WO2020192632A1 - 小区连接失败的处理方法、终端设备和网络侧设备 - Google Patents

小区连接失败的处理方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2020192632A1
WO2020192632A1 PCT/CN2020/080692 CN2020080692W WO2020192632A1 WO 2020192632 A1 WO2020192632 A1 WO 2020192632A1 CN 2020080692 W CN2020080692 W CN 2020080692W WO 2020192632 A1 WO2020192632 A1 WO 2020192632A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
target serving
connection
cell
uplink transmission
Prior art date
Application number
PCT/CN2020/080692
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021556951A priority Critical patent/JP7250162B2/ja
Priority to EP20779231.8A priority patent/EP3952441A4/en
Priority to BR112021019100A priority patent/BR112021019100A2/pt
Publication of WO2020192632A1 publication Critical patent/WO2020192632A1/zh
Priority to US17/482,890 priority patent/US20220015175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present disclosure relates to the field of communications, and in particular to a method for processing cell connection failure, terminal equipment and network side equipment.
  • the unlicensed frequency band is a shared frequency band. If the unlicensed frequency band is to be used to send data, the data sender needs to meet the unlicensed frequency band usage rules , That is, the sender needs to monitor whether the unlicensed frequency band is occupied (or in an idle state) before sending data.
  • the sender can use the unlicensed frequency band to send data; if the unlicensed frequency band is occupied (or in a busy state), that is, the sender listens before sending (Listen- Before-Talk, LBT) fails, the sender cannot use the unlicensed frequency band to send data, that is, the sender fails to connect to the cell, which will affect the reliability of data transmission.
  • LBT Listen- Before-Talk
  • the purpose of the embodiments of the present disclosure is to provide a method for processing cell connection failure, terminal equipment, and network side equipment, so as to realize accurate detection of cell connection failure and appropriately handle the case of cell connection failure.
  • embodiments of the present disclosure provide a method for processing cell connection failure, which is applied to terminal equipment, and the method includes:
  • connection failure processing is performed according to related information of the serving cell, where the related information includes at least one of the number of cells and the cell type.
  • embodiments of the present disclosure provide a method for processing cell connection failure, which is applied to a network side device, and the method includes:
  • Configure configuration information related to uplink transmission where the configuration information includes at least one of connection failure detection information and connection failure recovery information;
  • the configuration information is sent to the terminal device, so that the terminal device determines whether the connection with the target serving cell fails based on the configuration information, and makes the terminal device fail to connect to the target serving cell according to Connection failure processing is performed on related information of the serving cell, where the related information includes at least one of the number of cells and the cell type.
  • embodiments of the present disclosure provide a terminal device, and the terminal device includes:
  • the determining module is used to determine whether the connection with the target serving cell fails
  • the processing module is configured to perform connection failure processing according to related information of the serving cell when the connection with the target serving cell fails, wherein the related information includes at least one of the number of cells and the cell type.
  • embodiments of the present disclosure provide a terminal device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is implemented when the processor is executed The steps of the method as described in the first aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium having a program stored on the computer-readable storage medium, and when the program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • embodiments of the present disclosure provide a network-side device, where the network-side device includes:
  • a configuration module configured to configure configuration information related to uplink transmission, where the configuration information includes at least one of connection failure detection information and connection failure recovery information;
  • the sending module is configured to send the configuration information to the terminal device, so that the terminal device can determine whether the connection with the target serving cell fails based on the configuration information, and cause the terminal device to fail to connect to the target serving cell In the case of, perform connection failure processing according to related information of the serving cell, where the related information includes at least one of the number of cells and the cell type.
  • embodiments of the present disclosure provide a network-side device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor. When the program is executed by the processor, Implement the steps of the method described in the second aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium, wherein a program is stored on the computer-readable storage medium, and when the program is executed by a processor, the steps of the method described in the second aspect are implemented .
  • connection failure processing is performed according to the relevant information of the serving cell. Specifically, it can be handled according to the service At least one of the number of cells and the cell type of the cell performs connection failure processing. In this way, by realizing the accurate detection of cell connection failure, and determining the appropriate connection failure handling method based on the specific relevant information of the serving cell for the case of the cell connection failure, timely and effective processing can be carried out according to the connection failure handling method.
  • the self-recovery of cell connection improves the reliability of data transmission.
  • FIG. 1 is a schematic flowchart of a method for processing cell connection failure in an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a time window in an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another time window in an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a second method for processing cell connection failure in an embodiment of the present disclosure
  • Figure 5 is a schematic structural diagram of a terminal device in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network side device in an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a second type of terminal device in an embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a second network-side device in an embodiment of the present disclosure.
  • Connection failures mainly include the following: (1) Handover failure, for example, the handover is not completed within a specified time, for example, the timer t304 expires; (2) Secondary Cell Group (SCG) change (change) failure For example, access to a new SCG is not completed within a specified time, for example, timer t307 expires; (3) Radio Link Failure (RLF).
  • Handover failure for example, the handover is not completed within a specified time, for example, the timer t304 expires
  • SCG Secondary Cell Group
  • change change
  • RLF Radio Link Failure
  • the UE starts the timer when it receives the handover command or the SCG change command, and when the random access process of the cell is completed, the UE stops the timer.
  • the wireless link connection failure mainly includes: (1) Physical layer failure, such as timer t310 timeout; (2) Medium Access Control (MAC) layer random access failure, such as reaching the maximum random access Number of attempts; (3) An indication of the maximum number of retransmissions at the Radio Link Control (RLC) layer, such as reaching the maximum number of retransmissions at the RLC layer; (3) Beam failure, such as failure of the beam recovery process.
  • Physical layer failure such as timer t310 timeout
  • MAC Medium Access Control
  • RLC Radio Link Control
  • Beam failure such as failure of the beam recovery process.
  • the connection re-establishment process needs to be triggered when the connection fails in the related technology.
  • the UE will perform cell selection The specific process is to scan all frequency points for cell selection, and after finding a suitable cell, the UE initiates a connection re-establishment process in that cell. For other connection failures, no solution was given.
  • the unlicensed frequency band is a shared frequency band
  • the UE when the UE performs uplink transmission in the unlicensed frequency band, if the uplink data cannot be sent out, the connection of the UE will not work. Therefore, there is a need for a solution that can accurately detect the connection failure of the cell and deal with the connection failure of the cell, so as to recover the connection by itself and improve the reliability of data transmission.
  • an embodiment of the present disclosure provides a method for processing cell connection failure, which is applied to terminal equipment.
  • the method includes:
  • S101 Determine whether the connection with the target serving cell fails.
  • the terminal device can detect whether the connection with the target serving cell fails according to the configuration of the network side device or the specific conditions agreed in the protocol.
  • the number of target serving cells may be one or more, and may be at least one of a primary cell, a primary secondary cell, and a secondary cell.
  • S103 In the case of a connection failure with the target serving cell, perform connection failure processing according to related information of the serving cell, where the related information includes at least one of the number of cells and the cell type.
  • connection failure processing is performed according to the relevant information of the serving cell. Specifically, it can be handled according to the service At least one of the number of cells and the cell type of the cell performs connection failure processing. In this way, by realizing the accurate detection of cell connection failure, and determining the appropriate connection failure handling method based on the specific relevant information of the serving cell for the case of the cell connection failure, timely and effective processing can be carried out according to the connection failure handling method.
  • the self-recovery of cell connection improves the reliability of data transmission.
  • connection failure processing in order to realize the self-recovery of the connection, which can improve the reliability of data transmission.
  • the foregoing determination of the failure of the connection with the target serving cell may include the failure of the connection of one or more frequency points corresponding to the target serving cell.
  • the above-mentioned related information of the serving cell includes but is not limited to at least one of the number of cells and the cell type.
  • the above step S101 can be implemented in different specific embodiments to ensure accurate detection of cell connection failure through diversified detection schemes.
  • step S101 may be specifically executed as the following content:
  • the number of uplink transmission failures on the target serving cell within a time window can be counted, that is, the number of uplink transmissions that have occurred on the target serving cell within the first preset time window
  • the failure situation is counted, and based on the quantitative statistical result of the number of uplink transmission failures within the first preset time window, the detection of whether the connection with the target serving cell fails is realized, which is efficient and accurate.
  • the foregoing technical solution for determining whether the connection with the target serving cell fails according to the number of uplink transmission failures can be specifically implemented as follows on the one hand:
  • the failure number threshold If the number of uplink transmission failures is greater than or equal to the failure number threshold, it is determined that the connection with the target serving cell has failed.
  • the number of uplink transmission failures counted in the first preset time window is directly compared with the failure number threshold, and when it is detected that the number of uplink transmission failures reaches or exceeds the failure threshold, the target is determined
  • the serving cell connection fails; the threshold of the number of failures can be a value configured by the network side device or a value agreed upon by the protocol.
  • the number of failed uplink transmissions is the total number of consecutive failed uplink transmissions.
  • the counted number of uplink transmission failures on the target serving cell can optionally be determined as the total number of consecutive failed uplink transmissions on the target serving cell within the first preset time window; that is, When the uplink transmission failure occurs concentratedly within the first preset time window, it will be used as a valid statistical result of the number of uplink transmission failures within the first preset time window. In this way, it is helpful to improve the reliability and stability of the detection result of determining whether the connection with the target serving cell fails based on the number of uplink transmission failures.
  • the length of the first preset time window is the length of time from time t1 to time t2.
  • the length of the first preset time window can be set to 100 ms according to the network side device configuration or protocol agreement.
  • the number of uplink transmission failures of the target serving cell can be counted from time t1 to time t2.
  • the number of uplink transmission failures is the total number of continuous uplink transmission failures on the target serving cell counted from time t1 to time t2.
  • the counted number of uplink transmission failures is 8 and the failure threshold is 6, it can be determined that the connection with the target serving cell fails within the time window.
  • the number of uplink transmission failures 8 may be the total number of uplink transmissions performed on the target serving cell for 8 consecutive times and each uplink transmission failed within the time window.
  • the foregoing technical solution for determining whether the connection with the target serving cell fails according to the number of uplink transmission failures can also be specifically implemented as the following content:
  • the uplink transmission failure probability is greater than or equal to the failure probability threshold, it is determined that the connection with the target serving cell fails.
  • the uplink transmission failure probability in the first preset time window can be determined based on the number of uplink failures counted in the first preset time window, and then the uplink transmission failure probability can be compared with the failure probability threshold, and the uplink transmission failure probability can be compared with the failure probability threshold.
  • the transmission failure probability reaches or exceeds the failure probability threshold, it is determined that the connection with the target serving cell fails; where the failure probability threshold can be a value configured by the network side device or a value agreed by the protocol.
  • the counted number of uplink transmission failures on the target serving cell is 9, and the total number of uplink transmissions on the target serving cell is 10, then It can be determined that the uplink transmission failure probability within the time window is 90%, and when the failure probability threshold is 80%, it can be determined that the connection with the target serving cell fails within the time window.
  • the failure probability threshold can be taken as 100%.
  • Step S101 is specifically executed as follows:
  • the uplink transmission failure timer expires, it is determined that the connection with the target serving cell fails.
  • the first preset state on the target serving cell that is, whenever the uplink transmission state on the target serving cell is the first preset state, the first count value is increased by 1, for example, the first count value can be passed through A counter counts the number of occurrences of the first preset state.
  • the quantitative statistical result of the first preset state on the target serving cell can be compared with the first count threshold, and when it is detected that the current first count value reaches or If the first counting threshold is exceeded, it is directly determined that the connection with the target serving cell fails.
  • the following content may also be included:
  • the first count value is reset, and when the uplink transmission status on the target serving cell is the first preset state, the first count value is added 1.
  • the corresponding first count value is increased by 1, and whenever the target serving cell is detected
  • the first count value of the previous statistics is reset to the initial value (such as 0)
  • the first count value of the previous statistics is reset to the initial value (such as 0)
  • Re-calculate the first count value This loop repeats until it is determined that the first count value reaches or exceeds the first count threshold, that is, to realize the quantitative result statistics that the uplink transmission state on the target serving cell is continuously in the first preset state.
  • the second count value is greater than If it is equal to the second count threshold value, at least one operation of resetting the first count value and stopping the uplink transmission failure timer is performed.
  • the situation that the transmission status on the target serving cell is the second preset state is quantitatively counted, that is, whenever the uplink transmission status on the target serving cell is the second preset state In the state, the second count value is increased by 1, for example, the second counter can be used to count the number of occurrences of the second preset state.
  • the quantitative statistical result of the second preset state on the target serving cell that is, the second count value
  • the operation of resetting the first count value and/or the operation of stopping the uplink transmission failure timer is performed, that is, it can be determined that the connection with the target serving cell has not failed at this time.
  • the foregoing second count value is the total number of consecutive second preset states in the uplink transmission state on the target serving cell.
  • the corresponding second count value is increased by 1, and whenever the target is detected
  • the uplink transmission status on the serving cell is the first preset state
  • the previously counted second count value is reset to the initial value (such as 0)
  • the uplink transmission status on the target serving cell is the second preset again In the state, re-calculate the second count value.
  • This cycle repeats until it is determined that the second count value reaches or exceeds the second count threshold, that is, during the operation of the above uplink transmission failure timer, it is realized that the uplink transmission status on the target serving cell continues to be the second predetermined Set the quantitative result statistics of the state.
  • the quantitative statistical result of the first preset state on the target serving cell can be compared with the first count threshold, and when it is detected that the current first count value reaches Or start the uplink transmission failure timer after exceeding the first counting threshold, wait for a period of time, and when the timing result of the uplink transmission timer expires, it is determined that the connection with the target serving cell fails.
  • the following content may also be included:
  • the first count value is reset, and when the uplink transmission status on the target serving cell is the first preset state, the first count value is added 1.
  • the corresponding first count value is increased by 1, and whenever the target serving cell is detected
  • the first count value of the previous statistics is reset to the initial value (such as 0)
  • the first count value of the previous statistics is reset to the initial value (such as 0)
  • Re-calculate the first count value This loop repeats until it is determined that the first count value reaches or exceeds the first count threshold, that is, to realize the quantitative result statistics that the uplink transmission state on the target serving cell is continuously in the first preset state.
  • the second count value is greater than If it is equal to the second count threshold value, at least one operation of resetting the first count value and stopping the uplink transmission failure timer is performed.
  • the situation that the transmission status on the target serving cell is the second preset state is quantitatively counted, that is, whenever the uplink transmission status on the target serving cell is the second preset state In the state, the second count value is increased by 1, for example, the second counter can be used to count the number of occurrences of the second preset state.
  • the quantitative statistical result of the second preset state on the target serving cell that is, the second count value
  • the operation of resetting the first count value and/or the operation of stopping the uplink transmission failure timer is performed, that is, it can be determined that the connection with the target serving cell has not failed at this time.
  • the foregoing second count value is the total number of consecutive second preset states in the uplink transmission state on the target serving cell.
  • the corresponding second count value is increased by 1, and whenever the target is detected
  • the uplink transmission status on the serving cell is the first preset state
  • the previously counted second count value is reset to the initial value (such as 0)
  • the uplink transmission status on the target serving cell is the second preset again In the state, re-calculate the second count value.
  • This cycle repeats until it is determined that the second count value reaches or exceeds the second count threshold, that is, during the operation of the above uplink transmission failure timer, it is realized that the uplink transmission status on the target serving cell continues to be the second predetermined Set the quantitative result statistics of the state.
  • the above-mentioned first counting threshold and the above-mentioned second counting threshold may be values configured by the network side device or values agreed upon by the protocol.
  • the above-mentioned first preset state and second preset state can be described by the specific situation of uplink transmission within a time window, that is, the uplink transmission status on the target serving cell is determined in each second time window. Make a judgment, and perform statistics on the multiple uplink transmission states respectively corresponding to the multiple second time windows, so as to determine whether the connection with the target serving cell fails based on the statistical result. In this way, through smooth statistics of multiple uplink transmission states corresponding to multiple time windows, the failure detection result can be made more reliable and accurate.
  • the first preset state includes at least one of the following: within the second preset time window, the number of failed uplink transmissions on the target serving cell satisfies the first condition, and within the second preset time window, the uplink transmission on the target serving cell The number of times is less than or equal to the threshold of the number of uplink transmissions;
  • the second preset state includes at least one of the following: within the second preset time window, the number of successful uplink transmissions on the target serving cell meets the second condition, and within the second preset time window, the uplink transmission on the target serving cell The number of times is less than or equal to the threshold of the number of uplink transmissions.
  • the uplink transmission status determined on the target serving cell within each second preset time window may be one of uplink transmission failure, uplink transmission success, and no uplink transmission.
  • the uplink transmission failure may refer to the number of uplink transmission failures on the target serving cell within a time window (ie, the second preset time window) meeting the first condition, for example, if the number of uplink transmission failures is greater than or equal to the corresponding number of times. Limit (such as 8 times), or if the uplink transmission failure probability determined based on the number of uplink transmission failures is greater than or equal to the corresponding probability threshold (such as 90% or 100%), then the uplink transmission within the time window can be considered The number of failures meets the first condition.
  • the successful uplink transmission may refer to the number of successful uplink transmissions on the target serving cell within a time window (ie, the second preset time window) meeting the second condition, for example, if the number of successful uplink transmissions is greater than or equal to the corresponding threshold (Such as 8 times), or if the uplink transmission success probability determined based on the number of successful uplink transmissions is greater than or equal to the corresponding probability threshold (such as 90% or 100%), then the number of successful uplink transmissions in the time window can be considered Meet the second condition.
  • No uplink transmission can mean that within a time window (ie, the second preset time window), the number of uplink transmissions on the target serving cell is less than or equal to the threshold of the number of uplink transmissions (for example, 4 times).
  • threshold values may be values configured by the network side device or values agreed upon by the protocol.
  • two second preset time windows are included, where the length of the first second preset time window is the length of time from time t1 to time t2 and the second second preset time window Suppose the length of the time window is the length of time from time t2 to time t3.
  • the length of the second preset time window can be set to 10ms according to the network configuration or protocol agreement, that is, the length of time from time t1 to time t2 is 10ms and the length of time from time t2 to time t3 is 10ms, then the number of uplink transmission failures, the number of successful uplink transmissions, and the number of uplink transmissions on the target serving cell between time t1 and time t2, and between time t2 and time t3 Make statistics.
  • the uplink transmission status corresponding to the second preset time window is uplink transmission failure; if there is a correspondence between time t1 and time t2 If the number of uplink transmissions counted within the time window meets the second condition, the uplink transmission status corresponding to the second preset time window is uplink transmission successful; and if the uplink transmissions are counted in the corresponding time window from time t2 to time t3 If the number of times does not reach the threshold of the number of uplink transmissions, the uplink transmission status corresponding to the second preset time window is no uplink transmission.
  • no uplink transmission can be classified as either the first preset state or the second preset state, that is, the first preset state includes at least one of uplink transmission failure and no uplink transmission; second The preset state includes at least one of successful uplink transmission and no uplink transmission.
  • the channel is occupied (or in a busy state), or it may not be successfully completed due to the limitation of the uplink transmission power of the terminal device itself.
  • Uplink transmission In the method for processing cell connection failure in the embodiments of the present disclosure, the main consideration is that the uplink transmission failure on the target serving cell is caused by channel occupation.
  • the uplink transmission failure on the target serving cell is caused by the channel being occupied.
  • it can include finding the transmission failure after the uplink signal transmission is performed, and then determining that the channel is occupied; on the other hand, it can also Including listening to whether the channel is occupied before sending the uplink signal (ie LBT), if the channel is detected to be occupied, the uplink signal is not sent and the uplink transmission failure is directly determined, that is, when the channel is occupied, determine The uplink transmission on the target serving cell failed.
  • the above step S103 can be implemented in different specific embodiments to ensure that an appropriate connection failure processing method can be determined in a timely and accurate manner.
  • connection failure processing based on the relevant information of the serving cell in conjunction with specific embodiments.
  • the above-mentioned step S103 may specifically include the following content:
  • connection re-establishment process is triggered.
  • connection re-establishment process can be directly triggered to perform timely and effective connection failure handling, thereby realizing the self-connection of the cell. Recovery, improve the reliability of data transmission.
  • the above-mentioned step S103 may also specifically include one of the following:
  • the target serving cell is a cell in the primary cell group and the terminal device fails to connect with the cells in the primary cell group, or the target serving cell is the primary cell, trigger the connection re-establishment process;
  • the target serving cell is a cell in the secondary cell group and the terminal device fails to connect with the cells in the secondary cell group, or the target serving cell is the primary cell in the primary cell group, or the target serving cell is the primary and secondary cell in the secondary cell group If the cell, or the target serving cell is a secondary cell in the primary cell group, or the target serving cell is a secondary cell in the secondary cell group, report information related to the connection failure of the target serving cell.
  • the cell types of the serving cell of the terminal device can be diverse, and in the case of determining that the connection with the target serving cell fails, an appropriate connection failure handling method can be determined based on the specific cell type of the target serving cell to perform timely and Effective connection failure handling, so as to realize self-recovery of cell connection and improve the reliability of data transmission.
  • the terminal device when the terminal device works in the dual connectivity (Dual Connectivity, DC) mode, the terminal device will be configured with 2 cell groups, namely the master cell group (Master Cell Group, MCG) and the secondary cell group (Secondary Cell Group, SCG).
  • MCG includes at least primary cell (Primary Cell, PCell)
  • additional MCG may also include one or more secondary cells (Secondary Cell, SCell)
  • SCG includes at least primary and secondary cell (Primary Secondary Cell, PSCell)
  • additional The SCG may also include one or more secondary cells (Secondary Cell, SCell).
  • connection re-establishment process can be directly triggered for timely and effective connection failure handling , So as to realize the self-recovery of cell connection.
  • connection re-establishment process can be directly triggered to perform timely and effective connection failure handling, thereby realizing self-recovery of the cell connection.
  • the target serving cell is a cell in the secondary cell group and the terminal device fails to connect to all the cells in the secondary cell group, it can choose to report the information related to the connection failure of the target serving cell for the network side
  • the device makes configuration adjustments with reference to realize self-recovery of cell connections.
  • the information related to the connection failure of the target serving cell is reported through the secondary cell in the primary cell group.
  • the target serving cell is any cell in the primary cell group, that is, the primary cell in the primary cell group or any secondary cell in the primary cell group
  • the information related to the connection failure of the target serving cell can be reported through the secondary cell in the primary cell group or the secondary cell group; when the target serving cell is any secondary cell in the primary cell group When it is a cell, the information related to the connection failure of the target serving cell can be reported through other cells in the primary cell group or the secondary cell group that have not failed to connect.
  • the target serving cell is any cell in the secondary cell group, that is, the primary secondary cell in the secondary cell group or any secondary cell in the secondary cell group
  • the information can be used by the network side equipment to refer to the configuration adjustment, so as to realize the self-recovery of the cell connection.
  • the target serving cell is the primary and secondary cell
  • the information related to the connection failure of the target serving cell can be reported through the secondary cells in the primary cell group or the secondary cell group; when the target serving cell is any of the secondary cell groups
  • information related to the connection failure of the target serving cell can be reported through the primary cell group or other cells in the secondary cell group that have not failed to connect.
  • the terminal device needs to reselect the cell when the connection re-establishment process is triggered, which may specifically include the following contents:
  • the candidate frequency point does not include the frequency point corresponding to the target serving cell or the candidate frequency point does not include the frequency point corresponding to the target serving cell within the preset time period;
  • connection reconstruction process is triggered.
  • the determination can optionally be made within the frequency point range outside the frequency point corresponding to the target serving cell whose connection has failed.
  • the connection re-establishment can be carried out in a larger range of candidate frequency points, that is, the target serving cell can not be re-established in a specific time period (ie, a preset duration, such as 30 seconds).
  • the corresponding frequency points are used as candidate frequency points.
  • the value of the preset duration may be a value configured by the network side device or a value agreed upon by the protocol.
  • the method may further include:
  • the information related to the target serving cell connection failure reported to the network side device includes at least one of the following:
  • Channel measurement information includes at least one of a received signal strength indicator, a channel occupancy rate, and a channel busy rate.
  • the foregoing failure type indication information may include LBT failure indication information, and the foregoing channel measurement information is specifically measurement information related to channel busy.
  • the above-mentioned information related to the connection failure of the target serving cell includes but is not limited to at least one of the above-mentioned failure type indication information and channel measurement information
  • the channel measurement information includes but is not limited to the above-mentioned receiving At least one of the signal strength indicator (Received Signal Strength Indicator, RSSI), channel occupancy rate (Channel Occupancy Rate, CR), and channel busy rate (Channel Busy Ratio, CBR).
  • an embodiment of the present disclosure also provides a method for processing a cell connection failure, which is applied to a network side device. As shown in Figure 4, the method includes:
  • S201 Configure configuration information related to uplink transmission, where the configuration information includes at least one of connection failure detection information and connection failure recovery information.
  • S203 Send the configuration information to the terminal device for the terminal device to determine whether the connection with the target serving cell fails based on the configuration information, and make the terminal device fail to connect according to the relevant information of the serving cell in the case of the connection failure with the target serving cell Processing, wherein the related information includes at least one of the number of cells and the cell type.
  • the terminal device is configured with configuration information related to uplink transmission, so that the terminal device can determine whether the terminal device is related to the target serving cell based on the configuration information including at least one of the connection failure detection information and the connection failure recovery information. Detect connection failure, and when it is determined that the connection with the target serving cell fails, perform the corresponding connection failure handling according to the relevant information of the serving cell. Specifically, it can be connected according to at least one of the number of cells and the cell type of the serving cell Failure handling. In this way, by configuring the terminal device with configuration information related to uplink transmission, the terminal device can realize accurate detection of cell connection failure, and for the case of cell connection failure, determine an appropriate connection failure handling method based on the specific relevant information of the serving cell. According to the connection failure processing method, timely and effective processing is performed, so as to realize the self-recovery of the cell connection and improve the reliability of data transmission.
  • configuration information related to uplink transmission includes but is not limited to at least one of connection failure detection information and connection failure recovery information.
  • connection failure detection information includes but is not limited to at least one of the following:
  • the threshold of the number of failures which is used to compare the number of failed uplink transmissions
  • the failure probability threshold is used to compare with the uplink transmission failure probability determined based on the number of uplink transmission failures
  • the first count threshold value is used to compare the magnitude with the first count value whose uplink transmission state is the first preset state
  • the second count threshold value is used to compare the magnitude with the second count value whose uplink transmission state is the second preset state
  • the timing threshold of the uplink transmission failure timer is used for the terminal device to determine whether the uplink transmission failure timer expires.
  • connection failure detection information for the terminal device, the purpose of improving the efficiency and accuracy of the cell connection failure detection is achieved.
  • the terminal device can detect whether the cell connection fails according to the number of uplink transmission failures determined within the first preset time window. It can be determined that the number of uplink transmission failures is greater than or equal to the failure number threshold, or In a case where the uplink transmission failure probability determined based on the number of uplink transmission failures is greater than or equal to the failure probability threshold, it is determined that the connection with the target serving cell fails.
  • the terminal device can also detect whether the cell connection fails according to the statistics of the uplink transmission status on the target serving cell corresponding to each second preset time window, and can determine whether the first count of the first preset status is If the value is greater than or equal to the first count threshold, it is directly determined that the connection with the target serving cell fails, or it can be determined that the first count value of the first preset state is greater than or equal to the first count threshold and the uplink
  • the timing value of the transmission failure timer exceeds the timing threshold, it is determined that the connection with the target serving cell fails, and the occurrence of a second preset state that is different from the first preset state in the uplink transmission state statistics process can also be considered. Under the circumstances, a more accurate and stable cell connection failure detection is performed.
  • the first preset state includes at least one of the following: within the second preset time window, the number of uplink transmission failures on the target serving cell meets the first condition , And within the second preset time window, the number of uplink transmissions on the target serving cell is less than or equal to the threshold of the number of uplink transmissions;
  • the second preset state includes at least one of the following: within the second preset time window, the number of successful uplink transmissions on the target serving cell meets the second condition, and within the second preset time window, the uplink transmission on the target serving cell The number of times is less than or equal to the threshold of the number of uplink transmissions.
  • connection failure detection information further includes at least the threshold of the number of uplink transmissions.
  • connection failure recovery information includes but is not limited to:
  • the candidate frequency points used in the connection re-establishment process do not include the duration of the frequency points corresponding to the target serving cell.
  • connection failure recovery information for the terminal device, the efficiency of the cell connection re-establishment process can be improved, so that the terminal device can perform connection re-establishment within a larger range of candidate frequency points, that is, it can only be performed in a specific time period ( That is, within the preset time period, such as 30 seconds, the terminal device does not use the frequency point corresponding to the target serving cell as the candidate frequency point.
  • the cause of the uplink transmission failure may end after a period of time, for example, the channel occupied will end after a period of time, that is, the channel will return to the idle state, then it can be reused for uplink signal send.
  • the method for processing cell connection failure in the embodiment of the present disclosure may further include the following content:
  • Receive information related to the connection failure of the target serving cell where the information related to the connection failure of the target serving cell includes at least one of the following:
  • Channel measurement information includes at least one of a received signal strength indicator, a channel occupancy rate, and a channel busy rate.
  • the terminal device determines that the connection with the target serving cell fails, it receives information related to the target serving cell connection reported by the terminal device and makes reference to adjust the relevant configuration information in time to realize self-recovery of the cell connection.
  • the foregoing failure type indication information may include LBT failure indication information, and the foregoing channel measurement information is specifically measurement information related to channel busyness.
  • the above-mentioned information related to the connection failure of the target serving cell includes but is not limited to at least one of the above-mentioned failure type indication information and channel measurement information
  • the channel measurement information includes but is not limited to the above-mentioned receiving At least one of signal strength indicator, channel occupancy rate, and channel busy rate.
  • an embodiment of the present disclosure provides a terminal device, and the terminal device includes:
  • the determining module 301 is used to determine whether the connection with the target serving cell fails;
  • the processing module 303 is configured to perform connection failure processing according to related information of the serving cell when the connection with the target serving cell fails, where the related information includes at least one of the number of cells and the cell type.
  • the above determining module 301 may specifically include:
  • the first determining submodule is configured to determine the number of failed uplink transmissions on the target serving cell within a first preset time window
  • the second determining submodule is used to determine whether the connection with the target serving cell fails according to the number of uplink transmission failures.
  • the above-mentioned second determining submodule may be specifically used for:
  • the failure number threshold If the number of uplink transmission failures is greater than or equal to the failure number threshold, it is determined that the connection with the target serving cell has failed.
  • the above-mentioned second determining submodule may be specifically used for:
  • the uplink transmission failure probability is greater than or equal to the failure probability threshold, it is determined that the connection with the target serving cell fails.
  • the number of failed uplink transmissions is the total number of consecutive failed uplink transmissions.
  • the terminal device of the embodiment of the present disclosure may further include:
  • a control module configured to add 1 to the first count value if the uplink transmission state on the target serving cell is the first preset state
  • the above determining module 301 may be specifically used for:
  • the uplink transmission failure timer expires, it is determined that the connection with the target serving cell fails.
  • control module may also be used for:
  • the first count value is reset, and when the uplink transmission status on the target serving cell is the first preset state, the first count value is added 1.
  • the terminal device of the embodiment of the present disclosure may further include:
  • the execution module is configured to: after the first count value is greater than or equal to the first count threshold and before the uplink transmission failure timer expires, if the uplink transmission state on the target serving cell is the second preset state, the second count value is greater than If it is equal to the second count threshold value, at least one operation of resetting the first count value and stopping the uplink transmission failure timer is performed.
  • the foregoing second count value is the total number of consecutive second preset states in the uplink transmission state on the target serving cell.
  • the first preset state includes at least one of the following: within the second preset time window, the number of uplink transmission failures on the target serving cell satisfies the first condition, and 2. Within the preset time window, the number of uplink transmissions on the target serving cell is less than or equal to the threshold of the number of uplink transmissions; the second preset state includes at least one of the following: within the second preset time window, the uplink transmission on the target serving cell The number of successful transmissions meets the second condition, and within the second preset time window, the number of uplink transmissions on the target serving cell is less than or equal to the threshold of the number of uplink transmissions.
  • the uplink transmission failure on the target serving cell mentioned above is caused by the channel being occupied.
  • the above-mentioned processing module 303 may be specifically used for: when the related information is the number of cells:
  • connection re-establishment process is triggered.
  • the above-mentioned processing module 303 may be specifically configured to perform one of the following when the related information is a cell type:
  • the target serving cell is a cell in the primary cell group and the terminal device fails to connect with the cells in the primary cell group, or the target serving cell is the primary cell, trigger the connection re-establishment process;
  • the target serving cell is a cell in the secondary cell group and the terminal device fails to connect with the cells in the secondary cell group, or the target serving cell is the primary cell in the primary cell group, or the target serving cell is the primary and secondary cell in the secondary cell group If the cell, or the target serving cell is a secondary cell in the primary cell group, or the target serving cell is a secondary cell in the secondary cell group, report information related to the connection failure of the target serving cell.
  • the aforementioned processing module 303 may specifically include:
  • the third determining submodule is used to determine candidate frequency points, where the candidate frequency points do not include the frequency points corresponding to the target serving cell or the candidate frequency points do not include the frequency points corresponding to the target serving cell within a preset time period;
  • the processing sub-module is used to trigger the connection re-establishment process based on the candidate frequency point.
  • the above-mentioned processing module 303 may also be used to: during or after triggering the connection re-establishment process:
  • the foregoing information related to the connection failure of the target serving cell includes at least one of the following:
  • Channel measurement information includes at least one of a received signal strength indicator, a channel occupancy rate, and a channel busy rate.
  • the terminal device provided in the embodiments of the present disclosure can implement the aforementioned method for processing cell connection failure performed by the terminal device, and the relevant explanations about the method for processing cell connection failure are applicable to the terminal device and will not be repeated here.
  • connection failure processing is performed according to the relevant information of the serving cell. Specifically, it can be handled according to the service At least one of the number of cells and the cell type of the cell performs connection failure processing. In this way, by realizing the accurate detection of cell connection failure, and determining the appropriate connection failure handling method based on the specific relevant information of the serving cell for the case of the cell connection failure, timely and effective processing can be carried out according to the connection failure handling method.
  • the self-recovery of cell connection improves the reliability of data transmission.
  • an embodiment of the present disclosure provides a network side device, and the network side device includes:
  • the configuration module 401 is configured to configure configuration information related to uplink transmission, where the configuration information includes at least one of connection failure detection information and connection failure recovery information;
  • the sending module 403 is used to send the configuration information to the terminal device for the terminal device to determine whether the connection with the target serving cell fails based on the configuration information, and to make the terminal device fail to connect to the target serving cell according to the correlation of the serving cell
  • the information performs connection failure processing, where the related information includes at least one of the number of cells and the cell type.
  • connection failure detection information includes at least one of the following:
  • the threshold of the number of failures which is used to compare the number of failed uplink transmissions
  • the failure probability threshold is used to compare with the uplink transmission failure probability determined based on the number of uplink transmission failures
  • the duration of the second preset time window, the second preset time window is used to determine the uplink transmission status on the target serving cell;
  • the first count threshold is used to compare the uplink transmission status with the first count of the first preset state Value for size comparison;
  • the second count threshold is used to compare the magnitude with the second count value whose uplink transmission state is the second preset state
  • the timing threshold of the uplink transmission failure timer is used for the terminal device to determine whether the uplink transmission failure timer expires.
  • connection failure recovery information includes:
  • the candidate frequency points used in the connection re-establishment process do not include the duration of the frequency points corresponding to the target serving cell.
  • the network side device of the embodiment of the present disclosure may further include:
  • the receiving module is configured to receive information related to the connection failure of the target serving cell, wherein the information related to the connection failure of the target serving cell includes at least one of the following:
  • Channel measurement information includes at least one of a received signal strength indicator, a channel occupancy rate, and a channel busy rate.
  • the network-side device provided by the embodiments of the present disclosure can implement the aforementioned method for processing cell connection failure performed by the network-side device.
  • the relevant explanations about the method for processing cell connection failure are all applicable to the network-side device and will not be repeated here. Repeat.
  • the terminal device is configured with configuration information related to uplink transmission, so that the terminal device can determine whether the terminal device is related to the target serving cell based on the configuration information including at least one of the connection failure detection information and the connection failure recovery information. Detect connection failure, and when it is determined that the connection with the target serving cell fails, perform the corresponding connection failure handling according to the relevant information of the serving cell. Specifically, it can be connected according to at least one of the number of cells and the cell type of the serving cell Failure handling. In this way, by configuring the terminal equipment with configuration information related to uplink transmission, the terminal equipment can achieve accurate detection of cell connection failure, and for the case of cell connection failure, determine an appropriate connection failure handling method based on the specific relevant information of the serving cell. According to the connection failure processing method, timely and effective processing is performed, so as to realize the self-recovery of the cell connection and improve the reliability of data transmission.
  • Fig. 7 is a block diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 500 shown in FIG. 7 includes: at least one processor 501, a memory 502, at least one network interface 504, and a user interface 503.
  • the various components in the terminal device 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 7.
  • the user interface 503 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel or a touch screen, etc.
  • the memory 502 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 502 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 5022.
  • the terminal device 500 further includes: a computer program stored in the memory 502 and capable of running on the processor 501.
  • a computer program stored in the memory 502 and capable of running on the processor 501.
  • connection failure processing is performed according to related information of the serving cell, where the related information includes at least one of the number of cells and the cell type.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer readable storage medium mature in the field, such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 502, and the processor 501 reads information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 501, each step of the embodiment of the method for processing cell connection failure as described above is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 500 can implement the various processes implemented by the terminal device in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • connection failure processing is performed according to the relevant information of the serving cell. Specifically, it can be handled according to the service At least one of the number of cells and the cell type of the cell performs connection failure processing. In this way, by realizing the accurate detection of cell connection failure, and determining the appropriate connection failure handling method based on the specific relevant information of the serving cell for the case of the cell connection failure, timely and effective processing can be carried out according to the connection failure handling method.
  • the self-recovery of cell connection improves the reliability of data transmission.
  • FIG. 8 is a structural diagram of a network-side device applied in an embodiment of the present disclosure, which can realize the details of the aforementioned method for processing a cell connection failure applied to the network-side device and achieve the same effect.
  • the network side device 600 includes: a processor 601, a transceiver 602, a memory 603, a user interface 604, and a bus interface 605, where:
  • the network side device 600 further includes: a computer program stored in the memory 603 and capable of running on the processor 601, and the computer program is executed by the processor 601 to implement the following steps:
  • Configure configuration information related to uplink transmission where the configuration information includes at least one of connection failure detection information and connection failure recovery information;
  • the configuration information is sent to the terminal device for the terminal device to determine whether the connection with the target serving cell fails based on the configuration information, and for the terminal device to perform connection failure processing according to the relevant information of the serving cell in the case that the connection with the target serving cell fails,
  • the related information includes at least one of the number of cells and the cell type.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 603 are linked together. The bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface 605 provides an interface.
  • the transceiver 602 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 604 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 603 can store data used by the processor 601 when performing operations.
  • the terminal device is configured with configuration information related to uplink transmission, so that the terminal device can determine whether the terminal device is related to the target serving cell based on the configuration information including at least one of the connection failure detection information and the connection failure recovery information. Detect connection failure, and when it is determined that the connection with the target serving cell fails, perform the corresponding connection failure handling according to the relevant information of the serving cell. Specifically, it can be connected according to at least one of the number of cells and the cell type of the serving cell Failure handling. In this way, by configuring the terminal equipment with configuration information related to uplink transmission, the terminal equipment can achieve accurate detection of cell connection failure, and for the case of cell connection failure, determine an appropriate connection failure handling method based on the specific relevant information of the serving cell. According to the connection failure processing method, timely and effective processing is performed, so as to realize the self-recovery of the cell connection and improve the reliability of data transmission.
  • an embodiment of the present disclosure further provides a terminal device, including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to realize the above cell connection
  • a terminal device including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to realize the above cell connection
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each of the embodiments of the method for processing cell connection failure applied to terminal equipment is realized. Process, and can achieve the same technical effect, in order to avoid repetition, I will not repeat it here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • an embodiment of the present disclosure further provides a network-side device, including a processor, a memory, and a computer program stored on the memory and running on the processor.
  • a network-side device including a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the aforementioned cell
  • Each process of the embodiment of the method for processing connection failure can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the above-mentioned cell connection failure processing method applied to the network side device is implemented.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本公开提供了一种小区连接失败的处理方法,应用于终端设备,所述方法包括:确定与目标服务小区是否连接失败;在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。

Description

小区连接失败的处理方法、终端设备和网络侧设备
相关申请的交叉引用
本申请主张在2019年3月25日在中国提交的中国专利申请号No.201910228820.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种小区连接失败的处理方法、终端设备和网络侧设备。
背景技术
目前,在新空口(New Radio,NR)移动通信***(简称NR***)中,非授权频段为共享频段,如果要采用非授权频段发送数据,则数据的发送端需要满足非授权频段的使用规则,即发送端在发送数据之前需要监听该非授权频段是否被占用(或者处于空闲状态)。若非授权频段没有被占用(或者处于空闲状态),则发送端可以采用该非授权频段进行数据的发送;若该非授权频段被占用(或者处于繁忙状态),即发送端的发前听(Listen-Before-Talk,LBT)失败,则发送端无法采用该非授权频段进行数据的发送,也就是说发送端与小区连接失败,如此会影响数据发送的可靠性。
因此,如何实现小区连接失败的检测,并针对小区连接失败的情况进行处理,以自行进行连接的恢复,提高数据发送的可靠性,成为亟待解决的技术问题。
发明内容
本公开实施例的目的是提供一种小区连接失败的处理方法、终端设备和网络侧设备,以能够实现小区连接失败的准确检测,并针对小区连接失败的情况进行适当处理。
第一方面,本公开实施例提供一种小区连接失败的处理方法,应用于终端设备,所述方法包括:
确定与目标服务小区是否连接失败;
在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
第二方面,本公开实施例提供一种小区连接失败的处理方法,应用于网络侧设备,所述方法包括:
配置与上行发送相关的配置信息,其中,所述配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个;
将所述配置信息发送至终端设备,以供所述终端设备基于所述配置信息确定与目标服务小区是否连接失败,并使得所述终端设备在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
第三方面,本公开实施例提供一种终端设备,所述终端设备包括:
确定模块,用于确定与目标服务小区是否连接失败;
处理模块,用于在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
第四方面,本公开实施例提供一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,本公开实施例提供一种网络侧设备,所述网络侧设备包括:
配置模块,用于配置与上行发送相关的配置信息,其中,所述配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个;
发送模块,用于将所述配置信息发送至终端设备,以供所述终端设备基于所述配置信息确定与目标服务小区是否连接失败,并使得所述终端设备在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接 失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
第七方面,本公开实施例提供一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,本公开实施例提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如第二方面所述的方法的步骤。
在本公开实施例中,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,可以根据服务小区的小区数量和小区类型中的至少一个进行连接失败处理。如此,通过实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,能够实现小区连接的自行恢复,从而提高数据发送的可靠性。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例中的一种小区连接失败的处理方法的流程示意图;
图2是本公开实施例中的一种时间窗口的示意图;
图3是本公开实施例中的另一种时间窗口的示意图;
图4是本公开实施例中的第二种小区连接失败的处理方法的流程示意图;
图5是本公开实施例中的一种终端设备的结构示意图;
图6是本公开实施例中的一种网络侧设备的结构示意图;
图7是本公开实施例中的第二种终端设备的结构示意图;
图8是本公开实施例中的第二种网络侧设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在相关技术中,对于新空口(New Radio,NR)移动通信***(简称NR***),目前用户端(User Equipment,UE,也可称之为终端设备(Mobile Terminal)、移动用户设备等)的连接失败情况主要包括以下几种:(1)切换失败,比如在规定时间内未切换完成,举例来说定时器t304超时;(2)辅小区组(Secondary Cell Group,SCG)change(变换)失败,比如在规定时间内接入新的SCG没有完成,举例来说定时器t307超时;(3)无线链路失败(Radio Link Failure,RLF)。其中,对于定时器t304或定时器t307,UE在对应接收到切换命令或SCG change命令的时候启动定时器,以及在小区的随机接入过程完成的时候,UE停止该定时器。
其中,无线链路连接失败主要包括:(1)物理层失败,比如定时器t310超时;(2)媒体接入控制(Medium Access Control,MAC)层的随机接入失败,比如达到最大随机接入尝试次数;(3)无线链路控制(Radio Link Control,RLC)层达到最大重传次数指示,比如达到RLC层最大重传次数;(3)波束失败,比如波束恢复过程失败。
可选地,对于上述RLC层达到最大重传次数的无线链路连接失败情况,在相关技术中会在连接失败的时候需要触发连接重建过程,当UE发起连接重建过程时,UE会进行小区选择的过程,具体通过扫描所有的频点进行小区选择,并在找到一个合适的小区后,UE在该小区发起连接重建过程。而对其他连接失败情况,并未给出解决方案。
但是,由于非授权频段为共享频段,当UE在非授权频段进行上行发送时,若出现上行数据无法发送出去的情况,则会导致UE的连接无法工作。因此,需要一种方案,能够实现对小区连接失败的准确检测,并针对小区连接失败的情况进行处理,以自行进行连接的恢复,提高数据发送的可靠性。
以下结合附图,详细说明本公开各实施例提供的技术方案。
参见图1所示,本公开实施例提供一种小区连接失败的处理方法,应用 于终端设备。该方法包括:
S101:确定与目标服务小区是否连接失败。
可选的,终端设备可以根据网络侧设备配置或者协议约定的具体情况,进行与目标服务小区是否连接失败的检测。其中,目标服务小区的数量可以为一个或多个,可以为主小区、主辅小区和辅小区中的至少一个。
S103:在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。
在本公开实施例中,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,可以根据服务小区的小区数量和小区类型中的至少一个进行连接失败处理。如此,通过实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,能够实现小区连接的自行恢复,从而提高数据发送的可靠性。
可以理解,在本公开实施例的小区连接失败的处理方法中,无需考虑小区连接失败的具体类型,在准确地确定与目标服务小区连接失败的情况下,即可以根据终端设备的服务小区的相关信息进行适当的连接失败处理。显然,相较于相关技术中仅能在达到RLC层最大重传次数时触发连接重建的方案,不仅可以实现对小区连接失败的准确检测,还可以针对小区连接失败时的具体情况进行及时且有效的连接失败处理,以实现连接的自行恢复,从而能够提高数据发送的可靠性。
可选的,上述确定与目标服务小区连接失败的情况,可以包括与目标服务小区对应的一个或多个频点连接失败的情况。
需要说明的是,上述服务小区的相关信息包括但不限于小区数量和小区类型中的至少一个。
可选的,在本公开实施例的小区连接失败的处理方法中,对于上述步骤S101可以通过不同的具体实施例实现,以通过多样化的检测方案确保实现对小区连接失败的准确检测。
下面结合具体的实施例详细说明与目标小区是否连接失败的检测方案。
具体实施例一
在该具体实施例中,上述步骤S101,可以具体执行为以下内容:
在第一预设时间窗口内,确定目标服务小区上的上行发送失败次数;
根据上行发送失败次数,确定与目标服务小区是否连接失败。
可以理解,在确定与目标服务小区是否连接失败时,可以通过统计一个时间窗口内目标服务小区上的上行发送失败次数,即对第一预设时间窗口内,目标服务小区上出现过的上行发送失败情况进行统计,并基于该第一预设时间窗口内的上行发送失败次数的量化统计结果,实现与目标服务小区是否连接失败的检测,高效且准确。
具体地,上述根据上行发送失败次数,确定与目标服务小区是否连接失败的技术方案,一方面可以具体执行为以下内容:
若上行发送失败次数大于或等于失败次数门限值,则确定与目标服务小区连接失败。
可以理解,通过将第一预设时间窗口内统计的上行发送失败次数直接与失败次数门限值进行大小比较,并在检测到上行发送失败次数达到或超出失败次数门限值时,确定与目标服务小区连接失败;其中,失败次数门限值可以为网络侧设备配置的值也可以为协议约定的值。
可选的,上述上行发送失败次数为连续进行多次上行发送且均失败的总数。
可以理解,将统计的目标服务小区上的上行发送失败次数,可选的确定为在第一预设时间窗口内,目标服务小区上连续进行多次上行发送且均失败的总数;也就是说,当在第一预设时间窗口内集中出现上行发送失败的情况时,才作为该第一预设时间窗口内对上行发送失败次数的有效统计结果。如此,有助于提高基于上行发送失败次数,确定与目标服务小区是否连接失败的检测结果的可靠性和稳定性。
举例来说,如图2所示,第一预设时间窗口的长度为从时刻t1到时刻t2的时长,比如可以根据网络侧设备配置或协议约定将第一预设时间窗口的长度取为100ms,则可以从时刻t1到时刻t2间,统计目标服务小区的上行发送失败次数。可选地,该上行发送失败次数为时刻t1到时刻t2间统计的目标服 务小区上连续上行发送失败的总数。
具体地,若在时刻t1到时刻t2间对应的时间窗口内,统计的上行发送失败次数为8,且失败次数门限值为6,则可以在该时间窗口内确定与目标服务小区连接失败。其中,上行发送失败次数8可以为该时间窗口内,目标服务小区上连续进行了8次上行发送且每次上行发送均失败的总数。
具体地,上述根据上行发送失败次数,确定与目标服务小区是否连接失败的技术方案,另一方面还可以具体执行为以下内容:
根据上行发送失败次数,确定上行发送失败概率;
若上行发送失败概率大于或等于失败概率门限值,则确定与目标服务小区连接失败。
可以理解,首先可以基于第一预设时间窗口内统计的上行失败次数确定该时间窗口内的上行发送失败概率,然后将上行发送失败概率与失败概率门限值进行大小比较,并在检测到上行发送失败概率达到或超出失败概率门限值时,确定与目标服务小区连接失败;其中,失败概率门限值可以为网络侧设备配置的值也可以为协议约定的值。
举例来说,参照图2,若在时刻t1到时刻t2间对应的时间窗口内,统计的目标服务小区上的上行发送失败次数为9,且目标服务小区上总的上行发送次数为10,则可以确定该时间窗口内的上行发送失败概率为90%,则在失败概率门限值为80%的情况下,可以确定在该时间窗口内与目标服务小区连接失败。该失败概率门限值可以取为100%。
具体实施例二
在本公开实施例的小区连接失败的处理方法中,除了根据上述具体实施例一中记载的相应内容,实现与目标服务小区是否连接失败的准确检测,在该具体实施例中,还可以将上述步骤S101,具体执行为以下内容:
若目标服务小区上的上行发送状态为第一预设状态,则将第一计数值加1;
若第一计数值大于或等于第一计数门限值,或在第一计数值大于或等于第一计数门限值后且上行发送失败定时器超时,则确定与目标服务小区连接失败。
可以理解,在确定与目标服务小区是否连接失败时,通过对目标服务小区上具体的上行发送状态进行统计,并基于该针对上行发送状态的量化统计结果,实现与目标服务小区是否连接失败的检测,高效且准确。
具体的,对目标服务小区上的第一预设状态进行量化统计,即每当目标服务小区上的上行发送状态为第一预设状态时,则将第一计数值加1,比如可以通过第一计数器统计第一预设状态出现的次数。
在一个具体的方面,可以将对目标服务小区上的第一预设状态的量化统计结果即第一计数值与第一计数门限值进行比较,并在检测到当前的第一计数值达到或超出该第一计数门限值的情况下,直接确定与目标服务小区连接失败。
可选的,在上述通过第一计数值对目标服务小区上的第一预设状态进行统计的过程中,还可以包括以下内容:
若目标服务小区上的上行发送状态为第二预设状态,则将第一计数值复位,并在目标服务小区上的上行发送状态为第一预设状态的情况下,将第一计数值加1。
可以理解,统计第一计数值的过程中,每当检测到目标服务小区上的上行发送状态为第一预设状态时,则对应的第一计数值加1,而每当检测到目标服务小区上的上行发送状态为第二预设状态时,则将之前统计的第一计数值复位到初始值(比如0),之后检测到目标服务小区上的上行发送状态再次为第一预设状态时,重新对第一计数值进行统计。如此循环往复,直到判定第一计数值达到或超出第一计数门限值,也就是说,实现对目标服务小区上的上行发送状态连续为第一预设状态的量化结果统计。
可选的,在第一计数值大于或等于第一计数门限值后且在上行发送失败定时器超时前,若目标服务小区上的上行发送状态为第二预设状态的第二计数值大于或等于第二计数门限值,则执行复位第一计数值和停止上行发送失败定时器中的至少一个操作。
可以理解,在上述上行发送失败定时器运行过程中,对目标服务小区上的发送状态为第二预设状态的情况进行量化统计,即每当目标服务小区上的上行发送状态为第二预设状态时,则将第二计数值加1,比如可以通过第二 计数器统计第二预设状态出现的次数。可选地,可以将对目标服务小区上的第二预设状态的量化统计结果即第二计数值与第二计数门限值进行比较,并在检测到当前的第二计数值达到或超出该第二计数门限值的情况下,执行复位第一计数值的操作和/或执行停止上行发送失败定时器的操作,即此时可以确定与目标服务小区连接未失败。
可选的,上述第二计数值为目标服务小区上的上行发送状态连续为第二预设状态的总数。
可以理解,在上述上行发送失败定时器运行过程中,每当检测到目标服务小区上的上行发送状态为第二预设状态时,则对应的第二计数值加1,而每当检测到目标服务小区上的上行发送状态为第一预设状态时,则将之前统计的第二计数值复位到初始值(比如0),之后检测到目标服务小区上的上行发送状态再次为第二预设状态时,重新对第二计数值进行统计。如此循环往复,直到判定第二计数值达到或超出第二计数门限值,也就是说,在上述上行发送失败定时器运行过程中,实现对目标服务小区上的上行发送状态连续为第二预设状态的量化结果统计。
在另一个具体的方面,可以将对目标服务小区上的第一预设状态的量化统计结果即第一计数值与第一计数门限值进行比较,并在检测到当前的第一计数值达到或超出该第一计数门限值后启动上行发送失败定时器,等待一段时间,在上行发送定时器的计时结果超时的情况下,再确定与目标服务小区连接失败。
可选的,在上述通过第一计数值对目标服务小区上的第一预设状态进行统计的过程中,还可以包括以下内容:
若目标服务小区上的上行发送状态为第二预设状态,则将第一计数值复位,并在目标服务小区上的上行发送状态为第一预设状态的情况下,将第一计数值加1。
可以理解,统计第一计数值的过程中,每当检测到目标服务小区上的上行发送状态为第一预设状态时,则对应的第一计数值加1,而每当检测到目标服务小区上的上行发送状态为第二预设状态时,则将之前统计的第一计数值复位到初始值(比如0),之后检测到目标服务小区上的上行发送状态再次 为第一预设状态时,重新对第一计数值进行统计。如此循环往复,直到判定第一计数值达到或超出第一计数门限值,也就是说,实现对目标服务小区上的上行发送状态连续为第一预设状态的量化结果统计。
可选的,在第一计数值大于或等于第一计数门限值后且在上行发送失败定时器超时前,若目标服务小区上的上行发送状态为第二预设状态的第二计数值大于或等于第二计数门限值,则执行复位第一计数值和停止上行发送失败定时器中的至少一个操作。
可以理解,在上述上行发送失败定时器运行过程中,对目标服务小区上的发送状态为第二预设状态的情况进行量化统计,即每当目标服务小区上的上行发送状态为第二预设状态时,则将第二计数值加1,比如可以通过第二计数器统计第二预设状态出现的次数。可选地,可以将对目标服务小区上的第二预设状态的量化统计结果即第二计数值与第二计数门限值进行比较,并在检测到当前的第二计数值达到或超出该第二计数门限值的情况下,执行复位第一计数值的操作和/或执行停止上行发送失败定时器的操作,即此时可以确定与目标服务小区连接未失败。
可选的,上述第二计数值为目标服务小区上的上行发送状态连续为第二预设状态的总数。
可以理解,在上述上行发送失败定时器运行过程中,每当检测到目标服务小区上的上行发送状态为第二预设状态时,则对应的第二计数值加1,而每当检测到目标服务小区上的上行发送状态为第一预设状态时,则将之前统计的第二计数值复位到初始值(比如0),之后检测到目标服务小区上的上行发送状态再次为第二预设状态时,重新对第二计数值进行统计。如此循环往复,直到判定第二计数值达到或超出第二计数门限值,也就是说,在上述上行发送失败定时器运行过程中,实现对目标服务小区上的上行发送状态连续为第二预设状态的量化结果统计。
可选的,上述第一计数门限值和上述第二计数门限值可以为网络侧设备配置的值也可以为协议约定的值。
可选的,上述第一预设状态和第二预设状态,可以通过一个时间窗口内的上行发送的具体情况进行描述,即在每个第二时间窗口内对目标服务小区 上的上行发送状态进行判断,并对多个第二时间窗口分别对应的多个上行发送状态进行统计,以基于统计结果,确定与目标服务小区是否连接失败。如此通过对多个时间窗口对应的多个上行发送状态的平滑统计,可以使失败检测结果更加可靠且准确。具体的:
第一预设状态包括以下至少一个:在第二预设时间窗口内,目标服务小区上的上行发送失败次数满足第一条件,和在第二预设时间窗口内,目标服务小区上的上行发送次数小于或等于上行发送次数门限值;
第二预设状态包括以下至少一个:在第二预设时间窗口内,目标服务小区上的上行发送成功次数满足第二条件,和在第二预设时间窗口内,目标服务小区上的上行发送次数小于或等于上行发送次数门限值。
可以理解,在每个第二预设时间窗口内对目标服务小区上判定的上行发送状态可以为上行发送失败、上行发送成功和没有上行发送中的一个。
其中,上行发送失败可以指在一个时间窗口内(即第二预设时间窗口),在目标服务小区上的上行发送失败次数满足第一条件,比如若上行发送失败次数大于或等于对应的次数门限值(比如8次),又比如若基于上行发送失败次数确定的上行发送失败概率大于或等于对应的概率门限值(比如90%或100%),则可以认为该时间窗口内的上行发送失败次数满足第一条件。
上行发送成功可以指在一个时间窗口内(即第二预设时间窗口),在目标服务小区上的上行发送成功次数满足第二条件,比如若上行发送成功次数大于或等于对应的次数门限值(比如8次),又比如若基于上行发送成功次数确定的上行发送成功概率大于或等于对应的概率门限值(比如90%或100%),则可以认为该时间窗口内的上行发送成功次数满足第二条件。
没有上行发送可以指一个时间窗口内(即第二预设时间窗口),在目标服务小区上的上行发送次数小于或等于上行发送次数门限值(比如4次)。
需要说明的是,前述各个门限值,既可以为网络侧设备配置的值也可以为协议约定的值。
举例来说,如图3所示,包括两个第二预设时间窗口,其中,第一个第二预设时间窗口的长度为从时刻t1到时刻t2间的时长以及第二个第二预设时间窗口的长度为从时刻t2到时刻t3间的时长,比如可以根据网络侧设置配置 或协议约定将第二预设时间窗口的长度取为10ms,即从时刻t1到时刻t2间的时长为10ms以及从时刻t2到时刻t3间的时长为10ms,则可以对时刻t1到时刻t2间、时刻t2到时刻t3间,目标服务小区上的上行发送失败次数、上行发送成功次数和上行发送次数等进行统计。
若从时刻t1到时刻t2间对应的时间窗口内统计的上行失败次数满足第一条件,则该第二预设时间窗口对应的上行发送状态为上行发送失败;若从时刻t1到时刻t2间对应的时间窗口内统计的上行发送次数满足第二条件,则该第二预设时间窗口对应的上行发送状态为上行发送成功;以及若从时刻t2到时刻t3间对应的时间窗口内统计的上行发送次数未达到上行发送次数门限值,则该第二预设时间窗口对应的上行发送状态为没有上行发送。
可选地,没有上行发送既可以归为第一预设状态也可以归为第二预设状态,也就是说:第一预设状态包括上行发送失败和没有上行发送中的至少一个;第二预设状态包括上行发送成功和没有上行发送中的至少一个。
可以理解,导致目标服务小区上的上行发送失败的原因多种多样,比如由信道被占用(或处于繁忙状态)导致的也可能是由于终端设备本身的上行发送功率等参数受限而无法成功完成上行发送。在本公开实施例的小区连接失败的处理方法中,主要考虑目标服务小区上的上行发送失败是由信道被占用导致的情况。
具体的,目标服务小区上的上行发送失败是由信道被占用导致的,一方面可以包括在进行了上行信号发送后发现发送失败,继而确定是因为信道被占用所导致的;另一方面还可以包括在进行上行信号发送前先侦听信道是否被占用(即LBT),若侦听到信道被占用则不进行上行信号的发送并直接确定上行发送失败,即在信道被占用的情况下,确定目标服务小区上的上行发送失败。
可选的,在本公开实施例的小区连接失败的处理方法中,对于上述步骤S103可以通过不同的具体实施例实现,以保证能够及时且准确地确定适当的连接失败处理方式。
下面结合具体的实施例详细说明根据服务小区的相关信息进行连接失败处理的技术方案。
具体实施例一
该具体实施例中,在上述相关信息为小区数量的情况下,上述步骤S103,可以具体包括以下内容:
在小区数量为一个的情况下,触发连接重建过程。
可以理解,在终端设备的服务小区只有目标服务小区一个时,在确定与该目标服务小区连接失败,则可以直接触发连接重建过程,以进行及时且有效的连接失败处理,从而实现小区连接的自行恢复,提高数据发送的可靠性。
具体实施例二
该具体实施例中,在上述相关信息为小区类型的情况下,上述步骤S103,还可以具体包括以下之中一种:
在目标服务小区为主小区组内的小区且终端设备与主小区组内的小区均连接失败,或目标服务小区为主小区的情况下,触发连接重建过程;
在目标服务小区为辅小区组内的小区且终端设备与辅小区组内的小区均连接失败,或目标服务小区为主小区组内的主小区,或目标服务小区为辅小区组内的主辅小区,或目标服务小区为主小区组内的辅小区,或目标服务小区为辅小区组内的辅小区的情况下,上报与目标服务小区连接失败相关的信息。
可以理解,终端设备的服务小区的小区类型可以多种多样,则可以在确定与目标服务小区连接失败的情况下,基于目标服务小区具体的小区类型确定适当的连接失败处理方式,以进行及时且有效的连接失败处理,从而实现小区连接的自行恢复,提高数据发送的可靠性。
举例来说,当终端设备工作在双连接(Dual Connectivity,DC)模式时,终端设备会被配置2个小区组,即主小区组(Master Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG)。其中,MCG至少包括主小区(Primary Cell,PCell),额外的MCG还可以包括一个或多个辅小区(Secondary Cell,SCell),以及SCG至少包括主辅小区(Primary Secondary Cell,PSCell),额外的SCG还可以包括一个或多个辅小区(Secondary Cell,SCell)。
那么一方面,在目标服务小区为主小区组内的小区且终端设备与该主小区组内的所有小区均连接失败的情况下,可以直接触发连接重建过程,以进 行及时且有效的连接失败处理,从而实现小区连接的自行恢复。
或者在目标服务小区为主小区的情况下,可以直接触发连接重建过程,以进行及时且有效的连接失败处理,从而实现小区连接的自行恢复。
另一方面,在目标服务小区为辅小区组内的小区且终端设备与辅小区组内的所有小区均连接失败的情况下,可以选择上报与目标服务小区连接失败相关的信息,以供网络侧设备参考进行配置的调整,从而实现小区连接的自行恢复。可选的,通过主小区组内的辅小区上报与目标服务小区连接失败相关的信息。
或者在目标服务小区为主小区组内的任一小区,即为主小区组内的主小区或为主小区组内的任一辅小区的情况下,可以选择上报与目标服务小区连接失败相关的信息,以供网络侧设备参考进行配置的调整,从而实现小区连接的自行恢复。
可选的,当目标服务小区为主小区时,可以通过主小区组或辅小区组内的辅小区上报与目标服务小区连接失败相关的信息;当目标服务小区为主小区组内的任一辅小区时,可以通过主小区组或辅小区组内其他未连接失败的小区上报与目标服务小区连接失败相关的信息。
或者在目标服务小区为辅小区组内的任一小区,即为辅小区组内的主辅小区或为辅小区组内的任一辅小区的情况下,可以选择上报与目标服务小区连接失败相关的信息,以供网络侧设备参考进行配置的调整,从而实现小区连接的自行恢复。可选的,当目标服务小区为主辅小区时,可以通过主小区组或辅小区组内的辅小区上报与目标服务小区连接失败相关的信息;当目标服务小区为辅小区组内的任一辅小区时,可以通过主小区组或辅小区组内其他未连接失败的小区上报与目标服务小区连接失败相关的信息。
可选的,在上述任一具体实施例中,上述触发连接重建过程,终端设备需要进行小区的重新选择,具体可以包括以下内容包括:
确定候选频点,候选频点不包括目标服务小区对应的频点或候选频点在预设时长内不包括目标服务小区对应的频点;
基于候选频点,触发连接重建过程。
可以理解,为了提高连接重建过程的效率,在确定用于连接重建的候选 频点时,可选的在确定已连接失败的目标服务小区对应的频点外的频点范围内进行确定。
可选地,考虑到上行发送失败的原因可能在一段时间后会结束,比如信道被占用的情况在一段时间会结束即信道会恢复空闲状态,则此时可以重新用于进行上行信号的发送,如此,为了进一步提高连接重建过程的效率,可以在更大的候选频点范围内进行连接重建,也就是说,可以仅在特定时段(即预设时长,比如30秒)内不将目标服务小区对应的频点作为候选频点。
其中,该预设时长的取值既可以为网络侧设备配置的值也可以为协议约定的值。可选的,在上述任一具体实施例中,若选择触发连接重建过程作为连接失败处理方式,则在上述触发连接重建过程中或在触发连接重建过程之后,该方法还可以包括:
上报与目标服务小区连接失败相关的信息。
可选的,在上述任一具体实施例中,上述上报给网络侧设备的与目标服务小区连接失败相关的信息包括以下至少一个:
小区连接失败的失败类型指示信息;
信道测量信息,信道测量信息包括接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
可以理解,上述失败类型指示信息可以包括LBT失败指示信息,上述信道测量信息具体为信道繁忙相关的测量的信息。
需要说明的是,在本公开实施例中,上述与目标服务小区连接失败相关的信息包括但不限于上述失败类型指示信息和信道测量信息中的至少一个,以及信道测量信息包括但不限于上述接收信号强度指示(Received Signal Strength Indicator,RSSI)、信道占用率(Channel Occupancy Rate,CR)和信道繁忙率(Channel Busy Ratio,CBR)中的至少一个。
与图1中终端设备执行的小区连接失败的处理方法相对应的,本公开实施例还提供一种小区连接失败的处理方法,应用于网络侧设备。参见图4所示,该方法包括:
S201:配置与上行发送相关的配置信息,其中,配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个。
S203:将配置信息发送至终端设备,以供终端设备基于配置信息确定与目标服务小区是否连接失败,并使得终端设备在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。
在本公开实施例中,通过为终端设备配置与上行发送相关的配置信息,以供终端设备基于该包括连接失败检测信息和连接失败恢复信息中的至少一个的配置信息,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,至少可以根据服务小区的小区数量和小区类型中的一个进行连接失败处理。如此,通过为终端设备配置与上行发送相关的配置信息,可以使终端设备实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,从而实现小区连接的自行恢复,提高数据发送的可靠性。
需要说明的是,上述与上行发送相关的配置信息包括但不限于连接失败检测信息和连接失败恢复信息中的至少一个。
可选的,在本公开实施例的小区连接失败的处理方法中,在上述配置信息包括连接失败检测信息的情况下,连接失败检测信息包括但不限于以下至少一个:
第一预设时间窗口的时长,第一预设时间窗口用于确定目标服务小区上的上行发送失败次数;
失败次数门限值,用于与上行发送失败次数进行大小比较;
失败概率门限值,用于与基于上行发送失败次数确定的上行发送失败概率进行大小比较;
第二预设时间窗口的时长,第二预设时间窗口用于确定目标服务小区上的上行发送状态;
第一计数门限值,用于与上行发送状态为第一预设状态的第一计数值进行大小比较;
第二计数门限值,用于与上行发送状态为第二预设状态的第二计数值进 行大小比较;
上行发送失败定时器的定时门限值,定时门限值用于供终端设备确定上行发送失败定时器是否超时。
可以理解,通过为终端设备配置上述连接失败检测信息,达到提高小区连接失败检测的效率和准确性的目的。
具体的,终端设备可以根据在第一预设时间窗口内确定的上行发送失败次数实现小区连接是否失败的检测,可以在确定上行发送失败次数大于或等于失败次数门限值的情况下,或者在基于上行发送失败次数确定的上行发送失败概率大于或等于失败概率门限值的情况下,确定与目标服务小区连接失败。
另外,终端设备还可以根据对每个第二预设时间窗口对应的目标服务小区上的上行发送状态的统计情况实现小区连接是否失败的检测,可以在确定对第一预设状态的第一计数值大于或等于第一计数门限值的情况下,直接确定与目标服务小区连接失败,也可以在确定对第一预设状态的第一计数值大于或等于第一计数门限值后且上行发送失败定时器的计时值超过定时门限值的情况下,确定与目标服务小区连接失败,同时还可以考虑上行发送状态统计过程中,与第一预设状态不同的第二预设状态的出现情况,进行更加准确且稳定的小区连接失败检测。
可选的,在本公开实施例的小区连接失败的处理方法中,第一预设状态包括以下至少一个:在第二预设时间窗口内,目标服务小区上的上行发送失败次数满足第一条件,和在第二预设时间窗口内,目标服务小区上的上行发送次数小于或等于上行发送次数门限值;
第二预设状态包括以下至少一个:在第二预设时间窗口内,目标服务小区上的上行发送成功次数满足第二条件,和在第二预设时间窗口内,目标服务小区上的上行发送次数小于或等于上行发送次数门限值。
可选的,上述连接失败检测信息至少还包括该上行发送次数门限值。
可选的,在本公开实施例的小区连接失败的处理方法中,在上述配置信息包括连接失败恢复信息的情况下,连接失败恢复信息包括但不限于:
用于连接重建过程的候选频点不包括目标服务小区对应的频点的时长。
可以理解,通过为终端设备配置连接失败恢复信息,可以达到提高小区连接重建过程的效率,以使终端设备在更大的候选频点范围内进行连接重建,也就是说,可以仅在特定时段(即预设时长,比如30秒)内使终端设备不将目标服务小区对应的频点作为候选频点。也就是说,考虑到导致上行发送失败的原因可能会在一段时间后会结束,比如信道被占用的情况在一段时间会结束即信道会恢复空闲状态,则此时可以重新用于进行上行信号的发送。
可选的,在本公开实施例的小区连接失败的处理方法中,还可以包括以下内容:
接收与目标服务小区连接失败相关的信息,其中,与目标服务小区连接失败相关的信息包括以下至少一个:
小区连接失败的失败类型指示信息;
信道测量信息,信道测量信息包括接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
可以理解,在终端设备确定与目标服务小区连接失败的情况下,通过接收终端设备上报的与目标服务小区连接相关的信息,进行参考以及时调整相关配置信息,以实现小区连接的自行恢复。
其中,上述失败类型指示信息可以包括LBT失败指示信息,上述信道测量信息具体为信道繁忙相关的测量的信息。
需要说明的是,在本公开实施例中,上述与目标服务小区连接失败相关的信息包括但不限于上述失败类型指示信息和信道测量信息中的至少一个,以及信道测量信息包括但不限于上述接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
参见图5所示,本公开实施例提供一种终端设备,该终端设备包括:
确定模块301,用于确定与目标服务小区是否连接失败;
处理模块303,用于在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。
可选的,在本公开实施例的终端设备中,上述确定模块301,可以具体包括:
第一确定子模块,用于在第一预设时间窗口内,确定目标服务小区上的上行发送失败次数;
第二确定子模块,用于根据上行发送失败次数,确定与目标服务小区是否连接失败。
可选的,在本公开实施例的终端设备中,上述第二确定子模块,可以具体用于:
若上行发送失败次数大于或等于失败次数门限值,则确定与目标服务小区连接失败。
可选的,在本公开实施例的终端设备中,上述第二确定子模块,可以具体用于:
根据上行发送失败次数,确定上行发送失败概率;
若上行发送失败概率大于或等于失败概率门限值,则确定与目标服务小区连接失败。
可选的,在本公开实施例的终端设备中,上述上行发送失败次数为连续进行多次上行发送且均失败的总数。
可选的,本公开实施例的终端设备,还可以包括:
控制模块,用于若目标服务小区上的上行发送状态为第一预设状态,则将第一计数值加1;以及
上述确定模块301,可以具体用于:
若第一计数值大于或等于第一计数门限值,或在第一计数值大于或等于第一计数门限值后且上行发送失败定时器超时,则确定与目标服务小区连接失败。
可选的,在本公开实施例的终端设备中,上述控制模块,还可以用于:
若目标服务小区上的上行发送状态为第二预设状态,则将第一计数值复位,并在目标服务小区上的上行发送状态为第一预设状态的情况下,将第一计数值加1。
可选的,本公开实施例的终端设备,还可以包括:
执行模块,用于在第一计数值大于或等于第一计数门限值后且上行发送失败定时器超时前,若目标服务小区上的上行发送状态为第二预设状态的第 二计数值大于或等于第二计数门限值,则执行复位第一计数值和停止上行发送失败定时器中的至少一个操作。
可选的,在本公开实施例的终端设备中,上述第二计数值为目标服务小区上的上行发送状态连续为第二预设状态的总数。
可选的,在本公开实施例的终端设备中,第一预设状态包括以下至少一个:在第二预设时间窗口内,目标服务小区上的上行发送失败次数满足第一条件,和在第二预设时间窗口内,目标服务小区上的上行发送次数小于或等于上行发送次数门限值;第二预设状态包括以下至少一个:在第二预设时间窗口内,目标服务小区上的上行发送成功次数满足第二条件,和在第二预设时间窗口内,目标服务小区上的上行发送次数小于或等于上行发送次数门限值。
可选的,在本公开实施例的终端设备中,上述目标服务小区上的上行发送失败是由信道被占用导致的。
可选的,在本公开实施例的终端设备中,上述处理模块303,在相关信息为小区数量的情况下,可以具体用于:
在小区数量为一个的情况下,触发连接重建过程。
可选的,在本公开实施例的终端设备中,上述处理模块303,在相关信息为小区类型的情况下,可以具体用于执行以下之中一种:
在目标服务小区为主小区组内的小区且终端设备与主小区组内的小区均连接失败,或目标服务小区为主小区的情况下,触发连接重建过程;
在目标服务小区为辅小区组内的小区且终端设备与辅小区组内的小区均连接失败,或目标服务小区为主小区组内的主小区,或目标服务小区为辅小区组内的主辅小区,或目标服务小区为主小区组内的辅小区,或目标服务小区为辅小区组内的辅小区的情况下,上报与目标服务小区连接失败相关的信息。
可选的,在本公开实施例的终端设备中,上述处理模块303,可以具体包括:
第三确定子模块,用于确定候选频点,候选频点不包括目标服务小区对应的频点或候选频点在预设时长内不包括目标服务小区对应的频点;
处理子模块,用于基于候选频点,触发连接重建过程。
可选的,在本公开实施例的终端设备中,上述处理模块303,在触发连接重建过程中或在触发连接重建过程之后,还可以用于:
上报与目标服务小区连接失败相关的信息。
可选的,在本公开实施例的终端设备中,上述与目标服务小区连接失败相关的信息包括以下至少一个:
小区连接失败的失败类型指示信息;
信道测量信息,信道测量信息包括接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
能够理解,本公开实施例提供的终端设备,能够实现前述由终端设备执行的小区连接失败的处理方法,关于小区连接失败的处理方法的相关阐述均适用于终端设备,此处不再赘述。
在本公开实施例中,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,可以根据服务小区的小区数量和小区类型中的至少一个进行连接失败处理。如此,通过实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,能够实现小区连接的自行恢复,从而提高数据发送的可靠性。
参见图6所示,本公开实施例提供一种网络侧设备,该网络侧设备包括:
配置模块401,用于配置与上行发送相关的配置信息,其中,配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个;
发送模块403,用于将配置信息发送至终端设备,以供终端设备基于配置信息确定与目标服务小区是否连接失败,并使得终端设备在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。
可选的,在本公开实施例的网络设备中,在上述配置信息包括连接失败检测信息的情况下,该连接失败检测信息包括以下至少一个:
第一预设时间窗口的时长,第一预设时间窗口用于确定目标服务小区上 的上行发送失败次数;
失败次数门限值,用于与上行发送失败次数进行大小比较;
失败概率门限值,用于与基于上行发送失败次数确定的上行发送失败概率进行大小比较;
第二预设时间窗口的时长,第二预设时间窗口用于确定目标服务小区上的上行发送状态;第一计数门限值,用于与上行发送状态为第一预设状态的第一计数值进行大小比较;
第二计数门限值,用于与上行发送状态为第二预设状态的第二计数值进行大小比较;
上行发送失败定时器的定时门限值,定时门限值用于供终端设备确定上行发送失败定时器是否超时。
可选的,在本公开实施例的网络侧设备中,在上述配置信息包括连接失败恢复信息的情况下,该连接失败恢复信息包括:
用于连接重建过程的候选频点不包括目标服务小区对应的频点的时长。
可选的,本公开实施例的网络侧设备,还可以包括:
接收模块,用于接收与目标服务小区连接失败相关的信息,其中,该与目标服务小区连接失败相关的信息包括以下至少一个:
小区连接失败的失败类型指示信息;
信道测量信息,信道测量信息包括接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
能够理解,本公开实施例提供的网络侧设备,能够实现前述由网络侧设备执行的小区连接失败的处理方法,关于小区连接失败的处理方法的相关阐述均适用于网络侧设备,此处不再赘述。
在本公开实施例中,通过为终端设备配置与上行发送相关的配置信息,以供终端设备基于该包括连接失败检测信息和连接失败恢复信息中的至少一个的配置信息,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,至少可以根据服务小区的小区数量和小区类型中的一个进行连接失败处理。如此,通过为终端设备配置与上行发送相关的配置信息,可 以使终端设备实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,从而实现小区连接的自行恢复,提高数据发送的可靠性。
图7是本公开另一个实施例的终端设备的框图。图7所示的终端设备500包括:至少一个处理器501、存储器502、至少一个网络接口504和用户接口503。终端设备500中的各个组件通过总线***505耦合在一起。可理解,总线***505用于实现这些组件之间的连接通信。总线***505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线***505。
其中,用户接口503可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的***和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作***5021和应用程序 5022。
其中,操作***5021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序5022中。
在本公开实施例中,终端设备500还包括:存储在存储器上502并可在处理器501上运行的计算机程序,计算机程序被处理器501执行时实现如下步骤:
确定与目标服务小区是否连接失败;
在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。
上述本公开实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器501执行时实现如上述小区连接失败的处理方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备500能够实现前述实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
在本公开实施例中,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,可以根据服务小区的小区数量和小区类型中的至少一个进行连接失败处理。如此,通过实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,能够实现小区连接的自行恢复,从而提高数据发送的可靠性。
请参阅图8,图8是本公开实施例应用的网络侧设备的结构图,能够实现前述应用于网络侧设备的小区连接失败的处理方法的细节,并达到相同的效果。如图8所示,网络侧设备600包括:处理器601、收发机602、存储器603、用户接口604和总线接口605,其中:
在本公开实施例中,网络侧设备600还包括:存储在存储器上603并可在处理器601上运行的计算机程序,计算机程序被处理器601、执行时实现如下步骤:
配置与上行发送相关的配置信息,其中,配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个;
将配置信息发送至终端设备,以供终端设备基于配置信息确定与目标服 务小区是否连接失败,并使得终端设备在与目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,相关信息包括小区数量和小区类型中的至少一个。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口605提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口604还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线架构和通常的处理,存储器603可以存储处理器601在执行操作时所使用的数据。
在本公开实施例中,通过为终端设备配置与上行发送相关的配置信息,以供终端设备基于该包括连接失败检测信息和连接失败恢复信息中的至少一个的配置信息,对与目标服务小区是否连接失败进行检测,并在确定与目标服务小区连接失败的情况下,根据服务小区的相关信息进行相应的连接失败处理,具体的,至少可以根据服务小区的小区数量和小区类型中的一个进行连接失败处理。如此,通过为终端设备配置与上行发送相关的配置信息,可以使终端设备实现小区连接失败的准确检测,并针对小区连接失败的情况,基于服务小区的具体相关信息确定适当的连接失败处理方式,以根据该连接失败处理方式进行及时且有效的处理,从而实现小区连接的自行恢复,提高数据发送的可靠性。
可选的,本公开实施例还提供一种终端设备,包括处理器、存储器及存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述小区连接失败的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于终端设备 的小区连接失败的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可选的,本公开实施例还提供一种网络侧设备,包括处理器、存储器及存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述小区连接失败的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于网络侧设备的小区连接失败的处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (25)

  1. 一种小区连接失败的处理方法,应用于终端设备,包括:
    确定与目标服务小区是否连接失败;
    在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
  2. 根据权利要求1所述的方法,其中,所述确定与目标服务小区是否连接失败,包括:
    在第一预设时间窗口内,确定所述目标服务小区上的上行发送失败次数;
    根据所述上行发送失败次数,确定与所述目标服务小区是否连接失败。
  3. 根据权利要求2所述的方法,其中,所述根据所述上行发送失败次数,确定与所述目标服务小区是否连接失败,包括:
    若所述上行发送失败次数大于或等于失败次数门限值,则确定与所述目标服务小区连接失败。
  4. 根据权利要求3所述的方法,其中,
    所述上行发送失败次数为连续进行多次上行发送且均失败的总数。
  5. 根据权利要求2所述的方法,其中,所述根据所述上行发送失败次数,确定与所述目标服务小区是否连接失败,包括:
    根据所述上行发送失败次数,确定上行发送失败概率;
    若所述上行发送失败概率大于或等于失败概率门限值,则确定与所述目标服务小区连接失败。
  6. 根据权利要求1所述的方法,其中,所述确定与目标服务小区是否连接失败,包括:
    若所述目标服务小区上的上行发送状态为第一预设状态,则将第一计数值加1;
    若所述第一计数值大于或等于第一计数门限值,或在所述第一计数值大于或等于所述第一计数门限值后且上行发送失败定时器超时,则确定与所述目标服务小区连接失败。
  7. 根据权利要求6所述的方法,还包括:
    若所述目标服务小区上的上行发送状态为第二预设状态,则将所述第一计数值复位,并在所述目标服务小区上的上行发送状态为所述第一预设状态的情况下,将所述第一计数值加1。
  8. 根据权利要求6或7所述的方法,还包括:
    在所述第一计数值大于或等于所述第一计数门限值后且所述上行发送失败定时器超时前,若所述目标服务小区上的上行发送状态为第二预设状态的第二计数值大于或等于第二计数门限值,则执行复位所述第一计数值和停止所述上行发送失败定时器中的至少一个操作。
  9. 根据权利要求8所述的方法,其中,
    所述第二计数值为所述目标服务小区上的上行发送状态连续为所述第二预设状态的总数。
  10. 根据权利要求8所述的方法,其中,
    所述第一预设状态包括以下至少一个:在第二预设时间窗口内,所述目标服务小区上的上行发送失败次数满足第一条件,和在所述第二预设时间窗口内,所述目标服务小区上的上行发送次数小于或等于上行发送次数门限值;
    所述第二预设状态包括以下至少一个:在所述第二预设时间窗口内,所述目标服务小区上的上行发送成功次数满足第二条件,和在所述第二预设时间窗口内,所述目标服务小区上的上行发送次数小于或等于上行发送次数门限值。
  11. 根据权利要求2或6所述的方法,其中,
    所述目标服务小区上的上行发送失败是由信道被占用导致的。
  12. 根据权利要求1所述的方法,其中,在所述相关信息为小区数量的情况下,所述根据服务小区的相关信息进行连接失败处理,包括:
    在所述小区数量为一个的情况下,触发连接重建过程。
  13. 根据权利要求1所述的方法,其中,在所述相关信息为小区类型的情况下,所述根据服务小区的相关信息进行连接失败处理,包括以下之中一种:
    在所述目标服务小区为主小区组内的小区且所述终端设备与所述主小区 组内的小区均连接失败,或所述目标服务小区为主小区的情况下,触发连接重建过程;
    在所述目标服务小区为辅小区组内的小区且所述终端设备与所述辅小区组内的小区均连接失败,或所述目标服务小区为主小区组内的主小区,或所述目标服务小区为辅小区组内的主辅小区,或所述目标服务小区为主小区组内的辅小区,或所述目标服务小区为辅小区组内的辅小区的情况下,上报与所述目标服务小区连接失败相关的信息。
  14. 根据权利要求12或13所述的方法,其中,所述触发连接重建过程,包括:
    确定候选频点,所述候选频点不包括所述目标服务小区对应的频点或所述候选频点在预设时长内不包括所述目标服务小区对应的频点;
    基于所述候选频点,触发连接重建过程。
  15. 根据权利要求14所述的方法,其中,在所述触发连接重建过程中或在所述触发连接重建过程之后,所述方法还包括:
    上报与所述目标服务小区连接失败相关的信息。
  16. 根据权利要求13或15所述的方法,其中,所述与所述目标服务小区连接失败相关的信息包括以下至少一个:
    小区连接失败的失败类型指示信息;
    信道测量信息,所述信道测量信息包括接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
  17. 一种小区连接失败的处理方法,应用于网络侧设备,包括:
    配置与上行发送相关的配置信息,其中,所述配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个;
    将所述配置信息发送至终端设备,以供所述终端设备基于所述配置信息确定与目标服务小区是否连接失败,并使得所述终端设备在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
  18. 根据权利要求17所述的方法,其中,在所述配置信息包括所述连接失败检测信息的情况下,所述连接失败检测信息包括以下至少一个:
    第一预设时间窗口的时长,所述第一预设时间窗口用于确定所述目标服务小区上的上行发送失败次数;
    失败次数门限值,用于与所述上行发送失败次数进行大小比较;
    失败概率门限值,用于与基于所述上行发送失败次数确定的上行发送失败概率进行大小比较;
    第二预设时间窗口的时长,所述第二预设时间窗口用于确定所述目标服务小区上的上行发送状态;
    第一计数门限值,用于与所述上行发送状态为第一预设状态的第一计数值进行大小比较;
    第二计数门限值,用于与所述上行发送状态为第二预设状态的第二计数值进行大小比较;
    上行发送失败定时器的定时门限值,所述定时门限值用于供所述终端设备确定所述上行发送失败定时器是否超时。
  19. 根据权利要求17所述的方法,其中,在所述配置信息包括所述连接失败恢复信息的情况下,所述连接失败恢复信息包括:
    用于连接重建过程的候选频点不包括所述目标服务小区对应的频点的时长。
  20. 根据权利要求17~19中任一项所述的方法,还包括:
    接收与所述目标服务小区连接失败相关的信息,其中,所述与所述目标服务小区连接失败相关的信息包括以下至少一个:
    小区连接失败的失败类型指示信息;
    信道测量信息,所述信道测量信息包括接收信号强度指示、信道占用率和信道繁忙率中的至少一个。
  21. 一种终端设备,包括:
    确定模块,用于确定与目标服务小区是否连接失败;
    处理模块,用于在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
  22. 一种网络侧设备,包括:
    配置模块,用于配置与上行发送相关的配置信息,其中,所述配置信息包括连接失败检测信息和连接失败恢复信息中的至少一个;
    发送模块,用于将所述配置信息发送至终端设备,以供所述终端设备基于所述配置信息确定与目标服务小区是否连接失败,并使得所述终端设备在与所述目标服务小区连接失败的情况下,根据服务小区的相关信息进行连接失败处理,其中,所述相关信息包括小区数量和小区类型中的至少一个。
  23. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至16中任一项所述的方法的步骤。
  24. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求17至20中任一项所述的方法的步骤。
  25. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至20中任一项所述的方法的步骤。
PCT/CN2020/080692 2019-03-25 2020-03-23 小区连接失败的处理方法、终端设备和网络侧设备 WO2020192632A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021556951A JP7250162B2 (ja) 2019-03-25 2020-03-23 セル接続障害の処理方法、端末機器及びネットワーク側機器
EP20779231.8A EP3952441A4 (en) 2019-03-25 2020-03-23 CELL CONNECTION FAILURE PROCESSING METHOD, TERMINAL DEVICE AND NETWORK SIDE DEVICE
BR112021019100A BR112021019100A2 (pt) 2019-03-25 2020-03-23 Método para lidar com falha de conexão de célula, dispositivo terminal e dispositivo do lado da rede.
US17/482,890 US20220015175A1 (en) 2019-03-25 2021-09-23 Method for handling cell connection failure, terminal device, and network side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910228820.9A CN111436067B (zh) 2019-03-25 2019-03-25 小区连接失败的处理方法、终端设备和网络侧设备
CN201910228820.9 2019-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/482,890 Continuation US20220015175A1 (en) 2019-03-25 2021-09-23 Method for handling cell connection failure, terminal device, and network side device

Publications (1)

Publication Number Publication Date
WO2020192632A1 true WO2020192632A1 (zh) 2020-10-01

Family

ID=71580819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080692 WO2020192632A1 (zh) 2019-03-25 2020-03-23 小区连接失败的处理方法、终端设备和网络侧设备

Country Status (6)

Country Link
US (1) US20220015175A1 (zh)
EP (1) EP3952441A4 (zh)
JP (1) JP7250162B2 (zh)
CN (1) CN111436067B (zh)
BR (1) BR112021019100A2 (zh)
WO (1) WO2020192632A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220264631A1 (en) * 2019-07-12 2022-08-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods, Terminal Device and Network Node for Uplink Transmission
CN111885678B (zh) * 2020-07-30 2022-09-27 广东小天才科技有限公司 上行异常的数据处理方法、终端设备和介质
WO2022155955A1 (en) * 2021-01-25 2022-07-28 Lenovo (Beijing) Limited Method and apparatus for determining failure type
CN115701738A (zh) * 2021-08-02 2023-02-10 大唐移动通信设备有限公司 无线通信方法、用户设备、电子设备及存储介质
CN116760878B (zh) * 2023-08-21 2023-12-01 每日互动股份有限公司 一种网络连接和传输的处理方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025004A1 (zh) * 2015-08-07 2017-02-16 中兴通讯股份有限公司 一种竞争接入方法和装置
CN107371168A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种非授权频谱中的测量方法和设备
CN107690162A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区连接失败的处理方法及装置
CN107770868A (zh) * 2016-08-19 2018-03-06 中兴通讯股份有限公司 一种控制信元取消方法、装置及终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110813A1 (en) * 2013-01-18 2014-07-24 Mediatek Inc. Mechanism of rlf handling in small cell networks
EP3031246B1 (en) * 2013-08-09 2020-09-16 Telefonaktiebolaget LM Ericsson (publ) Network-assisted cell selection
CN105578607B (zh) * 2014-11-05 2019-12-10 电信科学技术研究院 一种进行载波调度的方法和设备
KR102101737B1 (ko) * 2016-01-27 2020-04-20 후아웨이 테크놀러지 컴퍼니 리미티드 전송 자원 획득 방법 및 사용자 장비
CN106255122B (zh) * 2016-09-09 2022-12-20 宇龙计算机通信科技(深圳)有限公司 通信方法和通信装置
CN106454910B (zh) * 2016-09-09 2022-09-02 宇龙计算机通信科技(深圳)有限公司 通信方法、通信装置和终端
CN110945949B (zh) * 2017-08-11 2023-09-15 Lg电子株式会社 在无线通信***中基于lbt过程处置预配置的ul资源的方法及其装置
US10980062B1 (en) * 2019-12-16 2021-04-13 PanPsy Technologies, LLC Wireless device and wireless network processes and consistent LBT failures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025004A1 (zh) * 2015-08-07 2017-02-16 中兴通讯股份有限公司 一种竞争接入方法和装置
CN107371168A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种非授权频谱中的测量方法和设备
CN107690162A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区连接失败的处理方法及装置
CN107770868A (zh) * 2016-08-19 2018-03-06 中兴通讯股份有限公司 一种控制信元取消方法、装置及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952441A4 *
ZTE: "Considerations on 4-Step RACH Procedure for NR-U", 3GPP DRAFT; R2-1816829, 16 November 2018 (2018-11-16), Spokane, US, pages 1 - 6, XP051480769 *

Also Published As

Publication number Publication date
BR112021019100A2 (pt) 2021-11-30
EP3952441A4 (en) 2022-05-18
CN111436067A (zh) 2020-07-21
JP7250162B2 (ja) 2023-03-31
CN111436067B (zh) 2022-04-22
JP2022527893A (ja) 2022-06-07
EP3952441A1 (en) 2022-02-09
US20220015175A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020192632A1 (zh) 小区连接失败的处理方法、终端设备和网络侧设备
US11700646B2 (en) Method and terminal for counting preamble retransmission in random access procedure
JP2021510998A (ja) 上位層ビーム管理
US8374621B2 (en) Methods and apparatus for reducing the likelihood of deadlock in a wireless communication system
US20220116876A1 (en) Link management method, wake-up signal detection method, terminal device and network device
US20100330920A1 (en) Providing improved connection failure detection
CN109151980B (zh) 一种随机接入过程前导码发送功率的控制方法及终端
US20220021476A1 (en) Method for reporting radio link state indicator and terminal device
EP3735088A1 (en) Method for operating on ue and ue
US20210399761A1 (en) Communication device and method of operating the same
WO2021007869A1 (zh) 信息上报方法及相关设备
US20220124794A1 (en) Channel access method, terminal device, and network device
KR20230129532A (ko) 서비스 표시 방법 및 장치
WO2024027607A1 (zh) 边链路先听后说检测方法、终端、基站和存储介质
WO2023046161A1 (zh) 波束失败检测的方法、装置及终端
WO2021204058A1 (zh) 测量参考信号的方法和终端设备
EP3582546A1 (en) Handover control method, and network-side device and system
WO2020253703A1 (zh) 一种波束检测的方法以及波束检测装置
EP4250839A1 (en) Communication method and apparatus
CN114930898A (zh) 数据丢失检测方法、装置、通信设备及存储介质
US20220329519A1 (en) Packet transmission method and electronic device
WO2023109485A1 (zh) 边链路通信方法、通信节点及存储介质
CN111130739B (zh) 空口资源的处理方法、装置、终端及存储介质
CN117676743A (zh) 小区异常处理方法、装置、电子设备及可读存储介质
WO2018196853A1 (zh) 一种上行发送功率控制方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019100

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020779231

Country of ref document: EP

Effective date: 20211025

ENP Entry into the national phase

Ref document number: 112021019100

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210924