軸から離れた位置にあり、第2領域を通る光線に対し、光軸からの距離に応じて増減し、かつ連続して変化する第2位相差を付加し、第1位相差および第2位相差は、光軸からの距離に応じて合わせて8回以上増減する。

Description

眼科用レンズ及び眼科用レンズの製造方法
 本発明は、眼内レンズ等の眼科用レンズ、眼科用レンズの製造方法に関する。
 水晶体の摘出後に水晶体に代わって眼球内に装填する眼内レンズ(Intraocular lens、IOL)、水晶体の併用して眼球内に装填する有水晶体眼内レンズ(Phakic Intraocular lens、PIL)、およびコンタクトレンズ等の眼球に接触させて使用する眼科用レンズが用いられている。
 また、眼の焦点調節力を補うために、多焦点タイプの眼科用レンズも用いられている。多焦点タイプの眼科用レンズの1つとして、1つの屈折合焦能力を提供する中央屈折領域と、近回折合焦能力及び遠回折合焦能力を提供する回折領域とを備えた多焦点眼科用レンズも提案されている(特許文献1参照)。
日本国特開2009-82723号公報
 本発明の第1の態様の眼科用レンズは、眼球内または眼球近傍に装着される眼科用レンズにおいて、眼球に装着された状態で、光を透過して網膜上に像を形成せしめる第1領域および第2領域を備え、前記第1領域は、前記眼科用レンズの光軸と交差するとともに、前記第1領域を通る光線に対し、前記眼科用レンズの光軸からの距離に応じて単調増加または単調減少する第1位相差を付加し、前記第2領域は、前記第1領域よりも前記光軸から離れた位置にあり、前記第2領域を通る光線に対し、前記光軸からの距離に応じて増減し、かつ連続して変化する第2位相差を付加し、前記第1位相差および前記第2位相差は、前記光軸からの距離に応じて合わせて8回以上増減する。
 本発明の第2の態様の眼科用レンズの製造方法は、第1の態様の眼科用レンズを加工装置によって製造する。
本発明の第1実施形態の眼科用レンズを示す図であり、図1(a)は上面図を、図1(b)は断面図を示す。 第1実施形態の眼科用レンズが装着された眼球の断面を示す図。 図3(a)は、第1実施形態の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図3(b)は、第1実施形態の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。 図4(a)は、変形例1の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図4(b)は、変形例1の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。 図5(a)は、変形例2の眼科用レンズ眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図5(b)は、変形例2の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。 図6(a)は、比較例1の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図6(b)は、比較例1の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。 図7(a)は、変形例3の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図7(b)は、変形例3の眼科用レンズが装着された眼球において、瞳径が3mmの場合に網膜上に結像される像のMTFを示す図。図7(c)は、図7(b)と同様で瞳径が4mmの場合に網膜上に結像される像のMTFを示す図。 図8(a)は、変形例4の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図8(b)は、変形例4の眼科用レンズが装着された眼球において、瞳径が3mmの場合に網膜上に結像される像のMTFを示す図。図8(c)は、図8(b)と同様で瞳径が4mmの場合に網膜上に結像される像のMTFを示す図。 図9(a)は、変形例5の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図9(b)は、変形例5の眼科用レンズが装着された眼球において、瞳径が3mmの場合に網膜上に結像される像のMTFを示す図。図9(c)は、図9(b)と同様で瞳径が4mmの場合に網膜上に結像される像のMTFを示す図。 図10(a)は、変形例6の眼科用レンズが無収差結像光線に対して付加する位相差と光軸からの距離との関係を示す図。図10(b)は、変形例6の眼科用レンズが装着された眼球において、瞳径が3mmの場合に網膜上に結像される像のMTFを示す図。図10(c)は、図10(b)と同様で瞳径が4mmの場合に網膜上に結像される像のMTFを示す図。 図11(a)は、従来の単焦点型の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。図11(b)は、従来の2重焦点型の眼科用レンズが装着された眼球において網膜上に結像される像のMTFを示す図。 図12は、式(2)の関数fγ(x)の例を示す図。
(第1実施形態)
 図1は、本発明の一実施の形態の眼科用レンズの一例として眼内レンズ10を示す図であり、図1(a)は上面図を、図1(b)は、図1(a)におけるY軸上での断面図を示している。眼内レンズ10は、光の入射面11および光の射出面12の2つの屈折面を有している。一例として、入射面11は球面であり、射出面12は球面である基準面13に対して滑らかな凹凸を有する面である。
 眼内レンズ10の光軸AXは、入射面11および射出面12(または基準面13)の回転対称軸である。眼内レンズ10の半径r0は、一例として2.5mmから3.0mm程度である。眼内レンズ10はその周囲に、不図示の支持部を有していても良い。
 図1(a)に示したX軸およびY軸は、光軸AXに垂直な面内にあって相互に直交する任意の方向の軸である。射出面12上の任意の1点Qについて、光軸からの距離を距離rとし、光軸AXを中心とするX軸からの方位角をθとする。
 図2は、第1実施形態の眼内レンズ10が装填されている眼球100の断面を示す図である。図2に示した眼内レンズ10は、眼球から摘出された不図示の水晶体の代わりとして眼球100内に装填されているレンズであり、元来は水晶体が配置されている位置である、硝子体32と前房31との間に配置されている。前房31の内部には、虹彩36が配置されている。眼内レンズ10は、その光軸AXが角膜30の中心と黄斑35の中心とを結ぶ直線を眼球の中心線EXと、概ね一致するように配置されるが、必ずしも厳密に一致する必要はない。
 眼内レンズ10は、元来の水晶体と同様の屈折力を持つレンズであり、不図示の外界の物体からの光線L1、L2は、角膜30で屈折し、前房31、眼内レンズ10、および硝子体32を経て、網膜33上の黄斑35の中心近傍にある結像点34に結像する。
 図2に示した2本の光線L1、L2は例示であって、実際には、物体から発して入射面に入る多数の光線(結像光線)が、上記の角膜30や眼内レンズ10等を経て、網膜33上の結像点34に結像している。角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系に全体として収差がなければ、多数の結像光線のそれぞれの間に光路長差(位相差)はない。以下では、この無収差状態の結像光線を、無収差結像光線と呼ぶ。
 図1(b)に示した射出面12の基準面13に対する滑らかな凹凸の量は、一例として、後述するように光軸AXから離れる方向において光軸AXからの距離に応じて定まっている。従って、上記の凹凸形状は、一例として光軸AXに対して回転対称な形状である。なお、図1(b)においては、射出面12の凹凸形状を光軸AX方向に誇張して描いている。
 本明細書では、射出面12内の各部分における基準面13から射出面12までの距離を、射出面12の高さHと呼び、射出面12が眼内レンズ10から離れる側を正の符号として表す。
 眼内レンズ10の屈折率は水晶体の屈折力と同様であり、一例として1.494であり、一方、眼内レンズ10に接する硝子体の屈折率は、一例として1.336である。従って、射出面12の高さがHである部分を通過する光線には、高さが0である部分を通過する光線に対して、H×(1.494-1.336)=H×0.158 の光路長差が付加される。光の位相差は光路長差の(2π/波長)倍である。
 よって、通過する光線の波長を 0.55[μm]とすれば、射出面12の中の高さがH[μm] である部分を通過する光線には、高さが0[μm]の部分を通過する光線に対して、2π×H×0.158/0.55 = H×1.805[rad] の位相差が付加される。
 従って、射出面12の基準面13からの高さH[μm]は、この数値を一例として1.805倍した位相差[rad]と等価である。そこで、本明細書においては、以降、射出面12の基準面13からの高さH[μm]を、眼内レンズ10が無収差結像光線に対して付加する位相差P1、P2[rad]と等価なものとして扱う。
 図3(a)は、第1実施形態の眼科用レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。
 第1実施形態においては、図1(b)および図3(a)に示したように、射出面12の高さHは、光軸AXの近傍の領域では、基準面13よりも高くなっている。従って、光軸AXの近傍の領域においては、位相差P1は正の値になっている。
 位相差P1は、光軸AXからの距離rが増大するに連れて単調に減少し、光軸AXからの距離rがr1(一例として約0.6mm)となる位置において第1の極小値MP1をとる。そして、光軸AXからの距離rがr1以上の領域では、位相差P2は光軸AXからの距離rに応じて増減を繰り返す。
 以下、光軸AXからの距離rが上記のr1以内である領域を第1領域Z1と呼び、光軸AXからの距離rがr1以上である領域を第2領域Z2と呼ぶ。すなわち、第1領域Z1は、第1領域Z1を通る光線に対し光軸AXからの距離rに応じて単調減少する第1位相差P1を付加し、第2領域Z2は、第2領域Z2を通る光線に対し光軸AXからの距離rに応じて複数回増減し、かつ連続である第2位相差P2を付加する。
 第1位相差P1の最大値と最小値の差を第1変動幅W1と呼び、第2位相差P2の最大値と最小値の差を第2変動幅W2と呼ぶ。
 また、第1位相差P1と第2位相差P2を、合わせて位相差P1、P2とも呼ぶ。
 図1(a)において、光軸AXは第1領域Z1において射出面12と交差しており、すなわち第1領域Z1は光軸AXと交差している。
 第1実施形態においては、第1位相差P1と第2位相差P2とは、第1領域Z1と第1領域Z2との境界BLにおいて、連続であり、かつ極小値MP1をとる。
 第1領域Z1および第2領域Z2を通る光線は、角膜30、眼内レンズ10、および硝子体32等の屈折作用により、網膜33上の黄斑35上に像を形成する。
 第1実施形態の眼内レンズ10は、第1位相差P1および第2位相差P2が0のときの無収差結像光線が、無限遠の物体の像を無収差で黄斑35から0.21[mm]だけ角膜30側に離れた位置に結像するように設定されている。これは、公知の方法により眼内レンズ10の入射面11および基準面13の形状や配置を最適化することによりなされている。換言すれば、射出面12の高さHが、第1領域Z1および第2領域Z2の全面に渡って0であるときは、眼内レンズ10が装填されている眼球100は、眼球100から1.79 [m]離れた物体の像を、無収差で黄斑35上に結像する。
 第1実施形態においては、射出面12の高さHにより、眼内レンズ10を透過する光線に付加される位相差P1、P2は、式(1)に示す、光軸からの距離rに対するcos関数で表される関数Pa(r)に従った量である。
Figure JPOXMLDOC01-appb-M000001
    ・・・(1)
 ここで、式(1)中のfγは、以下の式(2)で表される関数である。
Figure JPOXMLDOC01-appb-M000002
    ・・・(2)
 式(2)において、sgn(x)は、引数xの符号を返す関数である。
 2πr/r  をxと置くと、式(1)のfγは、fγ(cos(x))と表される。
 図12は、γ=1.5、およびγ=3における関数fγ(cos(x))を、cos(x)とともに示したグラフである。定数γが1より増大すると、関数fγ(cos(x))は、cos(x)の0クロス点(x=π/2または3π/2)の近傍における傾斜が増大する。
 一方、不図示ではあるが、定数γが1より減少すると、関数fγ(cos(x))は、cos(x)の0クロス点(x=π/2または3π/2)の近傍における傾斜が緩和される。
 関数fγ(cos(x))は、式(2)の定義においては、γ=1では、0での除算を含むこととなり定義不能である。ただし、γ=1においては、関数fγ(cos(x))はcos(x)と一致すると考えて良い。
 式(1)に戻り、定数Psは、光軸からの距離rの2乗に対するcos関数を用いた関数fγ(cos(x))の成分の大きさを表す定数である。
 図3(a)に示した位相差P1、P2[rad]は、式(1)および式(2)の各定数の値が、r=1.053[mm]、P=1.1[rad]、γ=2.03 のときの関数Pa(r)である。
 式(1)から判るように、位相差P1、P2は、定数rにより決まる周期に従って、光軸AXからの距離rの変化に応じて増減する。第1実施形態においては、定数rを1.053[mm]としているため、距離rが光軸AX上のr=0から眼内レンズ10の最外周のr=3[mm]まで変化する間に、位相差P1、P2は、合わせて8回増減している。
 この距離rの変化に伴う位相差P1、P2の増減は、第1領域Z1および第2領域Z2に、これらを透過する透過光に対する多重焦点フィルタとしての機能を付加する。これにより、眼内レンズ10は、角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系の焦点深度を増大することができる。
 図3(b)は、第1実施形態の眼内レンズ10が装填された眼球100(角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系)において、結像点34近傍の網膜33上に形成される像の所定の空間周波数(例、約50[LP/mm])でのMTF(Modulation Transfer Function)の、各デフォーカス位置(Defocus Position)におけるシミュレーション結果を示すグラフである。
 シミュレーションは、2008年にHerbert Grossにより編纂された「Handbook of Optical Systems: Vol. 4 Survey of Optical Instruments」(WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)の第36章第4節に開示される、Navarroモデルに基づくものである。
 すなわち、上記のNavarroモデルによる焦点距離の光学系(角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系)を想定し、その光学系を通過する各結像光線に図3(a)に示した位相差P1、P2を付加して、シミュレーションを行った。
 ただし、上述のように、第1実施形態の眼内レンズ10は、透過する透過光に対する多重焦点フィルタとしての機能を付加するものである。そこで、シミュレーションにおいては、第1領域Z1および第1領域Z2が形成する多重焦点フィルタからの-1次回折光(負の屈折力が付加される回折光)が、図3(b)の横軸のデフォーカス位置が0[mm]の位置に集光するように、眼内レンズ10の条件を設定している。これは、具体的には、眼内レンズ10の位置および入射面11、基準面13の形状の微調整により行っている。これは、後述する各変形例等の眼内レンズ10におけるシミュレーションについても同様である。
 図3(b)は、瞳径(虹彩36の開口部の直径)が3mmの場合のMTFを示している。なお、人間の眼球100の瞳径は、明るい環境下において3~4mm程度、暗い環境下において6mm程度である。
 グラフの縦軸は、網膜33上の像の空間周波数成分(例、約50[LP/mm])の変調伝達率(MTF)を表し、横軸は、中心線EX方向へのデフォーカス量(網膜33を基準=0とし、角膜30に近づく方を負としている)を [mm]単位で表している。
 横軸の 0.36[mm]の長さが、1ディオプトリの屈折力に相当する。従って、例えば、無限遠方の物体の像が横軸上の0[mm]の位置に形成されるとき、眼球100から1m離れた物体の像は、横軸上の-0.36[mm]の位置に形成される。これは、後述する各変形例等の眼内レンズ10におけるシミュレーションについても同様である。
 第1実施形態の眼内レンズ10は、上述のとおり、これを透過する透過光に対する多重焦点フィルタとして機能する。すなわち、第1実施形態の眼内レンズ10は、第1領域Z1および第2領域Z2を通通る複数の光線(光束)を複数の光束に波面分割する。そして、0次回折光を基準(0ディオプトリ)として、波面分割された複数の光束のうち-1次回折光には-0.75ディオプトリの屈折力(加入度)が付加され、+1次回折光には+0.75ディオプトリの屈折力(加入度)が付加される。0.75ディオプトリの屈折力は、図3(b)の横軸に示しているデフォーカス位置としては、約0.27[mm]の相対位置に相当する。
 一方、図11(a)は、比較例として、従来の単焦点型の眼内レンズを眼球に装着した場合のMTFを示す図である。シミュレーションに用いた瞳径および網膜33上の像の空間周波数数は図3(b)の場合と同じである。なお、図11(a)では、瞳径3mmと瞳径4mmの2通りの場合のシミュレーション結果を示している。
 図3(b)と図11(a)とを比較すると、本実施形態の眼内レンズ10は、デフォーカス位置として-0.6[mm]から0[mm]程度の広範な範囲において、比較的高いMTFの値を得ることができることが判る。このデフォーカス位置の範囲は、物体までの距離としては、眼球100からの距離が50[cm]から無限遠までの範囲に相当し、広範囲な距離にある物体を比較的高コントラストで網膜33上に結像させることができる。すなわち、第1実施形態の眼内レンズ10により、角膜30、前房31、眼内レンズ10、および硝子体32を含む光学系の焦点深度が増大される。
 図11(b)は、比較例として、従来の2重焦点型の眼内レンズを眼球に装着した場合のMTFを示す図である。シミュレーションに用いた瞳径および網膜33上の像の空間周波数数は図11(a)の場合と同じである。
 従来の2重焦点型の眼内レンズにおいても、特にデフォーカス位置0[mm]とデフォーカス位置-0.8[mm]においてMTFの値を高くできるが、その間の例えばデフォーカス位置-0.4[mm]でのMTFの値は低い。
 これに対して、本実施形態の眼内レンズ10は、図3(b)に示したとおり、デフォーカス位置として-0.6[mm]から0[mm]程度の広範な範囲において、比較的高いMTFの値を得ることができることが判る。
 瞳径が3mmとは、概ね日中の室外等の明るい場所における瞳径であるので、本実施形態の眼内レンズ10は、明るい場所においては、眼球100からの距離が50[cm]から無限遠までの広範囲の物体に対して良像が得られる。
(変形例1)
 図4(a)は、変形例1の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。変形例1の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の第1実施形態との差異点についてのみ説明を行う。
 図4(a)に示した位相差P1、P2[rad]は、式(1)および式(2)の各定数の値が、r=0.900[mm]、P=1.1[rad]、γ=2.03 のときの関数Pa(r)である。
 変形例1においては、定数rを0.900 [mm]としているため、距離rが光軸AX上のr=0から眼内レンズ10の最外周のr=3[mm]まで変化する間に、位相差P1、P2は、合わせて11回増減している。この増減の回数の増加に伴い、多重焦点フィルタとしての第1領域Z1および第2領域Z2が、透過する各回折光に付加する屈折力(加入度)も、上述の第1実施形態の場合より強くなる。変形例1においては、0次回折光を基準(0ディオプトリ)として、波面分割された複数の光束のうち-1次回折光には-1ディオプトリの屈折力(加入度)が付加され、+1次回折光には+1ディオプトリの屈折力(加入度)が付加される。1ディオプトリの屈折力は、図4(b)の横軸に示しているデフォーカス位置としては、約0.36[mm]の相対位置に相当する。
 図4(b)は、変形例1の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図4(b)に示したとおり、変形例1の眼内レンズ10は、0[mm]、-0.36[mm]、-0.72[mm]の各デフォーカス位置およびその近傍で、像のMTFを高めることができ、すなわち、焦点深度を増大することができる。
 これは、第1領域Z1および第2領域Z2を透過する光線に対して、光軸AXからの距離rに応じて11回増減する位相差P1,P2が付加され、位相差P1,P2が多重焦点フィルタとして機能するためである。
(変形例2)
 図5(a)は、変形例2の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。変形例2の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の第1実施形態との差異点についてのみ説明を行う。
 図5(a)に示した位相差P1、P2[rad]は、式(1)および式(2)の各定数の値が、r=0.747[mm]、P=1.1[rad]、γ=2.03 のときの関数Pa(r)である。
 変形例2においては、定数rを0.747 [mm]としているため、距離rが光軸AX上のr=0から眼内レンズ10の最外周のr=3[mm]まで変化する間に、位相差P1、P2は、合わせて16回増減している。この増減の回数の増加に伴い、多重焦点フィルタとしての第1領域Z1および第2領域Z2が、透過する各回折光に付加する屈折力(加入度)も、上述の第1実施形態および変形例1の場合より強くなる。変形例2においては、0次回折光を基準(0ディオプトリ)として、波面分割された複数の光束のうち-1次回折光には-1.5ディオプトリの屈折力(加入度)が付加され、+1次回折光には+1.5ディオプトリの屈折力(加入度)が付加される。1ディオプトリの屈折力は、図4(b)の横軸に示しているデフォーカス位置としては、約0.50[mm]の相対位置に相当する。
 図5(b)は、変形例2の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図5(b)に示したとおり、変形例2の眼内レンズ10は、0[mm]、-0.50[mm]、-1[mm]の各デフォーカス位置およびその近傍で、像のMTFを高めることができる。上記の各デフォーカス位置は、物体までの距離としては、眼球100からの距離がそれぞれ、無限遠、66[cm]、33[cm]に相当する。すなわち、変形例2の眼内レンズ10により、眼球100の焦点深度を増大することができる。
 これは、第1領域Z1および第2領域Z2を透過する光線に対して、光軸AXからの距離rに応じて16回増減する位相差P1、P2が付加され、位相差P1、P2が多重焦点フィルタとして機能するためである。
(比較例1)
 図6(a)は、比較例1の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。比較例1の眼内レンズ10の構成は、上述の第1実施形態の眼内レンズ10の構成とほぼ同様であるが、以下の点で上述の第1実施形態とは異なっている。
 図6(a)に示した位相差P1、P2[rad]は、式(1)および式(2)の各定数の値が、r=1.255[mm]、P=1.1[rad]、γ=2.03 のときの関数Pa(r)である。
 すなわち、定数rの値が 1.255[mm]であり、上述の第1実施形態および各変形例における定数rの値よりも大きい。その結果、比較例1の眼内レンズ10では、距離rが光軸AX上のr=0から眼内レンズ10の最外周のr=3[mm]まで変化する間に、位相差P1、P2は、合わせて5回しか増減しない。これにより、多重焦点フィルタとしての第1領域Z1および第2領域Z2が、透過する各回折光に付加する屈折力(加入度)も、上述の第1実施形態および各変形例の場合より弱くなる。
 比較例1においては、0次回折光を基準(0ディオプトリ)として、波面分割された複数の光束のうち-1次回折光には-0.5ディオプトリの屈折力(加入度)が付加され、+1次回折光には+0.5ディオプトリの屈折力(加入度)が付加される。0.5ディオプトリの屈折力は、図6(b)の横軸に示しているデフォーカス位置としては、約0.18[mm]の相対位置に相当する。
 図6(b)は、比較例1の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の、所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図6(b)に示したとおり、比較例1の眼内レンズ10は、0~-0.36[mm]のデフォーカス位置において像のMTFを高めることはできる。しかし、このデフォーカス位置の範囲は、物体までの距離としては、眼球100からの距離が1[m]から無限遠までの範囲に相当するものである。従って、比較例1の眼内レンズ10は、眼球100から1[m]未満の近距離にある物体に対する像のコントラスト向上させることはできない。
 これは、比較例1の眼内レンズ10は、第1領域Z1および第2領域Z2を透過する光線に対して付加する位相差P1、P2が光軸AXからの距離rに応じて5回しか増減せず、従って多重焦点フィルタとして付加する屈折力(加入度)が弱いためである。
(第1実施形態、変形例1、変形例2についての補足)
 これに対し、上述の第1実施形態および各変形例の眼内レンズ10では、第1領域Z1および第2領域Z2を透過する光線に対して付加する位相差P1、P2が、光軸AXからの距離rに応じて合わせて8回以上増減する。
 この構成により、第1領域Z1および第2領域Z2を透過した光線に適切な多重焦点効果を負与することができ、焦点深度が増大された眼科用レンズ10を実現することができる。
 なお、光軸AXからの距離rに応じて位相差P1、P2が増減する回数に特に上限はないが、増減回数があまりにも多いと、多重焦点フィルタとしての第1領域Z1および第2領域Z2が透過光に付加する屈折力(加入度)が強くなり過ぎる。従って、現実的には、第1領域Z1および第2領域Z2が±1次回折光に付加する屈折力(加入度)は、±2ディオプトリ程度までとしても良い。この場合、眼内レンズ10を備えた眼球100は、眼球100から25[cm]の距離(+4ディオプトリ)から無限遠(0ディオプトリ))までの物体の像に対するMTFが向上することになる。±2ディオプトリの加入度は、光軸AXからの距離rの変化に伴う位相差P1、P2の増減回数としては、22回に相当する。
 また、変形例1および変形例2の眼内レンズ10では、第2領域Z2のうち光軸AXからの距離rが1.5mm以上3mm以下の範囲において、透過する光線に対して付加する第2位相差P2は、光軸AXからの距離rに応じて7回以上増減する。
 この構成により、第1領域Z1および第2領域Z2を透過した光線により適切な多重焦点効果を負与することができ、焦点深度が一層増大された眼科用レンズ10を実現することができる。
(変形例3)
 上述の変形例1および変形例2の眼内レンズ10においては、第1領域Z1および第2領域Z2透過し、波面分割される-1次回折光および+1次回折光に対して比較的大きな屈折力(加入度)を付加するため、焦点深度を大きく増加させることができる。
 しかしながら、-1次回折光および+1次回折光に付加される屈折力(加入度)が大きいため、図4(b)および図5(b)に示されるMTFは、特定の離散的なデフォーカス位置においては高いものの、それらの中間においてはやや低い値となっている。
 変形例3の眼内レンズ10は、上記の特定の離散的なデフォーカス位置だけでなく、これらの中間においてもMTFの値を向上させる。
 図7(a)は、変形例3の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。変形例2の眼内レンズ10の構成は、上述の変形例1の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の変形例1との差異点についてのみ説明を行う。
 図7(a)に示した変形例3の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2は、以下の式(3)の関数Pb(r)で表せられる。
Figure JPOXMLDOC01-appb-M000003
   ・・・(3)
 式(3)の右辺の第1項は、式(1)の右辺の関数fγの引数であるcos関数の引数に任意の初期位相bが加わったものである。そして、式(3)の右辺の第2項は、光軸AXからの距離rに対するガウス関数であり、定数Pはガウス関数の成分の大きさを表す定数であり、定数rはガウス関数の分布の幅を表す定数である。
 図7(a)に示した変形例3の眼内レンズ10の位相差P1、P2[rad]は、上述の式(3)および式(2)の各定数の値が、r=0.900[mm]、P=1.1[rad]、γ=2.03、b=0[rad]、r=0.24[mm]、P=3.40[rad]のときの関数Pb(r)の値に等しい。
 すなわち、変形例7の眼内レンズ10の位相差P1、P2は、上述の変形例1の眼内レンズ10の射出面12の位相差P1、P2に、式(3)の第2項のガウス関数が加わったものである。
 変形例3においては、変形例1と同様に定数rが0.900 [mm]であることから、距離rが光軸AX上のr=0から眼内レンズ10の最外周のr=3[mm]まで変化する間に、位相差P1およびP2は、合わせて11回増減する。そのため、上述の変形例1と同様に、第1領域Z1および第2領域Z2は、0次回折光を基準として、-1次回折光には-1ディオプトリの屈折力(加入度)を付加し、+1次回折光には+1ディオプトリの屈折力(加入度)を付加する。
 変形例3においては、位相差P1、P2には、光軸AXからの距離rがガウス分布の幅である定数rの2倍程度までの範囲において、式(3)の第2項のガウス関数による成分が加わる。ただし、図7(a)に示した位相差P1、P2において、光軸AXから第1領域Z1と第2領域Z2の境界BLである第1の極小値MP1までの距離r1は 0.7[mm]であり、定数r=0.24[mm]の3倍程度の距離である。従って、式(3)の第2項のガウス関数による位相差P1、P2の増加は、実質的には、上記の距離r1よりも光軸AXに近い第1領域Z1の範囲内に限定されている。
 この結果、変形例3においては、第2領域Z2内の第2位相差P2の第2変動幅W2は、上記の定数Pの2倍であるが、第1領域Z1内の位相差P1の第1変動幅W1は、変動幅W2に上記の定数Pが加わったものとなる。すなわち、第1変動幅W1は、第2変動幅W2よりも定数P=3.40[rad]だけ大きい。
 図7(b)、図7(c)は、変形例3の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。図7(b)は瞳径3mmの、図7(c)は瞳径4mmの各場合のシミュレーション結果をそれぞれ表す。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図7(b)示した瞳径3mmの場合のシミュレーション結果のとおり、変形例3の眼内レンズ10は、図4(b)に示した変形例1の眼内レンズ10と同様に、0[mm]、-0.36[mm]、-0.72[mm]の各デフォーカス位置およびその近傍で、像のMTFを高めることができ、すなわち焦点深度を増大することができる。
 さらに、変形例3の眼内レンズ10は、図4(b)に示した変形例1の眼内レンズ10に比べて、上記の各デフォーカス位置の中間位置である -0.18[mm]、-0.55[mm]の各デフォーカス位置においても、像のMTFを比較的高めることができることが判る。
 また、図7(c)に示した瞳径4mmの場合のシミュレーション結果においても、-0.18[mm]、-0.55[mm]の各デフォーカス位置においても、像のMTFが高められていることが判る。
(変形例4)
 図8(a)は、変形例4の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。変形例4の眼内レンズ10の構成は、上述の変形例3の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の変形例3との差異点についてのみ説明を行う。
 図8(a)に示した変形例4の眼内レンズ10の位相差P1、P2[rad]は、変形例3における上述の式(3)および式(2)の各定数の値を、定数Pのみ 5.0[rad]に変更した関数Pb(r)の値に等しい。
 すなわち、変形例4の眼内レンズ10においては、第1位相差P1の第1変動幅W1は、第2位相差P2の第2変動幅W2よりも定数P=5.0[rad]だけ大きい。
 図8(b)、図8(c)は、変形例4の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。図8(b)は瞳径3mmの、図8(c)は瞳径4mmの各場合のシミュレーション結果をそれぞれ表す。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図8(b)および図8(c)示したシミュレーション結果から、変形例4の眼内レンズ10は、上述の変形例1の眼内レンズ10では比較的低いMTFとなっていた-0.18[mm]、-0.55[mm]の各デフォーカス位置においても、MTFを高めることができることが判る。
(変形例5)
 図9(a)は、変形例5の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。変形例5の眼内レンズ10の構成は、上述の変形例3の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の変形例3との差異点についてのみ説明を行う。
 図9(a)に示した変形例5の眼内レンズ10の位相差P1、P2[rad]は、変形例3における上述の式(3)および式(2)の各定数の値を、定数Pのみ 12.5 [rad]に変更した関数Pb(r)の値に等しい。
 すなわち、変形例5の眼内レンズ10においては、第1位相差P1の第1変動幅W1は、第2位相差P2の第2変動幅W2よりも定数P=12.5 [rad]だけ大きい。
 図9(b)、図9(c)は、変形例5の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。図9(b)は瞳径3mmの、図9(c)は瞳径4mmの各場合のシミュレーション結果をそれぞれ表す。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図9(b)および図9(c)示したシミュレーション結果から、変形例5の眼内レンズ10は、上述の変形例1の眼内レンズ10では比較的低いMTFとなっていた-0.18[mm]、-0.55[mm]の各デフォーカス位置においても、MTFを高めることができることが判る。
(変形例6)
 図10(a)は、変形例6の眼内レンズ10の射出面12が無収差結像光線に対して付加する位相差P1、P2と、光軸AXからの距離rとの関係を示す図である。変形例6の眼内レンズ10の構成は、上述の変形例3の眼内レンズ10の構成とほぼ同様であるので、以下では、上述の変形例3との差異点についてのみ説明を行う。
 図10(a)に示した変形例6の眼内レンズ10の位相差P1、P2[rad]は、変形例3における上述の式(3)および式(2)の各定数の値を、定数Pのみ 1.55 [rad]に変更した関数Pb(r)の値に等しい。
 すなわち、比較例2の眼内レンズ10においては、第1位相差P1の第1変動幅W1は、第2位相差P2の第2変動幅W2よりも定数P=1.55 [rad]だけ大きい。
 図10(b)、図10(c)は、変形例6の眼内レンズ10が装填された眼球100において、結像点34近傍の網膜33上に形成される像の所定の空間周波数でのMTFの、各デフォーカス位置におけるシミュレーション結果を示すグラフである。図10(b)は瞳径3mmの、図10(c)は瞳径4mmの各場合のシミュレーション結果をそれぞれ表す。シミュレーションの条件は、上述の図3(b)に示したシミュレーションと同様である。
 図10(c)に示した瞳径4mmの場合のシミュレーション結果では、変形例6の眼内レンズ10においても、-0.18[mm]、-0.55[mm]の各デフォーカス位置において、比較的高いMTFを得られることが判る。
 しかし、図10(b)に示した瞳径3mmの場合のシミュレーション結果では、-0.18[mm]、-0.55[mm]の各デフォーカス位置において、MTFの向上が見られない。
 変形例6においては、第1位相差P1の第1変動幅W1を、第2位相差P2の第2変動幅W2よりも1.55 [rad]だけ増大させている。しかし、1.55 [rad]の増大では、2[rad]以上増大させている上述の変形例3~5と比較すると、第1位相差P1による十分な焦点深度拡大効果を得ることができなかった。
(変形例3、変形例4、変形例5についての補足説明)
 一方、変形例3、変形例4、変形例5においては、第1位相差P1の第1変動幅W1を、第2位相差P2の第2変動幅W2よりも、いずれも2[rad]以上増大させている。換言すれば、第1領域Z1は、第1領域Z1の少なくとも一部を通る光線(例えば光軸AXを通る光線)に対し、第2領域Z2を通る光線に比べて2 [rad]以上の位相差を付加している。
 このため、変形例3、変形例4、変形例5の眼内レンズ10は、第2領域Z2を透過した光線による多重焦点効果と、第1領域Z1を透過した光線による焦点深度拡大効果とが相俟って、焦点深度を一層増大することができる。
 なお、第1変動幅W1と第2変動幅W2との差には上限はないが、差があまりに大きいと第1変動幅W1が大きくなり過ぎ、第1領域Z1を透過した光線がフレアとなって視野内に散乱し、像のコントラストを低下させる恐れがある。これを防ぐために、第1変動幅W1と第2変動幅W2との差を、50 [rad]程度以下とすることもできる。
(第1実施形態および各変形例に対する補足説明)
 以上の第1実施形態および各変形例において、式(1)または式(3)の定数Pを増加させると、第1位相差P1の第1変動幅W1、および第2位相差P2の第2変動幅W2がそれぞれ増大する。これにより、多重焦点フィルタとしての第1領域Z1および第2領域Z2から回折される-1次回折光および+1次回折光の光量が、0次回折光の光量に対して増大する。従って、定数Pの値を増減させる(第1変動幅W1および第2変動幅W2を増減させる)ことにより、眼内レンズ10による多重焦点効果を増減することができる。
 式(1)、式(3)に含まれる関数fγ(cos(x))のγの値が1であり、すなわちfγ(cos(x))=cos(x)と見做せるとき、定数Psの値が1.45[rad]程度であると、第1領域Z1および第2領域Z2から発生する-1次回折光、0次回折光、+1次回折光の光量がほぼ等しくなる。従って、定数Psの値を0.75~1.75[rad]程度とすることで、第1領域Z1および第2領域Z2を適切な多重焦点フィルタとして機能させることもできる。
 以上の第1実施形態および各変形例において、式(1)中のcos(2πr/r  )は、2π/r  をaと置換して、cos(ar)と表すこともできる。同様に式(3)中のcos(2πr/r  -b)は、cos(ar-b)と表すこともできる。
 また、上述のとおり、式(1)および式(3)中の関数fγは、引数であるcos関数の0クロス点近傍での傾斜を増大させる関数である。従って、fγ(cos(ar))は、例えば、式(4)で表すこともできる。
Figure JPOXMLDOC01-appb-M000004
     ・・・(4)
 ここで、jは任意の自然数であり、mは3程度より大きい自然数であり、gは任意の数である。
 また、fγ(cos(ar-b))は、例えば、式(5)で表すこともできる。
Figure JPOXMLDOC01-appb-M000005
    ・・・(5)
 従って、第1実施形態および各変形例における第2位相差P2は、光軸AXからの距離r、任意の定数a、任意の定数bを用いて、式(5)のjが0である場合の、cos{ar-b}で表される成分を含むと解釈することもできる。
 また、第1実施形態および各変形例における第2位相差P2は、式(5)のjが1である場合の、cos{3ar-3b}で表される成分を含むと解釈することもできる。
 なお、式(1)、式(3)、式(4)、式(5)においてcos関数の引数に含まれている距離rの2乗(r)の項は、必ずしも距離rの2乗でなくても良く、距離rの1.5乗から2.5乗までのいずれかであっても良い。
 上述の式(4)、式(5)における定数aの値は、式(4)、式(5)に含まれるcos関数の周期に相当する量を決定するパラメーターであり、従って、第1領域Z1および第2領域Z2が形成する上述の多重焦点フィルタの屈折力を決定するパラメーターとなる。
 なお、式(3)の第2項は、上述のガウス関数に限らず、光軸からの距離rに対するsinc関数またはsinc関数の「べき乗」で表される関数であっても良い。
 また、第1領域Z1における位相差P1は、上述のガウス関数やsin関数に基づく関数に、さらに別の関数を加えたものであっても良い。すなわち、第1位相差P1は、ガウス関数やsinc関数で表される成分を含むものであっても良い。
 第1位相差P1、すなわち第1領域Z1における射出面12の高さHの形状を、数学的に取り扱いの容易なガウス関数やsinc関数に基づく形状とすることで、高さHの形状の設計や製造が容易になる。
 なお、第1領域Z1および第2領域Z2により透過光線に付加される位相差P1、P2の量は、上述の式(1)、式(3)、式(4)、式(5)の関数による形状に限るわけではなく、他の形状であっても良い。
 いずれの場合であっても、位相差P1、P2は、光軸AXから1.5mmまでの範囲において、光軸AXからの距離に応じて合わせて2回以上増減させても良い。これにより、透過光線に対して適切な多重焦点効果を与えることができ、焦点深度を一層増大することができる。
 また、第2位相差P2の第2変動幅W2は、光軸AXからの距離rが1mmから1.5mmの範囲において、1.5 [rad]以上、かつ3.5[rad]以下(上述した、定数Psの値の範囲0.75~1.75[rad]の2倍)としても良い。距離rが上記の範囲において、第2位相差P2の第2変動幅W2を上記の範囲とすることで、第2領域Z2から発生する-1次回折光、0次光回折光、および+1次回折光の光量のバランスを適当な値に設定し、多重焦点効果を一層効果的に発揮させることができる。
 上述の第1実施形態および各変形例では、特に第2領域Z2により透過光線に付加される第2位相差P2の量が、光軸AXからの距離rの2乗に対して、主にcos(ar)に比例して変化する。従って、光軸AXからの距離rに応じた位相差P1、P2の増減の周期は、光軸AXからの距離rに略反比例する。この関係は、いわゆるBlaze型回折レンズのレンズ高さの周期と同様である。
 第2位相差P2の増減の周期が光軸AXからの距離rに略反比例すると、第2領域Z2により波面分割されて生じる-1次回折光および+1次回折光には、光軸AXからの距離rに依らずに略等しい屈折力が付与される。この結果、-1次回折光および+1次回折光を、それぞれ所定のフォーカス位置(デフォーカス位置)に集光させることができる。
 しかし、第2位相差P2の増減の周期は、光軸AXからの距離rに略反比例しなくても良い。この場合には、第1領域Z1および第2領域Z2により波面分割されて生じる-1次回折光および+1次回折光には、光軸AXからの距離rに応じて異なる屈折力が付与される。その結果、-1次回折光および+1次回折光には、いわゆる球面収差に相当する収差が付加され、それぞれが所定のフォーカス位置から中心線EX方向に幅を持った範囲で集光することになる。これにより、さらなる焦点深度の増大効果が得られる。
 第2位相差P2の増減の周期は、光軸AXからの距離rに対して、単調増加する、または単調減少するものであっても良い。
 あるいは、第2位相差P2の増減の周期は一定であって、光軸AXからの距離rに対して変化しなくても良い。
 なお、眼内レンズ10の入射面11および基準面13の形状は、球面ではなく楕円面、偏球面、双曲面または放物面等のいわゆる非球面であってもよく、さらに凹面または凸面のいずれであっても良く、または平面であっても良い。
 また、上記の凹凸形状は、射出面12ではなく、入射面11に形成されていても良く、入射面11と射出面12の両方に形成されていても良い。
 眼内レンズ10は、例えば、アクリル樹脂材料(例えばアクリレートとメタクリレートとの共重合体)、ハイドロゲル、またはシリコーンからなる。また、眼科用レンズ(例、眼内レンズ10)は、折り畳み可能な柔軟な材料(例、アクリル樹脂材料、シリコーン)で構成される軟性レンズであってもよく、硬質の材料からなるレンズであっても良い。
 眼内レンズ10を構成する材料の屈折率は、上述の1.494に限らず、他の値であっても良い。
 なお、瞳径が3mmの場合において、第1位相差P1と第2位相差P2による多重焦点効果と、第1位相差P1による焦点深度拡大効果とを共に得るためには、3mmの瞳径の内側に、第1領域Z1と第2領域とが適度な面積比で存在している必要がある。
 このために、第1領域Z1と第2領域Z2との境界BLでの光軸AXからの距離r1は0.4mm以上、かつ0.8mm以下としても良い。距離r1が0.4mmより小さいと第1領域Z1の面積小さくなり、十分な焦点深度拡大効果を得ることができない場合がある。一方、距離r1が0.8mmより大きくなると第2領域Z2の面積が小さくなり、十分な多重焦点効果を得ることができない場合がある。
 以上の第1実施形態および各変形例の眼内レンズ10においては、射出面12の高さH(位相差P1、P2)は光軸AXから距離rに応じて決まる、すなわち光軸AXに対して回転対称な形状を有するものとしている。しかし、角膜30の形状に起因する乱視の補正等のために、位相差P1、P2は必ずしも光軸AXに対して回転対称でなくても良い。
 例えば、位相差P1、P2は、光軸AXに対して2回対称な形状であっても良く、3回対称な形状であっても良い。この場合に、式(1)、式(2)に従って、位相差P1、P2を決定するには、例えば、式(1)、式(2)中のrの値を、式(6)に示すr’で置き換えて高さP2を決定すれば良い。
   r’=r×{1+g・sin(2θ-φ)} ・・・(6)
 ここで、gは、0以上かつ0.5以下程度の定数であり、θは上述のとおり射出面12上の任意の1点Qの方位角であり、φは任意の初期位相である。
 以上の第1実施形態および各変形例においては、第1領域Z1が透過光に付加する第1位相差P1は、光軸からの距離rに応じて単調に減少するものとした。しかし、位相差P1は光軸からの距離rに応じて、単調に増加するものであっても良い。
 例えば、図3(a)等に示した位相差P1、P2は、その符号を反転させたもの(縦軸方向に反転させたもの)であっても良い。
 なお、その場合には、第1領域Z1と第2領域Z2の境界BLは、光軸からの距離rに応じて単調に増加する位相差P1、P2が、第1の極大値をとる位置となる。
 また、第1実施形態および各変形例においては、第1位相差P1と第2位相差P2とは、境界BLにおいて連続であるものとした。しかし、第1位相差P1と第2位相差P2とは、境界BLにおいて不連続に変化しても良い。
 ただし、第1位相差P1と第2位相差P2とが境界BLにおいて連続であることにより、位相差の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼内レンズ10を実現することができる。
 また、第1実施形態および各変形例においては、第1領域Z1が透過光に付加する第1位相差P1は、光軸からの距離rに応じて連続的に変化するものとした。しかし、位相差P1は光軸からの距離rに応じて、離散的に変化しても良い。
 ただし、第1位相差P1が距離rに応じて連続的に変化することにより、位相差の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼内レンズ10を実現することができる。
 また、第1実施形態および各変形例のいずれにおいても、第1領域Z1と第2領域Z2との境界BLにおいて、位相差P1、P2が連続であるだけでなく、滑らかに連続していても良い。この場合、境界BL付近での位相差の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼内レンズ10を実現することができる。
 なお、上述の第1実施形態、および各変形例では、眼内レンズ10の入射面11または射出面12の高さHを変化させることで位相差P1、P2を付加するものとしているが、位相差P1、P2を付加する方法は、この方法に限られるわけではない。
 例えば、眼内レンズ10が複数枚のレンズから成る場合、それらのレンズが対向する内部の面の形状(高さ)を変化させることで位相差を付加しても良い。
 あるいは、眼内レンズ10の第1領域Z1、第2領域Z2に、その屈折率が光軸AXからの距離rに対して変化する屈折率変動部を設けることによっても、上記の位相差を付加することができる。すなわち、例えば眼内レンズ10を、光軸AXを中心とする同心円状に屈折率が変化する材質(例、シリコーン、アクリル樹脂など)を用いて形成することができる。
 なお、上述のシミュレーションにおいて参照した上述の文献のTable36-16に開示される水晶体の形状および屈折率は、標準的な一例に過ぎないので、その屈折力は個人差のある実際の眼内レンズ10の屈折力とは厳密には異なるのが一般的である。
 そこで、Navarroモデルを使用するシミュレーションに際しては、結像点34(焦点)がNavarroモデルの網膜33に一致するように、眼内レンズ10厚さや、入射面11および基準面13の曲率半径を適宜変更してシミュレーションを行えば良い。
 逆に言えば、上記のシミュレーション手法を用いて、任意の眼内レンズが、上記の第1実施形態または各変形例の眼内レンズ10の1つに該当するか否かを判断することもできる。すなわち、その眼内レンズの屈折率および形状を、Navarroモデルに数値的に装着し、その眼内レンズの入射面11や基準面13の曲率半径を適宜変更して、結像点34(焦点)をNavarroモデルの網膜33上に一致させる。その条件下において、第1領域Z1、および第2領域Z2を通過する各光線が有する位相差P1、P2が上記の位相差になっているか否かにより判断することができる。
 以上の本実施形態における眼科用レンズは、水晶体の代わりに眼球100内に装填される眼内レンズ10(IOL)に限らず、虹彩36と水晶体の間に装填されるインプランタブルコンタクトレンズ(IPL)であっても良い。また、眼内レンズが装着された眼球100に対して、補正用に追加で装填されるいわゆるピギーバッグ用の眼内レンズであっても良い。あるいは、角膜内に装填する角膜インレーまたは角膜アンレーであっても良い。
 あるいは、眼科用レンズは、角膜30の外側に装着されるコンタクトレンズであっても良い。この場合、ユーザは、本実施形態に記載の構成を備えるコンタクトレンズと既存の眼内レンズ(例、単焦点型のIOL)とを眼に装着して組み合わせて使用することが可能である。また、眼科用レンズは、偽水晶体及び有水晶体の両方の用途について使用できるIOL等の様々な視力矯正用途に使用できる。
 さらには、眼科用レンズは、眼球から離れて装着される眼鏡レンズであっても良い。
(第1実施形態および各変形例の効果)
(1)以上の第1実施形態および各変形例の眼科用レンズ(眼内レンズ)10は、眼球内または眼球近傍に装着される眼科用レンズ10において、眼球に装着された状態で、光を透過して網膜33上に像を形成せしめる第1領域Z1および第2領域Z2を備える。そして、第1領域は、眼科用レンズ10の光軸AXと交差するとともに、第1領域Z1を通る光線に対し、眼科用レンズ10の光軸AXからの距離rに応じて単調増加または単調減少する第1位相差P1を付加し、第2領域Z2は、第1領域Z1よりも光軸AXから離れた位置にあり、第2領域Z2を通る光線に対し、光軸AXからの距離rに応じて増減し、かつ連続して変化する第2位相差P2を付加し、第1位相差P1および第2位相差P2は、光軸AXからの距離rに応じて合わせて8回以上増減する。
 この構成により、第1領域Z1および第2領域Z2を透過した光線に適切な多重焦点効果を付加することができ、焦点深度が増大された眼科用レンズ10を実現することができる。
(2)第1位相差P1および第2位相差P2が、光軸AXからの距離rが1.5mmまでの範囲において、光軸AXからの距離rに応じて合わせて2回以上増減する構成とすることにより、第1領域Z1および第2領域Z2を透過した光線にさらに適切な多重焦点効果を付加することができる。
(3)第1位相差P1と第2位相差P2とが、第1領域Z1と第2領域Z2との境界BLにおいて連続であり、かつ境界BLにおいて極小値または極大値をとる、構成とすることにより、位相差の急激な変化により発生する散乱光を低減し、よりクリアの視界を提供する眼内レンズ10を実現することができる。
(4)光軸AXから境界BLまでの距離を0.4mm以上、かつ0.8mm以下とすることで、第1位相差P1と第2位相差P2による多重焦点効果と、第1位相差P1による焦点深度拡大効果とを、ともにバランスよく発揮させることができる。
(5)第1領域Z1は、第1領域Z1の少なくとも一部を通る光線に対し、第2領域Z2を通る光線に比べて2 [rad]以上の位相差を付加する構成とすることで、第2領域Z2を透過した光線による多重焦点効果と、第1領域Z1を透過した光線による焦点深度拡大効果とが相俟って、焦点深度を一層増大することができる。
(眼科用レンズの製造方法)
 次に、上記した本実施形態の眼科用レンズ10の製造方法について説明する。眼科用レンズ10の製造方法は、上述の第1実施形態および各変形例に記載した眼科用レンズの製造方法であって、眼科用レンズのレンズ形状を示す設計データを用いて該眼科用レンズを加工装置(例、金型加工装置、切削装置、研磨装置など)によって製造する加工工程を備える。そして、眼科用レンズの製造方法は、上記レンズ形状を設計して上記設計データを生成する設計工程を備える。ここで、上記の設計データは、上記した位相差P1、P2などの情報(例、設計条件)をレンズの形状(面の形状)や屈折率分布へ変換して生成できる。
 また、本実施形態の眼科用レンズを複数備えてレンズセットを提供することもできる。この場合、レンズセットは、本実施形態の眼科用レンズの焦点深度や焦点の数(例、2、3焦点などの多焦点)が異なる複数の眼科用レンズを備える構成である。
 本発明は以上の内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。本実施形態は、上記した態様の全て又は一部を組み合わせても良い。
10:眼科用レンズ(眼内レンズ)、100:眼球、11:入射面、12:射出面、13:基準面、AX:光軸、r:光軸からの距離、Z1;第1領域、Z2;第2領域、BL:境界、P1:第1位相差:P2:第2位相差、W1:第1変動幅、W2:第2変動幅、30:角膜、31:前房、32:硝子体、33:網膜、35:黄斑、36:虹彩
 

Claims (24)

  1.  眼球内または眼球近傍に装着される眼科用レンズにおいて、
     眼球に装着された状態で、光を透過して網膜上に像を形成せしめる第1領域および第2領域を備え、
     前記第1領域は、前記眼科用レンズの光軸と交差するとともに、前記第1領域を通る光線に対し、前記眼科用レンズの光軸からの距離に応じて単調増加または単調減少する第1位相差を付加し、
     前記第2領域は、前記第1領域よりも前記光軸から離れた位置にあり、前記第2領域を通る光線に対し、前記光軸からの距離に応じて増減し、かつ連続して変化する第2位相差を付加し、
     前記第1位相差および前記第2位相差は、前記光軸からの距離に応じて合わせて8回以上増減する、眼科用レンズ。
  2.  請求項1に記載の眼科用レンズにおいて、
     前記第1位相差および前記第2位相差は、前記光軸からの距離が1.5mmまでの範囲において、前記光軸からの距離に応じて合わせて2回以上増減する、眼科用レンズ。
  3.  請求項1または請求項2に記載の眼科用レンズにおいて、
     前記第1位相差と前記第2位相差とは、前記第1領域と前記第2領域との境界において連続であり、かつ前記境界において極小値または極大値をとる、眼科用レンズ。
  4.  請求項3に記載の眼科用レンズにおいて、
     前記光軸から前記境界までの距離が0.4mm以上、かつ0.8mm以下である、眼科用レンズ。
  5.  請求項1から請求項4までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2領域の各部における前記第2位相差の前記増減の周期は、前記光軸からの距離に応じて異なる、眼科用レンズ。
  6.  請求項1から請求項5までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2領域の各部における前記第2位相差の前記増減の周期は、前記光軸からの距離に応じて単調増加、または単調減少する、眼科用レンズ。
  7.  請求項1から請求項5までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2領域の各部における前記第2位相差の前記増減の周期は、前記光軸からの距離に略反比例する、眼科用レンズ。
  8.  請求項1から請求項7までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1領域は、前記第1領域の少なくとも一部を通る光線に対し、前記第2領域を通る光線に比べて2 [rad]以上の位相差を付加する、眼科用レンズ。
  9.  請求項1から請求項8までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差の前記増減の変動幅は、前記光軸からの距離が1mmから1.5mmの範囲において、1.5[rad]以上、かつ3.5[rad]以下である、眼科用レンズ。
  10.  請求項1から請求項9までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差は、前記光軸からの距離に対するガウス関数で表される成分を含む、眼科用レンズ。
  11.  請求項1から請求項9までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差は、前記光軸からの距離に対するsinc関数に基づく関数で表される成分を含む、眼科用レンズ。
  12.  請求項1から請求項11までのいずれか一項に記載の眼科用レンズにおいて、
     前記第2位相差は、前記光軸からの距離r、任意の定数a、任意の定数b、および-0.5以上、かつ0.5以下の実数βを用いて、cos{ar(2+β)-b}で表される成分を含む、眼科用レンズ。
  13.  請求項12に記載の眼科用レンズにおいて、
     前記第2位相差は、cos{3ar(2+β)-3b}で表される成分を含む、眼科用レンズ。
  14.  請求項1から請求項13までの何れか一項に記載の眼科用レンズにおいて、
     前記第1位相差および前記第2位相差は、前記光軸からの距離に応じて合わせて11回以上増減する、眼科用レンズ。
  15.  請求項1から請求項14までの何れか一項に記載の眼科用レンズにおいて、
     前記第2領域は、前記第2領域を通る光束を少なくとも2つの光束に波面分割し、
     前記2つの光束の間に1ディオプトリ以上の加入度を付加する、眼科用レンズ。
  16.  請求項1から請求項15までの何れか一項に記載の眼科用レンズにおいて、
     前記第2領域が付加する前記第2位相差は、前記光軸からの距離が1.5mm以上3mm以下の範囲において7回以上増減する、眼科用レンズ。
  17.  請求項1から請求項16までの何れか一項に記載の眼科用レンズにおいて、
     前記光線に前記第1位相差および前記第2位相差を付加する凹凸形状を有する面を備える、眼科用レンズ。
  18.  請求項1から請求項17までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差および前記第2位相差は、前記光軸に対して回転対称である、眼科用レンズ。
  19.  請求項1から請求項17までのいずれか一項に記載の眼科用レンズにおいて、
     前記第1位相差および前記第2位相差は、前記光軸に対して2回以上の複数回対称である、眼科用レンズ。
  20.  請求項1から請求項19までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、水晶体の代わりに眼球内に装填される眼内レンズである、眼科用レンズ。
  21.  請求項1から請求項19までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、虹彩と水晶体の間に装填されるインプランタブルコンタクトレンズである、眼科用レンズ。
  22.  請求項1から請求項19までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、角膜内に装填する角膜インレーまたは角膜アンレーである、眼科用レンズ。
  23.  請求項1から請求項19までのいずれか一項に記載の眼科用レンズにおいて、
     前記眼科用レンズは、角膜に接触するコンタクトレンズである、眼科用レンズ。
  24.  眼科用レンズの製造方法であって、
     請求項1から請求項23までのいずれか一項に記載の眼科用レンズを加工装置によって製造する、眼科用レンズの製造方法。
PCT/JP2019/013802 2019-03-28 2019-03-28 眼科用レンズ及び眼科用レンズの製造方法 WO2020194712A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013802 WO2020194712A1 (ja) 2019-03-28 2019-03-28 眼科用レンズ及び眼科用レンズの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013802 WO2020194712A1 (ja) 2019-03-28 2019-03-28 眼科用レンズ及び眼科用レンズの製造方法

Publications (1)

Publication Number Publication Date
WO2020194712A1 true WO2020194712A1 (ja) 2020-10-01

Family

ID=72611197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013802 WO2020194712A1 (ja) 2019-03-28 2019-03-28 眼科用レンズ及び眼科用レンズの製造方法

Country Status (1)

Country Link
WO (1) WO2020194712A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268158A1 (en) * 2008-04-24 2009-10-29 Amo Regional Holdings Diffractive Multifocal Lens Having Radially Varying Light Distribution
JP2010134282A (ja) * 2008-12-05 2010-06-17 Hoya Corp 回折型多焦点レンズ
JP2012512709A (ja) * 2008-12-18 2012-06-07 アルコン,インコーポレイティド 拡張された焦点深度を有する眼内レンズ
WO2013118177A1 (ja) * 2012-02-09 2013-08-15 株式会社メニコン 回折型多焦点眼用レンズとその製造方法
JP2016150213A (ja) * 2015-02-19 2016-08-22 株式会社ニデック 多焦点眼内レンズ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268158A1 (en) * 2008-04-24 2009-10-29 Amo Regional Holdings Diffractive Multifocal Lens Having Radially Varying Light Distribution
JP2010134282A (ja) * 2008-12-05 2010-06-17 Hoya Corp 回折型多焦点レンズ
JP2012512709A (ja) * 2008-12-18 2012-06-07 アルコン,インコーポレイティド 拡張された焦点深度を有する眼内レンズ
WO2013118177A1 (ja) * 2012-02-09 2013-08-15 株式会社メニコン 回折型多焦点眼用レンズとその製造方法
JP2016150213A (ja) * 2015-02-19 2016-08-22 株式会社ニデック 多焦点眼内レンズ

Similar Documents

Publication Publication Date Title
RU2383312C2 (ru) Аподизированные асферические дифракционные линзы
USRE47006E1 (en) Lens for optical treatment
US9101466B2 (en) Intraocular lens with extended depth of focus
CN102892380B (zh) 单微结构镜片、***和方法
JP4926068B2 (ja) 複数の位相板を有する眼用レンズ
JP2013514833A5 (ja)
JP2013515284A5 (ja)
WO1992006400A1 (en) Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
CN108013952A (zh) 用于扩展焦深的多环晶状体、***和方法
KR20170056675A (ko) 연장된 피사계 심도를 갖는 다초점 안구내 렌즈
US10792147B2 (en) Ophthalmic lens and method of manufacturing ophthalmic lens
US20220287826A1 (en) Intraocular lens providing extended depth of focus
WO2020194712A1 (ja) 眼科用レンズ及び眼科用レンズの製造方法
WO2021111821A1 (ja) 眼内レンズ
WO2020194713A1 (ja) 眼科用レンズ及び眼科用レンズの製造方法
CN109789013B (zh) 用于制造眼内眼科透镜的方法以及通过实现该方法获得的眼科透镜
ES2895799B2 (es) Lente oftálmica refracto-difractiva con profundidad de foco extendida
EP4174535A1 (en) Intraocular lens
Fernández Gutiérrez et al. Refractive multifocal intraocular lens with optimised optical quality in a range of focus and method to produce it
Petermann et al. Optical Principles
WO2024121218A1 (en) A pair of spectacle lenses comprising a first optical lens intended to be worn in front of a first eye of a wearer and a second optical lens intended to be worn in front of a second eye of the wearer
WO2024144489A1 (en) A quadrifocal diffractive ocular lens
CN116747048A (zh) 一种人工晶状体
CN113873968A (zh) 高清晰度和扩展景深人工晶状体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP