WO2020191812A1 - 一种高性能及可靠的微型防抖云台 - Google Patents

一种高性能及可靠的微型防抖云台 Download PDF

Info

Publication number
WO2020191812A1
WO2020191812A1 PCT/CN2019/081658 CN2019081658W WO2020191812A1 WO 2020191812 A1 WO2020191812 A1 WO 2020191812A1 CN 2019081658 W CN2019081658 W CN 2019081658W WO 2020191812 A1 WO2020191812 A1 WO 2020191812A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
magnets
shake
performance
rigid circuit
Prior art date
Application number
PCT/CN2019/081658
Other languages
English (en)
French (fr)
Inventor
麦练智
Original Assignee
高瞻创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高瞻创新科技有限公司 filed Critical 高瞻创新科技有限公司
Publication of WO2020191812A1 publication Critical patent/WO2020191812A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • the invention relates to the technical field of anti-shake heads, in particular to a high-performance and reliable miniature anti-shake heads.
  • the device includes at least one fixed-focus wide-angle camera module (Fixed-focus wide-angle camera module). Therefore, the market for the modules is huge, and the growth is steadily rising.
  • the photos and videos taken by the device are likely to be blurred or shaken by external vibration, which affects the quality of the photos and videos. When the vibration is intense or in low light conditions, this problem will be more serious.
  • the existing mainstream technology reads vibration sensors (such as gyroscopes and acceleration sensors), calculates the vibration waveform and the required compensation angle, and compensates for image blur and shaking caused by vibration through electronic, optical, or mechanical methods, Achieve the effect of improving image quality.
  • vibration sensors such as gyroscopes and acceleration sensors
  • EIS Electronic Image Stabilizer
  • OIS optical image stabilizer
  • Gimbal Stabilizer Gimbal Stabilizer
  • MGS Micro Gimbal Stabilizer
  • EIS uses electronic methods to achieve the anti-shake effect. During shooting, EIS will adjust the position of each frame of the image according to the calculated vibration waveform to offset the image shaking caused by vibration. Since EIS does not require additional actuators, the main advantages of EIS are low cost, close to requiring no additional weight and volume.
  • OIS uses optical and mechanical methods to move optical components (which can be a piece, a group or all lenses in the camera) to achieve relative movement between the optical components and the image sensor, changing the optical path and
  • the image circle (Image Circle) position compensates for image shaking caused by vibration. Since OIS is continuously making optical compensation in each frame of image shooting, it can offset the jitter of each frame of image exposure, and achieve better image quality than EIS.
  • GS (refer to patents: CN103513492A, CN104903790A, EP3086451A1, and US20090257741A1) is a mechanical method that drives the entire camera module including the lens and image sensor to move in the opposite direction to the vibration but close to the amplitude to offset the vibration caused by vibration .
  • the image quality and anti-shake effect will not decrease at the edge of the image, and there is no need to reduce the optical resolution of the lens and the image.
  • the resolution of the sensor part. Therefore, the anti-shake effect and image quality of GS have advantages over EIS and OIS, which are more prominent in wide-angle camera modules.
  • MGS The anti-shake principle of MGS (reference patent: 208399865U) is similar to that of GS, and it achieves the anti-shake effect by driving the entire camera module including the lens and image sensor.
  • MGS uses special shrapnel and flexible circuit board design to save space.
  • displacement sensor e.g. Hall effect sensor
  • MGS MGS uses an open-loop control method to deflect the lens to achieve the anti-shake effect.
  • EIS cannot compensate for the image shaking in each frame. This is because EIS can offset the image shaking caused by vibration by adjusting the position of each frame of the image. Therefore, the images shot after EIS is turned on will be more prone to blurring caused by image shaking.
  • EIS reduces the resolution of the image sensor.
  • the image sensor or image processor needs to crop a suitable image according to the calculated vibration waveform as the final image.
  • the resolution will drop, and the final image will be lower than the maximum resolution of the image sensor. Therefore, EIS will increase the maximum resolution of the image sensor and reduce the image quality.
  • OIS the main disadvantage of OIS is the partial optical resolution of the lens.
  • the position of the image circle on the image sensor will constantly change.
  • the image circle In order to prevent the image circle from exceeding the image sensor during OIS, the image circle must be enlarged because of OIS, but this will waste the resolution that the lens should have.
  • the edge of the imaging circle when the position of the imaging circle is relatively off, the edge of the imaging circle will be closer to the image sensor. Since most lenses have more blurriness and distortion at the edges than at the center, the image resolution and anti-shake effect of general OIS are not as good as GS. This problem is more obvious in wide-angle camera modules.
  • GS needs an actuator that can drive the entire camera module. Since the weight and size of the camera module is much larger than that of the lens, the cost, weight, volume and power consumption of the GS actuator are usually much higher than that of the OIS actuator, which is not suitable for application in small mobile devices, or reduces the battery of mobile devices Battery life.
  • the mainstream GS technology uses ball bearings or other frictional contact points as a mechanical support structure between fixed and movable parts. Since there is a nonlinear relationship between the friction force of the support structure and the speed of the movable part, the support structure increases the nonlinear friction force, which can affect the anti-shake effect. Especially when the vibration is relatively small and the frequency is high, the impact will be more obvious, and the anti-shake effect may be poor. In addition, most of the GS technologies adopt closed-loop control, and the GS control circuit requires an additional power consumption stabilization anti-shake system. When the vibration amplitude and frequency are too high, the output voltage or current required by the control circuit may exceed the limit of the control circuit, resulting in circuit overheating or poor anti-shake effect.
  • MGS does not use contact points with friction, the disadvantages caused by the friction will not occur.
  • the MGS uses shrapnel and an open-loop control system, when the MGS is subjected to intense vibration or the vibration frequency is close to the resonance frequency of the system, resonance is prone to occur, causing video blur and jitter. If this happens for a long time, it is more likely to damage the internal components of the MGS, cause dust on the image sensor, or the MGS cannot work normally, which affects the reliability of the MGS.
  • the image sensor in the MGS needs to be deflected during the anti-shake process, the image sensor cannot be rigidly fixed on a stationary structure.
  • the heat emitted by the image sensor can only reach the housing of the MGS through thermal radiation or heat conduction over a long distance. Because of the low efficiency of these methods, the temperature of the image sensor in the MGS is higher, resulting in more image noise. This problem also causes the image sensor in the MGS to fail to work in a higher temperature environment, which limits the maximum ambient operating temperature of the MGS and reduces the reliability of the MGS.
  • the invention provides a high-performance and reliable miniature anti-shake pan/tilt to solve the technical problems of high image sensor temperature in MGS, resulting in more image noise and prone to resonance, so as to improve the anti-vibration ability and heat dissipation of MGS Ability to improve the performance and reliability of MGS.
  • embodiments of the present invention provide a high-performance and reliable miniature anti-shake head, including: at least one shell, at least one positioning seat, at least one set of elastic materials, at least one set of soft materials, at least One set of magnets, at least one set of independent coils and one camera module;
  • the housing is connected to the positioning base, the positioning base is also connected to the camera module via the elastic material, the housing and the positioning base form a stationary structure outside the pan/tilt, the camera module Set in the activity structure;
  • the set of magnets includes at least one magnet, and the independent coil is arranged corresponding to the magnet;
  • the magnet is arranged in a stationary structure or a movable structure, the independent coil is arranged in a movable structure or a stationary structure, and the magnet and the independent coil are in different structures;
  • Two ends of the elastic material are respectively connected with the camera module and the positioning base to form a spring oscillator system
  • One end of the soft material is connected with the camera module, and the other end is connected with the housing.
  • the camera module includes at least one circuit board, at least one lens, at least one lens carrier, and at least one image sensor.
  • the lens is connected to the lens carrier, and the lens carrier is also connected to the circuit board. Connected and the lens carrier has a rotation center with multi-axis rotation degrees of freedom;
  • An image sensor is arranged under the lens, and the image sensor is arranged on the circuit board and electrically connected to the circuit board; one end of the soft material is rigidly connected to the circuit board, and the other end is connected to the circuit board. ⁇ Shell Connection.
  • the distance between the soft material and the rotation center is greater than 10% of the total height of the miniature anti-shake head.
  • the lens carrier and the positioning base are made of non-conductive materials; the housing is made of materials that can shield high-frequency electromagnetic waves.
  • the circuit board includes a first rigid circuit board, a second rigid circuit board, a third rigid circuit board, a first flexible circuit board, and a second flexible circuit board.
  • the image sensor and the periphery of the first rigid circuit board are completely connected with the first flexible circuit board, the periphery of the first flexible circuit board is completely connected with the second rigid circuit board, and the second rigid circuit
  • the board is also connected to the second flexible circuit board, and the second flexible circuit board is also connected to the third rigid circuit board;
  • the lens carrier is rigidly connected with the first rigid circuit board, and the second rigid circuit board is rigidly connected with the positioning base.
  • an anti-shake control chip and a vibration sensor are provided under the second rigid circuit board, and the anti-shake control chip and the vibration sensor are electrically connected to the second rigid circuit board.
  • each set of said magnets consists of two pairs of said magnets, each pair of said magnets is arranged on any set of opposite sides of the inner wall of said housing, and each pair of said magnets consists of two
  • the magnets with opposite magnetic field directions are arranged side by side up and down, and further comprise the independent coils and the elastic material which are the same as the number of pairs of the magnets and are arranged corresponding to the magnets.
  • the part of the shell connected with the soft material is provided with at least one hole.
  • the soft material is composed of silicon, which may be one or more combinations of silica gel, silicone or silicone oil.
  • the soft material also contains metal powder or micro metal strips.
  • the present invention provides a high-performance and reliable miniature anti-shake head with simple and compact structure and convenient assembly, which is conducive to mass production and even automated production;
  • the soft material can effectively improve the rotational damping coefficient of the spring oscillator system, and can improve the anti-shake performance and reliability of the anti-shake head under high frequency and large vibration;
  • the soft material does not require additional power consumption to achieve the effect of improving damping, which is more power-saving compared to a closed-loop system
  • the soft material can provide an additional and effective heat conduction path, which can reduce the temperature and noise of the image sensor, improve the image quality and the maximum ambient operating temperature;
  • the micro-head has the advantages of low cost, weight, volume and power consumption
  • the micro-head can achieve better anti-shake effect than GS, especially when the vibration is relatively fine and the direction changes frequently;
  • the displacement stiffness coefficient of the multi-axis rotation degree of freedom spring oscillator system composed of elastic materials is extremely high. When external vibration occurs or the direction of the pan/tilt changes, the rotation center of the spring oscillator system is close to no displacement Therefore, the anti-shake effect of the micro-head will not be affected, and the drop resistance of the micro-head can also be improved.
  • Figure 1 is a schematic diagram of the external structure of an embodiment of the present invention.
  • Figure 2 is an expanded schematic diagram of the structure of the first embodiment of the present invention.
  • Figure 3 A side sectional view of an embodiment of the present invention
  • Figure 4 is a second side sectional view of the embodiment of the present invention.
  • Figure 5 is a schematic diagram of a heat conduction path according to an embodiment of the present invention.
  • Figure 6 is a top view of a circuit board according to an embodiment of the present invention.
  • Figure 7 is a side view of a circuit board according to an embodiment of the present invention.
  • Figure 8 is a bottom view of a circuit board according to an embodiment of the present invention.
  • Figure 9 is a working state diagram of an embodiment of the present invention.
  • Figure 10 is an expanded schematic diagram of the second embodiment of the present invention.
  • the embodiment of the present invention provides a high-performance and reliable miniature anti-shake head, including: at least one shell, at least one positioning seat, at least one set of elastic materials, at least one set of soft materials, at least one set of magnets, at least one Group of independent coils and a camera module; the housing is connected to the positioning base, the positioning base is also connected to the camera module via the elastic material, the housing and the positioning base are formed outside the pan In a stationary structure, the camera module is arranged on a movable structure; the set of magnets includes at least one magnet, the magnet is arranged on any inner wall of the housing, and the independent coil is arranged on the camera module The magnet is arranged on the outer wall and corresponding to the magnet; the magnet is arranged in a stationary structure or a movable structure, the independent coil is arranged in a movable structure or a stationary structure, and the magnet and the independent coil are in different structures; Two ends of the elastic material are respectively connected to the camera module and the positioning base to form a spring vibrator system; one end
  • the camera module includes at least one circuit board, at least one lens, at least one lens carrier, and at least one image sensor.
  • the lens is connected to the lens carrier, and the lens carrier is also connected to the
  • the circuit board is connected and the lens carrier has a rotation center with a multi-axis rotation degree of freedom; an image sensor is arranged under the lens, and the image sensor is arranged on the circuit board and is electrically connected to the circuit board; One end of the soft material is rigidly connected to the circuit board, and the other end is connected to the housing.
  • the distance between the soft material and the center of rotation is greater than 10% of the total height of the miniature anti-shake head.
  • the lens carrier and the positioning base are made of non-conductive materials; the housing is made of materials that can shield high-frequency electromagnetic waves.
  • the circuit board includes a first rigid circuit board, a second rigid circuit board, a third rigid circuit board, a first flexible circuit board, and a second flexible circuit board.
  • the first rigid circuit board The image sensor is mounted and the periphery of the first rigid circuit board is completely connected to the first flexible circuit board, the periphery of the first flexible circuit board is completely connected to the second rigid circuit board, and the second The rigid circuit board is also connected to the second flexible circuit board, and the second flexible circuit board is also connected to the third rigid circuit board; the lens carrier is rigidly connected to the first rigid circuit board, so The second rigid circuit board is rigidly connected with the positioning base.
  • an anti-shake control chip and a vibration sensor are provided under the second rigid circuit board, and the anti-shake control chip and the vibration sensor are electrically connected to the second rigid circuit board.
  • each set of said magnets is composed of two pairs of said magnets, each pair of said magnets is arranged on any set of opposite sides of the inner wall of said housing, and each pair of said magnets It is composed of two magnets with opposite magnetic field directions arranged side by side on the top and bottom, and also includes the independent coils and the elastic material which have the same logarithm as the magnet and are arranged corresponding to the magnet.
  • the part of the shell connected with the soft material is provided with at least one hole.
  • the soft material is composed of silicon, which may be one or more combinations of silica gel, silicone or silicone oil.
  • the soft material also contains metal powder or micro metal strips.
  • a high-performance and reliable miniature anti-shake head including a housing, a positioning base, a set of magnets, a lens, and a set of independent coils , A lens carrier, a group of soft materials, a group of electrified elastic materials, and a flexible and hard composite circuit board.
  • the cross-section of the shell is rectangular. In order to facilitate installation, the shell can be divided into two parts, an upper shell and a lower shell.
  • the set of magnets includes at least one magnet, the magnet is arranged on any inner wall of the housing, the independent coil is arranged on the outer wall of the camera module and is arranged corresponding to the magnet; the magnet is arranged In the stationary structure, the independent coil is arranged in a movable structure, and the magnet and the independent coil are in different structures; the two ends of the elastic material are respectively connected with the camera module and the positioning base to form A spring oscillator system;
  • each set of said magnets is composed of two pairs of said magnets
  • Each pair of said magnets is arranged on any set of opposite sides of the inner wall of said housing, and each pair of said magnets is composed of two magnets with opposite magnetic field directions arranged side by side up and down, and also includes a logarithm to the magnet
  • the independent coil and the elastic material are identical and arranged corresponding to the magnet.
  • the magnet group includes magnets 601, 602, 603, and 604; the coil group includes coils 701 and 702, and the coils 701 and 702 are electrically connected.
  • the flexible and rigid composite circuit board is composed of multiple flexible and rigid circuit boards; the first rigid circuit board (inner frame) is connected to the movable structure
  • the upper part of the lens carrier is provided with an image sensor; the upper lens of the image sensor can collect light sources from the environment;
  • the second rigid circuit board (outer frame) is connected to the positioning seat in the fixed structure, and the lower part is provided with anti-shake Control chip and vibration sensor;
  • the first flexible circuit board is used as the circuit connection between the first rigid circuit board and the second rigid circuit board;
  • the electronic components in the miniature platform for example: image sensor, anti-shake control chip and vibration The sensor
  • the electronic components in the miniature platform for example: image sensor, anti-shake control chip and vibration The sensor
  • the set of electrified elastic materials consists of four metal sheets that are not on the same plane, and are mechanically connected to the lens carrier and the positioning seat, and to the second rigidity of the flexible and rigid composite circuit board.
  • the circuit board (outer frame) and the coil are used for circuit connection;
  • the upper and lower casings are mechanically connected to the positioning base, and are composed of metal, which reduces the high frequency electromagnetic wave interference of the external components and external components of the pan/tilt to the image sensor .
  • the rotation in the Rx and Ry directions can be caused to achieve the two-axis anti-shake effect.
  • the coils 701 and 702 in the coil group are energized, and the corresponding electromagnetic force F and the torque in the Ry+ direction are generated. The effect of rotating in the direction of Ry+.
  • the group of soft materials is arranged under the image sensor and connected to the first rigid circuit board (inner frame) and the lower shell.
  • the group of soft materials provides an additional heat conduction path, which can effectively guide the heat emitted by the image sensor to the lower housing, which is beneficial to reduce the temperature of the image sensor, reduce image noise and increase the maximum operating temperature of the anti-shake pan/tilt.
  • the position of the soft material is far away from the center of rotation (more than 10% of the total height of the micro-head).
  • the soft material has the characteristic of high loss factor (over 0.3), which can effectively improve the rotational damping coefficient of the spring oscillator system. Therefore, the soft material can effectively increase the rotational damping coefficient of the spring oscillator system in the Rx and Ry directions, reduce the chance of resonance, and improve the anti-shake effect and the reliability and vibration resistance of the spring oscillator system. Because the performance of soft materials is relatively stable under high frequency and large vibration, the performance in this case may be better than the closed-loop anti-shake system. In addition, the soft material does not require additional energy to increase the damping and vibration reduction effect, so it saves more power than the closed-loop anti-shake system.
  • the cross section of the housing is rectangular, and two sets of magnets (that is, four pairs of magnets) are located on the four sides of the upper housing, so that the limited space inside the pan/tilt can be used more effectively .
  • the gimbal structure in Embodiment 3 is basically the same as the gimbal structure in Embodiment 1, except that the positions of the magnet and the coil are interchanged.
  • the magnet is in a movable structure and the coil is in a stationary structure.
  • the coil and the second rigid circuit board (outer frame) are connected on the circuit.
  • Embodiments 1-3 of the present invention does not require balls or other frictional contact points, as a mechanical support structure between the fixed and movable parts, thus avoiding non-linearity in the anti-shake process. Friction to achieve better anti-shake effect. Especially when the vibration is relatively fine and the direction changes frequently, the advantages of the anti-shake effect of the structure of the present invention will be more obvious.
  • Embodiments 1-3 of the present invention is simple and compact, and easy to assemble, which is conducive to mass production and even automated production, and therefore has advantages in cost, weight, volume, and power consumption.
  • the soft material is composed of silicon, which can be silicone gel, silicone or silicone oil; the soft material includes metal powder or miniature metal strips; the shell There is no hole in the part in contact with the soft material; the elastic material can be composed of at least one piece of elastic material on one or more planes, and the elastic material can be conductive or non-conductive; vibration sensors or anti-shake control chips may not be included in the present invention It is possible to add displacement or deflection sensors in the present invention to implement closed-loop anti-shake control; use other numbers of magnet sets, coil sets and shell designs, which are also within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种高性能及可靠的微型防抖云台,包括:至少一个外壳、至少一个定位座、至少一组弹性材料、至少一组软性材料、至少一组磁石、至少一组独立线圈以及一个相机模組;磁石设置于不动结构或活动结构,独立线圈设置于活动结构或不动结构,磁石和独立线圈处于不同的结构当中;软性材料的一端与相机模组连接,另一端与外壳连接;弹性材料的两端分别与相机模组、定位座连接,形成一个弹簧振子***;本发明的目的是改进现有的MGS技术,提高MGS的抗振能力及散热能力,提高MGS的性能及可靠性。

Description

一种高性能及可靠的微型防抖云台 技术领域
本发明涉及防抖云台技术领域,尤其涉及一种高性能及可靠的微型防抖云台。
背景技术
近年来具有定焦广角(视角超过80度)拍摄功能的小型移动装置十分普及,应用范围亦不断扩展,包括智能眼镜﹑平板计算机﹑以及航拍。在所述装置中,包含至少一颗定焦广角相机模組(Fixed-focus wide-angle camera module)。因此,所述模組的市场很庞大,增长亦稳步上扬。在拍照及拍影片时,所述装置拍出来的照片及影片很可能受到外来振动而出现模糊或晃动,影响照片及影片质素。当振动比较激烈,或在低光情况下,这问题会更加严重。
为了解决上述问题,市场上已经出现很多现有防抖技术。所述现有主流技术通过读取振动传感器(例如:陀螺仪及加速传感器),计算振动波形以及所需的补偿角度,通过电子﹑光学﹑或机械方法补偿因振动做成的影像模糊及晃动,达致改进影像质素的效果。
所述现有技术可以按振动补偿方法分为四类,包括电子影像稳定器(Electronic Image stabilizer,EIS)﹑光学影像稳定器(Optical Image stabilizer,OIS)﹑防抖云台(Gimbal Stabilizer,GS)﹑以及微型防抖云台(Micro Gimbal Stabilizer,MGS)。EIS﹑OIS﹑以及MGS各有优点及缺点。
EIS是通过电子方法,达致防抖效果。在拍摄时,EIS会跟据计算的振动波形,调整每一帧影像的位置,抵消因振动做成的影像晃动。由于EIS不需要额外的致动器,所以EIS的主要优点是成本低,接近无需额外重量及体积。
OIS是通过光学及机械方法,利用致动器移动光学部件(可以是相机中的一 片,一组或所有镜片),达致光学部件和图像传感器之间出现相对运动,改变光路(Optical Path)及成像圈(Image Circle)位置,抵消因振动做成的影像晃动。由于OIS是在拍摄每一帧影像中不断作出光学补偿,因此能抵消每一帧影像曝光时的抖动,可以达致比EIS更佳的影像质素。
GS(参考专利:CN103513492A﹑CN104903790A﹑EP3086451A1﹑以及US20090257741A1)是通过机械方法,驱动整个包含镜片及图像传感器的相机模組,作出和振动方向相反,但振幅接近的运动,抵消因振动做成的晃动。在防抖过程中,由于光学部件和图像传感器之间没有相对运动,所以影像质素及防抖效果在影像边缘不会出现下降,亦不需要因为防抖犠牲镜头的部份光学解像度,以及图像传感器部份解像度。因此,GS的防抖效果及影像质素比EIS及OIS有优势,所述优势在广角相机模組中更突出。
MGS(参考专利:208399865U)的防抖原理和GS相近,都是通过带动整个包含镜片及图像传感器的相机模組,达致防抖的效果。MGS采用特别的弹片及软性电路板设计,达致节省空间。为了进一步简化设计及节省空间,MGS中没有设置位移传感器(例如:霍尔效应传感器),感应可动部件(例如:线圈、镜头、镜头座及影像传感器)相对于不动部件(例如:磁石及外壳)的偏转或位移。MGS在防抖过程中,采用开环控制方法,偏转镜头达致防抖效果。
EIS的主要缺点昰无法补偿每一个帧中的影像晃动,这是由于EIS通过调整每一帧影像的位置,抵消因振动做成的影像晃动。所以,EIS开启后拍摄的影像会较容易出现因影像晃动做成的模糊。
另一个EIS缺点是犠牲了图像传感器的解像度。在EIS开启时,图像传感器或图像处理器需要按计算振动波形剪裁合适的影像,作为最终影像。在剪裁过程中,解像度会下降,所述最终影像会比图像传感器最大的解像度低。因此,EIS会犠牲图像传感器最大的解像度,降低影像质素。
相对GS,OIS的主要缺点是犠牲镜头的部份光学解像度。在OIS过程中,影像圈在图像传感器上的位置会不断改变。为了避免成像圈超出在OIS过程中超出图像传感器,成像圈必须因为OIS而扩大,但这会浪费了镜头应有的解像 度。另一方面,在OIS过程中,当成像圈的位置较偏时,成像圈边缘会更靠近图像传感器。由于大部份镜头的在边缘模糊度及畸变度都比中心严重,因此一般OIS的影像解像度及防抖效果都不及GS,这问题在广角相机模組中更明显。
虽然GS的影像质素及防抖效果比OIS及EIS有明显优势,但是GS需要能驱动整个相机模組的致动器。由于相机模組的重量及大小远比镜头多,因此GS致动器的成本﹑重量﹑体积及功耗通常比OIS致动器高很多,不适合应用在小型移动装置,或者会减少移动装置电池的续航时间。
另一方面,主流的GS技术(参考专利:CN103513492A﹑CN104903790A﹑EP3086451A1﹑以及US20090257741A1)采用了滚珠轴承或其他带有摩擦力的接触点,作为固定及可动部件之间的机械支撑结构。由于所述支撑结构的摩擦力和可动部件的速度之间是非线性的关系,因此所述支撑结构增加了非线性的摩擦力,所述摩擦力可以影响防抖效果。尤其是当振动比较微细及频率较高时,影响会更加明显,防抖效果可能欠佳。另外,大部份的GS技术采用闭环控制,GS的控制电路需要额外的功耗稳定防抖***。当振动幅度及频率过高时,所述控制电路所需的输出电压或电流可能会超出控制电路的极限,造成电路过热或防抖效果欠佳。
因为MGS没有采用带有摩擦力的接触点,所以不会出现所述摩擦力带来的缺点。但是,由于MGS采用弹片及开环控制***,当MGS受到激烈振动或振动频率接近所述***的共振频率时,容易出现共振情况,造成视频模糊及抖动的问题。若果长时间出现这情况,更可能破坏MGS内部部件,导致图像传感器上出现粉尘,或者MGS无法正常工作,影响MGS的可靠性。另外,因为MGS中的影像传感器需要在防抖过程中偏转,所以所述影像传感器无法刚性固定在不动结构上。影像传感器发出的热只能通过热幅射,或通过热传导经过很远的距离才能到达MGS的外壳。由于这些方法的效能都很低,导致MGS中的影像传感器温度较高,造成影像噪声较多。这问题亦导致MGS中的影像传感器无法在较高温的环境下工作,限制了MGS的最高环境工作温度,降低MGS的可靠性。
发明内容
本发明提供了一种高性能及可靠的微型防抖云台,以解决MGS中的影像传感器温度较高,造成影像噪声较多及容易出现共振等技术问题,从而提高MGS的抗振能力及散热能力,提高MGS的性能及可靠性。
为了解决上述技术问题,本发明实施例提供了一种高性能及可靠的微型防抖云台,包括:至少一个外壳、至少一个定位座、至少一组弹性材料、至少一组软性材料、至少一组磁石、至少一组独立线圈以及一个相机模組;
所述外壳与所述定位座连接,所述定位座还与所述相机模组经所述弹性材料连接,所述外壳与所述定位座在云台外部形成不动结构,所述相机模组设置于活动结构;
所述一组磁石包括至少一块磁石,所述独立线圈与所述磁石对应设置;
所述磁石设置于不动结构或活动结构,所述独立线圈设置于活动结构或不动结构,所述磁石和所述独立线圈处于不同的结构当中;
所述弹性材料的两端分别与所述相机模组、所述定位座连接,形成一个弹簧振子***;
所述软性材料的一端与所述相机模组连接,另一端与所述外壳连接。
作为优选方案,所述相机模組包含至少一片电路板、至少一个镜头、至少一个镜头载体、及至少一个图像传感器,所述镜头与所述镜头载体连接,所述镜头载体还与所述电路板连接并且所述镜头载体具有一个多轴旋转自由度的旋转中心;
所述镜头的下方设有图像传感器,所述图像传感器设于所述电路板上并与所述电路板电性连接;所述软性材料的一端与所述电路板硬性连接,另一端与所述外壳连接。
作为优选方案,所述软性材料与所述旋转中心的距离长度大于所述微型防抖云台总高度的10%。
作为优选方案,所述镜头载体和所述定位座的制作材料均为非导电材料; 所述外壳的制作材料为能屏蔽高频电磁波的材料。
作为优选方案,所述电路板包括第一硬性电路板、第二硬性电路板、第三硬性电路板、第一软性电路板、第二软性电路板,所述第一硬性电路板搭载所述图像传感器且第一硬性电路板的周边完全与所述第一软性电路板连接,所述第一软性电路板的周边完全与所述第二硬性电路板连接,所述第二硬性电路板还与所述第二软性电路板连接,所述第二软性电路板还与所述第三硬性电路板连接;
所述镜头载体与所述第一硬性电路板刚性连接,所述第二硬性电路板与所述定位座刚性连接。
作为优选方案,所述第二硬性电路板的下方设有防抖控制芯片及振动传感器,所述防抖控制芯片及所述振动传感器与所述第二硬性电路板电性连接。
作为优选方案,包括两组所述磁石,每组所述磁石由两对所述磁石组成,每对所述磁石设于所述外壳的内壁任意一组对边上,每对所述磁石由两块磁场方向相反的所述磁石上、下并排设置组成,还包括与所述磁石对数相同且与所述磁石对应设置的所述独立线圈及所述弹性材料。
作为优选方案,和所述软性材料连接的外壳部份设有至少一个的洞。
作为优选方案,所述软性材料由硅组成,可以是硅胶、硅酮或硅油中的一种或多种组合。
作为优选方案,所述软性材料中还包含金属粉末或微型金属条。
相比于现有技术,本发明实施例具有如下有益效果:
1.本发明提供一种高性能及可靠的微型防抖云台,结构简单紧凑,组装方便,有利于大量生产,甚至自动化生产;
2.所述软性材料能有效地提高弹簧振子***的旋转阻尼系数,能提高防抖云台在高频及大幅度振动下的防抖表现及可靠性;
3.所述软性材料不需要额外功耗达致提高阻尼的效果,相对于闭环***更省电;
4.所述软性材料能提供额外及有效的热传导路径,能减低图像传感器的温 度及噪声,提升影像质素及最高环境操作温度;
5.所述微型云台具备成本、重量、体积及功耗低等优点;
6.在防抖过程中,所述微型云台的影像边缘质素不会出现下降,亦不需要因为防抖犠牲镜头的部份光学解像度,以及图像传感器部份解像度,所以所述微型云台的防抖效果及影像质素比EIS及OIS有优势,所述优势在广角相机模組中更突出;
7.由于在防抖过程中不会出现非线性的摩擦力,所以所述微型云台能达致比GS更佳的防抖效果,尤其是当振动比较微细及方向常常改变时;
8.由弹性材料组成多轴旋转自由度弹簧振子***的位移劲度系数极高,当出现外来振动或云台的方向改向改变时,所述弹簧振子***中的旋转中心接近不会出现位移,所以不会影响所述微型云台的防抖效果,亦能提高所述微型云台的抗跌性。
附图说明
图1:为本发明实施例的外形结构示意图;
图2:为本发明实施例一的结构展开示意图;
图3:为本发明实施例的侧剖视图一;
图4:为本发明实施例的侧剖视图二;
图5:为本发明实施例的热传导路径示意图;
图6:为本发明实施例的电路板的顶视图;
图7:为本发明实施例的电路板的侧视图;
图8:为本发明实施例的电路板的底视图;
图9:为本发明实施例的工作状态图;
图10:为本发明实施例二的结构展开示意图;
其中,说明书附图的附图标记如下:
1、上壳,2、定位座,3、下壳,4、插座,5、相机镜头,6、磁石,7、独立线圈,8、镜头载体,9、弹簧,10、电路板,11、图像传感器,12、软性材 料,13、热传导路径,14、第一硬性电路板,15、第二硬性电路板,16、第三硬性电路板,17、第一软性电路板,18、第二软性电路板,19、振动传感器,20、防抖控制芯片,21、旋转中心,601-604、磁石,701-702、独立线圈。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种高性能及可靠的微型防抖云台,包括:至少一个外壳、至少一个定位座、至少一组弹性材料、至少一组软性材料、至少一组磁石、至少一组独立线圈以及一个相机模組;所述外壳与所述定位座连接,所述定位座还经所述弹性材料与所述相机模组连接,所述外壳与所述定位座在云台外部形成不动结构,所述相机模组设置于活动结构;所述一组磁石包括至少一块磁石,所述磁石设于所述外壳的任一内壁上,所述独立线圈设于所述相机模组的外壁上并与所述磁石对应设置;所述磁石设置于不动结构或活动结构,所述独立线圈设置于活动结构或不动结构,所述磁石和所述独立线圈处于不同的结构当中;所述弹性材料的两端分别与所述相机模组、所述定位座连接,形成一个弹簧振子***;所述软性材料的一端与所述相机模组连接,另一端与所述外壳连接。
在本实施例中,所述相机模組包含至少一片电路板、至少一个镜头、至少一个镜头载体、及至少一个图像传感器,所述镜头与所述镜头载体连接,所述镜头载体还与所述电路板连接并且所述镜头载体具有一个多轴旋转自由度的旋转中心;所述镜头的下方设有图像传感器,所述图像传感器设于所述电路板上并与所述电路板电性连接;所述软性材料的一端与所述电路板硬性连接,另一端与所述外壳连接。
在本实施例中,所述软性材料与所述旋转中心的距离长度大于所述微型防 抖云台总高度的10%。
在本实施例中,所述镜头载体和所述定位座的制作材料均为非导电材料;所述外壳的制作材料为能屏蔽高频电磁波的材料。
在本实施例中,所述电路板包括第一硬性电路板、第二硬性电路板、第三硬性电路板、第一软性电路板、第二软性电路板,所述第一硬性电路板搭载所述图像传感器且第一硬性电路板的周边完全与所述第一软性电路板连接,所述第一软性电路板的周边完全与所述第二硬性电路板连接,所述第二硬性电路板还与所述第二软性电路板连接,所述第二软性电路板还与所述第三硬性电路板连接;所述镜头载体与所述第一硬性电路板刚性连接,所述第二硬性电路板与所述定位座刚性连接。
在本实施例中,所述第二硬性电路板的下方设有防抖控制芯片及振动传感器,所述防抖控制芯片及所述振动传感器与所述第二硬性电路板电性连接。
在本实施例中,包括两组所述磁石,每组所述磁石由两对所述磁石组成,每对所述磁石设于所述外壳的内壁任意一组对边上,每对所述磁石由两块磁场方向相反的所述磁石上、下并排设置组成,还包括与所述磁石对数相同且与所述磁石对应设置的所述独立线圈及所述弹性材料。
在本实施例中,和所述软性材料连接的外壳部份设有至少一个的洞。
在本实施例中,所述软性材料由硅组成,可以是硅胶、硅酮或硅油中的一种或多种组合。
在本实施例中,所述软性材料中还包含金属粉末或微型金属条。
下面结合具体的实施例,对本发明进行详细说明。
如图一至三及六至八所示,为本发明的实施例一,一种高性能及可靠的微型防抖云台,包含外壳、一个定位座、一组磁石、一个镜头、一组独立线圈、一个镜头载体、一组软性材料、一组通电弹性材料、及一片软硬复合电路板。外壳的截面呈矩形状,为了方便安装,外壳可分为上外壳和下外壳两部分。
所述一组磁石包括至少一块磁石,所述磁石设于所述外壳的任一内壁上,所述独立线圈设于所述相机模组的外壁上并与所述磁石对应设置;所述磁石设 置于不动结构,所述独立线圈设置于活动结构,所述磁石和所述独立线圈处于不同的结构当中;所述弹性材料的两端分别与所述相机模组、所述定位座连接,形成一个弹簧振子***;
如图四、五、九及十所示,在以上实施例一的基础上,对本发明的磁石数量和结构进行改进,包括两组所述磁石,每组所述磁石由两对所述磁石组成,每对所述磁石设于所述外壳的内壁任意一组对边上,每对所述磁石由两块磁场方向相反的所述磁石上、下并排设置组成,还包括与所述磁石对数相同且与所述磁石对应设置的所述独立线圈及所述弹性材料。
如图四所示,磁石组包含磁石601、602、603及604;线圈组包含线圈701及702,线圈701及702在电路上是相连的。
在以上实施例一和实施例二中,如图六至八所示,所述软硬复合电路板由多片软性及硬性电路板组成;第一硬性电路板(内框)连接可动结构中的镜头载体,上方设有图像传感器;所述图像传感器可以上方的镜头,收集从环境来的光源;第二硬性电路板(外框)连接不动结构中的定位座,下方设有防抖控制芯片及振动传感器;第一软性电路板作为第一硬性电路板及第二硬性电路板之间的电路连接;所述微型云台中的电子部件(例如:图像传感器、防抖控制芯片及振动传感器)可以通过第二软性电路板、第三硬性电路板、以及插座和所述微型云台以外的组件在电路上连接及通讯。
如图二至三所示,所述一组通电弹性材料由四片不在一个平面上的金属片组成,并且和镜头载体及定位座作机械连接,以及和软硬复合电路板中的第二硬性电路板(外框)及线圈作电路连接;所述的上外壳和下外壳和定位座作机械连接,并且由金属组成,减少云台对外在部件及外在部件对图像传感器的高频电磁波干扰。
通过调整线圈组的电流方向及大小,便能造成Rx及Ry方向的旋转,达致两轴防抖效果。例如,如图九所示,当相机模組在光学防抖过程中需要往Ry+方向旋转时,线圈组中的线圈701和702通电,并产生对应的电磁力F,以及Ry+方向的力矩,达致往Ry+方向旋转的效果。
如图二至五所示,所述一组软性材料设置于图像传感器下方,并连接第一硬性电路板(内框)的及下外壳。所述一组软性材料提供额外的热传导路径,能有效地把图像传感器发出的热力引导至下外壳,有利于减低图像传感器的温度,降低影像噪声及提高防抖云台的最高操作温度。
如图九所示,软性材料的位置是远离旋转中心(超过微型云台总高度的10%)。所述软性物料具备高损失系数(Loss factor)的特性(超过0.3),能有效提高所述弹簧振子***的旋转阻尼系数。所以,软性材料能有效地提高所述弹簧振子***的Rx及Ry方向的旋转阻尼系数,减低出现共振的机会,提高防抖效果及弹簧振子***可靠性及抗振能性。由于在高频率及大幅度振动下软性材料的表现比较稳定,因此在这情况下的表现可能比闭环防抖***更好。另外,软性材料不需要额外能量达致增加阻尼及减振效果,所以比闭环防抖***更省电。
另外,如图五所示,下外壳和软性材料接触的部份有很多小洞,这些小洞能有效提升软性材料和下外壳之间的连接稳固性及可靠性。
具体地,于本实施例二中,外壳的横截面呈矩形状,两组磁石(即是四对磁石)分别位于上外壳内部的四边位置,从而能更有效地利用云台内部中的有限空间。
除了本发明实施例1和2中结构外,还有其他近似的结构都在本发明的保护范围内。例如实施例3中的云台结构,它的结构基本上和实施例1中的云台结构是一致,除了磁石和线圈的位置互换。换句话说,磁石在可动结构中,线圈在不动结构中。线圈和第二硬性电路板(外框)在电路上连接。
本发明中实施例1-3中光学部件和图像传感器之间没有相对运动,所以影像质素及防抖效果不会在影像边缘出现下降,亦不需要因为防抖犠牲镜头的部份光学解像度,以及图像传感器部份解像度。
另外,本发明中实施例1-3中的结构不需要滚珠或其他带有摩擦力的接触点,作为固定及可动部件之间的机械支撑结构,因此避免在防抖过程中出现非线性的摩擦力,达致更佳的防抖效果。尤其是当振动比较微细及方向常常改变时, 本发明中结构的防抖效果优势会更明显。
本发明中实施例1-3中的结构简单紧凑,组装方便,有利于大量生产,甚至自动化生产,因此在成本﹑重量﹑体积及功耗上都有优势。
在其它实施例中,所述软性物料由硅组成,可以是硅胶(Silicone Gel)、硅酮(Silicone)或硅油(Silicone Oil);所述软性物料中包含金属粉末或微型金属条;外壳和软性材料接触的部份没有洞;所述弹性材料可以由一个或多个平面上的至少一片弹性材料组成,弹性材料可以是导电或不导电;振动传感器或防抖控制芯片可以不在本发明中的云台结构中;可以在本发明中加入位移或偏转传感器,实施闭环防抖控制;采用其他数目的磁石组、线圈组及外壳设计,亦在本发明的保护范围之内。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高性能及可靠的微型防抖云台,其特征在于,包括:至少一个外壳、至少一个定位座、至少一组弹性材料、至少一组软性材料、至少一组磁石、至少一组独立线圈以及一个相机模組;
    所述外壳与所述定位座连接,所述定位座还与所述相机模组经所述弹性材料连接,所述外壳与所述定位座在云台外部形成不动结构,所述相机模组设置于活动结构;
    所述一组磁石包括至少一块磁石,所述独立线圈与所述磁石对应设置;
    所述磁石设置于不动结构或活动结构,所述独立线圈设置于活动结构或不动结构,所述磁石和所述独立线圈处于不同的结构当中;
    所述弹性材料的两端分别与所述相机模组、所述定位座连接,形成一个弹簧振子***;
    所述软性材料的一端与所述相机模组连接,另一端与所述外壳连接。
  2. 如权利要求1所述的高性能及可靠的微型防抖云台,其特征在于,所述相机模組包含至少一片电路板、至少一个镜头、至少一个镜头载体、及至少一个图像传感器,所述镜头与所述镜头载体连接,所述镜头载体还与所述电路板连接并且所述镜头载体具有一个多轴旋转自由度的旋转中心;
    所述镜头的下方设有图像传感器,所述图像传感器设于所述电路板上并与所述电路板电性连接;所述软性材料的一端与所述电路板硬性连接,另一端与所述外壳连接。
  3. 如权利要求2所述的高性能及可靠的微型防抖云台,其特征在于,所述软性材料与所述旋转中心的距离长度大于所述微型防抖云台总高度的10%。
  4. 如权利要求2所述的高性能及可靠的微型防抖云台,其特征在于,所述镜头载体和所述定位座的制作材料均为非导电材料;所述外壳的制作材料为能屏 蔽高频电磁波的材料。
  5. 如权利要求2所述的高性能及可靠的微型防抖云台,其特征在于,所述电路板包括第一硬性电路板、第二硬性电路板、第三硬性电路板、第一软性电路板、第二软性电路板,所述第一硬性电路板搭载所述图像传感器且第一硬性电路板的周边完全与所述第一软性电路板连接,所述第一软性电路板的周边完全与所述第二硬性电路板连接,所述第二硬性电路板还与所述第二软性电路板连接,所述第二软性电路板还与所述第三硬性电路板连接;
    所述镜头载体与所述第一硬性电路板刚性连接,所述第二硬性电路板与所述定位座刚性连接。
  6. 如权利要求5所述的高性能及可靠的微型防抖云台,其特征在于,所述第二硬性电路板的下方设有防抖控制芯片及振动传感器,所述防抖控制芯片及所述振动传感器与所述第二硬性电路板电性连接。
  7. 如权利要求1所述的高性能及可靠的微型防抖云台,其特征在于,包括两组所述磁石,每组所述磁石由两对所述磁石组成,每对所述磁石设于所述外壳的内壁任意一组对边上,每对所述磁石由两块磁场方向相反的所述磁石上、下并排设置组成,还包括与所述磁石对数相同且与所述磁石对应设置的所述独立线圈及所述弹性材料。
  8. 如权利要求1所述的高性能及可靠的微型防抖云台,其特征在于,和所述软性材料连接的外壳部份设有至少一个的洞。
  9. 如权利要求1所述的高性能及可靠的微型防抖云台,其特征在于,所述软性材料由硅组成,可以是硅胶、硅酮或硅油中的一种或多种组合。
  10. 如权利要求9所述的高性能及可靠的微型防抖云台,其特征在于,所述软性材料中还包含金属粉末或微型金属条。
PCT/CN2019/081658 2019-03-22 2019-04-08 一种高性能及可靠的微型防抖云台 WO2020191812A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910222027.8 2019-03-22
CN201910222027.8A CN110007543A (zh) 2019-03-22 2019-03-22 一种高性能及可靠的微型防抖云台

Publications (1)

Publication Number Publication Date
WO2020191812A1 true WO2020191812A1 (zh) 2020-10-01

Family

ID=67167787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081658 WO2020191812A1 (zh) 2019-03-22 2019-04-08 一种高性能及可靠的微型防抖云台

Country Status (2)

Country Link
CN (1) CN110007543A (zh)
WO (1) WO2020191812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114793259A (zh) * 2021-01-25 2022-07-26 昆山丘钛微电子科技股份有限公司 一种板载式电磁驱动器及摄像头模组

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11947180B2 (en) 2019-12-26 2024-04-02 Tdk Taiwan Corp. Optical system
CN113446485B (zh) * 2020-03-24 2023-03-07 高瞻创新科技有限公司 一种微型防抖云台
CN111901530B (zh) * 2020-08-31 2022-01-14 维沃移动通信有限公司 电子设备及其摄像头模组
CN112965317A (zh) * 2021-02-26 2021-06-15 北京可利尔福科技有限公司 光学防抖马达及摄像模组
CN113411475B (zh) * 2021-06-08 2022-02-15 维沃移动通信有限公司 电子设备
CN113542568B (zh) * 2021-07-14 2023-08-22 高瞻创新科技有限公司 防抖相机模组及其摄影设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407487A (zh) * 2014-12-19 2015-03-11 深圳市世尊科技有限公司 一种通过纯平移运动实现光学防抖的音圈马达
CN104460180A (zh) * 2014-12-19 2015-03-25 深圳市世尊科技有限公司 一种开环平移实现光学防抖的音圈马达
CN104811006A (zh) * 2015-05-08 2015-07-29 惠州友华微电子科技有限公司 一种新型摄像头驱动电机
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN108881697A (zh) * 2018-08-15 2018-11-23 信利光电股份有限公司 一种二轴防抖云台及摄像装置
WO2019026845A1 (ja) * 2017-07-31 2019-02-07 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール、およびカメラ搭載装置
WO2019049555A1 (ja) * 2017-09-07 2019-03-14 アルプスアルパイン株式会社 レンズ駆動装置、カメラモジュール及びレンズ駆動装置の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589239A (en) * 1988-11-02 1996-12-31 Canon Kabushiki Kaisha Variable-angle optical device with optically transparent substance
US8649102B2 (en) * 2008-12-23 2014-02-11 Parrot S.A. Optical electrowetting device
US8749645B2 (en) * 2011-08-23 2014-06-10 Tdk Taiwan Corporation Method and structure for suppressing resonance in an anti-shake lens focusing module
KR101940478B1 (ko) * 2012-05-07 2019-01-21 엘지이노텍 주식회사 카메라 모듈
US9810917B2 (en) * 2014-01-24 2017-11-07 Apple Inc. Passive damping for optical image stabilization
JP6583601B2 (ja) * 2014-08-06 2019-10-02 ミツミ電機株式会社 レンズホルダ駆動装置およびカメラ付き携帯端末
KR20160045382A (ko) * 2014-10-17 2016-04-27 엘지이노텍 주식회사 렌즈 구동장치
KR20160045385A (ko) * 2014-10-17 2016-04-27 엘지이노텍 주식회사 렌즈 구동 장치 및 이를 포함하는 카메라 모듈
CN205377622U (zh) * 2015-09-25 2016-07-06 爱佩仪光电技术(深圳)有限公司 一种能改变移轴中心的光学防抖音圈马达
CN106791289B (zh) * 2015-11-20 2019-10-18 宁波舜宇光电信息有限公司 摄像模组及其光学防抖元件和防抖方法
CN106094242A (zh) * 2016-05-10 2016-11-09 许江珂 一种用于消除画面激光散斑的光场扫描器
CN107450148A (zh) * 2017-08-03 2017-12-08 江西合力泰科技有限公司 光学防抖摄像头模组及其控制方法
CN209417492U (zh) * 2019-03-22 2019-09-20 高瞻创新科技有限公司 一种高性能及可靠的微型防抖云台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407487A (zh) * 2014-12-19 2015-03-11 深圳市世尊科技有限公司 一种通过纯平移运动实现光学防抖的音圈马达
CN104460180A (zh) * 2014-12-19 2015-03-25 深圳市世尊科技有限公司 一种开环平移实现光学防抖的音圈马达
CN104811006A (zh) * 2015-05-08 2015-07-29 惠州友华微电子科技有限公司 一种新型摄像头驱动电机
WO2019026845A1 (ja) * 2017-07-31 2019-02-07 ミツミ電機株式会社 レンズ駆動装置、カメラモジュール、およびカメラ搭載装置
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
WO2019049555A1 (ja) * 2017-09-07 2019-03-14 アルプスアルパイン株式会社 レンズ駆動装置、カメラモジュール及びレンズ駆動装置の製造方法
CN108881697A (zh) * 2018-08-15 2018-11-23 信利光电股份有限公司 一种二轴防抖云台及摄像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114793259A (zh) * 2021-01-25 2022-07-26 昆山丘钛微电子科技股份有限公司 一种板载式电磁驱动器及摄像头模组

Also Published As

Publication number Publication date
CN110007543A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2020191812A1 (zh) 一种高性能及可靠的微型防抖云台
CN107340667B (zh) 一种整合相机模组的防抖微型云台
CN110784650B (zh) 防抖摄像模组及电子设备
CN112415708B (zh) 一种防抖对焦马达及其应用模组
CN209417492U (zh) 一种高性能及可靠的微型防抖云台
CN112034662B (zh) 一种微型防抖云台以及相机模组
CN208399865U (zh) 一种能带动相机模组的防抖微型云台
WO2019218390A1 (zh) 一种能带动相机模组的防抖微型云台
TW201908845A (zh) 帶防抖功能的透鏡驅動裝置
CN210142249U (zh) 一种微型防抖云台以及相机模组
US11392010B2 (en) Spring system and lens anti-shaking device using the same
CN113542579B (zh) 图像传感器防抖组件、摄像装置及电子设备
WO2022142951A1 (zh) 一种弹簧防抖***及采用其的镜头防抖对焦装置
CN214586188U (zh) 一种防抖对焦马达及其应用模组
KR20160106377A (ko) 카메라 모듈
US11828956B2 (en) Camera device and portable electronic device
CN113114902A (zh) 拍摄装置及电子设备
CN212029014U (zh) 一种微型防抖云台
CN208027058U (zh) 一种整合相机模组的防抖微型云台
CN213876151U (zh) 一种防抖对焦马达及其应用模组
WO2023226276A1 (zh) 一种微型防抖云台相机模组
CN217954821U (zh) 一种防抖对焦马达及其应用模组
CN113446485B (zh) 一种微型防抖云台
CN217954818U (zh) 一种微型防抖云台相机模组
CN207081926U (zh) 一种带防抖功能的透镜驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19921753

Country of ref document: EP

Kind code of ref document: A1