WO2020192206A1 - 一种电池、用电装置及电芯安装方法 - Google Patents

一种电池、用电装置及电芯安装方法 Download PDF

Info

Publication number
WO2020192206A1
WO2020192206A1 PCT/CN2019/127764 CN2019127764W WO2020192206A1 WO 2020192206 A1 WO2020192206 A1 WO 2020192206A1 CN 2019127764 W CN2019127764 W CN 2019127764W WO 2020192206 A1 WO2020192206 A1 WO 2020192206A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current collector
diaphragm
contact
casing
Prior art date
Application number
PCT/CN2019/127764
Other languages
English (en)
French (fr)
Inventor
陈君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19921076.6A priority Critical patent/EP3933993B1/en
Publication of WO2020192206A1 publication Critical patent/WO2020192206A1/zh
Priority to US17/478,457 priority patent/US20220006115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of power batteries, and in particular to a battery, an electric device and a battery cell installation method.
  • power batteries are widely used in scenes such as electric vehicles, electric trains or electric bicycles due to their advantages such as high energy density and fast charging speed.
  • a large amount of heat will be generated inside the cell of the power battery. If this heat cannot be conducted to the battery shell in time, it will cause the power battery The temperature rises rapidly and there is a risk of thermal runaway.
  • the end of the diaphragm in the battery cell exceeds the adjacent current collector, the diaphragm is in direct contact with the battery case, and there is a certain air gap between the current collector and the battery case, so that the battery core is connected to the battery.
  • the heat transfer path of the case is from the diaphragm to the battery case, or from the air gap to the battery case. Due to the small thermal conductivity of the diaphragm and the air gap, there is a large heat transfer path from the inside of the cell to the battery case. Thermal resistance reduces the heat dissipation performance of the cell.
  • an embodiment of the present application provides a battery, a battery case, a first current collector, a diaphragm, and a second current collector; the first current collector, the diaphragm, and the second current collector are stacked and arranged Inside the battery case, wherein the polarities of the first current collector and the second current collector are different, and the first current collector is in contact with the battery case.
  • a battery which is characterized by comprising: a battery housing, a first current collector, a diaphragm, and a second current collector; the first current collector, the diaphragm, and the second current collector
  • the fluid is stacked and arranged inside the battery case, wherein the first current collector and the second current collector have different polarities, and the first current collector is in contact with the battery case.
  • the first current collector in the battery is in contact with the battery casing, so that part of the heat generated by the battery cell can be directly transferred to the battery casing through the first current collector. Since the thermal conductivity of the current collector is large, the heat dissipation performance of the battery core is improved.
  • the first current collector, the diaphragm, and the second current collector are stacked in a first direction; the first current collector exceeds the diaphragm in the second direction, and The first current collector conducts heat through contact with the battery case in the second direction, wherein the second direction is perpendicular to the first direction.
  • the battery in this embodiment is a laminated battery, where the first direction may be a direction perpendicular to the plane where the first current collector is located, and the second direction may be a direction parallel to the plane where the first current collector is located.
  • the first current collector is a positive current collector, correspondingly, the second current collector is a negative current collector; if the first current collector is a negative current collector, correspondingly, the second current collector is a positive current collector .
  • the first current collector exceeds the diaphragm in the second direction, that is, the diaphragm leaves a certain distance between the diaphragm and the battery case in the second direction, and the first collector The fluid is in contact with the battery case in the second direction, so that the heat emitted from the battery core is not conducted through the diaphragm, but directly conducted to the battery case through the first current collector. Because the thermal conductivity of the current collector is much greater than that of the diaphragm The thermal conductivity of the battery improves the heat dissipation performance of the cell.
  • the first current collector is coated with an active material, and the coating range of the active material on the first current collector does not exceed the diaphragm in the second direction .
  • the first current collector in order to increase the thermal conductivity of the heat transfer path from the battery cell to the battery case, is in contact with the battery case in the second direction instead of connecting the second current collector to the battery case. Body contact, at this time, the first current collector exceeds the adjacent diaphragm in the second direction.
  • the coating range of the active material on the first current collector does not exceed the diaphragm in the second direction, which is equivalent to that the diaphragm plays a role of blocking the active material, making the first collection
  • the active material on the fluid will not contact the adjacent second current collector due to being squeezed, which increases the safety of the battery core during operation.
  • the first current collector, the diaphragm, and the second current collector are stacked and wound around the third direction; the first current collector is in the third direction Beyond the diaphragm, the first current collector conducts heat conduction through contact with the battery case in the third direction.
  • the battery in this embodiment is a wound battery.
  • the first current collector is coated with an active material, and the coating range of the active material on the first current collector does not exceed the diaphragm in the third direction.
  • the first current collector in order to increase the thermal conductivity of the heat transfer path from the battery cell to the battery case, is in contact with the battery case in the second direction instead of connecting the second current collector to the battery case. Body contact, at this time, the first current collector exceeds the adjacent diaphragm in the second direction.
  • the coating range of the active material on the first current collector does not exceed the diaphragm in the second direction, which is equivalent to that the diaphragm plays a role of blocking the active material, making the first collection
  • the active material on the fluid will not contact the adjacent second current collector due to being squeezed, which increases the safety of the battery core during operation.
  • the first current collector is welded to the inner surface of the battery casing.
  • the first current collector is welded on the inner surface of the battery casing, which increases the flexibility and selectivity of the solution.
  • the battery housing includes: a battery housing and a heat sink; the heat sink is in contact with the inner surface of the battery housing, and the first current collector is in contact with the heat sink.
  • the heat sink and the inner surface of the battery housing are in contact with each other, and the first current collector is fixedly connected to the heat sink, so that part of the heat generated by the battery cell can be directly conducted to the battery housing through the first current collector and the heat sink. Due to the large thermal conductivity of the current collector and the heat sink, the heat dissipation performance of the cell is improved.
  • the first current collector is welded on the heat sink.
  • the first current collector is welded on the heat sink, which increases the flexibility and selectivity of the solution.
  • an embodiment of the present application provides an electrical device, including an electrical load and at least one battery as described in the first aspect, the battery is electrically connected to the electrical load, and the battery is used to provide The electric load supplies power.
  • an embodiment of the present application provides a battery cell installation method, including:
  • the first current collector, the diaphragm, and the second current collector are stacked in a first direction, wherein the first current collector exceeds the diaphragm in a second direction, and the second direction is perpendicular to the first direction
  • the first current collector is fixedly connected to the surface of the first battery shell in the second direction to form a first battery cell assembly; the first battery cell assembly is filled into the first battery shell,
  • the first battery casing is a casing with openings on both sides; the first battery casing surface and the second battery casing surface are respectively welded to the openings on both sides of the first battery casing to
  • the first battery cell assembly is arranged inside the first battery casing.
  • the fixedly connecting the first current collector with the first battery shell surface in the second direction includes:
  • the first current collector is welded to the surface of the first battery case along the second direction.
  • a method for installing a battery cell in which a first current collector, a diaphragm, and a second current collector are stacked in a first direction, wherein the first current collector exceeds all the batteries in the second direction.
  • the diaphragm, the second direction is perpendicular to the first direction; the first current collector is fixedly connected to the surface of the first battery shell in the second direction to form a first battery cell assembly;
  • the first battery cell assembly is filled into the first battery casing, wherein the first battery casing is a casing with openings on both sides; the first battery casing surface and the second battery casing surface are respectively welded to the The openings on both sides of the first battery casing are such that the first battery cell assembly is disposed inside the first battery casing.
  • the first current collector in the battery cell is fixedly connected to the first battery shell surface, so that part of the heat generated by the battery cell can be directly conducted to the first battery shell surface through the first current collector.
  • the thermal conductivity is very large, which improves the heat dissipation performance of the cell.
  • an embodiment of the present application provides a battery cell installation method, including: stacking a first current collector, a diaphragm, and a second current collector in a first direction, wherein the first current collector is in the second In the direction beyond the diaphragm, the second direction is perpendicular to the first direction; the first current collector is fixedly connected with the heat sink in the second direction to form a second cell assembly; The second battery cell assembly is filled into the second battery housing so that the heat sink is in contact with the inner surface of the second battery housing, wherein the second battery housing is a shell with one side open Body; the third battery shell surface is welded to the side opening of the second battery shell, so that the second battery core assembly is enclosed and arranged inside the first battery shell.
  • the first current collector is coated with an active material, and the coating range of the active material on the first current collector does not exceed the diaphragm in the second direction .
  • a method for installing a battery cell in which a first current collector, a diaphragm, and a second current collector are stacked in a first direction, wherein the first current collector exceeds all the batteries in the second direction.
  • the diaphragm, the second direction is perpendicular to the first direction; the first current collector is fixedly connected to the heat sink in the second direction to form a second battery cell assembly; the second battery The core assembly is filled into the second battery casing so that the heat sink is in contact with the inner surface of the second battery casing, wherein the second battery casing is a casing with an opening on one side; The three-cell shell surface is welded to the one side opening of the second battery shell, so that the second battery core assembly is enclosed and arranged inside the second battery shell.
  • the first current collector in the battery cell is fixedly connected with the heat sink, so that a part of the heat generated by the battery cell can be directly conducted to the second battery housing through the first current collector and the heat sink.
  • the thermal conductivity of the heat sink is large, so the heat dissipation performance of the battery core is improved.
  • an embodiment of the present application provides a battery cell installation method, which includes: stacking a first current collector, a diaphragm, and a second current collector and winding it around a third direction, wherein the first The current collector exceeds the diaphragm in the third direction; the first current collector is fixedly connected to the surface of the first battery shell in the third direction to form a third battery cell assembly; and the third battery cell The assembly is filled into the first battery casing, wherein the first battery casing is a casing with openings on both sides; the first battery casing surface and the second battery casing surface are respectively welded to the first battery The openings on both sides of the casing are such that the third battery core assembly is disposed inside the first battery casing.
  • a battery cell installation method is provided.
  • the first current collector, the diaphragm, and the second current collector are stacked and wound around the axis in the third direction, wherein the first current collector is located in the The third direction extends beyond the diaphragm; the first current collector is fixedly connected to the surface of the first battery shell in the third direction to form a third battery cell assembly; the third battery cell assembly is filled Into the first battery case, wherein the first battery case is a case with two sides open; the first battery case surface and the second battery case surface are respectively welded to all of the first battery case At the openings on both sides, so that the third cell assembly is disposed inside the first battery casing.
  • the first current collector in the battery cell is fixedly connected to the first battery shell surface, so that part of the heat generated by the battery cell can be directly conducted to the first battery shell surface through the first current collector.
  • the thermal conductivity is very large, which improves the heat dissipation performance of the cell.
  • the fixedly connecting the first current collector to the first battery shell surface in the third direction includes: welding the first current collector to the surface of the first battery in the third direction.
  • the first battery shell surface is
  • an embodiment of the present application provides a battery cell installation method, which includes: stacking a first current collector, a diaphragm, and a second current collector and winding them around a third direction, wherein the first The current collector exceeds the diaphragm in the third direction; the first current collector is fixedly connected to the heat sink in the third direction to form a fourth battery cell assembly; the fourth battery cell assembly is filled Installed in the second battery case so that the heat sink is in contact with the second battery case, wherein the second battery case is a case with one side open; the third battery case is welded to the An opening on the one side of the second battery housing is such that the fourth battery cell assembly is enclosed and arranged inside the second battery housing.
  • the first current collector is coated with an active material, and the coating range of the active material on the first current collector does not exceed the diaphragm in the third direction.
  • a battery cell installation method is provided.
  • the first current collector, the diaphragm, and the second current collector are stacked and wound around the axis in the third direction, wherein the first current collector is located in the The third direction exceeds the diaphragm;
  • the first current collector is fixedly connected to the heat sink in the third direction to form a fourth cell assembly;
  • the fourth cell assembly is filled to the second Inside the battery housing, so that the heat sink is in contact with the second battery housing, wherein the second battery housing is a housing with one side open;
  • the third battery housing is welded to the second battery
  • the opening on the one side of the casing is such that the fourth battery cell assembly is disposed inside the second battery casing.
  • the first current collector in the battery cell is fixedly connected with the heat sink, so that a part of the heat generated by the battery cell can be directly conducted to the second battery housing through the first current collector and the heat sink.
  • the thermal conductivity of the heat sink is large, so the heat dissipation performance of the battery core is improved.
  • a battery which is characterized by comprising: a battery housing, a first current collector, a diaphragm, and a second current collector; the first current collector, the diaphragm, and the second current collector
  • the fluid is stacked and arranged inside the battery case, wherein the first current collector and the second current collector have different polarities, and the first current collector is in contact with the battery case.
  • the first current collector in the battery is in contact with the battery casing, so that part of the heat generated by the battery cell can be directly transferred to the battery casing through the first current collector. Since the thermal conductivity of the current collector is large, the heat dissipation performance of the battery core is improved.
  • Figure 1 is a partial side view of a laminated cell in an embodiment of the application
  • FIG. 2 is a top view of a laminated battery in an embodiment of the application
  • Figure 3 is a partial side view of a wound battery in an embodiment of the application.
  • FIG. 4 is a top view of a wound battery in an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a first current collector of a wound battery provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of an embodiment of a battery cell installation method in an embodiment of the application.
  • FIG. 7a is a schematic diagram of an installation process of a battery core in an embodiment of the application.
  • FIG. 7b is a schematic diagram of an installation process of a battery core in an embodiment of the application.
  • FIG. 7c is a schematic diagram of an installation process of a battery core in an embodiment of the application.
  • FIG. 8 is a schematic diagram of an embodiment of a battery cell installation method in an embodiment of the application.
  • Figure 9 is a partial side view of a battery in an embodiment of the application.
  • FIG. 10 is a schematic diagram of an embodiment of a battery cell installation method in an embodiment of the application.
  • Figure 11a is a schematic diagram of a battery cell installation method in an embodiment of the application.
  • Figure 11b is a schematic diagram of a battery cell installation method in an embodiment of the application.
  • Figure 11c is a schematic diagram of a battery cell installation method in an embodiment of the application.
  • Fig. 12 is a schematic diagram of an embodiment of a battery cell installation method in an embodiment of the application.
  • the embodiments of the present application provide a battery, an electrical device, and a battery cell installation method.
  • the first current collector in the battery is in contact with the battery case, so that part of the heat generated by the battery cell can be directly conducted to the battery case through the first current collector Since the thermal conductivity of the current collector is large, the heat dissipation performance of the cell is improved.
  • Batteries are the core components of electric vehicles. With the continuous improvement of battery energy density and fast charging speed, the heat dissipation problem of batteries has become more and more prominent.
  • electrical energy is converted into chemical energy and stored in the battery core.
  • the chemical energy stored in the battery core is converted into electrical energy.
  • both of the energy generated inside the battery core Heat and the faster the charging or discharging speed, the more heat generated inside the cell, causing the cell to heat up quickly.
  • the cell is a temperature-sensitive device. When the temperature is too high, the life of the cell will be seriously attenuated and there is even a risk of thermal runaway explosion. Effective heat dissipation measures must be taken to control the cell temperature within a suitable operating temperature range.
  • the positive electrode active material is coated on the positive electrode current collector to form a positive electrode sheet
  • the negative electrode active material is coated on the negative electrode current collector to form a negative electrode sheet.
  • the battery core includes a positive electrode sheet, a negative electrode sheet and a separator. To separate the positive and negative polarity sheets. Normally, in order to prevent direct contact between the positive electrode and the negative electrode, the edge of the separator will extend beyond the edge of the adjacent positive electrode and negative electrode. After filling the battery cell into the battery case , The edge side of the diaphragm will be in direct contact with the inner surface of the battery case, and there is a certain air gap between the positive or negative current collector and the battery case.
  • the heat transfer path from the inside of the cell to the inner surface of the battery case is from the current collector to the diaphragm, or from the current collector to the air gap.
  • the thermal conductivity of the diaphragm and the air gap is very small, resulting in low heat transfer efficiency.
  • the heat generated inside the core cannot be quickly transferred to the battery case.
  • an embodiment of the present invention proposes a battery in which the first current collector in the battery is in contact with the battery casing, so that part of the heat generated by the battery cells in the battery can be directly thermally conducted to the battery casing through the first current collector.
  • the battery structure can be divided into batteries made by the lamination process (hereinafter referred to as laminated batteries and batteries made by the winding process (hereinafter referred to as wound batteries), respectively. Specific description.
  • FIG. 1 is a partial side view of a laminated battery in an embodiment of the application.
  • the battery in this embodiment It includes: a battery case 60, a first current collector 10, a separator 30, and a second current collector 20; the first current collector 10, the separator 30, and the second current collector 20 are stacked and arranged in the battery case Inside the body 60, the polarities of the first current collector 10 and the second current collector 20 are different, and the first current collector 10 is in contact with the battery case 60.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked in a first direction; the first current collector 10 exceeds the diaphragm in the second direction 30, and the first current collector 10 can conduct heat conduction with the battery case 60 in the second direction, wherein the second direction is perpendicular to the first direction.
  • the first direction in this embodiment may be a direction perpendicular to the plane where the first current collector 10 is located, and the second direction may be a direction parallel to the plane where the first current collector 10 is located.
  • the second current collector 20 is a negative current collector. If the first current collector 10 is a negative current collector, correspondingly, the second current collector 20 It is the positive current collector.
  • the battery may further include a pole 70.
  • the first current collector 10 may include four ends, and one end of the four ends is connected to The pole 70 is connected.
  • the end of the first current collector 10 that conducts heat through contact with the battery case 60 may be any one or more ends except the end connected to the pole 70 unit.
  • FIG. 2 is a top view of a laminated battery in an embodiment of the application.
  • the viewing angle of FIG. 2 is along a direction perpendicular to the plane where the first current collector 10 is located.
  • the first current collector 10 includes four ends (a first end A1, a second end B1, a second end B2, and a second end B3).
  • the first current collector 10 may contact any one of the second end B1, the second end B2, and the second end B3 with the corresponding battery case 60.
  • the second end B1 is shown in FIG. 2 to be in contact with the battery housing 60, in practical applications, the second end B2 or the second end B3 may also be in contact with the battery housing 60.
  • the first current collector 10 can contact at least two ends of the second end B1, the second end B2, and the second end B3 with the battery case 60, for example, the second The terminal B1 and the second terminal B2 are in contact with the battery housing 60, or the second terminal B2 and the second terminal B3 are in contact with the battery housing 60, or the second terminal B1, the second terminal B2, and the second terminal B3 are both in contact with The battery case 60 is in contact, which is not limited here.
  • the first current collector 10 may extend a part of the second end B1, the second end B2, or the second end B3 and contact the battery case 60. It should be pointed out that the extended shape of the second end B1 may be a rectangle or any other shape, which is not limited here.
  • a laminated battery may include a plurality of first current collectors 10, wherein the first current collectors 10 in contact with the battery case 60 may be all the first current collectors 10 of the laminated battery. , It may also be a part of the first current collector 10 in all the first current collectors 10, which can be selected according to requirements in practical applications, and is not limited here.
  • the diaphragm 30 may not be in contact with the battery case 60 in the second direction. As shown in FIG. 1, the diaphragm 30 is left with the battery case 60 in the second direction by a first predetermined distance L1, that is, the diaphragm 30 is in the second direction from the battery case 60. There is a certain interval between 60.
  • the first current collector 10 extends beyond the diaphragm 30 in the second direction, that is, the diaphragm 30 leaves a certain distance between the diaphragm 30 and the battery case 60 in the second direction, and therefore The first current collector is in contact with the battery case 60 in the second direction, so that the heat emitted from the inside of the battery cell is not conducted through the diaphragm 30, but is directly conducted to the battery case 60 through the first current collector 10.
  • the thermal conductivity of the fluid is much greater than the thermal conductivity of the diaphragm 30, thus improving the heat dissipation performance of the cell.
  • the second current collector 20 may be left with a second predetermined distance L2 from the battery housing 60 in the second direction.
  • the second predetermined distance L2 between the second current collector 20 and the battery housing 60 in the second direction that is, between the second current collector 20 and the battery housing 60 There is a certain interval.
  • the first current collector 10 is in contact with the battery housing 60
  • the second current collector 20 is in contact with the battery housing 60
  • the battery cell may be damaged by the first current collector 10 and the second current collector.
  • the fluid 20 is in contact with the battery case 60 at the same time and short-circuit occurs. Therefore, the second preset distance L2 between the second current collector 20 and the battery case 60 in the second direction improves the battery cell operation. safety.
  • the second preset distance L2 between the second current collector 20 and the battery housing 60 in the second direction is greater than that of the diaphragm 30 in the second direction.
  • the first current collector 10 When the first current collector 10 is in contact with the battery case 60, but the diaphragm 30 is not in direct contact with the battery case 60, the first current collector 10 exceeds the adjacent diaphragm 30 in the second direction, and the During the installation of the core, if the first current collector 10 falls off the battery case 60, the part of the first current collector 10 that exceeds the diaphragm 30 may bend and contact the second current collector 20, resulting in electricity The core is short-circuited.
  • the distance between the diaphragm 30 and the battery housing 60 in the second direction is set to be smaller than the distance between the second current collector 20 and the battery housing 60, and the diaphragm 30 can serve as the first current collector 10 and the second
  • the possibility of contact with the second current collector 20 due to the occurrence of bending further improves the safety of the battery core during operation.
  • the first current collector 10 is coated with an active material 40, and the active material 40 is coated on the first current collector 10
  • the cloth range does not exceed the diaphragm 30 in the second direction.
  • the second current collector 20 is coated with an active material 50, and the coating range of the active material 50 on the second current collector 20 does not exceed the second direction. Diaphragm 30.
  • the first current collector 10 in contact with the battery case 60 in the second direction, instead of the second current collector 20. In contact with the battery case 60, at this time, the first current collector 10 extends beyond the adjacent diaphragm 30 in the second direction. If the surface of the portion of the first current collector 10 extending beyond the adjacent diaphragm 30 is coated with an active material 40 During the operation of the battery cell, the active material 40 coated on the part of the surface of the first current collector 10 beyond the adjacent diaphragm 30 may contact the adjacent second current collector 20 due to being squeezed, and then appear The safety issue of short circuit.
  • the coating range of the active material 40 on the first current collector 10 does not exceed the diaphragm 30 in the second direction, which is equivalent to that the diaphragm 30 functions as a barrier to the active material 40. , So that the active material on the first current collector 10 will not come into contact with the adjacent second current collector 20 due to being squeezed, which increases the safety of the battery cell during operation.
  • the first current collector 10 is welded to the inner surface of the battery housing 60.
  • the contact manner between the first current collector 10 and the battery housing 60 is further described.
  • the first current collector 10 is welded to the battery housing 60
  • one end of the first current collector 10 can be welded to a battery housing surface first, and then filled into a two-sided Inside the open battery casing, the battery casing surface is welded to one opening of the battery casing, and then the other battery casing surface is welded to the other opening of the battery casing to form a closed cavity.
  • the first current collector 10 is welded to the inner surface of the battery housing 60, which increases the flexibility and selectivity of the solution.
  • FIG. 3 is a partial side view of a wound battery in an embodiment of this application.
  • the first current collector, the second current collector and the diaphragm are combined with the battery made by the lamination process.
  • the diaphragm 30, the first current collector 10, and the second current collector 10 used in the winding process can be rectangular long sheets that are not punched into a single rectangular sheet, and the first current collector 10.
  • the diaphragm 30 and the second current collector 20 are stacked in sequence and then wound.
  • the first current collector 10 is coated with an active material 40 and the second current collector is coated with an active material 50.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked and wound around the third direction; the first current collector 10 is in the third direction Beyond the diaphragm 30, the first current collector 10 conducts heat conduction with the battery casing 60 in the third direction through contact.
  • FIG. 4 is a top view of a wound battery in an embodiment of the present application.
  • the vertical downward direction in FIG. 4 is the third direction.
  • the first current collector 10 exceeds the diaphragm 30 in the third direction (B1 side). Specifically, the first current collector 10 exceeds the diaphragm 30 on the B1 side.
  • FIG. 5 is a schematic structural diagram of the first current collector of a wound battery provided by an embodiment of the application.
  • FIG. 5 shows that the first current collector is not yet rolled.
  • the first current collector 10 is coated with an active material 40, and the first current collector 10 has an area not coated with the active material 40 on the B1 side, so that the first The coating range of the active material 40 on the current collector 10 on the first current collector 10 does not exceed the diaphragm 30 in the third direction (B1 side).
  • FIGS. 1 to 4 is only an illustration. In practical applications, the number of the first current collector, the second current collector and the diaphragm can be determined according to actual requirements.
  • the materials of the first current collector 10, the second current collector 20 and the separator 30 in the present application are not limited, and positive active materials known in the art (such as lithium manganese oxide, lithium cobalt oxide, lithium oxide) can be used.
  • positive active materials known in the art such as lithium manganese oxide, lithium cobalt oxide, lithium oxide
  • Nickel, lithium iron phosphate, or a compound or mixture containing at least one of the above elements is applied to a positive electrode current collector formed of aluminum, nickel, copper, or an alloy containing at least one of the above elements.
  • anode active materials known in the art can be used for copper , Nickel, aluminum or an alloy containing at least one of the foregoing elements to form a negative electrode current collector for coating.
  • the separator 30 may be a multilayer film that has a fine pore structure and is formed of polyethylene, polypropylene, or a combination thereof, or may be used for a solid polymer electrolyte or a gel-type polymer electrolyte, such as poly Polymer film of vinylidene fluoride, polyethylene oxide, polyacrylonitrile, polyvinyl fluoride-hexafluoropropylene copolymer.
  • a battery which is characterized by comprising: a battery housing 60, a first current collector 10, a diaphragm 30, and a second current collector 20; the first current collector 10, the The diaphragm 30 and the second current collector 20 are laminated and arranged inside the battery case 60, wherein the polarities of the first current collector 10 and the second current collector 20 are different, and the first collector The fluid 10 is in contact with the battery case 60.
  • the first current collector 10 in the battery is in contact with the battery casing 60, so that a part of the heat generated by the battery cell can be directly conducted to the battery casing 60 through the first current collector 10. Since the thermal conductivity of the current collector is large, the electric core is improved. The heat dissipation performance.
  • the present application also provides an electrical device that includes at least one battery described in the foregoing embodiment and an electrical load, and the battery is used to supply power to the electrical load, specifically Ground
  • this type of electrical device can be a mobile phone, a portable computer, a smart phone, a smart tablet, a netbook, a light electric vehicle, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device and Other types of electrical equipment are not limited here.
  • FIG. 6 is a schematic diagram of an embodiment of the battery cell installation method in the embodiment of the application. As shown in FIG. 6, the battery cell installation method includes:
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked in a first direction, wherein the first current collector 10 exceeds the diaphragm 30 in a second direction, and the second direction Perpendicular to the first direction.
  • the active material 40 may be coated on the first current collector 10 first, and then the active material 50 may be coated on the second current collector 20. It should be noted that, referring to FIG. 2, the active material 40 may not be coated on the edge area of the first current collector 10 except for the side (for example, the B1 side) connected to the pole 70.
  • the first current collector 10 coated with the active material 40, the diaphragm 30, and the second current collector 20 coated with the active material 50 need to be stacked in a flat plate in the first direction to form a battery cell, and The relative position between the first current collector 10, the diaphragm 30, and the second current collector 20 is controlled so that the first current collector 10 exceeds the diaphragm 30 in a second direction, which is the same as the first The direction is vertical.
  • the present embodiment does not limit the number of the first current collector 10, the diaphragm 30, and the second current collector 20.
  • the first current collector 10 is fixedly connected to the first battery shell surface 80 in the second direction to form a first battery cell assembly.
  • Fig. 7a is a schematic diagram of the installation process of a battery in an embodiment of the application.
  • the first current collector 10 extends beyond the diaphragm 30 in the second direction (end B1).
  • the B1 end is fixedly connected to the first battery shell surface 80 to form a first battery cell assembly.
  • a pole 70 may also be connected to the side of the first current collector 10 other than the B1 side, and correspondingly, a pole 71 may also be connected to the second current collector 20.
  • the first battery cell assembly in this embodiment may include a first battery shell surface 80, a pole 70, a pole 71, and a cell formed by stacking the first current collector 10, the diaphragm 30, and the second current collector 20 in sequence. .
  • the first current collector 10 can be welded to the first battery shell surface 80 along the second direction, or the first current collector 10 can be bonded to the first battery housing surface 80 along the second direction.
  • the first battery shell surface 80 can be welded to the first battery shell surface 80 along the second direction, or the first current collector 10 can be bonded to the first battery housing surface 80 along the second direction.
  • first battery cell assembly into a first battery casing 81, wherein the first battery casing 81 is a casing with two sides open.
  • first battery shell surface 80 and the second battery shell surface 82 Weld the first battery shell surface 80 and the second battery shell surface 82 to the openings on both sides of the first battery shell 81, respectively, so that the first battery cell assembly is enclosed and arranged in Inside the first battery housing 81.
  • Fig. 7b is a schematic diagram of the installation process of a battery cell in an embodiment of the application. As shown in Fig. 7b, after the production of the first battery cell assembly is completed, the first The battery cell assembly is assembled into the first battery housing 81.
  • the two sides of the opening of the first battery housing 81 can be opposite sides of the housing, for example, can be any opposite sides of a cuboid.
  • the shapes of the first battery shell surface 80 and the second battery shell surface 82 can be matched with the shapes of the two openings of the first battery shell 81 respectively, and the first battery cell assembly is filled into the first battery shell. After inside 81, the first battery housing surface 80 can be welded to an opening of the battery housing 81.
  • FIG. 7c is a schematic diagram of the installation process of a battery in an embodiment of the application.
  • the first battery shell surface 80 is welded to an opening of the battery shell 81
  • the second battery shell surface 82 can be welded to the other opening of the first battery shell 81 to form a sealed cavity, so that the first battery cell assembly is hermetically arranged in the first battery shell ⁇ 81 inside.
  • the inner surfaces of the first battery housing 81 cannot be strictly perpendicular to each other.
  • the side of the current collector 10 that extends beyond the diaphragm is welded to the inner surface of the first battery casing 81, and if the first battery casing 81 with openings on both sides is used to hold the cells, the first current collector 10 can be The side beyond the diaphragm is welded to a first battery shell surface 80, and the first battery shell surface 80 is welded to one side opening of the first battery shell 81.
  • a battery cell installation method is provided.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked in a first direction, wherein the first current collector 10 is in the second direction.
  • the second direction is perpendicular to the first direction;
  • the first current collector 10 is fixedly connected to the first battery shell surface 80 in the second direction to form a first electrical Core assembly; fill the first battery cell assembly into a first battery housing 81, wherein the first battery housing 81 is a housing with two sides open; the first battery housing surface 80 and the second battery shell surface 82 are respectively welded to the openings on both sides of the first battery shell 81, so that the first battery cell assembly is disposed inside the first battery shell 81.
  • the first current collector 10 in the battery cell is fixedly connected to the first battery shell surface 80, so that part of the heat generated by the battery cell can be directly conducted to the first battery shell surface 80 through the first current collector 10, Due to the large thermal conductivity of the current collector, the heat dissipation performance of the battery core is improved.
  • FIG. 8 is a schematic diagram of an embodiment of the battery cell installation method in the embodiment of the application. As shown in the figure, the battery cell installation method includes:
  • step 601 in the embodiment corresponding to FIG. 6 is that, referring to FIG. 3, in this embodiment, in the scenario where the battery is a wound battery, the first set of active material 40 coated with The fluid 10, the diaphragm 30, and the second current collector 20 coated with the active material 50 are stacked and wound around the third direction as an axis to form a battery cell.
  • the third direction is the viewing angle direction in FIG. 3. 4, the first current collector exceeds the diaphragm in the third direction (B1 side).
  • the first current collector 10 is fixedly connected to the first battery shell surface 80 in the third direction to form a third battery cell assembly.
  • step 802 For the specific description of step 802, reference may be made to the description of step 602 in the embodiment corresponding to FIG. 6, which will not be repeated here.
  • step 803 For the specific description of step 803, refer to the description of step 603 in the embodiment corresponding to FIG. 6, which will not be repeated here.
  • first battery shell surface 80 and the second battery shell surface 82 Weld the first battery shell surface 80 and the second battery shell surface 82 to the openings on both sides of the first battery shell 81, respectively, so that the third battery cell assembly is enclosed and arranged in Inside the first battery housing 81.
  • step 804 For the specific description of step 804, reference may be made to the description of step 604 in the embodiment corresponding to FIG. 6, which will not be repeated here.
  • a battery cell installation method is provided.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked and wound with the third direction as the axis, wherein the first set The fluid 10 extends beyond the diaphragm 30 in the third direction; the first current collector 10 is fixedly connected to the first battery shell surface 80 in the third direction to form a third battery cell assembly;
  • the three-cell assembly is filled into the first battery housing 81, wherein the first battery housing 81 is a housing with two sides open; the first battery housing surface 80 and the second battery housing surface 82 They are respectively welded to the openings on both sides of the first battery casing 81 so that the third cell assembly is disposed inside the first battery casing 81.
  • the first current collector 10 in the battery cell is fixedly connected to the first battery shell surface 80, so that part of the heat generated by the battery cell can be directly conducted to the first battery shell surface 80 through the first current collector 10, Due to the large thermal conductivity of the current collector, the heat dissipation performance of the cell is improved.
  • FIG. 9 is one of the embodiments of the present application.
  • the battery housing 60 includes a battery housing 61 and a heat sink 62; the heat sink 62 is in contact with the inner surface of the battery housing 61, and the first current collector 10 is in contact with the heat sink.
  • Piece 62 touches.
  • the heat sink 62 is a metal sheet with a relatively high thermal conductivity.
  • the heat sink 62 and the inner surface of the battery housing 61 are in contact with each other, and the first current collector 10 is fixedly connected to the heat sink 62, so that a part of the heat generated by the battery cell can be directly transferred to the battery through the first current collector 10
  • the heat sink 62 that is in contact with the inner surface of the battery casing 61 has a large thermal conductivity between the current collector and the heat sink 62, which improves the heat dissipation performance of the cell.
  • FIG. 9 is a detailed description of the specific structure of the battery.
  • the battery-based battery cell installation method will be described in detail below in conjunction with the embodiment shown in FIG. 9.
  • FIG. 10 is a schematic diagram of an embodiment of the battery cell installation method in the embodiment of the application.
  • the battery cell installation method includes:
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked in a first direction, wherein the first current collector 10 exceeds the diaphragm 30 in a second direction, and the second direction Perpendicular to the first direction.
  • step 1002 For a specific description of step 1002, reference may be made to the description of step 601 in the embodiment corresponding to FIG. 6, which will not be repeated here.
  • the first current collector 10 is fixedly connected to the heat sink 62 in the second direction to form a second cell assembly.
  • Figure 11a is a schematic diagram of a battery cell installation method in an embodiment of the application.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked in the first direction. After being placed to form a battery cell, the first current collector 10 needs to be fixedly connected with the heat sink 62 in the second direction to form a second battery cell assembly.
  • step 602 in the embodiment corresponding to FIG. 6 is that in this embodiment, the first current collector is not fixedly connected to the first battery shell surface 80 in the second direction, but is fixedly connected to the heat sink 62.
  • the second battery core assembly is formed.
  • the first current collector is welded to the heat sink in the second direction.
  • Fig. 11b is a schematic diagram of a battery cell installation method in an embodiment of this application.
  • the first current collector 10 is in the second direction with After the heat sink 62 is fixedly connected to form the second battery cell assembly, the second battery cell assembly needs to be filled into the second battery housing 83 so that the heat sink 62 and the second battery housing The inner surface of the body 83 contacts.
  • FIG. 11c is a schematic diagram of a battery cell installation method in an embodiment of the application.
  • the second battery cell assembly is filled into the second battery shell.
  • the third battery shell surface 84 needs to be welded to the side opening of the second battery shell 83.
  • the difference from the embodiment corresponding to FIG. 6 is that the first current collector 10 does not need to be welded on the inner surface of the first battery housing 81, but the first current collector 10 is welded to the heat sink. 62, and the heat sink 62 is in contact with the inner surface of the second battery housing 83. Therefore, in this embodiment, a second battery housing 83 with an opening on one side can be used to house the battery cells, which corresponds to FIG. 6 Compared with the embodiment, one step of welding the first battery housing surface 80 to the side opening of the first battery housing 81 is reduced.
  • a battery cell installation method is provided.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked in a first direction, wherein the first current collector 10 is in the second direction.
  • the second direction is perpendicular to the first direction;
  • the first current collector 10 is fixedly connected to the heat sink 62 in the second direction to form a second cell assembly
  • the body 83 is a shell with one side open;
  • the third battery shell surface 84 is welded to the one side opening of the second battery shell 83, so that the second battery cell assembly is enclosed and arranged on the Inside the second battery case 83.
  • the first current collector 10 in the cell is fixedly connected with the heat sink 62, so that a part of the heat generated by the cell can be directly conducted to the second battery housing 83 through the first current collector 10 and the heat sink 62 Since the thermal conductivity of the current collector and the heat sink 62 is large, the heat dissipation performance of the battery core is improved.
  • FIG. 12 is a schematic diagram of an embodiment of the battery installation method in the embodiment of the application. As shown in the figure, the battery installation method includes:
  • first current collector 10 Lay the first current collector 10, the diaphragm 30, and the second current collector 20 on top of each other and wind them with a third direction as an axis, wherein the first current collector exceeds the diaphragm in the third direction;
  • step 1001 in the embodiment corresponding to FIG. 10 is that, referring to FIG. 3, in this embodiment, in the scenario where the battery is a wound battery, the first set of active material 40 coated with The fluid 10, the diaphragm 30, and the second current collector 20 coated with the active material 50 are stacked and wound around the third direction as an axis to form a battery cell.
  • the third direction is the viewing angle direction in FIG. 3. 4, the first current collector exceeds the diaphragm in the third direction (B1 side).
  • the first current collector 10 is fixedly connected to the heat sink 62 in the third direction to form a fourth cell assembly.
  • step 1202 For the specific description of step 1202, reference may be made to the description of step 1002 in the embodiment corresponding to FIG. 10, which is not repeated here.
  • step 1203 For the specific description of step 1203, reference may be made to the description of step 1003 in the embodiment corresponding to FIG. 10, which is not repeated here.
  • step 1204 For the specific description of step 1204, reference may be made to the description of step 1004 in the embodiment corresponding to FIG. 10, which is not repeated here.
  • a battery cell installation method is provided.
  • the first current collector 10, the diaphragm 30, and the second current collector 20 are stacked and wound with the third direction as the axis, wherein the first set The fluid exceeds the diaphragm in the third direction;
  • the first current collector 10 is fixedly connected to the heat sink 62 in the third direction to form a fourth cell assembly;
  • the fourth cell assembly Is filled into the second battery case 83 so that the heat sink 62 is in contact with the second battery case 83, wherein the second battery case 83 is a case with one side open;
  • the battery shell surface 84 is welded to the one side opening of the second battery shell 83 so that the fourth battery cell assembly is disposed inside the second battery shell 83.
  • the first current collector 10 in the cell is fixedly connected with the heat sink 62, so that a part of the heat generated by the cell can be directly conducted to the second battery housing 83 through the first current collector 10 and the heat sink 62 Since the thermal conductivity of the current collector and the heat sink 62 is large, the heat dissipation performance of the battery core is improved.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例公开了一种电池,将电池中第一集流体与电池壳体接触,使得电芯产生的一部分热可以通过第一集流体直接传导到电池壳体,由于集流体的导热系数很大,提高了电芯的散热性能,电池包括:电池壳体、第一集流体、隔膜和第二集流体;所述第一集流体、所述隔膜和所述第二集流体层叠并设置于所述电池壳体内部,其中,所述第一集流体和所述第二集流体的极性相异,所述第一集流体与所述电池壳体接触。

Description

一种电池、用电装置及电芯安装方法
本申请要求于2019年03月22日提交中国国家知识产权局、申请号为201910226392.6、发明名称为“一种电池、用电装置及电芯安装方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及动力电池领域,尤其涉及一种电池、用电装置及电芯安装方法。
背景技术
目前,动力电池由于其能量密度大、充电速度快等优点,被大量应用在电动汽车、电动列车或电动自行车等场景中。在动力电池的快速充电过程中,尤其是高能量密度的动力电池在快速充电时,动力电池的电芯内部会产生大量的热,这些热如果不能及时的传导到电池壳体,会使动力电池的温度快速升高,有热失控的风险。
现有技术中,电芯中的隔膜的端部超出相邻的集流体,隔膜与电池壳体直接接触,而集流体与电池壳体之间则存在一定的空气间隙,使得电芯内部到电池壳体的传热路径为从隔膜到电池壳体,或从空气间隙到电池壳体,由于隔膜和空气间隙的导热系数较小,使得电芯内部到电池壳体的传热路径存在很大的热阻,降低了电芯的散热性能。
发明内容
第一方面,本申请实施例提供了一种电池,电池壳体、第一集流体、隔膜和第二集流体;所述第一集流体、所述隔膜和所述第二集流体层叠并设置于所述电池壳体内部,其中,所述第一集流体和所述第二集流体的极性相异,所述第一集流体与所述电池壳体接触。
本申请实施例中,提供了一种电池,其特征在于,包括:电池壳体、第一集流体、隔膜和第二集流体;所述第一集流体、所述隔膜和所述第二集流体层叠并设置于所述电池壳体内部,其中,所述第一集流体和所述第二集流体的极性相异,所述第一集流体与所述电池壳体接触。将电池中第一集流体与电池壳体接触,使得电芯产生的一部分热可以通过第一集流体直接传导到电池壳体,由于集流体的导热系数很大,提高了电芯的散热性能。
在一种可能的实现方式中,所述第一集流体、所述隔膜和所述第二集流体在第一方向上层叠;所述第一集流体在第二方向上超出所述隔膜,且所述第一集流体在所述第二方向上与所述电池壳体通过接触进行热传导,其中,所述第二方向与所述第一方向垂直。本实施例中的电池为叠片电池,其中第一方向可以为与第一集流体所在的平面垂直的方向,第二方向可以为与第一集流体所在的平面平行的方向。本申请的实施例中,若第一集流体为正极集流体,相应的,第二集流体为负极集流体,若第一集流体为负极集流体,相应的,第二集流体为正极集流体。本实施例中,所述第一集流体在第二方向上超出所述隔膜,即隔膜在所述第二方向上与所述电池壳体之间留有一定的间隔,而所述第一集流体在所述第二方向上与电池壳体接触,使电芯内部发出的热不经过隔膜传导,而是直接通过第一集流体传导到电池壳体,由于集流体的导热系数远远大于隔膜的导热系数,因此提高了电芯的散热性能。
在一种可能的实现方式中,所述第一集流体涂布有活性物质,且所述活性物质在所述第一集流体上的涂布范围在所述第二方向上未超出所述隔膜。本实施例中,为了提高从电芯向电池外壳的传热路径的导热系数,本实施例将第一集流体在第二方向上与电池壳体接触,而不将第二集流体与电池壳体接触,此时,第一集流体在第二方向上超出相邻的隔膜,若第一集流体上超出相邻的隔膜的部分的表面涂布有活性物质,在电芯的工作过程中,第一集流体上超出相邻的隔膜的部分表面涂布的活性物质有可能因为受到挤压而接触到相邻的第二集流体,进而出现短路的安全问题。因此,本实施例中所述活性物质在所述第一集流体上的涂布范围在所述第二方向上未超出所述隔膜,相当于隔膜起到了阻隔活性物质的作用,使得第一集流体上的活性物质不会因为受到挤压而接触到相邻的第二集流体,增加了电芯工作时的安全性。
在一种可能的实现方式中,所述第一集流体、所述隔膜和所述第二集流体层叠并以第三方向为轴进行卷绕;所述第一集流体在所述第三方向上超出所述隔膜,且所述第一集流体在所述第三方向上与所述电池壳体通过接触进行热传导。本实施例中的电池为卷绕电池。
在一种可能的实现方式中,所述第一集流体涂布有活性物质,且所述活性物质在所述第一集流体上的涂布范围在所述第三方向上未超出所述隔膜。本实施例中,为了提高从电芯向电池外壳的传热路径的导热系数,本实施例将第一集流体在第二方向上与电池壳体接触,而不将第二集流体与电池壳体接触,此时,第一集流体在第二方向上超出相邻的隔膜,若第一集流体上超出相邻的隔膜的部分的表面涂布有活性物质,在电芯的工作过程中,第一集流体上超出相邻的隔膜的部分表面涂布的活性物质有可能因为受到挤压而接触到相邻的第二集流体,进而出现短路的安全问题。因此,本实施例中所述活性物质在所述第一集流体上的涂布范围在所述第二方向上未超出所述隔膜,相当于隔膜起到了阻隔活性物质的作用,使得第一集流体上的活性物质不会因为受到挤压而接触到相邻的第二集流体,增加了电芯工作时的安全性。
在一种可能的实现方式中,所述第一集流体焊接在所述电池壳体的内表面。本申请实施例中,所述第一集流体焊接在所述电池壳体的内表面,增加了方案的灵活性和可选择性。
在一种可能的实现方式中,所述电池壳体包括:电池外壳和散热片;所述散热片与所述电池外壳的内表面接触,所述第一集流体与所述散热片接触。
本实施例中,散热片和电池外壳的内表面相互接触,第一集流体与所述散热片固定连接,使得电芯产生的一部分热可以通过第一集流体和散热片直接传导到电池外壳,由于集流体和散热片的导热系数很大,提高了电芯的散热性能。
在一种可能的实现方式中,所述第一集流体焊接在所述散热片上。本申请实施例中,所述第一集流体焊接在所述散热片上,增加了方案的灵活性和可选择性。
第二方面,本申请实施例提供了一种用电装置,包括用电负载和至少一个如第一方面所述的电池,所述电池与所述用电负载电连接,所述电池用于给所述用电负载供电。
第三方面,本申请实施例提供了一种电芯安装方法,包括:
将第一集流体、隔膜和第二集流体在第一方向上层叠放置,其中,所述第一集流体在第二方向上超出所述隔膜,所述第二方向与所述第一方向垂直;将所述第一集流体在所述 第二方向上与第一电池壳面固定连接,构成第一电芯组合体;将所述第一电芯组合体填装至第一电池壳体内,其中,所述第一电池壳体为两侧开口的壳体;将所述第一电池壳面和第二电池壳面分别焊接在所述第一电池壳体的所述两侧开口处,以使得所述第一电芯组合体设置于所述第一电池壳体内部。
在一种可能的实现方式中,所述将所述第一集流体在所述第二方向上与第一电池壳面固定连接,包括:
将所述第一集流体沿所述第二方向焊接在所述第一电池壳面上。
本申请实施例中,提供了一种电芯安装方法,将第一集流体、隔膜和第二集流体在第一方向上层叠放置,其中,所述第一集流体在第二方向上超出所述隔膜,所述第二方向与所述第一方向垂直;将所述第一集流体在所述第二方向上与第一电池壳面固定连接,构成第一电芯组合体;将所述第一电芯组合体填装至第一电池壳体内,其中,所述第一电池壳体为两侧开口的壳体;将所述第一电池壳面和第二电池壳面分别焊接在所述第一电池壳体的所述两侧开口处,以使得所述第一电芯组合体设置于所述第一电池壳体内部。通过上述方法制作的电池,其电芯中第一集流体与第一电池壳面固定连接,使得电芯产生的一部分热可以通过第一集流体直接传导到第一电池壳面,由于集流体的导热系数很大,提高了电芯的散热性能。
第四方面,本申请实施例提供了一种电芯安装方法,包括:将第一集流体、隔膜和第二集流体在第一方向上层叠放置,其中,所述第一集流体在第二方向上超出所述隔膜,所述第二方向与所述第一方向垂直;将所述第一集流体在所述第二方向上与散热片固定连接,构成第二电芯组合体;将所述第二电芯组合体填装至第二电池壳体内,以使得所述散热片与所述第二电池壳体的内表面接触,其中,所述第二电池壳体为一侧开口的壳体;将第三电池壳面焊接在所述第二电池壳体的所述一侧开口处,以使得所述第二电芯组合体封闭设置于所述第一电池壳体内部。
在一种可能的实现方式中,所述第一集流体涂布有活性物质,且所述活性物质在所述第一集流体上的涂布范围在所述第二方向上未超出所述隔膜。
本申请实施例中,提供了一种电芯安装方法,将第一集流体、隔膜和第二集流体在第一方向上层叠放置,其中,所述第一集流体在第二方向上超出所述隔膜,所述第二方向与所述第一方向垂直;将所述第一集流体在所述第二方向上与散热片固定连接,构成第二电芯组合体;将所述第二电芯组合体填装至第二电池壳体内,以使得所述散热片与所述第二电池壳体的内表面接触,其中,所述第二电池壳体为一侧开口的壳体;将第三电池壳面焊接在所述第二电池壳体的所述一侧开口处,以使得所述第二电芯组合体封闭设置于所述第二电池壳体内部。通过上述方法制作的电池,其电芯中第一集流体与散热片固定连接,使得电芯产生的一部分热可以通过第一集流体和散热片直接传导到第二电池壳体,由于集流体和散热片的导热系数很大,因此提高了电芯的散热性能。
第五方面,本申请实施例提供了一种电芯安装方法,包括:将第一集流体、隔膜和第二集流体层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体在所述第三方向上超出所述隔膜;将所述第一集流体在所述第三方向上与第一电池壳面固定连接,构成第三 电芯组合体;将所述第三电芯组合体填装至第一电池壳体内,其中,所述第一电池壳体为两侧开口的壳体;将所述第一电池壳面和第二电池壳面分别焊接在所述第一电池壳体的所述两侧开口处,以使得所述第三电芯组合体设置于所述第一电池壳体内部。
本申请实施例中,提供了一种电芯安装方法,将第一集流体、隔膜和第二集流体层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体在所述第三方向上超出所述隔膜;将所述第一集流体在所述第三方向上与第一电池壳面固定连接,构成第三电芯组合体;将所述第三电芯组合体填装至第一电池壳体内,其中,所述第一电池壳体为两侧开口的壳体;将所述第一电池壳面和第二电池壳面分别焊接在所述第一电池壳体的所述两侧开口处,以使得所述第三电芯组合体设置于所述第一电池壳体内部。通过上述方法制作的电池,其电芯中第一集流体与第一电池壳面固定连接,使得电芯产生的一部分热可以通过第一集流体直接传导到第一电池壳面,由于集流体的导热系数很大,提高了电芯的散热性能。
在一种可能的实现方式中,所述将所述第一集流体在所述第三方向上与第一电池壳面固定连接,包括:将所述第一集流体沿所述第三方向焊接在所述第一电池壳面上。
第六方面,本申请实施例提供了一种电芯安装方法,包括:将第一集流体、隔膜和第二集流体层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体在所述第三方向上超出所述隔膜;将所述第一集流体在所述第三方向上与散热片固定连接,构成第四电芯组合体;将所述第四电芯组合体填装至第二电池壳体内,以使得所述散热片与所述第二电池壳体接触,其中,所述第二电池壳体为一侧开口的壳体;将第三电池壳面焊接在所述第二电池壳体的所述一侧开口处,以使得所述第四电芯组合体封闭设置于所述第二电池壳体内部。
在一种可能的实现方式中,所述第一集流体涂布有活性物质,且所述活性物质在所述第一集流体上的涂布范围在所述第三方向上未超出所述隔膜。
本申请实施例中,提供了一种电芯安装方法,将第一集流体、隔膜和第二集流体层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体在所述第三方向上超出所述隔膜;将所述第一集流体在所述第三方向上与散热片固定连接,构成第四电芯组合体;将所述第四电芯组合体填装至第二电池壳体内,以使得所述散热片与所述第二电池壳体接触,其中,所述第二电池壳体为一侧开口的壳体;将第三电池壳面焊接在所述第二电池壳体的所述一侧开口处,以使得所述第四电芯组合体设置于所述第二电池壳体内部。通过上述方法制作的电池,其电芯中第一集流体与散热片固定连接,使得电芯产生的一部分热可以通过第一集流体和散热片直接传导到第二电池壳体,由于集流体和散热片的导热系数很大,因此提高了电芯的散热性能。
从以上技术方案可以看出,本申请具有以下优点:
本申请实施例中,提供了一种电池,其特征在于,包括:电池壳体、第一集流体、隔膜和第二集流体;所述第一集流体、所述隔膜和所述第二集流体层叠并设置于所述电池壳体内部,其中,所述第一集流体和所述第二集流体的极性相异,所述第一集流体与所述电池壳体接触。将电池中第一集流体与电池壳体接触,使得电芯产生的一部分热可以通过第一集流体直接传导到电池壳体,由于集流体的导热系数很大,提高了电芯的散热性能。
附图说明
图1为本申请实施例中一种叠片电芯的一个局部侧视图;
图2为本申请实施例中一种叠片电池的俯视图;
图3为本申请实施例中一种卷绕电池的一个局部侧视图;
图4为本申请实施例中一种卷绕电池的俯视图;
图5为本申请实施例提供的一种卷绕电池的第一集流体的一种结构示意图;
图6为本申请实施例中电芯安装方法的一个实施例示意图;
图7a为本申请实施例中一种电芯的安装过程示意图;
图7b为本申请实施例中一种电芯的安装过程示意图;
图7c为本申请实施例中一种电芯的安装过程示意图;
图8为本申请实施例中电芯安装方法的一个实施例示意图;
图9为本申请实施例中一种电池的局部侧视图;
图10为本申请实施例中电芯安装方法的一个实施例示意图;
图11a为本申请实施例中一种电芯安装方法示意图;
图11b为本申请实施例中一种电芯安装方法示意图;
图11c为本申请实施例中一种电芯安装方法示意图;
图12为本申请实施例中电芯安装方法的一个实施例示意图。
具体实施方式
本申请实施例提供了一种电池、用电装置及电芯安装方法,将电池中第一集流体与电池壳体接触,使得电芯产生的一部分热可以通过第一集流体直接传导到电池壳体,由于集流体的导热系数很大,提高了电芯的散热性能。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
电芯是电动汽车的核心部件,随着电芯能量密度和快速充电速度的不断提升,电芯的散热问题越来越突出。当电动汽车充电时,电能转化为化学能储存于电芯内部,当电动汽 车行驶时,电芯内部储存的化学能转化为电能,在上述两种能量转换的过程中,电芯内部均会产生热量,且充电或放电速度越快,电芯内部所产生的热量越多,导致电芯快速升温。电芯是一种温度敏感性器件,当温度过高时,电芯寿命衰减严重甚至有发生热失控***的风险,必须通过有效的散热措施将电芯温度控制在合适的工作温度范围内。
现有技术中,在正极集流体上涂布正极活性物质形成正极性片,在负极集流体上涂布负极活性物质形成负极性片,电芯包括正极性片、负极性片和隔膜,隔膜用于隔开正极性片和负极性片。通常情况下,为了不让正极性片和负极性片直接接触,隔膜的边缘侧会超出相邻正极性片的边缘侧和负极性片的边缘侧,在将电芯填装进电池壳体后,隔膜的边缘侧会与电池壳体内表面发生直接接触,而正极集流体或负极集流体与电池壳体之间则存在一定的空气间隙。因此,从电芯内部到电池壳体内表面的传热路径是从集流体到隔膜、或者从集流体到空气间隙,由于隔膜和空气间隙的导热系数很小,导致了传热效率很低,电芯内部产生的热不能很快传导到电池壳体。
为解决这种问题,本发明实施例提出一种电池,将电池中的第一集流体与电池壳体接触,使得电池中电芯产生的一部分热可以通过第一集流体直接热传导到电池壳体,下面将对本申请提供的一种电池的实施例进行详细介绍。
可以理解的是,按照制作工艺的不同,电池结构可以分为叠片工艺制成的电池(以下称为叠片电池以及卷绕工艺制成的电池(以下称为卷绕电池),以下分别进行具体的描述。
一、叠片电池。
参照图1,图1为本申请实施例中一种叠片电池的一个局部侧视图,在第一集流体10为矩形片的场景中,如图1示出的那样,本实施例中的电池包括:电池壳体60、第一集流体10、隔膜30和第二集流体20;所述第一集流体10、所述隔膜30和所述第二集流体20层叠并设置于所述电池壳体60内部,其中,所述第一集流体10和所述第二集流体20的极性相异,所述第一集流体10与所述电池壳体60接触。
本申请的实施例中,所述第一集流体10、所述隔膜30和所述第二集流体20在第一方向上层叠;所述第一集流体10在第二方向上超出所述隔膜30,且所述第一集流体10在所述第二方向上可以与所述电池壳体60通过接触进行热传导,其中,所述第二方向与所述第一方向垂直。本实施例中的第一方向可以为与第一集流体10所在的平面垂直的方向,第二方向可以为与第一集流体10所在的平面平行的方向。
本申请的实施例中,若第一集流体10为正极集流体,相应的,第二集流体20为负极集流体,若第一集流体10为负极集流体,相应的,第二集流体20为正极集流体。
本申请的实施例中,电池还可以包括极柱70,在第一集流体10为矩形薄片的场景中,第一集流体10可以包括四个端部,四个端部中的一个端部与极柱70连接,本实施例中,第一集流体10上与所述电池壳体60通过接触进行热传导的端部可以为除了与极柱70连接的端部之外的任意一个或多个端部。
参照图2,图2为本申请实施例中一种叠片电池的俯视图,图2的视角为沿与第一集流体10所在的平面垂直的方向,如图2示出的那样,隔膜30贴附在第一集流体10上,其中,第一集流体10包括四个端部(第一端A1、第二端B1、第二端B2和第二端B3)。本实 施例中,第一集流体10可以是将第二端B1、第二端B2和第二端B3中的任意一端与相应的电池壳体60接触。需要指出的是,尽管图2中示出的是第二端B1与电池壳体60接触,但在实际应用中,也可以是第二端B2或第二端B3与电池壳体60接触。
在本申请的另一种实施例中,第一集流体10可以将第二端B1、第二端B2和第二端B3中的至少两端与电池壳体60接触,例如,可以将第二端B1和第二端B2与电池壳体60接触,或将第二端B2和第二端B3与电池壳体60接触,或将第二端B1、第二端B2和第二端B3都与电池壳体60接触,此处并不限定。
在本申请的另一种实施例中,第一集流体10可以将第二端B1、第二端B2或第二端B3的局部进行延长并与电池壳体60接触。需要指出的是,第二端B1延长的形状可以是矩形,也可以为其他任意一种形状,此处并不限定。
在本申请的另一种实施例中,一个叠片电池可以包括多个第一集流体10,其中与电池壳体60接触的第一集流体10可以是叠片电池的全部第一集流体10,也可以是全部第一集流体10中的一部分第一集流体10,实际应用中可按照需求进行选择,这里并不限定。
在本申请的一种实施例中,隔膜30在所述第二方向上可以不和电池壳体60接触。如图1中示出的那样,隔膜30在所述第二方向上与所述电池壳体60留有第一预设距离L1,即隔膜30在所述第二方向上与所述电池壳体60之间留有一定的间隔。
本实施例中,所述第一集流体10在第二方向上超出所述隔膜30,即隔膜30在所述第二方向上与所述电池壳体60之间留有一定的间隔,而所述第一集流体在所述第二方向上与电池壳体60接触,使电芯内部发出的热不经过隔膜30传导,而是直接通过第一集流体10传导到电池壳体60,由于集流体的导热系数远远大于隔膜30的导热系数,因此提高了电芯的散热性能。
在本申请的一种实施例中,如图1中示出的那样,第二集流体20在所述第二方向上可以与所述电池壳体60留有第二预设距离L2。
本实施例中,第二集流体20在所述第二方向上与所述电池壳体60留有的第二预设距离L2,即第二集流体20与所述电池壳体60之间留有一定的间隔。本实施例中,在第一集流体10与电池壳体60接触的前提下,若第二集流体20与电池壳体60接触,则电芯有可能会因为第一集流体10和第二集流体20同时与电池壳体60接触而发生短路,因此第二集流体20在所述第二方向上与所述电池壳体60留有的第二预设距离L2,提高了电芯工作时的安全性。
本实施例中,可选的,第二集流体20在所述第二方向上与所述电池壳体60留有的第二预设距离L2大于隔膜30在所述第二方向上与所述电池壳体60留有的第一预设距离。
在第一集流体10与电池壳体60接触,而隔膜30与电池壳体60之间不直接接触的情况下,第一集流体10在第二方向上超出了相邻的隔膜30,在电芯的安装过程中,若第一集流体10从电池壳体60上脱落,则第一集流体10上超出隔膜30的部分可能会发生弯折进而与第二集流体20发生接触,从而导致电芯发生短路。本实施例中,隔膜30在所述第二方向上到电池壳体60的距离设置的比第二集流体20到电池壳体60的距离小,则隔膜30可以作为第一集流体10和第二集流体20之间的阻隔,即使在电芯的安装过程中,第一 集流体10从电池壳体60上脱落,由于隔膜30的阻隔,可以降低第一集流体10上超出隔膜30的部分由于出现弯折而与第二集流体20发生接触的可能性,进一步提高了电芯工作时的安全性。
在本申请的一种实施例中,如图1中示出的那样,所述第一集流体10涂布有活性物质40,且所述活性物质40在所述第一集流体10上的涂布范围在所述第二方向上未超出所述隔膜30。需要说明的是,所述第二集流体20涂布有活性物质50,且所述活性物质50在所述第二集流体20上的涂布范围在所述第二方向上也未超出所述隔膜30。
本实施例中,为了提高从电芯向电池外壳的传热路径的导热系数,本实施例将第一集流体10在第二方向上与电池壳体60接触,而不将第二集流体20与电池壳体60接触,此时,第一集流体10在第二方向上超出相邻的隔膜30,若第一集流体10上超出相邻的隔膜30的部分的表面涂布有活性物质40,在电芯的工作过程中,第一集流体10上超出相邻的隔膜30的部分表面涂布的活性物质40有可能因为受到挤压而接触到相邻的第二集流体20,进而出现短路的安全问题。因此,本实施例中所述活性物质40在所述第一集流体10上的涂布范围在所述第二方向上未超出所述隔膜30,相当于隔膜30起到了阻隔活性物质40的作用,使得第一集流体10上的活性物质不会因为受到挤压而接触到相邻的第二集流体20,增加了电芯工作时的安全性。
在本申请的一种实施例中,所述第一集流体10焊接在所述电池壳体60的内表面。
本实施例中,进一步描述了第一集流体10与电池壳体60的接触方式。在第一集流体10焊接在电池壳体60的设计中,在电芯的安装过程中,可以先将第一集流体10的一端焊接在一个电池壳面上,之后将其填装进一个两面开口的电池壳体内,并将电池壳面焊接在电池壳体的一个开口处,之后将另一个电池壳面焊接在电池壳体的另一个开口处,形成密闭腔体。
本申请实施例中,所述第一集流体10焊接在所述电池壳体60的内表面,增加了方案的灵活性和可选择性。
二、卷绕电池。
以上为本申请提供的一种通过叠片工艺制成的电池的一个实施例进行的描述,接下来对通过卷绕工艺制成的电池的一个实施例进行详细的介绍。请参阅图3,图3为本申请实施例中一种卷绕电池的一个局部侧视图,可以理解的是,和通过叠片工艺制成的电池将第一集流体、第二集流体和隔膜依次以平板层叠放置不同的是,卷绕工艺采用的隔膜30、第一集流体10和第二集流体10可以是未冲切成单片状矩形片的矩形长片,并将第一集流体10、隔膜30与第二集流体20依次层叠放置后进行卷绕,其中,第一集流体10上涂布有活性物质40、第二集流体上涂布有活性物质50。
本实施例中,所述第一集流体10、所述隔膜30和所述第二集流体20层叠并以第三方向为轴进行卷绕;所述第一集流体10在所述第三方向上超出所述隔膜30,且所述第一集流体10在所述第三方向上与所述电池壳体60通过接触进行热传导。
请参阅图4,图4为本申请实施例中一种卷绕电池的俯视图,其中,图4中竖直向下的方向为第三方向。如图4示出的那样,所述第一集流体10在所述第三方向上(B1侧) 超出所述隔膜30,具体的,所述第一集流体10在B1侧超出所述隔膜30。
在一种实施例中,参照图5,图5为本申请实施例提供的一种卷绕电池的第一集流体的一种结构示意图,图5中示出第一集流体为还未进行卷绕的矩形长片,其中,所述第一集流体10涂布有活性物质40,第一集流体10在B1侧留有一片未涂布活性物质40的区域,以使得卷绕后的第一集流体10上的所述活性物质40在所述第一集流体10上的涂布范围在所述第三方向(B1侧)上不超出隔膜30。
需要指出的是,图1至图4示出的电池结构仅为一种示意,在实际应用中,第一集流体、第二集流体和隔膜的数量可以按照实际需求而定。
需要指出的是,尽管图1至图4中未示出,但实际的电池在集流体和隔膜之间还可以填充有电解质。
需要指出的是,并不限定本申请中第一集流体10、第二集流体20和隔膜30的材料,可以使用本领域已知的正极活性物质(例如氧化锂锰、氧化锂钴、氧化锂镍、磷酸锂铁,或含有至少一种上述元素的化合物或混合物)对铝、镍、铜或含有至少一种上述元素的合金形成的正极集流体进行涂布。另外,可以使用本领域已知的负极活性物质(例如锂金属、锂合金、碳、石油焦、活性炭、石墨、硅化合物、锡化合物、钛化合物,或含有至少一种上述元素的合金)对铜、镍、铝或含有至少一种上述元素的合金形成的负极集流体进行涂布。另外,隔膜30可以为多层膜,该多层膜具有精细孔结构,并且由聚乙烯、聚丙烯或其组合形成,或者可为用于固体聚合物电解质或凝胶式聚合物电解质,诸如聚偏二氟乙烯、聚环氧乙烷、聚丙烯腈、聚氟乙烯—六氟丙烯共聚物的聚合物膜。
其次,本申请实施例中,提供了一种电池,其特征在于,包括:电池壳体60、第一集流体10、隔膜30和第二集流体20;所述第一集流体10、所述隔膜30和所述第二集流体20层叠并设置于所述电池壳体60内部,其中,所述第一集流体10和所述第二集流体20的极性相异,所述第一集流体10与所述电池壳体60接触。将电池中第一集流体10与电池壳体60接触,使得电芯产生的一部分热可以通过第一集流体10直接传导到电池壳体60,由于集流体的导热系数很大,提高了电芯的散热性能。
基于上述各个实施例,本申请还提供了一种用电装置,该用电装置包含了至少一个上述实施例描述的电池以及用电负载,所述电池用于给所述用电负载供电,具体地,这类用电装置可以是移动电话、便携式计算机、智能电话、智能平板、上网本、轻型电动车、电动车辆、混合动力电动车辆、插电式混合动力电动车辆,也可以是蓄电装置以及其他类型的用电设备,此处不作限定。
图1和图2所示的实施例为对一种叠片电池的具体结构进行的详细说明,以下结合图1至图2所示的实施例对基于该叠片电池中的电芯的安装方法进行详细说明,请参阅图6,图6为本申请实施例中电芯安装方法的一个实施例示意图,如图6所示,电芯安装方法包括:
601、将第一集流体10、隔膜30和第二集流体20在第一方向上层叠放置,其中,所述第一集流体10在第二方向上超出所述隔膜30,所述第二方向与所述第一方向垂直。
本实施例中,在电芯的制作过程中,首先可以将活性材料40涂布到第一集流体10上, 之后将活性材料50涂布到第二集流体20上。需要说明的是,参照图2,可以在第一集流体10上除了与极柱70连接的一侧(例如B1侧)的边缘区域不涂布活性物质40。
本实施例中,需要将涂布有活性物质40的第一集流体10、隔膜30、涂布有活性物质50的第二集流体20在第一方向上以平板层叠放置以形成电芯,并控制第一集流体10、隔膜30和第二集流体20之间的相对位置以使得所述第一集流体10在第二方向上超出所述隔膜30,所述第二方向与所述第一方向垂直。
需要指出的是,本实施例并不限定第一集流体10、隔膜30和第二集流体20的数量。
602、将所述第一集流体10在所述第二方向上与第一电池壳面80固定连接,构成第一电芯组合体。
本实施例中,参照图7a,图7a为本申请实施例中一种电芯的安装过程示意图,如图7a示出的那样,第一集流体10在第二方向(B1端)超出隔膜30,将B1端与第一电池壳面80固定连接,构成第一电芯组合体。需要说明的是,第一集流体10上除了B1侧之外的一侧还可以连接有极柱70,相应的,第二集流体20上还可以连接有极柱71。本实施例中的第一电芯组合体可以包括第一电池壳面80、极柱70、极柱71以及由第一集流体10、隔膜30和第二集流体20依次层叠放置形成的电芯。
可选的,可以将所述第一集流体10沿所述第二方向焊接在所述第一电池壳面80上,或将所述第一集流体10沿所述第二方向粘接在所述第一电池壳面80上。
603、将所述第一电芯组合体填装至第一电池壳体81内,其中,所述第一电池壳体81为两侧开口的壳体。
604、将所述第一电池壳面80和第二电池壳面82分别焊接在所述第一电池壳体81的所述两侧开口处,以使得所述第一电芯组合体封闭设置于所述第一电池壳体81内部。
本实施例中,参照图7b,图7b为本申请实施例中一种电芯的安装过程示意图,如图7b示出的那样,在完成第一电芯组合体的制作后,需要将第一电芯组合体装配至第一电池壳体81内。
本实施例中,第一电池壳体81开口的两侧可以为壳体上相对的两侧,例如可以是长方体上任意相对的两侧。第一电池壳面80和第二电池壳面82的形状可以分别和第一电池壳体81的两个开口的形状契合,在将所述第一电芯组合体填装至第一电池壳体81内之后,可以将所述第一电池壳面80焊接在所述电池壳体81的一个开口处。
参照图7c,图7c为本申请实施例中一种电芯的安装过程示意图,如图7c示出的那样,在将所述第一电池壳面80焊接在所述电池壳体81的一个开口之后,可以将第二电池壳面82焊接在所述第一电池壳体81的另一个开口处,形成一个密闭腔体,使得所述第一电芯组合体密封设置于所述第一电池壳体81内部。
需要说明的是,若采用一侧开口的第一电池壳体81来承装电芯,由于工艺的限制,第一电池壳体81的各个内表面之间不能严格的垂直,因此不能将第一集流体10上超出隔膜的一侧焊接在第一电池壳体81的内表面,而若采用两侧开口的第一电池壳体81来承装电芯,则可以先将第一集流体10上超出隔膜的一侧焊接在一个第一电池壳面80上,再将该第一电池壳面80焊接在第一电池壳体81的一侧开口处。
可以理解的是,在实际应用中,还需要对装配好的电池进行注液、化成、抽气、焊接注液孔、清洗等处理。
本申请实施例中,提供了一种电芯安装方法,将第一集流体10、隔膜30和第二集流体20在第一方向上层叠放置,其中,所述第一集流体10在第二方向上超出所述隔膜30,所述第二方向与所述第一方向垂直;将所述第一集流体10在所述第二方向上与第一电池壳面80固定连接,构成第一电芯组合体;将所述第一电芯组合体填装至第一电池壳体81内,其中,所述第一电池壳体81为两侧开口的壳体;将所述第一电池壳面80和第二电池壳面82分别焊接在所述第一电池壳体81的所述两侧开口处,以使得所述第一电芯组合体设置于所述第一电池壳体81内部。通过上述方法制作的电池,其电芯中第一集流体10与第一电池壳面80固定连接,使得电芯产生的一部分热可以通过第一集流体10直接传导到第一电池壳面80,由于集流体的导热系数很大,提高了电芯的散热性能。
图3至图5所示的实施例为对一种卷绕电池的具体结构进行的详细说明,以下结合图3至图5所示的实施例对基于该卷绕电池中的电芯的安装方法进行详细说明,请参阅图8,图8为本申请实施例中电芯安装方法的一个实施例示意图,如图所示,电芯安装方法包括:
801、将第一集流体10、隔膜30和第二集流体20层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体10在所述第三方向上超出所述隔膜30。
需要说明的是,和图6对应的实施例中步骤601不同的是,参照图3,本实施例中,在电池为卷绕电池的场景中,需要将涂布有活性物质40的第一集流体10、隔膜30和涂布有活性物质50的第二集流体20层叠放置并以第三方向为轴进行卷绕,以形成电芯,第三方向为图3中的视角方向。参照图4,所述第一集流体在所述第三方向上(B1侧)超出所述隔膜。
802、将所述第一集流体10在所述第三方向上与第一电池壳面80固定连接,构成第三电芯组合体。
步骤802的具体描述可参照图6对应的实施例中步骤602的描述,这里不再赘述。
803、将所述第三电芯组合体填装至第一电池壳体81内,其中,所述第一电池壳体81为两侧开口的壳体。
步骤803的具体描述可参照图6对应的实施例中步骤603的描述,这里不再赘述。
804、将所述第一电池壳面80和第二电池壳面82分别焊接在所述第一电池壳体81的所述两侧开口处,以使得所述第三电芯组合体封闭设置于所述第一电池壳体81内部。
步骤804的具体描述可参照图6对应的实施例中步骤604的描述,这里不再赘述。
本申请实施例中,提供了一种电芯安装方法,将第一集流体10、隔膜30和第二集流体20层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体10在所述第三方向上超出所述隔膜30;将所述第一集流体10在所述第三方向上与第一电池壳面80固定连接,构成第三电芯组合体;将所述第三电芯组合体填装至第一电池壳体81内,其中,所述第一电池壳体81为两侧开口的壳体;将所述第一电池壳面80和第二电池壳面82分别焊接在所述第一电池壳体81的所述两侧开口处,以使得所述第三电芯组合体设置于所述第一电池壳 体81内部。通过上述方法制作的电池,其电芯中第一集流体10与第一电池壳面80固定连接,使得电芯产生的一部分热可以通过第一集流体10直接传导到第一电池壳面80,由于集流体的导热系数很大,提高了电芯的散热性能。
可选地,在上述图1至图5描述的实施例的基础上,本申请实施例提供的电池的第一个可选实施例中,请参照图9,图9为本申请实施例中一种电池的局部侧视图,所述电池壳体60包括:电池外壳61和散热片62;所述散热片62与所述电池外壳61的内表面接触,所述第一集流体10与所述散热片62接触。
在一种实施例中,散热片62为具有较高导热系数的金属片。
本实施例中,散热片62和电池外壳61的内表面相互接触,第一集流体10与所述散热片62固定连接,使得电芯产生的一部分热可以通过第一集流体10直接传导到与电池外壳61的内表面接触的散热片62,由于集流体和散热片62的导热系数很大,提高了电芯的散热性能。
图9所示的实施例为对电池的具体结构进行的详细说明,以下结合图9所示的实施例对基于该电池的电芯安装方法进行详细说明,首先对叠片电池中电芯的安装方法进行说明,请参阅图10,图10为本申请实施例中电芯安装方法的一个实施例示意图,如图所示,电芯安装方法包括:
1001、将第一集流体10、隔膜30和第二集流体20在第一方向上层叠放置,其中,所述第一集流体10在第二方向上超出所述隔膜30,所述第二方向与所述第一方向垂直。
步骤1002的具体描述可参照图6对应的实施例中步骤601的描述,这里不再赘述。
1002、将所述第一集流体10在所述第二方向上与散热片62固定连接,构成第二电芯组合体。
参照图11a,图11a为本申请实施例中一种电芯安装方法示意图,如图11a示出的那样,在将第一集流体10、隔膜30和第二集流体20在第一方向上层叠放置,以形成电芯之后,需要将所述第一集流体10在所述第二方向上与散热片62固定连接,构成第二电芯组合体。
和图6对应的实施例中步骤602不同的是,本实施例中,第一集流体在所述第二方向上不与第一电池壳面80固定连接,而是与散热片62固定连接,构成第二电芯组合体。
在一种实施例中,将所述第一集流体在所述第二方向上焊接在散热片上。
1003、将所述第二电芯组合体填装至第二电池壳体83内,以使得所述散热片62与所述第二电池壳体83的内表面接触,其中,所述第二电池壳体83为一侧开口的壳体。
本实施例中,参照图11b,图11b为本申请实施例中一种电芯安装方法示意图,如图11b示出的那样,在将所述第一集流体10在所述第二方向上与散热片62固定连接,构成第二电芯组合体之后,需要将所述第二电芯组合体填装至第二电池壳体83内,以使得所述散热片62与所述第二电池壳体83的内表面接触。
1004、将第三电池壳面84焊接在所述第二电池壳体83的所述一侧开口处,以使得所述第二电芯组合体封闭设置于所述第二电池壳体83内部。
本实施例中,参照图11c,图11c为本申请实施例中一种电芯安装方法示意图,如图11c示出的那样,在将所述第二电芯组合体填装至第二电池壳体内之后,需要将第三电池壳面 84焊接在所述第二电池壳体83的一侧开口处。
需要说明的是,和图6对应的实施例不同的是,由于不需要将第一集流体10焊接在第一电池壳体81的内表面上,而是将第一集流体10焊接在散热片62上,并将散热片62与所述第二电池壳体83的内表面接触,因此本实施例中可以采用一侧开口的第二电池壳体83来承装电芯,和图6对应的实施例相比,减少了一个将第一电池壳面80焊接到第一电池壳体81的一侧开口的步骤。
可以理解的是,在实际应用中,还需要对装配好的电池进行注液、化成、抽气、焊接注液孔、清洗等处理。
本申请实施例中,提供了一种电芯安装方法,将第一集流体10、隔膜30和第二集流体20在第一方向上层叠放置,其中,所述第一集流体10在第二方向上超出所述隔膜30,所述第二方向与所述第一方向垂直;将所述第一集流体10在所述第二方向上与散热片62固定连接,构成第二电芯组合体;将所述第二电芯组合体填装至第二电池壳体83内,以使得所述散热片62与所述第二电池壳体83的内表面接触,其中,所述第二电池壳体83为一侧开口的壳体;将第三电池壳面84焊接在所述第二电池壳体83的所述一侧开口处,以使得所述第二电芯组合体封闭设置于所述第二电池壳体83内部。通过上述方法制作的电池,其电芯中第一集流体10与散热片62固定连接,使得电芯产生的一部分热可以通过第一集流体10和散热片62直接传导到第二电池壳体83,由于集流体和散热片62的导热系数很大,因此提高了电芯的散热性能。
接下来对卷绕电池中电芯的安装方法进行说明,请参阅图12,图12为本申请实施例中电芯安装方法的一个实施例示意图,如图所示,电芯安装方法包括:
1201、将第一集流体10、隔膜30和第二集流体20层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体在所述第三方向上超出所述隔膜;
需要说明的是,和图10对应的实施例中步骤1001不同的是,参照图3,本实施例中,在电池为卷绕电池的场景中,需要将涂布有活性物质40的第一集流体10、隔膜30和涂布有活性物质50的第二集流体20层叠放置并以第三方向为轴进行卷绕,以形成电芯,第三方向为图3中的视角方向。参照图4,所述第一集流体在所述第三方向上(B1侧)超出所述隔膜。
1202、将所述第一集流体10在所述第三方向上与散热片62固定连接,构成第四电芯组合体。
步骤1202的具体描述可参照图10对应的实施例中步骤1002的描述,这里不再赘述。
1203、将所述第四电芯组合体填装至第二电池壳体83内,以使得所述散热片62与所述第二电池壳体83接触,其中,所述第二电池壳体83为一侧开口的壳体。
步骤1203的具体描述可参照图10对应的实施例中步骤1003的描述,这里不再赘述。
1204、将第三电池壳面84焊接在所述第二电池壳体83的所述一侧开口处,以使得所述第四电芯组合体设置于所述第二电池壳体83内部。
步骤1204的具体描述可参照图10对应的实施例中步骤1004的描述,这里不再赘述。
本申请实施例中,提供了一种电芯安装方法,将第一集流体10、隔膜30和第二集流 体20层叠放置并以第三方向为轴进行卷绕,其中,所述第一集流体在所述第三方向上超出所述隔膜;将所述第一集流体10在所述第三方向上与散热片62固定连接,构成第四电芯组合体;将所述第四电芯组合体填装至第二电池壳体83内,以使得所述散热片62与所述第二电池壳体83接触,其中,所述第二电池壳体83为一侧开口的壳体;将第三电池壳面84焊接在所述第二电池壳体83的所述一侧开口处,以使得所述第四电芯组合体设置于所述第二电池壳体83内部。通过上述方法制作的电池,其电芯中第一集流体10与散热片62固定连接,使得电芯产生的一部分热可以通过第一集流体10和散热片62直接传导到第二电池壳体83,由于集流体和散热片62的导热系数很大,因此提高了电芯的散热性能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种电池,其特征在于,包括:电池壳体、第一集流体、隔膜和第二集流体;
    所述第一集流体、所述隔膜和所述第二集流体层叠并设置于所述电池壳体内部,其中,所述第一集流体和所述第二集流体的极性相异,所述第一集流体与所述电池壳体接触。
  2. 根据权利要求1所述的电池,其特征在于,所述第一集流体、所述隔膜和所述第二集流体在第一方向上层叠;
    所述第一集流体在第二方向上超出所述隔膜,且所述第一集流体在所述第二方向上与所述电池壳体通过接触进行热传导,其中,所述第二方向与所述第一方向垂直。
  3. 根据权利要求2所述的电池,其特征在于,所述第一集流体涂布有活性物质,且所述活性物质在所述第一集流体上的涂布范围在所述第二方向上未超出所述隔膜。
  4. 根据权利要求1所述的电池,其特征在于,所述第一集流体、所述隔膜和所述第二集流体层叠并以第三方向为轴进行卷绕;
    所述第一集流体在所述第三方向上超出所述隔膜,且所述第一集流体在所述第三方向上与所述电池壳体通过接触进行热传导。
  5. 根据权利要求4所述的电池,其特征在于,所述第一集流体涂布有活性物质,且所述活性物质在所述第一集流体上的涂布范围在所述第三方向上未超出所述隔膜。
  6. 根据权利要求1至5任一所述的电池,其特征在于,所述第一集流体焊接在所述电池壳体的内表面。
  7. 根据权利要求1至5任一所述的电池,其特征在于,所述电池壳体包括:电池外壳和散热片;
    所述散热片与所述电池外壳的内表面接触,所述第一集流体与所述散热片接触。
  8. 根据权利要求7所述的电池,其特征在于,所述第一集流体焊接在所述散热片上。
  9. 一种用电装置,其特征在于,包括用电负载和至少一个如权利要求1至8任一所述的电池,所述电池与所述用电负载电连接,所述电池用于给所述用电负载供电。
  10. 一种电芯安装方法,其特征在于,包括:
    将第一集流体、隔膜和第二集流体在第一方向上层叠放置,其中,所述第一集流体在第二方向上超出所述隔膜,所述第二方向与所述第一方向垂直;
    将所述第一集流体在所述第二方向上与第一电池壳面固定连接,构成第一电芯组合体;
    将所述第一电芯组合体填装至第一电池壳体内,其中,所述第一电池壳体为两侧开口的壳体;
    将所述第一电池壳面和第二电池壳面分别焊接在所述第一电池壳体的所述两侧开口处,以使得所述第一电芯组合体设置于所述第一电池壳体内部。
  11. 根据权利要求10所述的电芯安装方法,其特征在于,所述将所述第一集流体在所述第二方向上与第一电池壳面固定连接,包括:
    将所述第一集流体沿所述第二方向焊接在所述第一电池壳面上。
PCT/CN2019/127764 2019-03-22 2019-12-24 一种电池、用电装置及电芯安装方法 WO2020192206A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19921076.6A EP3933993B1 (en) 2019-03-22 2019-12-24 Battery, electrical apparatus and cell installation method
US17/478,457 US20220006115A1 (en) 2019-03-22 2021-09-17 Battery, electric apparatus, and cell installation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910226392.6A CN110098429B (zh) 2019-03-22 2019-03-22 一种电池、用电装置及电芯安装方法
CN201910226392.6 2019-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/478,457 Continuation US20220006115A1 (en) 2019-03-22 2021-09-17 Battery, electric apparatus, and cell installation method

Publications (1)

Publication Number Publication Date
WO2020192206A1 true WO2020192206A1 (zh) 2020-10-01

Family

ID=67443965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127764 WO2020192206A1 (zh) 2019-03-22 2019-12-24 一种电池、用电装置及电芯安装方法

Country Status (4)

Country Link
US (1) US20220006115A1 (zh)
EP (1) EP3933993B1 (zh)
CN (1) CN110098429B (zh)
WO (1) WO2020192206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120666A1 (zh) * 2020-12-10 2022-06-16 微宏动力***(湖州)有限公司 锂离子二次电池及电动车辆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098429B (zh) * 2019-03-22 2021-11-26 华为数字能源技术有限公司 一种电池、用电装置及电芯安装方法
CN112687991A (zh) * 2021-02-15 2021-04-20 苏州阿福机器人有限公司 一种具有热交换部的单体电芯封装结构
CN112787000A (zh) * 2021-02-15 2021-05-11 苏州阿福机器人有限公司 一种电极盖散热的电芯封装结构
CN113611958A (zh) * 2021-08-03 2021-11-05 深圳市科信通信技术股份有限公司 一种电芯及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482156A (zh) * 2017-08-29 2017-12-15 陈育雄 一种大单体锂离子电池
CN109301256A (zh) * 2017-06-28 2019-02-01 湖南妙盛汽车电源有限公司 一种锂离子动力电池
CN110098429A (zh) * 2019-03-22 2019-08-06 华为技术有限公司 一种电池、用电装置及电芯安装方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087036A (en) * 1997-07-25 2000-07-11 3M Innovative Properties Company Thermal management system and method for a solid-state energy storing device
US6908711B2 (en) * 2002-04-10 2005-06-21 Pacific Lithium New Zealand Limited Rechargeable high power electrochemical device
US8084158B2 (en) * 2005-09-02 2011-12-27 A123 Systems, Inc. Battery tab location design and method of construction
US8153290B2 (en) * 2008-10-28 2012-04-10 Tesla Motors, Inc. Heat dissipation for large battery packs
CN202585660U (zh) * 2012-02-20 2012-12-05 宁德新能源科技有限公司 一种卷绕结构的动力电池
CN203398226U (zh) * 2013-06-09 2014-01-15 上海卡耐新能源有限公司 一种具有高效散热功能的电池
US9666907B2 (en) * 2013-09-03 2017-05-30 Ut-Battelle, Llc Thermal management for high-capacity large format Li-ion batteries
CN104882635A (zh) * 2015-05-30 2015-09-02 深圳市格瑞普电池有限公司 叠片锂离子电池以及其构成的电池组以及其极片
US11289746B2 (en) * 2016-05-03 2022-03-29 Bosch Battery Systems Llc Cooling arrangement for an energy storage device
CN108183281A (zh) * 2017-12-28 2018-06-19 力神动力电池***有限公司 一种内设散热结构的锂离子电池
CN109742436B (zh) * 2018-12-03 2021-04-20 华为技术有限公司 一种电芯、动力电池、动力电池组、用电装置及制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301256A (zh) * 2017-06-28 2019-02-01 湖南妙盛汽车电源有限公司 一种锂离子动力电池
CN107482156A (zh) * 2017-08-29 2017-12-15 陈育雄 一种大单体锂离子电池
CN110098429A (zh) * 2019-03-22 2019-08-06 华为技术有限公司 一种电池、用电装置及电芯安装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933993A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022120666A1 (zh) * 2020-12-10 2022-06-16 微宏动力***(湖州)有限公司 锂离子二次电池及电动车辆

Also Published As

Publication number Publication date
EP3933993A1 (en) 2022-01-05
US20220006115A1 (en) 2022-01-06
EP3933993B1 (en) 2023-06-28
EP3933993A4 (en) 2022-04-20
CN110098429A (zh) 2019-08-06
CN110098429B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2020192206A1 (zh) 一种电池、用电装置及电芯安装方法
EP1998401B1 (en) Electrode assembley and secondary battery using the same
US9887404B2 (en) Secondary battery
JP6560438B2 (ja) 電池モジュール
JP5534264B2 (ja) 蓄電デバイス
CN109742436B (zh) 一种电芯、动力电池、动力电池组、用电装置及制造方法
US12002994B2 (en) Battery module, battery pack, and battery-powered apparatus
CN112864534B (zh) 电芯组件、电芯模组、电池及使用电池的装置
CN110226259B (zh) 包括传热构件的袋形二次电池
JP5989405B2 (ja) 電源装置
KR20230019136A (ko) 리튬 이온 배터리, 배터리 팩, 전기 차량, 및 에너지 저장 디바이스
JP5415009B2 (ja) 蓄電デバイスモジュール
JP2012069283A (ja) 積層型電池の製造方法および積層型電池用セパレータ
TW201526359A (zh) 帶有具低電阻電極翼片的二次電池組
JP4348492B2 (ja) 非水系二次電池
KR20120088122A (ko) 연결 신뢰성이 향상된 전지셀 및 이를 포함하는 전지모듈
KR101515672B1 (ko) 2 이상의 양극 및 음극을 포함하는 전극 조립체 및 이에 의한 전기 화학 소자
JPH10106531A (ja) パッケージ扁平型電池
JP4594478B2 (ja) 非水系二次電池
EP3648238A1 (en) Lithium ion power battery
JP6681017B2 (ja) 電極体を有する二次電池
CN220474665U (zh) 一种使用复合集流体的圆柱锂电池
CN114665101B (zh) 电化学装置以及电子装置
WO2021238857A1 (zh) 锂离子电池、动力电池模组、电池包、电动汽车和储能装置
EP4383386A1 (en) Battery cell with improved heat transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921076

Country of ref document: EP

Effective date: 20210927