WO2020191683A1 - 一种测量间隔配置方法及装置、终端、网络设备 - Google Patents

一种测量间隔配置方法及装置、终端、网络设备 Download PDF

Info

Publication number
WO2020191683A1
WO2020191683A1 PCT/CN2019/079944 CN2019079944W WO2020191683A1 WO 2020191683 A1 WO2020191683 A1 WO 2020191683A1 CN 2019079944 W CN2019079944 W CN 2019079944W WO 2020191683 A1 WO2020191683 A1 WO 2020191683A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal
access technology
radio access
frequency range
Prior art date
Application number
PCT/CN2019/079944
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980077940.1A priority Critical patent/CN113170339A/zh
Priority to PCT/CN2019/079944 priority patent/WO2020191683A1/zh
Priority to EP19921976.7A priority patent/EP3934312A4/en
Priority to CN202111123212.5A priority patent/CN113840322B/zh
Publication of WO2020191683A1 publication Critical patent/WO2020191683A1/zh
Priority to US17/486,119 priority patent/US20220046450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a measurement interval configuration method and device, terminal, and network equipment.
  • the purpose of the measurement gap (MG) is to create a small gap (gap) in which the terminal measures the target cell.
  • UE User Equipment
  • FR Frequency Range
  • Called per-FR measurement gap where the measurement interval for FR includes the measurement interval of FR1 and the measurement interval of FR2. Whether it is for per-UE measurement gap configuration or per-FR measurement gap configuration, the configured gap pattern (gap pattern) needs to be improved.
  • the embodiments of the present application provide a measurement interval configuration method and device, terminal, and network equipment.
  • the terminal receives the first configuration information sent by the network device, where the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal; wherein, the capability information of the terminal is used to indicate whether the terminal supports different frequencies The ability to perform independent interval measurements within the range.
  • the network device sends first configuration information to the terminal, where the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal; wherein, the capability information of the terminal is used to indicate whether the terminal supports different frequency ranges The ability to make independent interval measurements within.
  • the measurement interval configuration device provided in the embodiment of the present application is applied to a terminal, and the device includes:
  • the receiving unit is configured to receive first configuration information sent by a network device, where the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal; wherein the capability information of the terminal is used to indicate whether the terminal is The ability to support independent interval measurements in different frequency ranges.
  • the measurement interval configuration device provided in the embodiment of the present application is applied to network equipment, and the device includes:
  • the sending unit is configured to send first configuration information to the terminal, where the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal; wherein the capability information of the terminal is used to indicate whether the terminal supports The ability to make independent interval measurements in different frequency ranges.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the measurement interval configuration method described above.
  • the network device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the measurement interval configuration method described above.
  • the chip provided in the embodiment of the present application is used to implement the foregoing measurement interval configuration method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the measurement interval configuration method described above.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program causes a computer to execute the above-mentioned measurement interval configuration method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions that cause a computer to execute the above-mentioned measurement interval configuration method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the measurement interval configuration method described above.
  • the network side refers to the capability information of the terminal, that is, whether it supports the capability of independent interval measurement in different frequency ranges, so as to reasonably configure the measurement interval for the terminal and optimize the measurement Interval configuration.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a flowchart of adding an SN node provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a measurement interval configuration method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram 1 of the structural composition of a measurement interval configuration device provided by an embodiment of the application;
  • FIG. 5 is a second schematic diagram of the structural composition of the measurement interval configuration device provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip of an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the UE performs downlink radio link monitoring on the primary cell (Primary Cell, PCell) or dual connectivity (Dual Connectivity, DC) secondary primary cell (PSCell) in order to report the out-of-synchronization/synchronization status indication to the higher layer.
  • PCell Primary Cell
  • DC Dual Connectivity, DC
  • BWP Bandwidth Part
  • the UE only requires radio link quality monitoring on the activated DL BWP on a special cell (Special Cell, SpCell).
  • the UE For each DL BWP in a SpCell, the UE will be configured with a set of resource indicators used to determine Radio Link Monitoring-Reference Signal (RLM-RS), used to determine RLM-RS and according to RLM-RS Perform RLM.
  • the RLM-RS may be a channel status indicator reference signal (Channel Status Indicator Reference Signal, CSI-RS) or a synchronization signal block (SS/PBCH block, SSB).
  • CSI-RS Channel Status Indicator Reference Signal
  • SS/PBCH block, SSB synchronization signal block
  • the UE may be configured with at most NLR-RLM RLM-RS for link recovery process and radio link monitoring. From the NLR-RLM RLM-RS, a maximum of NRLM RLM-RS can be used for radio link monitoring, and a maximum of 2 RLM-RS can be used for a link recovery process.
  • the value of NRLM is related to the maximum number of SSBs included in a half frame, Lmax.
  • NR UEs can support EN-DC, NE-DC, or NR-DC, etc., and can configure the measurement interval for the UE (per UE gap) or the measurement interval for FR (per FR gap). Further,
  • the MN determines the configuration information of the gap (that is, gapUE).
  • gapFR1 is used for FR1 frequency measurement
  • gapFR2 is used for FR2 frequency measurement
  • the MN determines the configuration information of gapFR1
  • the SN determines the configuration information of gapFR2.
  • E-UTRA only UE adopts the LTE measurement gap configuration, that is, per UE gap.
  • the MN indicates the per UE gap configuration information and the purpose of the gap to the SN.
  • SN indicates the list of frequencies to be measured by the MN regarding the SN on FR1 or/and FR2.
  • SN indicates a list of frequencies to be measured by SN on FR1
  • MN indicates a list of frequencies to be measured by MN on FR2.
  • FIG. 2 is a flowchart for adding an SN node.
  • the configuration of the measurement interval can be implemented through this process. As shown in Figure 2, the process includes the following steps:
  • Step 201 MN sends SN add request message to SN.
  • the MN indicates to the SN the UE capability (UE capability) information reported by the UE previously obtained by the MN.
  • the UE capability information includes independentGapConfig, that is, the ability of the UE to support per FR gap (it can also be understood as whether the UE supports independent radio frequency capabilities to meet the independent measurement of gapFR1 and gapFR2).
  • the MN indicates to the SN about per UE gap or per FR gap configuration Information and gap items;
  • the MN may have obtained the measurement report reported by the UE, and the MN decides whether to add an SN according to the measurement report.
  • the MN decides to add an SN, it sends an SN addition request message to the SN.
  • Step 202 The SN sends an SN addition request confirmation message to the MN.
  • the SN addition request confirmation message carries a radio resource control (Radio Resource Control, RRC) configuration message on the SN side. If the SN is configured with per UE gap, the SN will instruct the MN about the frequency list to be measured on FR1 or FR2; if the SN is configured with per FR gap, the SN will not have additional gap configuration auxiliary information such as frequency lists. To MN.
  • RRC Radio Resource Control
  • Step 203 The MN sends an RRC reconfiguration message to the UE.
  • the RRC reconfiguration message carries the RRC configuration message on the SN side.
  • the gap is updated based on the RRC configuration information.
  • Step 204 The UE sends an RRC reconfiguration complete message to the MN.
  • the per-UE gap and per FR gap in Table 1 and Table 2 are configured through MeasgapConfig, and the information unit of MeasgapConfig is shown in Table 3 below, where, in MeasgapConfig, gapFR1 is used to indicate the measurement interval configuration for FR1.
  • gapFR1 cannot be configured with NR RRC, only LTE RRC can be configured with gapFR1).
  • gapFR2 is used to indicate the measurement interval configuration for FR2.
  • gapUE is used to indicate the measurement interval configuration for all frequencies (including FR1 and FR2).
  • gapUE cannot use NR RRC configuration, only LTE RRC can configure gapUE).
  • gapUE and gapFR1/gapFR2 cannot be configured at the same time.
  • gapUE and gapFR1 can only be configured by E-UTRA.
  • a UE capability is defined, that is, whether the UE supports per FR gap capability (that is, whether the UE supports the capability of independent gap measurement in different frequency ranges).
  • This UE capability is configured through independentGapConfig, and whether the UE supports different frequency ranges independently
  • the gap measurement capability refers to whether the UE supports two independent measurement interval (gapFR1, gapFR2) configurations.
  • no gap can be supported.
  • the serving cell is FR2
  • the measurement purpose is FR1 or E-UTRA
  • the network provides per UE gap configuration
  • the UE does not support no gap configuration, as shown in Table 1 and Table 2.
  • the UE can configure no gap under certain conditions, but the scenarios where the UE configures no gap are limited.
  • the embodiment of the application configures the measurement interval of the UE based on whether the UE supports independent gap measurement in different frequency ranges, and can support no gap assisted measurement.
  • FIG. 3 is a schematic flowchart of a measurement interval configuration method provided by an embodiment of the application. As shown in FIG. 3, the measurement interval configuration method includes the following steps:
  • Step 301 The network device sends first configuration information to the terminal, and the terminal receives the first configuration information sent by the network device.
  • the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal;
  • the capability information is used to indicate whether the terminal supports the capability of independent interval measurement in different frequency ranges.
  • the network device may be a base station, such as a 4G base station (ie eNB), or an NR base station (ie gNB).
  • a base station such as a 4G base station (ie eNB), or an NR base station (ie gNB).
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and a wearable device.
  • the network device sends the first configuration information to the terminal, and the terminal receives the first configuration information sent by the network device, which can be implemented in the following ways:
  • the network device sends an RRC reconfiguration message to a terminal, and the terminal receives an RRC reconfiguration message sent by a serving cell, where the RRC reconfiguration message is used to indicate the first configuration information.
  • the RRC reconfiguration message is an RRC reconfiguration message in the process of adding a secondary node.
  • Fig. 2 is a flowchart for adding an SN node.
  • the RRC reconfiguration message sent by the MN to the UE in step 203 may carry the first configuration information. It should be noted that the UE in FIG. 2 corresponds to the terminal in the embodiment of the present application.
  • the RRC reconfiguration message is an RRC reconfiguration message in a cell handover process.
  • the cell handover process includes the following processes: 1) the terminal sends a measurement report to the serving cell; 2) the serving cell determines the target cell that needs to be handed over based on the measurement report, and sends a handover request message to the target cell; 3) the target cell sends to the serving cell A handover request confirmation message, which carries a configuration message of the target cell; 4) the serving cell sends a handover command, that is, an RRC reconfiguration message, to the terminal.
  • the embodiment of the present application may carry the first configuration information in the RRC reconfiguration message.
  • the capability information of the terminal is configured through independentGapConfig.
  • independentGapConfig is 1, which represents the capability of the terminal to support independent interval measurement in different frequency ranges, that is, the terminal supports independent measurement interval patterns (capable of independent measurement). gap patterns), or the terminal supports FR1gap and FR2gap patterns.
  • the value of independentGapConfig is 0, which means that the terminal does not support the ability to perform independent interval measurements in different frequency ranges.
  • the terminal supports the ability to perform independent interval measurement in different frequency ranges, for example: the terminal supports the ability to perform independent interval measurement in the FR1 range and/or FR2 range.
  • the independentGapConfig is reported by the terminal to the network device, and the network device generates the first configuration information based on the independentGapConfig of the terminal.
  • the first configuration information includes first indication information, and the first indication information is used to indicate that there is no measurement interval.
  • independentGapConfig 1 (that is, the terminal supports the ability to perform independent interval measurement in different frequency ranges), and the first configuration information includes the applicable measurement pattern identifier (Applicable Gap Pattern Id), and the Applicable Gap Pattern Id Used to indicate no gap.
  • the network device can configure no gap for the terminal, and the terminal can perform no gap assisted measurement.
  • the first configuration information is used to indicate the serving cell (Serving Cell) corresponding to the first indication information and/or the object to be measured corresponding to the first indication information.
  • the first indication information corresponds to The object to be measured may be represented by the first measurement purpose (Measurement Purpose).
  • the network equipment configures no gap conditions for the terminal.
  • the terminal In addition to the ability of the terminal to support independent interval measurement in different frequency ranges, it also requires a specific serving cell and a specific first measurement purpose. The following combines the serving cell and the first measurement. The purpose of the measurement is to describe several scenarios that support no gap configuration. It should be noted that the prerequisite for the following scenarios is the terminal's ability to support independent interval measurement in different frequency ranges:
  • the terminal supports the first dual connectivity mode.
  • the wireless access technologies of the primary node and the secondary node are the first wireless access technology and the second wireless access technology respectively;
  • the serving cell of is a cell of the first radio access technology, and the object to be measured is a cell of the first frequency range.
  • the first dual connection mode refers to EN-DC
  • the first wireless access technology refers to Evolved Universal Terrestrial Radio Access (E-UTRA)
  • the second wireless access technology refers to new wireless access.
  • Enter NR Radio Access, NR
  • the primary node is an LTE base station
  • the secondary node is an NR base station.
  • the serving cell of the terminal is an E-UTRA cell
  • the first measurement purpose is a cell in the FR2 range.
  • the measurement in this scenario belongs to inter-RAT (inter-RAT) measurement.
  • FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
  • the frequency range NR FR1 usually refers to the 5G Sub-6GHz (below 6GHz) frequency band, and may be extended to sub-7GHz (below 7GHz) in the future
  • the frequency range NR FR2 usually refers to the 5G millimeter wave frequency band.
  • the terminal supports the second dual connection mode, and the radio access technologies of the primary node and the secondary node in the second dual connection mode are the second radio access technology and the first radio access technology respectively; the terminal The serving cell of is a cell of the first radio access technology and/or a cell of the second frequency range, and the object to be measured is a cell of the first frequency range.
  • the second dual connectivity mode refers to NE-DC
  • the second wireless access technology refers to NR
  • the first wireless access technology refers to E-UTRA.
  • the primary node is an NR base station
  • the secondary node is an LTE base station.
  • the serving cell of the terminal is an E-UTRA cell and/or a cell within the range of FR1
  • the first measurement purpose is a cell within the range of FR2.
  • the measurement in this scenario belongs to inter-RAT measurement.
  • FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
  • the terminal supports the second dual connection mode, and the radio access technologies of the primary node and the secondary node in the second dual connection mode are the second radio access technology and the first radio access technology respectively; the terminal The serving cell of is a cell in the first frequency range, and the object to be measured is a cell in the first radio access technology and/or a cell in the second frequency range.
  • the second dual connectivity mode refers to NE-DC
  • the second wireless access technology refers to NR
  • the first wireless access technology refers to E-UTRA.
  • the primary node is an NR base station
  • the secondary node is an LTE base station.
  • the serving cell of the terminal is a cell within the range of FR2, and the first measurement purpose is an E-UTRA cell and/or a cell within the range of FR1.
  • the measurement for E-UTRA belongs to inter-RAT measurement; if it is to establish NR-DC or NR CA, the measurement for FR1 belongs to inter-frequency measurement.
  • FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
  • Scenario 4 The terminal supports an independent networking mode, the serving cell of the terminal is a cell of the first radio access technology, and the object to be measured is a cell in the first frequency range.
  • the independent networking mode can be NR SA, but it is not limited to this, and the independent networking mode can also be LTE only.
  • the serving cell of the terminal is an E-UTRA cell
  • the first measurement purpose is a cell within the FR2 range.
  • FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
  • Scenario 5 The terminal supports independent networking mode, the serving cell of the terminal is a cell in the first frequency range, and the object to be measured is a cell in the first radio access technology and/or a cell in the second frequency range .
  • the independent networking mode can be but not limited to NR SA, and is not limited to this, the independent networking mode can also be LTE only.
  • the serving cell of the terminal is a cell within the range of FR2, and the first measurement purpose is an E-UTRA cell and/or a cell within the range of FR1.
  • FR1 and FR2 in the embodiments of this application refer to NR FR1 and NR FR2.
  • the terminals in the above scenarios 1 to 5 support no gap configuration.
  • EN-DC/NE-DC UE serving cells are within the range of FR1 and E-UTRA cells .
  • the measurement purpose is a cell within the FR2 range (it needs to be noted that this scenario is compatible with the existing technology).
  • the embodiments of this application optimize the measurement configuration of the terminal.
  • the per-UE gap configuration can achieve no gap configuration in certain measurement scenarios, which improves the system The efficiency of measurement saves measurement overhead.
  • MG requirement Modify the measurement interval requirement (MG requirement) of the NR UE, and distinguish the measurement interval pattern (MG pattern) based on the UE capability.
  • FR1 and FR2 in the following embodiments may refer to NR FR1 and NR FR2.
  • the MG requirement is modified as follows:
  • the serving cell is an E-UTRA cell
  • the UE supports independentgap (that is, the value of independentGapconfig is 1, which represents supported independentgap).
  • Measurement Purpose is FR2, regardless of whether the measurement gap of the UE sent by the network side is configured as Per-UE (gapUE configured by MN LTE) or Per-FR2 (gapFR2 configured by SN NR), no gap( That is the above scenario 1) of this application.
  • the UE supports independentgap (that is, the value of independentGapconfig is 1, which represents supported independentgap), the serving cell is an E-UTRA cell, and the Measurement Purpose is FR2, regardless of whether the measurement gap configuration of the UE issued by the network side is Per-UE (MN NR).
  • the configured gapUE) or Per-FR2 (SN LTE configured gapFR2) can be configured with no gap (that is, the above scenario 2 of this application).
  • the UE supports independentgap (that is, the value of independentGapconfig is 1, which represents supported independentgap), the serving cell is FR2 cell, and the Measurement Purpose is E-UTRA/FR1, regardless of whether the measurement gap configuration of the UE delivered by the network side is Per-UE( For the gapUE configured by MN NR or Per-FR2 (gapFR2 configured for SN LTE), no gap can be configured (that is, the above scenario 3 of this application).
  • Case 3 For NR SA UE, the network side can configure Measurement gap pattern config according to independent gapConfig.
  • the UE supports independentgap (that is, the value of independentGapconfig is 1, which represents supported independentgap), the serving cell is E-UTRA, and the Measurement Purpose is FR2, regardless of whether the measurement gap configuration of the UE delivered by the network side is Per-UE or Per- For FR, no gap can be configured (that is, the fourth scenario in this application).
  • the UE supports independentgap (that is, the value of independentGapconfig is 1, which represents supported independentgap), the serving cell is FR2, and the Measurement Purpose is E-UTRA/FR1 or E-UTRA+FR1, regardless of the UE's measurement gap configuration issued by the network at this time For Per-UE or Per-FR, no gap can be configured (that is, scenario 5 above in this application).
  • the above optimization scheme will be applicable to all mobility management processes involving inter-RAT (between E-UTRA and NR) and NR inter-Frequency (between FR1 and FR2) measurements.
  • the following takes the SN node adding process as an example to illustrate how to configure the measurement interval on the network side.
  • the MN indicates to the SN the UE capability (UE capability) information reported by the UE previously obtained by the MN in the SN addition request message.
  • the UE capability information includes independentGapConfig, that is, the ability of the UE to support per FR gap (it can also be understood as whether the UE supports independent radio frequency capabilities to meet the independent measurement of gapFR1 and gapFR2), and the MN indicates the SN about per UE gap or per FR gap configuration Information and gap items; before step 201, the MN may have obtained the measurement report reported by the UE, and the MN decides whether to add an SN according to the measurement report. When the MN decides to add an SN, it sends an SN addition request message to the SN.
  • independentGapConfig that is, the ability of the UE to support per FR gap (it can also be understood as whether the UE supports independent radio frequency capabilities to meet the independent measurement of gapFR1 and gapFR2)
  • the MN indicates the SN about per UE gap or per FR
  • step 202 if the SN is configured with per UE gap, the SN will instruct the MN about the frequency list to be measured on FR1 or FR2; if the SN is configured with per FR gap, the SN will not have additional gap configuration assistance information For example, the frequency list is indicated to the MN.
  • the MN will issue a new measurement interval pattern (MG pattern) to the UE, and the UE updates the MG pattern.
  • MG pattern new measurement interval pattern
  • the UE If the UE supports independent gap, the UE has not been configured with EN-DC or the UE's serving cell is still connected to the E-UTRAN cell, then the FR2 measurement does not need to configure the gap, that is, no gap. 2) The UE is configured with EN-DC and is in the DC state, and the SN reports the FR2 node in the MN's frequency list. Optionally, the measurement interval may not be configured, that is, no gap. 3) If the UE is in the NR SA mode, the measurement of inter-RAT NR Measurement does not need to configure gap, that is, no gap.
  • UE capability For the measurement of Per-UE or Per-FR in MeasgapConfig, further combine the UE capability (UE capability) condition to distinguish, to define the Applicable gap pattern ID under different serving cells and measurement purposes.
  • the above scheme is applicable to all mobility management procedures involving inter-RAT (between E-UTRA and NR) and NR inter-Frequency (between FR1 and FR2) measurements.
  • the UE capability can be 1-bit information.
  • the UE reports the new UE capability to the network, and the network instructs the UE according to the current version supported by the base station (Rel-15/Rel-16) Do you need a gap. If the base station supports Rel-16, the new UE capabilities will be adopted and no gap will be configured; if the base station does not support Rel-16, the existing method will still be used to configure the gap.
  • the aforementioned new UE capabilities are applicable to both NR SA UE and DC UE.
  • the new UE capability will distinguish the measurement behavior of the existing UE and the enhanced UE (enhanced UE), and report it to the network to allocate gap patterns more reasonably, and improve the chance of no gap measurement in some scenarios.
  • the above scheme is applicable to all mobility management procedures involving inter-RAT (between NR and E-UTRA) and inter-Frequency (between FR1 and FR2) measurement across frequency bands.
  • the following takes the SN node adding process as an example to illustrate how to configure the measurement interval on the network side.
  • the MN indicates the new UE capability information reported by the UE previously obtained by the MN in the SN addition request message to the SN, and at the same time, the MN instructs the SN to configure information about per UE gap or per FR gap and the gap destination.
  • the measurement of FR2 does not need to configure gap, that is, the new UE capability information takes the value of 1.
  • the UE is configured with EN-DC and In the DC state, the SN reports the FR2 node in the MN's frequency list.
  • the measurement interval may be unconfigured, that is, the new UE capability information takes the value 1.
  • the UE is in the NR SA mode, then inter-RAT NR Measurement There is no need to configure gap for the measurement, and the new UE capability information takes the value 1.
  • the network configures the gap according to the existing method.
  • FIG. 4 is a schematic diagram 1 of the structural composition of a measurement interval configuration device provided by an embodiment of the application.
  • the measurement interval configuration device is applied to a terminal.
  • the measurement interval configuration device includes:
  • the receiving unit 401 is configured to receive first configuration information sent by a network device, where the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal; wherein the capability information of the terminal is used to indicate that the terminal Whether to support the ability to perform independent interval measurements in different frequency ranges.
  • the first configuration information includes first indication information, and the first indication information is used to indicate that there is no measurement interval.
  • the first configuration information is used to indicate a serving cell corresponding to the first indication information and/or an object to be measured corresponding to the first indication information.
  • the terminal supports a first dual connection mode, and the radio access technologies of the primary node and the secondary node in the first dual connection mode are the first radio access technology and the second radio access technology, respectively;
  • the serving cell of the terminal is a cell of the first radio access technology, and the object to be measured is a cell in the first frequency range.
  • the terminal supports a second dual connectivity mode, in which the radio access technologies of the primary node and the secondary node in the second dual connectivity mode are the second radio access technology and the first radio access technology, respectively;
  • the serving cell of the terminal is a cell of the first radio access technology and/or a cell of the second frequency range, and the object to be measured is a cell of the first frequency range.
  • the terminal supports a second dual connectivity mode, in which the radio access technologies of the primary node and the secondary node in the second dual connectivity mode are the second radio access technology and the first radio access technology, respectively;
  • the serving cell of the terminal is a cell in the first frequency range, and the object to be measured is a cell in the first radio access technology and/or a cell in the second frequency range.
  • the terminal supports an independent networking mode
  • the serving cell of the terminal is a cell of the first radio access technology
  • the object to be measured is a cell in the first frequency range.
  • the terminal supports an independent networking mode
  • the serving cell of the terminal is a cell in a first frequency range
  • the object to be measured is a cell of the first radio access technology and/or a second frequency Range of cells.
  • the receiving unit 401 is configured to receive an RRC reconfiguration message sent by a serving cell, and the RRC reconfiguration message is used to indicate the first configuration information.
  • the RRC reconfiguration message is an RRC reconfiguration message in the process of adding a secondary node or an RRC reconfiguration message in a cell handover process.
  • FIG. 5 is a second structural diagram of the measurement interval configuration device provided by an embodiment of the application.
  • the measurement interval configuration device is applied to a terminal.
  • the measurement interval configuration device includes:
  • the sending unit 501 is configured to send first configuration information to the terminal, where the first configuration information is used to determine the measurement interval corresponding to the capability information of the terminal; wherein the capability information of the terminal is used to indicate whether the terminal supports The ability to make independent interval measurements in different frequency ranges.
  • the first configuration information includes first indication information, and the first indication information is used to indicate that there is no measurement interval.
  • the first configuration information is used to indicate a serving cell corresponding to the first indication information and/or an object to be measured corresponding to the first indication information.
  • the terminal supports a first dual connection mode, and the radio access technologies of the primary node and the secondary node in the first dual connection mode are the first radio access technology and the second radio access technology, respectively;
  • the serving cell of the terminal is a cell of the first radio access technology, and the object to be measured is a cell in the first frequency range.
  • the terminal supports a second dual connectivity mode, in which the radio access technologies of the primary node and the secondary node in the second dual connectivity mode are the second radio access technology and the first radio access technology, respectively;
  • the serving cell of the terminal is a cell of the first radio access technology and/or a cell of the second frequency range, and the object to be measured is a cell of the first frequency range.
  • the terminal supports a second dual connectivity mode, in which the radio access technologies of the primary node and the secondary node in the second dual connectivity mode are the second radio access technology and the first radio access technology, respectively;
  • the serving cell of the terminal is a cell in the first frequency range, and the object to be measured is a cell in the first radio access technology and/or a cell in the second frequency range.
  • the terminal supports an independent networking mode
  • the serving cell of the terminal is a cell of the first radio access technology
  • the object to be measured is a cell in the first frequency range.
  • the terminal supports an independent networking mode
  • the serving cell of the terminal is a cell in a first frequency range
  • the object to be measured is a cell of the first radio access technology and/or a second frequency Range of cells.
  • the sending unit 501 is configured to send an RRC reconfiguration message to the terminal, and the RRC reconfiguration message is used to indicate the first configuration information.
  • the RRC reconfiguration message is an RRC reconfiguration message in the process of adding a secondary node or an RRC reconfiguration message in a cell handover process.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal or a network device.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 600 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here. Repeat.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 8 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 8, the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It’s concise and will not be repeated here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种测量间隔配置方法及装置、终端、网络设备,该方法包括:终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。

Description

一种测量间隔配置方法及装置、终端、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种测量间隔配置方法及装置、终端、网络设备。
背景技术
测量间隔(Measurement gap,MG)的目的是创建一个小的间隔(gap),终端在这个间隔中对目标小区进行测量。网络侧配置的测量间隔有两类:一类是针对用户设备(User Equipment,UE)的测量间隔,称为per-UE measurement gap,另一类是针对频率范围(Frequency Range,FR)的测量间隔,称为per-FR measurement gap,其中,针对FR的测量间隔又包括FR1的测量间隔和FR2的测量间隔。无论是针对per-UE measurement gap的配置还是针对per-FR measurement gap的配置,所配置的间隔图样(gap Pattern)都有待完善。
发明内容
本申请实施例提供一种测量间隔配置方法及装置、终端、网络设备。
本申请实施例提供的测量间隔配置方法,包括:
终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
本申请实施例提供的测量间隔配置方法,包括:
网络设备向终端发送第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
本申请实施例提供的测量间隔配置装置,应用于终端,所述装置包括:
接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
本申请实施例提供的测量间隔配置装置,应用于网络设备,所述装置包括:
发送单元,用于向终端发送第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔配置方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔配置方法。
本申请实施例提供的芯片,用于实现上述的测量间隔配置方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的测量间隔配置方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的测量间隔配置方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的测量间隔配置方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的测量间隔配置方法。
通过上述技术方案,网络侧在给终端配置测量间隔时,参考该终端的能力信息,即是否支持在不同频率范围内进行独立间隔测量的能力,从而合理地为该终端配置测量间隔,优化了测量间隔的配置。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信***架构的示意性图;
图2是本申请实施例提供的SN节点添加流程图;
图3为本申请实施例提供的测量间隔配置方法的流程示意图;
图4为本申请实施例提供的测量间隔配置装置的结构组成示意图一;
图5为本申请实施例提供的测量间隔配置装置的结构组成示意图二;
图6是本申请实施例提供的一种通信设备示意性结构图;
图7是本申请实施例的芯片的示意性结构图;
图8是本申请实施例提供的一种通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB), 还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下先对本申请实施例涉及到的相关技术进行说明。
1)NR***中的无线链路监测(Radio Link Monitor,RLM)过程。
UE在主小区(Primary Cell,PCell)或双连接(Dual Connectivity,DC)情况下的 辅主小区(PSCell)上进行下行无线链路监测是为了向高层上报失步/同步状态指示。通常情况下,UE只要求在PCell或DC情况下的PSCell上的激活下行(Down Link,DL)带宽部分(Bandwidth Part,BWP)上进行无线链路质量监测。或者说,UE只要求在特殊小区(Special Cell,SpCell)上的激活DL BWP上进行无线链路质量监测。
对于一个SpCell中的每个DL BWP,UE会被配置一组用于确定无线链路监测参考信号(RadioLinkMonitoring-Reference Signal,RLM-RS)的资源指示,用于确定RLM-RS以及根据RLM-RS进行RLM。该RLM-RS可以是信道状态指示参考信号(Channel Status Indicator Reference Signal,CSI-RS)或者是同步信号块(SS/PBCH block,SSB)。UE可能被配置最多NLR-RLM个RLM-RS用于链路恢复过程和无线链路监测。从NLR-RLM个RLM-RS中,最多NRLM个RLM-RS可以被用来进行无线链路监测,最多2个RLM-RS可以被用来进行链路恢复过程。其中,NRLM的取值和半帧里包括的SSB的最大个数Lmax有关。
2)测量间隔(Measurement gap,MG)
NR的UE可支持EN-DC、NE-DC或NR-DC等,可配置针对UE的测量间隔(per UE gap)或者针对FR的测量间隔(per FR gap),进一步,
·per UE gap,只能配置一个,即gapUE,用于FR1和FR2频率的测量。对于per UE gap,MN决定gap的配置信息(即gapUE)。
·per FR gap,可独立配置两个,即gapFR1和/或gapFR2,gapFR1用于FR1频率的测量,gapFR2用于FR2频率的测量。对于per FR gap,MN决定gapFR1的配置信息,SN决定gapFR2的配置信息。
E-UTRA only的UE,采用LTE的测量gap配置,即per UE gap。
举个例子,gap配置协商过程中:
·对于per UE gap,MN指示per UE gap配置信息以及gap目的给SN。SN指示MN关于FR1或/和FR2上的SN要测量的频率列表。
·对于per FR gap,SN指示MN关于FR1上SN要测量的频率列表,MN指示SN关于FR2上MN要测量的频率列表。
图2为SN节点添加流程图,测量间隔的配置可以通过该流程来实现,如图2所示,该流程包括以下步骤:
步骤201:MN向SN发送SN添加请求消息。
MN在SN添加请求消息中,将MN之前获得的UE上报的UE能力(UE capability)信息指示给SN。其中,UE能力信息包括independentGapConfig,即UE支持per FR gap的能力(也可以理解为UE是否支持独立的射频能力来满足gapFR1和gapFR2独立测量),同时MN指示SN关于per UE gap或per FR gap配置信息以及gap目;
在步骤201之前,MN可能已获得了UE上报的测量报告,MN根据测量报告判决是否添加SN。MN决定添加SN的情况下,向SN发送SN添加请求消息。
步骤202:SN向MN发送SN添加请求确认消息。
这里,SN添加请求确认消息携带SN侧的无线资源控制(Radio Resource Control,RRC)配置消息。SN如果被配置了per UE gap,则SN会指示MN关于FR1或FR2上要测量的频率列表;SN如果被配置了per FR gap,则SN不会有额外的gap配置辅助信息如频率列表等指示给MN。
步骤203:MN向UE发送RRC重配置消息。
这里,RRC重配置消息携带SN侧的RRC配置消息。对UE而言,基于RRC配置信息更新gap。
步骤204:UE向MN发送RRC重配置完成消息。
以下表1适用于针对EN-DC场景下的测量间隔图样配置,以下表2适用于针对NR-SA场景下的测量间隔图样配置。
Figure PCTCN2019079944-appb-000001
表1
Figure PCTCN2019079944-appb-000002
表2
表1和表2中的per-UE gap、per FR gap通过MeasgapConfig来配置,MeasgapConfig的信息单元如下表3所示,其中,在MeasgapConfig中,gapFR1用于指示针对FR1的测量间隔配置。在EN-DC场景下,gapFR1不能使用NR RRC配置,只有LTE RRC可以配置gapFR1)。gapFR2用于指示针对FR2的测量间隔配置。gapUE用于指示针对全部频率(包括FR1和FR2)的测量间隔配置。在EN-DC场景下,gapUE不能使用NR RRC配置,只有LTE RRC可以配置gapUE)。
Figure PCTCN2019079944-appb-000003
表3
需要说明的是,gapUE和gapFR1/gapFR2不能同时配置。对于支持EN-DC的UE,gapUE和gapFR1只能由E-UTRA来配置。
另一方面,定义了一种UE能力,即UE是否支持per FR gap的能力(即UE是否支持不同频率范围独立gap测量的能力),这个UE能力通过independentGapConfig来配置,UE是否支持不同频率范围独立gap测量的能力是指UE是否支持两个独立的测量间隔(gapFR1,gapFR2)配置。
对于UE支持per FR gap能力,且网络提供了per FR gap配置的情况,可以支持no gap的情况,如服务小区(serving cell)为FR2,测量目的(Measurement purpose)为FR1或E-UTRA,则可以配置无间隔(no gap),参照表1和表2所示。而对于网络提供per UE gap配置的情况,UE不支持no gap的配置,参照表1和表2所示。
可见,特定条件下UE可以配置no gap,但是UE配置no gap的场景有限。本申请实施例结合UE是否支持不同频率范围独立gap测量的能力配置UE的测量间隔,可以支持no gap assisted测量。
图3为本申请实施例提供的测量间隔配置方法的流程示意图,如图3所示,所述测量间隔配置方法包括以下步骤:
步骤301:网络设备向终端发送第一配置信息,终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
本申请实施例中,所述网络设备可以是基站,例如4G基站(即eNB),NR基站(即gNB)。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端、可穿戴设备等任意能够与网络进行通信的设备。
本申请实施例中,所述网络设备向终端发送第一配置信息,终端接收网络设备发送的第一配置信息,可以通过以下方式实现:
所述网络设备向终端发送RRC重配置消息,所述终端接收服务小区发送的RRC重 配置消息,所述RRC重配置消息用于指示所述第一配置信息。
在一应用场景中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息。
具体地,参照图2,图2为SN节点添加流程图,本申请实施例可以在步骤203中MN向UE发送的RRC重配置消息中携带所述第一配置信息。需要说明的是,图2中的UE对应于本申请实施例中的终端。
在另一应用场景中,所述RRC重配置消息为小区切换过程中的RRC重配置消息。
具体地,小区切换过程包括如下流程:1)终端向服务小区发送测量报告;2)服务小区基于测量报告决定需要切换的目标小区,向目标小区发送切换请求消息;3)目标小区向服务小区发送切换请求确认消息,该切换请求确认消息携带目标小区测的配置消息;4)服务小区向终端发送切换命令,即RRC重配置消息。本申请实施例可以在该RRC重配置消息中携带所述第一配置信息。
本申请实施例中,终端的能力信息通过independentGapConfig来配置,independentGapConfig的取值为1,代表终端支持在不同频率范围内进行独立间隔测量的能力,即终端支持独立的测量间隔图样(capable of independent measurement gap patterns),或者说终端支持FR1gap和FR2gap的图样。independentGapConfig的取值为0,代表终端不支持在不同频率范围内进行独立间隔测量的能力。这里,终端支持在不同频率范围内进行独立间隔测量的能力,例如:终端支持在FR1范围和/或FR2范围内进行独立间隔测量的能力。
需要说明的是,independentGapConfig由终端上报给网络设备,网络设备基于该终端的independentGapConfig来生成所述第一配置信息。
本申请实施例中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
举个例子:independentGapConfig的取值为1(即终端支持在不同频率范围内进行独立间隔测量的能力),所述第一配置信息包括可用测量图样标识(Applicable Gap Pattern Id),该Applicable Gap Pattern Id用于指示no gap。如此,在终端支持independentgap能力的情况下,网络设备可以给该终端配置no gap,该终端可以进行无测量间隔辅助(no gap assisted)的测量。
进一步,所述第一配置信息用于指示所述第一指示信息对应的服务小区(Serving Cell)和/或所述第一指示信息对应的待测量的对象,这里,所述第一指示信息对应的待测量的对象可以通过第一测量目的(Measurement Purpose)表示。
上述方案中,网络设备给终端配置no gap的条件,除了终端支持在不同频率范围内进行独立间隔测量的能力,还需要特定的服务小区和特定的第一测量目的,以下结合服务小区和第一测量目的对支持no gap配置的几种场景进行描述,需要说明的是,以下场景的前提条件是终端支持在不同频率范围内进行独立间隔测量的能力:
场景一:所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
这里,第一双连接模式是指EN-DC,第一无线接入技术是指演进的通用无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA),第二无线接入技术是指新无线接入(NR Radio Access,NR)。具体地,在EN-DC中,主节点为LTE基站,辅节点为NR基站。
这里,所述终端的服务小区为E-UTRA小区,所述第一测量目的为FR2范围的小区。这种场景下的测量属于RAT间(inter-RAT)测量。
需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。其中,频 率范围NR FR1通常是指5G Sub-6GHz(6GHz以下)频段,未来也可能扩展到sub-7GHz(7GHz以下),频率范围NR FR2通常是指5G毫米波频段。
场景二:所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
这里,第二双连接模式是指NE-DC,第二无线接入技术是指NR,第一无线接入技术是指E-UTRA。具体地,在NE-DC中,主节点为NR基站,辅节点为LTE基站。
这里,所述终端的服务小区为E-UTRA小区和/或FR1范围内的小区,所述第一测量目的为FR2范围内的小区。这种场景下的测量属于inter-RAT测量。
需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。
场景三:所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
这里,第二双连接模式是指NE-DC,第二无线接入技术是指NR,第一无线接入技术是指E-UTRA。具体地,在NE-DC中,主节点为NR基站,辅节点为LTE基站。
这里,所述终端的服务小区为FR2范围内的小区,所述第一测量目的为E-UTRA小区和/或FR1范围内的小区。这种场景下,如果是为了建立NE-DC,针对E-UTRA的测量属于inter-RAT测量;如果是为了建立NR-DC或NR CA,针对FR1的测量属于频间(inter-frequency)测量。
需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。
场景四:所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
这里,独立组网模式可以是NR SA,不局限于此,独立组网模式还可以是LTE only。
这里,所述终端的服务小区为E-UTRA小区,所述第一测量目的为FR2范围内的小区。
需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。
场景五:所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
这里,独立组网模式可以但不局限于是NR SA,不局限于此,独立组网模式还可以是LTE only。
这里,所述终端的服务小区为FR2范围内的小区,所述第一测量目的为E-UTRA小区和/或FR1范围内的小区。
需要说明的是,本申请实施例中的FR1和FR2是指NR FR1和NR FR2。
在终端支持在不同频率范围内进行独立间隔测量的能力的条件下,以上场景一至五终端均支持no gap配置。
不排除其他场景,例如已经处于NSA(EN-DC或NE-DC)双链接状态下的UE的测量场景,如EN-DC/NE-DC UE的服务小区为FR1范围内的和E-UTRA小区,测量目的为FR2范围内的小区(需要说明的是,此种场景与现有技术是兼容的)。
本申请实施例优化了终端的测量配置,对于支持在不同频率范围内进行独立间隔测量的能力的终端,在per-UE gap配置下可实现在某些测量场景下的no gap配置,提高了***测量的效率、节约了测量开销。
以下结合具体应用示例对本申请实施例的技术方案进行举例说明。
应用实例一
修改NR UE的测量间隔需求(MG requirement),通过UE能力区分测量间隔图样(MG pattern)。需要说明的是,以下实施例中的FR1和FR2可以是指NR FR1和NR FR2。具体地,对MG requirement做如下修改:
情况一:对于NSA EN-DC UE,尚未配置EN-DC或UE的服务小区仍只有E-UTRAN的场景,网络侧可根据independentgapConfig来配置测量间隔图样配置(Measurement gap pattern config)。
具体地,serving cell为E-UTRA小区,UE支持independentgap(即independentGapconfig的值为1,代表supported independentgap)。
1)Measurement Purpose为FR2,不论此时网络侧下发UE的测量gap配置为Per-UE(MN LTE配置的gapUE)的还是Per-FR2(SN NR配置的gapFR2)的,均可配置no gap(即本申请上述场景一)。
2)Measurement Purpose为E-UTRA/FR1+FR2,或E-UTRA+FR1,或E-UTRA+FR1+FR2,如果MN配置gapUE的MG,则FR1和FR2采用统一的gap,无法配置no gap。如果配置per FR的gap,即MN配置gapFR1、SN配置gapFR2,则对于FR2的测量可配置no gap。
情况二:对于NSA NE-DC UE,尚未配置NE-DC或服务小区仍只有E-UTRAN或NR的场景,网络侧可根据independentgapConfig来配置Measurement gap pattern config。
1)UE支持independentgap(即independentGapconfig的值为1,代表supported independentgap),serving cell为E-UTRA小区,Measurement Purpose为FR2,不论此时网络侧下发UE的测量gap配置为Per-UE(MN NR配置的gapUE)的还是Per-FR2(SN LTE配置的gapFR2)的,均可配置no gap(即本申请上述场景二)。
2)UE支持independentgap(即independentGapconfig的值为1,代表supported independentgap),serving cell为FR2小区,Measurement Purpose为E-UTRA/FR1,不论此时网络侧下发UE的测量gap配置为Per-UE(MN NR配置的gapUE)的还是Per-FR2(SN LTE配置的gapFR2)的,均可配置no gap(即本申请上述场景三)。
情况三:对于NR SA UE,网络侧可根据independentgapConfig来配置Measurement gap pattern config。
1)UE支持independentgap(即independentGapconfig的值为1,代表supported independentgap),serving cell为E-UTRA,Measurement Purpose为FR2,不论此时网络侧下发UE的测量gap配置为Per-UE的还是Per-FR的,均可配置no gap(即本申请上述场景四)。
2)UE支持independentgap(即independentGapconfig的值为1,代表supported independentgap),serving cell为FR2,Measurement Purpose为E-UTRA/FR1或E-UTRA+FR1,不论此时网络侧下发UE的测量gap配置为Per-UE的还是Per-FR的,均可配置no gap(即本申请上述场景五)。
上述优化方案将适用于所有涉及到inter-RAT(E-UTRA和NR之间)、NR inter-Frequency(FR1和FR2之间)测量的移动性管理流程。
进一步,下面以SN节点添加流程为例,说明网络侧如何配置测量间隔。
在步骤201中,MN在SN添加请求消息中,将MN之前获得的UE上报的UE能力(UE capability)信息指示给SN。其中,UE能力信息包括independentGapConfig,即UE支持per FR gap的能力(也可以理解为UE是否支持独立的射频能力来满足gapFR1和gapFR2独立测量),同时MN指示SN关于per UE gap或per FR gap配置信息以及 gap目;在步骤201之前,MN可能已获得了UE上报的测量报告,MN根据测量报告判决是否添加SN。MN决定添加SN的情况下,向SN发送SN添加请求消息。
在步骤202中,如果SN被配置了per UE gap,则SN会指示MN关于FR1或FR2上要测量的频率列表;如果SN被配置了per FR gap,则SN不会有额外的gap配置辅助信息如频率列表等指示给MN。
在步骤203中,对UE而言,MN将下发新的测量间隔图样(MG pattern)给UE,UE更新MG pattern。需要说明的是,1)如果UE支持independentgap,UE尚未配置EN-DC或UE的服务小区仍只连接E-UTRAN小区,则FR2的测量不用配置gap,即no gap。2)UE配置EN-DC且处于DC状态,SN上报MN的频率列表中FR2的节点,可选地测量间隔可不配置,即no gap。3)UE处于NR SA模式,则inter-RAT NR Measurement的测量不用配置gap,即no gap。
应用示例二
对MeasgapConfig中Per-UE或Per-FR的测量,进一步结合UE能力(UE capability)这个条件做区分,来定义不同服务小区和测量目的下的Applicable gap pattern ID。
对于NSA的UE:Applicable gap pattern ID配置如下表4所示。对于NR SA的UE:Applicable gap pattern ID配置如下表5所示。
Figure PCTCN2019079944-appb-000004
Figure PCTCN2019079944-appb-000005
表4
Figure PCTCN2019079944-appb-000006
Figure PCTCN2019079944-appb-000007
表5
上述方案适用于所有涉及到inter-RAT(E-UTRA和NR之间)、NR inter-Frequency(FR1和FR2之间)测量的移动性管理流程。
应用示例三
在新的协议版本中引入新的UE能力,该UE能力可以是1比特信息,UE向网络上报该新的UE能力,网络根据目前基站支持的版本(Rel-15/Rel-16)来指示UE是否需要gap。如果基站支持Rel-16,则新的UE能力将会被采纳,no gap会被配置;如果基站不支持Rel-16,则仍采用现有的方法配置gap。
需要说明的是,上述新的UE能力对于NR SA UE和DC UE均适用。新的UE能力将区分现有的UE和增加的UE(enhanced UE)的测量行为,并上报给网络,以更合理的分配gap pattern,并提高某些场景下no gap测量的机会。
上述方案适用于所有涉及到inter-RAT(NR和E-UTRA之间)、inter-Frequency(FR1和FR2之间)中跨频段的测量的移动性管理流程。
下面仍以“SN添加”为例,参见上一节的图例。
进一步,下面以SN节点添加流程为例,说明网络侧如何配置测量间隔。
在步骤201中,MN在SN添加请求消息中,将MN之前获得的UE上报的新的UE能力信息指示给SN,同时MN指示SN关于per UE gap或per FR gap配置信息以及gap目。
其中,1)UE尚未配置EN-DC或UE的服务小区仍只连接E-UTRAN小区,则FR2的测量不用配置gap,即新的UE能力信息取值为1。2)UE配置EN-DC且处于DC状态,SN上报MN的频率列表中FR2的节点,可选地测量间隔可有不配置,即新的UE能力信息取值为1。3)UE处于NR SA模式,则inter-RAT NR Measurement的测量不用配置gap,新的UE能力信息取值为1。
需要说明的是,如果新的UE能力信息取值为0,表示UE不支持no gap-assisted Measurement,网络按现有方法配置gap。
图4为本申请实施例提供的测量间隔配置装置的结构组成示意图一,该测量间隔配置装置应用于终端,如图4所示,所述测量间隔配置装置包括:
接收单元401,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
在一实施方式中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
在一实施方式中,所述第一配置信息用于指示所述第一指示信息对应的服务小区和/或所述第一指示信息对应的待测量的对象。
在一实施方式中,所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
在一实施方式中,所述终端支持第二双连接模式,所述第二双连接模式中主节点 和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
在一实施方式中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
在一实施方式中,所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
在一实施方式中,所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
在一实施方式中,所述接收单元401,用于接收服务小区发送的RRC重配置消息,所述RRC重配置消息用于指示所述第一配置信息。
在一实施方式中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息或者为小区切换过程中的RRC重配置消息。
本领域技术人员应当理解,本申请实施例的上述测量间隔配置装置的相关描述可以参照本申请实施例的测量间隔配置方法的相关描述进行理解。
图5为本申请实施例提供的测量间隔配置装置的结构组成示意图二,该测量间隔配置装置应用于终端,如图5所示,所述测量间隔配置装置包括:
发送单元501,用于向终端发送第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
在一实施方式中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
在一实施方式中,所述第一配置信息用于指示所述第一指示信息对应的服务小区和/或所述第一指示信息对应的待测量的对象。
在一实施方式中,所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
在一实施方式中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
在一实施方式中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
在一实施方式中,所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
在一实施方式中,所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
在一实施方式中,所述发送单元501,用于向终端发送RRC重配置消息,所述 RRC重配置消息用于指示所述第一配置信息。
在一实施方式中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息或者为小区切换过程中的RRC重配置消息。
本领域技术人员应当理解,本申请实施例的上述测量间隔配置装置的相关描述可以参照本申请实施例的测量间隔配置方法的相关描述进行理解。
图6是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,也可以是网络设备,图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图8是本申请实施例提供的一种通信***900的示意性框图。如图8所示,该通信***900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘 述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简 洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种测量间隔配置方法,所述方法包括:
    终端接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
  2. 根据权利要求1所述的方法,其中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
  3. 根据权利要求2所述的方法,其中,所述第一配置信息用于指示所述第一指示信息对应的服务小区和/或所述第一指示信息对应的待测量的对象。
  4. 根据权利要求3所述的方法,其中,所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  5. 根据权利要求3所述的方法,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
  6. 根据权利要求3所述的方法,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  7. 根据权利要求3所述的方法,其中,所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  8. 根据权利要求3所述的方法,其中,所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述终端接收网络设备发送的第一配置信息,包括:
    所述终端接收服务小区发送的无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述第一配置信息。
  10. 根据权利要求9所述的方法,其中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息或者为小区切换过程中的RRC重配置消息。
  11. 一种测量间隔配置方法,所述方法包括:
    网络设备向终端发送第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
  12. 根据权利要求11所述的方法,其中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
  13. 根据权利要求12所述的方法,其中,所述第一配置信息用于指示所述第一指示信息对应的服务小区和/或所述第一指示信息对应的待测量的对象。
  14. 根据权利要求13所述的方法,其中,所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  15. 根据权利要求13所述的方法,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
  16. 根据权利要求13所述的方法,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  17. 根据权利要求13所述的方法,其中,所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  18. 根据权利要求13所述的方法,其中,所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  19. 根据权利要求11至18中任一项所述的方法,其中,所述网络设备向终端发送第一配置信息,包括:
    所述网络设备向终端发送RRC重配置消息,所述RRC重配置消息用于指示所述第一配置信息。
  20. 根据权利要求19所述的方法,其中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息或者为小区切换过程中的RRC重配置消息。
  21. 一种测量间隔配置装置,应用于终端,所述装置包括:
    接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
  22. 根据权利要求21所述的装置,其中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
  23. 根据权利要求22所述的装置,其中,所述第一配置信息用于指示所述第一指示信息对应的服务小区和/或所述第一指示信息对应的待测量的对象。
  24. 根据权利要求23所述的装置,其中,所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  25. 根据权利要求23所述的装置,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
  26. 根据权利要求23所述的装置,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第 一无线接入技术的小区和/或第二频率范围的小区。
  27. 根据权利要求23所述的装置,其中,所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  28. 根据权利要求23所述的装置,其中,所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  29. 根据权利要求21至28中任一项所述的装置,其中,所述接收单元,用于接收服务小区发送的RRC重配置消息,所述RRC重配置消息用于指示所述第一配置信息。
  30. 根据权利要求29所述的装置,其中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息或者为小区切换过程中的RRC重配置消息。
  31. 一种测量间隔配置装置,应用于网络设备,所述装置包括:
    发送单元,用于向终端发送第一配置信息,所述第一配置信息用于确定所述终端的能力信息对应的测量间隔;其中,所述终端的能力信息用于表示所述终端是否支持在不同频率范围内进行独立间隔测量的能力。
  32. 根据权利要求31所述的装置,其中,所述终端支持在不同频率范围内进行独立间隔测量的能力的情况下,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示无测量间隔。
  33. 根据权利要求32所述的装置,其中,所述第一配置信息用于指示所述第一指示信息对应的服务小区和/或所述第一指示信息对应的待测量的对象。
  34. 根据权利要求33所述的装置,其中,所述终端支持第一双连接模式,所述第一双连接模式中主节点和辅节点的无线接入技术分别为第一无线接入技术和第二无线接入技术;所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  35. 根据权利要求33所述的装置,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一无线接入技术的小区和/或第二频率范围的小区,所述待测量的对象为第一频率范围的小区。
  36. 根据权利要求33所述的装置,其中,所述终端支持第二双连接模式,所述第二双连接模式中主节点和辅节点的无线接入技术分别为第二无线接入技术和第一无线接入技术;所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  37. 根据权利要求33所述的装置,其中,所述终端支持独立组网模式,所述终端的服务小区为第一无线接入技术的小区,所述待测量的对象为第一频率范围的小区。
  38. 根据权利要求33所述的装置,其中,所述终端支持独立组网模式,所述终端的服务小区为第一频率范围的小区,所述待测量的对象为第一无线接入技术的小区和/或第二频率范围的小区。
  39. 根据权利要求31至38中任一项所述的装置,其中,所述发送单元,用于向终端发送RRC重配置消息,所述RRC重配置消息用于指示所述第一配置信息。
  40. 根据权利要求39所述的装置,其中,所述RRC重配置消息为辅节点添加过程中的RRC重配置消息或者为小区切换过程中的RRC重配置消息。
  41. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处 理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  42. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求11至20中任一项所述的方法。
  43. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  44. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至20中任一项所述的方法。
  45. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  46. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求11至20中任一项所述的方法。
  47. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  48. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至20中任一项所述的方法。
  49. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  50. 一种计算机程序,所述计算机程序使得计算机执行如权利要求11至20中任一项所述的方法。
PCT/CN2019/079944 2019-03-27 2019-03-27 一种测量间隔配置方法及装置、终端、网络设备 WO2020191683A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980077940.1A CN113170339A (zh) 2019-03-27 2019-03-27 一种测量间隔配置方法及装置、终端、网络设备
PCT/CN2019/079944 WO2020191683A1 (zh) 2019-03-27 2019-03-27 一种测量间隔配置方法及装置、终端、网络设备
EP19921976.7A EP3934312A4 (en) 2019-03-27 2019-03-27 METHOD AND DEVICE FOR CONFIGURING MEASUREMENT INTERVAL, TERMINAL AND NETWORK DEVICE
CN202111123212.5A CN113840322B (zh) 2019-03-27 2019-03-27 一种测量间隔配置方法及装置
US17/486,119 US20220046450A1 (en) 2019-03-27 2021-09-27 Measurement interval configuration method and device, terminal, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079944 WO2020191683A1 (zh) 2019-03-27 2019-03-27 一种测量间隔配置方法及装置、终端、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/486,119 Continuation US20220046450A1 (en) 2019-03-27 2021-09-27 Measurement interval configuration method and device, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020191683A1 true WO2020191683A1 (zh) 2020-10-01

Family

ID=72608766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079944 WO2020191683A1 (zh) 2019-03-27 2019-03-27 一种测量间隔配置方法及装置、终端、网络设备

Country Status (4)

Country Link
US (1) US20220046450A1 (zh)
EP (1) EP3934312A4 (zh)
CN (2) CN113840322B (zh)
WO (1) WO2020191683A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022184107A1 (zh) * 2021-03-04 2022-09-09 维沃移动通信有限公司 间隙配置方法、装置、设备及存储介质
WO2022205385A1 (zh) * 2021-04-01 2022-10-06 北京小米移动软件有限公司 测量间隔处理方法、装置、通信设备及存储介质
WO2023044714A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Terminal, system, and method for performing network switching
WO2023070279A1 (zh) * 2021-10-25 2023-05-04 北京小米移动软件有限公司 一种传输能力指示信息的方法、装置、及可读存储介质
WO2023092423A1 (zh) * 2021-11-25 2023-06-01 Oppo广东移动通信有限公司 一种测量间隔增强的方法及装置、终端设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11197217B1 (en) * 2020-08-07 2021-12-07 At&T Intellectual Property I, L.P. Systems and methods for single uplink operation (SUO) over dual connectivity networks
WO2023130317A1 (en) * 2022-01-06 2023-07-13 Apple Inc. Preconfigured measurement gap enhancement
CN117580059A (zh) * 2022-08-08 2024-02-20 华为技术有限公司 通信方法与通信装置
WO2024065593A1 (en) * 2022-09-30 2024-04-04 Apple Inc. Per-frequency range measurement gap indication with adapted reporting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102572917A (zh) * 2010-12-24 2012-07-11 中兴通讯股份有限公司 载波聚合中配置测量间隔的方法、用户设备及基站
CN108366379A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 测量能力上报和配置的方法、用户设备和基站
WO2019028850A1 (en) * 2017-08-11 2019-02-14 Mediatek Singapore Pte. Ltd. METHODS OF TRANSMITTING MULTIPLE SS BLOCKS AND MEASURING RRM IN A BROADBAND CARRIER

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150327104A1 (en) * 2014-05-08 2015-11-12 Candy Yiu Systems, methods, and devices for configuring measurement gaps for dual connectivity
JP2018502479A (ja) * 2014-11-10 2018-01-25 テレフオンアクチーボラゲット エルエム エリクソン(パブル) デュアルコネクティビティにおける測定ギャップ長構成のためのサブフレームペアリングの方法
WO2018171730A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Methods and arrangements for wide bandwidth communications
US11202303B2 (en) * 2017-05-04 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node, and methods performed thereby for handling a communication of blocks of physical channels or signals
WO2018212692A1 (en) * 2017-05-15 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) System and method for controlling measurement gaps in a communication system
WO2019031768A1 (ko) * 2017-08-08 2019-02-14 엘지전자 주식회사 측정 수행 방법 및 측정을 수행하는 단말
WO2019033058A1 (en) * 2017-08-10 2019-02-14 Intel IP Corporation METHODS AND ARRANGEMENT FOR CONFIGURING MEASUREMENT INTERVALS
EP3711358B1 (en) * 2017-11-16 2021-06-02 Telefonaktiebolaget LM Ericsson (PUBL) Measurement gap configuration in dual connectivity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102572917A (zh) * 2010-12-24 2012-07-11 中兴通讯股份有限公司 载波聚合中配置测量间隔的方法、用户设备及基站
CN108366379A (zh) * 2017-01-26 2018-08-03 北京三星通信技术研究有限公司 测量能力上报和配置的方法、用户设备和基站
WO2019028850A1 (en) * 2017-08-11 2019-02-14 Mediatek Singapore Pte. Ltd. METHODS OF TRANSMITTING MULTIPLE SS BLOCKS AND MEASURING RRM IN A BROADBAND CARRIER

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Consideration on Measurement Configuration in NE-DC", 3GPP TSG-RAN WG2 MEETING #103 R2-1812710, 10 August 2018 (2018-08-10), XP051522304 *
See also references of EP3934312A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022184107A1 (zh) * 2021-03-04 2022-09-09 维沃移动通信有限公司 间隙配置方法、装置、设备及存储介质
WO2022205385A1 (zh) * 2021-04-01 2022-10-06 北京小米移动软件有限公司 测量间隔处理方法、装置、通信设备及存储介质
WO2023044714A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Terminal, system, and method for performing network switching
WO2023070279A1 (zh) * 2021-10-25 2023-05-04 北京小米移动软件有限公司 一种传输能力指示信息的方法、装置、及可读存储介质
WO2023092423A1 (zh) * 2021-11-25 2023-06-01 Oppo广东移动通信有限公司 一种测量间隔增强的方法及装置、终端设备

Also Published As

Publication number Publication date
CN113840322B (zh) 2023-08-01
CN113170339A (zh) 2021-07-23
CN113840322A (zh) 2021-12-24
EP3934312A4 (en) 2022-03-16
EP3934312A1 (en) 2022-01-05
US20220046450A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2020186529A1 (zh) 一种策略确定方法及装置、终端
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2020154925A1 (zh) 一种协调测量配置的方法及装置、网络设备、终端
WO2021087828A1 (zh) 激活或者更新srs的路损rs的方法和设备
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
US11805563B2 (en) Wireless communication method and base station
WO2020227860A1 (zh) 一种终端能力确定方法及装置、终端
WO2020073258A1 (zh) 一种同步指示方法、终端设备及网络设备
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2020043011A1 (zh) 一种ui显示方法、终端设备及装置
WO2021087827A1 (zh) 激活或者更新pusch路损rs的方法和设备
WO2021026717A1 (zh) 一种资源协调方法及装置、终端设备
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
WO2020113520A1 (zh) 用于建立连接的方法、网络设备和终端设备
WO2020056587A1 (zh) 一种切换处理方法、终端设备及网络设备
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2020082327A1 (zh) 一种切换过程中的信令交互方法及装置、网络设备
WO2020164019A1 (zh) 一种承载配置方法及装置、网络设备
WO2020061943A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2020056642A1 (zh) 一种数据传输方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019921976

Country of ref document: EP

Effective date: 20210928