WO2020191575A1 - 图像编解码方法、装置以及电子设备 - Google Patents

图像编解码方法、装置以及电子设备 Download PDF

Info

Publication number
WO2020191575A1
WO2020191575A1 PCT/CN2019/079498 CN2019079498W WO2020191575A1 WO 2020191575 A1 WO2020191575 A1 WO 2020191575A1 CN 2019079498 W CN2019079498 W CN 2019079498W WO 2020191575 A1 WO2020191575 A1 WO 2020191575A1
Authority
WO
WIPO (PCT)
Prior art keywords
chrominance
luminance
division
prediction mode
unit
Prior art date
Application number
PCT/CN2019/079498
Other languages
English (en)
French (fr)
Inventor
蔡文婷
朱建清
姚杰
数井君彦
Original Assignee
富士通株式会社
蔡文婷
朱建清
姚杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蔡文婷, 朱建清, 姚杰 filed Critical 富士通株式会社
Priority to PCT/CN2019/079498 priority Critical patent/WO2020191575A1/zh
Publication of WO2020191575A1 publication Critical patent/WO2020191575A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the embodiments of the present invention relate to the field of information technology, and in particular, to an image coding method, device, and electronic equipment.
  • each CTU contains the luminance component and the chrominance component
  • two trees can be used
  • the division structure or the single tree division structure divides the luminance CTU and the chrominance CTU into coding units (CU, coding unit); for the single tree division structure, the luminance CTU and the chrominance CTU share a division indicator signal; for two tree divisions Structure, luminance CTU and chrominance CTU each use independent division indication signals;
  • Figure 1 is a schematic diagram of the existing two tree division structure and a single tree division structure; specifically, as shown in Figure 1, the luminance CTU and chrominance CTU can be First, the CTU is divided into a quaternary tree; then, each node after the quad-tree division is divided independently or in the same multi-type tree (MTT, multi-type tree), including the vertical binary tree (BT, binary tree)
  • each VPDU does not overlap each other, and each VPDU includes 64 ⁇ 64
  • the sample to be processed of the pixel that is, a luminance sample with a size of 64 ⁇ 64 or a chroma sample with a size of 32 ⁇ 32.
  • the luminance CTU and chrominance CTU can be divided into quad-trees first without using the displayed division indication signal, and then two tree division structures are used to divide the divided luminance CU and color.
  • the degree CU is divided independently.
  • Fig. 2 is a schematic diagram of the above division method. As shown in Fig. 2, the difference from Figs. 1A-1B is that the CTU is divided into a quadtree without using a division indicator signal, and the size is 64 The luminance CU of ⁇ 64 and the chrominance CU of size 32 ⁇ 32 are then used to divide the divided luminance CU and chrominance CU separately using two tree division structures.
  • the inventor found that since the human eye is more sensitive to the luminance signal than to the chrominance signal, the inventor believes that the existing division method divides the chrominance CU into small blocks and then performs encoding and decoding. Reduce codec performance.
  • embodiments of the present invention provide an image encoding and decoding method, device, and electronic equipment, which can improve image encoding and decoding performance.
  • an image encoding and decoding device including:
  • the judging unit which is used to judge whether the size of the luminance coding tree unit (CTU) or the divided luminance coding unit (CU), and the chrominance CTU or the divided chrominance CU does not exceed the virtual pipeline data unit (VPDU) )size of;
  • the first division unit is configured to use the first tree division structure to further divide the luminance CU and use the second tree division structure to further divide the chrominance CTU when the judgment result of the judgment unit is yes, Or the chroma CU is further divided;
  • the coding and decoding unit is used to perform coding or decoding with each further divided coding unit as a unit.
  • an image encoding and decoding method including:
  • Encoding or decoding is performed in units of each coding unit after further division.
  • an electronic device which includes the image encoding and decoding apparatus described in the foregoing first aspect.
  • the beneficial effect of the embodiment of the present invention is that when the size of the CTU or CU does not exceed the size of the VPDU, the two tree division structures are directly used to independently divide the luminance component and the chrominance component to further divide each coding unit Encoding or decoding is performed in units, which can improve image encoding and decoding performance.
  • Figure 1 is a schematic diagram of the existing two-tree division structure and the single-tree division structure
  • Figure 2 is a schematic diagram of the division structure of two existing trees
  • FIG. 3 is a schematic diagram of the structure of an image encoding and decoding device in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the division method in Embodiment 1 of the present invention.
  • Figure 5 is a schematic diagram of a chrominance CU and a corresponding luminance CU
  • FIG. 6 is a schematic diagram of the structure of an image coding and decoding device in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the mode determination module 6031 of Embodiment 1 of the present invention.
  • FIGS. 8-9 are schematic diagrams of determining the N adjacent luminance CUs in Embodiment 1 of the present invention.
  • Figure 10 is a schematic diagram of an image encoding and decoding method in Embodiment 2 of the present invention.
  • FIG. 11 is a schematic diagram of a method for determining a chroma CU prediction mode according to Embodiment 2 of the present invention.
  • Fig. 12 is a schematic diagram of an electronic device according to Embodiment 7 of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelations, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • Fig. 3 is a schematic diagram of an image coding and decoding device according to an embodiment of the present invention. As shown in FIG. 3, the device 300 includes:
  • the judging unit 301 is used to judge whether the size of the luminance coding tree unit (CTU) or the divided luminance coding unit (CU), and the chrominance CTU or the divided chrominance CU does not exceed the virtual pipeline data unit (VPDU) size;
  • the first division unit 302 is configured to use the first tree division structure to further divide the luminance CTU, or use the second tree division structure to further divide the chrominance CTU when the judgment result of the judgment unit is yes , Or the chroma CU is further divided;
  • the coding and decoding unit 303 is configured to perform coding or decoding with each further divided coding unit as a unit.
  • the two tree division structures can be used directly to separately divide the luminance component and the chrominance component to Each coding unit after further division is encoded or decoded as a unit, thereby improving image encoding and decoding performance.
  • the input video stream is composed of multiple continuous frame images.
  • Each frame of image can be divided into multiple CTUs in advance.
  • a CTU contains M ⁇ M brightness blocks and corresponding two Chroma blocks, each CTU has the same size.
  • the size of the CTU is 128 ⁇ 128, which means that it contains a luminance CTU with a size of 128 ⁇ 128, and two chrominance CTUs with a size of 64 ⁇ 64.
  • the judging unit 301 judges whether the size does not exceed the size of the VPDU, and when neither exceeds the size, the first dividing unit 302 uses two for the luminance CTU and chrominance CTU.
  • the tree division structure is further divided independently.
  • the judgment result of the judgment unit 301 is that the size of the luminance CTU does not exceed the size of the VPDU and the chrominance CTU The VPDU is not exceeded. Therefore, the first division unit 302 uses the first tree division structure to further divide the luminance CTU, and uses the second tree division structure to further divide the chrominance CTU.
  • the first tree and the second tree Independent of each other each have an independent division structure, which includes quadtree division (QT) and/or multi-type tree (MTT, multi-type tree) division, and the MTT division includes vertical Binary tree (BT, binary tree) division (SPLIT_BT_VER) in the direction, binary tree division in the horizontal direction (SPLIT_BT_HOR), ternary tree (TT) division in the vertical direction (SPLIT_TT_VER), and ternary tree division in the horizontal direction (SPLIT_TT_HOR).
  • the node obtained after the luminance CTU division is called the luminance CU
  • the node obtained after the chrominance CTU division is the chrominance CU.
  • the first division unit 301 uses the first tree division structure and the second tree division structure for further division, it needs to use a signal flag to indicate division, for example, the signal flag qt_split_flag indicates whether Quadtree division is required.
  • the signal flag bit mtt_split_flag indicates whether MTT division is required
  • the signal flag bit mtt_split_cu_vertical_flag indicates the direction of MTT division
  • the signal flag bit mtt_split_cu_binary_flag indicates whether MTT is divided into two or three branches to determine
  • the specific division method of the first tree division structure and the second tree division structure can refer to the prior art, which will not be repeated here.
  • the device may further include:
  • the second dividing unit 304 divides the luminance CTU and/or chrominance CTU and/or luminance CU and/or chrominance CU whose size exceeds the virtual pipeline data unit VPDU into a quadtree, until the divided luminance CU and chrominance The size of the CU does not exceed the size of the virtual pipeline data unit (VPDU) (determined again by the judging unit 301).
  • the first division unit 302 uses the first tree division structure to further divide the luminance CU divided by the second division unit 304, and uses the second tree division structure to divide the brightness CU by the second division unit 304
  • the chroma CU is further divided.
  • the second division unit 304 does not need to use signal flags to indicate division when performing quadtree division.
  • the second dividing unit 304 divides the brightness CTU into a quadtree (no need to use signal flag bit indication) until the divided brightness CU does not exceed the size of the VPDU (determined by the judgment unit 301), that is Obtain 4 brightness CUs with a size of 64 ⁇ 64, and directly use the first tree division structure to further divide the brightness CU divided by the second division unit 304 (the first tree division structure may include quadtree and / Or MTT, the specific division method is as described above); for the chrominance CTU, since its size does not exceed the VPDU, there is no need to force the quadtree division, and the second tree division
  • the second dividing unit 304 divides the luminance CTU into a quadtree (no need to use signal flag bit indication) to obtain 4 luminance CUs with a size of 64 ⁇ 64, and divide the chrominance CTU into a quadtree (No need to use signal flag indication), get 4 chroma CUs with a size of 32 ⁇ 32; the judging unit 301 judges that the size of the luminance CU with a size of 64 ⁇ 64 after division still exceeds the VPDU, so the second division unit In 304, each luminance CU is divided into a quadtree again (signal flag indication is not required) to obtain a luminance CU
  • the brightness CU (size 32 ⁇ 32) divided by the second division unit 304 is further divided using the first tree division structure (the first tree division structure may include quadtree and / Or MTT, the specific division method is as described above), use the second tree division structure to further divide the chrominance CU (size 32 ⁇ 32) (the second tree division structure can include quadtree and / Or MTT, the specific division method is as described above).
  • the judging unit 301 judges whether the size of the luminance CTU and the chrominance CTU does not exceed the VPDU.
  • the first dividing unit 302 uses two tree division structures to independently divide the luminance CTU and chrominance CTU are further divided; when the judgment result is that the size of the luminance CTU exceeds the VPDU, and the size of the chrominance CTU does not exceed the VPDU, the second division unit 304 performs quadtree division of the luminance CTU (no need to use the signal flag Bit indication), until the size of the divided luminance CU does not exceed the VPDU, the first dividing unit 302 uses two tree division structures to independently further divide the divided luminance CU and chrominance CTU; the judgment result is that the luminance CTU and When the size of the chrominance CTU exceeds the VPDU, the second dividing unit 304 performs quad-tree division on the luminance CTU and chrominance C
  • Fig. 4 is a schematic diagram of the above-mentioned division method. As shown in Fig. 4, for each CTU (luminance and chrominance) in the image frame, or each CU (luminance and chrominance) after quadtree division; the method includes:
  • Step 401 Determine whether the size of each CTU or CU exceeds the size of the VPDU. If the result of the determination is yes, execute step 402, otherwise, execute step 403;
  • Step 402 divide the CTU or CU whose size is larger than the VPDU into a quadtree (no need to use signal flag bit indication), and return to step 401;
  • Step 403 Use the first tree division structure to further divide the brightness CTU whose size does not exceed the VPDU, or the brightness CU whose size does not exceed the VPDU after division, and use the second tree division structure to divide the color whose size does not exceed the VPDU.
  • the encoding and decoding unit 303 performs encoding or decoding with each further divided encoding unit as a unit.
  • the specific method of encoding or decoding can refer to the prior art, and this example does not limit the specific method of encoding or decoding.
  • the codec unit 303 determines the reference pixels of the luminance or chrominance CU to be coded and decoded, filters the reference pixels, determines the prediction mode of each CU, and uses the filtered reference pixels to determine the The prediction mode determines the prediction value of the current CU, and obtains the codec result.
  • the prediction mode of the luma CU is determined first, and when the prediction mode of the chroma CU is determined, the intra prediction mode of the chroma CU is determined according to the intra prediction mode of the luma CU corresponding to the chroma CU.
  • the intra-frame prediction modes include 65 angle prediction modes, direct current DC mode and planar planar mode. For the specific meaning of the modes, please refer to the prior art, which will not be repeated here.
  • Fig. 5 is a schematic diagram of the chrominance CU and the corresponding luminance CU. As shown in Fig.
  • the size is 128
  • the luminance CTU of ⁇ 128 is divided into 4 luminance CUs of size 64 ⁇ 64, and the position of the center point of the chrominance CTU is the common intersection point of the above 4 luminance CUs of size 64 ⁇ 64 (but belongs to luminance CU4), Therefore, if the prediction mode of the large block chrominance CU is determined only according to the prediction mode of the luma CU4 where the center point is located, the accuracy of the prediction value will be reduced, and the coding and decoding effect will be affected.
  • FIG. 6 is a schematic diagram of the image coding and decoding device.
  • the device 600 includes: a judgment unit 601, a first division unit 602, an encoding unit 603, and optionally, a second division unit 604, wherein the judgment unit 601, a first division unit 602,
  • the implementation of the second division unit 604 is the same as the judgment unit 301, the first division unit 302, and the second division unit 304, and will not be repeated here.
  • the encoding and decoding unit 603 includes:
  • a mode determination module 6031 configured to determine the intra prediction mode of the chroma CU according to the intra prediction mode of the luma CU corresponding to the chroma CU;
  • the codec module 6032 is used to code and decode each CU according to the determined intra prediction mode.
  • FIG. 7 is a schematic diagram of the structure of the mode determining module 6031. As shown in FIG. 7, when determining the prediction mode of a large chroma CU, the mode determining module 6031 includes:
  • the first determining module 701 is configured to determine at least two (N) luminance CUs adjacent to the center point of the chrominance CU;
  • the second determining module 702 is configured to determine the prediction modes of the N luminance CUs and the number of occurrences of various prediction modes;
  • the first judgment module 703 is used to first judge whether the prediction mode with the most occurrences is one type
  • the third determining module 704 is configured to use the prediction mode with the largest number of occurrences as the prediction mode of the chrominance CU when the judgment result of the first judgment module is yes.
  • the chroma CU is a large block of chroma CU.
  • the size of the chroma CU is equal to the size of the VPDU
  • the prediction mode of the chroma CU is determined by using the chroma CU as a unit.
  • the chroma CTU is used as a unit to determine the prediction mode of the chroma CTU.
  • the chroma CU described below may also represent the chroma CTU.
  • the prediction mode of a luminance CU (such as CU4 in Fig. 4, and luminance CU4 in Figs. 8-9 to be described later) where the center point of the chrominance CU is located is pre-defined to belong to CU4.
  • the prediction mode of the chrominance CU (hereinafter referred to as the default mode)
  • the prediction modes of the N luminance CUs adjacent to the center point are counted, and the prediction modes are calculated according to a predetermined strategy , Determine the prediction mode of the chroma CU from the N prediction modes, which will be described separately below.
  • the first determining module 701 determines the adjacent N luminance CUs, where N is greater than or equal to 2, and the N luminance CUs are CUs divided by the first tree division structure;
  • the luminance CU is the luminance CU1, the luminance CU2, the luminance CU3, and the luminance CU4 divided by the first tree division structure to which the 4 center points belong; as shown in Figure 9, the luminance CU where the center point of the chrominance CU is located is determined
  • the brightness CU4 determines the brightness CU2 adjacent to the upper side of the brightness CU4, the adjacent brightness CU3 on the left, and the adjacent brightness CU1 on the upper left.
  • the N brightness CUs are the above-mentioned brightness CU1, brightness CU2, brightness CU3, and brightness CU4
  • Figures 8 and 9 are taken as examples to illustrate the determination of the N adjacent CUs, but this embodiment is not limited to this.
  • N can also be less than 4 or greater than 4, or as shown in Figure 9. It is shown that the brightness CU adjacent to CU4 can also select the adjacent CU on the lower side, etc., and no examples are given here.
  • the second determining module 702 determines the prediction modes of the N luminance CUs and the number of occurrences of various prediction modes; the first determining module 703 is used to determine whether the prediction mode with the most occurrences is one; When the judgment result of the first judgment module 703 is yes, the third judgment module 704 uses the prediction mode with the most occurrences as the prediction mode of the chrominance CU.
  • the mode determining module 6031 further includes:
  • the second judgment module 705 is used to judge whether the planar mode is included in the prediction mode with the most occurrences
  • the third determination module 704 determines the prediction mode of the chrominance CU as the planar mode.
  • the mode determination module 6031 further includes:
  • the third judgment module 706 is used to judge whether the DC mode is included in the prediction mode with the most occurrences
  • the third determination module 704 determines the prediction mode of the chrominance CU as the DC mode.
  • the third judgment module 704 determines the prediction mode of the chroma CU as the intra prediction mode of the luma CU where the center point of the chroma CU is located (that is, the aforementioned default mode ).
  • the encoding and decoding module 6032 determines the reference pixels of the luminance or chrominance CU to be encoded and decoded, and filters the reference pixels, and uses the filtered reference pixels in combination with the prediction mode determined by the mode determination module 6031 to determine the current CU
  • the encoding and decoding result is obtained, the specific reference to the pixel determination method, the filtering method, the method of determining the prediction value, etc. can refer to the prior art, which will not be repeated here.
  • the two tree division structures are directly used to separately divide the luminance component and the chrominance component, and use each further divided coding unit as a unit. Encoding or decoding, which can improve image encoding and decoding performance.
  • the prediction mode of the large block of chroma CU is determined by using the prediction mode of multiple luma CUs adjacent to its center point position in combination with a predetermined strategy, instead of using the prediction mode of one luma CU.
  • the prediction mode of the large-block chrominance CU can thereby select a more suitable prediction mode for the large-block chrominance CU, improve the accuracy of the prediction value, and improve the coding and decoding effect.
  • FIG. 10 is a schematic diagram of an image encoding and decoding method according to an embodiment of the present invention. As shown in Figure 10, the method includes:
  • Step 1001 Determine whether the size of the luminance coding tree unit (CTU) or the divided luminance coding unit (CU), and the chrominance CTU or the divided chrominance CU does not exceed the size of the virtual pipeline data unit (VPDU) ;
  • Step 1002 When the judgment result is yes, use the first tree division structure to further divide the luminance CTU or the luminance CU, and use the second tree division structure to further divide the chrominance CTU or the chrominance CU Divide
  • Step 1003 Encoding or decoding is performed in units of each of the further divided coding units.
  • the method further includes:
  • Step 1004 divide the luminance CTU and/or chrominance CTU and/or luminance CU and/or chrominance CU whose size exceeds the VPDU of the virtual pipeline data unit into a quadtree until the divided The size of the luminance CU and the chrominance CU does not exceed the size of the virtual pipeline data unit (VPDU); and the first tree division structure is used to further divide the luminance CU after the quadtree division, and the second tree division structure is used The chrominance CU after the quadtree division is further divided, and then step 1003 is executed.
  • VPDU virtual pipeline data unit
  • the implementation of the above steps 1001-1004 can refer to the judgment unit 301, the first division unit 302, the codec unit 303, the second division unit 304, and the steps 401-403 in the first embodiment. Repeat it again.
  • the intra prediction mode of the chroma CU may be determined according to the intra prediction mode of the luma CU corresponding to the chroma CU; each CU may be edited according to the determined intra prediction mode. decoding.
  • FIG. 11 is a schematic diagram of the method for determining the chroma CU prediction mode. As shown in FIG. 11, the method includes:
  • Step 1101 Determine at least two (N) luminance CUs adjacent to the center point of the chrominance CU;
  • Step 1102 Determine the prediction modes of the N luminance CUs and the number of occurrences of various prediction modes
  • Step 1103 Determine whether the prediction mode with the most occurrences is one or more than one, and if the judgment result is yes, execute step 1104, otherwise, execute step 1105;
  • Step 1104 Use the prediction mode with the most occurrences as the prediction mode of the chroma CU;
  • Step 1105 Determine whether the prediction mode with the most occurrences includes the planar mode; if the judgment result is yes, execute step 1106, otherwise, execute step 1107;
  • Step 1106 Determine the prediction mode of the chroma CU as a planar mode
  • Step 1107 Determine whether the prediction mode with the most occurrences includes the DC mode; if the judgment result is yes, execute step 1108, otherwise, execute step 1109;
  • Step 1108 Determine the prediction mode of the chroma CU as the DC mode
  • Step 1109 Determine the prediction mode of the chroma CU as the intra prediction mode of the luma CU where the center point of the chroma CU is located.
  • the specific implementation manners of the above steps 1101-1109 can refer to the implementation manners of each module of the mode determination module 6031 in Embodiment 1, which will not be repeated here.
  • the method for determining the prediction mode is for a large chrominance CU whose size is equal to the size of the VPDU.
  • the two tree division structures are directly used to separately divide the luminance component and the chrominance component, and use each further divided coding unit as a unit. Encoding or decoding, which can improve image encoding and decoding performance.
  • the prediction mode of the large block of chroma CU is determined by using the prediction mode of multiple luma CUs adjacent to its center point position in combination with a predetermined strategy, instead of using the prediction mode of one luma CU.
  • the prediction mode of the large-block chrominance CU can thereby select a more suitable prediction mode for the large-block chrominance CU, improve the accuracy of the prediction value, and improve the coding and decoding effect.
  • An embodiment of the present invention also provides an electronic device that performs image processing or video processing, and includes the image encoding and decoding device in Embodiment 1, the content of which is incorporated herein and will not be repeated here.
  • Fig. 12 is a schematic diagram of an electronic device according to an embodiment of the present invention.
  • the electronic device 1200 may include: a processor 1201 and a memory 1202; the memory 1202 is coupled to the processor 1201.
  • the memory 1202 can store various data; in addition, it also stores an information processing program 1203, and the program 1203 is executed under the control of the processor 1201.
  • the electronic device 1200 may be used as an encoder, and the functions of the video encoding apparatus 100 or 600 may be integrated into the processor 1201.
  • the processor 1201 may be configured to implement the image encoding and decoding method described in Embodiment 2.
  • the processor 1201 may be configured to perform the following control: determine whether the size of the luminance coding tree unit (CTU) or the divided luminance coding unit (CU) and the chrominance CTU or the divided chrominance CU are both The size of the virtual pipeline data unit (VPDU) is not exceeded; when the judgment result is yes, use the first tree division structure to further divide the luminance CTU, or use the second tree division structure to further divide the chrominance CTU, or the chrominance CU is further divided; each coding unit after further division is used as a unit for encoding or decoding.
  • CTU luminance coding tree unit
  • CU luminance coding unit
  • VPDU virtual pipeline data unit
  • the processor 1201 may be further configured to perform the following control: divide the luminance CTU and/or chrominance CTU and/or luminance CU and/or chrominance CU whose size exceeds the virtual pipeline data unit VPDU into a quadtree, Until the size of the divided luminance CU and chrominance CU does not exceed the size of the virtual pipeline data unit (VPDU); and the first tree division structure is used to further divide the luminance CU after the quadtree division, and the second The tree division structure further divides the chrominance CU after the quadtree division.
  • the processor 1201 may be further configured to perform the following control: determine at least two (N) luma CUs adjacent to the center point of the chroma CU; determine the prediction mode and various prediction modes of the N luma CU The number of occurrences; when the prediction mode with the most occurrences is one, the prediction mode with the most occurrences is used as the prediction mode of the chroma CU; when the type of the prediction mode with the most occurrences is greater than 1, the most frequent occurrence is determined Whether the prediction mode includes the planar mode; when the judgment result is that the planar mode is included, the prediction mode of the chroma CU is determined as the planar mode; when the judgment result is that the planar mode is not included, it is judged whether the prediction mode with the most occurrences is included DC mode; when the judgment result is that the DC mode is included, the prediction mode of the chrominance CU is determined as the DC mode; when the judgment result is that the DC mode is not included, the prediction mode of the chromino
  • the electronic device 1200 may further include: an input/output (I/O) device 1204, a display 1205, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It should be noted that the electronic device 1200 does not necessarily include all the components shown in FIG. 12; in addition, the electronic device 1200 may also include components not shown in FIG. 12, and related technologies can be referred to.
  • I/O input/output
  • the embodiment of the present invention provides a computer-readable program, wherein when the program is executed in an image encoding and decoding apparatus or electronic equipment, the program causes the image encoding and decoding apparatus or electronic equipment to execute the image as described in Embodiment 2. Codec method.
  • An embodiment of the present invention provides a storage medium storing a computer-readable program, wherein the computer-readable program enables an image encoding and decoding apparatus or an electronic device to execute the image encoding and decoding method described in Embodiment 2.
  • the above devices and methods of the present invention can be implemented by hardware, or by hardware combined with software.
  • the present invention relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • the present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, and the like.
  • the method/device described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in the present invention. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, and multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

一种图像编解码方法、装置以及电子设备。该图像编解码方法包括:判断亮度编码树单元CTU或经过划分后的亮度编码单元CU,和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元VPDU的尺寸;在判断结果为是时,使用第一棵树划分结构对该亮度CTU,或者该亮度CU进行进一步划分,使用第二棵树划分结构对该色度CTU,或者该色度CU进行进一步划分;以进一步划分后的各个编码单元为单位进行编码或解码。由此,可以提高图像编解码性能。

Description

图像编解码方法、装置以及电子设备 技术领域
本发明实施例涉及信息技术领域,特别涉及一种图像编码方法、装置以及电子设备。
背景技术
在新一代视频编码标准(VVC,Versatile Video Coding)草案中,图像将被划分成一系列编码树单元(CTU,coding tree unit),每一个CTU包含了亮度分量和色度分量,可以使用两棵树划分结构或单棵树划分结构将亮度CTU和色度CTU划分成编码单元(CU,coding unit);针对单棵树划分结构,亮度CTU与色度CTU共用一个划分指示信号;针对两棵树划分结构,亮度CTU和色度CTU各自使用独立的划分指示信号;图1是现有两棵树划分结构和单棵树划分结构示意图;具体的,如图1所示,亮度CTU和色度CTU可以首先对该CTU进行四叉树(quaternary tree)划分;接着,对经过四叉树划分后的各个节点进行独立地或相同地多类型树(MTT,multi-type tree)划分,包括垂直方向的二叉树(BT,binary tree)划分(SPLIT_BT_VER)、水平方向的二叉树划分(SPLIT_BT_HOR)、垂直方向的三叉树(TT,ternary tree)划分(SPLIT_TT_VER)以及水平方向的三叉树划分(SPLIT_TT_HOR)。划分后得到的这些节点称为编码单元(CU,coding unit)。
另外,在现有的技术(JVET-K0556)中,定义了虚拟流水线数据单元(VPDU,Virtual pipeline data unit),在一个图像中,各个VPDU之间相互不重叠,每个VPDU包括64×64个像素的待处理样本,即尺寸为64×64的亮度样本或者32×32的色度样本。在对包含编码器或解码器的电子设备的硬件进行设计时,考虑以每个VPDU即64×64的图像块为单位依次进行处理。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
目前,针对4:2:0格式的图像,可以不通过显示的划分指示信号先对亮度CTU和色度CTU进行四叉树划分,之后使用两棵树划分结构分别对划分后的亮度CU和色度CU独立的进行划分,图2是上述划分方法示意图,如图2所示,与图1A-1B不同之处在于,不需要使用划分指示信号就将CTU进行四叉树划分,得到大小为64×64的亮度CU和大小为32×32的色度CU,之后使用两棵树划分结构分别对划分后的亮度CU和色度CU独立的进行划分。
但发明人发现,由于人眼对亮度信号的敏感程度比对色度信号的敏感程度要高,因此,发明人认为,现有的划分方法将色度CU划分成小块后进行编解码,会降低编解码性能。
针对上述问题,本发明实施例提供一种图像编解码方法、装置以及电子设备,能够提高图像编解码性能。
根据本发明实施例的第一个方面,提供一种图像编解码装置,该装置包括:
判断单元,其用于判断亮度编码树单元(CTU)或经过划分后的亮度编码单元(CU),和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元(VPDU)的尺寸;
第一划分单元,其用于在判断单元判断结果为是时,使用第一棵树划分结构对该亮度CTU,或者该亮度CU进行进一步划分,使用第二棵树划分结构对该色度CTU,或者该色度CU进行进一步划分;
编解码单元,其用于以进一步划分后的各个编码单元为单位进行编码或解码。
根据本发明实施例的第二个方面,提供一种图像编解码方法,该方法包括:
判断亮度编码树单元(CTU)或经过划分后的亮度编码单元(CU),和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元(VPDU)的尺寸;
在判断结果为是时,使用第一棵树划分结构对该亮度CTU,或者该亮度CU进行进一步划分,使用第二棵树划分结构对该色度CTU,或者该色度CU进行进一步划分;
以进一步划分后的各个编码单元为单位进行编码或解码。
根据本发明实施例的第三个方面,提供一种电子设备,其包括前述第一方面所述的图像编解码装置。
本发明实施例的有益效果在于:在CTU或CU的尺寸不超过VPDU的尺寸时,直接使用两棵树划分结构分别对亮度分量和色度分量进行独立地划分,以进一步划分 后的各个编码单元为单位进行编码或解码,由此可以提高图像编解码性能。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是现有两棵树划分结构和单棵树划分结构示意图;
图2是现有两棵树划分结构示意图;
图3是本发明实施例1中图像编解码装置构成示意图;
图4是本发明实施例1中划分方法示意图;
图5是色度CU与对应的亮度CU示意图;
图6是本发明实施例1中图像编解码装置构成示意图;
图7是本发明实施例1的模式确定模块6031构成示意图;
图8-9是本发明实施例1中确定该N个相邻的亮度CU示意图;
图10是本发明实施例2中图像编解码方法示意图;
图11是本发明实施例2的确定色度CU预测模式方法示意图;
图12是本发明实施例7的电子设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原 则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
实施例1
本发明实施例提供一种图像编解码装置。图3是本发明实施例的图像编解码装置的示意图。如图3所示,该装置300包括:
判断单元301,其用于判断亮度编码树单元(CTU)或经过划分后的亮度编码单元(CU),和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元(VPDU)的尺寸;
第一划分单元302,其用于在判断单元判断结果为是时,使用第一棵树划分结构对该亮度CTU,或者该亮度CU进行进一步划分,使用第二棵树划分结构对该色度CTU,或者该色度CU进行进一步划分;
编解码单元303,其用于以进一步划分后的各个编码单元为单位进行编码或解码。
在本实施例中,在CTU或CU的尺寸不超过VPDU的尺寸时,不需要强制进行四叉树分割,可以直接使用两棵树划分结构分别对亮度分量和色度分量进行独立地划分,以进一步划分后的各个编码单元为单位进行编码或解码,由此可以提高图像编解码性能。
在本实施例中,输入视频流由多个连续帧图像构成,可以预先将每帧图像划分为多个CTU,对于一个三通道的图像帧,一个CTU包含M×M个亮度块以及对应的两 个色度块,每个CTU大小相同。在VVC中,针对4:2:0格式的YUV序列,CTU的尺寸为128×128,即表示其包含一个大小为128×128的亮度CTU,以及两个大小为64×64的色度CTU。
在本实施例中,针对亮度CTU和色度CTU,判断单元301判断其尺寸是否都未超过VPDU的尺寸,在都未超过时,第一划分单元302对该亮度CTU和色度CTU使用两棵树划分结构分别进行独立地进一步划分。
例如在VPDU的尺寸为128×128,亮度CTU的尺寸为128×128,色度CTU的尺寸为64×64时,判断单元301的判断结果为亮度CTU的尺寸未超过VPDU,色度CTU的尺寸未超过VPDU,因此,第一划分单元302使用第一棵树划分结构对亮度CTU进行进一步划分,使用第二棵树划分结构对色度CTU进行进一步划分,该第一棵树和第二棵树相互独立,即亮度CTU和色度CTU各自具有独立的划分结构,该划分结构包括四叉树划分(QT)和/或多类型树(MTT,multi-type tree)划分,该MTT划分又包括垂直方向的二叉树(BT,binary tree)划分(SPLIT_BT_VER)、水平方向的二叉树划分(SPLIT_BT_HOR)、垂直方向的三叉树(TT,ternary tree)划分(SPLIT_TT_VER)以及水平方向的三叉树划分(SPLIT_TT_HOR)。亮度CTU划分后得到的节点称为亮度CU,色度CTU划分后得到的节点为色度CU。
在本实施例中,该第一划分单元301在使用该第一棵树划分结构以及该第二棵树划分结构进行进一步划分时,需要使用信号标志位指示划分,例如通过信号标志位qt_split_flag表示是否需要进行四叉树划分,通过信号标志位mtt_split_flag表示是否需要进行MTT划分,通过信号标志位mtt_split_cu_vertical_flag来表示MTT划分的方向,并通过信号标志位mtt_split_cu_binary_flag来表示MTT是二叉划分还是三叉划分,进而确定划分结构,上述第一棵树划分结构和第二棵树划分结构具体的划分方法可以参考现有技术,此处不再一一赘述。
在本实施例中,在该判断单元301判断结果为否时,该装置还可以包括:
第二划分单元304,将尺寸超过该虚拟流水线数据单元VPDU的亮度CTU和/或色度CTU和/或亮度CU和/或色度CU进行四叉树划分,直到划分后的亮度CU和色度CU尺寸不超过虚拟流水线数据单元(VPDU)的尺寸(通过判断单元301再次判断)。
并且,该第一划分单元302使用该第一棵树划分结构对该第二划分单元304划分 后的亮度CU进行进一步划分,使用该第二棵树划分结构对该第二划分单元304划分后的色度CU进行进一步划分。
在本实施例中,该第二划分单元304在进行四叉树划分时,不需要使用信号标志位指示划分。
例如在VPDU的尺寸为64×64,亮度CTU的尺寸为128×128,色度CTU的尺寸为64×64时,判断单元301的判断结果为亮度CTU的尺寸超过VPDU,色度CTU的尺寸未超过VPDU,因此,第二划分单元304将该亮度CTU进行四叉树划分(不需要使用信号标志位指示),直到划分后的亮度CU不超过VPDU的尺寸(由判断单元301判断确定),即得到4个尺寸为64×64的亮度CU,直接使用第一棵树划分结构对该第二划分单元304划分后的亮度CU进行进一步划分(该第一棵树划分结构中可以包含四叉树和/或MTT,具体划分方法如前所述);而针对色度CTU,由于其尺寸未超过VPDU,因此,不需要强制进行四叉树划分,直接使用第二棵树划分结构对该色度CTU进行进一步划分(该第二棵树划分结构中可以包含四叉树和/或MTT,具体划分方法如前所述)。
例如在VPDU的尺寸为32×32,亮度CTU的尺寸为128×128,色度CTU的尺寸为64×64时,判断单元301的判断结果为亮度CTU的尺寸超过VPDU,色度CTU的尺寸超过VPDU,因此,第二划分单元304将该亮度CTU进行四叉树划分(不需要使用信号标志位指示),得到4个尺寸为64×64的亮度CU,将该色度CTU进行四叉树划分(不需要使用信号标志位指示),得到4个尺寸为32×32的色度CU;判断单元301判断经过划分后的尺寸为64×64的亮度CU的尺寸仍然超过VPDU,因此第二划分单元304将各个亮度CU再次进行四叉树划分(不需要使用信号标志位指示),得到尺寸为32×32的亮度CU,判断单元301判断经过划分后的尺寸为32×32的色度CU的尺寸不超过VPDU,因此,使用第一棵树划分结构对该第二划分单元304划分后的亮度CU(尺寸为32×32)进行进一步划分(该第一棵树划分结构中可以包含四叉树和/或MTT,具体划分方法如前所述),使用第二棵树划分结构对该色度CU(尺寸为32×32)进行进一步划分(该第二棵树划分结构中可以包含四叉树和/或MTT,具体划分方法如前所述)。
综上,针对图像帧的各个CTU,判断单元301判断亮度CTU和色度CTU的尺寸是否都未超过VPDU,在判断结果为是时,第一划分单元302使用两棵树划分结构 独立地对亮度CTU和色度CTU进行进一步划分;在判断结果为亮度CTU的尺寸超过VPDU,色度CTU的尺寸未超过VPDU时,第二划分单元304对该亮度CTU进行四叉树划分(不需要使用信号标志位指示),直到划分后的亮度CU的尺寸未超过VPDU,第一划分单元302使用两棵树划分结构独立地对划分后的亮度CU和色度CTU进行进一步划分;在判断结果为亮度CTU和色度CTU的尺寸都超过VPDU时,第二划分单元304对该亮度CTU和色度CTU分别进行四叉树划分(不需要使用信号标志位指示),直到划分后的亮度CU和色度CU的尺寸未超过VPDU(由判断单元301判断确定),第一划分单元302使用两棵树划分结构独立地对划分后的亮度CU和划分后的色度CU进行进一步划分。
图4是上述划分方法示意图,如图4所示,针对图像帧中的各个CTU(亮度和色度),或者经过四叉树划分后的各个CU(亮度和色度);该方法包括:
步骤401,判断各个CTU或CU的尺寸是否超过VPDU的尺寸,在判断结果为是时,执行步骤402,否则执行步骤403;
步骤402,将尺寸大于VPDU的CTU或CU进行四叉树划分(不需要使用信号标志位指示),并返回步骤401;
步骤403,使用第一棵树划分结构对尺寸未超过VPDU的该亮度CTU,或者划分后的尺寸未超过VPDU的亮度CU进行进一步划分,使用第二棵树划分结构对尺寸未超过VPDU的该色度CTU,或者划分后的尺寸未超过VPDU的色度CU进行进一步划分。
在本实施例中,在使用两棵树划分结构划分后,编解码单元303以进一步划分后的各个编码单元为单位进行编码或解码。进行编码或解码的具体方法可以参考现有技术,本实例不对编码或解码的具体方法进行限制。
例如,在使用帧内预测时,编解码单元303确定待编解码的亮度或色度CU的参考像素,并对参考像素进行滤波,确定各个CU的预测模式,使用滤波后的参考像素结合确定的预测模式确定当前CU的预测值,得到编解码结果。
在本实施例中,先确定亮度CU的预测模式,在确定色度CU的预测模式时,根据与该色度CU对应的亮度CU的帧内预测模式确定该色度CU的帧内预测模式。帧内预测模式包括65中角度预测模式,直流DC模式以及平面planar模式,具体模式含义请参考现有技术,此处不再一一赘述。
在本实施例中,由于使用独立的两棵树划分结构分别对亮度CU和色度CU进行划分,因此,会出现一个色度CU对应多个亮度CU的问题,在现有的VVC方法中,规定将该色度CU的中心点所在位置对应的亮度CU作为与该色度CU对应位置的亮度CU,图5是该色度CU与对应的亮度CU示意图,如图5所示,尺寸为128×128的亮度CTU被划分为4个尺寸为64×64的亮度CU,色度CTU的中心点的位置,是上述4个尺寸为64×64的亮度CU的公共交点(但归属亮度CU4),因此,如果仅根据中心点所在的亮度CU4的预测模式来确定大块色度CU的预测模式,会降低预测值的准确性,影响编解码效果。
为了解决上述问题,本发明实施例还提供一种图像编解码装置,图6是该图像编解码装置的示意图。如图6所示,该装置600包括:判断单元601,第一划分单元602,编码单元603,可选的,还可以包括第二划分单元604,其中,判断单元601,第一划分单元602,第二划分单元604实施方式与判断单元301,第一划分单元302,第二划分单元304相同,此处不再赘述。
该编解码单元603包括:
模式确定模块6031,其用于根据与该色度CU对应的亮度CU的帧内预测模式确定该色度CU的帧内预测模式;
编解码模块6032,其用于根据确定的帧内预测模式,对各个CU进行编解码。
图7是该模式确定模块6031构成示意图,如图7所示,在确定大块色度CU的预测模式时,该模式确定模块6031包括:
第一确定模块701,其用于确定与该色度CU中心点位置相邻的至少两(N)个亮度CU;
第二确定模块702,其用于确定该N个亮度CU的预测模式以及各种预测模式出现的次数;
第一判断模块703,其用于第一判断出现次数最多的预测模式是否为一种;
第三确定模块704,其用于在该第一判断模块判断结果为是时,将出现次数最多的预测模式作为该色度CU的预测模式。
在本实施例中,该色度CU是大块色度CU,例如,色度CU的尺寸等于该VPDU的尺寸,以该色度CU为单位确定该色度CU的预测模式。在色度CTU的尺寸等于VPDU时,以该色度CTU为单位确定该色度CTU的预测模式,以下所述的色度CU 也可以表示色度CTU。
在现有技术中,将色度CU的中心点位置所在的一个亮度CU(例如附图4中CU4,后述附图8-9中的亮度CU4,预先规定该中心点归属CU4)的预测模式,作为该色度CU的预测模式(以下称为默认模式),与之相对的是,在本实施例中,统计与该中心点相邻的N个亮度CU的预测模式,并根据预定的策略,从N个预测模式中确定该色度CU的预测模式,以下分别说明。
在本实施例中,第一确定模块701确定该相邻的N个亮度CU,N大于等于2,该N个亮度CU是经过第一棵树划分结构划分后的CU;图8-9是两种确定N个亮度CU的方法示意图,以N=4为例,如图8所示,确定色度CU中心点对应的亮度CTU四叉树划分后的4个亮度CU的中心点,该N个亮度CU是该4个中心点所归属的经过第一棵树划分结构划分后的亮度CU1,亮度CU2,亮度CU3,亮度CU4;如图9所示,确定色度CU中心点位置所在的亮度CU为亮度CU4,确定该亮度CU4上侧相邻的亮度CU2,左侧相邻的亮度CU3,左上侧相邻的亮度CU1,该N个亮度CU是上述亮度CU1,亮度CU2,亮度CU3,亮度CU4,以上以附图8和9为例对确定该N个相邻的CU进行举例说明,但本实施例并不以此作为限制,例如N还可以小于4或大于4,或者,如图9所示,与CU4相邻的亮度CU也可以选择下侧相邻的CU等,此处不再一一举例。
在本实施例中,第二确定模块702确定该N个亮度CU的预测模式以及各种预测模式出现的次数;第一判断模块703,其用于判断出现次数最多的预测模式是否为一种;在该第一判断模块703判断结果为是时,第三确定模块704将出现次数最多的预测模式作为该色度CU的预测模式。
在该第一判断模块703判断结果为出现次数最多的预测模式的种类大于1时,该模式确定模块6031还包括:
第二判断模块705,其用于判断出现次数最多的预测模式中是否包括planar模式;
并且在该第二判断单元705判断结果为是时,该第三确定模块704将该色度CU的预测模式确定为planar模式。
在该第二判断模块703判断结果为否时,该模式确定模块6031还包括:
第三判断模块706,其用于判断出现次数最多的预测模式中是否包括DC模式;
并且在该第三判断模块706判断结果为是时,该第三确定模块704将该色度CU 的预测模式确定为DC模式。
在该第三判断模块706判断结果为否时,该第三确定模块704将该色度CU的预测模式确定为该色度CU中心点位置所在的亮度CU的帧内预测模式(即上述默认模式)。
在本实施例中,编解码模块6032确定待编解码的亮度或色度CU的参考像素,并对参考像素进行滤波,使用滤波后的参考像素结合模式确定模块6031确定的预测模式确定当前CU的预测值,得到编解码结果,具体参考像素确定方法,滤波方法,确定预测值的方法等可以参考现有技术,此处不再赘述。
在本实施例中,在CTU或CU的尺寸不超过VPDU的尺寸时,直接使用两棵树划分结构分别对亮度分量和色度分量进行独立地划分,以进一步划分后的各个编码单元为单位进行编码或解码,由此可以提高图像编解码性能。
另外,针对大块色度CU,通过使用与其中心点位置相邻的多个亮度CU的预测模式结合预定策略来确定该大块色度CU的预测模式,而不是使用一个亮度CU的预测模式确定该大块色度CU的预测模式,从而可以为大块色度CU选择更合适的预测模式,提高预测值的准确性,提高编解码效果。
实施例2
本发明实施例还提供一种图像编解码方法,图10是本发明实施例的图像编解码方法的示意图。如图10所示,该方法包括:
步骤1001,判断亮度编码树单元(CTU)或经过划分后的亮度编码单元(CU),和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元(VPDU)的尺寸;
步骤1002,在判断结果为是时,使用第一棵树划分结构对该亮度CTU,或者该亮度CU进行进一步划分,使用第二棵树划分结构对该色度CTU,或者该色度CU进行进一步划分;
步骤1003,以进一步划分后的各个编码单元为单位进行编码或解码。
在本实施例中,在步骤1001中判断结果为否时,该方法还包括:
步骤1004(可选,未图示),将尺寸超过该虚拟流水线数据单元VPDU的亮度CTU和/或色度CTU和/或亮度CU和/或色度CU进行四叉树划分,直到划分后的亮 度CU和色度CU尺寸不超过虚拟流水线数据单元(VPDU)的尺寸;并且,使用该第一棵树划分结构对四叉树划分后的亮度CU进行进一步划分,使用该第二棵树划分结构对四叉树划分后的色度CU进行进一步划分,然后执行步骤1003。
在本实施例中,上述步骤1001-1004的实施方式可以参考实施例1中判断单元301,第一划分单元302,编解码单元303,第二划分单元304,以及步骤401-403,此处不再赘述。
在本实施例中,在步骤1003中,可以根据与该色度CU对应的亮度CU的帧内预测模式确定该色度CU的帧内预测模式;根据确定的帧内预测模式对各个CU进行编解码。
图11是该确定色度CU预测模式方法示意图,如图11所示,该方法包括:
步骤1101,确定与该色度CU中心点位置相邻的至少两(N)个亮度CU;
步骤1102,确定该N个亮度CU的预测模式以及各种预测模式出现的次数;
步骤1103,判断出现次数最多的预测模式为一种还是大于1种,在判断结果为是时,执行步骤1104,否则执行步骤1105;
步骤1104,将出现次数最多的预测模式作为该色度CU的预测模式;
步骤1105,判断出现次数最多的预测模式中是否包括planar模式;在判断结果为是时,执行步骤1106,否则执行步骤1107;
步骤1106,将该色度CU的预测模式确定为planar模式;
步骤1107,判断出现次数最多的预测模式中是否包括DC模式;在判断结果为是时,执行步骤1108,否则执行步骤1109;
步骤1108,将该色度CU的预测模式确定为DC模式;
步骤1109,将该色度CU的预测模式确定为该色度CU中心点位置所在的亮度CU的帧内预测模式。
在本实施例中,上述步骤1101-1109的具体实施方式可以参考实施例1中模式确定模块6031的各个模块的实施方式,此处不再赘述。
在本实施例中,该预测模式确定方法针对大块色度CU,其尺寸等于该VPDU的尺寸。
在本实施例中,在CTU或CU的尺寸不超过VPDU的尺寸时,直接使用两棵树划分结构分别对亮度分量和色度分量进行独立地划分,以进一步划分后的各个编码单 元为单位进行编码或解码,由此可以提高图像编解码性能。
另外,针对大块色度CU,通过使用与其中心点位置相邻的多个亮度CU的预测模式结合预定策略来确定该大块色度CU的预测模式,而不是使用一个亮度CU的预测模式确定该大块色度CU的预测模式,从而可以为大块色度CU选择更合适的预测模式,提高预测值的准确性,提高编解码效果。
实施例3
本发明实施例还提供一种电子设备,该电子设备进行图像处理或视频处理,包括实施例1中的图像编解码装置,其内容合并于此,此处不再赘述。
图12是本发明实施例的电子设备的示意图。如图12所示,电子设备1200可以包括:处理器1201和存储器1202;存储器1202耦合到处理器1201。其中该存储器1202可存储各种数据;此外还存储信息处理的程序1203,并且在处理器1201的控制下执行该程序1203。
在一个实施例中,电子设备1200可以作为编码器使用,视频编码装置100或600的功能可以被集成到处理器1201中。其中,处理器1201可以被配置为实现如实施例2所述的图像编解码方法。
例如,处理器1201可以被配置为进行如下的控制:判断亮度编码树单元(CTU)或经过划分后的亮度编码单元(CU),和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元(VPDU)的尺寸;在判断结果为是时,使用第一棵树划分结构对该亮度CTU,或者该亮度CU进行进一步划分,使用第二棵树划分结构对该色度CTU,或者该色度CU进行进一步划分;以进一步划分后的各个编码单元为单位进行编码或解码。
例如,处理器1201可以还被配置为进行如下的控制:将尺寸超过该虚拟流水线数据单元VPDU的亮度CTU和/或色度CTU和/或亮度CU和/或色度CU进行四叉树划分,直到划分后的亮度CU和色度CU尺寸不超过虚拟流水线数据单元(VPDU)的尺寸;并且,使用该第一棵树划分结构对四叉树划分后的亮度CU进行进一步划分,使用该第二棵树划分结构对四叉树划分后的色度CU进行进一步划分。
例如,处理器1201可以还被配置为进行如下的控制:确定与该色度CU中心点位置相邻的至少两(N)个亮度CU;确定该N个亮度CU的预测模式以及各种预测 模式出现的次数;在出现次数最多的预测模式为一种时,将出现次数最多的预测模式作为该色度CU的预测模式;在出现次数最多的预测模式的种类大于1时,判断出现次数最多的预测模式中是否包括planar模式;在判断结果为包括planar模式时,将该色度CU的预测模式确定为planar模式;在判断结果为不包括planar模式时,判断出现次数最多的预测模式中是否包括DC模式;在判断结果为包括DC模式时,将该色度CU的预测模式确定为DC模式;在判断结果为不包括DC模式时,将该色度CU的预测模式确定为该色度CU中心点位置所在的亮度CU的帧内预测模式,其中,该色度CU的尺寸等于该VPDU的尺寸。
此外,如图12所示,电子设备1200还可以包括:输入输出(I/O)设备1204和显示器1205等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,电子设备1200也并不是必须要包括图12中所示的所有部件;此外,电子设备1200还可以包括图12中没有示出的部件,可以参考相关技术。
本发明实施例提供一种计算机可读程序,其中当在图像编解码装置或电子设备中执行所述程序时,所述程序使得该图像编解码装置或电子设备执行如实施例2所述的图像编解码方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得图像编解码装置或电子设备执行如实施例2所述的图像编解码方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存 储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可***移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (18)

  1. 一种图像编解码装置,所述装置包括:
    判断单元,其用于判断亮度编码树单元CTU或经过划分后的亮度编码单元CU,和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元VPDU的尺寸;
    第一划分单元,其用于在判断单元判断结果为是时,使用第一棵树划分结构对所述亮度CTU,或者所述亮度CU进行进一步划分,使用第二棵树划分结构对所述色度CTU,或者所述色度CU进行进一步划分;
    编解码单元,其用于以进一步划分后的各个编码单元为单位进行编码或解码。
  2. 根据权利要求1所述的装置,其中,所述装置还包括:
    第二划分单元,其用于在所述判断单元判断结果为否时,将尺寸超过所述虚拟流水线数据单元VPDU的亮度CTU和/或色度CTU和/或亮度CU和/或色度CU进行四叉树划分,直到划分后的亮度CU和色度CU尺寸不超过虚拟流水线数据单元(VPDU)的尺寸;
    并且,所述第一划分单元使用所述第一棵树划分结构对所述第二划分单元划分后的亮度CU进行进一步划分,使用所述第二棵树划分结构对所述第二划分单元划分后的色度CU进行进一步划分。
  3. 根据权利要求2所述的装置,其中,所述第二划分单元在进行四叉树划分时,不需要使用信号标志位指示划分。
  4. 根据权利要求1所述的装置,其中,所述第一划分单元在使用所述第一棵树划分结构以及所述第二棵树划分结构进行进一步划分时,需要使用信号标志位指示划分。
  5. 根据权利要求1所述的装置,其中,所述编解码单元包括:
    模式确定模块,其用于根据与所述色度CU对应的亮度CU的帧内预测模式确定所述色度CU的帧内预测模式;
    编解码模块,其用于根据确定的帧内预测模式对各个CU进行编解码。
  6. 根据权利要求5所述的装置,其中,所述模式确定模块包括:
    第一确定模块,其用于确定与所述色度CU中心点位置相邻的至少两(N)个亮 度CU;
    第二确定模块,其用于确定所述至少两(N)个亮度CU的预测模式以及各种预测模式出现的次数;
    第一判断模块,其用于判断出现次数最多的预测模式是否为一种;
    第三确定模块,其用于在所述第一判断模块判断结果为是时,将出现次数最多的预测模式作为所述色度CU的预测模式。
  7. 根据权利要求6所述的装置,其中,所述色度CU的尺寸等于所述VPDU的尺寸。
  8. 根据权利要求6所述的装置,其中,在所述第一判断模块判断结果为出现次数最多的预测模式的种类大于1时,所述模式确定模块还包括:
    第二判断模块,其用于判断出现次数最多的预测模式中是否包括平面planar模式;
    并且在所述第二判断单元判断结果为是时,所述第三确定模块将所述色度CU的预测模式确定为planar模式。
  9. 根据权利要求8所述的装置,其中,在所述第二判断模块判断结果为否时,所述模式确定模块还包括:
    第三判断模块,其用于判断出现次数最多的预测模式中是否包括直流DC模式;
    并且在所述第三判断模块判断结果为是时,所述第三确定模块将所述色度CU的预测模式确定为DC模式。
  10. 根据权利要求9所述的装置,其中,在所述第三判断模块判断结果为否时,所述第三确定模块将所述色度CU的预测模式确定为所述色度CU中心点位置所在的亮度CU的帧内预测模式。
  11. 一种图像编解码方法,所述方法包括:
    判断亮度编码树单元CTU或经过划分后的亮度编码单元CU,和色度CTU或经过划分后的色度CU的尺寸是否都未超过虚拟流水线数据单元VPDU的尺寸;
    在判断结果为是时,使用第一棵树划分结构对所述亮度CTU,或者所述亮度CU进行进一步划分,使用第二棵树划分结构对所述色度CTU,或者所述色度CU进行进一步划分;
    以进一步划分后的各个编码单元为单位进行编码或解码。
  12. 根据权利要求11所述的方法,其中,在所述判断结果为否时,所述方法还包括:
    将尺寸超过所述虚拟流水线数据单元VPDU的亮度CTU和/或色度CTU和/或亮度CU和/或色度CU进行四叉树划分,直到划分后的亮度CU和色度CU尺寸不超过虚拟流水线数据单元(VPDU)的尺寸;
    并且,使用所述第一棵树划分结构对四叉树划分后的亮度CU进行进一步划分,使用所述第二棵树划分结构对四叉树划分后的色度CU进行进一步划分。
  13. 根据权利要求12所述的方法,其中,在进行所述四叉树划分时,不需要使用信号标志位指示划分。
  14. 根据权利要求11所述的方法,其中,在使用所述第一棵树划分结构以及所述第二棵树划分结构进行进一步划分时,需要使用信号标志位指示划分。
  15. 根据权利要求11所述的方法,其中,以进一步划分后的各个编码单元为单位进行编码或解码包括:
    根据与所述色度CU对应的亮度CU的帧内预测模式确定所述色度CU的帧内预测模式;
    根据确定的帧内预测模式对各个CU进行编解码。
  16. 根据权利要求15所述的方法,其中,根据与所述色度CU对应的亮度CU的帧内预测模式确定所述色度CU的帧内预测模式包括:
    确定与所述色度CU中心点位置相邻的至少两(N)个亮度CU;
    确定所述至少两(N)个个亮度CU的预测模式以及各种预测模式出现的次数;
    在出现次数最多的预测模式为一种时,将出现次数最多的预测模式作为所述色度CU的预测模式;
    在出现次数最多的预测模式的种类大于1时,判断出现次数最多的预测模式中是否包括planar模式;
    在判断结果为包括planar模式时,将所述色度CU的预测模式确定为planar模式;
    在判断结果为不包括planar模式时,判断出现次数最多的预测模式中是否包括DC模式;
    在判断结果为包括DC模式时,将所述色度CU的预测模式确定为DC模式;
    在判断结果为不包括DC模式时,将所述色度CU的预测模式确定为所述色度 CU中心点位置所在的亮度CU的帧内预测模式。
  17. 根据权利要求16所述的方法,其中,所述色度CU的尺寸等于所述VPDU的尺寸。
  18. 一种电子设备,其中,所述电子设备包括:权利要求1所述的装置。
PCT/CN2019/079498 2019-03-25 2019-03-25 图像编解码方法、装置以及电子设备 WO2020191575A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079498 WO2020191575A1 (zh) 2019-03-25 2019-03-25 图像编解码方法、装置以及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079498 WO2020191575A1 (zh) 2019-03-25 2019-03-25 图像编解码方法、装置以及电子设备

Publications (1)

Publication Number Publication Date
WO2020191575A1 true WO2020191575A1 (zh) 2020-10-01

Family

ID=72608385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079498 WO2020191575A1 (zh) 2019-03-25 2019-03-25 图像编解码方法、装置以及电子设备

Country Status (1)

Country Link
WO (1) WO2020191575A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079160A (zh) * 2014-11-11 2017-08-18 联发科技(新加坡)私人有限公司 对亮度及色度使用单独编码树的视频编码方法
US20170347128A1 (en) * 2016-05-25 2017-11-30 Arris Enterprises Llc Binary ternary quad tree partitioning for jvet
CN109076210A (zh) * 2016-05-28 2018-12-21 联发科技股份有限公司 视频编解码的当前图像参考的方法和装置
CN109479128A (zh) * 2016-08-05 2019-03-15 联发科技股份有限公司 视频编解码的方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079160A (zh) * 2014-11-11 2017-08-18 联发科技(新加坡)私人有限公司 对亮度及色度使用单独编码树的视频编码方法
US20170347128A1 (en) * 2016-05-25 2017-11-30 Arris Enterprises Llc Binary ternary quad tree partitioning for jvet
CN109076210A (zh) * 2016-05-28 2018-12-21 联发科技股份有限公司 视频编解码的当前图像参考的方法和装置
CN109479128A (zh) * 2016-08-05 2019-03-15 联发科技股份有限公司 视频编解码的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIH-WEI HSU , TZU-DER CHUANG , CHING-YEH CHEN , YU-WEN HUANG , SHAW-MIN LEI: "CE1-related: Constraint for Binary and Ternary Partitions", JOINT VIDEO EXPERTS TEAM (JVET) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11, no. JVET-K0556, 16 July 2018 (2018-07-16), pages 1 - 10, XP030249684 *

Similar Documents

Publication Publication Date Title
US10194150B2 (en) Method and device for coding image, and method and device for decoding image
JP5232854B2 (ja) デブロッキング・フィルタ配列
WO2015180428A1 (zh) 帧内预测编码的视频编码方法及视频编码装置
US20160100161A1 (en) Decoder, encoder, decoding method, encoding method, and codec system
JP2012500564A5 (zh)
CN110830787B (zh) 一种检测花屏图像的方法及装置
WO2016045581A1 (zh) 编码方法、解码方法、装置及电子设备
WO2020191575A1 (zh) 图像编解码方法、装置以及电子设备
WO2021237569A1 (zh) 编码方法、解码方法、装置及***
JP2021122123A (ja) 画像コーディング装置、画像デコーディング装置、及び画像処理機器
CN109451306B (zh) 色度分量的最佳预测模式的选择方法、装置及电子设备
KR20220011182A (ko) 비디오 이미지 처리 방법, 장치 및 저장 매체
WO2021128281A1 (zh) 自适应颜色变换的编解码方法、装置以及视频编解码设备
WO2021253721A1 (zh) 一种帧内预测方法、装置、终端及存储介质
TWI825410B (zh) 影像處理方法、裝置、攝影設備和儲存介質
US11025910B2 (en) Video encoder, video decoder, and video system
WO2020224476A1 (zh) 一种图像划分方法、装置及设备
CN110933418B (zh) 一种视频数据处理方法、设备、介质以及装置
WO2020252726A1 (zh) 图像编码和解码方法、装置以及视频编解码设备
CN110115026B (zh) 在电子装置中在矩形投影上产生360度内容的方法和***
US20200137134A1 (en) Multi-session low latency encoding
WO2020258056A1 (zh) 一种视频图像处理方法、设备及存储介质
US20080159637A1 (en) Deblocking filter hardware accelerator with interlace frame support
WO2024051328A1 (zh) 图像编解码方法、装置、编码器、解码器和***
CN110249630A (zh) 去块效应滤波装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920857

Country of ref document: EP

Kind code of ref document: A1