WO2020192319A1 - 一种资源配置方法及通信装置 - Google Patents

一种资源配置方法及通信装置 Download PDF

Info

Publication number
WO2020192319A1
WO2020192319A1 PCT/CN2020/076085 CN2020076085W WO2020192319A1 WO 2020192319 A1 WO2020192319 A1 WO 2020192319A1 CN 2020076085 W CN2020076085 W CN 2020076085W WO 2020192319 A1 WO2020192319 A1 WO 2020192319A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
resource
indication information
terminal
message
Prior art date
Application number
PCT/CN2020/076085
Other languages
English (en)
French (fr)
Inventor
温容慧
黎超
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020192319A1 publication Critical patent/WO2020192319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • This application relates to the field of communication technology, and in particular to a resource configuration method and communication device.
  • the dynamic scheduling mechanism that is, each time a terminal device has data transmission, it requests the network device to allocate resources, and the network device is based on the request of the terminal device. The terminal device allocates resources. In this way, since the terminal device needs to wait for the network device to start allocating resources every time there is data transmission, the delay is long, that is, the dynamic scheduling mechanism is not suitable for low-latency services.
  • the other is the authorization-free configuration scheduling (configured grant scheduling), which is the semi-persistent scheduling (SPS) mechanism in the Long Term Evolution (LTE) system.
  • SPS semi-persistent scheduling
  • the network device actively configures resources for the terminal device, so that when the terminal device has data transmission, it can directly transmit data on the configured resource without requesting the network device to allocate resources.
  • the authorization-free configuration scheduling mechanism is suitable for lower delay services.
  • the resources configured by the network device for the terminal device are all periodic.
  • the SPS mechanism can support periodic services and aperiodic services. For aperiodic services, that is, the terminal device sends data from time to time, when the terminal device does not send data, the terminal device will not use the resources allocated by the network device to the terminal device. This leads to a waste of resources.
  • the present application provides a resource configuration method and communication device, which can save system resources when supporting aperiodic services under an authorization-free configuration scheduling mechanism.
  • embodiments of the present invention provide a resource configuration method.
  • This method can be applied to network devices, or to devices such as chips with network functions, including: determining a first message, the first message carrying configuration information and first indication information, and the configuration information is used to indicate the first The first resource configured by the terminal device, where the first indication information is used to indicate whether the first resource is also configured for at least one second terminal device; and the first message is sent to the first terminal device.
  • the network device indicates through the first message whether the first resource configured for the first terminal device is also allocated to at least one second terminal device, so that the first terminal device determines that there is no When sending data on the first resource, data can be sent on the first resource to maximize the utilization of the first resource.
  • the first indication information may be used to indicate the time domain position of the at least one second terminal device in the first resource to send data.
  • the first indication information may be used to indicate that the first terminal device and/or the at least one second terminal device occupy the time domain start position of the first resource to send data and the first resource respectively. The offset of the start position of the time domain.
  • the first indication information is used to indicate a redundancy version (Redundancy Version, RV) configured for the first terminal device and at least one second terminal device.
  • RV Redundancy Version
  • the configuration information is further used to indicate that the number of repetitions of sending data in the first resource by the first terminal device and each second terminal device is the same or different.
  • the first terminal device and the at least one second terminal device may occupy the first resource to repeatedly transmit data based on the number of repetitions configured by the configuration information.
  • the first terminal device and the at least one second terminal device can be configured with configuration information containing different repetition times, so as to ensure that the resources occupied by the first terminal device and the at least one second terminal device are within the maximum repetition times.
  • the network device may configure the first terminal device and the at least one second terminal device with configuration information containing the same number of repetitions, for example, configuration information with the same maximum number of repetitions, so that the first terminal device and the at least one second terminal device can follow the maximum repetition
  • the number of times respectively occupy the first resource to transmit data, so as to maximize the reliability of data transmission.
  • the method further includes: sending second indication information to the first terminal device, where the second indication information is used to indicate that the first terminal device and the at least one second terminal device The manner of multiplexing the first resource, wherein the second indication information may be specifically used to indicate that the first terminal device and the at least one second terminal device use the first resource in turn according to a scheduling period; Or, the first terminal device and the at least one second terminal device alternately use the first resource in any scheduling period.
  • the network device can notify the first terminal device and at least one second terminal device of the multiplexing mode of the first resource through the second indication information, so that the first terminal device does not need to blindly check the first resource. Whether at least one second terminal device occupies the first resource to send data, try to reduce the detection burden caused by the first terminal device for detecting whether the resource is available. At the same time, it can also be ensured that no conflict occurs when the first terminal device and at least one second terminal device occupy the first resource to send data.
  • the first terminal device may also send data to one or more second terminal devices of the at least one second terminal device based on the first resource.
  • the first terminal device sends data to one second terminal device or multiple second terminal devices based on the first resource, that is, the first terminal device and the second terminal device are performing unicast services or multicast services .
  • the first terminal device and the second terminal device originally want to detect the sidelink control information (SCI) of the other party without sending data, so the first terminal device and the second terminal device do not need to additionally check whether each other
  • the first resource is being occupied to send data, so that the detection burden caused by the first terminal device or the second terminal device for detecting whether the resource is available can be reduced.
  • SCI sidelink control information
  • the method further includes: receiving a second message from the first terminal device, where the second message is used to instruct the at least one second terminal device to use the first resource Some or all of the resources.
  • the first terminal device may reconfigure the first resource configured by the network device to at least one second terminal device to save resources as much as possible.
  • the first indication information may also be used to indicate whether the first terminal device needs to detect the SCI of the at least one second terminal device.
  • the first indication information may also be used to indicate whether the first terminal device needs to detect the SCI of at least one second terminal device, and the network device does not need to notify the first terminal device whether it needs to detect at least one second terminal device through another indication information.
  • the SCI of the terminal device can reduce signaling overhead.
  • the first terminal device can determine whether it is necessary to detect the SCI of at least one second terminal device according to the first indication information, that is, to detect whether the at least one second terminal device sends data on the first resource, so as to avoid contact with at least one second terminal device. A conflict occurs when the terminal device occupies the first resource to send data, which improves the reliability of data transmission.
  • the first indication information is also used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • the first indication information may also be used to instruct the first terminal device to detect the time domain position of the SCI of at least one second terminal device, so that the first terminal device only needs to be at the time domain position indicated by the first indication information
  • the SCI of at least one second terminal device is detected without blindly detecting the SCI of the second terminal device on the first resource, thereby reducing the detection burden caused by the first terminal device detecting the SCI of the second terminal device.
  • the first indication information may be specifically used to indicate whether the first terminal device needs to detect the SCI of at least two second terminal devices, wherein the at least two second terminal devices may occupy different time domains.
  • the first resource or the at least two second terminal devices may occupy the first resource in different frequency domains.
  • the resources configured for at least two second terminal devices may be multiple different frequency domain resources under the same time domain resource, or may be multiple different time domain resources under the same frequency domain resource.
  • the network device can allocate the resources of at least two second terminal devices to the first terminal device.
  • the network device can instruct the first terminal device to detect the SCI of at least two terminal devices through the first indication information, so as to ensure that the first terminal device will not contact all the second terminal devices when sending data on the first resource. Occupying the first resource causes conflicts.
  • a second resource allocation method includes:
  • the first terminal device receives a first message from a network device, the first message carrying configuration information and first indication information, the configuration information is used to indicate the first resource configured for the first terminal device, the The first indication information is used to indicate whether the first resource is also configured for at least one second terminal device;
  • the first terminal device sends data to the network device on the first resource according to the first message.
  • the method can be executed by a second communication device.
  • the second communication device can be the first terminal device or a communication device capable of supporting the first terminal device to implement the functions required by the method, and of course, it can also be another communication device, such as a chip system.
  • the second communication device is the first terminal device.
  • the first indication information is used to indicate the time domain position of the at least one second terminal device in the first resource to send data.
  • the method further includes:
  • the first terminal device determines, according to the configuration information, that the number of repetitions of data sent by the first terminal device and each second terminal device in the first resource is the same or different.
  • the method further includes:
  • the first terminal device receives second indication information from the network device, where the second indication information is used to indicate a manner in which the first terminal device and the at least one second terminal multiplex the first resource ;
  • the second indication information is specifically used to indicate:
  • the first terminal device and the at least one second terminal device use the first resource in turn according to a scheduling period; or, the first terminal device and the at least one second terminal device alternate in any scheduling period Use the first resource;
  • the first terminal device sending data to the network device on the first resource according to the first message includes:
  • the first terminal device sends data to the network device on the first resource according to the first message and the second indication information.
  • the method further includes:
  • the first terminal device sends a second message to the network device, where the second message is used to instruct the at least one second terminal device to use some or all of the first resources.
  • the first indication information is also used to indicate whether the first terminal device needs to detect the SCI of the at least one second terminal device.
  • the first indication information is also used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • the first indication information is used to indicate whether the first terminal device needs to detect the SCI of at least two second terminal devices, where the At least two second terminal devices occupy the first resource in different time domains, or the at least two second terminal devices occupy the first resource in different frequency domains.
  • a first network device is provided, for example, the communication device is the first communication device as described above.
  • the network device is used to execute the foregoing first aspect or any possible implementation method of the first aspect.
  • the network device may include a module for executing the method in the first aspect or any possible implementation of the first aspect, for example, including a processing module and a transceiver module that are coupled to each other. among them,
  • the processing module is configured to determine a first message, the first message carrying configuration information and first indication information, the configuration information is used to indicate a first resource configured for a first terminal device, the first indication Information is used to indicate whether the first resource is also configured for at least one second terminal device;
  • the transceiver module is configured to send the first message to the first terminal device.
  • the first indication information is used to indicate the time domain position of the at least one second terminal device in the first resource to send data.
  • the configuration information is further used to indicate that the first terminal device and each second terminal device have the same or different repetition times of sending data in the first resource.
  • the transceiver module is also used for:
  • the second indication information is used to indicate a manner in which the first terminal device and the at least one second terminal multiplex the first resource, wherein the The second indication information is specifically used to indicate:
  • the first terminal device and the at least one second terminal device use the first resource in turn according to a scheduling period; or, the first terminal device and the at least one second terminal device alternate in any scheduling period Use the first resource.
  • the transceiver module is also used for:
  • the first indication information is also used to indicate whether the first terminal device needs to detect the secondary link control message SCI of the at least one second terminal device.
  • the first indication information is also used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • the first indication information is used to indicate whether the first terminal device needs to detect the SCI of at least two second terminal devices, wherein the at least two second terminal devices are not at the same time
  • the domain occupies the first resource, or the at least two second terminal devices occupy the first resource in different frequency domains.
  • a first terminal device of a first type is provided, and the first terminal device is configured to execute the above-mentioned second aspect or the method in any possible implementation manner of the second aspect.
  • the first terminal device may include a module for executing the second aspect or the method in any possible implementation manner of the second aspect, for example, including a processing module and a transceiver module that are coupled to each other. among them,
  • the transceiver module is configured to receive a first message from a network device, the first message carrying configuration information and first indication information, and the configuration information is used to indicate a first resource configured for the first terminal device, so The first indication information is used to indicate whether the first resource is also configured for at least one second terminal device;
  • the processing module is configured to send data to the network device on the first resource according to the first message.
  • the first indication information is used to indicate time domain location information for the at least one second terminal device to send data on the first resource.
  • the processing module is also used to:
  • the transceiver module is also used for:
  • the instruction information is specifically used to indicate:
  • the first terminal device and the at least one second terminal device use the first resource in turn according to a scheduling period; or, the first terminal device and the at least one second terminal device alternate in any scheduling period Use the first resource;
  • the processing module is used for:
  • the transceiver module is also used for:
  • the first indication information is also used to indicate whether the first terminal device needs to detect the SCI of the at least one second terminal device.
  • the first indication information is further used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • the first indication information is used to indicate whether the first terminal device needs to detect the SCI of at least two second terminal devices, wherein the at least two second terminal devices are not at the same time
  • the domain occupies the first resource, or the at least two second terminal devices occupy the first resource in different frequency domains.
  • a second type of network device is provided.
  • the network device is, for example, the first communication device as described above.
  • the network device includes a processor and a transceiver, and is used to implement the foregoing first aspect or the methods described in various possible designs of the first aspect.
  • the network device is a chip set in a communication device.
  • the communication device is a network device.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in a communication device, or if the network device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the processor is configured to determine a first message, the first message carrying configuration information and first indication information, the configuration information is used to indicate a first resource configured for a first terminal device, the first indication Information is used to indicate whether the first resource is also configured for at least one second terminal device;
  • the transceiver is configured to send the first message to the first terminal device.
  • the first indication information is used to indicate the time domain position of the at least one second terminal device in the first resource to send data.
  • the configuration information is further used to indicate that the first terminal device and each second terminal device have the same or different repetition times of sending data in the first resource.
  • the transceiver is also used for:
  • the second indication information is used to indicate a manner in which the first terminal device and the at least one second terminal multiplex the first resource, wherein the The second indication information is specifically used to indicate:
  • the first terminal device and the at least one second terminal device use the first resource in turn according to a scheduling period; or, the first terminal device and the at least one second terminal device alternate in any scheduling period Use the first resource.
  • the transceiver is also used for:
  • the first indication information is also used to indicate whether the first terminal device needs to detect the secondary link control message SCI of the at least one second terminal device.
  • the first indication information is also used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • the first indication information is used to indicate whether the first terminal device needs to detect the SCI of at least two second terminal devices, wherein the at least two second terminal devices are not at the same time
  • the domain occupies the first resource, or the at least two second terminal devices occupy the first resource in different frequency domains.
  • a second type of first terminal device is provided.
  • the first terminal device is, for example, the aforementioned second communication device.
  • the first terminal device includes a processor and a transceiver, and is used to implement the foregoing second aspect or the methods described in various possible designs of the second aspect.
  • the first terminal device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the transceiver is configured to receive a first message from a network device, the first message carrying configuration information and first indication information, and the configuration information is used to indicate the first resource configured for the first terminal device, so The first indication information is used to indicate whether the first resource is also configured for at least one second terminal device;
  • the processor is configured to send data to the network device on the first resource according to the first message.
  • the first indication information is used to indicate the time domain position of the at least one second terminal device in the first resource to send data.
  • the processor is also used to:
  • the transceiver is further used for:
  • the instruction information is specifically used to indicate:
  • the first terminal device and the at least one second terminal device use the first resource in turn according to a scheduling period; or, the first terminal device and the at least one second terminal device alternate in any scheduling period Use the first resource;
  • the processor is used for:
  • the transceiver is also used for:
  • the first indication information is also used to indicate whether the first terminal device needs to detect the SCI of the at least one second terminal device.
  • the first indication information is also used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • the first indication information is used to indicate whether the first terminal device needs to detect the SCI of at least two second terminal devices, wherein the at least two second terminal devices are not at the same time
  • the domain occupies the first resource, or the at least two second terminal devices occupy the first resource in different frequency domains.
  • the seventh aspect provides a third network device.
  • the network device may be the first communication device in the above method design.
  • the network device is a chip set in a communication device.
  • the network device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the third network device is caused to execute the foregoing first aspect or any one of the possible implementation methods of the first aspect.
  • the third network device may also include a communication interface, and the communication interface may be a transceiver in the network device, for example, implemented by the antenna, feeder, and codec in the third network device, or if the first
  • the three types of network devices are chips set in network equipment, and the communication interface may be the input/output interface of the chip, such as input/output pins.
  • a third type of first terminal device is provided.
  • the first terminal device may be the second communication device in the above method design.
  • the first terminal device is a chip provided in the terminal device.
  • the first terminal device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions. When the processor executes the instructions, the first terminal device of the third type executes the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the third type of first terminal device may also include a communication interface, and the communication interface may be a transceiver in the first terminal device, for example, implemented by the antenna, feeder, and codec in the communication device, or if The third type of first terminal device is a chip set in a terminal device, and the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • a communication system may include the first network device described in the third aspect, the second network device described in the fifth aspect, or the third communication device described in the seventh aspect , And including the first type of first terminal device described in the fourth aspect, the second type of first terminal device described in the sixth aspect, or the third type of first terminal device described in the eighth aspect.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. The method described in.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the first aspects described above. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possibilities of the second aspect. The method described in the design.
  • the network device indicates through the first message whether the first resource configured for the first terminal device is also configured to at least one second terminal device, so that the first terminal device determines that there is no When sending data on the first resource, data can be sent on the first resource to maximize the utilization of the first resource.
  • Figure 1 is a schematic diagram of several scenarios of V2X
  • Figure 2 is a schematic diagram of an application scenario provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of RV
  • FIG. 4 is a flowchart of a resource configuration method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a time position of a terminal device sending data in a first resource according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a time position when a terminal device sends data in a first resource according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a time position when a terminal device sends data in a first resource according to an embodiment of the present invention
  • FIG. 8 is another flowchart of a resource configuration method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a time position of a terminal device sending data in a first resource according to an embodiment of the present invention.
  • FIG. 10 is another flowchart of a resource configuration method provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of multiple first terminal devices detecting the SCI of a second terminal device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a first terminal device detecting SCI of multiple second terminal devices according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a first terminal device detecting an SCI of a second terminal device according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a structure of a network device provided by an embodiment of the present invention.
  • 15 is a schematic diagram of a structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present invention.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) etc.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be called a terminal device, a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and so on.
  • the terminal device can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices introduced above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • Network devices for example, include access network (AN) equipment, such as base stations (for example, access points, macro base stations, micro base stations, or relay stations, etc.), which may refer to the access network through one or more air interfaces
  • AN access network
  • base stations for example, access points, macro base stations, micro base stations, or relay stations, etc.
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network device may include the evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or the long term evolution-advanced (LTE-A), or may also include the 5G NR system
  • the next generation node B (gNB) may also include the centralized unit (CU) and distributed unit (CU) in the cloud radio access network (Cloud RAN) system.
  • DU cloud radio access network
  • V2X in the version (Rel)-14/15/16, V2X as a major application of device-to-device (D2D) technology was successfully established.
  • V2X will optimize the specific application requirements of V2X on the basis of the existing D2D technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and Several application requirements such as vehicle-to-network (V2N) communication interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network devices.
  • network equipment such as RSU, there is another type of V2N that can be included in V2I.
  • V2N refers to the communication between the vehicle and the base station/network.
  • RSU includes two types: terminal type RSU, because it is located on the roadside, the terminal type RSU is in a non-mobile state, and there is no need to consider mobility; base station type RSU can provide timing synchronization for vehicles communicating with it And resource scheduling.
  • PUSCH Physical Uplink Shared Channel, PUSCH Physical Uplink Shared Channel
  • PUSCH transmission includes two types:
  • a dynamic scheduling mechanism is defined, that is, each time a terminal device has data transmission, the network device is requested to allocate resources, and the network device sends downlink control information (DCI) to the terminal device according to the request of the terminal device.
  • the DCI contains uplink data scheduling information, telling the terminal device what time-frequency resource location and what configuration parameters (configuration parameters include, for example, modulation and coding scheme (MCS) or redundancy version (RV). ) And so on to send uplink data.
  • MCS modulation and coding scheme
  • RV redundancy version
  • the concept of configured authorization (configured grant, CG) is defined.
  • two types of configuration authorization exemption are defined, namely, authorization exemption type 1 (configured grant Type 1) and authorization exemption type 2 (configured grant Type 2).
  • RRC radio resource control
  • the time-frequency resource location of the authorization-free type 1 is provided by the network device to the terminal device through radio resource control (radio resource control, RRC) signaling, that is, the network device configures high-level parameters for the terminal device through RRC signaling, such as authorization-free configuration
  • RRC radio resource control
  • the terminal device After receiving the high-level parameters of the configured uplink grant (rrc-Configured Uplink Grant), the terminal device can send data on the resource periodically configured by the network device.
  • License-free type 2 is that the network device first sends high-level parameters that do not include rrc-Configured Uplink Grant, and then activates or deactivates license-free type 2 by physical layer or layer 1 (L1) signaling (ie, DCI). That is, in addition to sending high-level parameters, the network device also sends DCI to activate or deactivate CG type 2.
  • L1 signaling ie, DCI
  • the network device activates the authorization-free type 2 through the DCI the SPS resource is also designated for the terminal device in the DCI, and the resource will be scheduled periodically according to the configured authorization-free configuration, and there is no need to indicate its resource location through the DCI.
  • the terminal device first receives high-level parameters that do not include rrc-ConfiguredUplinkGrant, and when receiving the DCI, it can send data on the time-frequency resources periodically configured by the network device.
  • RV Redundancy Version
  • the configuration of the authorization-free Configured grant includes: sending cycle, repetition times, sending start time, RV, etc.
  • RV defines the transmission timing of the terminal device to transmit data, and the terminal device can only start to transmit data when the RV is 0.
  • Figure 2 is a schematic diagram of two RVs of the terminal device.
  • One of the RVs, for example, RV1 is (0, 3, 0, 3)
  • the network device configures the terminal device to send data with a repetition of 8, then the terminal The device can only start sending data at the 1st, 3rd, 5th and 7th sending opportunities.
  • RV2 is (0, 2, 3, 1)
  • the network device configures the terminal device to send data with 8 repetitions, and the terminal device can only send data at the first and fifth transmission opportunities. You can start sending data.
  • the number of repetitions here indicates the maximum number of repetitions of data sent by the terminal device in one transmission period.
  • a transmission period (Periodicity) including 8 transmission opportunities is taken as an example.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • typical eMBB services include: ultra-high-definition video, augmented reality (AR), virtual reality (virtual reality, VR), etc.
  • AR augmented reality
  • VR virtual reality
  • the main characteristics of these services are large transmission data volume and high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interaction applications such as remote repair and remote surgery. The main feature of these services is that they require ultra-high reliability.
  • Typical mMTC services include: smart grid power distribution automation, smart cities, etc.
  • the main features are a huge number of networked devices, a small amount of transmitted data, and data insensitive to transmission delays.
  • These mMTC terminals need to meet low cost and very long standby The need for time.
  • Different services have different requirements for mobile communication systems. How to better support the data transmission requirements of multiple different services at the same time is a technical problem that the current 5G communication system needs to solve. For example, how to support URLLC service and eMBB service at the same time is one of the hot topics of discussion in the current 5G mobile communication system.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the first synchronization signal and the second synchronization signal are only for distinguishing different synchronization signals, but do not indicate the difference in content, priority, transmission order, or importance of the two synchronization signals.
  • PUSCH transmission can be based on an authorization-free configuration scheduling mechanism, which supports periodic services and aperiodic services.
  • the resources configured by the network device for the terminal device are periodic, so it may happen that the network device configures the resource for the terminal device, but the current terminal device does not need to send or receive data, which leads to The waste of resources.
  • multiple terminal devices can multiplex the same resource, for example, the first resource, so that when a certain terminal device of the multiple terminal devices does not perform data transmission on the first resource, the multiple terminal devices The other terminal devices in the device can use the first resource for data transmission, thereby saving resources.
  • the network device configures the first resource for the certain terminal device, it may send indication information to the certain terminal device.
  • the indication information may be used to indicate whether the first resource is still configured for other terminal devices, so that a certain
  • the terminal device may send data on the first resource according to the instruction information, so as to avoid possible conflicts with other terminal devices when sending data using the first resource.
  • the technical solutions provided by the embodiments of the present application can be applied to a 5G system, such as an NR system, or an LTE system, or can also be applied to a next-generation mobile communication system or other similar communication systems, and there is no specific limitation.
  • a 5G system such as an NR system, or an LTE system
  • a next-generation mobile communication system or other similar communication systems there is no specific limitation.
  • Fig. 3 includes a core network device, a network device, and at least one terminal device.
  • Fig. 3 uses an example in which at least one terminal device is two terminal devices.
  • the terminal device is connected to the network device in a wireless manner, and the network device is connected to the core network device in a wireless or wired manner.
  • the core network equipment and the network device can be separate and different physical equipment, or the function of the core network device and the logical function of the network device can be integrated on the same physical device, or part of the core network can be integrated on the same physical device.
  • the terminal device can be a fixed position or movable.
  • FIG. 3 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay equipment and wireless backhaul equipment, which are not shown in FIG. 3.
  • the embodiments of the present application do not limit the number of core network equipment, network devices, and terminal devices included in the mobile communication system.
  • a network device is an access device that a terminal device accesses to the mobile communication system in a wireless manner. It can be a base station NodeB, an evolved base station eNodeB, a base station in a 5G communication system, a base station in a future mobile communication system, or wireless fidelity ( WIreless-FIdelity (Wi-Fi) system access node, etc., the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless network device.
  • Network devices and terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons, and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network device and the terminal device.
  • the embodiments of the present application can be applied to downlink signal transmission, can also be applied to uplink signal transmission, and can also be applied to D2D signal transmission.
  • the sending device is a network device, and the corresponding receiving device is a terminal device.
  • the sending device is a terminal device, and the corresponding receiving device is a network device.
  • the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the embodiment of the present application does not limit the signal transmission direction.
  • the communication between the network device and the terminal device and between the terminal device and the terminal device can be carried out through the licensed spectrum, or through the unlicensed spectrum, or through the licensed spectrum and the unlicensed spectrum at the same time Communication.
  • Communication between network devices and terminal devices and between terminal devices and terminal devices can be through the frequency spectrum below 6G, or through the frequency spectrum above 6G, and the frequency below 6G and the frequency above 6G can also be used for communication at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the embodiment of the present application provides a first resource configuration method. Please refer to FIG. 4, which is a flowchart of this method.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device may be a network device or a communication device capable of supporting the network device to realize the functions required by the method, or the first communication device may be a terminal device or a communication device capable of supporting the terminal device to realize the functions required by the method
  • it can also be other communication devices, such as chip systems. The same is true for the second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • the communication device with the required functions can of course also be other communication devices, such as a chip system.
  • the first communication device may be a network device, the second communication device is a terminal device, or both the first communication device and the second communication device are terminals.
  • the device, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the terminal device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is executed by the network device and the terminal device as an example, that is, the first communication device is the network device and the second communication device is the terminal device as an example.
  • the network device described below may be a network device in the network architecture shown in FIG. 3, and the terminal described below The device may be a terminal device in the network architecture shown in FIG. 1 or FIG. 3. If the first terminal device in the following is the vehicle 1 in the network architecture shown in FIG. 1, then the second terminal device in the following may be the vehicle 2 in the network architecture shown in FIG. Or, if the first terminal device hereinafter is the terminal device 1 in the network architecture shown in FIG. 3, the second terminal device hereinafter may be the terminal device 2 in the network architecture shown in FIG. 3.
  • the network device determines a first message, the first message carries configuration information and first indication information, the configuration information is used to indicate the first resource configured for the first terminal device, and the first indication information is used to indicate whether the first resource is still available. It is configured to at least one second terminal device.
  • the configuration can be performed through the first message.
  • “determining" the first message can also be understood as “generating” the first message or “obtaining” the first message, etc.
  • the first message may be dedicated signaling, for example, radio resource control (Radio Resource Control, RRC) signaling, or downlink control information (Downlink Control Information, DCI) signaling, etc.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first message may carry configuration information, and the configuration information may be used to indicate the first resource to be configured for the first terminal device.
  • the network device may also configure the first resource as at least one second terminal device.
  • the first terminal device and at least one second terminal device both transmit data on the first resource, it may happen that the first terminal device and one of the second terminal devices or multiple second terminal devices simultaneously transmit on the first resource Data, then the first terminal device and at least one second terminal device will interfere with each other, affecting the receiving end to receive data normally. Even, because the first terminal device and the at least one second terminal device interfere with each other, the first terminal device or the at least one second terminal device fails to transmit data.
  • the first message may also carry first indication information, and the first indication information may be used to indicate whether the first resource is also allocated to at least one second terminal device, so that the first terminal device can follow the first indication
  • the information knows whether any other terminal device reuses the first resource with the first terminal device, so that the first terminal device can determine how to send data on the first resource according to the first indication information, so as to avoid using the first resource with at least one second terminal device. A possible conflict caused when a resource sends data.
  • the configuration information and the first indication information are sent in different messages.
  • the configuration information is carried in the first message
  • the first indication information is carried in the second message
  • the network device may send The first terminal device sends the first message and the second message.
  • the second message may also be RRC signaling or DCI signaling.
  • the network device may send the first message first and then send the second message, or may send the second message first and then send the first message, or may send the first message and the second message at the same time.
  • the first indication information is used to indicate whether the first resource is also configured for at least one second terminal device, including but not limited to one of the following methods:
  • the first indication information occupies one bit, and the value of this bit is used to indicate whether the first resource is still configured for at least one second terminal device. For example, the value of the bit is 0, which can indicate that the first resource is not configured for at least one second terminal device; on the other hand, the value of the bit is 1, which can indicate that the first resource is also configured for at least one second terminal device. Terminal device. Or, the value of the bit is 1, which can indicate that the first resource is not configured for at least one second terminal device; relatively, the value of the bit is 0, which can indicate that the first resource is also configured for at least one second terminal device. Terminal device.
  • the first indication information occupies one bit, so as to save the number of bits occupied by the first indication information as much as possible.
  • the first indication information is used to indicate the time domain position of at least one second terminal device sending data on the first resource. This method implicitly indicates whether the first resource is also configured for the at least one second terminal device. Since at least one second terminal device can send data at certain time-domain locations on the first resource, it implicitly indicates that the first resource is allocated to at least one second terminal device.
  • the configuration information may also be used to indicate the RV configured for the first terminal device, and the first indication information may occupy at least two bits, for example, may be a bitmap corresponding to the RV.
  • FIG. 5 is a schematic diagram of a time domain position of the terminal device sending data in the first resource.
  • the RV configured by the network device for the first terminal device (UE1 shown in FIG. 5) is (0, 3, 0, 3), and the first indication information is 00, which is used to indicate that no second terminal device can occupy the first resource , That is, the first resource is not configured for a second terminal device; or, the first indication information may be 01, which is used to indicate the start time when the second terminal device (UE2 shown in FIG.
  • the domain position is the second transmission opportunity, that is, the second terminal device can occupy the first resource at the second transmission opportunity.
  • FIG. 6 is a schematic diagram of a time domain position of the terminal device sending data in the first resource.
  • the RV configured by the network device for the first terminal device (UE1 shown in FIG. 6) is (0, 2, 3, 1), and the first indication information may be 0010, which is used to indicate that there is a second transmission opportunity at the third transmission opportunity.
  • the terminal device (UE3 shown in FIG.
  • the first indication information may be 0000, which is used to indicate that no second terminal device may occupy the first resource; or, the first indication information may be 0110 , Used to indicate that there are second terminal devices that can occupy the first resource at the second transmission opportunity and the third transmission opportunity, respectively, and the two second terminal devices may be UE2 and UE3 in FIG. 6.
  • the indication through the bitmap is only an example, and the embodiment of the present application does not limit how to indicate through the first indication information whether the first resource is still configured to at least one second terminal device.
  • the first indication information indicates the time domain position of the first terminal device and at least one second terminal device to send data in the first resource, including but not limited to one of the following methods:
  • the first indication information may be used to indicate the offset between the time domain start position of the first terminal device to send data on the first resource and the time domain start position of the first resource.
  • the network device and the first terminal device may agree in advance, and it may default that each second terminal device in the at least one second terminal device sends data at the time domain start position of the first resource and the time domain of the first resource The offset of the starting position is 0.
  • the first indication information may be used to indicate the offset between the time domain start position of each of the at least one second terminal apparatus sending data in the first resource and the time domain start position of the first resource.
  • the network device and the first terminal device may agree in advance, and it may be assumed that the offset between the time domain start position of the first terminal device sending data in the first resource and the time domain start position of the first resource is 0 .
  • the first indication information may be used to indicate the offset between the time domain start position of the first terminal device to send data on the first resource and the time domain start position of the first resource, and the offset of at least one second terminal device The offset between the time domain start position of each second terminal device sending data on the first resource and the time domain start position of the first resource.
  • the first terminal device sends data in the first resource at the time domain start position
  • the second terminal device sends data in the first resource at the time domain start position of the RV indication.
  • FIG. 5 is a schematic diagram of the time position of the terminal device sending data in the first resource.
  • the RV configured by the network device for the first terminal device (UE1 in FIG. 5) and the second terminal device (UE2 in FIG. 5) are both (0, 3, 0, 3).
  • the first indication information may be used to indicate the offset between the time domain start position of UE1 sending data in the first resource and the time domain start position of the first resource, and/or UE2 start data transmission in the time domain of the first resource The offset between the start position and the time domain start position of the first resource.
  • the first indication information may indicate that the offset between the time domain start position of UE1 sending data in the first resource and the time domain start position of the first resource is 0, and indicate the time domain of UE2 sending data in the first resource
  • the offset between the start position and the time domain start position of the first resource is 1, then corresponding to Figure 5, UE1 can start sending data from the first sending opportunity, while UE2 can start from the first sending opportunity according to the RV.
  • Send data but because the first indication information indicates that the offset between the time domain start position of UE2 sending data in the first resource and the time domain start position of the first resource is 1, UE2 starts at the second sending opportunity send data.
  • the start position of the time domain where UE1 sends data in the first resource is an odd number of sending opportunities (1, 3, 5, 7), and UE2 is in the first resource.
  • the starting position of the time domain of sending data is an even number of sending opportunities (2, 4, 6, 8).
  • the network device can also configure different time domain start sending positions in the first resource for the first terminal device and the at least one second terminal device, so as to avoid the first terminal device and the at least one second terminal device at the same time.
  • Sending data causes interference.
  • the network device configures different RVs for the first terminal device and at least one second terminal device to correspond to different time-domain start sending positions. In this case, the network device may not notify the first terminal device and the at least one second terminal device of the respective time domain start sending positions.
  • the first indication information may also indicate the time domain position of the first terminal device to send data on the first resource by indicating the RV configured for the first terminal device and the second terminal device, and/or, at least one second terminal device The time domain position at which the terminal device sends data in the first resource.
  • the first indication information may carry RV information configured for the first terminal device and/or RV information configured for the second terminal device.
  • the first indication information carries RV information indicating that the RV of the first terminal device is (0, 3, 0, 3), and the RV indicated by the second terminal device is (3, 0, 3, 0). Then, according to the RV information in the first indication information, it can be determined that the time domain starting position of the first terminal device to send data in the first resource is an odd number of transmission opportunities (1, 3, 5, 7), and the second terminal device is at The time domain starting position of the first resource to send data is the even number of sending opportunities (2, 4, 6, 8).
  • the network device and the terminal device can agree in advance to add RV options, for example, (3, 0, 3, 0) .
  • the network device can configure the RV for the terminal device through signaling, and the signaling can carry RV information used to indicate (3, 0, 3, 0).
  • the RV indicates the time domain start position of the first terminal device in the first indication information to send data on the first resource, and/or at least one second terminal device sends data on the first resource
  • the time domain start position of the data is just an example.
  • the embodiment of this application can also indicate the information in other ways.
  • the first resource includes 8 time units in the time domain, and 8 bits can be used to indicate 8 time units (transmission opportunities), and each 1bit indicates the corresponding Whether the time unit is still configured for the second terminal device, and then use 2 bits to indicate the time domain start position of the first terminal device to send data on the first resource, and/or, at least one second terminal device sends data on the first resource The starting position of the time domain.
  • the first indication information may indicate the time domain position of the first terminal device and/or the second terminal device to send data in the first resource, so that the first terminal device can determine how to be in the first resource according to the first indication information.
  • Data is sent on one resource, so as to avoid the first terminal device and the second terminal device occupying the same resource and sending data at the same time causing data transmission failure, thereby improving the reliability of data transmission.
  • the network device sends the first message to the first terminal device, and the first terminal device receives the first message from the network device.
  • the network device determines the first message, if the first message is dedicated signaling, the network device sends the first message to the first terminal device, where "send" can be understood as unicast, and the terminal device can receive from the network device The first news.
  • the first terminal device sends data to the network device on the first resource according to the received first message.
  • the first terminal device can determine the first resource configured by the network device for the first terminal device according to the configuration information carried in the first message.
  • the first terminal device may also determine whether the first terminal device is configured to at least one second terminal device according to the first indication information carried in the first message, so as to send data to the network device on the first resource according to the first indication information to Avoid conflicts with at least one second terminal device on the first resource, and improve the reliability of data transmission.
  • the first terminal device may determine, according to the first indication information, the time domain position of sending data in each scheduling period, and whether to detect the SCI of each of the at least one second terminal device before sending the data. Wherein, if the first terminal device detects the SCI of a certain second terminal device, it can be considered that a certain second terminal device sends data on the first resource.
  • the first terminal device can determine the starting time domain position of sending data according to the time domain position of sending data in each scheduling period and the detected SCI of each second terminal device, so as to avoid contact with a certain second terminal device.
  • a possible conflict of data transmission by the device for example, a first terminal device and a certain second terminal device simultaneously transmit data at the same time domain location.
  • the first terminal device determines the time domain position of sending data in each scheduling period according to the first indication information, and whether to detect the SCI mode of each second terminal device before sending data There are also differences, including but not limited to one of the following methods:
  • the first terminal device determines according to the first indication information that it needs to check each time before sending data The SCI of the opportunity is sent before the start time domain position of the sending data. This is because the first indication information only indicates whether the first resource is multiplexed, and does not indicate at which time domain position the first resource is multiplexed. Therefore, the first terminal device needs to detect the SCI every time before sending data to try its best. It is guaranteed to avoid conflicts with at least one second terminal device on the first resource.
  • the first terminal device determines from the detected SCI that there is a situation in which the second terminal device sends data on this sending opportunity for the first terminal device to send data on the first resource, then the first terminal device does not send data temporarily, but When it is determined that there is no data sent by the second terminal device at this sending opportunity, data is sent again at this sending opportunity.
  • the network device can send configuration information and first indication information to the first terminal device (UE1) and the second terminal device (UE2), respectively.
  • UE1 and UE2 can determine whether to detect each other's SCI according to the first indication information.
  • the SCI is indicated by a dotted line in FIG. 8.
  • the first indication information occupies at least two bits, it is used to indicate the time domain position of at least one second terminal device to send data in the first resource. Then the first terminal device can determine where to detect the SCI in the first resource according to the first indication information, without blind detection, that is, it may not be necessary to detect the start time domain position of the transmitted data before each data transmission. The SCI of the previous transmission opportunity reduces the burden of the first terminal device as much as possible.
  • the first terminal device uses the configuration of the network device, such as configuration information and first indication information, to determine the offset of the initial transmission time domain position of the first terminal device to send data on the first resource, and within a scheduling period
  • the number of repetitions, the sending cycle, and the number of the cycle to determine the sending time domain position and maximum sending times of sending data in this scheduling cycle, and the initial sending time domain position of at least one second terminal device in the first resource to send data Therefore, the first terminal device further determines whether it is necessary to detect the SCI of the second terminal device before the transmission time domain position of the data to be transmitted in the current scheduling period. If the SCI of the second terminal device needs to be detected, and the SCI of the second terminal device is detected, it is further determined which resources on the first resource are available according to the detected SCI, and data is sent on the determined available resource.
  • the offset of the initial transmission time domain position of the first terminal device sending data on the first resource is the first sending opportunity of the first terminal device sending data on the first resource and the configuration information indication in the first message
  • the time domain position offset (the offset of the time domain start position of the first resource), for example, the number of transmission opportunity offsets relative to the time position indicated by the configuration information.
  • the period number can be from the period of the first sending opportunity to 0, and the period of the next first sending opportunity to 1.
  • the transmission period can be an interval between adjacent periods.
  • the first terminal device After the first terminal device detects the SCI of the at least one second terminal device, it can determine which resources on the first resource are available according to the detected SCI.
  • the network device informs the terminal device through the RV configuration.
  • the RV configured by the network device for the first terminal device is (0, 2, 3, 1)
  • the first resource is also configured as three second terminal devices , That is, the number of multiplexed users of the first resource is 3.
  • FIG. 7 is a time domain position diagram of multiple terminal devices sending data in the first resource.
  • Fig. 7 takes 3 terminal devices as an example.
  • the 3 terminal devices are UE1, UE2, and UE3 respectively.
  • the RVs configured by the network device for UE1, UE2, and UE3 are all (0, 2, 3, 1), and the network device
  • the maximum number of repetitions configured for UE1, UE2, and UE3 for sending data in the first resource are all the same, for example, the maximum number of repetitions is 8.
  • the first cycle (the first cycle from the left in Figure 7)
  • UE1 has a chance to start sending data first
  • UE3 has a chance to start sending data first. In this way, the delay of service transmission by multiple terminal devices can be balanced as much as possible.
  • the first terminal device starts with the first transmission opportunity and the fifth transmission opportunity in the first cycle, and the maximum number of repetitions is 8; the first terminal device starts with the first transmission opportunity and the fifth transmission opportunity in the second cycle.
  • the second sending opportunity and the sixth sending opportunity are the initial sending opportunities, and the maximum number of repetitions is 7; the first terminal device uses the third sending opportunity and the seventh sending opportunity as the initial sending opportunities in the third cycle , The maximum number of repetitions is 6; the first terminal device re-starts the first transmission opportunity and the fifth transmission opportunity in the fourth cycle, and the maximum number of repetitions is 8. It should be noted that if the terminal device repeatedly sends data multiple times, the initial transmission opportunity within the period configured by the network device is 1, and the maximum transmission is 8 times.
  • the terminal device It does not reach the maximum number of repetitions of 8 times, and it needs to stop sending when it reaches the end of the resource allocation. For example, in the first cycle, UE1 starts sending data at the first sending opportunity and can repeat sending up to 8 times, while UE2 starts sending at the second sending opportunity and can send up to 7 times, that is, sending to resource allocation Stop sending data at the cutoff position.
  • the network device and the terminal device may agree that the initial transmission opportunity in each cycle is modulo the number of multiplexed users, and one transmission opportunity is delayed in turn. This is to keep multiple terminal devices in a fair condition, and it is not always possible for a terminal device to always be the first to start sending data. Take this as an example in Figure 7 above.
  • the first terminal device may determine the maximum number of repetitions of data sent by the second terminal device this time carried by the detected SCI of the second terminal device. 2.
  • the start position and end position of the terminal device to send data For example, if the number of repetitions required for the second terminal device to send data this time is 2, and the time domain start position of the data to be sent is at the first transmission opportunity in a scheduling period, other terminal devices can determine the terminal according to the SCI The device needs to occupy the first sending opportunity and the second sending opportunity to send data.
  • the first indication message configured by the network device for UE1 indicates that UE1 sends data at the time domain start position of the first resource and the time domain of the first resource.
  • the offset of the starting position is 0, then UE1 can determine that there is no need to detect SCI at the first transmission opportunity, and the maximum number of repetitions for UE1 to send data on the first resource is 8 times.
  • the first indication message configured by the network device for UE2 indicates that the offset between the time domain start position of UE2 sending data on the first resource and the time domain start position of the first resource is 1, UE2 can determine that the time domain start position of the first resource is 1.
  • the sending opportunity can start sending data, then UE2 needs to detect the SCI of UE1 at the first sending opportunity, and UE2 can determine that the maximum number of repetitions for sending data on the first resource is 7 times. If UE2 detects the SCI of UE1 at the first sending opportunity, then UE2 does not send data at the second sending opportunity first, and UE2 can check the second sending opportunity and whether there is UE1's SCI in the sending opportunities after the second sending opportunity. Until UE2 does not detect the SCI of UE1, UE2 will send data at the next configured initial sending opportunity.
  • the second terminal device can determine which of the remaining resources in the first resource are available according to the SCI, without the need to detect the first resource at all transmission opportunities. SCI of a terminal device.
  • the maximum number of repetitions configured by the network device for the first terminal device and the at least one second terminal device are not the same, that is, the maximum number of times the first terminal device and the at least one second terminal device send data in the first resource
  • the number of repetitions is not the same.
  • the resources occupied by the first terminal device and the at least one second terminal device are both within the maximum number of repetitions.
  • Time domain resources occupy up to 8 sending opportunities in a sending cycle, and the maximum repetition times of different terminal devices are different, so as to ensure that the occupied time resources will not exceed 8 sending opportunities (time units) , Saving resources.
  • the configuration information may also be used to indicate that the maximum number of repetitions of data sent by each of the first terminal device and at least one second terminal device in the first resource is the same, that is, the network device is the first terminal device.
  • the maximum number of repetitions configured for one terminal device and at least one second terminal device is the same.
  • the time-domain start sending position is not the same, so in order to ensure that the first terminal device and the at least one second terminal device are the same
  • the maximum number of repetitions, the first terminal device and at least one second terminal device may occupy more resources.
  • Figure 9 Taking Figure 9 as an example that includes two terminal devices, UE1 and UE2 respectively, it is introduced when the first terminal device and at least one second terminal device are configured with the same number of repetitions. , The principle that the first terminal device and at least one second terminal device share more resources.
  • Fig. 9 takes the RV configured by the network device for UE1 and UE2 as (0, 3, 0, 3) as an example.
  • UE1 can determine to set the first transmission opportunity, the third transmission opportunity, the fifth transmission opportunity or the seventh transmission opportunity.
  • Two sending opportunities are used as the time domain starting position for sending data, and the SCI of UE2 does not need to be detected in the first sending opportunity, and it needs to be detected in the third sending opportunity, the fifth sending opportunity, or the seventh sending opportunity
  • UE2 can determine that the second sending opportunity, the fourth sending opportunity, the sixth sending opportunity, or the eighth sending opportunity can be used as the time domain starting position of sending data, and it needs to be detected at each starting position The SCI of UE1 at the previous transmission timing.
  • the time unit occupied by UE2 is still 8 transmission opportunities , It is just an extension of one transmission opportunity in the time domain direction. Therefore, the time unit occupied by UE1 and UE2 is 9 transmission opportunities. Compared with the first cycle in Figure 7, the time unit occupied by UE1 and UE2 ( That is, 8 transmission opportunities), UE1 and UE2 in FIG. 9 occupy more time units. In the same way, in the second cycle in FIG. 9, the time unit occupied by UE1 extends one transmission opportunity in the time domain direction, and the time units occupied by UE1 and UE2 are also more.
  • the first terminal device and at least one second terminal device reuse the first resource.
  • the network device may also instruct the first terminal device and at least one second terminal device how to reuse the first resource.
  • the first terminal device and the at least one second terminal device multiplex the first resource according to the instructions of the network device, and there is no need to increase the number of times of detecting each other's SCI, thereby reducing the burden on the terminal device.
  • the network device may send second indication information to the first terminal device, where the second indication information is used to indicate the manner in which the first terminal device and at least one second terminal multiplex the first resource.
  • the second indication information here may also be the first indication information as described above, that is, the first indication information is also used to indicate the manner in which the first terminal device reuses the first resource with at least one second terminal. This helps reduce signaling overhead.
  • the network device sends the second instruction information to the first terminal device.
  • the multiplexing mode of the first terminal device and the at least one second terminal device may also be different.
  • the multiplexing manner of multiplexing the first resource by the first terminal device and at least one second terminal device includes but is not limited to one of the following methods:
  • a possible application scenario is that the first terminal device sends data to one second terminal device among at least one second terminal device based on the first resource, that is, the first terminal device and the second terminal device perform unicast services.
  • the multiplexing manner in which the first terminal device and the second terminal device multiplex the first resource includes one of the following manners:
  • the second indication information may be used to instruct the first terminal device and the second terminal device to use the first resource in turn according to the scheduling period.
  • the network device configures the same first resource for the first terminal device and the second terminal device.
  • the second indication information may occupy 1 bit, and the value of this bit may indicate the first terminal device to use an odd transmission period to send data in the first resource, and instruct the second terminal device to use an even transmission period to send data in the first resource.
  • the value of this bit is 0, which instructs the first terminal device to use an odd transmission period to send data in the first resource, and instructs the second terminal device to use an even transmission period to send data in the first resource.
  • this is only an example.
  • the value of this bit is 1, indicating that the first terminal device uses an odd transmission period to send data in the first resource, and instructs the second terminal device to use an even transmission period to send data in the first resource.
  • the odd transmission period here can be understood as the first transmission period on the first resource, the third transmission period, etc.
  • the even transmission period can be understood as the second transmission period on the first resource, the fourth Sending cycles, etc.
  • the network device configures the first resource for the first terminal device, but the first terminal device configures part or all of the resources in the first resource to the second terminal device, for example, the first terminal device
  • the terminal device sends the configuration information to the second terminal device through the sidelink resource.
  • the configuration information may include part or all of the resources in the first resource, or the number of repetitions, the transmission period, and so on.
  • the first terminal device configures resources for the second terminal device, it may send a third message to the network device.
  • the third message is used to instruct the second terminal device to use some or all of the resources in the first resource to inform the network device of the second
  • the resource used by the terminal device is the resource of the first terminal device.
  • the network device can send the second instruction information according to the third message, that is, specify the multiplexing of the first resource for the first terminal device and the second terminal device. the way.
  • the second indication information may be used to instruct the second terminal device to use the first resource in turn with the first terminal device in the first cycle after receiving the configuration information sent by the first terminal device.
  • the third message may also be used to instruct the network device not to reconfigure the first resource allocated to the first terminal device to other terminal devices.
  • the other terminal devices here refer to terminal devices other than the second terminal device.
  • the second indication information may be used to instruct the first terminal device and the second terminal device to alternately use the first resource in any scheduling period.
  • the second indication information may be used to indicate the time domain offsets of the first terminal device and the second terminal device in the first transmission cycle of the first resource, so that the first terminal device and the second terminal device The second terminal device may determine the initial sending position of the data to be sent in the first sending cycle according to the time domain offset specified by the second indication information, and then start sending data at the determined initial sending position. In this way, the first terminal device and the second terminal device do not need to wait until the next sending cycle to start sending data, which can reduce the time delay of sending data, which is helpful for service transmission with lower delay requirements.
  • the network device may not send the second indication information to the first terminal device and the second terminal device.
  • the network device and the first terminal device may pre-appoint the first terminal
  • the device and the second terminal device multiplex the first resource according to a preset multiplexing mode.
  • a possible preset multiplexing manner may be to set the order of sending data according to the size of the identification (ID) of the first terminal device and the ID of the second terminal device. For example, the smaller the ID, the higher the priority to start sending data. For example, since the first terminal device and the second terminal device are performing unicast services, the first terminal device and the second terminal device know their IDs.
  • the first terminal device and the second terminal device can determine that the method of multiplexing the first resource is the first terminal device in the first transmission cycle of the first terminal device.
  • the sending opportunity starts to send data, and the second terminal device starts sending data at the first sending opportunity of the second sending cycle.
  • the multiplexing method in which the first terminal device and the second terminal device multiplex the first resource provided by the above two embodiments is applicable to the network device that configures the first terminal device and the second terminal device with the same first resource.
  • the situation is also applicable to the case where the first terminal device allocates part of the resources or all of the first resources configured by the network device to the second terminal device.
  • the network device instructs the first terminal device and the second terminal device to multiplex the first resource by using the second indication information, or the network device instructs the first terminal device and the second terminal device to reuse the first resource in an agreed manner, In order to avoid conflicts that may occur when the first terminal device and the second terminal device perform unicast services, so as to avoid the problem that the first terminal device and the second terminal device cannot hear each other's messages.
  • a possible application scenario is that the first terminal device sends data to multiple second terminal devices based on the first resource, that is, the first terminal device and the multiple second terminal devices perform multicast services.
  • the second indication information may be used to instruct the first terminal device and multiple second terminal devices to alternately use the first resource in any scheduling period.
  • the second indication information may be used to indicate the time domain offset of the first terminal device and each of the multiple second terminal devices in the first transmission period of the first resource Therefore, the first terminal device and each second terminal device can determine the initial transmission position of the transmission data in the first transmission cycle according to the time domain offset specified by the second indication information, and then after the determination Start sending data at the start position. For example, if the RVs used by the first terminal device and the multiple second terminal devices are both (0, 2, 3, 1), the second indication information may indicate that the first terminal device and each second terminal device are in the RV Send data to different locations.
  • the network device instructs the first terminal device and multiple second terminal devices to multiplex the first resource through the second indication information, that is, the first terminal device and multiple second terminal devices use the first resource in turn to avoid Conflicts that may occur when the first terminal device and multiple second terminal devices perform multicast services may avoid the problem that the first terminal device and multiple second terminal devices cannot hear each other's messages.
  • the above-mentioned first terminal device and at least one second terminal device reuse the first resource, which can improve the first resource utilization rate.
  • the first resource is allocated to the first terminal device and the at least one second terminal device by the network device through the authorization-free configuration scheduling mechanism, the first terminal device and the at least one second terminal device can use the first resource periodically.
  • the first terminal device and at least one second terminal device use the first resource to perform aperiodic services, the first terminal device and at least one second terminal device may not necessarily send data on the first resource, and this may cause resources Waste.
  • the network device may instruct the terminal device configured with resources through a dynamic scheduling mechanism to use the first resource, so as to further improve the utilization rate of the resource.
  • the first terminal device is a terminal device that configures resources through a dynamic scheduling mechanism
  • the second terminal device is a terminal device that configures resources through an authorization-free configuration scheduling mechanism.
  • the notification method for the network device to notify the first terminal device to use the resource of the second terminal device includes but is not limited to one of the following:
  • the network device sends configuration information for the second terminal device to configure resources for the second terminal device. Similarly, the network device may also send configuration information to the first terminal device for configuring resources for the first terminal device. Only the resource indicated by the configuration information corresponding to the second terminal device is the same as the resource indicated by the configuration information corresponding to the first terminal device.
  • the network device may first configure resources for the second terminal device, and send configuration information for configuring the resources for the second terminal device to the first terminal device in advance to inform the first terminal device that the resources configured for the second terminal device can be used .
  • the network device may send the configuration information of multiple second terminal devices to the first terminal device in advance, and the multiple second terminal devices may be some or all of the terminal devices that configure resources through the authorization-free configuration scheduling mechanism. Device.
  • the network device configures resources by sending configuration information to the first terminal device.
  • the network device can also send another piece of information to the first terminal device to notify the first terminal device through this piece of information that the network device is the first terminal
  • the resource configured by the device is the resource of the second terminal device.
  • the network device may send DCI to the first terminal device, where the DCI carries indication information indicating whether the resource configured for the first terminal device is the resource of the second terminal device.
  • the indication information includes 1 bit. When the value of this bit is 0, it indicates that the resource configured for the first terminal device is the resource of the second terminal device. Or, when the value of this bit is 1, it indicates that the resource configured for the first terminal device is the resource of the second terminal device.
  • the network device sends the first terminal device dynamic scheduling signaling for configuring resources, as shown in FIG.
  • the first terminal device may also be notified through the first indication information whether to detect the SCI of at least one second terminal device. If the first terminal device does not detect the SCI of any second terminal device, the first terminal device may send data according to the scheduling instruction of the network device.
  • the first terminal device detects the SCI of one or more second terminal devices, it can determine based on the detected SCI which resources are available for multiplexing resources with a second terminal device or multiple second terminal devices Data is sent to avoid conflicts that may occur when sending data with one second terminal device or multiple second terminal devices.
  • the first indication information may be used to instruct the first terminal device to detect the time domain position of the SCI of the at least one second terminal device.
  • one second terminal device corresponds to a time domain position for detecting SCI. If the first terminal device receives the first indication information, the SCI of at least one second terminal device may be detected according to the time domain position indicated by the first indication information. If the first terminal device does not detect the SCI, it can send data on the configured resources according to the scheduling information of the network device. If the first terminal device detects the SCI of the second terminal device, it can determine whether data can be sent on the resource configured by the network device according to the SCI of the second terminal device. Since the first terminal device does not necessarily detect the SCI of the second terminal device, the SCI is also indicated by a dotted line in FIG. 10.
  • the first indication information may be indicated in a bit mapping manner.
  • the first indication information occupies two bits, and the value of these two bits is used to indicate where the first terminal device starts to detect in the allocated resource
  • the SCI of at least one second terminal device For example, if the first indication information is 00, it may indicate that the first terminal device does not need to detect the SCI of at least one second terminal device; if the first indication information is 01, it may indicate that the first terminal device sends data by 1
  • the sending opportunity detects the SCI of at least one second terminal device; the first indication information is 10, which may indicate that when the first terminal device sends data, it detects the SCI of at least one second terminal device 2 sending opportunities in advance; first indication information If it is 11, it can mean that when the first terminal device sends data, it detects the SCI of at least one second terminal device 3 sending opportunities in advance.
  • the first indication information may also occupy 4 bits. For example, if the first indication information is 0000, it may indicate that the first terminal device does not need to detect the SCI of at least one second terminal device; the first indication information If it is 0010, it can mean that when the first terminal device sends data, it detects the SCI of at least one second terminal device 2 sending opportunities in advance. Alternatively, the first indication information may also use 1 bit to indicate whether the first terminal device needs to detect the SCI of at least one second terminal device of the previous transmission opportunity.
  • the first terminal device After the first terminal device receives the configuration information and the first indication information from the network device, it can determine whether the second terminal needs to be detected according to the resources configured by the network device for the second terminal device, and the received configuration information and the first indication information SCI of the device. That is, it is determined whether the resources occupied by the first terminal device to send data overlap with the resources occupied by the second terminal device to send data. If the resources do not overlap, the first terminal device can directly send the data; if the resources overlap, the first terminal device needs to detect the SCI of the second terminal device, and determine which resources to send data on the overlapped resources based on the detected SCI .
  • the network device sends the configuration information of at least one second terminal device to the first terminal device in advance, then after the first terminal device receives the configuration information of the at least one second terminal device, it receives an instruction from the network device After the configuration information of the first resource, it can be determined whether the first resource is a resource configured by the network device for the at least one second terminal device according to the configuration information of the at least one second terminal device and the first resource configuration information, and whether it is determined according to the judgment result Need to detect the SCI of multiple second terminal devices.
  • the first terminal device needs to detect the SCI of the second terminal device; if the network device is configured for the first terminal device The first resource of and the resource configured by the network device for at least one second terminal device do not overlap, and the first terminal device does not need to detect the SCI of the second terminal device.
  • FIG. 11 is a schematic diagram of detecting the SCI of a second terminal device for multiple first terminal devices.
  • the second terminal device is UE1
  • the multiple first terminal devices are UE2, UE3, UE4, and UE5 as an example.
  • the network device configures the RV used by UE1 as (0, 2, 3, 1).
  • the network device configures UE2, UE3, UE4, and UE5 to send data at the first sending opportunity, the second sending opportunity, and the third sending opportunity after UE1 sends data.
  • the network device configures UE2, UE3, UE4, and UE5 to detect the SCI at the first transmission opportunity of UE1.
  • the SCI of UE1 will carry the repeated transmission of UE1 or whether the next sending opportunity will send data. If UE1 has data to send, and the number of repetitions configured for UE1 by the network device is 2 times.
  • UE2 detects the SCI of UE1 at the first sending opportunity of UE1, as shown in Figure 11 with arrows indicating the position of the SCI. Since UE1 has data transmission and the number of repetitions is 2, UE1 will occupy the first transmission opportunity and the second transmission opportunity, so UE2 determines that it cannot send data at the second transmission opportunity, that is, UE2 cannot send data.
  • Figure 11 shows that UE2 cannot send data on the second sending opportunity with the identifier "X" of the second sending opportunity.
  • UE3 also detects the SCI of UE1 at the first transmission opportunity of UE1, and determines that UE1 will occupy the first transmission opportunity and the second transmission opportunity, but UE3 can start sending data from the third transmission opportunity. There is no conflict with the first sending opportunity and the second sending opportunity occupied by UE1, so UE3 can start sending data at the third sending opportunity. Like UE3, UE4 can determine that it can send data at the fourth sending opportunity. For UE5, because UE1 can still start sending data at the fifth transmission opportunity, UE5 needs to detect the SCI of UE1 at the first transmission opportunity and the fifth transmission opportunity of UE1, and then determine which transmission opportunities can be used according to the SCI To send data.
  • FIG. 11 illustrates a process in which multiple first terminal devices detect the SCI of a second terminal device.
  • one resource can correspond to multiple terminal devices, and each terminal device on these multiple terminal devices may send data, so the resources configured for these multiple terminal devices can be multiple different resources under the same time domain resource.
  • the frequency domain resources of may also be multiple different time domain resources under the same frequency domain resource.
  • the network device since the first terminal device and the second terminal device reuse the first resource, in order to avoid that no resources are available when the first terminal device sends data, the network device may configure multiple resources for the first terminal device.
  • the resources configured by the network device for the first terminal device may be multiple different frequency domain resources under the same time domain resource, or multiple different time domain resources under the same frequency domain resource.
  • the first indication information may be used to indicate whether the first terminal device detects the SCI of at least two second terminal devices.
  • the first terminal device detects the SCI of the at least two second terminal devices according to the first indication information, and determines which resources of the multiplexed resources of the first terminal device and the at least two second terminal devices can be used to send data according to the detection result .
  • the first indication information may be used to instruct the first terminal device to detect the time domain position of the SCI of each of the at least two second terminal devices.
  • the first terminal device transmits data on the configured resources according to the scheduling of the network device. If the first terminal device has multiple resources available, the first terminal device may select one resource from the multiple resources to send data from the preset resource selection method. In this case, the network device does not need to give another instruction to the first terminal device, which can save signaling overhead.
  • the preset method for selecting resources may be selecting the resource with the lowest frequency domain resource sequence number, selecting the resource with the best channel quality, and selecting the resource with the earliest transmission start time. The first terminal device may select a resource from preset resource selection methods based on the business requirements performed.
  • the first terminal device may select the resource with the earliest transmission time to shorten the transmission service delay as much as possible. For another example, if the service performed by the first terminal device requires high transmission reliability, the first terminal device may select the resource with the best channel quality to ensure the transmission reliability of the performed service as much as possible.
  • the method described above can be used. The method selects a resource from multiple resources to send data from the preset selection methods, which will not be repeated here. If the first terminal device determines that a resource is available according to the detected SCI, the first terminal device may send data on this resource.
  • the first terminal device detects the SCI of some or all of the second terminal devices among the at least two second terminal devices, it is determined based on the detected SCI that no resources are available, otherwise it will be compared with at least two second terminal devices. If the second terminal device conflicts, the first terminal device does not send data.
  • FIG. 12 illustrates a process in which a first terminal device detects the SCI of multiple second terminal devices.
  • FIG. 12 takes as an example two second terminal devices, which are UE1 and UE2, and the first terminal device is UE3 as an example.
  • the network device configures the RV used by UE1 to be (0, 3, 0, 3), and the network device configures the RV used by UE2 to be (0, 2, 3, 1).
  • the network device configures UE3 to simultaneously detect the SCI of UE1 and UE2 at the first sending opportunity, as shown in FIG. 12 with an arrow indicating the position of the SCI. If UE1 and UE2 have no data to send in the first sending opportunity, UE3 can select the resources of UE1 or UE2. Further, since the resource sequence number corresponding to UE1 is smaller than the resource sequence number corresponding to UE2, UE3 may preferentially select the resource of UE1 to send data.
  • FIG. 13 illustrates a process of a first terminal device detecting the SCI of a second terminal device.
  • the first terminal device is UE2 and the first terminal device is UE1 as an example.
  • the network device configures the RV used by UE1 as (0, 2, 3, 1).
  • the network device configures the resources that UE2 can send data as the second transmission opportunity, the third transmission opportunity, and the fourth transmission opportunity, and configures UE2 to detect the SCI of UE1.
  • UE2 detects the SCI of UE1 at the first sending opportunity of UE1.
  • Figure 13 shows the position of detecting SCI with arrows.
  • FIG. 13 only illustrates the process of a first terminal device detecting the SCI of a second terminal device. In fact, the process of a first terminal device detecting the SCI of each second terminal device among a plurality of second terminal devices is the same as the figure. 13 is the same, so I won’t give an example here.
  • the network device indicates through the first message whether the first resource configured for the first terminal device is also allocated to at least one second terminal device, so that the first terminal device determines that the at least one terminal device is not When sending data on a resource, data can be sent on the first resource to maximize the utilization of the first resource.
  • the first indication information is used to indicate whether the first terminal device detects the SCI of the at least one second terminal device, so as to avoid possible conflicts between the first terminal device and the at least one second terminal device when sending data in the first resource.
  • FIG. 14 is a schematic structural diagram of a network device provided by an embodiment of the present application, such as a schematic structural diagram of a base station.
  • the base station 140 can be applied to the system shown in FIG. 1 or FIG. 3 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 140 may include one or more radio frequency units, such as a remote radio unit (RRU) 1401 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1402.
  • RRU 1401 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 14011 and a radio frequency unit 14012.
  • the RRU1401 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending the first message described in the foregoing embodiment to a terminal device.
  • the BBU1402 part is mainly used for baseband processing and control of base stations.
  • the RRU 1401 and the BBU 1402 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1402 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1402 may be used to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the BBU 1402 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) with a single access indication, and may also support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the BBU 1402 further includes a memory 14021 and a processor 14022, and the memory 14021 is used to store necessary instructions and data.
  • the memory 14021 stores the configuration information and the first indication information in the foregoing embodiment.
  • the processor 14022 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 14021 and the processor 14022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 or FIG. 3 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 15 only shows the main components of the terminal device.
  • the terminal device 150 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiments, such as , Send data according to the first message, etc.
  • the memory is mainly used for storing software programs and data, for example, storing configuration information and first indication information described in the foregoing embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 15 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program, and process the data of the software program.
  • the processor in FIG. 15 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 1501 of the terminal device 150, for example, for supporting the terminal device to perform the receiving function and the transmitting function as described in the part of FIG. 4.
  • the processor having the processing function is regarded as the processing unit 1502 of the terminal device 150.
  • the terminal device 150 includes a transceiver unit 1501 and a processing unit 1502.
  • the transceiver unit 1501 may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1501 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1501 can be regarded as the sending unit, that is, the transceiver unit 1501 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1502 may be used to execute instructions stored in the memory to control the transceiver unit 1501 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 1501 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 16 shows a schematic structural diagram of a communication device 1600.
  • the apparatus 1600 can be used to implement the methods described in the foregoing method embodiments, and reference may be made to the descriptions in the foregoing method embodiments.
  • the communication device 1600 may be a chip, a network device (such as a base station), a terminal device, or other network devices.
  • the communication device 1600 includes one or more processors 1601.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the communication device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used in terminals or base stations or other network devices.
  • the communication device may be a terminal or a base station or other network device, and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 1600 includes one or more of the processors 1601, and the one or more processors 1601 may implement the method of the network device or the terminal device in the embodiment shown in FIG. 4.
  • the communication device 1600 includes a means for generating configuration information and first indication information, and a means for sending configuration information and first indication information.
  • the functions of generating the means for generating the configuration information and the first indication information and sending the means for the configuration information and the first indication information may be realized by one or more processors.
  • the configuration information and the first indication information may be generated by one or more processors, and the configuration information and the first indication information may be sent through an interface of a transceiver, or an input/output circuit, or a chip.
  • the configuration information and the first indication information reference may be made to related descriptions in the foregoing method embodiments.
  • the communication device 1600 includes a component (means) for receiving configuration information and first indication information, and a component (means) for sending data according to the configuration information and the first indication information .
  • a component (means) for receiving configuration information and first indication information and a component (means) for sending data according to the configuration information and the first indication information .
  • the configuration information and the first indication information and how to send data according to the configuration information and the first indication information reference may be made to the relevant description in the foregoing method embodiment.
  • the configuration information and the first indication information may be received through a transceiver, or an input/output circuit, or an interface of a chip, and data may be sent according to the configuration information and the first indication information through one or more processors.
  • processor 1601 may also implement other functions.
  • the processor 1601 may execute instructions to enable the communication device 1600 to execute the method described in the foregoing method embodiment.
  • the instructions may be stored in the processor in whole or in part, such as the instruction 1603, or in the memory 1602 coupled to the processor, in whole or in part, such as the instruction 1604, or through the instructions 1603 and 1604.
  • the communication device 1600 executes the method described in the foregoing method embodiment.
  • the communication device 1600 may also include a circuit, and the circuit may implement the functions of the network device or the terminal device in the foregoing method embodiment.
  • the communication device 1600 may include one or more memories 1602, on which instructions 1604 are stored, and the instructions may be executed on the processor so that the communication device 1600 can execute The method described in the above method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 1602 may store the corresponding relationship described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 1600 may further include a transceiver unit 1605 and an antenna 1606.
  • the processor 1601 may be called a processing unit, which controls a communication device (terminal or base station).
  • the transceiver unit 1605 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the communication device through the antenna 1606.
  • the present application also provides a communication system, which includes the aforementioned one or more network devices, and, one or more terminal devices.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the communication method described in any of the foregoing method embodiments is implemented.
  • the embodiments of the present application also provide a computer program product, which, when executed by a computer, implements the communication method described in any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) etc.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the resource configuration method described in any of the foregoing method embodiments.
  • the foregoing processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearance of "in one embodiment” or “in an embodiment” in various places throughout the specification does not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that, in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application. The implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or data structures
  • Any connection can suitably become a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , Fiber optic cable, twisted pair, DSL or wireless technologies such as infrared, wireless and microwave are included in the fixing of the media.
  • disks and discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVD), floppy disks, and Blu-ray discs. Disks usually copy data magnetically, while discs The laser is used to optically copy data. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源配置方法及通信装置,本申请实施例适用于V2X、智能驾驶汽车、智能网联汽车等,其中的一种资源配置方法包括:确定第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;向所述第一终端装置发送所述第一消息。如此,第一资源可以同时被配置给第一终端装置和至少一个第二终端装置,在第一终端装置不使用第一资源时,至少一个第二终端装置可以使用,因此可以提高资源利用率。

Description

一种资源配置方法及通信装置
相关申请的交叉引用
本申请要求在2019年03月27日提交中国专利局、申请号为201910239483.3、申请名称为“一种资源配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置方法及通信装置。
背景技术
在新无线(new radio,NR)***中,有两种调度机制,一种是动态调度机制,即终端装置每次有数据传输时,请求网络装置分配资源,网络装置根据终端装置的请求,为终端装置分配资源。这种方式由于终端装置每次有数据传输时,都需要等待网络装置开始分配资源,所以时延较长,即动态调度机制不适合低时延业务。另一种是免授权配置调度(configured grant scheduling),也就是长期演进(Long Term Evolution,LTE)***中的半静态调度(semi-persistent scheduling,SPS)机制。即网络装置主动为终端装置配置资源,这样终端装置有数据传输时就可以直接在所配置的资源上进行数据传输,不需要向网络装置请求分配资源。相较于动态调度机制,免授权配置调度机制适合较低延时业务。
目前,免授权配置调度机制下,网络装置为终端装置配置的资源都是周期性的。但是SPS机制可以支持周期性业务和非周期性业务,对于非周期性业务,即终端装置不定时发数据,在终端装置不发数据时,终端装置不会使用网络装置为终端装置分配的资源,从而导致资源的浪费。
发明内容
本申请提供一种资源配置方法及通信装置,用以在免授权配置调度机制下支持非周期性业务时,可以节约***资源。
第一方面,本发明实施例提供一种资源配置方法。该方法可以应用于网络装置,或者应用于具有网络功能的芯片等装置,包括:确定第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;向所述第一终端装置发送所述第一消息。
在该方案中,网络装置通过第一消息来指示为第一终端装置配置的第一资源是否还被配置给了至少一个第二终端装置,从而第一终端装置确定在至少一个第二终端装置没有在第一资源上发送数据时,可以在第一资源上发送数据,以尽量提高第一资源的利用率。
在一种可能的设计中,所述第一指示信息可以用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。具体地,所述第一指示信息可以用于指示所述第一终端装置和/或所述至少一个第二终端装置分别占用所述第一资源发送数据的时域起始位置 与第一资源的时域起始位置的偏移量。
在一种可能的设计中,所述第一指示信息用于指示为第一终端装置和至少一个第二终端装置配置的冗余版本(Redundancy Version,RV)。
上述描述中,第一指示信息的指示方式可以有多种,这里只是列举了几种,具体的不做限制。
在一种可能的设计中,所述配置信息还用于指示所述第一终端装置和各个第二终端装置在第一资源发送数据的重复次数相同或者不同。
在该方案中,第一终端设备和至少一个第二终端装置可以基于配置信息所配置的重复次数占用第一资源重复进行数据的传输。网络装置为了节约资源时,针对第一终端装置和至少一个第二终端装置可以配置包含不同重复次数的配置信息,从而保证第一终端装置和至少一个第二终端装置所占资源在最大重复次数之内。网络装置可以为第一终端装置和至少一个第二终端装置配置包含相同重复次数的配置信息,例如,最大重复次数相同的配置信息,这样第一终端装置和至少一个第二终端装置可以按照最大重复次数分别占用所述第一资源传输数据,以尽量提高数据传输的可靠性。
在一种可能的设计中,所述方法还包括:向所述第一终端装置发送第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式,其中,所述第二指示信息具体可以用于指示:所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源。
在该方案中,网络装置可以通过第二指示信息通知第一终端装置与至少一个第二终端装置复用第一资源的复用方式,这样第一终端装置就不需要在第一资源上盲检至少一个第二终端装置是否占用第一资源在发送数据,尽量减轻第一终端装置用于检测资源是否可用所带来的检测负担。同时,还可以保证第一终端装置和至少一个第二终端装置占用第一资源发送数据时不会发生冲突。
在一种可能的设计中,所述第一终端装置还可以基于所述第一资源向所述至少一个第二终端装置中的一个或多个第二终端装置发送数据。
在该方案中,如果第一终端装置基于第一资源向一个第二终端装置或者多个第二终端装置发送数据,即第一终端装置和第二终端装置进行的是单播业务或者组播业务,那么第一终端装置和第二终端装置本来就是要在对方不发送数据检测对方的辅链路控制消息(Sidelink Control Information,SCI),因此第一终端装置和第二终端装置无需额外检测彼此是否当时正在占用第一资源发送数据,从而可以减轻第一终端装置或第二终端装置用于检测资源是否可用所带来的检测负担。
在一种可能的设计中,所述方法还包括:接收来自所述第一终端装置的第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。在该方案中,例如第一终端装置可以将网络装置配置的第一资源再配置给至少一个第二终端装置,以尽量节约资源。
在一种可能的设计中,所述第一指示信息还可以用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的SCI。在该方案中,第一指示信息还可以用于指示第一终端装置是否需要检测至少一个第二终端装置的SCI,网络装置无需通过另一指示信息通知第一终端装置是否需要检测至少一个第二终端装置的SCI,从而可以减少信令的开销。 同时,第一终端装置可以根据第一指示信息确定是否需要检测至少一个第二终端装置的SCI,也就是检测至少一个第二终端装置是否在第一资源上发送数据,以避免与至少一个第二终端装置占用第一资源发送数据时产生冲突,提高数据传输的可靠性。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。在该方案中,第一指示信息还可以用于指示第一终端装置检测至少一个第二终端装置的SCI的时域位置,以使得第一终端装置只需要在第一指示信息指示的时域位置检测至少一个第二终端装置的SCI,而无需在第一资源上盲检第二终端装置的SCI,从而减轻第一终端装置检测第二终端装置的SCI所带来的检测负担。
具体地,所述第一指示信息可以具体用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置可以在不同时域占用所述第一资源,或所述至少两个第二终端装置可以在不同频域占用所述第一资源。
在该方案中,至少两个第二终端装置被配置的资源可以是相同时域资源下的多个不同的频域资源,也可以是相同频域资源下的多个不同的时域资源,为了让第一终端装置有更多的资源可用,网络装置可以把至少两个第二终端装置的资源配置给第一终端装置。这种情况下,网络装置可以通过第一指示信息指示第一终端装置检测至少两个终端设的SCI,以保证第一终端装置在第一资源上发送数据时不会跟全部的第二终端装置占用第一资源产生冲突。
第二方面,提供第二种资源配置方法,该方法包括:
第一终端装置接收来自网络装置的第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为所述第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
所述第一终端装置根据所述第一消息在所述第一资源上向所述网络装置发送数据。
该方法可由第二通信装置执行,第二通信装置可以是第一终端装置或能够支持第一终端装置实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。这里以第二通信装置是第一终端装置为例。
在一种可能的设计中,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
在一种可能的设计中,所述方法还包括:
所述第一终端装置根据所述配置信息确定所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
在一种可能的设计中,所述方法还包括:
所述第一终端装置接收来自所述网络装置的第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式;其中,所述第二指示信息具体用于指示:
所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源;
所述第一终端装置根据所述第一消息在所述第一资源上向所述网络装置发送数据,包括:
所述第一终端装置根据所述第一消息以及所述第二指示信息在所述第一资源上向所 述网络装置发送数据。
在一种可能的设计中,所述方法还包括:
所述第一终端装置向所述网络装置发送第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的SCI。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
关于第二方面或第二方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,提供第一种网络装置,例如该通信装置为如前所述的第一通信装置。所述网络装置用于执行上述第一方面或第一方面的任一可能的实现方式中的方法。具体地,所述网络装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。其中,
所述处理模块,用于确定第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
所述收发模块,用于向所述第一终端装置发送所述第一消息。
在一种可能的设计中,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
在一种可能的设计中,所述配置信息还用于指示所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
在一种可能的设计中,所述收发模块还用于:
向所述第一终端装置发送第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式,其中,所述第二指示信息具体用于指示:
所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源。
在一种可能的设计中,所述收发模块还用于:
接收来自所述第一终端装置的第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的辅链路控制消息SCI。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
在一种可能的设计中,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第四方面,提供第一种第一终端装置,所述第一终端装置用于执行上述第二方面或第二方面的任一可能的实现方式中的方法。具体地,所述第一终端装置可以包括用于执行第二方面或第二方面的任一可能的实现方式中的方法的模块,例如包括相互耦合的处理模块和收发模块。其中,
所述收发模块,用于接收来自网络装置的第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
所述处理模块,用于根据所述第一消息在所述第一资源上向所述网络装置发送数据。
在一种可能的设计中,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置信息。
在一种可能的设计中,所述处理模块还用于:
根据所述配置信息确定所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
在一种可能的设计中,所述收发模块还用于:
接收来自所述网络装置的第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式;其中,所述第二指示信息具体用于指示:
所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源;
所述处理模块用于:
根据所述第一消息以及所述第二指示信息在所述第一资源上向所述网络装置发送数据。
在一种可能的设计中,所述收发模块还用于:
向所述网络装置发送第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的SCI。
结合第四方面,在第四方面的一种可能的实施方式中,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
在一种可能的设计中,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可以参考对第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,提供第二种网络装置,该网络装置例如为如前所述的第一通信装置。该网络装置包括处理器和收发器,用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性地,所述网络装置为设置在通信设备中的芯片。示例性的,所述通信设备为网络设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述网络装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于确定第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
所述收发器,用于向所述第一终端装置发送所述第一消息。
在一种可能的设计中,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
在一种可能的设计中,所述配置信息还用于指示所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
在一种可能的设计中,所述收发器还用于:
向所述第一终端装置发送第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式,其中,所述第二指示信息具体用于指示:
所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源。
在一种可能的设计中,所述收发器还用于:
接收来自所述第一终端装置的第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的辅链路控制消息SCI。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
在一种可能的设计中,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
关于第五方面或第五方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第六方面,提供第二种第一终端装置,该第一终端装置例如为如前所述的第二通信装置。该第一终端装置包括处理器和收发器,用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性地,所述第一终端装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述收发器,用于接收来自网络装置的第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
所述处理器,用于根据所述第一消息在所述第一资源上向所述网络装置发送数据。
在一种可能的设计中,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
在一种可能的设计中,所述处理器还用于:
根据所述配置信息确定所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
结合第六方面,在第六方面的一种可能的实施方式中,所述收发器还用于:
接收来自所述网络装置的第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式;其中,所述第二指示信息具体用于指示:
所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源;
所述处理器用于:
根据所述第一消息以及所述第二指示信息在所述第一资源上向所述网络装置发送数据。
在一种可能的设计中,所述收发器还用于:
向所述网络装置发送第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的SCI。
在一种可能的设计中,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
在一种可能的设计中,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
关于第六方面或第六方面的各种可能的实施方式所带来的技术效果,可以参考对第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第七方面,提供第三种网络装置。该网络装置可以为上述方法设计中的第一通信装置。示例性地,所述网络装置为设置在通信设备中的芯片。该网络装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第三种网络装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第三种网络装置还可以包括通信接口,该通信接口可以是网络装置中的收发器,例如通过所述第三种网络装置中的天线、馈线和编解码器等实现,或者,如果第三种网络装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供第三种第一终端装置。该第一终端装置可以为上述方法设计中的第二通信装置。示例性地,所述第一终端装置为设置在终端装置中的芯片。该第一终端装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第三种第一终端装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第三种第一终端装置还可以包括通信接口,该通信接口可以是第一终端装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果第三种第一终端装置为设置在终端设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供一种通信***,该通信***可以包括第三方面所述的第一种网络装置、第五方面所述的第二种网络装置或第七方面所述的第三种通信装置,以及包括第四方面所述的第一种第一终端装置、第六方面所述的第二种第一终端装置或第八方面所述的第三种第一终端装置。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
在本申请实施例中,网络装置通过第一消息来指示为第一终端装置配置的第一资源是否还被配置给了至少一个第二终端装置,从而第一终端装置确定在至少一个终端设备没有在第一资源上发送数据时,可以在第一资源上发送数据,以尽量提高第一资源的利用率。
附图说明
图1为V2X的几种场景示意图;
图2为本发明实施例提供的一种应用场景示意图;
图3为RV的一种示意图;
图4为本发明实施例提供的一种资源配置方法的一种流程图;
图5为本发明实施例提供的终端装置在第一资源发送数据的一种时间位置示意图;
图6为本发明实施例提供的终端装置在第一资源发送数据的一种时间位置示意图;
图7为本发明实施例提供的终端装置在第一资源发送数据的一种时间位置示意图;
图8为本发明实施例提供的一种资源配置方法的另一种流程图;
图9为本发明实施例提供的终端装置在第一资源发送数据的一种时间位置示意图;
图10为本发明实施例提供的一种资源配置方法的另一种流程图;
图11为本发明实施例提供的多个第一终端装置检测一个第二终端设备的SCI的示意图;
图12为本发明实施例提供的一个第一终端装置检测多个第二终端设备的SCI的示意图;
图13为本发明实施例提供的一个第一终端装置检测一个第二终端设备的SCI的示意图;
图14为本发明实施例提供的网络装置的一种结构示意图;
图15为本发明实施例提供的终端装置的一种结构示意图;
图16为本发明实施例提供的通信装置的一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端装置,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端装置可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端装置可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
终端装置也可以称为终端设备、终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端装置、增强现实(augmented reality,AR)终端装置、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
作为示例而非限定,在本申请实施例中,该终端装置还可以是可穿戴设备。可穿戴设 备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端装置,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2)网络装置,例如包括接入网(access network,AN)设备,例如基站(例如,接入点、宏基站、微基站或中继站等),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络装置为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端装置与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络装置可以包括LTE***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR***中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)V2X,在版本(Rel)-14/15/16版本中,V2X作为设备到设备(device-to-device,D2D)技术的一个主要应用顺利立项。V2X将在已有的D2D技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图1所示,V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。
4)物理共享上行信道(PUSCH Physical Uplink Shared Channel,PUSCH)的传输,在NR***中,PUSCH的传输包括两种:
一、基于动态调度机制进行传输
在NR***中,定义了动态调度机制,即终端装置每次有数据传输时,请求网络装置分配资源,网络装置根据终端装置的请求,向终端装置发送下行控制信息(downlink control information,DCI),DCI中含有上行数据调度信息,告诉终端装置在什么时频资源位置,以什么样的配置参数(配置参数例如包括调制与编码策略(modulation and coding scheme,MCS)或冗余版本(redundancy version,RV)等发送上行数据。
二、基于免授权配置调度机制进行传输
免授权配置调度机制下,定义了配置免授权(configured grant,CG)的概念。目前,定义了两种配置免授权类型,分别为免授权类型1(configured grant Type 1)和免授权类型2(configured grant Type 2)。其中,免授权类型1的时频资源位置由网络装置通过无线资源控制(radio resource control,RRC)信令提供给终端装置,即网络装置通过RRC信令为终端装置配置高层参数,例如免授权配置调度资源周期、免授权配置调度时频资源位置、使用免授权配置调度资源的进程数目等。终端装置接收到配置的上行链路许可(rrc-Configured Uplink Grant)的高层参数后,可以在网络装置周期配置的资源上发送数据。
免授权类型2是网络装置先发送不包含rrc-Configured Uplink Grant的高层参数,再由物理层或层1(L1)信令(即DCI)激活或去激活免授权类型2。即网络装置除了发送高层参数,还发送DCI激活或去激活CG类型2。当网络装置通过DCI激活免授权类型2时,在DCI中同时为终端装置指定SPS资源,该资源将按照配置的免授权配置调度资源周期,周期性地出现,无需再通过DCI指示其资源位置。终端装置先接收不包含rrc-ConfiguredUplinkGrant的高层参数,当接收到DCI,就可以在网络装置周期配置的时频资源上发送数据。
5)冗余版本(Redundancy Version,RV):免授权Configured grant的配置包括:发送周期、重复次数、发送起始时间、RV等。目前5G协议定义的RV有3种,分别为(0,0,0,0),(0,3,0,3),(0,2,3,1)。RV定义了终端装置发送数据的发送时机,终端装置只有在RV为0的时刻才可以开始发送数据。例如,请参见图2,为终端装置的两种RV的示意图,其中一种RV,例如RV1为(0,3,0,3),网络装置配置终端装置发送数据的重复次数为8,则终端装置只能在第1次,第3次,第5次和第7次发送机会可以开始发送数据。又例如,另一种RV,例如RV2为(0,2,3,1),网络装置配置终端装置发送数据的重复次数为8,则终端装置只能在第1次和第5次发送机会才可以开始发送数据。需要说明的是,这里的重复次数指示的是终端装置在一个发送周期内发送数据的最大重复次数。图2中,以一个发送周期(Periodicity)包括8个发送机会为例。
6)第五代移动(the fifth generation,5G)通信***的应用场景,国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信***定义了三大类应用场景,这三大类应用场景分别是增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。其中,典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。不同业务对移动通信***的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G通信***所需要解决的技术问题。例如,如何同时支持URLLC业务和eMBB业务就是当前5G移动通信***的讨论热点之一。
7)本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一同步信号和第二同步信号,只是为了区分不同的同步信号,而并不是表示这两个同步信号的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
在NR***中,PUSCH的传输可以基于免授权配置调度机制,免授权配置调度机制支持周期性业务和非周期性业务。但是在免授权配置调度机制下,网络装置为终端装置配置的资源是周期性的,那么就可能出现网络装置为终端装置配置了资源,但是当前终端装置并不需要发送或接收数据,这就导致了资源的浪费。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,多个终端装置可以复用同一资源,例如,第一资源,这样当多个终端装置中的某个终端装置在第一资源上不进行数据传输时,多个终端装置中的其他终端装置可以利用第一资源进行数据传输,从而节约了资源。网络装置为所述某个终端装置配置第一资源时,可以向所述某个终端装置发送指示信息,该指示信息可以用于指示第一资源还有没有被配置给其他终端装置,从而某个终端装置可以根据指示信息,在第一资源上发送数据,以避免与其他终端装置利用第一资源发送数据时可能造成的冲突。
本申请实施例提供的技术方案可以应用于5G***中,例如NR***,或者应用于LTE***中,或者还可以应用于下一代移动通信***或其他类似的通信***,具体的不做限制。
下面介绍本申请实施例所应用的一种网络架构,请参考图3。
图3中包括核心网设备、网络装置和至少一个终端装置,图3以至少一个终端装置是两个终端装置为例。终端设备通过无线的方式与网络装置相连,网络装置通过无线或有线方式与核心网设备连接。核心网设备与网络装置可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络装置的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络装置的功能。终端装置可以是固定位置的,也可以是可移动的。图3只是示意图,该通信***中还可以包括其它网络装置,如还可以包括无线中继设备和无线回传设备,在图3中未画出。本申请的实施例对该移动通信***中包括的核心网设备、网络装置和终端装置的数量不做限定。
网络装置是终端装置通过无线方式接入到该移动通信***中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G通信***中的基站、未来移动通信***中的基站或无线保真(WIreless-FIdelity,Wi-Fi)***中的接入节点等,本申请的实施例对无线网络装置所采用的具体技术和具体设备形态不做限定。
网络装置和终端装置可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对网络装置和终端 装置的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于D2D的信号传输。对于下行信号传输,发送设备是网络装置,对应的接收设备是终端装置。对于上行信号传输,发送设备是终端装置,对应的接收设备是网络装置。对于D2D的信号传输,发送设备是终端装置,对应的接收设备也是终端装置。本申请的实施例对信号的传输方向不做限定。
网络装置和终端装置之间以及终端装置和终端装置之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络装置和终端装置之间以及终端装置和终端装置之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对网络装置和终端装置之间所使用的频谱资源不做限定。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供第一种资源配置方法,请参见图4,为该方法的流程图。在下文的介绍过程中,以该方法应用于图1或图3所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置可以是网络装置或能够支持网络装置实现该方法所需的功能的通信装置,或者第一通信装置可以是终端装置或能够支持终端装置实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。对于第二通信装置也是同样,第二通信装置可以是网络装置或能够支持网络装置实现该方法所需的功能的通信装置,或者第二通信装置可以是终端装置或能够支持终端装置实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络装置,第二通信装置是终端装置,或者第一通信装置和第二通信装置都是终端装置,或者第一通信装置是网络装置,第二通信装置是能够支持终端装置实现该方法所需的功能的通信装置,等等。其中,网络装置例如为基站。
为了便于介绍,在下文中,以该方法由网络装置和终端装置执行为例,也就是,以第一通信装置是网络装置、第二通信装置是终端装置为例。因为本实施例是以应用在图1或图3所示的网络架构为例,因此,下文中所述的网络装置可以是图3所示的网络架构中的网络装置,下文中所述的终端装置可以是图1或图3所示的网络架构中的终端装置。如果下文中第一终端装置是图1所示的网络架构中的车辆1,那么下文中第二终端装置可以是图1所示的网络架构中的车辆2。或者,如果下文中第一终端装置是图3所示的网络架构中的终端装置1,那么下文中第二终端装置可以是图3所示的网络架构中的终端装置2。
S41、网络装置确定第一消息,第一消息携带配置信息和第一指示信息,配置信息用于指示为第一终端装置所配置的第一资源,第一指示信息用于指示第一资源是否还被配置给至少一个第二终端装置。
网络装置要为一个终端装置,例如第一终端装置配置资源,就可以通过第一消息来进行配置。在本申请实施例中,“确定”第一消息,也可以理解为“生成”第一消息或“得到”第一消息等,对于网络装置确定第一消息的方式不做限制。第一消息可以是专用信令,例如为无线资源控制(Radio Resource Control,RRC)信令,或者下行控制信息(Downlink Control Information,DCI)信令等。作为一种实施方式,第一消息可以携带配置信息,该配置信 息可以用于指示为第一终端装置所要配置的第一资源。为了节约资源,网络装置也可以将第一资源配置为至少一个第二终端装置。如果第一终端装置和至少一个第二终端装置均在第一资源上传输数据,可能会出现第一终端装置和其中的一个第二终端装置或者多个第二终端装置同时在第一资源上传输数据,那么第一终端装置和至少一个第二终端装置就会彼此造成干扰,影响接收端正常接收数据。甚至,由于第一终端装置和至少一个第二终端装置彼此造成干扰,导致第一终端装置或至少一个第二终端装置传输数据失败。
为此,第一消息还可以携带第一指示信息,该第一指示信息可以用于指示第一资源是否还被配置给至少一个第二终端装置,这样,第一终端装置就可以根据第一指示信息知晓是否有其他终端装置与第一终端装置复用第一资源,从而第一终端装置可以根据第一指示信息确定如何在第一资源上发送数据,以避免与至少一个第二终端装置利用第一资源发送数据时可能造成的冲突。
或者,作为另一种实施方式,配置信息和第一指示信息放在不同的消息中发送,例如,配置信息携带在第一消息中,第一指示信息携带在第二消息中,网络装置可以向第一终端装置发送第一消息和第二消息。同理,第二消息也可以是RRC信令或者DCI信令。其中,网络装置可以先发送第一消息后发送第二消息,或者可以先发送第二消息后发送第一消息,或者可以同时发送第一消息和第二消息。
在本申请实施例中,第一指示信息用于指示第一资源是否还被配置给至少一个第二终端装置,包括但不限于如下几种方式中的一种:
1、第一指示信息占用一个比特,这个比特的取值用于指示第一资源是否还被配置给至少一个第二终端装置。例如,比特的取值为0,则可以指示第一资源没有被配置给至少一个第二终端装置;相对地,比特的取值为1,则可以指示第一资源还被配置给至少一个第二终端装置。或者,比特的取值为1,则可以指示第一资源没有被配置给至少一个第二终端装置;相对地,比特的取值为0,则可以指示第一资源还被配置给至少一个第二终端装置。第一指示信息占用一个比特,以尽量节省第一指示信息占用的比特数。
2、第一指示信息用于指示至少一个第二终端装置在第一资源发送数据的时域位置,这种方式通过隐式方式指示第一资源是否还被配置给至少一个第二终端装置。既然至少一个第二终端装置可以在第一资源上的某些时域位置发送数据,那么隐含指示了第一资源被配置给了至少一个第二终端装置。
例如,配置信息还可以用于指示为第一终端装置配置的RV,第一指示信息可以占用至少两个比特,例如可以是与RV对应的bitmap。请参见图5,为终端装置在第一资源发送数据的一种时域位置示意图。网络装置为第一终端装置(图5中所示的UE1)配置的RV为(0,3,0,3),第一指示信息是00,用于指示没有第二终端装置可以占用第一资源,也就是第一资源没有被配置给一个第二终端装置;或者,第一指示信息可以是01,用于指示第二终端装置(图5中所示的UE2)占用第一资源的起始时域位置为第2个发送机会,也就是在第2个发送机会有第二终端装置可以占用第一资源。又例如,请参见图6,为终端装置在第一资源发送数据的一种时域位置示意图。网络装置为第一终端装置(图6中所示的UE1)配置的RV为(0,2,3,1),第一指示信息可以是0010,用于指示在第3个发送机会有第二终端装置(图6中所示的UE3)可以占用第一资源;或者,第一指示信息可以是0000,用于指示没有第二终端装置可以占用第一资源;或者,第一指示信息可以是0110,用于指示在第2个发送机会和第3个发送机会分别有第二终端装置可以占用第一资源,这 两个第二终端装置可以是图6中的UE2和UE3。当然,通过bitmap来指示只是一种示例,本申请实施例不限制具体如何通过第一指示信息来指示第一资源是否还被配置给至少一个第二终端装置。
在具体实施时,第一指示信息指示第一终端装置和至少一个第二终端装置在第一资源发送数据的时域位置,包括但不限于如下几种方式中的一种:
1)第一指示信息可以用于指示第一终端装置在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量。这种情况下,网络装置和第一终端装置可以事先约定,可以默认至少一个第二终端装置中的各个第二终端装置在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为0。
2)第一指示信息可以用于指示至少一个第二终端装置中的各个第二终端装置在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量。这种情况下,网络装置和第一终端装置可以事先约定,可以默认第一终端装置在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为0。
3)第一指示信息可以用于指示第一终端装置在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量,以及至少一个第二终端装置中的各个第二终端装置在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量。
如上的1)-3)方式中,第一终端装置在第一资源发送数据的时域起始位置,以及第二终端装置在第一资源发送数据的时域起始位置可以采用RV指示。
具体地,请继续参见图5,为终端装置在第一资源发送数据的时间位置示意图。网络装置为第一终端装置(图5中的UE1)和第二终端装置(图5中的UE2)配置的RV均为(0,3,0,3)。第一指示信息可以用于指示UE1在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量,和/或UE2在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量。例如,第一指示信息可以指示UE1在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为0,并指示UE2在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为1,那么对应图5,UE1可以从第1个发送机会开始发送数据,而UE2本来根据RV可以从第1个发送机会开始发送数据,但是由于第一指示信息指示UE2在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为1,所以UE2是在第2个发送机会开始发送数据。如果网络装置为UE1和UE2配置的重复次数均为8,那么UE1在第一资源发送数据的时域起始位置分别为奇数次发送机会(1,3,5,7),UE2在第一资源发送数据的时域起始位置分别为偶数次发送机会(2,4,6,8)。
需要指出的是,网络装置还可以为第一终端装置和至少一个第二终端装置在第一资源中配置不同的时域起始发送位置,以避免第一终端装置和至少一个第二终端装置同时发送数据造成干扰。例如,网络装置为第一终端装置和至少一个第二终端装置配置不同的RV来对应不同的时域起始发送位置。这种情况下,网络装置可以不通知第一终端装置和至少一个第二终端装置各自的时域起始发送位置。
4)第一指示信息还可以通过指示为第一终端装置和第二终端装置配置的RV来实现指示第一终端装置在第一资源上发送数据的时域位置,和/或,至少一个第二终端装置在第一资源发送数据的时域位置。
在一种可能的实施方式中,第一指示信息可以携带第一终端装置配置的RV信息,和/ 或,为第二终端装置配置的RV信息。例如,第一指示信息携带RV信息指示第一终端装置的RV为(0,3,0,3),以及第二终端装置指示的RV为(3,0,3,0)。那么根据第一指示信息中的RV信息可以确定第一终端装置在第一资源发送数据的时域起始位置分别为奇数次发送机会(1,3,5,7),而第二终端装置在第一资源发送数据的时域起始位置分别为偶数次发送机会(2,4,6,8)。由于目前5G协议中没有定义(3,0,3,0)的RV,这种情况下,网络装置和终端装置可以事先约定新增加RV的可选项,例如,(3,0,3,0),网络装置可以通过信令为终端装置配置RV,该信令可以携带用于指示(3,0,3,0)的RV信息。
需要说明的是,上述实施例以RV指示第一指示信息中的第一终端装置在第一资源上发送数据的时域起始位置,和/或,至少一个第二终端装置在第一资源发送数据的时域起始位置仅是举例。本申请实施例也可以通过其他方式指示该信息,例如,第一资源在时域上包括8个时间单元,可以用8比特bit分别指示8个时间单元(发送机会),每个1bit指示对应的时间单元是否还被配置给第二终端装置,再用2bit指示第一终端装置在第一资源上发送数据的时域起始位置,和/或,至少一个第二终端装置在第一资源发送数据的时域起始位置。
在本申请实施例中,第一指示信息可以指示第一终端装置和/或第二终端装置在第一资源发送数据的时域位置,从而第一终端装置可以根据第一指示信息确定如何在第一资源上发送数据,以尽量避免第一终端设备和第二终端装置占用相同的资源,同时发送数据所导致数据发送失败,提高数据传输的可靠性。
S42、网络装置向第一终端装置发送第一消息,则第一终端装置接收来自网络装置的第一消息。
网络装置确定第一消息后,如果第一消息是专用信令,则网络装置向第一终端装置发送第一消息,这里的“发送”,可以理解为单播,终端装置就可以接收来自网络装置的第一消息。
S43、第一终端装置根据接收的第一消息在第一资源上向网络装置发送数据。
如果第一消息包括配置信息和第一指示信息,那么第一终端装置接收第一消息后,根据第一消息携带的配置信息可以确定网络装置为第一终端装置配置的第一资源。第一终端装置还可以根据第一消息携带的第一指示信息确定第一终端装置是否被配置给至少一个第二终端装置,从而根据第一指示信息在第一资源上向网络装置发送数据,以避免与至少一个第二终端装置在第一资源上发生冲突,提高传输数据的可靠性。
具体地,第一终端装置可以根据第一指示信息确定在每个调度周期内发送数据的时域位置,以及发送数据之前是否要检测至少一个第二终端装置中的各个第二终端装置的SCI。其中,如果第一终端装置检测到某个第二终端装置的SCI,则可以认为某个第二终端装置在第一资源上发送数据。第一终端装置根据在每个调度周期内发送数据的时域位置,以及所检测的各个第二终端装置的SCI,可以确定发送数据的起始时域位置,以避开与某个第二终端装置发送数据可能发送的冲突,例如,第一终端装置和某个第二终端装置同时在相同的时域位置发送数据。
根据第一指示消息的可能实现方式的不同,第一终端装置根据第一指示信息确定在每个调度周期内发送数据的时域位置,以及发送数据之前是否要检测各个第二终端装置的SCI方式也有所不同,包括但不限于以下几种方式的一种:
1、如果第一指示信息占用1个比特,用于指示第一资源是否还被配置给至少一个第二终端装置,那么第一终端装置根据第一指示信息确定在每次发送数据之前均需要检测在发 送数据的起始时域位置的前面发送机会的SCI。这是因为,第一指示信息仅指示第一资源是否被复用,并没有指示第一资源在哪些时域位置被复用,从而第一终端装置每次发送数据之前都需要检测SCI,以尽量保证避免与至少一个第二终端装置在第一资源上发生冲突。如果第一终端装置根据检测的SCI确定第一终端装置在第一资源上发送数据的本次发送机会上存在第二终端装置发送数据的情况,那么第一终端装置暂时先不发送数据,而是在确定本次发送机会没有第二终端装置发送数据的情况时,再在本次发送机会进行发送数据。
当然,如果第一指示信息指示第一资源没有被配置给至少一个第二终端装置,则第一终端装置就不需要检测任何第二终端装置的SCI。可再参考图8,通过图8可以看到图4的实施例的大致过程。从图8中可以看到,网络装置可以向第一终端装置(UE1)以及第二终端装置(UE2)分别发送配置信息和第一指示信息。UE1和UE2可以根据第一指示信息确定是否检测彼此的SCI,当第一资源没有同时被配置给UE1和UE2时,则不需要检测彼此的SCI,所以图8中用虚线示意SCI。
2、如果第一指示信息占用至少两个比特,用于指示至少一个第二终端装置在第一资源发送数据的时域位置。则第一终端装置可以根据第一指示信息确定在第一资源的什么位置检测SCI,不需要盲检,也就是可能不需要在每次发送数据之前都检测在发送数据的起始时域位置的前面发送机会的SCI,尽量减轻第一终端装置的负担。
具体地,第一终端装置通过网络装置的配置,例如配置信息和第一指示信息,确定第一终端装置在第一资源上发送数据的起始发送时域位置的偏移量、一个调度周期内的重复次数、发送周期、周期编号,以确定在本次调度周期内发送数据的发送时域位置和最大发送次数,以及至少一个第二终端装置在第一资源发送数据的起始发送时域位置,从而第一终端装置进一步确定是否需要在本次调度周期内发送数据的发送时域位置之前检测第二终端装置的SCI。如果需要检测第二终端装置的SCI,且检测到了第二终端装置的SCI,则进一步根据所检测到的SCI确定第一资源上的哪些资源可用,在确定可用资源上发送数据。
这里,第一终端装置在第一资源上发送数据的起始发送时域位置的偏移量为第一终端装置在第一资源上发送数据的第一次发送机会与第一消息中配置信息指示的时域位置偏移量(第一资源的时域起始位置的偏移量),例如,相对于配置信息指示的时间位置的发送机会偏移个数。周期编号可以是从首次发送机会所在周期为0开始编号、下一个首次发送机会所在周期为1。发送周期可以是相邻周期间隔。
第一终端装置检测至少一个第二终端装置的SCI之后,可以根据所检测到的SCI确定第一资源上的哪些资源可用。下面以第一终端装置为例,介绍如何根据所检测到的SCI确定第一资源上的哪些资源可用。需要说明的是,第二终端装置根据所检测到的SCI确定第一资源上的哪些资源可用的过程和第一终端装置根据所检测到的SCI确定第一资源上的哪些资源可用的过程相同。
在介绍如何根据所检测到的SCI确定第一资源上的哪些资源可用之前,先介绍如何确定每个周期内的最大发送次数和发送数据的起始发送机会。
假设网络装置是通过RV配置来通知终端装置的,例如,网络装置为第一终端装置配置的RV为(0,2,3,1),且第一资源还被配置为3个第二终端装置,也就是第一资源的复用用户个数为3。例如,请参见图7,图7为多个终端装置在第一资源发送数据的时域位置图。图7以包括3个终端装置为例,这3个终端装置分别为UE1、UE2和UE3,网络装置为UE1、UE2和UE3配置的RV均为(0,2,3,1),且网络装置为UE1、UE2和UE3配置的在第一资 源发送数据的最大重复次数均相同,例如,最大重复次数为8。在第一个周期内(图7中从左开始的第一个周期),UE1有机会可以第一个开始发送数据,然而到了第二个周期,UE3有机会可以开始第一个开始发送数据,这样可以尽量均衡多个终端装置进行业务传输的时延。在图7中,第一终端装置在第1个周期内以第1个发送机会和第5个发送机会为起始发送机会,最大重复次数为8;第一终端装置在第2个周期内以第2个发送机会和第6个发送机会为起始发送机会,最大重复次数为7;第一终端装置在第3个周期内以第3个发送机会和第7个发送机会为起始发送机会,最大重复次数为6;第一终端装置在第4个周期内以重新第1个发送机会和第5个发送机会为起始发送机会,最大重复次数为8。需要说明的是,如果终端装置重复多次发送数据时,在网络装置配置的周期内起始发送机会为1,最多发送8次,而如果起始发送机会不是第一个发送机会,终端装置即使没有达到最大重复次数8次,发送到资源分配的截止位置时也需要停止发送了。例如,在第一个周期,UE1在第1个发送机会开始发送数据,最多可以重复发送8次,而UE2在第2个发送机会开始发送,最多可以重复发送7次,也就是发送到资源分配的截止位置时停止发送数据了。
另外,本申请实施例中,网络装置和终端装置可以约定在每个周期内的起始发送机会以复用用户个数为模,依次延迟1个发送机会。这是为了让多个终端装置处于公平的条件下,不能总让某个终端装置一直都可以第一个开始发送数据的。上述图7以此为例。
第一终端装置根据所检测到的SCI确定第一资源上的哪些资源可用时,可以根据所检测到的第二终端装置的SCI携带的第二终端装置本次发送数据的最大重复次数,确定第二终端装置发送数据的起始发送位置和结束发送位置。例如,第二终端装置本次发送数据的需要的重复次数为2次、发送数据的时域起始发送位置位于一个调度周期内的第一个发送机会,则其他终端装置可以根据SCI确定该终端装置需要占据第1个发送机会和第2个发送机会发送数据。
为了便于理解,请继续参见图7,以一个发送周期为例,当网络装置为UE1配置的第一指示消息指示UE1在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为0,那么UE1可以确定在第1个发送机会不需要检测SCI,且UE1在第一资源上发送数据的最大重复次数为8次。当网络装置为UE2配置的第一指示消息指示UE2在第一资源发送数据的时域起始位置与第一资源的时域起始位置的偏移量为1,则UE2可以确定在第2个发送机会可以开始发送数据,那么UE2就需要在第1个发送机会检测UE1的SCI,且UE2可以确定在第一资源上发送数据的最大重复次数为7次。如果UE2在第1个发送机会检测到UE1的SCI,那么UE2先不在第2个发送机会发送数据,UE2可以依次检测第2个发送机会以及第2个发送机会之后的发送机会是否存在UE1的SCI,直到UE2没有检测到UE1的SCI,则UE2在下一个配置的初始发送机会发送数据。另外,如果第一终端装置的SCI中指示了本次发送的重复次数,则第二终端装置可以根据该SCI判断第一资源中哪些剩余的资源可用,而不需要在所有的发送机会都检测第一终端装置的SCI。
如上的实施例中,网络装置为第一终端装置和至少一个第二终端装置所配置的最大重复次数不相同,也就是第一终端装置和至少一个第二终端装置在第一资源发送数据的最大重复次数不相同。这种情况下,第一终端装置和至少一个第二终端装置所占用的资源均在最大重复次数之内。例如,请继续参见图7,一个发送周期内时域资源最多占用8个发送机会,不同终端装置的最大重复次数不一样,以此保证占用的时间资源不会超过8个发送机会(时间单元),节约了资源。
作为另一种实施方式,配置信息还可以用于指示第一终端装置和至少一个第二终端装置中的各个第二终端装置在第一资源发送数据的最大重复次数相同,也就是网络装置为第一终端装置和至少一个第二终端装置配置的最大重复次数相同。在这种情况下,由于第一终端装置和至少一个第二终端装置在第一资源上发送数据的时域起始发送位置不相同,那么为了保证第一终端装置和至少一个第二终端装置相同的最大重复次数,第一终端装置和至少一个第二终端装置共占用的资源可能就较多。
为了便于理解,请参见图9,以图9为包括两个终端装置,这两个终端装置分别为UE1和UE2为例,介绍当第一终端装置和至少一个第二终端装置配置的重复次数相同,第一终端装置和至少一个第二终端装置共占用的资源较多的原理。
图9以网络装置为UE1和UE2配置的RV均为(0,3,0,3)为例,UE1可以确定将第1个发送机会、第3个发送机会、第5个发送机会或第7个发送机会作为发送数据的时域起始发送位置,且在第1个发送机会不需要检测UE2的SCI,而在第3个发送机会、第5个发送机会或第7个发送机会均需要检测前面发送时机的UE2的SCI。UE2可以确定可以将第2个发送机会、第4个发送机会、第6个发送机会或第8个发送机会作为发送数据的时域起始发送位置,且在每个起始发送位置均需要检测前面发送时机的UE1的SCI。从图9中可以看出,为了保证UE1和UE2具有相同的最大重复次数,那么在第一个周期(从图9左起的第一个)内,UE2所占用的时间单元还是8个发送机会,只不过是向时域方向扩展了一个发送机会,所以,UE1和UE2共占用的时间单元是9个发送机会,相较于图7的第一个周期,UE1和UE2所占用的时间单元(即8个发送机会)来说,图9中的UE1和UE2所占用的时间单元较多。同理,图9中位于第二周期内,UE1所占用的时间单元向时域方向扩展了一个发送机会,UE1和UE2所占用的时间单元也较多。
本申请实施例中,第一终端装置和至少一个第二终端装置复用第一资源。在一种可能的实施方式中,网络装置还可以指示第一终端装置和至少一个第二终端装置如何复用第一资源。这种情况下,第一终端装置和至少一个第二终端装置按照网络装置的指示复用第一资源,无需额外增加检测彼此的SCI的次数,从而减轻终端装置的负担。
例如,网络装置可以向第一终端装置发送第二指示信息,该第二指示信息用于指示第一终端装置与至少一个第二终端复用第一资源的方式。需要说明的是,这里的第二指示信息也可以是如上述的第一指示信息,也就是第一指示信息还用于指示第一终端装置与至少一个第二终端复用第一资源的方式,这样有助于减少信令的开销。下文中,以网络装置向第一终端装置发送第二指示信息为例。
根据第一终端装置和至少一个第二终端装置所进行的业务类型的不同,第一终端装置和至少一个第二终端装置复用第一资源的复用方式也可能有所不同。在本申请实施例中,第一终端装置和至少一个第二终端装置复用第一资源的复用方式,包括但不限于如下几种方式中的一种:
1、一种可能的应用场景为第一终端装置基于第一资源向至少一个第二终端装置中的一个第二终端装置发送数据,也就是第一终端装置和第二终端装置进行单播业务。在这种场景下,第一终端装置和第二终端装置复用第一资源的复用方式包括如下方式中的一种:
1)、第二指示信息可以用于指示第一终端装置与第二终端装置按照调度周期轮流使用第一资源。
在一种可能的实施方式中,网络装置为第一终端装置和第二终端装置配置了相同的第 一资源。第二指示信息可以占用1个比特,这个比特的取值可以指示第一终端装置使用奇数发送周期在第一资源发送数据,且指示第二终端装置使用偶数发送周期在第一资源发送数据。例如,这个比特的取值为0,则指示第一终端装置使用奇数发送周期在第一资源发送数据,且指示第二终端装置使用偶数发送周期在第一资源发送数据。当然这里仅是举例,也有可能这个比特的取值为1,则指示第一终端装置使用奇数发送周期在第一资源发送数据,且指示第二终端装置使用偶数发送周期在第一资源发送数据。这里的奇数发送周期可以理解为在第一资源上的第1个发送周期,第3个发送周期等,对应地,偶数发送周期可以理解为在第一资源上的第2个发送周期,第4个发送周期等。
在另一种可能的实施方式中,网络装置为第一终端装置配置了第一资源,但是第一终端装置将第一资源中的部分资源或全部资源配置给第二终端装置,例如,第一终端装置通过侧行链路sidelink资源将配置信息发送给第二终端装置。该配置信息可能包括第一资源中的部分资源或全部资源,或者,重复次数,发送周期等。第一终端装置为第二终端装置配置资源后,可以向网络装置发送第三消息,该第三消息用于指示第二终端装置使用第一资源中的部分或全部资源,以告知网络装置第二终端装置所使用的资源是第一终端装置的资源,这样,网络装置就可以根据第三消息发送第二指示信息,即为第一终端装置和第二终端装置指定复用第一资源的复用方式。这种情况下,第二指示信息可以用于指示第二终端装置在接收到第一终端装置发送的配置信息后的第1个周期开始,与第一终端装置按照调度周期轮流使用第一资源。
需要说明的是,在这种情况下,第三消息还可以用于指示网络装置不要将配置给第一终端装置的第一资源再配置给其他终端装置。这里的其他终端装置指的是除第二终端装置之外的终端装置。
2)、第二指示信息可以用于指示第一终端装置与第二终端装置在任意一个调度周期内交替使用第一资源。
在一种可能的实施方式中,第二指示信息可以用于指示第一终端装置和第二终端装置在第一资源的第1个发送周期内的时域偏移量,从而第一终端装置和第二终端装置可以根据第二指示信息为各自指定的时域偏移量确定在第1个发送周期的发送数据的起始发送位置,之后在确定的起始发送位置开始发送数据。这样,第一终端装置和第二终端装置不需要等到下一个发送周期开始发送数据,有利用减少发送数据的时延,有助于延时要求较低的业务传输。
或者,在另一种可能的实施方式中,网络装置可以不向第一终端装置和第二终端装置发送第二指示信息,这种情况下,网络装置和第一终端装置可以事先约定第一终端装置和第二终端装置按照预设的复用方式复用第一资源。一种可能的预设的复用方式可以是按照第一终端装置的身份标识(identification,ID)和第二终端装置的ID的大小设置发送数据的顺序。例如,ID越小,则开始发送数据的优先级越高,例如,由于第一终端装置和第二终端装置进行的是单播业务,所以第一终端装置和第二终端装置彼此知晓各自的ID,如果第一终端装置的ID小于第二终端装置的ID,则第一终端装置和第二终端装置可以确定复用第一资源的方式为第一终端装置在第1个发送周期的第1个发送机会开始发送数据,第二终端装置在第2个发送周期的第1个发送机会开始发送数据。
另外,上述两种实施方式所提供的第一终端装置和第二终端装置复用第一资源的复用方式既适用于网络装置为第一终端装置和第二终端装置配置相同的第一资源的情况,又适 用于第一终端装置将网络装置配置的第一资源中的部分资源或全部资源配置给第二终端装置的情况。
网络装置通过第二指示信息指示第一终端装置和第二终端装置复用第一资源的复用方式,或者,网络装置指示第一终端装置和第二终端装置按照约定方式复用第一资源,以尽量避免第一终端装置和第二终端装置进行单播业务时可能发生的冲突,以免造成第一终端装置和第二终端装置无法听到对方消息的问题。
2、一种可能的应用场景为第一终端装置基于第一资源向多个第二终端装置发送数据,也就是第一终端装置和多个第二终端装置进行组播业务。
这种情况下,第二指示信息可以用于指示第一终端装置与多个第二终端装置在任意一个调度周期内交替使用第一资源。在一种可能的实施方式中,第二指示信息可以用于指示第一终端装置和多个第二终端装置中的每个终端装置在第一资源的第1个发送周期内的时域偏移量,从而第一终端装置和每个第二终端装置可以根据第二指示信息为各自指定的时域偏移量确定在第1个发送周期的发送数据的起始发送位置,之后在确定的起始发送位置开始发送数据。例如,如果第一终端装置和多个第二终端装置所使用的RV均为(0,2,3,1),则第二指示信息可以指示第一终端装置和每个第二终端装置在RV对应的不同位置发送数据。
网络装置通过第二指示信息指示第一终端装置和多个第二终端装置复用第一资源的复用方式,即第一终端装置和多个第二终端装置轮流使用第一资源,以尽量避免第一终端装置和多个第二终端装置进行组播业务时可能发生的冲突,以免造成第一终端装置和多个第二终端装置无法听到对方消息的问题。
上述第一终端装置和至少一个第二终端装置复用第一资源,可提高第一资源利用率。但是如果第一资源是网络装置通过免授权配置调度机制分配给第一终端装置和至少一个第二终端装置的,那么第一终端装置和至少一个第二终端装置可以周期性使用第一资源。但是如果第一终端装置和至少一个第二终端装置利用第一资源进行非周期业务,那么第一终端装置和至少一个第二终端装置在第一资源上不一定发送数据,此时还是可能造成资源的浪费。
为此,在本申请实施例中,网络装置可以指示通过动态调度机制配置资源的终端装置利用第一资源,以进一步提高资源的利用率。下文中以第一终端装置为通过动态调度机制配置资源的终端装置,第二终端装置为通过免授权配置调度机制配置资源的终端装置为例。网络装置通知第一终端装置使用第二终端装置的资源的通知方式,包括但不限于以下几种中的一种:
1、可再参考图10,通过图10可以看到图4的实施例的大致过程。网络装置为第二终端装置发送配置信息,用于为第二终端装置配置资源。同样地,网络装置也可以为第一终端装置发送配置信息,用于为第一终端装置配置资源。只是对应第二终端装置的配置信息所指示的资源与对应第一终端装置配置信息所指示的资源相同。
2、网络装置可以先给第二终端装置配置资源,并提前将为第二终端装置配置资源的配置信息发送给第一终端装置,以告知第一终端装置可以使用为第二终端装置配置的资源。其中,网络装置可以提前将多个第二终端装置的配置信息发送给第一终端装置,多个第二终端装置可以是通过免授权配置调度机制配置资源的终端装置中的部分终端装置或全部终端装置。
3、网络装置通过为第一终端装置发送配置信息以配置资源,另外,网络装置还可以再给第一终端装置发送一条信息,以通过这条信息通知第一终端装置,网络装置为第一终端装置配置的资源是第二终端装置的资源。例如,网络装置可以向第一终端装置发送DCI,该DCI携带指示信息,该指示信息指示为第一终端装置配置的资源是否是第二终端装置的资源。例如,该指示信息包括1个比特,当这个比特的取值为0时,表示为第一终端装置配置的资源是第二终端装置的资源。或者,当这个比特的取值为1时,表示为第一终端装置配置的资源是第二终端装置的资源。
可继续参考图10,为了避免第一终端装置和第二终端装置复用资源发送数据造成冲突,网络装置为第一终端装置发送用于配置资源的动态调度信令,如图10所示的资配置信息时,还可以通过第一指示信息通知第一终端装置是否检测至少一个第二终端装置的SCI。如果第一终端装置没有检测到任何第二终端装置的SCI,那么第一终端装置可以按照网络装置的调度指示进行发送数据。如果第一终端装置检测到了一个或者多个第二终端装置的SCI,则可以根据检测到的SCI判断与一个第二终端装置或者多个第二终端装置复用资源上有哪些资源是可以用来发送数据的,以避免与一个第二终端装置或多个第二终端装置发送数据时可能发生的冲突。
进一步地,第一指示信息可以用于指示第一终端装置检测至少一个第二终端装置的SCI的时域位置。在一种可能的方式中,一个第二终端装置对应一个检测SCI的时域位置。如果第一终端装置接收到第一指示信息,则可以根据第一指示信息所指示的时域位置检测至少一个第二终端装置的SCI。如果第一终端装置没有检测到SCI,则可以按照网络装置的调度信息在所配置的资源上发送数据。如果第一终端装置检测到了第二终端装置的SCI,则可以根据第二终端装置的SCI判断是否可以在网络装置配置的资源上发送数据。由于第一终端装置不一定检测第二终端装置的SCI,所以图10中也虚线示意SCI。
具体地,第一指示信息可以通过比特映射方式进行指示,例如,第一指示信息占用两个比特,这两个比特的取值用于指示第一终端装置在所分配的资源的什么位置开始检测至少一个第二终端装置的SCI。例如,第一指示信息为00,则可以表示第一终端装置不需要检测至少一个第二终端装置的SCI;第一指示信息为01,则可以表示第一终端装置在发送数据时,提前1个发送机会检测至少一个第二终端装置的SCI;第一指示信息为10,则可以表示第一终端装置在发送数据时,提前2个发送机会检测至少一个第二终端装置的SCI;第一指示信息为11,则可以表示第一终端装置在发送数据时,提前3个发送机会检测至少一个第二终端装置的SCI。作为另一种实施方式,第一指示信息也可能占用4个比特,例如,第一指示信息为0000,则可以表示第一终端装置不需要检测至少一个第二终端装置的SCI;第一指示信息为0010,则可以表示第一终端装置在发送数据时,提前2个发送机会检测至少一个第二终端装置的SCI。或者,第一指示信息也可以采用1个比特指示第一终端装置是否需要检测前1个发送机会的至少一个第二终端装置的SCI。
第一终端装置接收到来自网络装置的配置信息和第一指示信息之后,可以根据网络装置为第二终端装置配置的资源,以及接收的配置信息和第一指示信息,判断是否需要检测第二终端装置的SCI。即判断第一终端装置发送数据所占用的资源是否会与第二终端装置发送数据所占的资源重合。如果资源没有重合,则第一终端装置可以直接发送数;而如果资源重合,则第一终端装置需要检测第二终端装置的SCI,根据所检测的SCI判断在重合的资源上哪些资源上发送数据。
当然,如果网络装置提前将至少一个第二终端装置的配置信息发送给第一终端装置,那么第一终端装置接收了至少一个第二终端装置的配置信息后,接收到来自网络装置的用于指示第一资源的配置信息之后,可以根据至少一个第二终端装置的配置信息和第一资源配置信息确定第一资源是否为网络装置为至少一个第二终端装置配置的资源,并根据判断结果确定是否需要检测多个第二终端装置的SCI。如网络装置为第一终端装置配置的第一资源与网络装置为至少一个第二终端装置配置的资源重合,第一终端装置需要检测第二终端装置的SCI;如网络装置为第一终端装置配置的第一资源与网络装置为至少一个第二终端装置配置的资源不重合,第一终端装置不需要检测第二终端装置的SCI。
为了便于理解第一终端装置根据第一指示信息如何检测第二终端装置的SCI,下面将结合图11进行示意介绍。
请参见图11,为多个第一终端装置检测一个第二终端装置的SCI的示意图。图11以第二终端装置为UE1,多个第一终端装置分别为UE2、UE3、UE4和UE5为例。网络装置配置UE1使用的RV为(0,2,3,1)。网络装置配置UE2、UE3、UE4和UE5在UE1发送数据后的第1个发送机会、第2个发送机会、第3个发送机会可以进行发送数据。同时,网络装置配置UE2、UE3、UE4和UE5在UE1的第1个发送机会检测SCI。UE1的SCI中会携带UE1的重复传输或者下一个发送机会是否会发送数据的信息。如果UE1有数据发送,且网络装置为UE1配置的重复次数为2次。UE2在UE1的第1个发送机会检测UE1的SCI,如图11以箭头示意检测SCI的位置。由于UE1有数据发送,且重复次数为2次,那么UE1会占用第1个发送机会和第2个发送机会,所以UE2确定不能在第2个发送机会发送数据,即UE2无法发送数据。图11以第2个发送机会的标识“X”示意UE2不能在第2个发送机会发送数据。而对于UE3来说,UE3同样在UE1的第1个发送机会检测UE1的SCI,确定UE1会占用第1个发送机会和第2个发送机会,但是UE3可以从第3个发送机会开始发送数据,并没有与UE1占用的第1个发送机会和第2个发送机会冲突,所以UE3可以在第3个发送机会开始发送数据。同UE3一样,UE4可以确定在第4个发送机会可以发送数据。对于UE5来说,因为UE1在第5个发送机会还是可以开始发送数据,所以UE5需要在UE1的第1个发送机会和第5个发送机会检测UE1的SCI,再根据SCI确定哪些发送机会可以用来发送数据。
图11示意了多个第一终端装置检测一个第二终端装置的SCI的过程。实际中,一个资源可以对应多个终端装置,且这多个终端装置上的每个终端装置都可能发送数据,那么这多个终端设被配置的资源可以是相同时域资源下的多个不同的频域资源,也可以是相同频域资源下的多个不同的时域资源。在本申请实施例中,由于第一终端装置和第二终端装置复用第一资源,为了避免第一终端装置发送数据时没有资源可用,网络装置可以为第一终端装置配置多个资源。例如,网络装置为第一终端装置配置的资源可以是相同时域资源下的多个不同的频域资源,或者,相同频域资源下的多个不同的时域资源。
在这种情况下,第一指示信息可以用于指示第一终端装置是否检测至少两个第二终端装置的SCI。第一终端装置根据第一指示信息检测至少两个第二终端装置的SCI,并根据检测结果来确定第一终端装置与至少两个第二终端装置复用资源上的哪些资源可以用来发送数据。同样,第一指示信息可以用于指示第一终端装置检测至少两个第二终端装置中的每个第二终端装置的SCI的时域位置。
第一终端装置如果没有检测到任何一个第二终端装置的SCI,则第一终端装置根据网络装置的调度在所配置的资源上进行发送数据。如果第一终端装置有多个资源可用,则第 一终端装置可以从预设的选择资源方式在多个资源中选择一个资源进行发送数据。这种情况下,网络装置不需要给第一终端装置另外的指示,可以节约信令的开销。在一种可能的实施方式中,预设的选择资源方式可以是选择频域资源序号最低的资源、选择信道质量最好的资源、选择开始传输时间最早的资源。第一终端装置可以基于所进行的业务需求从预设的选择资源方式中选择一个资源。例如,如果第一终端装置所进行的业务要求时延低,则第一终端装置可以选择开始传输时间最早的资源,以尽量缩短传输业务的时延。又例如,如果第一终端装置所进行的业务要求较高的传输可靠性,则第一终端设可以选择信道质量最好的资源,以尽量保证所进行的业务的传输可靠性。
或者,如果第一终端装置检测到了至少两个第二终端装置中的部分第二终端装置或全部第二终端装置的SCI,根据所检测到的SCI确定有多个资源可用,则可以采用如上述的方式从预设的选择方式中在多个资源中选择一个资源进行发送数据,这里就不再赘述。如果第一终端装置根据所检测到的SCI确定有一个资源可用,则第一终端装置可以在这一个资源上发送数据。
又或者,如果第一终端装置检测到了至少两个第二终端装置中的部分第二终端装置或全部第二终端装置的SCI,根据所检测到的SCI确定没有资源可用,否则将与至少两个第二终端装置发生冲突,则第一终端装置不发送数据。
为了便于理解,请参见图12,示意了一个第一终端装置检测多个第二终端装置的SCI的过程。图12以包括两个第二终端装置为例,这两个第二终端装置分别为UE1和UE2,第一终端装置为UE3为例。网络装置配置UE1使用的RV为(0,3,0,3),网络装置配置UE2使用的RV为(0,2,3,1)。网络装置配置UE3同时检测UE1和UE2在第1个发送机会的SCI,如图12以箭头示意检测SCI的位置。如果UE1和UE2在第1个发送机会均没有数据发送,则UE3可以选择UE1或UE2的资源。进一步地,由于UE1对应的资源序号小于UE2对应资源序号,则UE3可以优先选择UE1的资源来发送数据。
又例如,请参见图13,示意了一个第一终端装置检测一个第二终端装置的SCI的过程。图13以第一终端装置为UE2,第一终端装置为UE1为例。网络装置配置UE1使用的RV为(0,2,3,1)。网络装置配置UE2可发送数据的资源为第2个发送机会、第3个发送机会和第4个发送机会,并配置UE2检测UE1的SCI。UE2在UE1的第1个发送机会检测UE1的SCI,图13以箭头示意检测SCI的位置。如果UE2根据所检测的UE1的SCI确定UE1在第1个发送机会和第2个发送机会上发送数据,如图13阴影区域表示UE1在第1个发送机会和第2个发送机会上发送数据,那么UE2确定可以在第3个发送机会发送数据,也可以在第4个发送机会发送数据,不可以在第2个发送机会发送数据。UE2可以进一步选择预先发送数据的发送机会,例如第3个发送机会发送数据。图13通过“X”示意UE2对应的第2个发送机会用不可以发送数据,通过“Y”示意UE2对应的第3个发送机会用不可以发送数据。图13仅示意了一个第一终端装置检测一个第二终端装置的SCI的过程,实际上,一个第一终端装置检测多个第二终端装置中的每个第二终端装置的SCI的过程同图13是相同的,这里就不在举例了。
如前文所述,网络装置通过第一消息来指示为第一终端装置配置的第一资源是否还被配置给了至少一个第二终端装置,从而第一终端装置确定在至少一个终端装置没有在第一资源上发送数据时,可以在第一资源上发送数据,以尽量提高第一资源的利用率。同时,第一指示信息用于指示第一终端装置是否检测至少一个第二终端装置的SCI,从而避免第一终端装置和至少一个第二终端装置在第一资源发送数据可能产生的冲突。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图14是本申请实施例提供的一种网络装置的结构示意图,如可以为基站的结构示意图。如图14所示,该基站可应用于如图1或图3所示的***中,执行上述方法实施例中网络装置的功能。基站140可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1402。所述RRU1401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线14011和射频单元14012。所述RRU1401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的第一消息。所述BBU1402部分主要用于进行基带处理,对基站进行控制等。所述RRU1401与BBU1402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU1402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1402可以用于控制基站执行上述方法实施例中关于网络装置的操作流程。
在一个实例中,所述BBU1402可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU1402还包括存储器14021和处理器14022,所述存储器14021用于存储必要的指令和数据。例如存储器14021存储上述实施例中的配置信息和第一指示信息。所述处理器14022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络装置的操作流程。所述存储器14021和处理器14022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图15是本申请实施例提供的一种终端装置的结构示意图。该终端装置可适用于图1或图3所示出的***中,执行上述方法实施例中终端装置的功能。为了便于说明,图15仅示出了终端装置的主要部件。如图15所示,终端装置150包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端装置执行上述方法实施例中所描述的动作,如,根据第一消息发送数据等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述配置信息和第一指示信息等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端装置开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和一个处理器。在实际的终端装置中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或 者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图15中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端装置可以包括多个基带处理器以适应不同的网络制式,终端装置可以包括多个中央处理器以增强其处理能力,终端装置的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端装置150的收发单元1501,例如,用于支持终端装置执行如图4部分所述的接收功能和发送功能。将具有处理功能的处理器视为终端装置150的处理单元1502。如图15所示,终端装置150包括收发单元1501和处理单元1502。收发单元1501也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1501中用于实现接收功能的器件视为接收单元,将收发单元1501中用于实现发送功能的器件视为发送单元,即收发单元1501包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1502可用于执行该存储器存储的指令,以控制收发单元1501接收信号和/或发送信号,完成上述方法实施例中终端装置的功能。作为一种实现方式,收发单元1501的功能可以考虑通过收发电路或者收发的专用芯片实现。
图16给出了一种通信装置1600的结构示意图。装置1600可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置1600可以是芯片,网络装置(如基站),终端装置或者其他网络装置等。
所述通信装置1600包括一个或多个处理器1601。所述处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他网络装置。又如,通信装置可以为终端或基站或其他网络装置,所述收发单元可以为收发器,射频芯片等。
所述通信装置1600包括一个或多个所述处理器1601,所述一个或多个处理器1601可实现图4所示的实施例中网络装置或者终端装置的方法。
在一种可能的设计中,所述通信装置1600包括用于生成配置信息和第一指示信息的部件(means),以及用于发送配置信息和第一指示信息的部件(means)。可以通过一个或多个处理器来实现所述生成配置信息和第一指示信息的means以及发送配置信息和第一指示信息的means的功能。例如可以通过一个或多个处理器生成所述配置信息和所述第一指示信息,通过收发器、或输入/输出电路、或芯片的接口发送所述配置信息和所述第一指示信 息。所述配置信息和所述第一指示信息可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置1600包括用于接收配置信息和第一指示信息的部件(means),以及用于根据该配置信息和第一指示信息,发送数据的部件(means)。所述配置信息和第一指示信息以及如何根据该配置信息和第一指示信息发送数据可以参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述配置信息和第一指示信息,通过一个或多个处理器根据该配置信息和第一指示信息发送数据。
可选的,处理器1601除了实现图4所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1601可以执行指令,使得所述通信装置1600执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1603,也可以全部或部分存储在与所述处理器耦合的存储器1602中,如指令1604,也可以通过指令1603和1604共同使得通信装置1600执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1600也可以包括电路,所述电路可以实现前述方法实施例中网络装置或终端装置的功能。
在又一种可能的设计中所述通信装置1600中可以包括一个或多个存储器1602,其上存有指令1604,所述指令可在所述处理器上被运行,使得所述通信装置1600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1602可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置1600还可以包括收发单元1605以及天线1606。所述处理器1601可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于通过天线1606实现通信装置的收发功能。
本申请还提供一种通信***,其包括前述的一个或多个网络装置,和,一个或多个终端装置。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例所述的通信方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例所述的通信方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的资源配置方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅 仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质 的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (33)

  1. 一种资源配置方法,其特征在于,包括:
    确定第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
    向所述第一终端装置发送所述第一消息。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
  3. 如权利要求1或2所述的方法,其特征在于,所述配置信息还用于指示所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    向所述第一终端装置发送第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式,其中,所述第二指示信息具体用于指示:
    所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端装置的第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的辅链路控制消息SCI。
  7. 如权利要求6所述的方法,其特征在于,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
  8. 如权利要求6所述的方法,其特征在于,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
  9. 一种资源配置方法,其特征在于,包括:
    第一终端装置接收来自网络装置的第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为所述第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
    所述第一终端装置根据所述第一消息在所述第一资源向所述网络装置发送数据。
  10. 如权利要求9所述的方法,其特征在于,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据所述配置信息确定所述第一终端装置和各个第二终端装置在第一资源发送数据的重复次数相同或者不同。
  12. 如权利要求9-11任一所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置接收来自所述网络装置的第二指示信息,所述第二指示信息用于指 示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式;其中,所述第二指示信息具体用于指示:
    所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源;
    所述第一终端装置根据所述第一消息在所述第一资源向所述网络装置发送数据,包括:
    所述第一终端装置根据所述第一消息以及所述第二指示信息,使用所述第一资源向所述网络装置发送数据。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置向所述网络装置发送第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
  14. 如权利要求9-13任一所述的方法,其特征在于,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的SCI。
  15. 如权利要求14所述的方法,其特征在于,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
  16. 如权利要求14所述的方法,其特征在于,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
  17. 一种网络装置,其特征在于,包括:
    处理器,用于确定第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
    收发器,用于向所述第一终端装置发送所述第一消息。
  18. 如权利要求17所述的网络装置,其特征在于,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
  19. 如权利要求17或18所述的网络装置,其特征在于,所述配置信息还用于指示所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
  20. 如权利要求17-19任一所述的网络装置,其特征在于,所述收发器还用于:
    向所述第一终端装置发送第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式,其中,所述第二指示信息具体用于指示:
    所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源。
  21. 如权利要求20所述的网络装置,其特征在于,所述收发器还用于:
    接收来自所述第一终端装置的第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
  22. 如权利要求17-21任一所述的网络装置,其特征在于,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的辅链路控制消息SCI。
  23. 如权利要求22所述的网络装置,其特征在于,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
  24. 如权利要求22所述的网络装置,其特征在于,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
  25. 一种第一终端装置,其特征在于,包括:
    收发器,用于接收来自网络设备的第一消息,所述第一消息携带配置信息和第一指示信息,所述配置信息用于指示为第一终端装置所配置的第一资源,所述第一指示信息用于指示所述第一资源是否还被配置给至少一个第二终端装置;
    处理器,用于根据所述第一消息在所述第一资源上向所述网络设备发送数据。
  26. 如权利要求25所述的第一终端装置,其特征在于,所述第一指示信息用于指示所述至少一个第二终端装置在所述第一资源发送数据的时域位置。
  27. 如权利要求25或26所述的第一终端装置,其特征在于,所述处理器还用于:
    根据所述配置信息确定所述第一终端装置和各个第二终端装置在所述第一资源发送数据的重复次数相同或者不同。
  28. 如权利要求25-27任一所述的第一终端装置,其特征在于,所述收发器还用于:
    接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一终端装置与所述至少一个第二终端复用所述第一资源的方式;其中,所述第二指示信息具体用于指示:
    所述第一终端装置与所述至少一个第二终端装置按照调度周期轮流使用所述第一资源;或,所述第一终端装置与所述至少一个第二终端装置在任意一个调度周期内交替使用所述第一资源;
    所述处理器用于:
    根据所述第一消息以及所述第二指示信息在所述第一资源上向所述网络设备发送数据。
  29. 如权利要求28所述的第一终端装置,其特征在于,所述收发器还用于:
    向所述网络设备发送第二消息,所述第二消息用于指示所述至少一个第二终端装置使用所述第一资源中的部分或全部资源。
  30. 如权利要求25-29任一所述的第一终端装置,其特征在于,所述第一指示信息还用于指示所述第一终端装置是否需要检测所述至少一个第二终端装置的SCI。
  31. 如权利要求30所述的第一终端装置,其特征在于,所述第一指示信息还用于指示所述第一终端装置检测所述至少一个第二终端装置的SCI的时域位置。
  32. 如权利要求30所述的第一终端装置,其特征在于,所述第一指示信息用于指示所述第一终端装置是否需要检测至少两个第二终端装置的SCI,其中,所述至少两个第二终端装置在不同时域占用所述第一资源,或,所述至少两个第二终端装置在不同频域占用所述第一资源。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被计算机执行时,使所述计算机执行如权利要求1~8中任一项所述的方法,或者,执行如权利要求9~16中任一项所述的方法。
PCT/CN2020/076085 2019-03-27 2020-02-20 一种资源配置方法及通信装置 WO2020192319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910239483.3 2019-03-27
CN201910239483.3A CN111757470B (zh) 2019-03-27 2019-03-27 一种资源配置方法及通信装置

Publications (1)

Publication Number Publication Date
WO2020192319A1 true WO2020192319A1 (zh) 2020-10-01

Family

ID=72610467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076085 WO2020192319A1 (zh) 2019-03-27 2020-02-20 一种资源配置方法及通信装置

Country Status (2)

Country Link
CN (1) CN111757470B (zh)
WO (1) WO2020192319A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023040927A1 (zh) * 2021-09-18 2023-03-23 华为技术有限公司 终端设备的管理方法及装置
WO2024031617A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Terminal, system, and method for mapping resources in sidelink communication procedures
CN118158822A (zh) * 2024-05-07 2024-06-07 中国星网网络***研究院有限公司 生成帧配置消息的方法和资源配置信息确定方法、装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465319A (zh) * 2014-05-19 2017-02-22 高通股份有限公司 用于利用薄控制的针对不同的时延目标的同步复用和多址的装置和方法
CN108738135A (zh) * 2017-04-13 2018-11-02 华为技术有限公司 上行信息发送方法、接收方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612561B (zh) * 2015-10-23 2019-08-27 华为技术有限公司 一种资源指示方法、装置及***
EP3407654B1 (en) * 2016-01-22 2021-09-01 LG Electronics Inc. V2x operation method performed by terminal in wireless communication system and terminal using same
KR20190128219A (ko) * 2017-03-20 2019-11-15 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법, 단말기 디바이스 및 네트워크 디바이스
EP3614774B1 (en) * 2017-08-10 2021-05-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for device to device communication, and terminal device
WO2019032748A1 (en) * 2017-08-10 2019-02-14 Sharp Laboratories Of America, Inc. PROCEDURES, BASE STATION AND USER EQUIPMENT FOR UPLINK TRANSMISSION WITHOUT AUTHORIZATION
US10362593B2 (en) * 2017-09-01 2019-07-23 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465319A (zh) * 2014-05-19 2017-02-22 高通股份有限公司 用于利用薄控制的针对不同的时延目标的同步复用和多址的装置和方法
CN108738135A (zh) * 2017-04-13 2018-11-02 华为技术有限公司 上行信息发送方法、接收方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "eMMB/URLLC Multiplexing for UL", 3GPP TSG RAN1 WG MEETING #88BIS R1-1704764, 23 March 2017 (2017-03-23), pages 2 - 4, XP051251491 *
INTEL CORPORATION: "Uplink Multiplexing of eMBB and URLLC Transmissions", 3GPP TSG RAN WG1 NR AD-HOC MEETING R1-1700377, 10 January 2017 (2017-01-10), XP051202855 *
INTEL CORPORATION: "Uplink URLLC Transmission without Grant", 3GPP TSG RAN WG1 NR AD-HOC MEETING R1-1701206, 18 January 2017 (2017-01-18), XP051222250 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023040927A1 (zh) * 2021-09-18 2023-03-23 华为技术有限公司 终端设备的管理方法及装置
WO2024031617A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Terminal, system, and method for mapping resources in sidelink communication procedures
CN118158822A (zh) * 2024-05-07 2024-06-07 中国星网网络***研究院有限公司 生成帧配置消息的方法和资源配置信息确定方法、装置

Also Published As

Publication number Publication date
CN111757470A (zh) 2020-10-09
CN111757470B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2021027940A1 (zh) 一种用于指示信号传输的方法及装置
US20230087401A1 (en) Method and apparatus for allocating resources through cooperation between terminals in v2x system
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
WO2020192319A1 (zh) 一种资源配置方法及通信装置
CN110268765B (zh) 用于跳过上行链路传输的方法及其装置
WO2016161623A1 (zh) 发现信号的传输方法、装置以及通信***
WO2021057805A1 (zh) 一种通信方法及装置
CN109392113B (zh) 一种接收控制信息、发送控制信息的方法及设备
US20220159696A1 (en) Wireless communication method, terminal device, and network device
JP2022502942A (ja) 能力及びリソースの割り当て方法、端末機器及び制御機器
CN113382379A (zh) 无线通信方法和通信装置
WO2020199790A1 (zh) 一种信息指示方法及通信装置
WO2020221326A1 (zh) 一种资源调度的方法及通信装置
WO2021134577A1 (zh) 一种数据传输方法及装置
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
WO2021088028A1 (zh) 一种资源配置方法及装置
WO2021072662A1 (zh) 一种混合自动重传请求反馈方法及装置
CN110830965B (zh) 一种d2d通信的方法、通信装置和通信***
WO2021068259A1 (zh) 联合调度的方法和装置
WO2021063192A1 (zh) 通信方法及相关产品
WO2021159511A1 (zh) 一种资源指示和确定方法及相关装置
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021088063A1 (zh) 一种通信方法及装置
WO2020029857A1 (zh) 数据调度及传输方法、网络设备、终端和计算机存储介质
WO2024012129A1 (zh) 指示信息发送方法、装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776389

Country of ref document: EP

Kind code of ref document: A1