WO2020188648A1 - Modeling method, modeling system, and modeling base - Google Patents

Modeling method, modeling system, and modeling base Download PDF

Info

Publication number
WO2020188648A1
WO2020188648A1 PCT/JP2019/010924 JP2019010924W WO2020188648A1 WO 2020188648 A1 WO2020188648 A1 WO 2020188648A1 JP 2019010924 W JP2019010924 W JP 2019010924W WO 2020188648 A1 WO2020188648 A1 WO 2020188648A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
modeling
work
base material
modeled object
Prior art date
Application number
PCT/JP2019/010924
Other languages
French (fr)
Japanese (ja)
Inventor
俊光 倉見
剛之 水谷
宮川 智樹
明宏 辻
ふみ香 清水
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/010924 priority Critical patent/WO2020188648A1/en
Publication of WO2020188648A1 publication Critical patent/WO2020188648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the present invention relates to, for example, a modeling method and a modeling system for forming a modeled object, and a technical field of a modeling base used in the modeling system.
  • Patent Document 1 describes a modeling system in which a powdered material is melted with an energy beam and then the melted material is solidified to form a modeled object on a base material.
  • a powdered material is melted with an energy beam and then the melted material is solidified to form a modeled object on a base material.
  • the film comprising irradiating the film formed on the surface of the base material with an energy beam and supplying a material having a melting point lower than the melting point of the film to the irradiation position of the energy beam.
  • an irradiation device that irradiates a film formed on the surface of the base material with an energy beam, and a supply device that supplies a material having a melting point lower than the melting point of the film to the irradiation position of the energy beam.
  • a control device that controls the irradiation device and the supply device to irradiate the film with the energy beam and supply the material to the irradiation position of the energy beam to form a modeled object on the base material.
  • a built-in modeling system is provided.
  • a modeling base used in a modeling system for forming a modeled object using a material, which is formed on a base material and the surface of the base material and has a melting point higher than the melting point of the material.
  • FIG. 1 is a cross-sectional view showing the structure of the modeling system of the present embodiment.
  • FIGS. 2 (a) to 2 (c) is a cross-sectional view showing a state in which light is irradiated and a modeling material is supplied in a certain region on the work.
  • 3 (a), 3 (c) and 3 (e) are cross-sectional views showing the process of forming a three-dimensional structure, and are FIGS. 3 (b), 3 (d) and 3 (e).
  • Each of (f) is a plan view which shows the process of forming a three-dimensional structure.
  • FIGS. 4 (a) to 4 (c) is a cross-sectional view showing a process of forming a three-dimensional structure.
  • FIG. 1 is a cross-sectional view showing the structure of the modeling system of the present embodiment.
  • FIGS. 2 (a) to 2 (c) is a cross-sectional view showing a state in which light is irradiated and a modeling material is
  • FIG. 5 is a cross-sectional view showing a work that has been subjected to a separation facilitation process.
  • FIG. 6A is a cross-sectional view showing a work on which a film is formed
  • FIG. 6B is a plan view showing a work on which a film is formed.
  • FIG. 7A is a cross-sectional view showing the light emitted to the modeling surface and the modeling material supplied to the modeling surface
  • FIG. 7B is the light emitted to the modeling surface. It is sectional drawing which shows the modeling material supplied to the modeling surface.
  • 8 (a) and 8 (c) are cross-sectional views showing a molding material solidified so that a film partially remains between the work and the surface of the work
  • FIG. 8 (b) shows the work.
  • FIG. 9 is a plan view showing the movement trajectories of the target irradiation region and the target supply region on the modeling surface.
  • the target irradiation region is irradiated with light at a desired timing while moving each of the target irradiation region and the target supply region from the modeling start position along the Y-axis direction.
  • FIG. 10 (a) and 10 (c) shows a solidified modeling material when one scanning operation of supplying the modeling material to the target supply area is completed, and FIG.
  • FIG. 10B is a cross-sectional view of the target irradiation area and the target supply area from the modeling start position.
  • a cross section showing a solidified modeling material when one scanning operation of irradiating the target irradiation region with light at a desired timing and supplying the modeling material to the target supply region while moving each of them along the Y-axis direction is completed. It is a figure.
  • FIG. 11A is a plan view showing a structural layer of the lowest layer formed by alternately repeating a scanning operation and a stepping operation, and each of FIGS. 11B and 11C It is sectional drawing which shows the structural layer of the lowermost layer formed by repeating a scanning operation and a step operation alternately.
  • FIG. 11A is a plan view showing a structural layer of the lowest layer formed by alternately repeating a scanning operation and a stepping operation
  • FIGS. 11B and 11C It is sectional drawing which shows the structural layer of the lowermost layer formed by repeating a scanning operation and a step
  • FIG. 12 is a cross-sectional view showing a three-dimensional structure formed in a state where a film partially remains between the work and the surface of the work.
  • FIG. 13 is a cross-sectional view showing a three-dimensional structure formed in a state where no film remains between the work and the surface of the work.
  • FIG. 14 is a cross-sectional view showing how the three-dimensional structure is separated from the work.
  • FIG. 15 is a cross-sectional view showing a work on which a film having a surface roughness larger than that of the work is formed.
  • FIG. 16 is a cross-sectional view showing a molding material solidified so that a film partially remains between the work and the surface of the work.
  • FIG. 17 is a cross-sectional view showing a three-dimensional structure formed in a state where a film partially remains between the work and the surface of the work.
  • FIG. 18 is a cross-sectional view showing how the three-dimensional structure is separated from the work.
  • the laser overlay welding method includes direct metal deposition, directed energy deposition, laser cladding, laser engineered net shaping, direct light fabrication, and laser consolidation.
  • Foundation, Shape Deposition Manufacturing, Wire-Feed Laser Deposition, Gas Through Wire, Laser Powder Fusion, Laser Metal Forming, Selective Laser Powder Remelting, Laser Direct -It may also be called casting, laser powder deposition, laser additive manufacturing, or laser rapid forming.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction or the gravity direction).
  • the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be horizontal.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the modeling system 1 of the present embodiment.
  • the modeling system 1 is a three-dimensional structure (that is, a three-dimensional object having a size in any of the three-dimensional directions, and a three-dimensional object, in other words, an object having a size in the X, Y, and Z directions. ) ST can be formed.
  • the modeling system 1 can form the three-dimensional structure ST on the work W which is the basis for forming the three-dimensional structure ST (for example, at least one of the base material, the work material, the pedestal, and the workpiece). Is.
  • the modeling system 1 can form a three-dimensional structure ST by performing additional processing on the work W. When the work W is the stage 13 described later, the modeling system 1 can form the three-dimensional structure ST on the stage 13.
  • the modeling system 1 When the work W is an existing structure held by the stage 13 (note that the existing structure may be another three-dimensional structure ST formed by the modeling system 1), the modeling system 1 , The three-dimensional structure ST can be formed on the existing structure. In this case, the modeling system 1 may form a three-dimensional structure ST integrated with the existing structure. The operation of forming the three-dimensional structure ST integrated with the existing structure can be regarded as equivalent to the operation of adding a new structure to the existing structure.
  • the existing structure may be, for example, a repair-required product having a defective portion.
  • the modeling system 1 may form a three-dimensional structure in the repair-required product so as to fill the defective portion of the repair-required product.
  • the modeling system 1 may form a three-dimensional structure ST that can be separated from the existing structure.
  • FIG. 1 shows an example in which the work W is an existing structure held by the stage 13. Further, in the following, the description will proceed with reference to an example in which the work W is an existing structure held by the stage 13.
  • the modeling system 1 can form a modeled object by the laser overlay welding method. That is, it can be said that the modeling system 1 is a 3D printer that forms an object by using the laminated modeling technique.
  • the laminated modeling technique is also referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
  • the modeling system 1 processes the modeling material M with optical EL to form a modeled object.
  • optical LE for example, at least one of infrared light, visible light, and ultraviolet light can be used, but light of other wavelengths, for example, light having a wavelength in the visible region may be used.
  • the optical EL is a laser beam.
  • the modeling material M is a material that can be melted by irradiation with light EL having a predetermined intensity or higher.
  • a modeling material M for example, at least one of a metallic material and a resin material can be used.
  • the modeling material M a material different from the metallic material and the resin material may be used.
  • the modeling material M is a powdery material. That is, the modeling material M is a powder.
  • the powder may contain a granular material in addition to the powdery material.
  • the modeling material M may contain, for example, a powder having a particle size within the range of 90 micrometers ⁇ 40 micrometers.
  • the average particle size of the powders constituting the modeling material M may be, for example, 75 micrometers or other sizes.
  • the modeling material M does not have to be powder, and for example, a wire-shaped modeling material or a gaseous modeling material may be used.
  • the modeling material M may be processed with an energy beam such as a charged particle beam to form a modeled object.
  • the modeling system 1 includes a modeling head 11, a head drive system 12, a stage 13, and a control device 14, as shown in FIG. Further, the modeling head 11 includes an irradiation system 111 and a material nozzle (that is, at least a part of the supply system for supplying the modeling material M) 112.
  • the modeling system 1 may accommodate the modeling head 11, the head drive system 12, and the stage 13 in a chamber (not shown). Here, the inside of the chamber may be purged with an inert gas such as nitrogen or argon gas.
  • the irradiation system 111 is an optical system (for example, a condensing optical system) for emitting optical EL from the injection unit 113. Specifically, the irradiation system 111 is optically connected to a light source (not shown) that emits an optical EL via an optical transmission member (not shown) such as an optical fiber. The irradiation system 111 emits optical EL propagating from the light source via the optical transmission member. The irradiation system 111 irradiates the light EL downward (that is, the ⁇ Z side) from the irradiation system 111. A stage 13 is arranged below the irradiation system 111.
  • the irradiation system 111 can irradiate the work W with light EL. Specifically, the irradiation system 111 irradiates the irradiation area EA having a predetermined shape set on the work W as the area where the light EL is irradiated (typically, the light is focused). Further, the state of the irradiation system 111 can be switched between a state in which the irradiation region EA is irradiated with the light EL and a state in which the irradiation region EA is not irradiated with the light EL under the control of the control device 14.
  • the direction of the light EL emitted from the irradiation system 111 is not limited to the direction directly below (that is, the direction corresponding to the Z axis), and may be, for example, a direction tilted by a predetermined angle with respect to the Z axis. ..
  • the irradiation region EA may be, for example, a circular region or another shape (for example, a rectangular shape).
  • the material nozzle 112 has a supply outlet (that is, a supply port) 114 for supplying the modeling material M.
  • the material nozzle 112 supplies the molding material M from the supply outlet 114 (eg, injection, ejection or injection).
  • the material nozzle 112 is physically connected to a material supply device (not shown) that is a supply source of the modeling material M.
  • a powder transmission member such as a pipe (not shown) may be interposed between the material supply device and the material nozzle.
  • the material nozzle 112 supplies the modeling material M supplied from the material supply device via the powder transmission member.
  • the material nozzle 112 is drawn in a tube shape.
  • the shape of the material nozzle 112 is not limited to this tube shape.
  • the material nozzle 112 supplies the modeling material M downward (that is, the ⁇ Z side).
  • a stage 13 is arranged below the material nozzle 112.
  • the material nozzle 112 supplies the modeling material M toward the work W.
  • the traveling direction of the modeling material M supplied from the material nozzle 112 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z axis, but is directly below (that is, a direction corresponding to the Z axis). You may.
  • a plurality of material nozzles 112 may be provided.
  • the material nozzle 112 is aligned with respect to the irradiation system 111 so that the irradiation system 111 supplies the modeling material M toward the irradiation region EA that irradiates the light EL. That is, the material nozzle 112 and the irradiation area are irradiated so that the supply area MA and the irradiation area EA set on the work W as the area where the material nozzle 112 supplies the modeling material M coincide with (or at least partially overlap) with each other.
  • the system 111 is aligned with the system 111.
  • the material nozzle 112 may be aligned so as to supply the modeling material M to the molten pool MP formed in the work W by the light EL emitted from the irradiation system 111. Further, the supply region MA to which the material nozzle 112 supplies the modeling material M and the region of the molten pool MP may be aligned so as to partially overlap each other.
  • the head drive system 12 moves the modeling head 11.
  • the head drive system 12 moves the modeling head 11 along the X-axis, the Y-axis, and the Z-axis, respectively.
  • the head drive system 12 may move the modeling head 11 along at least one rotation direction in the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to the X-axis, the Y-axis, and the Z-axis, respectively.
  • the head drive system 12 may rotate the modeling head 11 around at least one of the X-axis, Y-axis, and Z-axis.
  • the head drive system 12 may change the posture of the modeling head 11 around at least one of the X-axis, the Y-axis, and the Z-axis.
  • the head drive system 12 includes an actuator such as a motor, for example.
  • the head drive system 12 moves the modeling head 11, the irradiation region EA also moves on the work W with respect to the work W. Therefore, the head drive system 12 can change the positional relationship between the work W and the irradiation area EA (in other words, the positional relationship between the stage 13 holding the work W and the irradiation area EA) by moving the modeling head 11. Is. Further, the head drive system 12 can change the positional relationship between the work W and the supply area MA (in other words, the positional relationship between the stage 13 holding the work W and the supply area MA) by moving the modeling head 11. Is.
  • the head drive system 12 may move the irradiation system 111 and the material nozzle 112 separately. Specifically, for example, the head drive system 12 adjusts at least one of the position of the injection unit 113, the direction (or posture) of the injection unit 113, the position of the supply outlet 114, and the direction (or posture) of the supply outlet 114. It may be possible. In this case, the irradiation region EA in which the irradiation system 111 irradiates the light EL and the supply region MA in which the material nozzle 112 supplies the modeling material M can be controlled separately.
  • Stage 13 can hold the work W. However, the stage 13 does not have to be able to hold the work W. In this case, the work W may be placed on the stage 13. At this time, the work W may be mounted on the stage 13 without being clamped. Alternatively, the work W may be supported by the stage 13. Further, when the work W is held, the stage 13 can release the held work W.
  • the irradiation system 111 described above irradiates the optical EL at least for a part of the period during which the stage 13 holds the work W. Further, the material nozzle 112 described above supplies the modeling material M for at least a part of the period during which the stage 13 holds (or places or supports) the work W.
  • a part of the modeling material M supplied by the material nozzle 112 may be scattered or spilled from the surface of the work W to the outside of the work W (for example, around the stage 13). Therefore, the modeling system 1 may be provided with a recovery device for collecting the scattered or spilled modeling material M around the stage 13.
  • the control device 14 controls the operation of the modeling system 1.
  • the control device 14 may include, for example, an arithmetic unit such as at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and a storage device such as a memory.
  • the control device 14 functions as a device that controls the operation of the modeling system 1 by executing a computer program by an arithmetic unit such as a CPU.
  • This computer program is a computer program for causing the control device 14 (for example, the CPU) to perform (that is, execute) the operation described later to be performed by the control device 14. That is, this computer program is a computer program for causing the control device 14 to function so that the modeling system 1 performs an operation described later.
  • the computer program executed by the arithmetic unit may be recorded in a memory (that is, a recording medium) included in the control device 14, or may be an arbitrary storage medium built in the control device 14 or externally attached to the control device 14. It may be recorded in (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 14 via the network interface.
  • a memory that is, a recording medium included in the control device 14
  • the arithmetic unit may download the computer program to be executed from an external device of the control device 14 via the network interface.
  • the control device 14 controls the emission mode of the optical EL by the irradiation system 111.
  • the injection mode includes, for example, at least one of the intensity of the optical EL and the injection timing of the optical EL.
  • the emission mode may include, for example, the length of the emission time of the pulsed light and the ratio to the emission period of the pulsed light (so-called duty ratio). Further, the injection mode may include, for example, the length of the emission time of the pulsed light itself or the emission cycle itself.
  • the control device 14 controls the movement mode of the modeling head 11 by the head drive system 12.
  • the movement mode includes, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing. Further, the control device 14 controls the supply mode of the modeling material M by the material nozzle 112.
  • the supply mode includes, for example, a supply amount (particularly, a supply amount per unit time).
  • the control device 14 does not have to be provided inside the modeling system 1, and may be provided as a server or the like outside the modeling system 1, for example.
  • the control device 14 and the modeling system 1 may be connected by a wired and / or wireless network (or a data bus and / or a communication line).
  • a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used.
  • a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®).
  • a network using infrared rays may be used.
  • a network using optical communication may be used.
  • the control device 14 and the modeling system 1 may be configured so that various types of information can be transmitted and received via the network. Further, the control device 14 may be able to transmit information such as commands and control parameters to the modeling system 1 via the network.
  • the modeling system 1 may include a receiving device that receives information such as commands and control parameters from the control device 14 via the network.
  • a part of the control device 14 may be provided inside the modeling system 1, and a part of the control device 14 may be provided outside the modeling system 1.
  • the recording medium for recording the computer program executed by the arithmetic unit includes CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD-. At least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memory such as USB memory, and any other medium capable of storing a program is used. You may.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware).
  • each process or function included in the computer program may be realized by a logical processing block realized in the control device 14 by the control device 14 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 14, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
  • FPGA predetermined gate array
  • ASIC logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
  • the modeling system 1 performs a modeling operation for forming the three-dimensional structure ST.
  • the modeling system 1 forms the three-dimensional structure ST by the laser overlay welding method. Therefore, the modeling system 1 may form the three-dimensional structure ST by performing an existing modeling operation based on the laser overlay welding method.
  • an example of the modeling operation of the three-dimensional structure ST by the laser overlay welding method will be briefly described.
  • the modeling system 1 forms the three-dimensional structure ST on the work W based on the three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed.
  • the three-dimensional model data includes data representing the shape (particularly, the three-dimensional shape) of the three-dimensional structure ST.
  • the measurement data of the three-dimensional object measured by the measuring device provided in the modeling system 1 may be used.
  • the measurement data of the three-dimensional shape measuring machine provided separately from the modeling system 1 may be used.
  • a contact type three-dimensional measuring machine and a non-contact type three-dimensional measuring machine having a probe that can move with respect to the work W and can contact the work W.
  • a non-contact type 3D measuring machine a pattern projection type 3D measuring machine, an optical cutting type 3D measuring machine, a time of flight type 3D measuring machine, and a moiretopography type 3D measuring machine
  • the design data of the 3D structure ST may be used.
  • the modeling system 1 sequentially forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SLs arranged along the Z-axis direction.
  • structural layers layered partial structures
  • the modeling system 1 sequentially forms a plurality of structural layers SL obtained by cutting the three-dimensional structure ST into round slices along the Z-axis direction.
  • the three-dimensional structure ST which is a laminated structure in which a plurality of structural layers SL are laminated, is formed.
  • the flow of the operation of forming the three-dimensional structure ST by forming the plurality of structural layers SL one by one in order will be described.
  • each structural layer SL Under the control of the control device 14, the modeling system 1 sets an irradiation region EA in a desired region on the modeling surface MS corresponding to the surface of the work W or the surface of the formed structural layer SL, and the irradiation region EA is set with respect to the irradiation region EA.
  • the light EL is irradiated from the irradiation system 111.
  • the region occupied by the light EL emitted from the irradiation system 111 on the modeling surface MS may be referred to as an irradiation region EA.
  • the modeling system 1 does not have to set the irradiation region EA in the desired region on the modeling surface MS.
  • the region occupied by the light EL irradiated from the irradiation system 111 on the modeling surface MS may be referred to as the irradiation region EA.
  • the focus position FP of the optical EL (that is, the condensing position, in other words, the position where the optical EL is most convergent in the Z-axis direction or the traveling direction of the optical EL) coincides with the modeling surface MS. ing.
  • the focus position FP of the optical EL may be set to a position deviated from the modeling surface MS in the Z-axis direction.
  • a pool of liquid metal or resin melted by the optical EL in a desired region on the modeling surface MS by the optical EL emitted from the irradiation system 111. ) MP is formed.
  • the modeling system 1 sets a supply region MA in a desired region on the modeling surface MS under the control of the control device 14, and supplies the modeling material M to the supply region MA from the material nozzle 112.
  • the modeling system 1 does not have to set the supply region MA in the desired region on the modeling surface MS.
  • the region to which the modeling material M is supplied from the material nozzle 112 may be referred to as a supply region MA.
  • the supply region MA is set to the region where the molten pool MP is formed.
  • the supply region MA coincides with the region where the molten pool MP is formed. Therefore, as shown in FIG. 2B, the modeling system 1 supplies the modeling material M to the molten pool MP from the material nozzle 112. As a result, the modeling material M supplied to the molten pool MP melts. When the molten pool MP is no longer irradiated with light EL due to the movement of the modeling head 11, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified). As a result, as shown in FIG.
  • the solidified modeling material M is deposited on the modeling surface MS.
  • a model is formed by the deposit of the solidified model material M.
  • a series of modeling processes including formation of the molten pool MP by such light irradiation EL, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M are performed. It is repeated while changing the position of the modeling head 11 in the XY plane with respect to the surface MS. In other words, while moving the modeling head 11 relative to the modeling surface MS along the XY plane, the formation of the molten pool MP, the supply of the modeling material M, the melting of the modeling material M, and the melting of the molten modeling material M A series of modeling processes including solidification are repeated.
  • the irradiation region EA also moves with respect to the modeling surface MS.
  • a series of modeling processes is repeated while moving the irradiation region EA relative to the modeling surface MS along the XY plane (that is, in the two-dimensional plane).
  • the optical EL selectively irradiates the irradiation region EA set in the region where the modeled object should be formed, while the light EL is applied to the irradiation region EA set in the region where the modeled object should not be formed. Is not selectively irradiated. It can also be said that the irradiation region EA is not set in the region where the modeled object should not be formed.
  • the modeling system 1 moves the irradiation region EA along the predetermined movement locus on the modeling surface MS, and transfers the optical EL to the modeling surface MS at a timing according to the distribution mode of the region on which the modeled object should be formed. Irradiate.
  • the modeling system 1 moves a region to be irradiated with the light EL along a predetermined movement locus on the modeling surface MS, and when the region is located in the region where the modeled object should be formed, the light is emitted.
  • the EL is applied to the modeling surface MS.
  • a structural layer SL corresponding to an aggregate of the modeled objects made of the solidified modeling material M is formed on the modeling surface MS.
  • the irradiation area EA is moved with respect to the modeling surface MS, but the modeling surface MS may be moved with respect to the irradiation area EA.
  • the mode of distribution of the region where the modeled object is to be formed may be referred to as a distribution pattern or a pattern of the structural layer SL.
  • the modeling system 1 repeatedly performs the operation for forming such a structural layer SL under the control of the control device 14 based on the three-dimensional model data.
  • the control device 14 first inputs the three-dimensional model data at a stacking pitch.
  • Slice processing is performed to create slice data.
  • the control device 14 may modify the slice data at least partially according to the characteristics of the modeling system 1.
  • the modeling system 1 corresponds to the operation for forming the first structural layer SL # 1 on the modeling surface MS corresponding to the surface WS of the work W under the control of the control device 14.
  • the structural layer SL # 1 is formed on the modeling surface MS as shown in FIGS. 3 (a), 3 (b) and 4 (a).
  • the modeling system 1 sets the surface (typically, the upper surface) of the structural layer SL # 1 on the new modeling surface MS, and then sets the second structural layer SL # on the new modeling surface MS.
  • Form 2 the control device 14 first controls the head drive system 12 so that the modeling head 11 moves along the Z axis.
  • the control device 14 controls the head drive system 12 so that the irradiation region EA and the supply region MA are set on the surface of the structural layer SL # 1 (that is, the new modeling surface MS).
  • the modeling head 11 is moved toward the + Z side.
  • the focus position FP of the optical EL matches the new modeling surface MS.
  • the modeling system 1 operates on the structural layer SL # 1 based on the slice data corresponding to the structural layer SL # 2 in the same operation as the operation of forming the structural layer SL # 1 under the control of the control device 14.
  • the structural layer SL # 2 is formed on the surface.
  • the structural layer SL # 2 is formed as shown in FIGS. 3 (c), 3 (d) and 4 (b).
  • the same operation is repeated until all the structural layers SL constituting the three-dimensional structure to be formed on the work W are formed.
  • a plurality of ridges are formed along the Z axis (that is, along the direction from the bottom surface to the top surface of the molten pool MP).
  • the three-dimensional structure ST is formed by the laminated structure in which the structural layer SL is laminated.
  • the modeling system 1 models the work W that has been subjected to the separation facilitation process to facilitate the separation of the three-dimensional structure ST formed on the work W from the work W.
  • the operation may be performed. That is, in the present embodiment, the above-mentioned work W itself that has not been subjected to the separation facilitation treatment may be used as a modeling base for forming a modeled object, or the work that has been subjected to the separation facilitation treatment. W may be used as a modeling base for forming a modeled object.
  • the separation of the three-dimensional structure ST from the work W becomes easier as compared with the case where the three-dimensional structure ST is formed on the work W that has not been subjected to the separation facilitation treatment.
  • the separation facilitation treatment reduces the bonding force (in other words, adhesive force or bonding force) between the three-dimensional structure ST formed on the work W and the work W as compared with the case where the separation facilitation treatment is not performed. It may include a process for weakening. In this case, the three-dimensional structure ST can be easily separated from the work W by the weakening of the coupling force between the three-dimensional structure ST and the work W.
  • the connection between the 3D structure ST and the work W that is, the strong bonding between the 3D structure ST and the work W
  • the connection between the 3D structure ST and the work W is one of the factors that make it difficult to separate the 3D structure ST from the work W.
  • the separation facilitation process reduces the area of the bonding surface between the three-dimensional structure ST and the work W. May include processing for.
  • the separation facilitation process may include a process for reducing the portion where the three-dimensional structure ST and the work W are connected.
  • the separation facilitation treatment As an example of the separation facilitation treatment, as shown in FIG. 5, which is a cross-sectional view showing the work W subjected to the separation facilitation treatment, there is a treatment of forming a film C on the surface WS of the work W.
  • the work W in which the film C is formed on the surface WS is used as a modeling base.
  • the modeling base may include a work W as a base material and a film C formed on the surface WS of the work W.
  • the work W as a base material may be used as a base for modeling.
  • the process of forming the film C on the surface WS of the work W can be an example of the separation facilitation process.
  • the film C may be formed on the surface WS of the work W by performing a surface treatment on the surface WS of the work W.
  • the surface treatment is performed by a surface treatment device (not shown) different from the modeling system 1.
  • the surface treatment may be performed by the modeling system 1 (particularly, the surface treatment device included in the modeling system 1).
  • the surface treatment may include a film forming treatment for forming a desired film on the surface of the object.
  • the surface treatment may include at least one of physical treatment, chemical treatment, electrical treatment, magnetic treatment, thermal treatment and optical treatment.
  • plating treatment for example, at least one of physical vapor deposition treatment (PVD) and chemical vapor deposition treatment (CVD)
  • vapor deposition treatment for example, at least one of physical vapor deposition treatment (PVD) and chemical vapor deposition treatment (CVD)
  • sputtering treatment for example, at least one of physical vapor deposition treatment (PVD) and chemical vapor deposition treatment (CVD)
  • sputtering treatment for example, at least one of physical vapor deposition treatment (PVD) and chemical vapor deposition treatment (CVD)
  • sputtering treatment for example, at least one of physical vapor deposition treatment (PVD) and chemical vapor deposition treatment (CVD)
  • spraying treatment for example, sputtering treatment, spraying treatment and At least one of the bright treatments.
  • the film thickness of the film C (specifically, the size in the Z-axis direction of FIG. 5) is arbitrary.
  • the film thickness of the film C may be several micrometers, a dozens of micrometers, or a few tens of micrometers.
  • At least a part of the surface of the film C may be a flat surface. At least a part of the surface of the film C may be a plane parallel to the XY plane (that is, a horizontal plane). However, at least a part of the surface of the film C may be a curved surface. At least a part of the surface of the film C may be an inclined surface. At least a part of the surface of the film C may be an inclined surface inclined with respect to the X axis. At least a part of the surface of the film C may be an inclined surface inclined with respect to the Y axis. At least a part of the surface of the film C may be an inclined surface inclined with respect to the Z axis. At least a part of the surface of the film C may be an uneven surface.
  • the characteristics of the film C formed on the surface WS of the work W may be different from the characteristics of the work W.
  • the film C may be made of a material having properties different from those of the material constituting the work W.
  • the characteristics of the film C may be different from the characteristics of the modeling material M.
  • the film C may be made of a material having properties different from those of the modeling material M.
  • the characteristics of the film C may be different from the characteristics of the three-dimensional structure ST. That is, the characteristics of the film C may be different from those of at least one of the work W, the modeling material M, and the three-dimensional structure ST.
  • the property may include at least one of melting point and surface roughness. That is, the characteristics of the film C may include at least one of the melting point of the film C and the surface roughness of the film C.
  • the characteristics of the work W may include at least one of the melting point of the work W and the surface roughness of the work W.
  • the characteristics of the modeling material M may include at least one of the melting point of the modeling material M and the surface roughness of the modeling material M.
  • the characteristics of the three-dimensional structure ST may include at least one of the melting point of the three-dimensional structure ST and the surface roughness of the three-dimensional structure ST.
  • the melting point of the film C may be different from the melting point of at least one of the work W, the modeling material M, and the three-dimensional structure ST.
  • the characteristics of the film C include the surface roughness of the film C
  • the surface roughness of the film C may be different from the surface roughness of at least one of the work W, the modeling material M, and the three-dimensional structure ST. ..
  • the modeling operation performed on the work W on which the film C having a melting point different from at least one melting point of the work W, the modeling material M and the three-dimensional structure ST is formed, and the work W, the modeling material M and 3 The modeling operation performed on the work W on which the film C having the surface roughness different from the surface roughness of at least one of the three-dimensional structure ST is formed will be described in order, and from the work W of the three-dimensional structure ST.
  • film C1 a film C having a melting point different from at least one melting point of the work W, the modeling material M, and the three-dimensional structure ST
  • film C2 a film C having a surface roughness different from at least one surface roughness of the work W, the modeling material M, and the three-dimensional structure ST is referred to as “film C2”.
  • the melting point of the film C1 is higher than the melting point of the work W. May be good. That is, a film C1 having a melting point higher than the melting point of the work W may be formed on the surface WS of the work W. Further, the melting point of the film C1 may be higher than the melting point of the modeling material M and the three-dimensional structure ST. In the following description, the description will proceed using an example in which the melting point of the film C1 is higher than the melting points of the work W, the modeling material M, and the three-dimensional structure ST.
  • a film C1 is a plating film containing chromium.
  • the plating film containing chromium may be formed by a plating process.
  • the melting point of the chromium-containing plating film is approximately 1880 degrees Celsius to 1900 degrees Celsius. Therefore, when a plating film containing chromium is used as the film C1, a work W having a melting point of about 1880 degrees Celsius to lower than 1900 degrees Celsius may be used.
  • a work composed of steel having a melting point of approximately 1400 degrees Celsius to 1510 degrees Celsius has a melting point of approximately 1371 degrees Celsius to 1508 degrees Celsius.
  • At least one of a workpiece made of stainless steel and a workpiece made of titanium steel having a melting point of approximately 1668 degrees Celsius can be mentioned.
  • the steel material carbon steel (so-called SC material, for example, S50C), chrome molybdenum steel (so-called SCM material, for example, SCM440, etc.), carbon tool steel (so-called SK material), and alloy tool steel.
  • Carbon steel is an alloy in which carbon is added to iron.
  • Chromium molybdenum steel is an alloy in which at least one of chromium and molybdenum is added to iron.
  • Carbon tool steel is an alloy in which at least one of carbon, silicon and manganese is added to iron.
  • Alloy tool steel is an alloy in which at least one of tungsten, molybdenum, chromium, silicon, vanadium and nickel is added to carbon tool steel.
  • stainless steel an austenite-based stainless steel having a melting point of about 1371 degrees to 1400 degrees Celsius (for example, SUS316) and a ferrite-based stainless steel having a melting point of about 1440 degrees to 1508 degrees Celsius (for example, SUS430). ), And at least one of martensitic stainless steels (eg, SUS440C).
  • the modeling material M a material having a melting point of about 1880 degrees Celsius to lower than 1900 degrees Celsius may be used.
  • a material having a melting point of approximately 1880 degrees Celsius to lower than 1900 degrees Celsius may be the same as a material constituting a work W having a melting point of approximately 1880 degrees Celsius to lower than 1900 degrees Celsius, and thus detailed description thereof will be omitted. To do.
  • the film C1 is a plating film containing nickel in addition to or in place of chromium.
  • the nickel-containing plating film may be formed by, for example, a plating process (for example, an electroplating process). Since the melting point of the nickel-containing plating film is approximately 1450 degrees Celsius, when the nickel-containing plating film is used as the film C1, a work W having a melting point lower than approximately 1450 degrees Celsius may be used. As an example of the work W having a melting point lower than 1450 degrees Celsius, at least one of the above-mentioned work made of steel and the above-mentioned work made of stainless steel can be mentioned.
  • a material having a melting point lower than 1450 degrees Celsius may be used as the modeling material M.
  • a material having a melting point lower than approximately 1450 degrees Celsius may be the same as a material constituting the work W having a melting point lower than approximately 1450 degrees Celsius, and thus detailed description thereof will be omitted.
  • the film C1 is a film containing titanium nitride.
  • the film containing titanium nitride may be formed by, for example, a sputtering process. Since the melting point of the film containing titanium nitride is approximately 2950 degrees Celsius, when the film containing titanium nitride is used as the film C1, a work W having a melting point lower than approximately 2950 degrees Celsius may be used. As an example of the work W having a melting point lower than 2950 degrees Celsius, at least one of the above-mentioned work made of steel and the above-mentioned work made of stainless steel can be mentioned.
  • a work W having a melting point of about 2950 degrees Celsius is a work made of ceramic having a melting point of about 2050 degrees Celsius.
  • An example of a ceramic is a ceramic containing aluminum oxide (so-called alumina) (for example, at least one of alumina 96 and alumina 99.5).
  • alumina aluminum oxide
  • a material having a melting point lower than 2950 degrees Celsius may be used as the modeling material M.
  • a material having a melting point lower than 2950 degrees Celsius may be the same as a material constituting the work W having a melting point lower than 2950 degrees Celsius, and thus detailed description thereof will be omitted.
  • the film C1 is a film containing titanium borohydride.
  • the film C1 may be formed by, for example, at least one of a sputtering treatment and a vapor deposition treatment. Since the melting point of the film containing titanium booxide is approximately 3230 degrees Celsius, when the film containing titanium booxide is used as the film C1, a work W having a melting point lower than approximately 3230 degrees Celsius may be used. ..
  • the film C1 is a film containing titanium carbide.
  • the film C1 may be formed by, for example, at least one of a sputtering treatment and a vapor deposition treatment. Since the melting point of the film containing titanium carbide is approximately 3170 degrees Celsius, when the film containing titanium carbide is used as the film C1, a work W having a melting point lower than approximately 3170 degrees Celsius may be used.
  • the film C1 a film containing DLC (Diamond Like Carbon: diamond-like carbon) and a film containing ceramic can be mentioned.
  • the film containing the DLC may be formed by, for example, at least one of a sputtering treatment and a vapor deposition treatment.
  • the film containing ceramic may be formed, for example, by thermal spraying.
  • the melting point of the film C is higher than the melting point of at least one of the work W, the modeling material M and the three-dimensional structure ST
  • the melting point of the film C is higher than the melting point of the work W, the modeling material M and the three-dimensional structure ST.
  • the film C is less likely to be melted by irradiation with light EL.
  • at least a part of the film C tends to remain between the work W and the three-dimensional structure ST.
  • the reason why at least a part of the film C remains between the work W and the three-dimensional structure ST will be described with reference to FIGS. 6 to 14.
  • the modeling system 1 When starting the modeling operation on the work W on which the film C1 is formed, the modeling system 1 first forms the lowest structural layer SL (that is, the structural layer SL # 1) on the work W. In this case, the modeling system 1 sets the surface WS of the work W to the modeling surface MS. However, since the film C1 is formed on the surface WS of the work W, the modeling system 1 may set the modeling surface MS between the surface of the film C1 or the surface of the film C1 and the surface WS of the work W. ..
  • the modeling system 1 moves the modeling head 11 to the modeling start position so that the modeling head 11 can irradiate the modeling start region MS_start of the modeling surface MS with light EL and supply the modeling material M.
  • the region where the irradiation system 111 can irradiate the light EL that is, the region where the irradiation system 111 is scheduled to irradiate the light EL.
  • the target irradiation region EA_start which is, is set in the modeling start region MS_start. Further, as shown in FIGS.
  • the target supply area MA_start is set in the modeling start area MS_start.
  • 6 (a) is a cross-sectional view showing the work W on which the film C1 is formed
  • FIG. 6 (b) is a plan view showing the work W on which the film C1 is formed.
  • FIGS. 7 (a) and 7 (b) irradiation of the modeling surface MS with optical EL and supply of the modeling material M are started.
  • 7 (a) is a cross-sectional view showing an optical EL irradiated to the modeling surface MS and a modeling material M supplied to the modeling surface
  • FIG. 7 (b) is a cross-sectional view showing the modeling surface MS. It is sectional drawing which shows the light EL to which it irradiates, and the modeling material M supplied to the modeling surface. As a result, a molten pool MP is formed.
  • the film C1 is formed on the surface WS of the work W, the light EL is actually irradiated to the film C1 and the modeling material M is supplied to the film C1. Therefore, as shown in FIGS. 7 (a) and 7 (b), the molten pool MP is formed on the film C1. Further, since the melting point of the film C1 is higher than the melting point of the work W (that is, the film C1 is difficult to melt), the film C1 is the case where the work W on which the film C1 is not formed is directly irradiated with light EL. It does not melt as much as work W.
  • the film C1 irradiated with the light EL is melted, the other part of the film C1 irradiated with the light EL is not melted.
  • the work W in the film C1 and the work W in the film C1 and a part of the film portion irradiated with the light EL having an energy amount sufficient to melt the modeling material M are melted.
  • the other part of the film portion irradiated with the optical EL having an amount of energy sufficient to melt the modeling material M is not melted.
  • the film C1 partially melts in a limited area near the center of the optical EL spot. Therefore, the size (specifically, the diameter) R2 of the molten portion of the membrane C1 is smaller than the size (specifically, the diameter) R1 of the molten pool MP.
  • the unmelted film C1 partially remains between the molten pool MP and the surface WS of the work W.
  • the molten pool MP includes a pond portion MP1 exposed on the membrane C1 and a pond portion MP2 formed in a through hole formed in the membrane C1 by melting the membrane C1.
  • the unmelted film C1 partially remains between the pond portion MP1 and the work W. Therefore, the pond portion MP1 does not come into contact with the surface WS of the work W.
  • the pond portion MP2 contacts the surface WS of the work W through the through hole.
  • the bottom surface of the molten pool MP faces the work W through a surface portion facing the film C1 (that is, the bottom surface of the pond portion MP1) and a through hole formed in the film C1 by melting the film C1.
  • the surface portion (that is, the bottom surface of the pond portion MP2) is included. Since the size R2 of the molten portion of the membrane C1 is smaller than the size R1 of the molten pool MP, the through hole formed in the membrane C1 is compared with the size R1 of the pond portion MP1 exposed on the membrane C1. The size R2 of the pond portion MP2 formed inside becomes smaller.
  • FIGS. 8 (a) to 8 (c) are cross-sectional views showing a molding material M solidified so that the film C1 partially remains between the work W and the surface WS of the work W.
  • FIGS. 8 (a) to 8 (c) are cross-sectional views showing a molding material M solidified so that the film C1 partially remains between the work W and the surface WS of the work W.
  • (B) is a plan view showing a modeling material M solidified so that the film C1 partially remains between the work W and the surface WS.
  • the solidified modeling material M has a modeling portion M1 exposed on the film C1 and a modeling portion M2 formed on the work W through a through hole formed in the film C1 by melting and removing the film C1. And include.
  • the lower surface of the solidified modeling material M (that is, the surface facing the ⁇ Z side) is formed on the film C1 by melting the surface portion facing the film C1 (that is, the lower surface of the modeling portion M1) and the film C1. It includes a surface portion facing the work W (that is, the lower surface of the modeling portion M2) through the through hole.
  • the modeling portion M2 formed in the through hole formed in the film C1 may contain a material constituting the film C1.
  • the removal of the film C1 from the through hole not only completely removes the film C1 from the through hole, but also at least partially removes the film C1 from the through hole to the extent that the modeling portion MP2 is formed in the through hole. It may also mean that it is done.
  • the modeled portion M1 is a modeled object formed mainly by solidifying the pond portion MP1 exposed on the film C1.
  • the modeled portion M2 is a modeled object formed mainly by solidifying the pond portion MP2 formed in the through hole formed in the film C1. Since the size R2 of the pond portion MP2 is smaller than the size R1 of the pond portion MP1, the size D2 of the modeling portion M2 is smaller than the size D1 of the modeling portion M1. In this case, typically, the size D1 of the modeling portion M1 is larger than the size R2 of the pond portion MP2 for forming the modeling portion M2.
  • the size of the modeling portion is the size in at least one of a plurality of directions along the modeling surface MS (in the examples shown in FIGS.
  • the size of the modeled object composed of the solidified modeling material M shall mean the size in at least one of a plurality of directions along the modeling surface MS. ..
  • the modeling material M is typically solidified so as to be bonded to the work W. That is, the modeling portion MP2 solidifies so as to be combined with the work W.
  • the modeling portion MP2 penetrates the membrane C1 (in other words, penetrates) and solidifies so as to be bonded to the work W.
  • the unmelted film C1 remains between the modeling portion MP1 and the work W. That is, the modeling portion MP1 and the work W are separated from each other.
  • the modeling portion MP1 is bonded to the modeling portion MP2, the modeling portion MP1 is fixed to the work W via the modeling portion MP2, and then, as described above, the light irradiation EL is used.
  • a series of modeling processes including formation of the molten pool MP, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M are performed by XY of the modeling head 11 with respect to the modeling surface MS. It is repeated while changing the position in the plane.
  • the positions of the target irradiation area EA_taget and the target supply area MA_target on the modeling surface MS change, as shown in FIG. Therefore, a series of modeling processes is repeated while changing the positions of the target irradiation region EA_taget and the target supply region MA_taget on the modeling surface MS.
  • the structural layer SL is formed on the modeling surface MS by alternately repeating the scanning operation and the step operation.
  • the scanning operation the target irradiation area EA_taget and the target supply area MA_taget are each moved along the Y-axis direction on the modeling surface MS, and the light EL is irradiated to the target irradiation area EA_taget at a desired timing, and the modeling material M is targeted.
  • This is an operation of supplying to the supply area MA_target.
  • the step operation is an operation of moving each of the target irradiation region EA_target and the target supply region MA_target along at least the X-axis direction on the modeling surface MS. Therefore, as shown in FIG.
  • the movement loci of the target irradiation region EA_target and the target supply region MA_target alternate on the modeling surface MS with the movement locus along the Y-axis direction and the movement locus along the X-axis direction. Included in.
  • the movement trajectories of the target irradiation region EA_target and the target supply region MA_target on the modeling surface MS substantially coincide with the movement loci of the modeling head 11 by the drive system 12 in the XY plane.
  • the irradiation region EA described above may mean a target irradiation region EA_target, or may mean a region where the light EL is actually irradiated.
  • the above-mentioned supply region MA may mean a target supply region MA_taget, or may mean a region where the modeling material M is actually supplied.
  • FIGS. 10 (a) to 10 (c) show the optical EL at a desired timing while moving each of the target irradiation area EA_taget and the target supply area MA_taget from the modeling start position MS_start along the Y-axis direction. Is shown, and the solidified modeling material M is shown when one scanning operation of irradiating the target supply area MA_taget with the modeling material M is completed. As shown in FIGS. 10 (a) to 10 (c), a film that did not melt between the solidified modeling material M and the surface WS of the work W even when one scanning operation was completed. C1 remains partially.
  • the film C1 of the solidified modeling material M is formed on the film C1 of the solidified modeling material M as compared with the size of the portion of the solidified modeling material M exposed on the film C1 (that is, the portion composed of the above-mentioned modeling portion M1).
  • the size of the portion formed in the through hole becomes smaller.
  • the film C1 of the solidified modeling material M is compared with the size of the portion of the solidified modeling material M exposed on the film C1 in the Y-axis direction.
  • the size of the portion formed in the formed through hole in the Y-axis direction becomes smaller.
  • the through hole formed in the film C1 of the solidified modeling material M is compared with the size of the portion of the solidified modeling material M exposed on the film C1 in the X-axis direction.
  • the size of the portion formed inside in the X-axis direction becomes smaller.
  • the solidified modeling material M is bonded to the work W through the portion of the solidified modeling material M formed in the through hole formed in the film C1.
  • the size of the joint surface between the solidified modeling material M and the surface WS of the work W in the Y-axis direction is smaller than the size of the surface of the solidified modeling material M in the Y-axis direction.
  • the size of the joint surface between the solidified modeling material M and the surface WS of the work W in the X-axis direction is larger than the size of the surface of the solidified modeling material M in the X-axis direction. It becomes smaller.
  • FIGS. 11 (a) to 11 (c) show the lowermost structural layer SL # 1 formed by alternately repeating the scanning operation and the step operation.
  • the unmelted film C1 partially remains between the structural layer SL # 1 and the surface WS of the work W.
  • the structural layer SL # 1 is a layer portion SL1 # 1 formed on the film C1 and a layer portion SL2 # formed on the work W via a through hole formed in the film C1 by melting the film C1. Includes 1 and.
  • the structural layer SL # 1 includes a layer portion SL1 # 1 exposed on the film C1 and a layer portion SL2 # 1 formed in a through hole formed in the film C1.
  • the layer portion SL1 # 1 which is a part of the structural layer SL # 1, is formed on the residual film C1.
  • the lower surface of the structural layer SL # 1 (that is, the surface facing the ⁇ Z side) is formed by melting the surface portion facing the film C1 (specifically, the lower surface of the layer portion SL1 # 1) and the film C1. It includes a surface portion (specifically, the lower surface of the layer portion SL2 # 1) facing the work W through the through hole formed in the film C1.
  • the layer portion SL1 # 1 is mainly composed of the above-mentioned modeling portion M1.
  • the layer portion SL2 # 1 is mainly composed of the above-mentioned modeling portion M2. Therefore, the size of the layer portion SL2 # 1 is smaller than the size of the layer portion SL1 # 1.
  • the size of the layered portion SL2 # 1 is smaller than the size R1 of the molten pool MP1 for forming the layered portion SL1 # 1.
  • the size of the layered portion SL1 # 1 is larger than the size R2 of the molten pool MP2 for forming the layered portion SL2 # 1.
  • the structural layer SL # 1 is connected to the work W. In at least a part of the portion where the film C1 has been removed, the structural layer SL # 1 is bound to the work W. On the other hand, in at least a part of the portion where the film C1 remains, the structural layer SL # 1 is separated from the work W (that is, not bonded). The structural layer SL # 1 is separated from the work W at least in a part where the film C1 is not removed. The structural layer SL # 1 is separated from the work W at least in a part different from the portion where the structural layer SL # 1 and the work W face each other. Conversely, the film C1 remains in at least a part of the portion where the structural layer SL # 1 is separated from the work W.
  • the structural layer SL # 1 is partially bonded to the work W. Specifically, the structural layer SL # 1 partially penetrates (that is, penetrates) the film C1 and is bonded to the work W. The structural layer SL # 1 and the work W are partially separated. The structural layer SL # 1 is not separated from the work W (that is, the layer portion SL1 # 1 separated from the work W by interposing (that is, remaining) the film C1 with the surface WS of the work W. Includes layer portion SL2 # 1 (combined with work W).
  • the lower surface of the structural layer SL # 1 includes a surface portion (specifically, the lower surface of the layer portion SL1 # 2) that is not bonded to the work W due to the presence of the film C1 between the surface WS of the work W. It includes a surface portion (specifically, the lower surface of the layer portion SL2 # 1) that is bonded to the work W through the through hole formed in the film C1 by melting the film C1.
  • the modeling system 1 sets the surface of the formed structural layer SL on the new modeling surface MS, and repeats the operation of forming the new structural layer SL on the new modeling surface MS. ..
  • a three-dimensional structure ST is formed. Since the formed three-dimensional structure ST contains the above-mentioned structural layer SL # 1, the unmelted film C1 partially remains between the three-dimensional structure ST and the surface WS of the work W. .. Specifically, the three-dimensional structure ST is connected to the work W at least in a part of the portion where the three-dimensional structure ST and the work W face each other.
  • the three-dimensional structure ST is bonded to the work W.
  • the three-dimensional structure ST is separated from the work W (that is, not bonded).
  • the three-dimensional structure ST is separated from the work W.
  • the three-dimensional structure ST is separated from the work W at least in a part different from the portion where the three-dimensional structure ST and the work W face each other.
  • the film C1 remains in at least a part of the portion where the three-dimensional structure ST is separated from the work W.
  • the three-dimensional structure ST is partially connected to the work W. Specifically, the three-dimensional structure ST partially penetrates (that is, penetrates) the film C1 and is bonded to the work W.
  • the three-dimensional structure ST and the work W are partially separated.
  • the structural portion separated from the work W by interposing (that is, remaining) the film C1 between the surface WS of the work W and not separated from the work W (that is, the work W). Includes (combined) structural parts.
  • the lower surface of the three-dimensional structure ST has a surface portion that is not bonded to the work W due to the presence of the film C1 between the surface WS of the work W and a penetration formed in the film C1 by melting the film C1. Includes a surface portion coupled to the work W through the hole.
  • a process for separating the three-dimensional structure ST from the work W is performed.
  • the process of applying a force for separating the three-dimensional structure ST from the work W to at least one of the work W and the three-dimensional structure ST is a process for separating the three-dimensional structure ST from the work W. It is done as.
  • a process of applying a force for peeling the three-dimensional structure ST from the work W to the three-dimensional structure ST may be performed.
  • a process of applying a force for peeling the three-dimensional structure ST from the work W to the work W may be performed.
  • the unmelted film C1 partially remains between the three-dimensional structure ST and the surface WS of the work W. Therefore, the area of the bonding surface between the three-dimensional structure ST and the work W is compared with the case where the film C1 does not remain between the three-dimensional structure ST and the surface WS of the work W (see FIG. 13). Becomes smaller. Therefore, the bonding force between the three-dimensional structure ST and the work W becomes weaker as the area of the bonding surface between the three-dimensional structure ST and the work W becomes smaller. Therefore, as the coupling force between the three-dimensional structure ST and the work W is weakened, the force required to separate the three-dimensional structure ST from the work W is reduced. As a result, the force required to separate the three-dimensional structure ST from the work W is reduced, so that the three-dimensional structure ST can be easily separated from the work W.
  • the three-dimensional structure ST when the three-dimensional structure ST is separated from the work W, the three-dimensional structure ST and the work W are bonded at or near the bonding surface between the three-dimensional structure ST and the work W.
  • the part breaks. Therefore, the force for separating the three-dimensional structure ST from the work W described above substantially corresponds to the force for breaking the portion where the three-dimensional structure ST and the work W are connected.
  • the bonding surface between the three-dimensional structure ST and the work W may be the same as the fracture surface that appears when the portion where the three-dimensional structure ST and the work W are bonded is broken.
  • the film C1 remains between the three-dimensional structure ST and the surface WS of the work W (see FIG.
  • the film is formed between the three-dimensional structure ST and the surface WS of the work W.
  • the portion where the three-dimensional structure ST and the work W are connected is reduced. Since the portion where the three-dimensional structure ST and the work W are connected is broken, the portion to be broken in order to separate the three-dimensional structure ST from the work W is reduced. Therefore, the force required to break the portion where the three-dimensional structure ST and the work W are connected is also small as the portion to be broken in order to separate the three-dimensional structure ST from the work W is reduced. Become. As a result, the force required to break the portion where the three-dimensional structure ST and the work W are connected is reduced, so that the three-dimensional structure ST can be easily separated from the work W.
  • the intermediate structure that is, the formed structural layer SL
  • the structural layer SL # is the structural layer SL #. It is partially connected to the work W via 1. Therefore, the state of the intermediate structure is substantially equivalent to the state held by the work W. Therefore, the occurrence of deformation (for example, at least one of warpage and strain) of the intermediate structure due to stress generated in the intermediate structure is appropriately suppressed.
  • the area of the bonding surface between the three-dimensional structure ST and the work W becomes smaller. As the area of the boundary surface between the film C1 remaining on the work W and the three-dimensional structure ST increases, the area of the bonding surface between the three-dimensional structure ST and the work W decreases.
  • the modeling system 1 has a three-dimensional structure ST (particularly, a structure) so that the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W is equal to or larger than the first predetermined area.
  • Layer SL # 1 may be formed.
  • the three-dimensional structure ST (particularly, the structural layer SL #) is provided so that the area of the interface between the film C1 remaining on the work W and the three-dimensional structure ST is equal to or larger than the second predetermined area. 1) may be formed.
  • the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W is larger than the area of the bonding surface between the three-dimensional structure ST and the work W.
  • a three-dimensional structure ST (particularly, structural layer SL # 1) may be formed. More specifically, in the modeling system 1, the interface between the film C1 remaining on the work W and the surface WS of the work W with respect to the formation region on which the three-dimensional structure ST should be formed on the work W.
  • the three-dimensional structure ST (particularly, the structural layer SL # 1) is provided so that the ratio occupied by the area is larger than the ratio occupied by the area of the bonding surface between the three-dimensional structure ST and the work W with respect to the formed region. It may be formed.
  • the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W is smaller than the area of the bonding surface between the three-dimensional structure ST and the work W. Separation of the three-dimensional structure ST from the work W becomes easier.
  • the area of the boundary surface between the film C1 remaining on the work W and the three-dimensional structure ST is larger than the area of the bonding surface between the three-dimensional structure ST and the work W.
  • 3D structure ST (particularly, structural layer SL # 1) may be formed. More specifically, in the modeling system 1, the interface between the film C1 remaining on the work W and the three-dimensional structure ST with respect to the formation region on which the three-dimensional structure ST should be formed is formed.
  • the three-dimensional structure ST (particularly, the structural layer SL # 1) is provided so that the ratio occupied by the area is larger than the ratio occupied by the area of the bonding surface between the three-dimensional structure ST and the work W with respect to the formed region. It may be formed.
  • the area of the interface between the film C1 remaining on the work W and the three-dimensional structure ST is smaller than the area of the bonding surface between the three-dimensional structure ST and the work W. Separation of the three-dimensional structure ST from the work W becomes easier.
  • the lowermost structural layer SL # 1 is integrated with the work W. Therefore, the portion where the three-dimensional structure ST and the work W are connected may be included in the structural layer SL # 1.
  • the portion to be broken in order to separate the three-dimensional structure ST from the work W may be included in the structural layer SL # 1.
  • the layer portion SL2 # 1 located inside the through hole formed in the film C1 is broken by melting the film C1 of the structural layer SL # 1, so that the work W is three-dimensional.
  • the structure ST may be separated.
  • the portion SL # 1-1 of the structural layer SL # 1 located on the work W side with respect to the fracture surface may remain in the work W while being bonded to the work W.
  • the portion SL # 1-2 of the structural layer SL # 1 located on the three-dimensional structure ST side of the fracture surface may be separated from the work W while being coupled to the three-dimensional structure ST.
  • At least a part of the film C1 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the three-dimensional structure ST. ..
  • at least a part of the film C1 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the work W.
  • the work W is separated from the work W when the three-dimensional structure ST is separated.
  • the membrane C1 is separated from.
  • the force required to separate the film C1 from the work W that is, necessary to separate the three-dimensional structure ST from the work W. Power
  • the wettability of the film C1 to the work W may be smaller than a predetermined amount.
  • the force required to separate the three-dimensional structure ST from the work W is increased. It does not become excessively large due to the presence of the film C1.
  • the wettability of the film C1 to the work W is lower than the wettability of the molding material M and the three-dimensional structure ST to the work W, it is necessary to separate the three-dimensional structure ST from the work W. Since it can be said that the force is substantially determined by the wettability of the modeling material M and the three-dimensional structure ST with respect to the work W, the force required to separate the three-dimensional structure ST from the work W is the force of the film C1.
  • the wettability of the film C1 to the work W may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. That is, the bonding force between the film C1 and the work W may be lower than the bonding force between the modeling material M and the three-dimensional structure ST and the work W. As a result, it is easier to separate the three-dimensional structure ST from the work W as compared with the case where the wettability of the film C1 to the work W is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W. become.
  • the three-dimensional structure ST is separated from the work W when the three-dimensional structure ST is separated.
  • the membrane C1 is separated from.
  • the force that is, the force required to separate the film C1 from the three-dimensional structure ST. That is, the force required to separate the three-dimensional structure ST from the work W
  • the force becomes small. This is because the lower the wettability of the film C with respect to the three-dimensional structure ST, the smaller the bonding force between the film C and the three-dimensional structure ST.
  • the wettability of the film C1 to the three-dimensional structure ST may be smaller than a predetermined amount.
  • the wettability of the film C1 to the three-dimensional structure ST is lower than the wettability of the molding material M and the three-dimensional structure ST to the work W, it is necessary to separate the three-dimensional structure ST from the work W. The force does not become excessively large due to the presence of the film C1.
  • the wettability of the film C1 to the three-dimensional structure ST is lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W, the three-dimensional structure ST is separated from the work W.
  • the force required for this is substantially determined by the wettability of the modeling material M and the 3D structure ST to the work W
  • the force required to separate the 3D structure ST from the work W is There is almost no change regardless of the presence of the film C1. Therefore, the wettability of the film C1 to the three-dimensional structure ST may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. That is, the bonding force between the film C1 and the three-dimensional structure ST may be lower than the bonding force between the modeling material M and the three-dimensional structure ST and the work W. As a result, the wettability of the film C1 to the three-dimensional structure ST is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W, and the separation of the three-dimensional structure ST from the work W Will be easier.
  • the film C2 is formed on the surface WS of the work W
  • the surface roughness of the film C2 may be larger than the surface roughness of the surface WS of the work W. That is, the surface of the film C2 (specifically, the surface of the work W opposite to the surface in contact with the surface WS and facing the + Z side) may be rougher than the surface WS of the work W. .. That is, a film C2 having a rougher surface than the surface WS of the work W is formed on the surface WS of the work W.
  • the surface of the film C2 is formed with minute or desired size irregularities. It is equivalent to the uneven surface. That is, the surface of the film C2 includes an uneven surface on which fine or desired size irregularities are formed. In other words, the surface of the film C2 is equivalent to a rough surface. That is, the surface of the film C2 includes a rough surface.
  • a film of a phosphate (for example, a manganese phosphate salt) formed on the surface WS of the work W by performing a lubelite treatment on the surface WS can be mentioned.
  • the surface roughness of the film C is larger than the surface roughness of the work W, the surface roughness of the film C is smaller than the surface roughness of the work W, and the work W and the three-dimensional structure ST are compared with each other. At least a part of the film C tends to remain between them.
  • the reason why at least a part of the film C remains between the work W and the three-dimensional structure ST will be described with reference to FIGS. 16 to 18.
  • the modeling system 1 performs the same operation as the modeling operation for the work W on which the film C1 is formed. Therefore, first, the modeling system 1 forms the lowest structural layer SL (that is, the structural layer SL # 1) on the work W. Specifically, the irradiation of light EL and the supply of the modeling material M to the modeling surface MS set on the surface WS of the work W are started. However, since the film C2 is formed on the surface WS of the work W, the light EL is actually irradiated to the film C2 and the modeling material M is supplied to the film C2. Therefore, the molten pool MP is formed on the film C2.
  • the film C2 since the surface roughness of the film C2 is relatively large (that is, larger than the surface roughness of the work W), the film C2 has a convex portion having a relatively large thickness and a thickness relatively large. Includes small recesses (that is, recesses that are recessed rather than convex). Therefore, the convex portion is less likely to be completely melted by irradiation with light EL as compared with the concave portion. That is, while a part of the film portion (typically at least a part of each of the concave portion and the convex portion) irradiated with the light EL of the film C2 is melted, the light EL of the film C2 is formed.
  • the other part of the irradiated membrane portion does not melt.
  • the concave portion of the membrane C2 melts and removes the membrane C2 to the extent that a through hole penetrating the membrane C2 is formed, while the convex portion of the membrane C2 penetrates the membrane C2.
  • the film C2 melts only to the extent that the through holes are not formed. That is, while the concave portion of the film C2 is melted to form a through hole, the convex portion of the film C2 is melted only to the extent that a part thereof remains on the work W.
  • the molten portion of the film C2 is compared with the size (specifically, the diameter) of the molten pool MP on the film C2. Size (specifically, diameter) becomes smaller.
  • FIG. 16A is similar to the case where the molding operation is performed on the work W on which the film C1 is formed. As shown in the above, the unmelted film C2 partially remains between the solidified modeling material M and the surface WS of the work W.
  • FIG. 16 is a cross-sectional view showing a modeling material M solidified so that the film C2 partially remains between the work W and the surface WS.
  • the surface WS of the structural layer SL # 1 and the work W is similar to the case where the modeling operation is performed on the work W on which the film C1 is formed.
  • the unmelted film C2 partially remains between and.
  • the modeling system 1 sets the surface of the formed structural layer SL on the new modeling surface MS, and repeats the operation of forming the new structural layer SL on the new modeling surface MS. ..
  • a three-dimensional structure ST is formed. Since the formed three-dimensional structure ST includes the structural layer SL # 1 described above, even when the modeling operation is performed on the work W on which the film C2 is formed, the modeling operation is performed on the work W on which the film C1 is formed. The unmelted film C2 partially remains between the three-dimensional structure ST and the surface WS of the work W, as in the case where
  • the three-dimensional structure ST is separated from the work W in the same manner as when the modeling operation is performed on the work W on which the film C1 is formed. Processing is performed.
  • the unmelted film C2 partially remains between the three-dimensional structure ST and the surface WS of the work W, there is a partial residue between the three-dimensional structure ST and the surface WS of the work W.
  • the separation of the three-dimensional structure ST from the work W becomes easier as compared with the case where the unmelted film C2 does not partially remain.
  • the reason is described above for the process for separating the three-dimensional structure ST from the work W in the situation where the film C1 partially remains between the three-dimensional structure ST and the surface WS of the work W. It has already been explained in the explanation. That is, as shown in FIG. 18 showing how the three-dimensional structure ST is separated from the work W, the three-dimensional structure ST may be separated from the work W by breaking the structural layer SL # 1. .. More specifically, the portion of the structural layer SL # 1 located inside the through hole formed in the film C2 is broken by melting the film C2, so that the three-dimensional structure ST is released from the work W. It may be separated. In this case, as shown in FIG.
  • the portion SL # 1-1 of the structural layer SL # 1 located on the work W side with respect to the fracture surface may remain in the work W while being bonded to the work W. Further, the portion SL # 1-1 of the structural layer SL # 1 located on the three-dimensional structure ST side of the fracture surface may be separated from the work W while being coupled to the three-dimensional structure ST.
  • the modeling system 1 has a three-dimensional structure ST (particularly, a structure) so that the area of the boundary surface between the film C2 remaining on the work W and the surface WS of the work W is equal to or larger than the first predetermined area.
  • Layer SL # 1) may be formed.
  • the three-dimensional structure ST (particularly, the structural layer SL #) is provided so that the area of the interface between the film C2 remaining on the work W and the three-dimensional structure ST is equal to or larger than the second predetermined area. 1) may be formed.
  • the area of the boundary surface between the film C2 remaining on the work W and the surface WS of the work W is larger than the area of the bonding surface between the three-dimensional structure ST and the work W.
  • a three-dimensional structure ST (particularly, structural layer SL # 1) may be formed.
  • the area of the interface between the film C2 remaining on the work W and the three-dimensional structure ST is larger than the area of the bonding surface between the three-dimensional structure ST and the work W.
  • a three-dimensional structure ST (particularly, structural layer SL # 1) may be formed.
  • At least a part of the film C2 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the three-dimensional structure ST. ..
  • At least a part of the film C2 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the work W.
  • the work W is separated from the work W when the three-dimensional structure ST is separated.
  • the membrane C2 is separated from. Therefore, even when the modeling operation is performed on the work W on which the film C2 is formed, the wettability of the film C2 to the work W is determined as in the case where the modeling operation is performed on the work W on which the film C1 is formed. It may be smaller than the fixed amount.
  • the wettability of the film C2 to the work W may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W.
  • the three-dimensional structure ST is separated from the work W when the three-dimensional structure ST is separated.
  • the membrane C2 is separated from. Therefore, even when the modeling operation is performed on the work W on which the film C2 is formed, the film C2 is wetted with respect to the three-dimensional structure ST as in the case where the modeling operation is performed on the work W on which the film C1 is formed.
  • the sex may be less than a predetermined amount.
  • the wettability of the film C2 to the three-dimensional structure ST may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. As a result, the wettability of the film C2 to the three-dimensional structure ST is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W, and the separation of the three-dimensional structure ST from the work W Will be easier.
  • a work W composed of a graphite material may be used.
  • a graphite material at least one of a carbon composite material reinforced with high-strength carbon fiber (so-called C / C composite (Carbon Fiber Reinforced Carbon Composite)) and an isotropic graphite material can be mentioned.
  • the modeling system 1 includes a head drive system 12 for moving the modeling head 11.
  • the modeling system 1 may include a stage drive system for moving the stage 13 in addition to or in place of the head drive system 12.
  • the stage drive system may move the stage 13 in at least one rotation direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction.
  • the movement of the stage 13 by the stage drive system changes the relative positional relationship between the stage 13 and the modeling head 11 in the same manner as the movement of the modeling head 11 by the head drive system 12, and by extension, the work W and the irradiation area.
  • the relative positional relationship with the EA is changed.
  • the modeling system 1 moves the irradiation region EA with respect to the modeling surface MS by moving the modeling head 11.
  • the modeling system 1 may move the irradiation region EA with respect to the modeling surface MS by deflecting the optical EL.
  • the irradiation system 111 may include, for example, an optical system capable of deflecting the optical EL (for example, a galvanometer mirror or the like).
  • the modeling system 1 melts the modeling material M by irradiating the modeling material M with light EL.
  • the modeling system 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
  • the modeling system 1 may include a beam irradiation device capable of irradiating an arbitrary energy beam in addition to or in place of the irradiation system 111.
  • Any energy beam includes, but is not limited to, a charged particle beam such as an electron beam, an ion beam, or an electromagnetic wave.
  • the modeling system 1 can form the three-dimensional structure ST by the laser overlay welding method.
  • the modeling system 1 may form the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST.
  • a powder bed melt bonding method Power Bed Fusion
  • SLS powder sintering laminated molding method
  • the powder bed fusion bonding method is different from the laser overlay welding method in which the modeling material M is supplied to the irradiation region EA of the light EL while irradiating the light EL, and the modeling material M supplied in advance is irradiated with the light EL or the like.
  • the modeling system 1 forms the three-dimensional structure ST by supplying the modeling material M from the material nozzle 112 toward the irradiation region EA where the irradiation system 111 irradiates the processing light EL.
  • the modeling system 1 may form the three-dimensional structure ST by supplying the modeling material M from the material nozzle 112 without irradiating the processing light EL from the irradiation optical system 111.
  • the modeling material M is sprayed onto the modeling surface MS from the material nozzle 112 to melt the modeling material M on the modeling surface MS and solidify the melted modeling material M.
  • the dimensional structure ST may be formed.
  • the modeling system 1 melts the modeling material M on the modeling surface MS and solidifies the melted modeling material M by blowing a gas containing the modeling material M onto the modeling surface MS from the material nozzle 112 at an ultra-high speed.
  • the modeling system 1 melts the modeling material M on the modeling surface MS by spraying the heated modeling material M onto the modeling surface MS from the material nozzle 112, and solidifies the melted modeling material M.
  • the three-dimensional structure ST may be formed.
  • the modeling system 1 includes a control device 14.
  • the modeling system 1 does not have to include the control device 14.
  • the control device 14 may be provided outside the modeling system 1.
  • the control device 14 and the modeling system 1 may be connected by a wired or wireless communication line.
  • the modeling system 1 may be operated by using a recording medium in which a signal representing the operation procedure of the modeling system 1 is recorded in advance.
  • a part of the function of the control device 14 may be performed by another part (head drive system 12 as an example).
  • the thermal conductivity of carbon steel S50C is 35.3 [W / (m ⁇ K)] at 600 degrees Celsius.
  • the thermal conductivity of the chromium molybdenum steel SCM440 is 36.1 [W / (m ⁇ K)] at 600 degrees Celsius.
  • the thermal conductivity of the alloy tool steel SKD11 is 23.4 [W / (m ⁇ K)] at 500 degrees Celsius.
  • the thermal conductivity of the austenitic stainless steel SUS316 is 16.7 [W / (m ⁇ K)].
  • the thermal conductivity of the ferritic stainless steel SUS430 is 26.4 [W / (m ⁇ K)] at 100 degrees Celsius.
  • the thermal conductivity of martensitic stainless steel SUS440C is 24.3 [W / (m ⁇ K)] at 100 degrees Celsius.
  • the thermal conductivity of alumina 96 is 18 [W / (m ⁇ K)].
  • the thermal conductivity of alumina 99.5 is 33 [W / (m ⁇ K)].
  • the thermal conductivity of the C / C composite is 30-40 [W / (m ⁇ K)].
  • the thermal conductivity of isotropic graphite is 80 to 140 [W / (m ⁇ K)].
  • the thermal conductivity of titanium steel TP340 is 17.1 [W / (m ⁇ K)].
  • the thermal conductivity of titanium nitride is 19.2 [W / (m ⁇ K)]
  • the thermal conductivity of titanium carbide is 21 [W / (m ⁇ K)]
  • the thermal conductivity of titanium booxide is 64. [W / (m ⁇ K)].
  • the modeling material M a material whose linear thermal expansion coefficient is closer to the linear thermal expansion coefficient of the material constituting the work W than the linear thermal expansion coefficient of the material constituting the film C1 may be used.
  • the coefficient of linear thermal expansion of carbon steel S50C is 11.7 [1 / K]
  • the coefficient of linear thermal expansion of chromium molybdenum steel SCM440 is 12.3 ⁇ 10-6 [1 / K]
  • the coefficient of thermal expansion is 11.7 ⁇ 10-6 [1 / K]
  • the coefficient of linear thermal expansion of austenite-based stainless steel SUS316 is 15.9 ⁇ 10-6 [1 / K]
  • the coefficient of linear thermal expansion of ferrite-based stainless steel SUS430 is The coefficient of thermal expansion is 12.4 ⁇ 10-6 [1 / K]
  • the coefficient of linear thermal expansion of martensite-based stainless steel SUS440C is 11.7 ⁇ 10-6 [1 / K]
  • the coefficient of linear thermal expansion of alumina 96 is 8.3 ⁇ 10-6 [1 / K]
  • linear thermal expansion coefficient of alumina 99.5 is 6.3 ⁇ 10-6 [1 / K]
  • linear thermal expansion coefficient of C / C composite is 7-8 ⁇ 10-6 [1 / K]
  • the coefficient of linear thermal expansion of isotropic graphite is 4.5 to 5.9 ⁇ 10-6 [1 / K]
  • the coefficient of linear thermal expansion of titanium steel TP340 is 8.4 ⁇ 10-6 [1 /
  • the coefficient of thermal expansion of titanium nitride wire is 9.35 ⁇ 10-6 [1 / K]
  • the coefficient of thermal expansion of titanium carbide wire is 8.6 ⁇ 10-6 [1 / K]
  • the coefficient of thermal expansion of titanium booxide wire Is 7.8 ⁇ 10-6 [1 / K].
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification.
  • the modeling method is also included in the technical scope of the present invention.
  • Modeling system 11 Modeling head 111 Irradiation system 112 Material nozzle 13 Stage W work M Modeling material SL Structural layer ST 3D structure C film EL Light EA Irradiation area MA Supply area MP Melting pond MS Modeling surface

Abstract

This modeling method includes: irradiating an energy beam on a film that has been formed on the surface of a base material; and providing a material having a lower melting point than the melting point of the film at the energy beam irradiation position.

Description

造形方法、造形システム及び造形用土台Modeling method, modeling system and modeling base
 本発明は、例えば、造形物を形成する造形方法及び造形システム、並びに、造形システムに用いられる造形用土台の技術分野に関する。 The present invention relates to, for example, a modeling method and a modeling system for forming a modeled object, and a technical field of a modeling base used in the modeling system.
 特許文献1には、粉状の材料をエネルギビームで溶融した後に、溶融した材料を固化させることで基材に造形物を形成する造形システムが記載されている。このような造形システムでは、基材に造形物を形成した後に、造形物を基材から適切に分離する(一例として取り外す)ことが技術的課題となる。 Patent Document 1 describes a modeling system in which a powdered material is melted with an energy beam and then the melted material is solidified to form a modeled object on a base material. In such a modeling system, it is a technical problem to appropriately separate (remove as an example) the modeled object from the substrate after forming the modeled object on the substrate.
米国特許出願公開第2017/014909号明細書U.S. Patent Application Publication No. 2017/014909
 第1の態様によれば、基材の表面に形成された膜にエネルギビームを照射することと、前記エネルギビームの照射位置に前記膜の融点より融点が低い材料を供給することとを含む前記基材に造形物を形成する造形方法が提供される。 According to the first aspect, the film comprising irradiating the film formed on the surface of the base material with an energy beam and supplying a material having a melting point lower than the melting point of the film to the irradiation position of the energy beam. A modeling method for forming a modeled object on a substrate is provided.
 第2の態様によれば、基材の表面に形成された膜にエネルギビームを照射する照射装置と、前記エネルギビームの照射位置に前記膜の融点より融点が低い材料を供給する供給装置と、前記照射装置と前記供給装置とを制御して、前記膜に前記エネルギビームを照射し且つ前記エネルギビームの照射位置に前記材料を供給して、前記基材に造形物を形成する制御装置とを備える造形システムが提供される。 According to the second aspect, an irradiation device that irradiates a film formed on the surface of the base material with an energy beam, and a supply device that supplies a material having a melting point lower than the melting point of the film to the irradiation position of the energy beam. A control device that controls the irradiation device and the supply device to irradiate the film with the energy beam and supply the material to the irradiation position of the energy beam to form a modeled object on the base material. A built-in modeling system is provided.
 第3の態様によれば、材料を用いて造形物を形成する造形システムにおいて用いられる造形用土台であって、基材と、前記基材の表面に形成され、前記材料の融点より融点が高い膜とを備え、前記造形システムが有する、前記膜にエネルギビームを照射する照射装置と、前記エネルギビームの照射位置に前記材料を供給する供給装置とによって、前記造形物が形成される造形用土台が提供される。 According to the third aspect, it is a modeling base used in a modeling system for forming a modeled object using a material, which is formed on a base material and the surface of the base material and has a melting point higher than the melting point of the material. A modeling base on which the modeled object is formed by an irradiation device having a film and irradiating the film with an energy beam and a supply device for supplying the material to the irradiation position of the energy beam. Is provided.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The actions and other gains of the present invention will be clarified from the embodiments described below.
図1は、本実施形態の造形システムの構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the modeling system of the present embodiment. 図2(a)から図2(c)のそれぞれは、それぞれワーク上のある領域において光を照射し且つ造形材料を供給した場合の様子を示す断面図である。Each of FIGS. 2 (a) to 2 (c) is a cross-sectional view showing a state in which light is irradiated and a modeling material is supplied in a certain region on the work. 図3(a)、図3(c)及び図3(e)のそれぞれは、3次元構造物を形成する過程を示す断面図であり、図3(b)、図3(d)及び図3(f)のそれぞれは、3次元構造物を形成する過程を示す平面図である。3 (a), 3 (c) and 3 (e) are cross-sectional views showing the process of forming a three-dimensional structure, and are FIGS. 3 (b), 3 (d) and 3 (e). Each of (f) is a plan view which shows the process of forming a three-dimensional structure. 図4(a)から図4(c)のそれぞれは、3次元構造物を形成する過程を示す断面図である。Each of FIGS. 4 (a) to 4 (c) is a cross-sectional view showing a process of forming a three-dimensional structure. 図5は、分離容易化処理が施されたワークを示す断面図である。FIG. 5 is a cross-sectional view showing a work that has been subjected to a separation facilitation process. 図6(a)は、膜が形成されたワークを示す断面図であり、図6(b)は、膜が形成されたワークを示す平面図である。FIG. 6A is a cross-sectional view showing a work on which a film is formed, and FIG. 6B is a plan view showing a work on which a film is formed. 図7(a)は、造形面に対して照射される光及び造形面に対して供給される造形材料を示す断面図であり、図7(b)は、造形面に対して照射される光及び造形面に対して供給される造形材料を示す断面図である。FIG. 7A is a cross-sectional view showing the light emitted to the modeling surface and the modeling material supplied to the modeling surface, and FIG. 7B is the light emitted to the modeling surface. It is sectional drawing which shows the modeling material supplied to the modeling surface. 図8(a)及び図8(c)のそれぞれは、ワークの表面との間に膜が部分的に残留するように固化した造形材料を示す断面図であり、図8(b)は、ワークの表面との間に膜が部分的に残留するように固化した造形材料を示す平面図である。8 (a) and 8 (c) are cross-sectional views showing a molding material solidified so that a film partially remains between the work and the surface of the work, and FIG. 8 (b) shows the work. It is a top view which shows the molding material solidified so that a film partially remains between it and the surface of. 図9は、造形面上で目標照射領域及び目標供給領域のそれぞれの移動軌跡を示す平面図である。FIG. 9 is a plan view showing the movement trajectories of the target irradiation region and the target supply region on the modeling surface. 図10(a)及び図10(c)のそれぞれは、造形開始位置から目標照射領域及び目標供給領域のそれぞれをY軸方向に沿って移動させながら所望のタイミングで光を目標照射領域に照射し且つ造形材料を目標供給領域に供給する1回のスキャン動作が完了したときの固化した造形材料を示す断面図であり、図10(b)は、造形開始位置から目標照射領域及び目標供給領域のそれぞれをY軸方向に沿って移動させながら所望のタイミングで光を目標照射領域に照射し且つ造形材料を目標供給領域に供給する1回のスキャン動作が完了したときの固化した造形材料を示す断面図である。In each of FIGS. 10 (a) and 10 (c), the target irradiation region is irradiated with light at a desired timing while moving each of the target irradiation region and the target supply region from the modeling start position along the Y-axis direction. Further, it is a cross-sectional view showing a solidified modeling material when one scanning operation of supplying the modeling material to the target supply area is completed, and FIG. 10B is a cross-sectional view of the target irradiation area and the target supply area from the modeling start position. A cross section showing a solidified modeling material when one scanning operation of irradiating the target irradiation region with light at a desired timing and supplying the modeling material to the target supply region while moving each of them along the Y-axis direction is completed. It is a figure. 図11(a)は、スキャン動作とステップ動作とが交互に繰り返されることで形成された最下層の構造層を示す平面図であり、図11(b)及び図11(c)のそれぞれは、スキャン動作とステップ動作とが交互に繰り返されることで形成された最下層の構造層を示す断面図である。FIG. 11A is a plan view showing a structural layer of the lowest layer formed by alternately repeating a scanning operation and a stepping operation, and each of FIGS. 11B and 11C It is sectional drawing which shows the structural layer of the lowermost layer formed by repeating a scanning operation and a step operation alternately. 図12は、ワークの表面との間に膜が部分的に残留した状態で形成される3次元構造物を示す断面図である。FIG. 12 is a cross-sectional view showing a three-dimensional structure formed in a state where a film partially remains between the work and the surface of the work. 図13は、ワークの表面との間に膜が残留していない状態で形成される3次元構造物を示す断面図である。FIG. 13 is a cross-sectional view showing a three-dimensional structure formed in a state where no film remains between the work and the surface of the work. 図14は、ワークから3次元構造物が分離される様子を示す断面図である。FIG. 14 is a cross-sectional view showing how the three-dimensional structure is separated from the work. 図15は、表面粗さがワークよりも大きい膜が形成されたワークを示す断面図である。FIG. 15 is a cross-sectional view showing a work on which a film having a surface roughness larger than that of the work is formed. 図16は、ワークの表面との間に膜が部分的に残留するように固化した造形材料を示す断面図である。FIG. 16 is a cross-sectional view showing a molding material solidified so that a film partially remains between the work and the surface of the work. 図17は、ワークの表面との間に膜が部分的に残留した状態で形成される3次元構造物を示す断面図である。FIG. 17 is a cross-sectional view showing a three-dimensional structure formed in a state where a film partially remains between the work and the surface of the work. 図18は、ワークから3次元構造物が分離される様子を示す断面図である。FIG. 18 is a cross-sectional view showing how the three-dimensional structure is separated from the work.
 以下、図面を参照して造形方法、造形システム及び造形用土台の実施形態について説明する。以下では、レーザ肉盛溶接法(LMD:Laser Metal Deposition)により、造形材料Mを用いた付加加工を行うことで造形物を形成可能な造形システム1を用いて、造形方法、造形システム及び造形用土台の実施形態を説明する。尚、レーザ肉盛溶接法(LMD)は、ダイレクト・メタル・デポジション、ディレクテッド・エナジー・デポジション、レーザクラッディング、レーザ・エンジニアード・ネット・シェイピング、ダイレクト・ライト・ファブリケーション、レーザ・コンソリデーション、シェイプ・デポジション・マニュファクチャリング、ワイヤ-フィード・レーザ・デポジション、ガス・スルー・ワイヤ、レーザ・パウダー・フージョン、レーザ・メタル・フォーミング、セレクティブ・レーザ・パウダー・リメルティング、レーザ・ダイレクト・キャスティング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、レーザ・ラピッド・フォーミングと称してもよい。 Hereinafter, the modeling method, the modeling system, and the embodiment of the modeling base will be described with reference to the drawings. In the following, a modeling method, a modeling system, and a modeling system 1 are used, which can form a modeled object by performing additional processing using a modeling material M by a laser overlay welding method (LMD: Laser Metal Deposition). An embodiment of the foundation will be described. The laser overlay welding method (LMD) includes direct metal deposition, directed energy deposition, laser cladding, laser engineered net shaping, direct light fabrication, and laser consolidation. Foundation, Shape Deposition Manufacturing, Wire-Feed Laser Deposition, Gas Through Wire, Laser Powder Fusion, Laser Metal Forming, Selective Laser Powder Remelting, Laser Direct -It may also be called casting, laser powder deposition, laser additive manufacturing, or laser rapid forming.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、造形システム1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向或いは重力方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。 Further, in the following description, the positional relationship of various components constituting the modeling system 1 will be described using the XYZ Cartesian coordinate system defined from the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction or the gravity direction). Further, the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the θX direction, the θY direction, and the θZ direction, respectively. Here, the Z-axis direction may be the direction of gravity. Further, the XY plane may be horizontal.
 (1)造形システム1の全体構造
 初めに、図1を参照して本実施形態の造形システム1の全体構造について説明する。図1は、本実施形態の造形システム1の構造の一例を示す断面図である。
(1) Overall Structure of Modeling System 1 First, the overall structure of the modeling system 1 of the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an example of the structure of the modeling system 1 of the present embodiment.
 造形システム1は、3次元構造物(つまり、3次元方向のいずれの方向においても大きさを持つ3次元の物体であり、立体物、言い換えると、X、Y及びZ方向において大きさを持つ物体)STを形成可能である。造形システム1は、3次元構造物STを形成するための基礎(一例として基材、被加工材、台座及びワークピースの少なくとも一つ)となるワークW上に、3次元構造物STを形成可能である。造形システム1は、ワークWに付加加工を行うことで、3次元構造物STを形成可能である。ワークWが後述するステージ13である場合には、造形システム1は、ステージ13上に、3次元構造物STを形成可能である。ワークWがステージ13によって保持されている既存構造物(尚、既存構造物は、造形システム1が形成した別の3次元構造物STであってもよい)である場合には、造形システム1は、既存構造物上に、3次元構造物STを形成可能である。この場合、造形システム1は、既存構造物と一体化された3次元構造物STを形成してもよい。既存構造物と一体化された3次元構造物STを形成する動作は、既存構造物に新たな構造物を付加する動作と等価とみなせる。尚、既存構造物は例えば欠損箇所がある要修理品であってもよい。造形システム1は、要修理品の欠損箇所を埋めるように、要修理品に3次元構造物を形成してもよい。或いは、造形システム1は、既存構造物と分離可能な3次元構造物STを形成してもよい。尚、図1は、ワークWが、ステージ13によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ13によって保持されている既存構造物である例を用いて説明を進める。 The modeling system 1 is a three-dimensional structure (that is, a three-dimensional object having a size in any of the three-dimensional directions, and a three-dimensional object, in other words, an object having a size in the X, Y, and Z directions. ) ST can be formed. The modeling system 1 can form the three-dimensional structure ST on the work W which is the basis for forming the three-dimensional structure ST (for example, at least one of the base material, the work material, the pedestal, and the workpiece). Is. The modeling system 1 can form a three-dimensional structure ST by performing additional processing on the work W. When the work W is the stage 13 described later, the modeling system 1 can form the three-dimensional structure ST on the stage 13. When the work W is an existing structure held by the stage 13 (note that the existing structure may be another three-dimensional structure ST formed by the modeling system 1), the modeling system 1 , The three-dimensional structure ST can be formed on the existing structure. In this case, the modeling system 1 may form a three-dimensional structure ST integrated with the existing structure. The operation of forming the three-dimensional structure ST integrated with the existing structure can be regarded as equivalent to the operation of adding a new structure to the existing structure. The existing structure may be, for example, a repair-required product having a defective portion. The modeling system 1 may form a three-dimensional structure in the repair-required product so as to fill the defective portion of the repair-required product. Alternatively, the modeling system 1 may form a three-dimensional structure ST that can be separated from the existing structure. Note that FIG. 1 shows an example in which the work W is an existing structure held by the stage 13. Further, in the following, the description will proceed with reference to an example in which the work W is an existing structure held by the stage 13.
 上述したように、造形システム1は、レーザ肉盛溶接法により造形物を形成可能である。つまり、造形システム1は、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称される。 As described above, the modeling system 1 can form a modeled object by the laser overlay welding method. That is, it can be said that the modeling system 1 is a 3D printer that forms an object by using the laminated modeling technique. The laminated modeling technique is also referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
 造形システム1は、造形材料Mを光ELで加工して造形物を形成する。このような光LEとして、例えば、赤外光、可視光及び紫外光のうちの少なくとも一つが使用可能であるが、その他の波長の光、例えば可視域の波長の光が用いられてもよい。光ELは、レーザ光である。 The modeling system 1 processes the modeling material M with optical EL to form a modeled object. As such an optical LE, for example, at least one of infrared light, visible light, and ultraviolet light can be used, but light of other wavelengths, for example, light having a wavelength in the visible region may be used. The optical EL is a laser beam.
 造形材料Mは、所定強度以上の光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の材料である。つまり、造形材料Mは、粉体である。粉体は、粉状の材料に加えて、粒状の材料を含んでいてもよい。造形材料Mは、例えば、90マイクロメートル±40マイクロメートルの範囲に収まる粒径の粉体を含んでいてもよい。造形材料Mを構成する粉体の平均粒径は、例えば、75マイクロメートルであってもよいし、その他のサイズであってもよい。但し、造形材料Mは、粉体でなくてもよく、例えばワイヤ状の造形材料やガス状の造形材料が用いられてもよい。尚、造形システム1は、造形材料Mを荷電粒子線等のエネルギビームで加工して造形物を形成してもよい。 The modeling material M is a material that can be melted by irradiation with light EL having a predetermined intensity or higher. As such a modeling material M, for example, at least one of a metallic material and a resin material can be used. However, as the modeling material M, a material different from the metallic material and the resin material may be used. The modeling material M is a powdery material. That is, the modeling material M is a powder. The powder may contain a granular material in addition to the powdery material. The modeling material M may contain, for example, a powder having a particle size within the range of 90 micrometers ± 40 micrometers. The average particle size of the powders constituting the modeling material M may be, for example, 75 micrometers or other sizes. However, the modeling material M does not have to be powder, and for example, a wire-shaped modeling material or a gaseous modeling material may be used. In the modeling system 1, the modeling material M may be processed with an energy beam such as a charged particle beam to form a modeled object.
 造形材料Mを加工するために、造形システム1は、図1に示すように、造形ヘッド11と、ヘッド駆動系12と、ステージ13と、制御装置14とを備える。更に、造形ヘッド11は、照射系111と、材料ノズル(つまり造形材料Mを供給する供給系のうち少なくとも一部)112とを備えている。尚、造形システム1は、造形ヘッド11と、ヘッド駆動系12と、ステージ13とを図示無きチャンバ内に収容してもよい。ここで、チャンバ内は窒素やアルゴンガス等の不活性ガスでパージされていてもよい。 In order to process the modeling material M, the modeling system 1 includes a modeling head 11, a head drive system 12, a stage 13, and a control device 14, as shown in FIG. Further, the modeling head 11 includes an irradiation system 111 and a material nozzle (that is, at least a part of the supply system for supplying the modeling material M) 112. The modeling system 1 may accommodate the modeling head 11, the head drive system 12, and the stage 13 in a chamber (not shown). Here, the inside of the chamber may be purged with an inert gas such as nitrogen or argon gas.
 照射系111は、射出部113から光ELを射出するための光学系(例えば、集光光学系)である。具体的には、照射系111は、光ELを発する不図示の光源と、光ファイバ等の不図示の光伝送部材を介して光学的に接続されている。照射系111は、光伝送部材を介して光源から伝搬してくる光ELを射出する。照射系111は、照射系111から下方(つまり、-Z側)に向けて光ELを照射する。照射系111の下方には、ステージ13が配置されている。ステージ13にワークWが搭載されている場合には、照射系111は、ワークWに向けて光ELを照射可能である。具体的には、照射系111は、光ELが照射される(典型的には、集光される)領域としてワークW上に設定される所定形状の照射領域EAに光ELを照射する。更に、照射系111の状態は、制御装置14の制御下で、照射領域EAに光ELを照射する状態と、照射領域EAに光ELを照射しない状態との間で切替可能である。尚、照射系111から射出される光ELの方向は真下(つまり、Z軸と一致する方向)には限定されず、例えば、Z軸に対して所定の角度だけ傾いた方向であってもよい。照射領域EAは、例えば円形形状の領域であってもよいし、その他の形状(例えば、矩形形状)であってもよい。 The irradiation system 111 is an optical system (for example, a condensing optical system) for emitting optical EL from the injection unit 113. Specifically, the irradiation system 111 is optically connected to a light source (not shown) that emits an optical EL via an optical transmission member (not shown) such as an optical fiber. The irradiation system 111 emits optical EL propagating from the light source via the optical transmission member. The irradiation system 111 irradiates the light EL downward (that is, the −Z side) from the irradiation system 111. A stage 13 is arranged below the irradiation system 111. When the work W is mounted on the stage 13, the irradiation system 111 can irradiate the work W with light EL. Specifically, the irradiation system 111 irradiates the irradiation area EA having a predetermined shape set on the work W as the area where the light EL is irradiated (typically, the light is focused). Further, the state of the irradiation system 111 can be switched between a state in which the irradiation region EA is irradiated with the light EL and a state in which the irradiation region EA is not irradiated with the light EL under the control of the control device 14. The direction of the light EL emitted from the irradiation system 111 is not limited to the direction directly below (that is, the direction corresponding to the Z axis), and may be, for example, a direction tilted by a predetermined angle with respect to the Z axis. .. The irradiation region EA may be, for example, a circular region or another shape (for example, a rectangular shape).
 材料ノズル112は、造形材料Mを供給する供給アウトレット(つまり、供給口)114を有する。材料ノズル112は、供給アウトレット114から造形材料Mを供給(例えば、噴射、噴出又は射出)する。材料ノズル112は、造形材料Mの供給源である不図示の材料供給装置と物理的に接続されている。このとき、不図示のパイプ等の粉体伝送部材が材料供給装置と材料ノズルの間に介在してもよい。材料ノズル112は、粉体伝送部材を介して材料供給装置から供給される造形材料Mを供給する。尚、図1においては、材料ノズル112がチューブ形状に描かれている。しかしながら、材料ノズル112の形状はこのチューブ形状に限定されない。材料ノズル112は、下方(つまり、-Z側)に向けて造形材料Mを供給する。材料ノズル112の下方には、ステージ13が配置されている。ステージ13にワークWが搭載されている場合には、材料ノズル112は、ワークWに向けて造形材料Mを供給する。尚、材料ノズル112から供給される造形材料Mの進行方向はZ軸に対して所定の角度(一例として鋭角)だけ傾いた方向であるが、真下(つまり、Z軸と一致する方向)であってもよい。尚、複数の材料ノズル112を設けてもよい。 The material nozzle 112 has a supply outlet (that is, a supply port) 114 for supplying the modeling material M. The material nozzle 112 supplies the molding material M from the supply outlet 114 (eg, injection, ejection or injection). The material nozzle 112 is physically connected to a material supply device (not shown) that is a supply source of the modeling material M. At this time, a powder transmission member such as a pipe (not shown) may be interposed between the material supply device and the material nozzle. The material nozzle 112 supplies the modeling material M supplied from the material supply device via the powder transmission member. In FIG. 1, the material nozzle 112 is drawn in a tube shape. However, the shape of the material nozzle 112 is not limited to this tube shape. The material nozzle 112 supplies the modeling material M downward (that is, the −Z side). A stage 13 is arranged below the material nozzle 112. When the work W is mounted on the stage 13, the material nozzle 112 supplies the modeling material M toward the work W. The traveling direction of the modeling material M supplied from the material nozzle 112 is a direction inclined by a predetermined angle (an acute angle as an example) with respect to the Z axis, but is directly below (that is, a direction corresponding to the Z axis). You may. In addition, a plurality of material nozzles 112 may be provided.
 本実施形態では、材料ノズル112は、照射系111が光ELを照射する照射領域EAに向けて造形材料Mを供給するように、照射系111に対して位置合わせされている。つまり、材料ノズル112が造形材料Mを供給する領域としてワークW上に設定される供給領域MAと照射領域EAとが一致する(或いは、少なくとも部分的に重複する)ように、材料ノズル112と照射系111とが位置合わせされている。尚、照射系111から射出された光ELによってワークWに形成される溶融池MPに、材料ノズル112が造形材料Mを供給するように位置合わせされていてもよい。また、材料ノズル112が造形材料Mを供給する供給領域MAと、溶融池MPの領域とが部分的に重畳するように位置合わせされてもよい。 In the present embodiment, the material nozzle 112 is aligned with respect to the irradiation system 111 so that the irradiation system 111 supplies the modeling material M toward the irradiation region EA that irradiates the light EL. That is, the material nozzle 112 and the irradiation area are irradiated so that the supply area MA and the irradiation area EA set on the work W as the area where the material nozzle 112 supplies the modeling material M coincide with (or at least partially overlap) with each other. The system 111 is aligned with the system 111. The material nozzle 112 may be aligned so as to supply the modeling material M to the molten pool MP formed in the work W by the light EL emitted from the irradiation system 111. Further, the supply region MA to which the material nozzle 112 supplies the modeling material M and the region of the molten pool MP may be aligned so as to partially overlap each other.
 ヘッド駆動系12は、造形ヘッド11を移動させる。ヘッド駆動系12は、造形ヘッド11を、X軸、Y軸及びZ軸のそれぞれに沿って移動させる。ヘッド駆動系12は、X軸、Y軸及びZ軸のそれぞれに加えて、θX方向、θY方向及びθZ方向の少なくとも一つの回転方向に沿って造形ヘッド11を移動させてもよい。言い換えると、ヘッド駆動系12は、X軸、Y軸及びZ軸の少なくとも一つの軸回りに造形ヘッド11を回転させてもよい。ヘッド駆動系12は、X軸、Y軸及びZ軸の少なくとも一つの軸回りに造形ヘッド11の姿勢を変えてもよい。ヘッド駆動系12は、例えば、モータ等のアクチュエータを含む。ヘッド駆動系12が造形ヘッド11を移動させると、ワークW上において、照射領域EAもまたワークWに対して移動する。従って、ヘッド駆動系12は、造形ヘッド11を移動させることで、ワークWと照射領域EAとの位置関係(言い換えれば、ワークWを保持するステージ13と照射領域EAとの位置関係)を変更可能である。また、ヘッド駆動系12は、造形ヘッド11を移動させることで、ワークWと供給領域MAとの位置関係(言い換えれば、ワークWを保持するステージ13と供給領域MAとの位置関係)を変更可能である。 The head drive system 12 moves the modeling head 11. The head drive system 12 moves the modeling head 11 along the X-axis, the Y-axis, and the Z-axis, respectively. The head drive system 12 may move the modeling head 11 along at least one rotation direction in the θX direction, the θY direction, and the θZ direction in addition to the X-axis, the Y-axis, and the Z-axis, respectively. In other words, the head drive system 12 may rotate the modeling head 11 around at least one of the X-axis, Y-axis, and Z-axis. The head drive system 12 may change the posture of the modeling head 11 around at least one of the X-axis, the Y-axis, and the Z-axis. The head drive system 12 includes an actuator such as a motor, for example. When the head drive system 12 moves the modeling head 11, the irradiation region EA also moves on the work W with respect to the work W. Therefore, the head drive system 12 can change the positional relationship between the work W and the irradiation area EA (in other words, the positional relationship between the stage 13 holding the work W and the irradiation area EA) by moving the modeling head 11. Is. Further, the head drive system 12 can change the positional relationship between the work W and the supply area MA (in other words, the positional relationship between the stage 13 holding the work W and the supply area MA) by moving the modeling head 11. Is.
 尚、ヘッド駆動系12は、照射系111と材料ノズル112とを別々に移動させてもよい。具体的には、例えば、ヘッド駆動系12は、射出部113の位置、射出部113の向き(或いは姿勢)、供給アウトレット114の位置及び供給アウトレット114の向き(或いは姿勢)の少なくとも一つを調整可能であってもよい。この場合、照射系111が光ELを照射する照射領域EAと、材料ノズル112が造形材料Mを供給する供給領域MAとを別々に制御可能にできる。 The head drive system 12 may move the irradiation system 111 and the material nozzle 112 separately. Specifically, for example, the head drive system 12 adjusts at least one of the position of the injection unit 113, the direction (or posture) of the injection unit 113, the position of the supply outlet 114, and the direction (or posture) of the supply outlet 114. It may be possible. In this case, the irradiation region EA in which the irradiation system 111 irradiates the light EL and the supply region MA in which the material nozzle 112 supplies the modeling material M can be controlled separately.
 ステージ13は、ワークWを保持可能である。但し、ステージ13は、ワークWを保持可能でなくてもよい。この場合、ワークWは、ステージ13に載置されていてもよい。このとき、ワークWは、クランプレスでステージ13に載置されていてもよい。或いはワークWは、ステージ13に支持されていてもよい。ステージ13は、更に、ワークWが保持されている場合には、保持したワークWをリリース可能である。上述した照射系111は、ステージ13がワークWを保持している期間の少なくとも一部において光ELを照射する。更に、上述した材料ノズル112は、ステージ13がワークWを保持(または載置、或いは支持)している期間の少なくとも一部において造形材料Mを供給する。尚、材料ノズル112が供給した造形材料Mの一部は、ワークWの表面からワークWの外部へと(例えば、ステージ13の周囲へと)散乱する又はこぼれ落ちる可能性がある。このため、造形システム1は、ステージ13の周囲に、散乱した又はこぼれ落ちた造形材料Mを回収する回収装置を備えていてもよい。 Stage 13 can hold the work W. However, the stage 13 does not have to be able to hold the work W. In this case, the work W may be placed on the stage 13. At this time, the work W may be mounted on the stage 13 without being clamped. Alternatively, the work W may be supported by the stage 13. Further, when the work W is held, the stage 13 can release the held work W. The irradiation system 111 described above irradiates the optical EL at least for a part of the period during which the stage 13 holds the work W. Further, the material nozzle 112 described above supplies the modeling material M for at least a part of the period during which the stage 13 holds (or places or supports) the work W. A part of the modeling material M supplied by the material nozzle 112 may be scattered or spilled from the surface of the work W to the outside of the work W (for example, around the stage 13). Therefore, the modeling system 1 may be provided with a recovery device for collecting the scattered or spilled modeling material M around the stage 13.
 制御装置14は、造形システム1の動作を制御する。制御装置14は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方等の演算装置や、メモリ等の記憶装置を含んでいてもよい。制御装置14は、CPU等の演算装置がコンピュータプログラムを実行することで、造形システム1の動作を制御する装置として機能する。このコンピュータプログラムは、制御装置14が行うべき後述する動作を制御装置14(例えば、CPU)に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、造形システム1に後述する動作を行わせるように制御装置14を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置14が備えるメモリ(つまり、記録媒体)に記録されていてもよいし、制御装置14に内蔵された又は制御装置14に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置14の外部の装置からダウンロードしてもよい。 The control device 14 controls the operation of the modeling system 1. The control device 14 may include, for example, an arithmetic unit such as at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and a storage device such as a memory. The control device 14 functions as a device that controls the operation of the modeling system 1 by executing a computer program by an arithmetic unit such as a CPU. This computer program is a computer program for causing the control device 14 (for example, the CPU) to perform (that is, execute) the operation described later to be performed by the control device 14. That is, this computer program is a computer program for causing the control device 14 to function so that the modeling system 1 performs an operation described later. The computer program executed by the arithmetic unit may be recorded in a memory (that is, a recording medium) included in the control device 14, or may be an arbitrary storage medium built in the control device 14 or externally attached to the control device 14. It may be recorded in (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 14 via the network interface.
 特に、本実施形態では、制御装置14は、照射系111による光ELの射出態様を制御する。射出態様は、例えば、光ELの強度及び光ELの射出タイミングの少なくとも一方を含む。光ELがパルス光である場合には、射出態様は、例えば、パルス光の発光時間の長さ、パルス光の発光周期との比(いわゆる、デューティ比)を含んでいてもよい。また、射出態様は、例えば、パルス光の発光時間の長さそのものや、発光周期そのものを含んでいてもよい。更に、制御装置14は、ヘッド駆動系12による造形ヘッド11の移動態様を制御する。移動態様は、例えば、移動量、移動速度、移動方向及び移動タイミングの少なくとも一つを含む。更に、制御装置14は、材料ノズル112による造形材料Mの供給態様を制御する。供給態様は、例えば、供給量(特に、単位時間当たりの供給量)を含む。 In particular, in the present embodiment, the control device 14 controls the emission mode of the optical EL by the irradiation system 111. The injection mode includes, for example, at least one of the intensity of the optical EL and the injection timing of the optical EL. When the light EL is pulsed light, the emission mode may include, for example, the length of the emission time of the pulsed light and the ratio to the emission period of the pulsed light (so-called duty ratio). Further, the injection mode may include, for example, the length of the emission time of the pulsed light itself or the emission cycle itself. Further, the control device 14 controls the movement mode of the modeling head 11 by the head drive system 12. The movement mode includes, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing. Further, the control device 14 controls the supply mode of the modeling material M by the material nozzle 112. The supply mode includes, for example, a supply amount (particularly, a supply amount per unit time).
 制御装置14は、造形システム1の内部に設けられていなくてもよく、例えば、造形システム1外にサーバ等として設けられていてもよい。この場合、制御装置14と造形システム1とは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置14と造形システム1とはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置14は、ネットワークを介して造形システム1にコマンドや制御パラメータ等の情報を送信可能であってもよい。造形システム1は、制御装置14からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。 The control device 14 does not have to be provided inside the modeling system 1, and may be provided as a server or the like outside the modeling system 1, for example. In this case, the control device 14 and the modeling system 1 may be connected by a wired and / or wireless network (or a data bus and / or a communication line). As the wired network, for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used. As the wired network, a network using a parallel bus interface may be used. As a wired network, a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used. As the wireless network, a network using radio waves may be used. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®). As the wireless network, a network using infrared rays may be used. As the wireless network, a network using optical communication may be used. In this case, the control device 14 and the modeling system 1 may be configured so that various types of information can be transmitted and received via the network. Further, the control device 14 may be able to transmit information such as commands and control parameters to the modeling system 1 via the network. The modeling system 1 may include a receiving device that receives information such as commands and control parameters from the control device 14 via the network.
 尚、制御装置14は、一部が造形システム1の内部に設けられ、他の一部が造形システム1の外部に設けられていてもよい。 A part of the control device 14 may be provided inside the modeling system 1, and a part of the control device 14 may be provided outside the modeling system 1.
 尚、演算装置が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置14(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置14内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置14が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 The recording medium for recording the computer program executed by the arithmetic unit includes CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD-. At least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memory such as USB memory, and any other medium capable of storing a program is used. You may. The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware). Further, each process or function included in the computer program may be realized by a logical processing block realized in the control device 14 by the control device 14 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 14, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
 (2)造形システム1の動作
 続いて、造形システム1の動作について説明する。本実施形態では、造形システム1は、上述したように、3次元構造物STを形成するための造形動作を行う。上述したように、造形システム1は、レーザ肉盛溶接法により3次元構造物STを形成する。このため、造形システム1は、レーザ肉盛溶接法に準拠した既存の造形動作を行うことで、3次元構造物STを形成してもよい。以下、レーザ肉盛溶接法による3次元構造物STの造形動作の一例について簡単に説明する。
(2) Operation of the modeling system 1 Next, the operation of the modeling system 1 will be described. In the present embodiment, as described above, the modeling system 1 performs a modeling operation for forming the three-dimensional structure ST. As described above, the modeling system 1 forms the three-dimensional structure ST by the laser overlay welding method. Therefore, the modeling system 1 may form the three-dimensional structure ST by performing an existing modeling operation based on the laser overlay welding method. Hereinafter, an example of the modeling operation of the three-dimensional structure ST by the laser overlay welding method will be briefly described.
 造形システム1は、形成するべき3次元構造物STの3次元モデルデータ(例えば、CAD(Computer Aided Design)データ)等に基づいて、ワークW上に3次元構造物STを形成する。3次元モデルデータは、3次元構造物STの形状(特に、3次元形状)を表すデータを含む。3次元モデルデータとして、造形システム1内に設けられた計測装置で計測された立体物の計測データが用いられてもよい。3次元モデルデータとして、造形システム1とは別に設けられた3次元形状計測機の計測データが用いられてもよい。このような3次元形状計測機の一例として、ワークWに対して移動可能であって且つワークWに接触可能なプローブを有する接触型の3次元測定機及び非接触型の3次元計測機の少なくとも一方があげられる。非接触型の3次元計測機の一例として、パターン投影方式の3次元計測機、光切断方式の3次元計測機、タイム・オブ・フライト方式の3次元計測機、モアレトポグラフィ方式の3次元計測機、ホログラフィック干渉方式の3次元計測機、CT(Computed Tomography)方式の3次元計測機、及び、MRI(Magnetic Resonance Imaging)方式の3次元計測機の少なくとも一つがあげられる。3次元モデルデータとして、3次元構造物STの設計データが用いられてもよい。 The modeling system 1 forms the three-dimensional structure ST on the work W based on the three-dimensional model data (for example, CAD (Computer Aided Design) data) of the three-dimensional structure ST to be formed. The three-dimensional model data includes data representing the shape (particularly, the three-dimensional shape) of the three-dimensional structure ST. As the three-dimensional model data, the measurement data of the three-dimensional object measured by the measuring device provided in the modeling system 1 may be used. As the three-dimensional model data, the measurement data of the three-dimensional shape measuring machine provided separately from the modeling system 1 may be used. As an example of such a three-dimensional shape measuring machine, at least a contact type three-dimensional measuring machine and a non-contact type three-dimensional measuring machine having a probe that can move with respect to the work W and can contact the work W. One can be mentioned. As an example of a non-contact type 3D measuring machine, a pattern projection type 3D measuring machine, an optical cutting type 3D measuring machine, a time of flight type 3D measuring machine, and a moiretopography type 3D measuring machine , At least one of a holographic interference type three-dimensional measuring machine, a CT (Computed Tomography) type three-dimensional measuring machine, and an MRI (Magnetic Resonance Imaging) type three-dimensional measuring machine. As the 3D model data, the design data of the 3D structure ST may be used.
 造形システム1は、3次元構造物STを形成するために、例えば、Z軸方向に沿って並ぶ複数の層状の部分構造物(以下、“構造層”と称する)SLを順に形成していく。例えば、造形システム1は、3次元構造物STをZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に形成していく。その結果、複数の構造層SLが積層された積層構造体である3次元構造物STが形成される。以下、複数の構造層SLを1層ずつ順に形成していくことで3次元構造物STを形成する動作の流れについて説明する。 In order to form the three-dimensional structure ST, the modeling system 1 sequentially forms, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SLs arranged along the Z-axis direction. For example, the modeling system 1 sequentially forms a plurality of structural layers SL obtained by cutting the three-dimensional structure ST into round slices along the Z-axis direction. As a result, the three-dimensional structure ST, which is a laminated structure in which a plurality of structural layers SL are laminated, is formed. Hereinafter, the flow of the operation of forming the three-dimensional structure ST by forming the plurality of structural layers SL one by one in order will be described.
 まず、各構造層SLを形成する動作について図2(a)から図2(c)を参照して説明する。造形システム1は、制御装置14の制御下で、ワークWの表面又は形成済みの構造層SLの表面に相当する造形面MS上の所望領域に照射領域EAを設定し、当該照射領域EAに対して照射系111から光ELを照射する。尚、照射系111から照射される光ELが造形面MS上に占める領域を照射領域EAと称してもよい。また、造形システム1は、造形面MS上の所望領域に照射領域EAを設定しなくてもよい。このときには、照射系111から照射される光ELが造形面MS上に占める領域を照射領域EAと称してもよい。本実施形態においては、光ELのフォーカス位置FP(つまり、集光位置、言い換えると、Z軸方向或いは光ELの進行方向において、光ELが最も収斂している位置)が造形面MSに一致している。尚、光ELのフォーカス位置FPは、造形面MSからZ軸方向にずれた位置に設定されてもよい。その結果、図2(a)に示すように、照射系111から射出された光ELによって造形面MS上の所望領域に溶融池(つまり、光ELによって溶融した、液状の金属又は樹脂等のプール)MPが形成される。更に、造形システム1は、制御装置14の制御下で、造形面MS上の所望領域に供給領域MAを設定し、当該供給領域MAに対して材料ノズル112から造形材料Mを供給する。尚、造形システム1は、造形面MS上の所望領域に供給領域MAを設定しなくてもよい。このときには、材料ノズル112から造形材料Mが供給される領域を供給領域MAと称してもよい。ここで、上述したように照射領域EAと供給領域MAとが一致しているため、供給領域MAは、溶融池MPが形成された領域に設定されている。言い換えると、供給領域MAは、溶融池MPが形成された領域と一致する。このため、造形システム1は、図2(b)に示すように、溶融池MPに対して、材料ノズル112から造形材料Mを供給することになる。その結果、溶融池MPに供給された造形材料Mが溶融する。造形ヘッド11の移動に伴って溶融池MPに光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて固化(つまり、凝固)する。その結果、図2(c)に示すように、固化した造形材料Mが造形面MS上に堆積される。言い換えると、固化した造形材料Mの堆積物による造形物が形成される。このように造形面MSに造形材料Mの堆積物を付加する付加加工が行われることで、造形物が形成される。 First, the operation of forming each structural layer SL will be described with reference to FIGS. 2 (a) and 2 (c). Under the control of the control device 14, the modeling system 1 sets an irradiation region EA in a desired region on the modeling surface MS corresponding to the surface of the work W or the surface of the formed structural layer SL, and the irradiation region EA is set with respect to the irradiation region EA. The light EL is irradiated from the irradiation system 111. The region occupied by the light EL emitted from the irradiation system 111 on the modeling surface MS may be referred to as an irradiation region EA. Further, the modeling system 1 does not have to set the irradiation region EA in the desired region on the modeling surface MS. At this time, the region occupied by the light EL irradiated from the irradiation system 111 on the modeling surface MS may be referred to as the irradiation region EA. In the present embodiment, the focus position FP of the optical EL (that is, the condensing position, in other words, the position where the optical EL is most convergent in the Z-axis direction or the traveling direction of the optical EL) coincides with the modeling surface MS. ing. The focus position FP of the optical EL may be set to a position deviated from the modeling surface MS in the Z-axis direction. As a result, as shown in FIG. 2A, a pool of liquid metal or resin melted by the optical EL in a desired region on the modeling surface MS by the optical EL emitted from the irradiation system 111. ) MP is formed. Further, the modeling system 1 sets a supply region MA in a desired region on the modeling surface MS under the control of the control device 14, and supplies the modeling material M to the supply region MA from the material nozzle 112. The modeling system 1 does not have to set the supply region MA in the desired region on the modeling surface MS. At this time, the region to which the modeling material M is supplied from the material nozzle 112 may be referred to as a supply region MA. Here, since the irradiation region EA and the supply region MA coincide with each other as described above, the supply region MA is set to the region where the molten pool MP is formed. In other words, the supply region MA coincides with the region where the molten pool MP is formed. Therefore, as shown in FIG. 2B, the modeling system 1 supplies the modeling material M to the molten pool MP from the material nozzle 112. As a result, the modeling material M supplied to the molten pool MP melts. When the molten pool MP is no longer irradiated with light EL due to the movement of the modeling head 11, the modeling material M melted in the molten pool MP is cooled and solidified (that is, solidified). As a result, as shown in FIG. 2C, the solidified modeling material M is deposited on the modeling surface MS. In other words, a model is formed by the deposit of the solidified model material M. By performing the addition processing of adding the deposit of the modeling material M to the modeling surface MS in this way, the modeled object is formed.
 このような光の照射ELによる溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理が、造形面MSに対する造形ヘッド11のXY平面内の位置を変えながら繰り返される。言い換えると、造形面MSに対して造形ヘッド11をXY平面内に沿って相対的に移動させながら、溶融池MPの形成、造形材料Mの供給、造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理が繰り返される。造形面MSに対して造形ヘッド11が移動すると、造形面MSに対して照射領域EAもまたに移動する。従って、一連の造形処理が、造形面MSに対して照射領域EAをXY平面に沿って(つまり、二次元平面内において)相対的に移動させながら繰り返されるとも言える。この際、光ELは、造形物を形成すべき領域に設定された照射領域EAに対して選択的に照射される一方で、造形物を形成すべきでない領域に設定された照射領域EAに対して選択的に照射されない。尚、造形物を形成すべきでない領域には照射領域EAが設定されないとも言える。つまり、造形システム1は、造形面MS上で所定の移動軌跡に沿って照射領域EAを移動させながら、造形物を形成すべき領域の分布の態様に応じたタイミングで光ELを造形面MSに照射する。言い換えると、造形システム1は、所定の移動軌跡に沿って光ELが照射される予定の領域を造形面MS上で移動させながら、当該領域が造形物を形成すべき領域に位置した場合に光ELを造形面MSに照射する。その結果、造形面MS上に、凝固した造形材料Mによる造形物の集合体に相当する構造層SLが形成される。尚、上述した説明では、造形面MSに対して照射領域EAを移動させたが、照射領域EAに対して造形面MSを移動させてもよい。尚、造形物を形成したい領域の分布の態様を分布パターンとも構造層SLのパターンとも称してもよい。 A series of modeling processes including formation of the molten pool MP by such light irradiation EL, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M are performed. It is repeated while changing the position of the modeling head 11 in the XY plane with respect to the surface MS. In other words, while moving the modeling head 11 relative to the modeling surface MS along the XY plane, the formation of the molten pool MP, the supply of the modeling material M, the melting of the modeling material M, and the melting of the molten modeling material M A series of modeling processes including solidification are repeated. When the modeling head 11 moves with respect to the modeling surface MS, the irradiation region EA also moves with respect to the modeling surface MS. Therefore, it can be said that a series of modeling processes is repeated while moving the irradiation region EA relative to the modeling surface MS along the XY plane (that is, in the two-dimensional plane). At this time, the optical EL selectively irradiates the irradiation region EA set in the region where the modeled object should be formed, while the light EL is applied to the irradiation region EA set in the region where the modeled object should not be formed. Is not selectively irradiated. It can also be said that the irradiation region EA is not set in the region where the modeled object should not be formed. That is, the modeling system 1 moves the irradiation region EA along the predetermined movement locus on the modeling surface MS, and transfers the optical EL to the modeling surface MS at a timing according to the distribution mode of the region on which the modeled object should be formed. Irradiate. In other words, the modeling system 1 moves a region to be irradiated with the light EL along a predetermined movement locus on the modeling surface MS, and when the region is located in the region where the modeled object should be formed, the light is emitted. The EL is applied to the modeling surface MS. As a result, a structural layer SL corresponding to an aggregate of the modeled objects made of the solidified modeling material M is formed on the modeling surface MS. In the above description, the irradiation area EA is moved with respect to the modeling surface MS, but the modeling surface MS may be moved with respect to the irradiation area EA. The mode of distribution of the region where the modeled object is to be formed may be referred to as a distribution pattern or a pattern of the structural layer SL.
 造形システム1は、このような構造層SLを形成するための動作を、制御装置14の制御下で、3次元モデルデータに基づいて繰り返し行う。図3(a)から図3(f)及び図4(a)から図4(c)を参照して説明すると、具体的には、まず、制御装置14は、3次元モデルデータを積層ピッチでスライス処理してスライスデータを作成する。尚、制御装置14は、造形システム1の特性に応じて、スライスデータを少なくとも部分的に修正してもよい。造形システム1は、制御装置14の制御下で、ワークWの表面WSに相当する造形面MS上に1層目の構造層SL#1を形成するための動作を、構造層SL#1に対応する3次元モデルデータ(つまり、構造層SL#1に対応するスライスデータ)に基づいて行う。その結果、造形面MS上には、図3(a)及び図3(b)並びに図4(a)に示すように、構造層SL#1が形成される。その後、造形システム1は、構造層SL#1の表面(典型的には、上面)を新たな造形面MSに設定した上で、当該新たな造形面MS上に2層目の構造層SL#2を形成する。構造層SL#2を形成するために、制御装置14は、まず、造形ヘッド11がZ軸に沿って移動するようにヘッド駆動系12を制御する。具体的には、制御装置14は、ヘッド駆動系12を制御して、照射領域EA及び供給領域MAが構造層SL#1の表面(つまり、新たな造形面MS)に設定されるように、+Z側に向かって造形ヘッド11を移動させる。これにより、光ELのフォーカス位置FPが新たな造形面MSに一致する。その後、造形システム1は、制御装置14の制御下で、構造層SL#1を形成する動作と同様の動作で、構造層SL#2に対応するスライスデータに基づいて、構造層SL#1上に構造層SL#2を形成する。その結果、図3(c)及び図3(d)並びに図4(b)に示すように、構造層SL#2が形成される。以降、同様の動作が、ワークW上に形成するべき3次元構造物を構成する全ての構造層SLが形成されるまで繰り返される。その結果、図3(e)及び図3(f)並びに図4(c)に示すように、Z軸に沿って(つまり、溶融池MPの底面から上面へと向かう方向に沿って)複数の構造層SLが積層された積層構造物によって、3次元構造物STが形成される。 The modeling system 1 repeatedly performs the operation for forming such a structural layer SL under the control of the control device 14 based on the three-dimensional model data. Explaining with reference to FIGS. 3 (a) to 3 (f) and FIGS. 4 (a) to 4 (c), specifically, first, the control device 14 first inputs the three-dimensional model data at a stacking pitch. Slice processing is performed to create slice data. The control device 14 may modify the slice data at least partially according to the characteristics of the modeling system 1. The modeling system 1 corresponds to the operation for forming the first structural layer SL # 1 on the modeling surface MS corresponding to the surface WS of the work W under the control of the control device 14. This is performed based on the three-dimensional model data (that is, the slice data corresponding to the structural layer SL # 1). As a result, the structural layer SL # 1 is formed on the modeling surface MS as shown in FIGS. 3 (a), 3 (b) and 4 (a). After that, the modeling system 1 sets the surface (typically, the upper surface) of the structural layer SL # 1 on the new modeling surface MS, and then sets the second structural layer SL # on the new modeling surface MS. Form 2. In order to form the structural layer SL # 2, the control device 14 first controls the head drive system 12 so that the modeling head 11 moves along the Z axis. Specifically, the control device 14 controls the head drive system 12 so that the irradiation region EA and the supply region MA are set on the surface of the structural layer SL # 1 (that is, the new modeling surface MS). The modeling head 11 is moved toward the + Z side. As a result, the focus position FP of the optical EL matches the new modeling surface MS. After that, the modeling system 1 operates on the structural layer SL # 1 based on the slice data corresponding to the structural layer SL # 2 in the same operation as the operation of forming the structural layer SL # 1 under the control of the control device 14. The structural layer SL # 2 is formed on the surface. As a result, the structural layer SL # 2 is formed as shown in FIGS. 3 (c), 3 (d) and 4 (b). After that, the same operation is repeated until all the structural layers SL constituting the three-dimensional structure to be formed on the work W are formed. As a result, as shown in FIGS. 3 (e), 3 (f), and 4 (c), a plurality of ridges are formed along the Z axis (that is, along the direction from the bottom surface to the top surface of the molten pool MP). The three-dimensional structure ST is formed by the laminated structure in which the structural layer SL is laminated.
 (3)3次元造形物STのワークWからの分離を容易にするための分離容易化処理が施されたワークW
 上述した造形動作では、ワークWに形成される3次元構造物STは、ワークWと結合される(つまり、一体化される)。具体的には、上述した造形動作では、3次元構造物STを構成する構造層SL#1がワークWと結合される。このため、上述した造形動作では、ワークWと相対的に強固に結合した3次元構造物STが形成される。その結果、3次元構造物STのワークWからの分離(言い換えれば、取り外し)が容易でない可能性がある。
(3) Work W that has been subjected to separation facilitation processing to facilitate separation of the three-dimensional model ST from work W.
In the modeling operation described above, the three-dimensional structure ST formed on the work W is combined (that is, integrated) with the work W. Specifically, in the above-mentioned modeling operation, the structural layer SL # 1 constituting the three-dimensional structure ST is coupled to the work W. Therefore, in the above-mentioned modeling operation, the three-dimensional structure ST that is relatively firmly bonded to the work W is formed. As a result, it may not be easy to separate (in other words, remove) the three-dimensional structure ST from the work W.
 そこで、本実施形態では、造形システム1は、ワークWに形成される3次元構造物STのワークWからの分離を容易にするための分離容易化処理が施されたワークWに対して、造形動作を行ってもよい。つまり、本実施形態では、分離容易化処理が施されていない上述したワークWそのものが、造形物を形成するための造形用土台として用いられてもよいし、分離容易化処理が施されたワークWが、造形物を形成するための造形用土台として用いられてもよい。その結果、分離容易化処理が施されていないワークWに3次元構造物STが形成される場合と比較して、3次元構造物STのワークWからの分離が容易になる。 Therefore, in the present embodiment, the modeling system 1 models the work W that has been subjected to the separation facilitation process to facilitate the separation of the three-dimensional structure ST formed on the work W from the work W. The operation may be performed. That is, in the present embodiment, the above-mentioned work W itself that has not been subjected to the separation facilitation treatment may be used as a modeling base for forming a modeled object, or the work that has been subjected to the separation facilitation treatment. W may be used as a modeling base for forming a modeled object. As a result, the separation of the three-dimensional structure ST from the work W becomes easier as compared with the case where the three-dimensional structure ST is formed on the work W that has not been subjected to the separation facilitation treatment.
 分離容易化処理は、分離容易化処理が施されない場合と比較して、ワークWに形成される3次元構造物STとワークWとの間の結合力(言い換えれば、付着力又は接合力)を弱くするための処理を含んでいてもよい。この場合、3次元構造物STとワークWとの間の結合力が弱くなる分だけ、3次元構造物STのワークWからの分離が容易になる。例えば、3次元構造物STとワークWとの結合(つまり、3次元構造物STとワークWとの強固な接合)が3次元構造物STのワークWからの分離を困難にする要因の一つであることを考慮すれば、3次元構造物STとワークWとの結合面(つまり、接合面)の面積が小さくなるほど、3次元構造物STのワークWからの分離が容易になる可能性が高くなる。3次元構造物STとワークWとが結合している部分が少なくなるほど(つまり、小さくなるほど)、3次元構造物STのワークWからの分離が容易になる可能性が高くなる。このため、分離容易化処理(特に、3次元構造物STとワークWとの間の結合力を弱くするための処理)は、3次元構造物STとワークWとの結合面の面積を小さくするための処理を含んでいてもよい。分離容易化処理は、3次元構造物STとワークWとのが結合している部分を少なくするための処理を含んでいてもよい。 The separation facilitation treatment reduces the bonding force (in other words, adhesive force or bonding force) between the three-dimensional structure ST formed on the work W and the work W as compared with the case where the separation facilitation treatment is not performed. It may include a process for weakening. In this case, the three-dimensional structure ST can be easily separated from the work W by the weakening of the coupling force between the three-dimensional structure ST and the work W. For example, the connection between the 3D structure ST and the work W (that is, the strong bonding between the 3D structure ST and the work W) is one of the factors that make it difficult to separate the 3D structure ST from the work W. Considering that, the smaller the area of the joint surface (that is, the joint surface) between the three-dimensional structure ST and the work W, the easier it is that the three-dimensional structure ST can be separated from the work W. It gets higher. The smaller the portion where the three-dimensional structure ST and the work W are connected (that is, the smaller the portion), the higher the possibility that the three-dimensional structure ST can be easily separated from the work W. Therefore, the separation facilitation process (particularly, the process for weakening the bonding force between the three-dimensional structure ST and the work W) reduces the area of the bonding surface between the three-dimensional structure ST and the work W. May include processing for. The separation facilitation process may include a process for reducing the portion where the three-dimensional structure ST and the work W are connected.
 分離容易化処理の一例として、分離容易化処理が施されたワークWを示す断面図である図5に示すように、ワークWの表面WSに膜Cを形成する処理があげられる。この場合、膜Cが表面WSに形成されたワークWが、造形用土台として用いられる。つまり、造形用土台は、基材としてのワークWと、ワークWの表面WSに形成された膜Cとを備えていてもよい。尚、ワークWの表面WSに膜Cが形成されない場合には、基材としてのワークWが、造形用土台として用いられてもよい。 As an example of the separation facilitation treatment, as shown in FIG. 5, which is a cross-sectional view showing the work W subjected to the separation facilitation treatment, there is a treatment of forming a film C on the surface WS of the work W. In this case, the work W in which the film C is formed on the surface WS is used as a modeling base. That is, the modeling base may include a work W as a base material and a film C formed on the surface WS of the work W. When the film C is not formed on the surface WS of the work W, the work W as a base material may be used as a base for modeling.
 表面WSに膜Cが形成されたワークWに3次元構造物STが形成される場合には、表面WSに膜Cが形成されていないワークWに3次元構造物STが形成される場合と比較して、ワークWと3次元構造物STとの間に膜Cの少なくとも一部が残留する可能性が高くなる。その結果、ワークWと3次元構造物STとの間に膜Cが残留している分だけ、3次元構造物STとワークWとの結合面の面積が小さくなる可能性がある。このため、ワークWの表面WSに膜Cを形成する処理は、分離容易化処理の一例となり得る。 When the three-dimensional structure ST is formed on the work W on which the film C is formed on the surface WS, it is compared with the case where the three-dimensional structure ST is formed on the work W on which the film C is not formed on the surface WS. Therefore, there is a high possibility that at least a part of the film C remains between the work W and the three-dimensional structure ST. As a result, the area of the bonding surface between the three-dimensional structure ST and the work W may be reduced by the amount of the film C remaining between the work W and the three-dimensional structure ST. Therefore, the process of forming the film C on the surface WS of the work W can be an example of the separation facilitation process.
 膜Cは、ワークWの表面WSに対して表面処理を行うことでワークWの表面WSに形成されてもよい。表面処理は、造形システム1とは異なる不図示の表面処理装置によって行われる。但し、造形システム1が表面処理装置を備えている場合には、表面処理は、造形システム1(特に、造形システム1が備える表面処理装置)によって行われてもよい。表面処理は、物体の表面に所望の膜を形成するための膜形成処理を含んでいてもよい。表面処理は、物理的な処理、化学的な処理、電気的な処理、磁気的な処理、熱的な処理及び光学的な処理の少なくとも一つを含んでいてもよい。このような表面処理の一例として、めっき処理、蒸着処理(例えば、物理蒸着処理(PVD:Physical Vapor Depositoin)及び化学蒸着処理(CVD:Chemical Vapor Deposition)の少なくとも一方)、スパッタリング処理、溶射処理及びリューブライト処理の少なくとも一つがあげられる。 The film C may be formed on the surface WS of the work W by performing a surface treatment on the surface WS of the work W. The surface treatment is performed by a surface treatment device (not shown) different from the modeling system 1. However, when the modeling system 1 is provided with a surface treatment device, the surface treatment may be performed by the modeling system 1 (particularly, the surface treatment device included in the modeling system 1). The surface treatment may include a film forming treatment for forming a desired film on the surface of the object. The surface treatment may include at least one of physical treatment, chemical treatment, electrical treatment, magnetic treatment, thermal treatment and optical treatment. As an example of such surface treatment, plating treatment, vapor deposition treatment (for example, at least one of physical vapor deposition treatment (PVD) and chemical vapor deposition treatment (CVD)), sputtering treatment, spraying treatment and At least one of the bright treatments can be mentioned.
 膜Cの膜厚(具体的には、図5のZ軸方向におけるサイズ)は任意である。例えば、膜Cの膜厚は、数マイクロメートルであってもよいし、十数マイクロメートルであってもよいし、数十マイクロメートルであってもよい。 The film thickness of the film C (specifically, the size in the Z-axis direction of FIG. 5) is arbitrary. For example, the film thickness of the film C may be several micrometers, a dozens of micrometers, or a few tens of micrometers.
 膜Cの表面(図5に示す例では、+Z側を向いた面)の少なくとも一部は、平面であってもよい。膜Cの表面の少なくとも一部は、XY平面に平行な平面(つまり、水平面)であってもよい。但し、膜Cの表面の少なくとも一部が曲面であってもよい。膜Cの表面の少なくとも一部が傾斜面であってもよい。膜Cの表面の少なくとも一部がX軸に対して傾斜した傾斜面であってもよい。膜Cの表面の少なくとも一部がY軸に対して傾斜した傾斜面であってもよい。膜Cの表面の少なくとも一部がZ軸に対して傾斜した傾斜面であってもよい。膜Cの表面の少なくとも一部が凹凸面であってもよい。 At least a part of the surface of the film C (in the example shown in FIG. 5, the surface facing the + Z side) may be a flat surface. At least a part of the surface of the film C may be a plane parallel to the XY plane (that is, a horizontal plane). However, at least a part of the surface of the film C may be a curved surface. At least a part of the surface of the film C may be an inclined surface. At least a part of the surface of the film C may be an inclined surface inclined with respect to the X axis. At least a part of the surface of the film C may be an inclined surface inclined with respect to the Y axis. At least a part of the surface of the film C may be an inclined surface inclined with respect to the Z axis. At least a part of the surface of the film C may be an uneven surface.
 ワークWの表面WSに形成される膜Cの特性は、ワークWの特性とは異なっていてもよい。例えば、膜Cは、ワークWを構成する材料とは異なる特性を有する材料から構成されていてもよい。また、膜Cの特性は、造形材料Mの特性とは異なっていてもよい。例えば、膜Cは、造形材料Mとは異なる特性を有する材料から構成されていてもよい。また、3次元構造物STが造形材料Mから構成されているため、膜Cの特性は、3次元構造物STの特性とは異なっていてもよい。つまり、膜Cの特性は、ワークW、造形材料M及び3次元構造物STの少なくとも一つの特性とは異なっていてもよい。 The characteristics of the film C formed on the surface WS of the work W may be different from the characteristics of the work W. For example, the film C may be made of a material having properties different from those of the material constituting the work W. Further, the characteristics of the film C may be different from the characteristics of the modeling material M. For example, the film C may be made of a material having properties different from those of the modeling material M. Further, since the three-dimensional structure ST is composed of the modeling material M, the characteristics of the film C may be different from the characteristics of the three-dimensional structure ST. That is, the characteristics of the film C may be different from those of at least one of the work W, the modeling material M, and the three-dimensional structure ST.
 本実施形態では、特性は、融点及び表面粗さの少なくとも一方を含んでいてもよい。つまり、膜Cの特性は、膜Cの融点及び膜Cの表面粗さの少なくとも一方を含んでいてもよい。ワークWの特性は、ワークWの融点及びワークWの表面粗さの少なくとも一方を含んでいてもよい。造形材料Mの特性は、造形材料Mの融点及び造形材料Mの表面粗さの少なくとも一方を含んでいてもよい。3次元構造物STの特性は、3次元構造物STの融点及び3次元構造物STの表面粗さの少なくとも一方を含んでいてもよい。 In this embodiment, the property may include at least one of melting point and surface roughness. That is, the characteristics of the film C may include at least one of the melting point of the film C and the surface roughness of the film C. The characteristics of the work W may include at least one of the melting point of the work W and the surface roughness of the work W. The characteristics of the modeling material M may include at least one of the melting point of the modeling material M and the surface roughness of the modeling material M. The characteristics of the three-dimensional structure ST may include at least one of the melting point of the three-dimensional structure ST and the surface roughness of the three-dimensional structure ST.
 膜Cの特性が膜Cの融点を含む場合には、膜Cの融点は、ワークW、造形材料M及び3次元構造物STの少なくとも一つの融点とは異なっていてもよい。膜Cの特性が膜Cの表面粗さを含む場合には、膜Cの表面粗さは、ワークW、造形材料M及び3次元構造物STの少なくとも一つの表面粗さとは異なっていてもよい。以下、ワークW、造形材料M及び3次元構造物STの少なくとも一つの融点とは異なる融点を有する膜Cが形成されたワークWに対して行われる造形動作と、ワークW、造形材料M及び3次元構造物STの少なくとも一つの表面粗さとは異なる表面粗さを有する膜Cが形成されたワークWに対して行われる造形動作とについて順に説明すると共に、3次元構造物STのワークWからの分離が容易になる技術的理由について説明する。尚、以下では、ワークW、造形材料M及び3次元構造物STの少なくとも一つの融点とは異なる融点を有する膜Cを、“膜C1”と称する。また、ワークW、造形材料M及び3次元構造物STの少なくとも一つの表面粗さとは異なる表面粗さを有する膜Cを、“膜C2”と称する。 When the characteristics of the film C include the melting point of the film C, the melting point of the film C may be different from the melting point of at least one of the work W, the modeling material M, and the three-dimensional structure ST. When the characteristics of the film C include the surface roughness of the film C, the surface roughness of the film C may be different from the surface roughness of at least one of the work W, the modeling material M, and the three-dimensional structure ST. .. Hereinafter, the modeling operation performed on the work W on which the film C having a melting point different from at least one melting point of the work W, the modeling material M and the three-dimensional structure ST is formed, and the work W, the modeling material M and 3 The modeling operation performed on the work W on which the film C having the surface roughness different from the surface roughness of at least one of the three-dimensional structure ST is formed will be described in order, and from the work W of the three-dimensional structure ST. The technical reasons for facilitating separation will be described. In the following, a film C having a melting point different from at least one melting point of the work W, the modeling material M, and the three-dimensional structure ST will be referred to as “film C1”. Further, a film C having a surface roughness different from at least one surface roughness of the work W, the modeling material M, and the three-dimensional structure ST is referred to as “film C2”.
 (3-1)膜C1が形成されたワークWに対して行われる造形動作
 膜C1がワークWの表面WSに形成される場合には、膜C1の融点は、ワークWの融点よりも高くてもよい。つまり、ワークWの表面WSには、ワークWの融点よりも高い融点を有する膜C1が形成されてもよい。また、膜C1の融点は、造形材料M及び3次元構造物STの融点よりも高くてもよい。以下の説明では、膜C1の融点が、ワークW、造形材料M及び3次元構造物STのそれぞれの融点よりも高い例を用いて説明を進める。
(3-1) Modeling operation performed on the work W on which the film C1 is formed When the film C1 is formed on the surface WS of the work W, the melting point of the film C1 is higher than the melting point of the work W. May be good. That is, a film C1 having a melting point higher than the melting point of the work W may be formed on the surface WS of the work W. Further, the melting point of the film C1 may be higher than the melting point of the modeling material M and the three-dimensional structure ST. In the following description, the description will proceed using an example in which the melting point of the film C1 is higher than the melting points of the work W, the modeling material M, and the three-dimensional structure ST.
 このような膜C1の一例として、例えば、クロムを含むめっき膜があげられる。この場合、クロムを含むめっき膜は、めっき処理によって形成されてもよい。クロムを含むめっき膜の融点は概ね摂氏1880度から摂氏1900度である。このため、クロムを含むめっき膜が膜C1として用いられる場合には、融点が概ね摂氏1880度から摂氏1900度よりも低いワークWが用いられてもよい。融点が概ね摂氏1880度から摂氏1900度よりも低いワークWの一例として、融点が概ね摂氏1400度から摂氏1510度となる鋼材から構成されるワーク、融点が概ね摂氏1371度から摂氏1508度となるステンレス鋼から構成されるワーク、及び、融点が概ね摂氏1668度となるチタン鋼(例えば、TP340)から構成されるワークの少なくとも一つが上げられる。鋼材の一例として、炭素鋼(いわゆるSC材であり、例えば、S50C等)、クロムモリブデン鋼(いわゆるSCM材であり、例えば、SCM440等)、炭素工具鋼(いわゆるSK材)、及び、合金工具鋼の少なくとも一つがあげられる。炭素鋼は、鉄に炭素が添加された合金である。クロムモリブデン鋼は、鉄にクロム及びモリブデンの少なくとも一方が添加された合金である。炭素工具鋼は、鉄に炭素、ケイ素及びマンガンの少なくとも一つが添加された合金である。合金工具鋼は、炭素工具鋼にタングステン、モリブデン、クロム、シリコン、バナジウム及びニッケルの少なくとも一つが添加された合金である。ステンレス鋼の一例として、融点が概ね摂氏1371度から摂氏1400度となるオーステナイト系のステンレス鋼(例えば、SUS316)、融点が概ね摂氏1440度から摂氏1508度となるフェライト系のステンレス鋼(例えば、SUS430)、及び、マルテンサイト系のステンレス鋼(例えば、SUS440C)の少なくとも一つがあげられる。また、造形材料Mとしても、融点が概ね摂氏1880度から摂氏1900度よりも低い材料が用いられてもよい。融点が概ね摂氏1880度から摂氏1900度よりも低い材料は、融点が概ね摂氏1880度から摂氏1900度よりも低いワークWを構成する材料と同一であってもよいため、その詳細な説明を省略する。 An example of such a film C1 is a plating film containing chromium. In this case, the plating film containing chromium may be formed by a plating process. The melting point of the chromium-containing plating film is approximately 1880 degrees Celsius to 1900 degrees Celsius. Therefore, when a plating film containing chromium is used as the film C1, a work W having a melting point of about 1880 degrees Celsius to lower than 1900 degrees Celsius may be used. As an example of a work W whose melting point is approximately 1880 degrees Celsius to lower than 1900 degrees Celsius, a work composed of steel having a melting point of approximately 1400 degrees Celsius to 1510 degrees Celsius has a melting point of approximately 1371 degrees Celsius to 1508 degrees Celsius. At least one of a workpiece made of stainless steel and a workpiece made of titanium steel (eg, TP340) having a melting point of approximately 1668 degrees Celsius can be mentioned. As an example of the steel material, carbon steel (so-called SC material, for example, S50C), chrome molybdenum steel (so-called SCM material, for example, SCM440, etc.), carbon tool steel (so-called SK material), and alloy tool steel. At least one of. Carbon steel is an alloy in which carbon is added to iron. Chromium molybdenum steel is an alloy in which at least one of chromium and molybdenum is added to iron. Carbon tool steel is an alloy in which at least one of carbon, silicon and manganese is added to iron. Alloy tool steel is an alloy in which at least one of tungsten, molybdenum, chromium, silicon, vanadium and nickel is added to carbon tool steel. As an example of stainless steel, an austenite-based stainless steel having a melting point of about 1371 degrees to 1400 degrees Celsius (for example, SUS316) and a ferrite-based stainless steel having a melting point of about 1440 degrees to 1508 degrees Celsius (for example, SUS430). ), And at least one of martensitic stainless steels (eg, SUS440C). Further, as the modeling material M, a material having a melting point of about 1880 degrees Celsius to lower than 1900 degrees Celsius may be used. A material having a melting point of approximately 1880 degrees Celsius to lower than 1900 degrees Celsius may be the same as a material constituting a work W having a melting point of approximately 1880 degrees Celsius to lower than 1900 degrees Celsius, and thus detailed description thereof will be omitted. To do.
 膜C1の一例として、クロムに加えて又は代えてニッケルを含むめっき膜があげられる。この場合、ニッケルを含むめっき膜は、例えば、めっき処理(例えば、電気めっき処理)によって形成されてもよい。ニッケルを含むめっき膜の融点は概ね摂氏1450度であるため、ニッケルを含むめっき膜が膜C1として用いられる場合には、融点が概ね摂氏1450度よりも低いワークWが用いられてもよい。融点が概ね摂氏1450度よりも低いワークWの一例として、上述した鋼材から構成されるワーク及び上述したステンレス鋼から構成されるワークの少なくとも一つが上げられる。また、造形材料Mとしても、融点が概ね摂氏1450度よりも低い材料が用いられてもよい。融点が概ね摂氏1450度よりも低い材料は、融点が概ね摂氏1450度よりも低いワークWを構成する材料と同一であってもよいため、その詳細な説明を省略する。 An example of the film C1 is a plating film containing nickel in addition to or in place of chromium. In this case, the nickel-containing plating film may be formed by, for example, a plating process (for example, an electroplating process). Since the melting point of the nickel-containing plating film is approximately 1450 degrees Celsius, when the nickel-containing plating film is used as the film C1, a work W having a melting point lower than approximately 1450 degrees Celsius may be used. As an example of the work W having a melting point lower than 1450 degrees Celsius, at least one of the above-mentioned work made of steel and the above-mentioned work made of stainless steel can be mentioned. Further, as the modeling material M, a material having a melting point lower than 1450 degrees Celsius may be used. A material having a melting point lower than approximately 1450 degrees Celsius may be the same as a material constituting the work W having a melting point lower than approximately 1450 degrees Celsius, and thus detailed description thereof will be omitted.
 膜C1の一例として、窒化チタンを含む膜があげられる。この場合、窒化チタンを含む膜は、例えば、スパッタリング処理によって形成されてもよい。窒化チタンを含む膜の融点は概ね摂氏2950度であるため、窒化チタンを含む膜が膜C1として用いられる場合には、融点が概ね摂氏2950度よりも低いワークWが用いられてもよい。融点が概ね摂氏2950度よりも低いワークWの一例として、上述した鋼材から構成されるワーク及び上述したステンレス鋼から構成されるワークの少なくとも一つが上げられる。融点が概ね摂氏2950度よりも低いワークWの他の一例として、融点が概ね摂氏2050度となるセラミックから構成されるワークがあげられる。セラミックの一例として、酸化アルミニウム(いわゆる、アルミナ)を含むセラミック(例えば、アルミナ96及びアルミナ99.5の少なくとも一方)があげられる。また、造形材料Mとしても、融点が概ね摂氏2950度よりも低い材料が用いられてもよい。融点が概ね摂氏2950度よりも低い材料は、融点が概ね摂氏2950度よりも低いワークWを構成する材料と同一であってもよいため、その詳細な説明を省略する。 An example of the film C1 is a film containing titanium nitride. In this case, the film containing titanium nitride may be formed by, for example, a sputtering process. Since the melting point of the film containing titanium nitride is approximately 2950 degrees Celsius, when the film containing titanium nitride is used as the film C1, a work W having a melting point lower than approximately 2950 degrees Celsius may be used. As an example of the work W having a melting point lower than 2950 degrees Celsius, at least one of the above-mentioned work made of steel and the above-mentioned work made of stainless steel can be mentioned. Another example of a work W having a melting point of about 2950 degrees Celsius is a work made of ceramic having a melting point of about 2050 degrees Celsius. An example of a ceramic is a ceramic containing aluminum oxide (so-called alumina) (for example, at least one of alumina 96 and alumina 99.5). Further, as the modeling material M, a material having a melting point lower than 2950 degrees Celsius may be used. A material having a melting point lower than 2950 degrees Celsius may be the same as a material constituting the work W having a melting point lower than 2950 degrees Celsius, and thus detailed description thereof will be omitted.
 膜C1の一例として、ホウ化チタンを含む膜があげられる。この場合、膜C1は、例えば、スパッタリング処理及び蒸着処理の少なくとも一方によって形成されてもよい。ホウ化チタンを含む膜の融点は概ね摂氏3230度であるため、ホウ化チタンを含む膜が膜C1として用いられる場合には、概ね摂氏3230度よりも融点が低いワークWが用いられてもよい。 An example of the film C1 is a film containing titanium borohydride. In this case, the film C1 may be formed by, for example, at least one of a sputtering treatment and a vapor deposition treatment. Since the melting point of the film containing titanium booxide is approximately 3230 degrees Celsius, when the film containing titanium booxide is used as the film C1, a work W having a melting point lower than approximately 3230 degrees Celsius may be used. ..
 膜C1の一例として、炭化チタンを含む膜があげられる。この場合、膜C1は、例えば、スパッタリング処理及び蒸着処理の少なくとも一方によって形成されてもよい。炭化チタンを含む膜の融点は概ね摂氏3170度であるため、炭化化チタンを含む膜が膜C1として用いられる場合には、概ね摂氏3170度よりも融点が低いワークWが用いられてもよい。 An example of the film C1 is a film containing titanium carbide. In this case, the film C1 may be formed by, for example, at least one of a sputtering treatment and a vapor deposition treatment. Since the melting point of the film containing titanium carbide is approximately 3170 degrees Celsius, when the film containing titanium carbide is used as the film C1, a work W having a melting point lower than approximately 3170 degrees Celsius may be used.
 膜C1のその他の一例として、DLC(Diamond Like Carbon:ダイヤモンドライクカーボン)を含む膜、及び、セラミックを含む膜があげられる。この場合、DLCを含む膜は、例えば、スパッタリング処理及び蒸着処理の少なくとも一方によって形成されてもよい。セラミックを含む膜は、例えば、溶射処理によって形成されてもよい。 As another example of the film C1, a film containing DLC (Diamond Like Carbon: diamond-like carbon) and a film containing ceramic can be mentioned. In this case, the film containing the DLC may be formed by, for example, at least one of a sputtering treatment and a vapor deposition treatment. The film containing ceramic may be formed, for example, by thermal spraying.
 膜Cの融点がワークW、造形材料M及び3次元構造物STの少なくとも一つの融点よりも高い場合には、膜Cの融点がワークW、造形材料M及び3次元構造物STの融点よりも低い場合と比較して、光ELの照射によって膜Cが溶融しにくくなる。その結果、ワークWと3次元構造物STとの間に膜Cの少なくとも一部が残留しやすくなる。以下、ワークWと3次元構造物STとの間に膜Cの少なくとも一部が残留する理由について、図6から図14を参照しながら説明する。 When the melting point of the film C is higher than the melting point of at least one of the work W, the modeling material M and the three-dimensional structure ST, the melting point of the film C is higher than the melting point of the work W, the modeling material M and the three-dimensional structure ST. Compared with the case where it is low, the film C is less likely to be melted by irradiation with light EL. As a result, at least a part of the film C tends to remain between the work W and the three-dimensional structure ST. Hereinafter, the reason why at least a part of the film C remains between the work W and the three-dimensional structure ST will be described with reference to FIGS. 6 to 14.
 膜C1が形成されたワークWに対して造形動作を開始する場合には、造形システム1は、まず、ワークW上に最下層の構造層SL(つまり、構造層SL#1)を形成する。この場合、造形システム1は、ワークWの表面WSを造形面MSに設定する。但し、ワークWの表面WSに膜C1が形成されているため、造形システム1は、膜C1の表面又は膜C1の表面とワークWの表面WSとの間に造形面MSを設定してもよい。 When starting the modeling operation on the work W on which the film C1 is formed, the modeling system 1 first forms the lowest structural layer SL (that is, the structural layer SL # 1) on the work W. In this case, the modeling system 1 sets the surface WS of the work W to the modeling surface MS. However, since the film C1 is formed on the surface WS of the work W, the modeling system 1 may set the modeling surface MS between the surface of the film C1 or the surface of the film C1 and the surface WS of the work W. ..
 更に、造形システム1は、造形ヘッド11が、造形面MSのうちの造形開始領域MS_startに光ELを照射し且つ造形材料Mを供給することができるように、造形ヘッド11を造形開始位置に移動させる。その結果、図6(a)及び図6(b)に示すように、照射系111が光ELを照射可能な領域(つまり、照射系111が光ELを照射することが予定されている領域)である目標照射領域EA_targetは、造形開始領域MS_startに設定される。更に、図6(a)及び図6(b)に示すように、材料ノズル112が造形材料Mを供給可能な領域(つまり、材料ノズル112が造形材料Mを供給することが予定されている領域)である目標供給領域MA_targetは、造形開始領域MS_startに設定される。尚、図6(a)は、膜C1が形成されたワークWを示す断面図であり、図6(b)は、膜C1が形成されたワークWを示す平面図である。 Further, the modeling system 1 moves the modeling head 11 to the modeling start position so that the modeling head 11 can irradiate the modeling start region MS_start of the modeling surface MS with light EL and supply the modeling material M. Let me. As a result, as shown in FIGS. 6A and 6B, the region where the irradiation system 111 can irradiate the light EL (that is, the region where the irradiation system 111 is scheduled to irradiate the light EL). The target irradiation region EA_start, which is, is set in the modeling start region MS_start. Further, as shown in FIGS. 6A and 6B, a region where the material nozzle 112 can supply the modeling material M (that is, a region where the material nozzle 112 is scheduled to supply the modeling material M). ), The target supply area MA_start is set in the modeling start area MS_start. 6 (a) is a cross-sectional view showing the work W on which the film C1 is formed, and FIG. 6 (b) is a plan view showing the work W on which the film C1 is formed.
 その後、図7(a)及び図7(b)に示すように、造形面MSに対する光ELの照射及び造形材料Mの供給を開始する。尚、図7(a)は、造形面MSに対して照射される光EL及び造形面に対して供給される造形材料Mを示す断面図であり、図7(b)は、造形面MSに対して照射される光EL及び造形面に対して供給される造形材料Mを示す断面図である。その結果、溶融池MPが形成される。但し、ワークWの表面WSに膜C1が形成されているがゆえに、実際には、光ELが膜C1に照射され且つ造形材料Mは膜C1に供給される。このため、図7(a)及び図7(b)に示すように、溶融池MPは、膜C1上に形成される。更に、膜C1の融点がワークWの融点よりも高い(つまり、膜C1が溶融しにくい)がゆえに、膜C1は、膜C1が形成されていないワークWに光ELが直接照射された場合のワークWほどには溶融しない。つまり、膜C1のうちの光ELが照射された膜部分の一部が溶融する一方で、膜C1のうちの光ELが照射された膜部分の他の一部が溶融しない。具体的には、膜C1のうちのワークW及び造形材料Mを溶融させるほどのエネルギ量を有する光ELが照射された膜部分の一部が溶融する一方で、膜C1のうちのワークW及び造形材料Mを溶融させるほどのエネルギ量を有する光ELが照射された膜部分の他の一部が溶融しない。典型的には、膜C1は、光ELのスポットの中心付近の限られた領域において部分的に溶融する。このため、溶融池MPのサイズ(具体的には、径)R1と比較して、膜C1の溶融部分のサイズ(具体的には、径)R2が小さくなる。 After that, as shown in FIGS. 7 (a) and 7 (b), irradiation of the modeling surface MS with optical EL and supply of the modeling material M are started. 7 (a) is a cross-sectional view showing an optical EL irradiated to the modeling surface MS and a modeling material M supplied to the modeling surface, and FIG. 7 (b) is a cross-sectional view showing the modeling surface MS. It is sectional drawing which shows the light EL to which it irradiates, and the modeling material M supplied to the modeling surface. As a result, a molten pool MP is formed. However, since the film C1 is formed on the surface WS of the work W, the light EL is actually irradiated to the film C1 and the modeling material M is supplied to the film C1. Therefore, as shown in FIGS. 7 (a) and 7 (b), the molten pool MP is formed on the film C1. Further, since the melting point of the film C1 is higher than the melting point of the work W (that is, the film C1 is difficult to melt), the film C1 is the case where the work W on which the film C1 is not formed is directly irradiated with light EL. It does not melt as much as work W. That is, while a part of the film C1 irradiated with the light EL is melted, the other part of the film C1 irradiated with the light EL is not melted. Specifically, the work W in the film C1 and the work W in the film C1 and a part of the film portion irradiated with the light EL having an energy amount sufficient to melt the modeling material M are melted. The other part of the film portion irradiated with the optical EL having an amount of energy sufficient to melt the modeling material M is not melted. Typically, the film C1 partially melts in a limited area near the center of the optical EL spot. Therefore, the size (specifically, the diameter) R2 of the molten portion of the membrane C1 is smaller than the size (specifically, the diameter) R1 of the molten pool MP.
 この場合、溶融池MPとワークWの表面WSとの間には、溶融しなかった膜C1が部分的に残留することになる。具体的には、溶融池MPは、膜C1上に露出した池部分MP1と、膜C1が溶融することで膜C1に形成された貫通孔内に形成される池部分MP2とを含む。池部分MP1とワークWとの間には、溶融しなかった膜C1が部分的に残留する。従って、池部分MP1は、ワークWの表面WSに接触しない。一方で、池部分MP2は、貫通孔を介してワークWの表面WSに接触する。このため、溶融池MPの底面は、膜C1に面する面部分(つまり、池部分MP1の底面)と、膜C1が溶融することで膜C1に形成された貫通孔を介してワークWに面する面部分(つまり、池部分MP2の底面)とを含む。溶融池MPのサイズR1と比較して、膜C1の溶融部分のサイズR2が小さくなるがゆえに、膜C1上に露出する池部分MP1のサイズR1と比較して、膜C1に形成された貫通孔内に形成される池部分MP2のサイズR2が小さくなる。 In this case, the unmelted film C1 partially remains between the molten pool MP and the surface WS of the work W. Specifically, the molten pool MP includes a pond portion MP1 exposed on the membrane C1 and a pond portion MP2 formed in a through hole formed in the membrane C1 by melting the membrane C1. The unmelted film C1 partially remains between the pond portion MP1 and the work W. Therefore, the pond portion MP1 does not come into contact with the surface WS of the work W. On the other hand, the pond portion MP2 contacts the surface WS of the work W through the through hole. Therefore, the bottom surface of the molten pool MP faces the work W through a surface portion facing the film C1 (that is, the bottom surface of the pond portion MP1) and a through hole formed in the film C1 by melting the film C1. The surface portion (that is, the bottom surface of the pond portion MP2) is included. Since the size R2 of the molten portion of the membrane C1 is smaller than the size R1 of the molten pool MP, the through hole formed in the membrane C1 is compared with the size R1 of the pond portion MP1 exposed on the membrane C1. The size R2 of the pond portion MP2 formed inside becomes smaller.
 溶融池MPとワークWの表面WSとの間に溶融しなかった膜C1が部分的に残留する場合には、図8(a)から図8(c)に示すように、溶融池MPにおいて溶融した造形材料Mが冷却されて固化(つまり、凝固)した後には、固化した造形材料MとワークWの表面WSとの間に溶融しなかった膜C1が部分的に残留する。尚、図8(a)及び図8(c)のそれぞれは、ワークWの表面WSとの間に膜C1が部分的に残留するように固化した造形材料Mを示す断面図であり、図8(b)は、ワークWの表面WSとの間に膜C1が部分的に残留するように固化した造形材料Mを示す平面図である。固化した造形材料Mは、膜C1上に露出した造形部分M1と、膜C1が溶融して除去されることで膜C1に形成された貫通孔を介してワークW上に形成された造形部分M2とを含む。固化した造形材料Mの下面(つまり、-Z側を向いた面)は、膜C1に面する面部分(つまり、造形部分M1の下面)と、膜C1が溶融することで膜C1に形成された貫通孔を介してワークWに面する面部分(つまり、造形部分M2の下面)とを含む。尚、膜C1に形成された貫通孔内に形成される造形部分M2には、膜C1を構成する材料が含まれていてもよい。つまり、貫通孔からの膜C1の除去は、貫通孔からの膜C1の完全な除去のみならず、貫通孔に造形部分MP2が形成される程度に貫通孔からの膜C1が少なくとも部分的に除去されることも意味していてもよい。 When the unmelted film C1 partially remains between the molten pool MP and the surface WS of the work W, it melts in the molten pool MP as shown in FIGS. 8 (a) to 8 (c). After the formed molding material M is cooled and solidified (that is, solidified), an unmelted film C1 partially remains between the solidified molding material M and the surface WS of the work W. 8 (a) and 8 (c) are cross-sectional views showing a molding material M solidified so that the film C1 partially remains between the work W and the surface WS of the work W. (B) is a plan view showing a modeling material M solidified so that the film C1 partially remains between the work W and the surface WS. The solidified modeling material M has a modeling portion M1 exposed on the film C1 and a modeling portion M2 formed on the work W through a through hole formed in the film C1 by melting and removing the film C1. And include. The lower surface of the solidified modeling material M (that is, the surface facing the −Z side) is formed on the film C1 by melting the surface portion facing the film C1 (that is, the lower surface of the modeling portion M1) and the film C1. It includes a surface portion facing the work W (that is, the lower surface of the modeling portion M2) through the through hole. The modeling portion M2 formed in the through hole formed in the film C1 may contain a material constituting the film C1. That is, the removal of the film C1 from the through hole not only completely removes the film C1 from the through hole, but also at least partially removes the film C1 from the through hole to the extent that the modeling portion MP2 is formed in the through hole. It may also mean that it is done.
 造形部分M1は、主として、膜C1上に露出する池部分MP1が固化することで形成される造形物である。造形部分M2は、主として、膜C1に形成された貫通孔内に形成される池部分MP2が固化することで形成される造形物である。池部分MP1のサイズR1と比較して池部分MP2のサイズR2が小さくなるがゆえに、造形部分M1のサイズD1と比較して、造形部分M2のサイズD2は小さくなる。この場合、典型的には、造形部分M1のサイズD1は、造形部分M2を形成するための池部分MP2のサイズR2よりも大きくなる。尚、造形部分のサイズは、造形面MSに沿った複数の方向のうちの少なくとも一つの方向におけるサイズ(図8(a)及び図8(c)に示す例では、X軸方向及びY軸方向のそれぞれにおけるサイズ、以下同じ)を意味するものとする。以下、特段の表記がない場合には、固化した造形材料Mによって構成される造形物のサイズは、造形面MSに沿った複数の方向のうちの少なくとも一つの方向におけるサイズを意味するものとする。 The modeled portion M1 is a modeled object formed mainly by solidifying the pond portion MP1 exposed on the film C1. The modeled portion M2 is a modeled object formed mainly by solidifying the pond portion MP2 formed in the through hole formed in the film C1. Since the size R2 of the pond portion MP2 is smaller than the size R1 of the pond portion MP1, the size D2 of the modeling portion M2 is smaller than the size D1 of the modeling portion M1. In this case, typically, the size D1 of the modeling portion M1 is larger than the size R2 of the pond portion MP2 for forming the modeling portion M2. The size of the modeling portion is the size in at least one of a plurality of directions along the modeling surface MS (in the examples shown in FIGS. 8A and 8C, the X-axis direction and the Y-axis direction). The size in each of the above, the same shall apply hereinafter). Hereinafter, unless otherwise specified, the size of the modeled object composed of the solidified modeling material M shall mean the size in at least one of a plurality of directions along the modeling surface MS. ..
 固化した造形材料MとワークWとが面する部分では、造形材料Mは、典型的には、ワークWと結合するように固化する。つまり、造形部分MP2は、ワークWと結合するように固化する。造形部分MP2は、膜C1を貫通して(言い換えれば、突き抜けて)ワークWと結合するように固化する。一方で、造形部分MP1とワークWとの間には、溶融しなかった膜C1が残留している。つまり、造形部分MP1とワークWとは離れている。但し、造形部分MP1が造形部分MP2と結合しているがゆえに、造形部分MP1は、造形部分MP2を介してワークWに固定されている
 その後、上述したように、このような光の照射ELによる溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理が、造形面MSに対する造形ヘッド11のXY平面内の位置を変えながら繰り返される。造形面MSに対する造形ヘッド11のXY平面内の位置が変わると、図9に示すように、造形面MS上での目標照射領域EA_target及び目標供給領域MA_targetのそれぞれの位置が変わる。このため、一連の造形処理が、造形面MS上での目標照射領域EA_target及び目標供給領域MA_targetのそれぞれの位置を変えながら繰り返される。
At the portion where the solidified modeling material M and the work W face each other, the modeling material M is typically solidified so as to be bonded to the work W. That is, the modeling portion MP2 solidifies so as to be combined with the work W. The modeling portion MP2 penetrates the membrane C1 (in other words, penetrates) and solidifies so as to be bonded to the work W. On the other hand, the unmelted film C1 remains between the modeling portion MP1 and the work W. That is, the modeling portion MP1 and the work W are separated from each other. However, since the modeling portion MP1 is bonded to the modeling portion MP2, the modeling portion MP1 is fixed to the work W via the modeling portion MP2, and then, as described above, the light irradiation EL is used. A series of modeling processes including formation of the molten pool MP, supply of the modeling material M to the molten pool MP, melting of the supplied modeling material M, and solidification of the molten modeling material M are performed by XY of the modeling head 11 with respect to the modeling surface MS. It is repeated while changing the position in the plane. When the position of the modeling head 11 in the XY plane with respect to the modeling surface MS changes, the positions of the target irradiation area EA_taget and the target supply area MA_target on the modeling surface MS change, as shown in FIG. Therefore, a series of modeling processes is repeated while changing the positions of the target irradiation region EA_taget and the target supply region MA_taget on the modeling surface MS.
 本実施形態では、説明の便宜上、スキャン動作とステップ動作とを交互に繰り返すことで、造形面MSに構造層SLを形成するものとする。スキャン動作は、造形面MS上で目標照射領域EA_target及び目標供給領域MA_targetのそれぞれをY軸方向に沿って移動させながら所望のタイミングで光ELを目標照射領域EA_targetに照射し且つ造形材料Mを目標供給領域MA_targetに供給する動作である。ステップ動作は、造形面MS上で目標照射領域EA_target及び目標供給領域MA_targetのそれぞれを少なくともX軸方向に沿って移動させる動作である。従って、造形面MS上で目標照射領域EA_target及び目標供給領域MA_targetのそれぞれの移動軌跡は、図9に示すように、Y軸方向に沿った移動軌跡とX軸方向に沿った移動軌跡とを交互に含む。造形面MS上での目標照射領域EA_target及び目標供給領域MA_targetのそれぞれの移動軌跡は、駆動系12による造形ヘッド11のXY平面内での移動軌跡と実質的に一致する。尚、上述した照射領域EAは、目標照射領域EA_targetを意味していてもよいし、実際に光ELが照射される領域を意味していてもよい。また、上述した供給領域MAは、目標供給領域MA_targetを意味していてもよいし、実際に造形材料Mが供給される領域を意味していてもよい。 In the present embodiment, for convenience of explanation, the structural layer SL is formed on the modeling surface MS by alternately repeating the scanning operation and the step operation. In the scanning operation, the target irradiation area EA_taget and the target supply area MA_taget are each moved along the Y-axis direction on the modeling surface MS, and the light EL is irradiated to the target irradiation area EA_taget at a desired timing, and the modeling material M is targeted. This is an operation of supplying to the supply area MA_target. The step operation is an operation of moving each of the target irradiation region EA_target and the target supply region MA_target along at least the X-axis direction on the modeling surface MS. Therefore, as shown in FIG. 9, the movement loci of the target irradiation region EA_target and the target supply region MA_target alternate on the modeling surface MS with the movement locus along the Y-axis direction and the movement locus along the X-axis direction. Included in. The movement trajectories of the target irradiation region EA_target and the target supply region MA_target on the modeling surface MS substantially coincide with the movement loci of the modeling head 11 by the drive system 12 in the XY plane. The irradiation region EA described above may mean a target irradiation region EA_target, or may mean a region where the light EL is actually irradiated. Further, the above-mentioned supply region MA may mean a target supply region MA_taget, or may mean a region where the modeling material M is actually supplied.
 図10(a)から図10(c)は、造形開始位置MS_startから目標照射領域EA_target及び目標供給領域MA_targetのそれぞれをY軸方向に沿って移動させながら所望のタイミングで光ELを目標照射領域EA_targetに照射し且つ造形材料Mを目標供給領域MA_targetに供給する1回のスキャン動作が完了したときの固化した造形材料Mを示している。図10(a)から図10(c)に示すように、1回のスキャン動作が完了した状態においても、固化した造形材料MとワークWの表面WSとの間には、溶融しなかった膜C1が部分的に残留する。このため、固化した造形材料Mのうち膜C1上に露出した部分(つまり、上述した造形部分M1から構成される部分)のサイズと比較して、固化した造形材料Mのうち膜C1に形成された貫通孔内に形成された部分(つまり、上述した造形部分M2から構成される部分)のサイズは小さくなる。具体的には、図10(a)に示すように、固化した造形材料Mのうち膜C1上に露出した部分のY軸方向におけるサイズと比較して、固化した造形材料Mのうち膜C1に形成された貫通孔内に形成された部分のY軸方向におけるサイズは小さくなる。図10(c)に示すように、固化した造形材料Mのうち膜C1上に露出した部分のX軸方向におけるサイズと比較して、固化した造形材料Mのうち膜C1に形成された貫通孔内に形成された部分のX軸方向におけるサイズは小さくなる。更に、固化した造形材料Mは、固化した造形材料Mのうち膜C1に形成された貫通孔内に形成された部分を介してワークWと結合するがゆえに、図10(a)に示すように、固化した造形材料Mの表面のY軸方向におけるサイズと比較して、固化した造形材料MとワークWの表面WSとの結合面のY軸方向におけるサイズは小さくなる。図10(c)に示すように、固化した造形材料Mの表面のX軸方向におけるサイズと比較して、固化した造形材料MとワークWの表面WSとの接合面のX軸方向におけるサイズは小さくなる。 10 (a) to 10 (c) show the optical EL at a desired timing while moving each of the target irradiation area EA_taget and the target supply area MA_taget from the modeling start position MS_start along the Y-axis direction. Is shown, and the solidified modeling material M is shown when one scanning operation of irradiating the target supply area MA_taget with the modeling material M is completed. As shown in FIGS. 10 (a) to 10 (c), a film that did not melt between the solidified modeling material M and the surface WS of the work W even when one scanning operation was completed. C1 remains partially. Therefore, it is formed on the film C1 of the solidified modeling material M as compared with the size of the portion of the solidified modeling material M exposed on the film C1 (that is, the portion composed of the above-mentioned modeling portion M1). The size of the portion formed in the through hole (that is, the portion composed of the above-mentioned modeling portion M2) becomes smaller. Specifically, as shown in FIG. 10A, the film C1 of the solidified modeling material M is compared with the size of the portion of the solidified modeling material M exposed on the film C1 in the Y-axis direction. The size of the portion formed in the formed through hole in the Y-axis direction becomes smaller. As shown in FIG. 10 (c), the through hole formed in the film C1 of the solidified modeling material M is compared with the size of the portion of the solidified modeling material M exposed on the film C1 in the X-axis direction. The size of the portion formed inside in the X-axis direction becomes smaller. Further, as shown in FIG. 10 (a), the solidified modeling material M is bonded to the work W through the portion of the solidified modeling material M formed in the through hole formed in the film C1. The size of the joint surface between the solidified modeling material M and the surface WS of the work W in the Y-axis direction is smaller than the size of the surface of the solidified modeling material M in the Y-axis direction. As shown in FIG. 10 (c), the size of the joint surface between the solidified modeling material M and the surface WS of the work W in the X-axis direction is larger than the size of the surface of the solidified modeling material M in the X-axis direction. It becomes smaller.
 図11(a)から図11(c)は、スキャン動作とステップ動作とが交互に繰り返されることで形成された最下層の構造層SL#1を示している。図11(a)から図11(c)に示すように、構造層SL#1とワークWの表面WSとの間には、溶融しなかった膜C1が部分的に残留する。構造層SL#1は、膜C1上に形成された層部分SL1#1と、膜C1が溶融することで膜C1に形成された貫通孔を介してワークW上に形成された層部分SL2#1とを含む。構造層SL#1は、膜C1上に露出した層部分SL1#1と、膜C1に形成された貫通孔内に形成された層部分SL2#1とを含む。構造層SL#1の一部である層部分SL1#1は、残留した膜C1上に形成されている。構造層SL#1の下面(つまり、-Z側を向いた面)は、膜C1に面する面部分(具体的には、層部分SL1#1の下面)と、膜C1が溶融することで膜C1に形成された貫通孔を介してワークWに面する面部分(具体的には、層部分SL2#1の下面)とを含む。 FIGS. 11 (a) to 11 (c) show the lowermost structural layer SL # 1 formed by alternately repeating the scanning operation and the step operation. As shown in FIGS. 11 (a) to 11 (c), the unmelted film C1 partially remains between the structural layer SL # 1 and the surface WS of the work W. The structural layer SL # 1 is a layer portion SL1 # 1 formed on the film C1 and a layer portion SL2 # formed on the work W via a through hole formed in the film C1 by melting the film C1. Includes 1 and. The structural layer SL # 1 includes a layer portion SL1 # 1 exposed on the film C1 and a layer portion SL2 # 1 formed in a through hole formed in the film C1. The layer portion SL1 # 1, which is a part of the structural layer SL # 1, is formed on the residual film C1. The lower surface of the structural layer SL # 1 (that is, the surface facing the −Z side) is formed by melting the surface portion facing the film C1 (specifically, the lower surface of the layer portion SL1 # 1) and the film C1. It includes a surface portion (specifically, the lower surface of the layer portion SL2 # 1) facing the work W through the through hole formed in the film C1.
 層部分SL1#1は、主として上述した造形部分M1から構成される。層部分SL2#1は、主として上述した造形部分M2から構成される。このため、層部分SL1#1のサイズと比較して、層部分SL2#1のサイズが小さくなる。層部分SL1#1を形成するための溶融池MP1のサイズR1と比較して、層部分SL2#1のサイズが小さくなる。層部分SL2#1を形成するための溶融池MP2のサイズR2と比較して、層部分SL1#1のサイズが大きくなる。 The layer portion SL1 # 1 is mainly composed of the above-mentioned modeling portion M1. The layer portion SL2 # 1 is mainly composed of the above-mentioned modeling portion M2. Therefore, the size of the layer portion SL2 # 1 is smaller than the size of the layer portion SL1 # 1. The size of the layered portion SL2 # 1 is smaller than the size R1 of the molten pool MP1 for forming the layered portion SL1 # 1. The size of the layered portion SL1 # 1 is larger than the size R2 of the molten pool MP2 for forming the layered portion SL2 # 1.
 構造層SL#1とワークWとが面する部分の少なくとも一部では、構造層SL#1は、ワークWと結合している。膜C1が除去された部分の少なくとも一部では、構造層SL#1は、ワークWと結合している。一方で、膜C1が残留している部分の少なくとも一部では、構造層SL#1は、ワークWから離れている(つまり、結合していない)。膜C1が除去されていない部分の少なくとも一部では、構造層SL#1は、ワークWから離れている。構造層SL#1とワークWとが面する部分とは異なる部分の少なくとも一部では、構造層SL#1は、ワークWから離れている。逆に言えば、構造層SL#1がワークWから離れている部分の少なくとも一部において、膜C1が残留している。 At least a part of the portion where the structural layer SL # 1 and the work W face each other, the structural layer SL # 1 is connected to the work W. In at least a part of the portion where the film C1 has been removed, the structural layer SL # 1 is bound to the work W. On the other hand, in at least a part of the portion where the film C1 remains, the structural layer SL # 1 is separated from the work W (that is, not bonded). The structural layer SL # 1 is separated from the work W at least in a part where the film C1 is not removed. The structural layer SL # 1 is separated from the work W at least in a part different from the portion where the structural layer SL # 1 and the work W face each other. Conversely, the film C1 remains in at least a part of the portion where the structural layer SL # 1 is separated from the work W.
 その結果、構造層SL#1は、ワークWと部分的に結合している。具体的には、構造層SL#1は、膜C1を部分的に貫通して(つまり、突き抜けて)ワークWと結合している。構造層SL#1とワークWとは部分的に離れている。構造層SL#1は、ワークWの表面WSとの間に膜C1が介在する(つまり、残留する)ことでワークWから離れた層部分SL1#1と、ワークWから離れていない(つまり、ワークWと結合した)層部分SL2#1とを含む。構造層SL#1の下面は、ワークWの表面WSとの間に膜C1が介在することでワークWと結合していない面部分(具体的には、層部分SL1#2の下面)と、膜C1が溶融することで膜C1に形成された貫通孔を介してワークWと結合した面部分(具体的には、層部分SL2#1の下面)とを含む。 As a result, the structural layer SL # 1 is partially bonded to the work W. Specifically, the structural layer SL # 1 partially penetrates (that is, penetrates) the film C1 and is bonded to the work W. The structural layer SL # 1 and the work W are partially separated. The structural layer SL # 1 is not separated from the work W (that is, the layer portion SL1 # 1 separated from the work W by interposing (that is, remaining) the film C1 with the surface WS of the work W. Includes layer portion SL2 # 1 (combined with work W). The lower surface of the structural layer SL # 1 includes a surface portion (specifically, the lower surface of the layer portion SL1 # 2) that is not bonded to the work W due to the presence of the film C1 between the surface WS of the work W. It includes a surface portion (specifically, the lower surface of the layer portion SL2 # 1) that is bonded to the work W through the through hole formed in the film C1 by melting the film C1.
 その後、造形システム1は、構造層SLを形成する都度、形成した構造層SLの表面を新たな造形面MSに設定すると共に、新たな造形面MSに新たな構造層SLを形成する動作を繰り返す。その結果、図12に示すように、3次元構造物STが形成される。形成された3次元構造物STが上述した構造層SL#1を含むがゆえに、3次元構造物STとワークWの表面WSとの間には、溶融しなかった膜C1が部分的に残留する。具体的には、3次元構造物STとワークWとが面する部分の少なくとも一部では、3次元構造物STは、ワークWと結合している。膜C1が除去された部分の少なくとも一部では、3次元構造物STは、ワークWと結合している。一方で、膜C1が残留している部分の少なくとも一部では、3次元構造物STは、ワークWから離れている(つまり、結合していない)。膜C1が除去されていない部分の少なくとも一部では、3次元構造物STは、ワークWから離れている。3次元構造物STとワークWとが面する部分とは異なる部分の少なくとも一部では、3次元構造物STは、ワークWから離れている。逆に言えば、3次元構造物STがワークWから離れている部分の少なくとも一部において、膜C1が残留している。 After that, each time the structural layer SL is formed, the modeling system 1 sets the surface of the formed structural layer SL on the new modeling surface MS, and repeats the operation of forming the new structural layer SL on the new modeling surface MS. .. As a result, as shown in FIG. 12, a three-dimensional structure ST is formed. Since the formed three-dimensional structure ST contains the above-mentioned structural layer SL # 1, the unmelted film C1 partially remains between the three-dimensional structure ST and the surface WS of the work W. .. Specifically, the three-dimensional structure ST is connected to the work W at least in a part of the portion where the three-dimensional structure ST and the work W face each other. In at least a part of the portion where the film C1 is removed, the three-dimensional structure ST is bonded to the work W. On the other hand, in at least a part of the portion where the film C1 remains, the three-dimensional structure ST is separated from the work W (that is, not bonded). At least a part of the portion where the film C1 has not been removed, the three-dimensional structure ST is separated from the work W. The three-dimensional structure ST is separated from the work W at least in a part different from the portion where the three-dimensional structure ST and the work W face each other. Conversely, the film C1 remains in at least a part of the portion where the three-dimensional structure ST is separated from the work W.
 その結果、3次元構造物STは、ワークWと部分的に結合している。具体的には、3次元構造物STは、膜C1を部分的に貫通して(つまり、突き抜けて)ワークWと結合している。3次元構造物STとワークWとは部分的に離れている。3次元構造物STは、ワークWの表面WSとの間に膜C1が介在する(つまり、残留する)ことでワークWから離れた構造部分と、ワークWから離れていない(つまり、ワークWと結合した)構造部分とを含む。3次元構造物STの下面は、ワークWの表面WSとの間に膜C1が介在することでワークWと結合していない面部分と、膜C1が溶融することで膜C1に形成された貫通孔を介してワークWと結合した面部分とを含む。 As a result, the three-dimensional structure ST is partially connected to the work W. Specifically, the three-dimensional structure ST partially penetrates (that is, penetrates) the film C1 and is bonded to the work W. The three-dimensional structure ST and the work W are partially separated. In the three-dimensional structure ST, the structural portion separated from the work W by interposing (that is, remaining) the film C1 between the surface WS of the work W and not separated from the work W (that is, the work W). Includes (combined) structural parts. The lower surface of the three-dimensional structure ST has a surface portion that is not bonded to the work W due to the presence of the film C1 between the surface WS of the work W and a penetration formed in the film C1 by melting the film C1. Includes a surface portion coupled to the work W through the hole.
 その後、ワークWから3次元構造物STを分離するための処理が行われる。具体的には、ワークWから3次元構造物STを分離するための力をワークW及び3次元構造物STの少なくとも一方に加える処理が、ワークWから3次元構造物STを分離するための処理として行われる。例えば、ワークWから3次元構造物STを引き剥がす力を3次元構造物STに加える処理が行われてもよい。例えば、ワークWから3次元構造物STを引き剥がす力をワークWに加える処理が行われてもよい。 After that, a process for separating the three-dimensional structure ST from the work W is performed. Specifically, the process of applying a force for separating the three-dimensional structure ST from the work W to at least one of the work W and the three-dimensional structure ST is a process for separating the three-dimensional structure ST from the work W. It is done as. For example, a process of applying a force for peeling the three-dimensional structure ST from the work W to the three-dimensional structure ST may be performed. For example, a process of applying a force for peeling the three-dimensional structure ST from the work W to the work W may be performed.
 この際、上述したように、3次元構造物STとワークWの表面WSとの間には、溶融しなかった膜C1が部分的に残留する。このため、3次元構造物STとワークWの表面WSとの間に膜C1が残留していない場合(図13参照)と比較して、3次元構造物STとワークWとの結合面の面積が小さくなる。このため、3次元構造物STとワークWとの結合面の面積が小さくなった分だけ、3次元構造物STとワークWとの間の結合力は弱くなる。従って、3次元構造物STとワークWとの間の結合力は弱くなった分だけ、ワークWから3次元構造物STを分離するために必要な力が小さくなる。その結果、ワークWから3次元構造物STを分離するために必要な力が小さくなる分だけ、3次元構造物STのワークWからの分離が容易になる。 At this time, as described above, the unmelted film C1 partially remains between the three-dimensional structure ST and the surface WS of the work W. Therefore, the area of the bonding surface between the three-dimensional structure ST and the work W is compared with the case where the film C1 does not remain between the three-dimensional structure ST and the surface WS of the work W (see FIG. 13). Becomes smaller. Therefore, the bonding force between the three-dimensional structure ST and the work W becomes weaker as the area of the bonding surface between the three-dimensional structure ST and the work W becomes smaller. Therefore, as the coupling force between the three-dimensional structure ST and the work W is weakened, the force required to separate the three-dimensional structure ST from the work W is reduced. As a result, the force required to separate the three-dimensional structure ST from the work W is reduced, so that the three-dimensional structure ST can be easily separated from the work W.
 より具体的には、ワークWから3次元構造物STが分離される際には、3次元構造物STとワークWとの結合面又はその近傍において3次元構造物STとワークWとが結合した部分が破断する。従って、上述したワークWから3次元構造物STを分離するための力は、実質的には、3次元構造物STとワークWとが結合した部分を破断させるための力に相当する。この場合、3次元構造物STとワークWとの結合面は、3次元構造物STとワークWとが結合した部分が破断した際に現れる破断面と同一であってもよい。ここで、3次元構造物STとワークWの表面WSとの間に膜C1が残留している場合には(図12参照)、3次元構造物STとワークWの表面WSとの間に膜C1が残留していない場合(図13参照)と比較して、3次元構造物STとワークWとが結合した部分が少なくなる。3次元構造物STとワークWとが結合した部分を破断させるがゆえに、ワークWから3次元構造物STを分離するために破断させるべき部分が少なくなる。このため、ワークWから3次元構造物STを分離するために破断させるべき部分が少なくなった分だけ、3次元構造物STとワークWとが結合した部分を破断させるために必要な力もまた小さくなる。その結果、3次元構造物STとワークWとが結合した部分を破断させるために必要な力が小さくなる分だけ、3次元構造物STのワークWからの分離が容易になる。 More specifically, when the three-dimensional structure ST is separated from the work W, the three-dimensional structure ST and the work W are bonded at or near the bonding surface between the three-dimensional structure ST and the work W. The part breaks. Therefore, the force for separating the three-dimensional structure ST from the work W described above substantially corresponds to the force for breaking the portion where the three-dimensional structure ST and the work W are connected. In this case, the bonding surface between the three-dimensional structure ST and the work W may be the same as the fracture surface that appears when the portion where the three-dimensional structure ST and the work W are bonded is broken. Here, when the film C1 remains between the three-dimensional structure ST and the surface WS of the work W (see FIG. 12), the film is formed between the three-dimensional structure ST and the surface WS of the work W. Compared with the case where C1 does not remain (see FIG. 13), the portion where the three-dimensional structure ST and the work W are connected is reduced. Since the portion where the three-dimensional structure ST and the work W are connected is broken, the portion to be broken in order to separate the three-dimensional structure ST from the work W is reduced. Therefore, the force required to break the portion where the three-dimensional structure ST and the work W are connected is also small as the portion to be broken in order to separate the three-dimensional structure ST from the work W is reduced. Become. As a result, the force required to break the portion where the three-dimensional structure ST and the work W are connected is reduced, so that the three-dimensional structure ST can be easily separated from the work W.
 加えて、造形動作が行われている期間中は、3次元構造物STを形成する過程でワークW上に形成される中間構造物(つまり、形成済みの構造層SL)は、構造層SL#1を介してワークWと部分的結合されている。従って、中間構造物の状態は、実質的には、ワークWによって保持された状態と等価である。このため、中間構造物に生じた応力等に起因した中間構造物の変形(例えば、反り及び歪みの少なくとも一方)の発生が適切に抑制される。 In addition, during the period during which the modeling operation is performed, the intermediate structure (that is, the formed structural layer SL) formed on the work W in the process of forming the three-dimensional structure ST is the structural layer SL #. It is partially connected to the work W via 1. Therefore, the state of the intermediate structure is substantially equivalent to the state held by the work W. Therefore, the occurrence of deformation (for example, at least one of warpage and strain) of the intermediate structure due to stress generated in the intermediate structure is appropriately suppressed.
 図12及び図13から分かるように、3次元構造物STとワークWの表面WSとの間に残留する膜C1が多いほど、3次元構造物STとワークWとの結合面の面積が小さくなる。より具体的には、ワークW上に残留している膜C1とワークWの表面WSとの境界面の面積(つまり、ワークW上において膜C1が残留している部分の面積)が多くなるほど、3次元構造物STとワークWとの結合面の面積が小さくなる。ワークW上に残留している膜C1と3次元構造物STとの境界面の面積が多くなるほど、3次元構造物STとワークWとの結合面の面積が小さくなる。このため、造形システム1は、ワークW上に残留している膜C1とワークWの表面WSとの境界面の面積が第1所定面積以上になるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。造形システム1は、ワークW上に残留している膜C1と3次元構造物STとの境界面の面積が第2所定面積以上になるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。 As can be seen from FIGS. 12 and 13, the more the film C1 remaining between the three-dimensional structure ST and the surface WS of the work W, the smaller the area of the bonding surface between the three-dimensional structure ST and the work W. .. More specifically, the larger the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W (that is, the area of the portion where the film C1 remains on the work W), the more. The area of the bonding surface between the three-dimensional structure ST and the work W becomes smaller. As the area of the boundary surface between the film C1 remaining on the work W and the three-dimensional structure ST increases, the area of the bonding surface between the three-dimensional structure ST and the work W decreases. Therefore, the modeling system 1 has a three-dimensional structure ST (particularly, a structure) so that the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W is equal to or larger than the first predetermined area. Layer SL # 1) may be formed. In the modeling system 1, the three-dimensional structure ST (particularly, the structural layer SL #) is provided so that the area of the interface between the film C1 remaining on the work W and the three-dimensional structure ST is equal to or larger than the second predetermined area. 1) may be formed.
 造形システム1は、ワークW上に残留している膜C1とワークWの表面WSとの境界面の面積が、3次元構造物STとワークWとの結合面の面積よりも大きくなるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。より具体的には、造形システム1は、ワークW上において3次元構造物STを形成するべき形成領域に対してワークW上に残留している膜C1とワークWの表面WSとの境界面の面積が占める割合が、形成領域に対して3次元構造物STとワークWとの結合面の面積が占める割合よりも大きくなるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。この場合、ワークW上に残留している膜C1とワークWの表面WSとの境界面の面積が、3次元構造物STとワークWとの結合面の面積よりも小さい場合と比較して、3次元構造物STのワークWからの分離がより容易になる。 In the modeling system 1, the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W is larger than the area of the bonding surface between the three-dimensional structure ST and the work W. A three-dimensional structure ST (particularly, structural layer SL # 1) may be formed. More specifically, in the modeling system 1, the interface between the film C1 remaining on the work W and the surface WS of the work W with respect to the formation region on which the three-dimensional structure ST should be formed on the work W. The three-dimensional structure ST (particularly, the structural layer SL # 1) is provided so that the ratio occupied by the area is larger than the ratio occupied by the area of the bonding surface between the three-dimensional structure ST and the work W with respect to the formed region. It may be formed. In this case, the area of the boundary surface between the film C1 remaining on the work W and the surface WS of the work W is smaller than the area of the bonding surface between the three-dimensional structure ST and the work W. Separation of the three-dimensional structure ST from the work W becomes easier.
 また、造形システム1は、ワークW上に残留している膜C1と3次元構造物STとの境界面の面積が、3次元構造物STとワークWとの結合面の面積よりも大きくなるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。より具体的には、造形システム1は、ワークW上において3次元構造物STを形成するべき形成領域に対してワークW上に残留している膜C1と3次元構造物STとの境界面の面積が占める割合が、形成領域に対して3次元構造物STとワークWとの結合面の面積が占める割合よりも大きくなるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。この場合、ワークW上に残留している膜C1と3次元構造物STとの境界面の面積が、3次元構造物STとワークWとの結合面の面積よりも小さい場合と比較して、3次元構造物STのワークWからの分離がより容易になる。 Further, in the modeling system 1, the area of the boundary surface between the film C1 remaining on the work W and the three-dimensional structure ST is larger than the area of the bonding surface between the three-dimensional structure ST and the work W. 3D structure ST (particularly, structural layer SL # 1) may be formed. More specifically, in the modeling system 1, the interface between the film C1 remaining on the work W and the three-dimensional structure ST with respect to the formation region on which the three-dimensional structure ST should be formed is formed. The three-dimensional structure ST (particularly, the structural layer SL # 1) is provided so that the ratio occupied by the area is larger than the ratio occupied by the area of the bonding surface between the three-dimensional structure ST and the work W with respect to the formed region. It may be formed. In this case, the area of the interface between the film C1 remaining on the work W and the three-dimensional structure ST is smaller than the area of the bonding surface between the three-dimensional structure ST and the work W. Separation of the three-dimensional structure ST from the work W becomes easier.
 本実施形態では、最下層の構造層SL#1がワークWと一体化している。このため、3次元構造物STとワークWとが結合した部分は、構造層SL#1に含まれていてもよい。ワークWから3次元構造物STを分離するために破断させるべき部分は、構造層SL#1に含まれていてもよい。この場合、ワークWから3次元構造物STが分離される様子を示す図14に示すように、構造層SL#1が破断されることで、ワークWから3次元構造物STが分離されてもよい。より具体的には、構造層SL#1のうち膜C1が溶融することで膜C1に形成された貫通孔の内部に位置する層部分SL2#1が破断されることで、ワークWから3次元構造物STが分離されてもよい。この場合、図14に示すように、構造層SL#1のうち破断面よりもワークW側に位置する部分SL#1-1がワークWと結合したままワークWに残留してもよい。構造層SL#1のうち破断面よりも3次元構造物ST側に位置する部分SL#1-2が3次元構造物STと結合したままワークWから分離されてもよい。 In this embodiment, the lowermost structural layer SL # 1 is integrated with the work W. Therefore, the portion where the three-dimensional structure ST and the work W are connected may be included in the structural layer SL # 1. The portion to be broken in order to separate the three-dimensional structure ST from the work W may be included in the structural layer SL # 1. In this case, as shown in FIG. 14 showing how the three-dimensional structure ST is separated from the work W, even if the three-dimensional structure ST is separated from the work W by breaking the structural layer SL # 1. Good. More specifically, the layer portion SL2 # 1 located inside the through hole formed in the film C1 is broken by melting the film C1 of the structural layer SL # 1, so that the work W is three-dimensional. The structure ST may be separated. In this case, as shown in FIG. 14, the portion SL # 1-1 of the structural layer SL # 1 located on the work W side with respect to the fracture surface may remain in the work W while being bonded to the work W. The portion SL # 1-2 of the structural layer SL # 1 located on the three-dimensional structure ST side of the fracture surface may be separated from the work W while being coupled to the three-dimensional structure ST.
 また、図14に示すように、3次元構造物STとワークWの表面WSとの間に残留している膜C1の少なくとも一部は、3次元構造物STに付着したままであってもよい。図14に示すように、3次元構造物STとワークWの表面WSとの間に残留している膜C1の少なくとも一部は、ワークWに付着したままであってもよい。 Further, as shown in FIG. 14, at least a part of the film C1 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the three-dimensional structure ST. .. As shown in FIG. 14, at least a part of the film C1 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the work W.
 ワークWから3次元構造物STを分離する際に膜C1の少なくとも一部が3次元構造物STに付着したままである場合には、ワークWから3次元構造物STを分離する際にワークWから膜C1が分離される。この場合、膜CのワークWに対する濡れ性が相対的に低い場合には、ワークWから膜C1を分離するために必要な力(つまり、ワークWから3次元構造物STを分離するために必要な力)が小さくなる。なぜならば、膜CのワークWに対する濡れ性が低くなるほど、膜CとワークWとの間の結合力が小さくなるからである。このため、膜C1のワークWに対する濡れ性が所定量よりも小さくてもよい。特に、膜C1のワークWに対する濡れ性が、造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低ければ、ワークWから3次元構造物STを分離するために必要な力が、膜C1の存在に起因して過度に大きくなってしまうことはない。典型的には、膜C1のワークWに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低い場合には、ワークWから3次元構造物STを分離するために必要な力が実質的には造形材料M及び3次元構造物STのワークWに対する濡れ性によって定まるとも言えるがゆえに、ワークWから3次元構造物STを分離するために必要な力は、膜C1の存在に関わらず殆ど変わることはない。このため、膜C1のワークWに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低くてもよい。つまり、膜C1とワークWとの間の結合力は、造形材料M及び3次元構造物STとワークWとの間の結合力よりも低くてもよい。その結果、膜C1のワークWに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも高い場合と比較して、3次元構造物STのワークWからの分離がより容易になる。 If at least a part of the membrane C1 remains attached to the three-dimensional structure ST when the three-dimensional structure ST is separated from the work W, the work W is separated from the work W when the three-dimensional structure ST is separated. The membrane C1 is separated from. In this case, when the wettability of the film C with respect to the work W is relatively low, the force required to separate the film C1 from the work W (that is, necessary to separate the three-dimensional structure ST from the work W). Power) becomes smaller. This is because the lower the wettability of the film C with respect to the work W, the smaller the binding force between the film C and the work W. Therefore, the wettability of the film C1 to the work W may be smaller than a predetermined amount. In particular, if the wettability of the film C1 to the work W is lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W, the force required to separate the three-dimensional structure ST from the work W is increased. It does not become excessively large due to the presence of the film C1. Typically, when the wettability of the film C1 to the work W is lower than the wettability of the molding material M and the three-dimensional structure ST to the work W, it is necessary to separate the three-dimensional structure ST from the work W. Since it can be said that the force is substantially determined by the wettability of the modeling material M and the three-dimensional structure ST with respect to the work W, the force required to separate the three-dimensional structure ST from the work W is the force of the film C1. It hardly changes regardless of its existence. Therefore, the wettability of the film C1 to the work W may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. That is, the bonding force between the film C1 and the work W may be lower than the bonding force between the modeling material M and the three-dimensional structure ST and the work W. As a result, it is easier to separate the three-dimensional structure ST from the work W as compared with the case where the wettability of the film C1 to the work W is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W. become.
 ワークWから3次元構造物STを分離する際に膜C1の少なくとも一部がワークWに付着したままである場合には、ワークWから3次元構造物STを分離する際に3次元構造物STから膜C1が分離される。この場合、膜Cの3次元構造物STに対する濡れ性(つまり、造形材料Mに対する濡れ性)が相対的に低い場合には、3次元構造物STから膜C1を分離するために必要な力(つまり、ワークWから3次元構造物STを分離するために必要な力)が小さくなる。なぜならば、膜Cの3次元構造物STに対する濡れ性が低くなるほど、膜Cと3次元構造物STとの間の結合力が小さくなるからである。このため、膜C1の3次元構造物STに対する濡れ性が所定量よりも小さくてもよい。特に、膜C1の3次元構造物STに対する濡れ性が、造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低ければ、ワークWから3次元構造物STを分離するために必要な力が、膜C1の存在に起因して過度に大きくなってしまうことはない。典型的には、膜C1の3次元構造物STに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低い場合には、ワークWから3次元構造物STを分離するために必要な力が実質的には造形材料M及び3次元構造物STのワークWに対する濡れ性によって定まるとも言えるがゆえに、ワークWから3次元構造物STを分離するために必要な力は、膜C1の存在に関わらず殆ど変わることはない。このため、膜C1の3次元構造物STに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低くてもよい。つまり、膜C1と3次元構造物STとの間の結合力は、造形材料M及び3次元構造物STとワークWとの間の結合力よりも低くてもよい。その結果、膜C1の3次元構造物STに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも高い場合と比較して、3次元構造物STのワークWからの分離がより容易になる。 If at least a part of the film C1 remains attached to the work W when the three-dimensional structure ST is separated from the work W, the three-dimensional structure ST is separated from the work W when the three-dimensional structure ST is separated. The membrane C1 is separated from. In this case, when the wettability of the film C to the three-dimensional structure ST (that is, the wettability to the modeling material M) is relatively low, the force (that is, the force required to separate the film C1 from the three-dimensional structure ST). That is, the force required to separate the three-dimensional structure ST from the work W) becomes small. This is because the lower the wettability of the film C with respect to the three-dimensional structure ST, the smaller the bonding force between the film C and the three-dimensional structure ST. Therefore, the wettability of the film C1 to the three-dimensional structure ST may be smaller than a predetermined amount. In particular, if the wettability of the film C1 to the three-dimensional structure ST is lower than the wettability of the molding material M and the three-dimensional structure ST to the work W, it is necessary to separate the three-dimensional structure ST from the work W. The force does not become excessively large due to the presence of the film C1. Typically, when the wettability of the film C1 to the three-dimensional structure ST is lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W, the three-dimensional structure ST is separated from the work W. Since it can be said that the force required for this is substantially determined by the wettability of the modeling material M and the 3D structure ST to the work W, the force required to separate the 3D structure ST from the work W is There is almost no change regardless of the presence of the film C1. Therefore, the wettability of the film C1 to the three-dimensional structure ST may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. That is, the bonding force between the film C1 and the three-dimensional structure ST may be lower than the bonding force between the modeling material M and the three-dimensional structure ST and the work W. As a result, the wettability of the film C1 to the three-dimensional structure ST is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W, and the separation of the three-dimensional structure ST from the work W Will be easier.
 (3-2)膜C2が形成されたワークWに対して行われる造形動作
 膜C2がワークWの表面WSに形成される場合には、膜C2が表面WSに形成されたワークWを示す断面図である図15に示すように、膜C2の表面粗さは、ワークWの表面WSの表面粗さよりも大きくてもよい。つまり、膜C2の表面(具体的には、ワークWの表面WSに接する面とは反対側の面であって、+Z側を向いた面)は、ワークWの表面WSよりも粗くてもよい。つまり、ワークWの表面WSには、ワークWの表面WSよりも粗い表面を有する膜C2が形成される。
(3-2) Modeling operation performed on the work W on which the film C2 is formed When the film C2 is formed on the surface WS of the work W, a cross section showing the work W in which the film C2 is formed on the surface WS. As shown in FIG. 15, which is a figure, the surface roughness of the film C2 may be larger than the surface roughness of the surface WS of the work W. That is, the surface of the film C2 (specifically, the surface of the work W opposite to the surface in contact with the surface WS and facing the + Z side) may be rougher than the surface WS of the work W. .. That is, a film C2 having a rougher surface than the surface WS of the work W is formed on the surface WS of the work W.
 膜C2の表面粗さが相対的に大きい(つまり、膜C2の表面が相対的に粗い)がゆえに、図15に示すように、膜C2の表面は、微小な又は所望のサイズの凹凸が形成された凹凸面と等価である。つまり、膜C2の表面は、微小な又は所望のサイズの凹凸が形成された凹凸面を含む。言い換えれば、膜C2の表面は、粗面と等価である。つまり、膜C2の表面は、粗面を含む。 Since the surface roughness of the film C2 is relatively large (that is, the surface of the film C2 is relatively rough), as shown in FIG. 15, the surface of the film C2 is formed with minute or desired size irregularities. It is equivalent to the uneven surface. That is, the surface of the film C2 includes an uneven surface on which fine or desired size irregularities are formed. In other words, the surface of the film C2 is equivalent to a rough surface. That is, the surface of the film C2 includes a rough surface.
 このような膜C2の一例として、例えば、ワークWの表面WSに対してリューブライト処理を行うことで当該表面WSに形成されるリン酸塩(たとえば、リン酸マンガン塩)の膜があげられる。 As an example of such a film C2, for example, a film of a phosphate (for example, a manganese phosphate salt) formed on the surface WS of the work W by performing a lubelite treatment on the surface WS can be mentioned.
 膜Cの表面粗さがワークWの表面粗さよりも大きい場合には、膜Cの表面粗さがワークWの表面粗さよりも小さい場合と比較して、ワークWと3次元構造物STとの間に膜Cの少なくとも一部が残留しやすくなる。以下、ワークWと3次元構造物STとの間に膜Cの少なくとも一部が残留する理由について、図16から図18を参照しながら説明する。 When the surface roughness of the film C is larger than the surface roughness of the work W, the surface roughness of the film C is smaller than the surface roughness of the work W, and the work W and the three-dimensional structure ST are compared with each other. At least a part of the film C tends to remain between them. Hereinafter, the reason why at least a part of the film C remains between the work W and the three-dimensional structure ST will be described with reference to FIGS. 16 to 18.
 膜C2が形成されたワークWに対して造形動作を開始する場合においても、造形システム1は、上述した膜C1が形成されたワークWに対して造形動作と同様の動作を行う。このため、まずは、造形システム1は、ワークW上に最下層の構造層SL(つまり、構造層SL#1)を形成する。具体的には、ワークWの表面WSに設定された造形面MSに対する光ELの照射及び造形材料Mの供給を開始する。但し、ワークWの表面WSに膜C2が形成されているがゆえに、実際には、光ELが膜C2に照射され且つ造形材料Mは膜C2に供給される。このため、溶融池MPは、膜C2上に形成される。ここで、膜C2の表面粗さが相対的に大きい(つまり、ワークWの表面粗さよりも大きい)がゆえに、膜C2は、厚さが相対的に大きい凸部分と、厚さが相対的に小さい凹部分(つまり、凸部分よりも窪んだ凹部分)とを含む。このため、凸部分は、凹部分と比較して、光ELの照射によって完全に溶融しにくい。つまり、膜C2のうちの光ELが照射された膜部分の一部(典型的には、凹部分及び凸部分のそれぞれの少なくとも一部)が溶融する一方で、膜C2のうちの光ELが照射された膜部分の他の一部(典型的には、凸部分の少なくとも一部)が溶融しない。典型的には、膜C2の凹部分では、膜C2を貫通した貫通孔が形成される程度に膜C2が溶融して除去される一方で、膜C2のうちの凸部分では、膜C2を貫通した貫通孔が形成されない程度にしか膜C2が溶融しない。つまり、膜C2のうちの凹部分が溶融して貫通孔が形成される一方で、膜C2のうちの凸部分は、その一部がワークW上に残留する程度にしか溶融しない。このため、膜C1が形成されたワークWに造形動作が行われる場合と同様に、膜C2上での溶融池MPのサイズ(具体的には、径)と比較して、膜C2の溶融部分のサイズ(具体的には、径)が小さくなる。 Even when the modeling operation is started for the work W on which the film C2 is formed, the modeling system 1 performs the same operation as the modeling operation for the work W on which the film C1 is formed. Therefore, first, the modeling system 1 forms the lowest structural layer SL (that is, the structural layer SL # 1) on the work W. Specifically, the irradiation of light EL and the supply of the modeling material M to the modeling surface MS set on the surface WS of the work W are started. However, since the film C2 is formed on the surface WS of the work W, the light EL is actually irradiated to the film C2 and the modeling material M is supplied to the film C2. Therefore, the molten pool MP is formed on the film C2. Here, since the surface roughness of the film C2 is relatively large (that is, larger than the surface roughness of the work W), the film C2 has a convex portion having a relatively large thickness and a thickness relatively large. Includes small recesses (that is, recesses that are recessed rather than convex). Therefore, the convex portion is less likely to be completely melted by irradiation with light EL as compared with the concave portion. That is, while a part of the film portion (typically at least a part of each of the concave portion and the convex portion) irradiated with the light EL of the film C2 is melted, the light EL of the film C2 is formed. The other part of the irradiated membrane portion (typically at least a portion of the convex portion) does not melt. Typically, the concave portion of the membrane C2 melts and removes the membrane C2 to the extent that a through hole penetrating the membrane C2 is formed, while the convex portion of the membrane C2 penetrates the membrane C2. The film C2 melts only to the extent that the through holes are not formed. That is, while the concave portion of the film C2 is melted to form a through hole, the convex portion of the film C2 is melted only to the extent that a part thereof remains on the work W. Therefore, as in the case where the modeling operation is performed on the work W on which the film C1 is formed, the molten portion of the film C2 is compared with the size (specifically, the diameter) of the molten pool MP on the film C2. Size (specifically, diameter) becomes smaller.
 この場合、膜C1が形成されたワークWに造形動作が行われる場合と同様に、溶融池MPとワークWの表面WSとの間には、溶融しなかった膜C2が部分的に残留することになる。溶融池MPとワークWの表面WSとの間に溶融しなかった膜C2が部分的に残留する場合には、膜C1が形成されたワークWに造形動作が行われる場合と同様に、図16に示すように、固化した造形材料MとワークWの表面WSとの間に溶融しなかった膜C2が部分的に残留する。尚、図16は、ワークWの表面WSとの間に膜C2が部分的に残留するように固化した造形材料Mを示す断面図である。つまり、膜C2が形成されたワークWに造形動作が行われる場合においても、膜C1が形成されたワークWに造形動作が行われる場合と同様に、構造層SL#1とワークWの表面WSとの間には、溶融しなかった膜C2が部分的に残留する。 In this case, the unmelted film C2 partially remains between the molten pool MP and the surface WS of the work W, as in the case where the modeling operation is performed on the work W on which the film C1 is formed. become. When the unmelted film C2 partially remains between the molten pool MP and the surface WS of the work W, FIG. 16A is similar to the case where the molding operation is performed on the work W on which the film C1 is formed. As shown in the above, the unmelted film C2 partially remains between the solidified modeling material M and the surface WS of the work W. FIG. 16 is a cross-sectional view showing a modeling material M solidified so that the film C2 partially remains between the work W and the surface WS. That is, even when the modeling operation is performed on the work W on which the film C2 is formed, the surface WS of the structural layer SL # 1 and the work W is similar to the case where the modeling operation is performed on the work W on which the film C1 is formed. The unmelted film C2 partially remains between and.
 その後、造形システム1は、構造層SLを形成する都度、形成した構造層SLの表面を新たな造形面MSに設定すると共に、新たな造形面MSに新たな構造層SLを形成する動作を繰り返す。その結果、図17に示すように、3次元構造物STが形成される。形成された3次元構造物STが上述した構造層SL#1を含むがゆえに、膜C2が形成されたワークWに造形動作が行われる場合においても、膜C1が形成されたワークWに造形動作が行われる場合と同様に、3次元構造物STとワークWの表面WSとの間には、溶融しなかった膜C2が部分的に残留する。 After that, each time the structural layer SL is formed, the modeling system 1 sets the surface of the formed structural layer SL on the new modeling surface MS, and repeats the operation of forming the new structural layer SL on the new modeling surface MS. .. As a result, as shown in FIG. 17, a three-dimensional structure ST is formed. Since the formed three-dimensional structure ST includes the structural layer SL # 1 described above, even when the modeling operation is performed on the work W on which the film C2 is formed, the modeling operation is performed on the work W on which the film C1 is formed. The unmelted film C2 partially remains between the three-dimensional structure ST and the surface WS of the work W, as in the case where
 その後、膜C2が形成されたワークWに造形動作が行われる場合においても、膜C1が形成されたワークWに造形動作が行われる場合と同様に、ワークWから3次元構造物STを分離するための処理が行われる。この場合、3次元構造物STとワークWの表面WSとの間に溶融しなかった膜C2が部分的に残留しているがゆえに、3次元構造物STとワークWの表面WSとの間に溶融しなかった膜C2が部分的に残留していない場合と比較して、3次元構造物STのワークWからの分離が容易になる。その理由は、3次元構造物STとワークWの表面WSとの間に膜C1が部分的に残留している状況下でワークWから3次元構造物STを分離するための処理についての上述した説明において既に説明済みである。つまり、ワークWから3次元構造物STが分離される様子を示す図18に示すように、構造層SL#1が破断されることで、ワークWから3次元構造物STが分離されてもよい。より具体的には、構造層SL#1のうち膜C2が溶融することで膜C2に形成された貫通孔の内部に位置する部分が破断されることで、ワークWから3次元構造物STが分離されてもよい。この場合、図18に示すように、構造層SL#1のうち破断面よりもワークW側に位置する部分SL#1-1がワークWと結合したままワークWに残留してもよい。また、構造層SL#1のうち破断面よりも3次元構造物ST側に位置する部分SL#1-1が3次元構造物STと結合したままワークWから分離されてもよい。 After that, even when the modeling operation is performed on the work W on which the film C2 is formed, the three-dimensional structure ST is separated from the work W in the same manner as when the modeling operation is performed on the work W on which the film C1 is formed. Processing is performed. In this case, since the unmelted film C2 partially remains between the three-dimensional structure ST and the surface WS of the work W, there is a partial residue between the three-dimensional structure ST and the surface WS of the work W. The separation of the three-dimensional structure ST from the work W becomes easier as compared with the case where the unmelted film C2 does not partially remain. The reason is described above for the process for separating the three-dimensional structure ST from the work W in the situation where the film C1 partially remains between the three-dimensional structure ST and the surface WS of the work W. It has already been explained in the explanation. That is, as shown in FIG. 18 showing how the three-dimensional structure ST is separated from the work W, the three-dimensional structure ST may be separated from the work W by breaking the structural layer SL # 1. .. More specifically, the portion of the structural layer SL # 1 located inside the through hole formed in the film C2 is broken by melting the film C2, so that the three-dimensional structure ST is released from the work W. It may be separated. In this case, as shown in FIG. 18, the portion SL # 1-1 of the structural layer SL # 1 located on the work W side with respect to the fracture surface may remain in the work W while being bonded to the work W. Further, the portion SL # 1-1 of the structural layer SL # 1 located on the three-dimensional structure ST side of the fracture surface may be separated from the work W while being coupled to the three-dimensional structure ST.
 尚、膜C2が形成されたワークWに造形動作が行われる場合においても、膜C1が形成されたワークWに造形動作が行われる場合と同様に、3次元構造物STとワークWの表面WSとの間に残留する膜C2が多いほど、3次元構造物STとワークWとの結合面の面積が小さくなる。このため、造形システム1は、ワークW上に残留している膜C2とワークWの表面WSとの境界面の面積が第1所定面積以上になるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。造形システム1は、ワークW上に残留している膜C2と3次元構造物STとの境界面の面積が第2所定面積以上になるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。造形システム1は、ワークW上に残留している膜C2とワークWの表面WSとの境界面の面積が、3次元構造物STとワークWとの結合面の面積よりも大きくなるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。造形システム1は、ワークW上に残留している膜C2と3次元構造物STとの境界面の面積が、3次元構造物STとワークWとの結合面の面積よりも大きくなるように、3次元構造物ST(特に、構造層SL#1)を形成してもよい。 Even when the modeling operation is performed on the work W on which the film C2 is formed, the surface WS of the three-dimensional structure ST and the work W is the same as when the modeling operation is performed on the work W on which the film C1 is formed. The more the film C2 remaining between the two, the smaller the area of the bonding surface between the three-dimensional structure ST and the work W. Therefore, the modeling system 1 has a three-dimensional structure ST (particularly, a structure) so that the area of the boundary surface between the film C2 remaining on the work W and the surface WS of the work W is equal to or larger than the first predetermined area. Layer SL # 1) may be formed. In the modeling system 1, the three-dimensional structure ST (particularly, the structural layer SL #) is provided so that the area of the interface between the film C2 remaining on the work W and the three-dimensional structure ST is equal to or larger than the second predetermined area. 1) may be formed. In the modeling system 1, the area of the boundary surface between the film C2 remaining on the work W and the surface WS of the work W is larger than the area of the bonding surface between the three-dimensional structure ST and the work W. A three-dimensional structure ST (particularly, structural layer SL # 1) may be formed. In the modeling system 1, the area of the interface between the film C2 remaining on the work W and the three-dimensional structure ST is larger than the area of the bonding surface between the three-dimensional structure ST and the work W. A three-dimensional structure ST (particularly, structural layer SL # 1) may be formed.
 また、図18に示すように、3次元構造物STとワークWの表面WSとの間に残留している膜C2の少なくとも一部は、3次元構造物STに付着したままであってもよい。3次元構造物STとワークWの表面WSとの間に残留している膜C2の少なくとも一部は、ワークWに付着したままであってもよい。 Further, as shown in FIG. 18, at least a part of the film C2 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the three-dimensional structure ST. .. At least a part of the film C2 remaining between the three-dimensional structure ST and the surface WS of the work W may remain attached to the work W.
 ワークWから3次元構造物STを分離する際に膜C2の少なくとも一部が3次元構造物STに付着したままである場合には、ワークWから3次元構造物STを分離する際にワークWから膜C2が分離される。このため、膜C2が形成されたワークWに造形動作が行われる場合においても、膜C1が形成されたワークWに造形動作が行われる場合と同様に、膜C2のワークWに対する濡れ性が所定量よりも小さくてもよい。膜C2のワークWに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低くてもよい。その結果、膜C2のワークWに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも高い場合と比較して、3次元構造物STのワークWからの分離がより容易になる。 If at least a part of the film C2 remains attached to the three-dimensional structure ST when the three-dimensional structure ST is separated from the work W, the work W is separated from the work W when the three-dimensional structure ST is separated. The membrane C2 is separated from. Therefore, even when the modeling operation is performed on the work W on which the film C2 is formed, the wettability of the film C2 to the work W is determined as in the case where the modeling operation is performed on the work W on which the film C1 is formed. It may be smaller than the fixed amount. The wettability of the film C2 to the work W may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. As a result, it is easier to separate the three-dimensional structure ST from the work W as compared with the case where the wettability of the film C2 to the work W is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W. become.
 ワークWから3次元構造物STを分離する際に膜C2の少なくとも一部がワークWに付着したままである場合には、ワークWから3次元構造物STを分離する際に3次元構造物STから膜C2が分離される。このため、膜C2が形成されたワークWに造形動作が行われる場合においても、膜C1が形成されたワークWに造形動作が行われる場合と同様に、膜C2の3次元構造物STに対する濡れ性が所定量よりも小さくてもよい。膜C2の3次元構造物STに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも低くてもよい。その結果、膜C2の3次元構造物STに対する濡れ性が造形材料M及び3次元構造物STのワークWに対する濡れ性よりも高い場合と比較して、3次元構造物STのワークWからの分離がより容易になる。 If at least a part of the film C2 remains attached to the work W when the three-dimensional structure ST is separated from the work W, the three-dimensional structure ST is separated from the work W when the three-dimensional structure ST is separated. The membrane C2 is separated from. Therefore, even when the modeling operation is performed on the work W on which the film C2 is formed, the film C2 is wetted with respect to the three-dimensional structure ST as in the case where the modeling operation is performed on the work W on which the film C1 is formed. The sex may be less than a predetermined amount. The wettability of the film C2 to the three-dimensional structure ST may be lower than the wettability of the modeling material M and the three-dimensional structure ST to the work W. As a result, the wettability of the film C2 to the three-dimensional structure ST is higher than the wettability of the modeling material M and the three-dimensional structure ST to the work W, and the separation of the three-dimensional structure ST from the work W Will be easier.
 (4)変形例
 ワークWとして、黒鉛材料から構成されるワークWが用いられてもよい。黒鉛材料の一例として、高強度炭素繊維で補強された炭素複合材料(いわゆる、C/Cコンポジット(Carbon Fiber Reinforced Carbon Composite))、及び、等方性黒鉛材料の少なくとも一方があげられる。
(4) As the modified work W, a work W composed of a graphite material may be used. As an example of the graphite material, at least one of a carbon composite material reinforced with high-strength carbon fiber (so-called C / C composite (Carbon Fiber Reinforced Carbon Composite)) and an isotropic graphite material can be mentioned.
 上述した説明では、造形システム1は、造形ヘッド11を移動させるヘッド駆動系12を備えている。しかしながら、造形システム1は、ヘッド駆動系12に加えて又は代えて、ステージ13を移動させるステージ駆動系を備えていてもよい。ステージ駆動系は、ステージ13をX軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つの回転方向に移動させてもよい。ステージ駆動系によるステージ13の移動により、ヘッド駆動系12による造形ヘッド11の移動と同様に、ステージ13と造形ヘッド11との間の相対的な位置関係が変更され、ひいては、ワークWと照射領域EAとの間の相対的な位置関係が変更される。 In the above description, the modeling system 1 includes a head drive system 12 for moving the modeling head 11. However, the modeling system 1 may include a stage drive system for moving the stage 13 in addition to or in place of the head drive system 12. The stage drive system may move the stage 13 in at least one rotation direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction. The movement of the stage 13 by the stage drive system changes the relative positional relationship between the stage 13 and the modeling head 11 in the same manner as the movement of the modeling head 11 by the head drive system 12, and by extension, the work W and the irradiation area. The relative positional relationship with the EA is changed.
 上述した説明では、造形システム1は、造形ヘッド11を移動させることで、造形面MSに対して照射領域EAを移動させている。しかしながら、造形システム1は、造形ヘッド11を移動させることに加えて又は代えて、光ELを偏向させることで造形面MSに対して照射領域EAを移動させてもよい。この場合、照射系111は、例えば、光ELを偏向可能な光学系(例えば、ガルバノミラー等)を備えていてもよい。 In the above description, the modeling system 1 moves the irradiation region EA with respect to the modeling surface MS by moving the modeling head 11. However, in addition to or instead of moving the modeling head 11, the modeling system 1 may move the irradiation region EA with respect to the modeling surface MS by deflecting the optical EL. In this case, the irradiation system 111 may include, for example, an optical system capable of deflecting the optical EL (for example, a galvanometer mirror or the like).
 上述した説明では、造形システム1は、造形材料Mに光ELを照射することで、造形材料Mを溶融させている。しかしながら、造形システム1は、任意のエネルギビームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。この場合、造形システム1は、照射系111に加えて又は代えて、任意のエネルギビームを照射可能なビーム照射装置を備えていてもよい。任意のエネルギビームは、限定されないが、電子ビーム、イオンビーム等の荷電粒子ビーム又は電磁波を含む。 In the above description, the modeling system 1 melts the modeling material M by irradiating the modeling material M with light EL. However, the modeling system 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam. In this case, the modeling system 1 may include a beam irradiation device capable of irradiating an arbitrary energy beam in addition to or in place of the irradiation system 111. Any energy beam includes, but is not limited to, a charged particle beam such as an electron beam, an ion beam, or an electromagnetic wave.
 上述した説明では、造形システム1は、レーザ肉盛溶接法により3次元構造物STを形成可能である。しかしながら、造形システム1は、3次元構造物STを形成可能なその他の方式により造形材料Mから3次元構造物STを形成してもよい。その他の方式の一例として、例えば、粉末焼結積層造形法(SLS:Selective Laser Sintering)等の粉末床溶融結合法(Powder Bed Fusion)があげられる。粉末床溶融結合法は、光ELを照射しながら光ELの照射領域EAに造形材料Mを供給するレーザ肉盛溶接法とは異なり、予め供給しておいた造形材料Mに光EL等を照射して3次元構造物STを形成する。その他の方式の他の一例として、結合材噴射法(Binder Jetting)又は、レーザメタルフュージョン法(LMF:Laser Metal Fusion)があげられる。 In the above description, the modeling system 1 can form the three-dimensional structure ST by the laser overlay welding method. However, the modeling system 1 may form the three-dimensional structure ST from the modeling material M by another method capable of forming the three-dimensional structure ST. As an example of other methods, for example, a powder bed melt bonding method (Power Bed Fusion) such as a powder sintering laminated molding method (SLS: Selective Laser Sintering) can be mentioned. The powder bed fusion bonding method is different from the laser overlay welding method in which the modeling material M is supplied to the irradiation region EA of the light EL while irradiating the light EL, and the modeling material M supplied in advance is irradiated with the light EL or the like. To form the three-dimensional structure ST. As another example of the other method, there is a binder injection method (Binder Jetting) or a laser metal fusion method (LMF: Laser Metal Fusion).
 上述した説明では、造形システム1は、照射系111が加工光ELを照射する照射領域EAに向けて材料ノズル112から造形材料Mを供給することで、3次元構造物STを形成している。しかしながら、造形システム1は、照射光学系111から加工光ELを照射することなく、材料ノズル112から造形材料Mを供給することで3次元構造物STを形成してもよい。例えば、造形システム1は、材料ノズル112から、造形面MSに対して造形材料Mを吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。例えば、造形システム1は、材料ノズル112から造形面MSに対して造形材料Mを含む気体を超高速で吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。例えば、造形システム1は、材料ノズル112から造形面MSに対して加熱した造形材料Mを吹き付けることで、造形面MSにおいて造形材料Mを溶融させると共に、溶融した造形材料Mを固化させることで、3次元構造物STを形成してもよい。このように照射系111から加工光ELを照射することなく3次元構造物STを形成する場合には、造形システム1(特に、造形ヘッド11)は、照射系111を備えていなくてもよい。 In the above description, the modeling system 1 forms the three-dimensional structure ST by supplying the modeling material M from the material nozzle 112 toward the irradiation region EA where the irradiation system 111 irradiates the processing light EL. However, the modeling system 1 may form the three-dimensional structure ST by supplying the modeling material M from the material nozzle 112 without irradiating the processing light EL from the irradiation optical system 111. For example, in the modeling system 1, the modeling material M is sprayed onto the modeling surface MS from the material nozzle 112 to melt the modeling material M on the modeling surface MS and solidify the melted modeling material M. The dimensional structure ST may be formed. For example, the modeling system 1 melts the modeling material M on the modeling surface MS and solidifies the melted modeling material M by blowing a gas containing the modeling material M onto the modeling surface MS from the material nozzle 112 at an ultra-high speed. By allowing the three-dimensional structure ST to be formed. For example, the modeling system 1 melts the modeling material M on the modeling surface MS by spraying the heated modeling material M onto the modeling surface MS from the material nozzle 112, and solidifies the melted modeling material M. The three-dimensional structure ST may be formed. When the three-dimensional structure ST is formed without irradiating the processing light EL from the irradiation system 111 in this way, the modeling system 1 (particularly, the modeling head 11) does not have to include the irradiation system 111.
 上述した説明では、造形システム1が制御装置14を備えている。しかしながら、造形システム1は制御装置14を備えていなくてもよい。制御装置14は、造形システム1の外部に設けられていてもよい。この場合、制御装置14と造形システム1とは有線または無線の通信回線で接続されていてもよい。また、制御装置14に代えて、造形システム1の動作手順を表す信号を予め記録した記録媒体を用いて造形システム1を動作させてもよい。また、制御装置14の一部の機能を、別の部分(一例としてヘッド駆動系12)が担うようにしてもよい。 In the above description, the modeling system 1 includes a control device 14. However, the modeling system 1 does not have to include the control device 14. The control device 14 may be provided outside the modeling system 1. In this case, the control device 14 and the modeling system 1 may be connected by a wired or wireless communication line. Further, instead of the control device 14, the modeling system 1 may be operated by using a recording medium in which a signal representing the operation procedure of the modeling system 1 is recorded in advance. Further, a part of the function of the control device 14 may be performed by another part (head drive system 12 as an example).
 尚、造形材料Mとして、その熱伝導率が、膜C1を構成する材料の熱伝導率よりもワークWを構成する材料の熱伝導率に近い材料が用いられてもよい。例えば、炭素鋼S50Cの熱伝導率は摂氏600度において35.3[W/(m・K)]である。クロムモリブデン鋼SCM440の熱伝導率は摂氏600度において36.1[W/(m・K)]である。合金工具鋼SKD11の熱伝導率は摂氏500度において23.4[W/(m・K)]である。オーステナイト系のステンレス鋼SUS316の熱伝導率は16.7[W/(m・K)]である。フェライト系のステンレス鋼SUS430の熱伝導率は摂氏100度において26.4[W/(m・K)]である。マルテンサイト系のステンレス鋼SUS440Cの熱伝導率は摂氏100度において24.3[W/(m・K)]である。アルミナ96の熱伝導率は18[W/(m・K)]である。アルミナ99.5の熱伝導率は33[W/(m・K)]である。C/Cコンポジットの熱伝導率は30~40[W/(m・K)]である。等方性黒鉛の熱伝導率は80~140[W/(m・K)]である。チタン鋼TP340の熱伝導率は17.1[W/(m・K)]である。対して、窒化チタンの熱伝導率は19.2[W/(m・K)]、炭化チタンの熱伝導率は21[W/(m・K)]、ホウ化チタンの熱伝導率は64[W/(m・K)]である。 As the modeling material M, a material whose thermal conductivity is closer to the thermal conductivity of the material constituting the work W than the thermal conductivity of the material constituting the film C1 may be used. For example, the thermal conductivity of carbon steel S50C is 35.3 [W / (m · K)] at 600 degrees Celsius. The thermal conductivity of the chromium molybdenum steel SCM440 is 36.1 [W / (m · K)] at 600 degrees Celsius. The thermal conductivity of the alloy tool steel SKD11 is 23.4 [W / (m · K)] at 500 degrees Celsius. The thermal conductivity of the austenitic stainless steel SUS316 is 16.7 [W / (m · K)]. The thermal conductivity of the ferritic stainless steel SUS430 is 26.4 [W / (m · K)] at 100 degrees Celsius. The thermal conductivity of martensitic stainless steel SUS440C is 24.3 [W / (m · K)] at 100 degrees Celsius. The thermal conductivity of alumina 96 is 18 [W / (m · K)]. The thermal conductivity of alumina 99.5 is 33 [W / (m · K)]. The thermal conductivity of the C / C composite is 30-40 [W / (m · K)]. The thermal conductivity of isotropic graphite is 80 to 140 [W / (m · K)]. The thermal conductivity of titanium steel TP340 is 17.1 [W / (m · K)]. On the other hand, the thermal conductivity of titanium nitride is 19.2 [W / (m · K)], the thermal conductivity of titanium carbide is 21 [W / (m · K)], and the thermal conductivity of titanium booxide is 64. [W / (m · K)].
 また、造形材料Mとして、その線熱膨張率が、膜C1を構成する材料の線熱膨張率よりもワークWを構成する材料の線熱膨張率に近い材料が用いられてもよい。例えば、炭素鋼S50Cの線熱膨張率は11.7[1/K]、クロムモリブデン鋼SCM440の線熱膨張率は12.3×10-6[1/K]、合金工具鋼SKD11の線熱膨張率は11.7×10-6[1/K]、オーステナイト系のステンレス鋼SUS316の線熱膨張率は15.9×10-6[1/K]、フェライト系のステンレス鋼SUS430の線熱膨張率は12.4×10-6[1/K]、マルテンサイト系のステンレス鋼SUS440Cの線熱膨張率は11.7×10-6[1/K]、アルミナ96の線熱膨張率は8.3×10-6[1/K]、アルミナ99.5の線熱膨張率は6.3×10-6[1/K]、C/Cコンポジットの線熱膨張率は7~8×10-6[1/K]、等方性黒鉛の線熱膨張率は4.5~5.9×10-6[1/K]、
チタン鋼TP340の線熱膨張率は8.4×10-6[1/K]である。対して、窒化チタン線熱膨張率は9.35×10-6[1/K]、炭化チタン線熱膨張率は8.6×10-6[1/K]、ホウ化チタン線熱膨張率は7.8×10-6[1/K]である。
Further, as the modeling material M, a material whose linear thermal expansion coefficient is closer to the linear thermal expansion coefficient of the material constituting the work W than the linear thermal expansion coefficient of the material constituting the film C1 may be used. For example, the coefficient of linear thermal expansion of carbon steel S50C is 11.7 [1 / K], the coefficient of linear thermal expansion of chromium molybdenum steel SCM440 is 12.3 × 10-6 [1 / K], and the coefficient of linear thermal expansion of alloy tool steel SKD11. The coefficient of thermal expansion is 11.7 × 10-6 [1 / K], the coefficient of linear thermal expansion of austenite-based stainless steel SUS316 is 15.9 × 10-6 [1 / K], and the coefficient of linear thermal expansion of ferrite-based stainless steel SUS430 is The coefficient of thermal expansion is 12.4 × 10-6 [1 / K], the coefficient of linear thermal expansion of martensite-based stainless steel SUS440C is 11.7 × 10-6 [1 / K], and the coefficient of linear thermal expansion of alumina 96 is 8.3 × 10-6 [1 / K], linear thermal expansion coefficient of alumina 99.5 is 6.3 × 10-6 [1 / K], linear thermal expansion coefficient of C / C composite is 7-8 × 10-6 [1 / K], the coefficient of linear thermal expansion of isotropic graphite is 4.5 to 5.9 × 10-6 [1 / K],
The coefficient of linear thermal expansion of titanium steel TP340 is 8.4 × 10-6 [1 / K]. On the other hand, the coefficient of thermal expansion of titanium nitride wire is 9.35 × 10-6 [1 / K], the coefficient of thermal expansion of titanium carbide wire is 8.6 × 10-6 [1 / K], and the coefficient of thermal expansion of titanium booxide wire. Is 7.8 × 10-6 [1 / K].
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments can be appropriately combined with at least another part of the constituent requirements of each of the above-described embodiments. Some of the constituent requirements of each of the above embodiments may not be used. In addition, to the extent permitted by law, all publications cited in each of the above embodiments and disclosures of US patents shall be incorporated as part of the text.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う造形システム及び造形方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification. The modeling method is also included in the technical scope of the present invention.
 1 造形システム
 11 造形ヘッド
 111 照射系
 112 材料ノズル
 13 ステージ
 W ワーク
 M 造形材料
 SL 構造層
 ST 3次元構造物
 C 膜
 EL 光
 EA 照射領域
 MA 供給領域
 MP 溶融池
 MS 造形面
1 Modeling system 11 Modeling head 111 Irradiation system 112 Material nozzle 13 Stage W work M Modeling material SL Structural layer ST 3D structure C film EL Light EA Irradiation area MA Supply area MP Melting pond MS Modeling surface

Claims (60)

  1.  基材の表面に形成された膜にエネルギビームを照射することと、
     前記エネルギビームの照射位置に前記膜の融点より融点が低い材料を供給することと
     を含む
     前記基材に造形物を形成する造形方法。
    Irradiating the film formed on the surface of the base material with an energy beam and
    A modeling method for forming a modeled object on the substrate, which comprises supplying a material having a melting point lower than the melting point of the film to the irradiation position of the energy beam.
  2.  前記造形物は、前記膜を部分的に突き抜けて前記基材と結合する
     請求項1に記載の造形方法。
    The modeling method according to claim 1, wherein the modeled object partially penetrates the film and is bonded to the substrate.
  3.  前記造形物と前記基材との間に部分的に前記膜を残留させる
     請求項1又は2に記載の造形方法。
    The modeling method according to claim 1 or 2, wherein the film is partially left between the modeled object and the substrate.
  4.  前記膜が残留している部分の少なくとも一部において、前記造形物と前記基材とが離れている
     請求項3に記載の造形方法。
    The modeling method according to claim 3, wherein the modeled object and the base material are separated from each other in at least a part of the portion where the film remains.
  5.  前記造形物と前記基材とは部分的に離れている
     請求項1から4のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 4, wherein the modeled object and the base material are partially separated from each other.
  6.  前記造形物は、前記造形物が前記基材と結合している部分と異なる部分において、前記膜を介して前記基材と離れている
     請求項1から5のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 5, wherein the modeled object is separated from the substrate through the film at a portion different from the portion where the modeled object is bonded to the substrate. ..
  7.  前記造形物は、前記膜が除去された部分で前記基材と結合しており、前記膜が除去されていない部分で前記基材と離れている
     請求項1から6のいずれか一項に記載の造形方法。
    The object according to any one of claims 1 to 6, wherein the modeled object is bonded to the base material at a portion where the film has been removed and is separated from the base material at a portion where the film has not been removed. How to model.
  8.  前記造形物と前記基材とが離れている部分の少なくとも一部に前記膜は残留している
     請求項4から7のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 4 to 7, wherein the film remains in at least a part of a portion where the modeled object and the base material are separated from each other.
  9.  前記基材上の所定領域に前記膜が形成され、
     前記所定領域において、前記造形物が前記基材と結合している部分の面積の割合は、前記膜が残留する面積の割合よりも小さい
     請求項1から8のいずれか一項に記載の造形方法。
    The film is formed in a predetermined region on the substrate,
    The modeling method according to any one of claims 1 to 8, wherein the ratio of the area of the portion where the modeled object is bonded to the base material in the predetermined region is smaller than the ratio of the area where the film remains. ..
  10.  前記エネルギビームの照射により前記基材に溶融池を形成するとともに前記造形物を形成する
     請求項1から9のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 9, wherein a molten pool is formed on the base material by irradiation with the energy beam and the modeled object is formed.
  11.  前記造形物は、複数の層で形成され、
     前記複数層のうち前記基材上に形成される第1層は、前記基材に溶融池を形成するとともに、前記エネルギビームの照射位置に供給された前記材料を溶融することによって形成され、
     前記第1層の一部は、前記基材上に残留する前記膜上に形成される
     請求項10に記載の造形方法。
    The modeled object is formed of a plurality of layers.
    Of the plurality of layers, the first layer formed on the base material is formed by forming a molten pool in the base material and melting the material supplied to the irradiation position of the energy beam.
    The modeling method according to claim 10, wherein a part of the first layer is formed on the film remaining on the base material.
  12.  前記第1層の表面に沿った方向のうち少なくとも1つの方向における前記第1層のサイズは、前記少なくとも1つの方向における前記基材に形成される前記溶融池のサイズよりも大きい
     請求項11に記載の造形方法。
    11. The size of the first layer in at least one direction along the surface of the first layer is larger than the size of the molten pool formed on the substrate in the at least one direction. The modeling method described.
  13.  前記膜の融点は、前記基材の融点よりも高い
     請求項1から12のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 12, wherein the melting point of the film is higher than the melting point of the base material.
  14.  前記基材及び前記材料の少なくとも一方と前記膜との間の結合力は、前記造形物と前記基材との間の結合力よりも弱い
     請求項1から13のいずれか一項に記載の造形方法。
    The modeling according to any one of claims 1 to 13, wherein the bonding force between the base material and at least one of the materials and the film is weaker than the bonding force between the modeled object and the substrate. Method.
  15.  前記基材及び前記材料の少なくとも一方と前記膜との間の結合力は、前記材料と前記基材との間の結合力よりも弱い
     請求項1から14のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 14, wherein the bonding force between the base material and at least one of the materials and the film is weaker than the bonding force between the material and the base material. ..
  16.  前記基材及び前記材料の少なくとも一方に対する前記膜の濡れ性は、前記造形物の前記基材に対する濡れ性よりも低い
     請求項1から15のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 15, wherein the wettability of the film to at least one of the substrate and the material is lower than the wettability of the model to the substrate.
  17.  前記基材及び前記材料の少なくとも一方に対する前記膜の濡れ性は、前記材料の前記基材に対する濡れ性よりも低い
     請求項1から16のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 16, wherein the wettability of the film to at least one of the base material and the material is lower than the wettability of the material to the base material.
  18.  前記膜の表面は、前記基材の表面よりも粗い
     請求項1から17のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 17, wherein the surface of the film is rougher than the surface of the base material.
  19.  前記膜の表面は、粗面を含む
     請求項1から18のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 18, wherein the surface of the film includes a rough surface.
  20.  前記膜の表面は、凹凸面を含む
     請求項1から19のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 19, wherein the surface of the film includes an uneven surface.
  21.  前記造形物が形成された状態において、前記造形物のうち前記基材側を向いた面は、前記膜に対向する前記造形物の部分と前記基材とが結合した部分とを含む
     請求項1から20のいずれか一項に記載の造形方法。
    In the state where the modeled object is formed, the surface of the modeled object facing the base material side includes a portion of the modeled object facing the film and a portion where the base material is bonded. The modeling method according to any one of 20 to 20.
  22.  前記造形物が形成された状態において、前記造形物の下面と前記基材との間に部分的に前記膜が介在している
     請求項1から21のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 21, wherein the film is partially interposed between the lower surface of the modeled object and the base material in a state where the modeled object is formed.
  23.  前記造形物が形成された状態において、前記膜と前記基材との境界面の面積は、前記造形物と前記基材との結合面の面積よりも大きい
     請求項1から22のいずれか一項に記載の造形方法。
    Any one of claims 1 to 22 in which the area of the boundary surface between the film and the base material is larger than the area of the bonding surface between the modeled object and the base material in the state where the modeled object is formed. The modeling method described in.
  24.  前記膜が形成された前記基材を準備することを含む
     請求項1から23のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 23, which comprises preparing the base material on which the film is formed.
  25.  前記膜は、前記基材に対する表面処理によって形成される
     請求項1から24のいずれか一項に記載の造形方法。
    The molding method according to any one of claims 1 to 24, wherein the film is formed by surface treatment on the base material.
  26.  前記表面処理は、めっき処理、蒸着処理、スパッタリング処理、溶射処理及びリューブライト処理の少なくとも一つを含む
     請求項25に記載の造形方法。
    The modeling method according to claim 25, wherein the surface treatment includes at least one of a plating treatment, a vapor deposition treatment, a sputtering treatment, a thermal spraying treatment, and a lubelite treatment.
  27.  前記膜は、窒化チタン、ニッケル、クロム、チタン及びリン酸塩の少なくとも一つを含む
     請求項1から26のいずれか一項に記載の造形方法。
    The molding method according to any one of claims 1 to 26, wherein the film contains at least one of titanium nitride, nickel, chromium, titanium and phosphate.
  28.  前記基材は、炭素鋼、ステンレス及び鋼材の少なくとも一方を含む
     請求項1から27のいずれか一項に記載の造形方法。
    The modeling method according to any one of claims 1 to 27, wherein the base material contains at least one of carbon steel, stainless steel, and a steel material.
  29.  基材の表面に形成された膜にエネルギビームを照射する照射装置と、
     前記エネルギビームの照射位置に前記膜の融点より融点が低い材料を供給する供給装置と、
     前記照射装置と前記供給装置とを制御して、前記膜に前記エネルギビームを照射し且つ前記エネルギビームの照射位置に前記材料を供給して、前記基材に造形物を形成する制御装置と
     を備える造形システム。
    An irradiation device that irradiates a film formed on the surface of the base material with an energy beam,
    A supply device that supplies a material having a melting point lower than the melting point of the film to the irradiation position of the energy beam, and
    A control device that controls the irradiation device and the supply device to irradiate the film with the energy beam and supply the material to the irradiation position of the energy beam to form a modeled object on the base material. A modeling system to be equipped.
  30.  前記制御装置は、前記照射装置と前記供給装置とを制御して、前記膜を部分的に突き抜けて前記基材と結合した前記造形物を形成する
     請求項29に記載の造形システム。
    The modeling system according to claim 29, wherein the control device controls the irradiation device and the supply device to partially penetrate the film and form the modeled object bonded to the substrate.
  31.  前記制御装置は、前記照射装置と前記供給装置とを制御して、前記造形物と前記基材との間に部分的に前記膜を残留させる
     請求項29又は30のいずれか一項に記載の造形システム。
    The control device according to any one of claims 29 or 30, wherein the control device controls the irradiation device and the supply device to partially leave the film between the modeled object and the base material. Modeling system.
  32.  前記膜が残留している部分の少なくとも一部において、前記造形物と前記基材とが離れている
     請求項31に記載の造形システム。
    The modeling system according to claim 31, wherein the modeled object and the base material are separated from each other in at least a part of the portion where the film remains.
  33.  前記基材と前記造形物とは部分的に離れている
     請求項29から32のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 32, wherein the base material and the modeled object are partially separated from each other.
  34.  前記造形物が前記基材と結合している部分と異なる部分において、前記膜を介して前記基材と離れている前記造形物を形成する
     請求項29から33のいずれか一項に記載の造形システム。
    The modeling according to any one of claims 29 to 33, wherein the model is formed at a portion different from the portion where the model is bonded to the substrate and is separated from the substrate via the film. system.
  35.  前記膜が除去された部分で前記基材と結合しており、前記膜が除去されていない部分で前記基材と離れている前記造形物を形成する
     請求項29から34のいずれか一項に記載の造形方システム。
    The aspect according to any one of claims 29 to 34, which forms the modeled object which is bonded to the base material at the portion where the film is removed and is separated from the base material at the portion where the film is not removed. The described modeling method system.
  36.  前記造形物と前記基材とが離れている部分の少なくとも一部に前記膜は残留している
     請求項29から35のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 35, wherein the film remains in at least a part of a portion where the modeled object and the base material are separated from each other.
  37.  前記基材上の所定領域に前記膜を形成し、
     前記所定領域において、前記造形物が前記基材と結合している部分の面積の割合を、前記膜が残留する面積の割合よりも小さくする
     請求項29から36のいずれか一項に記載の造形システム。
    The film is formed in a predetermined region on the substrate,
    The modeling according to any one of claims 29 to 36, wherein the ratio of the area of the portion where the modeled object is bonded to the base material in the predetermined region is smaller than the ratio of the area where the film remains. system.
  38.  前記制御装置は、前記エネルギビームの照射により前記基材に溶融池を形成するとともに前記造形物を形成する
     請求項29から37のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 37, wherein the control device forms a molten pool on the base material by irradiation with the energy beam and forms the modeled object.
  39.  前記造形物は、複数の層で形成され、
     前記制御装置は、前記基材に溶融池を形成するとともに、前記エネルギビームの照射位置に供給された前記材料を溶融して、前記複数層のうち第1層を前記基材上に形成し、
     前記第1層の一部は、前記基材上に残留する前記膜上に形成される
     請求項38に記載の造形システム。
    The modeled object is formed of a plurality of layers.
    The control device forms a molten pool on the base material and melts the material supplied to the irradiation position of the energy beam to form the first layer of the plurality of layers on the base material.
    The modeling system according to claim 38, wherein a part of the first layer is formed on the film remaining on the base material.
  40.  前記制御装置は、前記第1層の表面に沿った方向のうち少なくとも1つの方向における前記第1層のサイズが、前記少なくとも1つの方向における前記溶融池のサイズよりも大きくなるように前記造形物を形成する
     請求項39に記載の造形システム。
    The control device is such that the size of the first layer in at least one direction along the surface of the first layer is larger than the size of the molten pool in the at least one direction. 39. The modeling system according to claim 39.
  41.  前記膜の融点は、前記基材の融点よりも高い
     請求項29から41のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 41, wherein the melting point of the film is higher than the melting point of the base material.
  42.  前記基材及び前記材料の少なくとも一方と前記膜との間の結合力は、前記造形物と前記基材との間の結合力よりも弱い
     請求項29から42のいずれか一項に記載の造形システム。
    The modeling according to any one of claims 29 to 42, wherein the bonding force between the base material and at least one of the materials and the film is weaker than the bonding force between the modeled object and the substrate. system.
  43.  前記基材及び前記材料の少なくとも一方と前記膜との間の結合力は、前記材料と前記基材との間の結合力よりも弱い
     請求項29から43のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 43, wherein the binding force between the base material and at least one of the materials and the film is weaker than the binding force between the material and the base material. ..
  44.  前記基材及び前記材料の少なくとも一方に対する前記膜の濡れ性は、前記造形物の前記基材に対する濡れ性よりも低い
     請求項29から44のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 44, wherein the wettability of the film to at least one of the substrate and the material is lower than the wettability of the model to the substrate.
  45.  前記基材及び前記材料の少なくとも一方に対する前記膜の濡れ性は、前記材料の前記基材に対する濡れ性よりも低い
     請求項29から45のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 45, wherein the wettability of the film to at least one of the base material and the material is lower than the wettability of the material to the base material.
  46.  前記膜の表面は、前記基材の表面よりも粗い
     請求項29から46のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 46, wherein the surface of the film is rougher than the surface of the base material.
  47.  前記膜の表面は、粗面を含む
     請求項29から47のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 47, wherein the surface of the film includes a rough surface.
  48.  前記膜の表面は、凹凸面を含む
     請求項29から48のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 48, wherein the surface of the film includes an uneven surface.
  49.  前記造形物が形成された状態において、前記造形物のうち前記基材側を向いた面は、前記膜に対向する前記造形物の部分と前記基材とが結合した部分とを含む
     請求項29から49のいずれか一項に記載の造形システム。
    29. In the state where the modeled object is formed, the surface of the modeled object facing the base material side includes a portion of the modeled object facing the film and a portion where the base material is bonded. The modeling system according to any one of 49 to 49.
  50.  前記造形物が形成された状態において、前記造形物の下面と前記基材との間に部分的に前記膜が介在している
     請求項29から50のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 50, wherein the film is partially interposed between the lower surface of the modeled object and the base material in a state where the modeled object is formed.
  51.  前記造形物が形成された状態において、前記膜と前記基材との境界面の面積は、前記造形物と前記基材との結合面の面積よりも大きい
     請求項29から51のいずれか一項に記載の造形システム。
    Any one of claims 29 to 51, wherein the area of the interface between the film and the base material is larger than the area of the bonding surface between the modeled object and the base material in the state where the modeled object is formed. The modeling system described in.
  52.  前記膜は、前記基材に対する表面処理によって形成される
     請求項29から52のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 52, wherein the film is formed by surface treatment on the substrate.
  53.  前記表面処理は、めっき処理、蒸着処理、スパッタリング処理、溶射処理及びリューブライト処理の少なくとも一つを含む
     請求項53に記載の造形システム。
    The modeling system according to claim 53, wherein the surface treatment includes at least one of a plating treatment, a vapor deposition treatment, a sputtering treatment, a thermal spraying treatment, and a lubelite treatment.
  54.  前記膜は、窒化チタン、ニッケル、クロム、チタン及びリン酸塩の少なくとも一つを含む
     請求項29から54のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 54, wherein the film contains at least one of titanium nitride, nickel, chromium, titanium and phosphate.
  55.  前記基材は、炭素鋼、ステンレス及び鋼材の少なくとも一方を含む
     請求項29から55のいずれか一項に記載の造形システム。
    The modeling system according to any one of claims 29 to 55, wherein the base material contains at least one of carbon steel, stainless steel, and a steel material.
  56.  材料を用いて造形物を形成する造形システムにおいて用いられる造形用土台であって、
     基材と、
     前記基材の表面に形成され、前記材料の融点より融点が高い膜と
     を備え、
     前記造形システムが有する、前記膜にエネルギビームを照射する照射装置と、前記エネルギビームの照射位置に前記材料を供給する供給装置とによって、前記造形物が形成される造形用土台。
    It is a modeling base used in a modeling system that forms a modeled object using materials.
    With the base material
    A film formed on the surface of the base material and having a melting point higher than the melting point of the material is provided.
    A modeling base on which the modeled object is formed by an irradiation device that irradiates the film with an energy beam and a supply device that supplies the material to the irradiation position of the energy beam, which the modeling system has.
  57.  前記膜は、前記基材に対する表面処理によって形成される
     請求項57に記載の造形用土台。
    The modeling base according to claim 57, wherein the film is formed by surface treatment of the substrate.
  58.  前記表面処理は、めっき処理、蒸着処理、スパッタリング処理、溶射処理及びリューブライト処理の少なくとも一つを含む
     請求項57又は58に記載の造形用土台。
    The modeling base according to claim 57 or 58, wherein the surface treatment includes at least one of a plating treatment, a vapor deposition treatment, a sputtering treatment, a thermal spraying treatment, and a lubelite treatment.
  59.  前記膜は、窒化チタン、ニッケル、クロム、チタン及びリン酸塩の少なくとも一つを含む
     請求項57から59のいずれか一項に記載の造形用土台。
    The modeling base according to any one of claims 57 to 59, wherein the film contains at least one of titanium nitride, nickel, chromium, titanium and phosphate.
  60.  前記基材は、炭素鋼、ステンレス及び鋼材の少なくとも一方を含む
     請求項57から60のいずれか一項に記載の造形用土台。
    The modeling base according to any one of claims 57 to 60, wherein the base material contains at least one of carbon steel, stainless steel, and a steel material.
PCT/JP2019/010924 2019-03-15 2019-03-15 Modeling method, modeling system, and modeling base WO2020188648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010924 WO2020188648A1 (en) 2019-03-15 2019-03-15 Modeling method, modeling system, and modeling base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010924 WO2020188648A1 (en) 2019-03-15 2019-03-15 Modeling method, modeling system, and modeling base

Publications (1)

Publication Number Publication Date
WO2020188648A1 true WO2020188648A1 (en) 2020-09-24

Family

ID=72520692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010924 WO2020188648A1 (en) 2019-03-15 2019-03-15 Modeling method, modeling system, and modeling base

Country Status (1)

Country Link
WO (1) WO2020188648A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032030A (en) * 1989-05-31 1991-01-08 Sony Corp Forming method of three dimensional shape
JP2001152204A (en) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Powder material for manufacturing three-dimensional molding, manufacturing method of three-dimensional molding, and three-dimensional molding
JP2010196099A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Apparatus and method of producing three-dimensional shaped article
WO2015145844A1 (en) * 2014-03-28 2015-10-01 株式会社日立製作所 Laser powder lamination shaping device, laser powder lamination shaping method, and 3d lamination shaping device
JP2017043805A (en) * 2015-08-26 2017-03-02 セイコーエプソン株式会社 Three-dimensional forming apparatus, three-dimensional forming method and three-dimensional formed object
JP2018134797A (en) * 2017-02-22 2018-08-30 株式会社アスペクト Powder sintered laminated molding apparatus and powder sintered laminated molding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032030A (en) * 1989-05-31 1991-01-08 Sony Corp Forming method of three dimensional shape
JP2001152204A (en) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd Powder material for manufacturing three-dimensional molding, manufacturing method of three-dimensional molding, and three-dimensional molding
JP2010196099A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Apparatus and method of producing three-dimensional shaped article
WO2015145844A1 (en) * 2014-03-28 2015-10-01 株式会社日立製作所 Laser powder lamination shaping device, laser powder lamination shaping method, and 3d lamination shaping device
JP2017043805A (en) * 2015-08-26 2017-03-02 セイコーエプソン株式会社 Three-dimensional forming apparatus, three-dimensional forming method and three-dimensional formed object
JP2018134797A (en) * 2017-02-22 2018-08-30 株式会社アスペクト Powder sintered laminated molding apparatus and powder sintered laminated molding method

Similar Documents

Publication Publication Date Title
Dilberoglu et al. Current trends and research opportunities in hybrid additive manufacturing
US9901983B2 (en) Method of applying multiple materials with selective laser melting on a 3D article
US9238277B2 (en) Cutting/polishing tool and manufacturing method thereof
KR101774023B1 (en) Repair of directionally solidified alloys
US20060165546A1 (en) Method and apparatus for manufacturing three-dimensional objects
US20100034647A1 (en) Processes for the formation of positive features on shroud components, and related articles
Kreutz et al. Rapid prototyping with CO2 laser radiation
JP2019507250A5 (en)
Paul et al. Metal additive manufacturing using lasers
JP2012066070A (en) Utility knife blade
KR20150053807A (en) Superalloy laser cladding with surface topology energy transfer compensation
JP5302710B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP7380769B2 (en) Processing equipment and processing methods, processing methods, and modeling equipment and modeling methods
JP7066131B2 (en) Laser laminated modeling method and laser laminated modeling equipment
WO2020058722A1 (en) A powder bed: additive manufacturing
JP2017075364A (en) Method for manufacturing three-dimensional molded object and apparatus for manufacturing three-dimensional molded object
JP2021143398A (en) Manufacturing method of laminated molding, and laminated molding
WO2020017405A1 (en) Shaping system
CN104651833A (en) Repairing method and device for concave-convex defect of inside-laser powder feeding cladding
WO2020188648A1 (en) Modeling method, modeling system, and modeling base
CA2897012C (en) Laser deposition using a protrusion technique
Wei Multiple Material Selective Laser Melting: A New Approach
WO2019151239A1 (en) Processing system, processing method, computer program, recording medium, and control device
WO2019216228A1 (en) Molding system, and, molding method
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP