WO2020187094A1 - 一种无人机控制装置和无人机 - Google Patents

一种无人机控制装置和无人机 Download PDF

Info

Publication number
WO2020187094A1
WO2020187094A1 PCT/CN2020/078626 CN2020078626W WO2020187094A1 WO 2020187094 A1 WO2020187094 A1 WO 2020187094A1 CN 2020078626 W CN2020078626 W CN 2020078626W WO 2020187094 A1 WO2020187094 A1 WO 2020187094A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder surface
angle
detection unit
control
angle detection
Prior art date
Application number
PCT/CN2020/078626
Other languages
English (en)
French (fr)
Inventor
刘玉华
谷韬
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020187094A1 publication Critical patent/WO2020187094A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
    • B64C9/20Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing by multiple flaps

Definitions

  • This application relates to the technical field of drones, and in particular to a drone control device and a drone using the drone control device.
  • the fixed-wing UAV mainly relies on the tilt of each control rudder surface to adjust the aircraft attitude during the flight.
  • the current implementation scheme is to set the motor to drive the tilt of the rudder surface.
  • the external main controller sends a control signal to the corresponding motor controller, and the motor controller drives the corresponding motor to rotate after receiving the control signal.
  • the rotating torque of the motor drives the drive shaft of the rudder surface to rotate through the transmission of the gear set, thereby driving the angle of the rudder surface to change.
  • the inventor found that the current main controller cannot know the true tilting situation of the rudder surface, and thus cannot achieve accurate and effective control of the rudder surface.
  • the purpose of the embodiments of the present invention is to provide an unmanned aerial vehicle control device and an unmanned aerial vehicle using the unmanned aerial vehicle control device, and the main controller can learn the true tilt of the rudder surface.
  • a technical solution adopted by the present invention is: a drone control device for a drone, the drone includes a rudder surface, the rudder surface is arranged on the drone On the fixed surface, the control device includes a main controller, a rudder surface control structure and an angle detection module;
  • the rudder surface control structure includes a drive controller, a drive mechanism, a transmission mechanism and a rudder surface drive shaft;
  • the drive controller is electrically connected to the main controller and the drive mechanism, and the drive mechanism is also connected to the rudder surface transmission shaft through the transmission mechanism, and the rudder surface transmission shaft is provided at the On the rudder surface;
  • the angle detection module includes a first angle detection unit and a second angle detection unit. Both the first angle detection unit and the second angle detection unit are electrically connected to the main controller.
  • the first angle detection unit The unit is arranged on the rudder surface, and the second angle detection unit is arranged on the fixed surface;
  • the main controller is used to send a rudder surface tilt control command to the drive controller according to the target tilt angle of the rudder surface, and to obtain the control surface according to the signals sent by the first angle detection unit and the second angle detection unit.
  • the actual tilt angle of the rudder surface corresponding to the first angle detection unit;
  • the driving controller is configured to receive the control surface tilt control instruction, and control the operation of the driving mechanism according to the control surface tilt control instruction.
  • the rudder surface control structure further includes an angle feedback unit connected to the rudder surface transmission shaft and used to detect the actual tilt angle of the rudder surface.
  • the angle feedback The unit is also electrically connected with the drive controller;
  • the drive controller is specifically used for:
  • the control of the driving mechanism is adjusted according to the actual tilt angle of the rudder surface, so that the actual tilt angle of the rudder surface is close to the target tilt angle of the rudder surface corresponding to the rudder surface tilt control command.
  • the main controller is specifically configured to:
  • the control command of the rudder surface tilt is adjusted according to the actual tilt angle of the rudder surface, so that the actual tilt angle of the rudder surface is close to the target tilt angle of the rudder surface.
  • the drive controller is further configured to execute after executing the internal closed-loop control:
  • the main controller is specifically configured to:
  • the control command of the rudder surface tilt is adjusted according to the actual tilt angle of the rudder surface, so that the actual tilt angle of the rudder surface is close to the target tilt angle of the rudder surface.
  • the main controller is also used to:
  • the number of the first angle detection unit and the number of the second angle detection unit are different, and the number of the second angle detection unit is one.
  • the first angle detection unit and the second angle detection unit appear as a pair, and the number of the first angle detection unit and the second angle detection unit are the same.
  • the first angle detection unit and the second angle detection unit are inertial measurement units
  • the angle feedback unit is a potentiometer
  • the transmission mechanism is a gear assembly
  • the drive mechanism is a motor
  • an unmanned aerial vehicle including:
  • a wing connected to the fuselage
  • the drone control device is provided on the fuselage.
  • a first angle detection unit is provided on the rudder surface of the drone, and a second angle is provided on the fixed surface of the drone
  • the detection unit the main controller can obtain the actual tilt angle of the rudder surface according to the signals detected by the first angle detection unit and the second angle detection unit. Therefore, the main controller can accurately and effectively control the rudder surface according to the actual tilt angle of the rudder surface.
  • Figure 1 is a schematic structural diagram of an embodiment of the drone of the present invention
  • Figure 2 is a schematic diagram of a rudder surface and a fixed surface in an embodiment of the UAV of the present invention
  • Fig. 3 is a schematic structural diagram of an embodiment of the drone control device of the present invention.
  • Figure 4 is a schematic structural diagram of an embodiment of a drone control device of the present invention.
  • FIG. 5 is a schematic diagram of the hardware structure of the main controller in an embodiment of the drone control device of the present invention.
  • Fig. 6 is a schematic diagram of the hardware structure of the drive controller in an embodiment of the drone control device of the present invention.
  • FIG. 1 it is a schematic diagram of the structure of the UAV 100 provided by the embodiment of the present invention.
  • the UAV 100 is a fixed-wing UAV, which mainly relies on various controls during flight.
  • the rudder surface is used to adjust the attitude of the aircraft.
  • the UAV 100 includes a fuselage, wings connected to the fuselage, aileron rudder surfaces 21, a vertical tail rudder surface 22, and a horizontal tail fixed on the fuselage fixed surface 24.
  • Rudder surface 23 please refer to FIG.
  • the fixed surface 24 is a fixed surface on the fuselage, which is fixed, the rudder surface can move relative to the fixed surface, and the movement of the rudder surface can change the attitude of the drone.
  • the aileron rudder surface 21 is located at the trailing edge of the two wings of the UAV, and is used to control the rolling motion of the UAV
  • the horizontal tail rudder surface 23 is used to control the pitch angle of the UAV
  • the vertical tail rudder surface 22 Used to control the yaw angle of the UAV.
  • FIG. 1 only exemplarily shows several rudder surfaces of the UAV 100. In other embodiments, other rudder surfaces or a larger number of rudder surfaces may also be included.
  • the drone 100 also includes a control device 10 arranged on the fuselage.
  • the control device 10 includes a main controller 11 and at least one rudder surface control structure 12 (FIG. 3 only shows a rudder surface control structure) ⁇ Angle detection module 13.
  • the rudder surface control structure 12 includes a driving controller 121, a driving mechanism 122, a transmission mechanism 123 and a rudder surface transmission shaft 124.
  • the driving controller 121 is electrically connected to the main controller 11 and the driving mechanism 122, and the driving mechanism is also connected to the rudder surface transmission shaft 124 through the transmission mechanism 123.
  • the rudder surface transmission shaft 124 is arranged on the rudder shown in FIG. 1 or FIG. Surface.
  • the angle detection module 13 includes at least one first angle detection unit 131 and at least one second angle detection unit 132. At least one first angle detection unit 131 is respectively disposed on each rudder surface, and the second angle detection unit 132 is disposed relative to the rudder. On the fixed surface (ie, fixed surface). The first angle detection unit 131 can detect the angle of the rudder surface, and the second angle detection unit 132 can detect the angle of the fixed surface. By detecting the above two angles, the angle change of the rudder surface, that is, the actual tilt angle of the rudder surface, can be obtained.
  • the first angle detection unit 131 and the second angle detection unit 132 appear in pairs, that is, the numbers of the two are the same.
  • the first angle detection unit 131 is disposed on the rudder surface
  • the second angle detection unit 132 is disposed on the fixed surface on which the rudder surface is located.
  • the number of the first angle detection unit 131 and the second angle detection unit 132 may also be different.
  • the first angle detection unit is provided on each rudder surface to be controlled, and only on a certain fixed surface.
  • a second angle detection unit 132 is provided, and the angle of the other fixed surface can be obtained according to the positional relationship with the fixed surface.
  • the number of rudder surface control structures 12 can be set according to the number of rudder surfaces in the UAV 100 and control requirements.
  • at least one rudder surface control structure may include two aileron rudder surfaces.
  • the control structure, a vertical tail rudder surface control structure and two horizontal tail rudder surface control structures are respectively used to control the tilting of the corresponding aileron rudder surface, vertical tail rudder surface and horizontal tail rudder surface.
  • the main controller 11 is used to send a rudder surface tilting control command to the driving controller 121 according to the target tilting angle of the rudder surface, and the driving controller 121 receives the rudder surface tilting control command and rotates according to the rudder surface
  • the control command controls the operation of the driving mechanism 122.
  • the operation of the driving mechanism 122 drives the transmission mechanism 123 to operate, the transmission mechanism 123 drives the rudder surface transmission shaft 124 to rotate, and the rudder surface transmission shaft 124 drives the rudder surface to tilt.
  • the angle of the rudder surface can be obtained through the first angle detection unit 131, and then the angle change of the rudder surface, that is, the actual tilting angle of the rudder surface, can be obtained according to the angle of the corresponding fixed surface.
  • the main controller can detect according to the first angle detection unit and the second angle
  • the signal detected by the unit obtains the actual tilt angle of the rudder surface. Therefore, the main controller can accurately and effectively control the rudder surface according to the actual tilt angle of the rudder surface. For example, according to the actual tilt angle of the rudder surface, the control command of the rudder surface tilt is adjusted, and the attitude of each rudder surface is self-checked before the drone takes off.
  • the rudder surface control structure 12 further includes an angle feedback unit 125, which is connected to the rudder surface transmission shaft 124, and the angle feedback unit 125 is also electrically connected to the drive controller 121 connection.
  • the angle feedback unit 125 is connected to the rudder surface transmission shaft 124.
  • the angle feedback unit 125 can rotate with the rudder surface transmission shaft 124 so as to detect the actual tilt angle of the rudder surface, that is, the actual rudder surface. Tilt angle.
  • the angle feedback unit 125 sends the feedback signal it generates to the driving controller 121, and the driving controller 121 controls the operation of the driving mechanism according to the rudder surface tilt control instruction sent by the main controller 11 and the feedback signal.
  • the driving controller 121 may adjust the control of the driving mechanism 122 according to the feedback signal received by the driving controller 121.
  • the driving controller 121 may perform closed-loop control according to the rudder surface tilt control command and the feedback signal. Obtain the actual tilt angle of the rudder surface according to the feedback signal received by the drive controller 121, and then continuously adjust the control of the driving mechanism 122 according to the actual tilt angle of the rudder surface, so that the actual tilt angle of the rudder surface is continuously close to the rudder surface The target tilt angle until the actual tilt angle of the rudder surface approaches the target tilt angle of the rudder surface to meet the preset accuracy requirements.
  • the main controller 11 can adjust the rudder surface tilting control command according to the actual tilting angle of the rudder surface obtained by the main controller 11.
  • the main controller 11 may perform closed-loop control according to the target tilt angle of the rudder surface and the actual tilt angle of the rudder surface. That is, according to the actual tilt angle of the rudder surface, continuously adjust the rudder surface tilt control command so that the actual tilt angle of the rudder surface continuously approaches the target tilt angle of the rudder surface until the actual tilt angle of the rudder surface approaches the rudder surface The degree of the target tilt angle meets the preset accuracy requirements.
  • the main controller 11 performs external closed-loop control according to the target tilt angle of the rudder surface and the actual tilt angle of the rudder surface
  • the drive controller 121 performs the external closed-loop control according to the rudder surface tilt control command and the command received by the drive controller 121
  • the feedback signal performs internal closed-loop control. That is, the outer closed loop control of the main controller 11 and the inner closed loop control of the drive controller 121 are combined to improve the control efficiency.
  • the main controller 11 first sends a rudder surface tilt control command to the drive controller 121 according to the target tilt angle of the rudder surface, and the drive controller 121 performs an internal closed loop according to the rudder surface tilt control command and the feedback signal received by the drive controller 121 control.
  • the drive controller 121 sends a feedback instruction to the main controller 11 after executing the internal closed-loop control.
  • the main controller 11 then adjusts the rudder surface tilt control command according to the target tilt angle of the rudder surface and the actual rudder surface tilt angle obtained by the main controller 11. Then the adjusted rudder surface tilting control command is sent to the drive controller 121 for internal closed-loop control.
  • the drive controller 121 sends a feedback command to the main controller 11 again, and the main controller 11 performs external control again. Closed loop control until the actual tilt angle of the rudder surface approaches the target tilt angle of the rudder surface to meet the accuracy requirements preset by the main controller 11.
  • the control structure of each rudder surface may be self-checked before the drone 100 takes off according to the signals sent by the first angle detection unit and the second angle detection unit.
  • the main controller 11 first The target tilt angle of the rudder surface sends a rudder surface tilt control command to the drive controller 121.
  • the driving controller 121 performs internal closed-loop control according to the rudder surface tilting control command and the feedback signal received by the driving controller 121.
  • the drive controller 121 sends a feedback instruction to the main controller 11 after executing the internal closed-loop control.
  • the main controller 11 obtains the actual tilt angle of the rudder surface at this time, and then determines whether the actual tilt angle of the rudder surface meets the target tilt angle of the rudder surface, and if the actual tilt angle of the rudder surface meets the rudder surface
  • the target tilt angle indicates that the corresponding rudder surface control structure is operating normally, otherwise, it is considered that the rudder surface control structure is operating abnormally.
  • the actual tilt angle of the rudder surface meets the target tilt angle of the rudder surface, which means that the difference between the actual tilt angle of the rudder surface and the target tilt angle of the rudder surface meets a preset error requirement.
  • the driving mechanism 122 may use a motor, such as a brush motor, a brushless motor, a DC motor, a stepping motor, an AC induction motor, and so on.
  • the transmission mechanism 123 may be a gear assembly, and the main controller 11 may adopt a separate controller or a flight control chip of an unmanned aerial vehicle.
  • the angle feedback unit 125 may be a potentiometer, or other devices that can be connected to the rudder surface drive shaft and generate a change signal as the rudder surface drive shaft rotates.
  • the first angle detection unit and the second angle detection unit are an inertial measurement unit (IMU).
  • the potentiometer is usually composed of a resistor and a movable brush.
  • the resistance of the resistor changes with the displacement of the brush, which can be obtained and displaced at the output of the potentiometer.
  • the brush of the potentiometer is connected to the rudder surface transmission shaft 124.
  • the rudder surface transmission shaft 124 rotates, the brush of the potentiometer also rotates, thus causing the voltage of the potentiometer output pin to change.
  • the driving controller 121 receives the rudder surface tilt control command from the main controller 11, it drives the motor to rotate according to the rudder surface tilt control command.
  • the torque transmission of the gear assembly drives the rudder surface drive shaft to rotate, thereby driving the rudder Face change angle.
  • the rotation of the drive shaft of the rudder will drive the potentiometer to rotate, which in turn causes the voltage at the potentiometer output to change.
  • the angle change of the rudder surface can be calculated to obtain the actual tilt angle of the rudder surface.
  • FIG. 5 is a schematic diagram of the hardware structure of the main controller 11. As shown in FIG. 5, the main controller 11 includes:
  • One or more first processors 11a and first memory 11b are taken as an example.
  • the first processor 11a and the first memory 11b may be connected by a bus or in other ways.
  • the connection by a bus is taken as an example.
  • the first memory 11b can be used to store non-volatile software programs, non-volatile computer executable programs and modules.
  • the first processor 11a executes various functional applications and data processing of the main controller 11 by running the non-volatile software programs, instructions, and modules stored in the first memory 11b, that is, realizes the closed-loop control method of the foregoing embodiment , Self-checking method of rudder surface control structure, etc.
  • the first memory 11b may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the main controller.
  • the first memory 11b may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the first memory 11b may optionally include memories remotely provided with respect to the first processor 11a, and these remote memories may be connected to the relay point generating device through a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the first memory 11b, and when executed by the one or more first processors 11a, the above-mentioned outer closed-loop control method, the self-check method of the rudder surface control structure, etc. are executed.
  • FIG. 6 is a schematic diagram of the hardware structure of the drive controller 121. As shown in FIG. 6, the drive controller 121 includes:
  • One or more second processors 121a and second memory 121b are taken as an example.
  • the second processor 121a and the second memory 121b may be connected by a bus or in other ways.
  • the connection by a bus is taken as an example.
  • the second memory 121b can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules.
  • the second processor 121a executes various functional applications and data processing of the drive controller 121 by running the non-volatile software programs, instructions, and modules stored in the second memory 121b, that is, realizes the internal closed-loop control of the above embodiment Methods etc.
  • the second memory 121b may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the main controller.
  • the second memory 121b may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the second storage 121b may optionally include a storage remotely provided with respect to the second processor 121a, and these remote storages may be connected to the relay point generating device through a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the second memory 121b, and when executed by the one or more second processors 121a, the foregoing method is executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

一种无人机控制装置,包括主控制器(11)、舵面控制结构和角度检测模块;舵面控制结构包括驱动控制器(121)、驱动机构(122)、传动机构(123)和舵面传动轴(124);角度检测模块包括设置于无人机舵面上的第一角度检测单元(131)和设置于无人机固定面(24)上的第二角度检测单元(132),主控制器根据第一角度检测单元和第二角度检测单元检测的信号获得舵面实际倾转角度。还提供一种无人机。该控制装置能根据舵面实际倾转角度实现准确有效的舵面控制。

Description

一种无人机控制装置和无人机
本申请要求于2019年3月19日提交中国专利局、申请号为201910207575.3、申请名称为“一种无人机控制装置和无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人机技术领域,特别是涉及一种无人机控制装置以及应用该无人机控制装置的无人机。
背景技术
固定翼无人机在飞行过程中主要依靠各个控制舵面的倾转来实现飞机姿态的调整。目前的实现方案是设置电机来驱动舵面的倾转,当需要调整舵面角度时,外部主控制器向相应的电机控制器发送控制信号,电机控制器收到控制信号后驱动相应的电机转动。电机转动的力矩通过齿轮组的传动带动舵面的传动轴转动,从而带动舵面角度发生变化。
在实现本发明的过程中,发明人发现:目前的主控制器无法获知舵面的真实倾转情况,从而无法实现对舵面的准确有效控制。
发明内容
本发明实施例的目的是提供一种无人机控制装置以及应用该无人机控制装置的无人机,主控制器能获知舵面的真实倾转情况。
为解决上述技术问题,本发明采用的一个技术方案是:一种无人机控制装置,用于无人机,所述无人机包括舵面,所述舵面设置于所述无人机的固定面上,所述控制装置包括主控制器、舵面控制结构和角度检测模块;
所述舵面控制结构包括驱动控制器、驱动机构、传动机构和舵面传动轴;
其中,所述驱动控制器分别与所述主控制器和所述驱动机构电性连接,所述驱动机构还通过所述传动机构连接所述舵面传动轴,所述舵面传动轴设于所述舵面上;
所述角度检测模块包括第一角度检测单元和第二角度检测单元,所述第一角度检测单元和所述第二角度检测单元均与所述主控制器电性连接,所述第一角度检测单元设置于所述舵面上,所述第二角度检测单元设置于所述固定面上;
所述主控制器用于根据舵面目标倾转角度发送舵面倾转控制指令给所述 驱动控制器,以及根据所述第一角度检测单元和所述第二角度检测单元发送的信号获得所述第一角度检测单元对应舵面的舵面实际倾转角度;
所述驱动控制器用于接收所述舵面倾转控制指令,根据所述舵面倾转控制指令控制所述驱动机构运行。
在一些实施例中,所述舵面控制结构还包括角度反馈单元,所述角度反馈单元连接所述舵面传动轴,用于检测所述舵面的舵面实际倾转角度,所述角度反馈单元还与所述驱动控制器电性连接;
所述驱动控制器具体用于:
执行内闭环控制,其中,所述内闭环控制包括:
接收所述角度反馈单元发送的反馈信号;
根据所述反馈信号获得舵面实际倾转角度;
根据所述舵面实际倾转角度调整对所述驱动机构的控制,以使舵面实际倾转角度接近所述舵面倾转控制指令对应的舵面目标倾转角度。
在一些实施例中,所述主控制器具体用于:
执行外闭环控制,其中,所述外闭环控制包括:
接收所述第一角度检测单元和所述第二角度检测单元发送的信号,根据所述信号获得舵面实际倾转角度;
根据所述舵面实际倾转角度调整所述舵面倾转控制指令,以使舵面实际倾转角度接近所述舵面目标倾转角度。
在一些实施例中,所述驱动控制器还用于在执行完所述内闭环控制后执行:
发送反馈指令给所述主控制器。
在一些实施例中,所述主控制器具体用于:
接收所述驱动控制器发送的所述反馈指令;
根据所述反馈指令执行外闭环控制:
接收所述第一角度检测单元和所述第二角度检测单元发送的信号,根据所述信号获得舵面实际倾转角度;
根据所述舵面实际倾转角度调整所述舵面倾转控制指令,以使舵面实际倾转角度接近所述舵面目标倾转角度。
在一些实施例中,所述主控制器还用于:
接收所述驱动控制器发送的所述反馈指令;
根据所述反馈指令接收所述第一角度检测单元和所述第二角度检测单元发送的信号,根据所述信号获得舵面实际倾转角度,判断所述舵面实际倾转角度是否符合所述舵面目标倾转角度,如果所述舵面实际倾转角度符合所述舵面目标倾转角度,则确认对应的舵面控制结构正常。
在一些实施例中,所述第一角度检测单元和所述第二角度检测单元的数量不相同,所述第二角度检测单元的数量为一个。
在一些实施例中,所述第一角度检测单元和所述第二角度检测单元成对出 现,所述第一角度检测单元和所述第二角度检测单元的数量相同。
在一些实施例中,所述第一角度检测单元和所述第二角度检测单位为惯性测量单元,所述角度反馈单元为电位器,所述传动机构为齿轮组件,所述驱动机构为电机。
为解决上述技术问题,本发明采用的又一个技术方案是:一种无人机,所述无人机包括:
机身;
与所述机身相连的机翼;
以及上述的无人机控制装置,所述无人机控制装置设于所述机身。
本发明实施例的无人机控制装置以及应用该无人机控制装置的无人机,在无人机的舵面上设置第一角度检测单元,在无人机的固定面上设置第二角度检测单元,主控制器能根据所述第一角度检测单元和所述第二角度检测单元检测的信号获得舵面实际倾转角度。从而主控制器能根据所述舵面实际倾转角度实现准确有效的控制所述舵面。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明无人机的一个实施例的结构示意图;
图2是本发明无人机的一个实施例中舵面和固定面的示意图;
图3是本发明无人机控制装置的一个实施例的结构示意图;
图4是本发明无人机控制装置的一个实施例的结构示意图;
图5是本发明无人机控制装置的一个实施例中主控制器的硬件结构示意图;
图6是本发明无人机控制装置的一个实施例中驱动控制器的硬件结构示意图。
具体实施方式
为了便于理解本发明,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所 示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
如图1所示,为本发明实施例提供的无人机100的结构示意图,图1所示的实施例中,无人机100为固定翼无人机,其在飞行过程中主要依靠各个控制舵面来实现飞机姿态的调整。图1所示的实施例中,无人机100包括机身、与机身相连的机翼,固定于所述机身固定面24上的副翼舵面21、垂直尾舵面22和水平尾舵面23。请参照图2,固定面24是机身上的固定的面,其是固定不动的,舵面可以相对于所述固定面运动,舵面的运动可以改变无人机的姿态。其中,副翼舵面21位于无人机两个机翼的后缘,用来控制无人机的横滚运动,水平尾舵面23用来控制无人机的俯仰角,垂直尾舵面22用来控制无人机的偏航角。
需要说明的是,图1中仅示例性的示出了无人机100的几个舵面,在其他实施例中,也可以包括其他舵面或数量更多的舵面。
无人机100还包括设于机身的控制装置10,如图3所示,控制装置10包括主控制器11、至少一个舵面控制结构12(图3仅示出了一个舵面控制结构)和角度检测模块13。舵面控制结构12包括驱动控制器121、驱动机构122、传动机构123和舵面传动轴124。其中,驱动控制器121分别与主控制器11和驱动机构122电性连接,驱动机构还通过传动机构123连接舵面传动轴124,舵面传动轴124设于图1或图2所示的舵面上。
角度检测模块13包括至少一个第一角度检测单元131和至少一个第二角度检测单元132,至少一个第一角度检测单元131分别设置于各个舵面上,第二角度检测单元132设置于相对于舵面固定的面(即固定面)上。第一角度检测单元131可以检测舵面的角度,第二角度检测单元132可以检测固定面的角度,通过上述两个角度的检测,可以获得舵面的角度变化,即舵面实际倾转角度。
其中,在一些实施例中,第一角度检测单元131和第二角度检测单元132是成对出现的,即两者的数量相同。成对出现的第一角度检测单元和第二角度检测单元中,第一角度检测单元131设置于舵面上,第二角度检测单元132 设置于所述舵面位于的固定面上。在另一些实施例中,第一角度检测单元131和第二角度检测单元132的数量也可以不相同,在各个需要进行控制的舵面上分别设置第一角度检测单元,仅在某一个固定面设置一个第二角度检测单元132,其他的固定面可以根据与该固定面的位置关系获得其角度。
其中,舵面控制结构12的数量可以根据无人机100中舵面的数量以及控制需要设定,在图1所示的实施例中,至少一个舵面控制结构可以包括两个副翼舵面控制结构、一个垂直尾舵面控制结构和两个水平尾舵面控制结构,分别用于对对应的副翼舵面、垂直尾舵面和水平尾舵面的倾转进行控制。
其中,主控制器11用于根据舵面目标倾转角度发送舵面倾转控制指令给驱动控制器121,驱动控制器121接收所述舵面倾转控制指令,并根据所述舵面倾转控制指令控制驱动机构122运行。驱动机构122的运行带动传动机构123运行,传动机构123带动舵面传动轴124转动,舵面传动轴124带动舵面倾转。当舵面倾转后,通过第一角度检测单元131可以获得所述舵面的角度,再根据与其对应的固定面的角度,可以获得舵面的角度变化即舵面实际倾转角度。
通过在无人机的舵面上设置第一角度检测单元,在无人机的固定面上设置第二角度检测单元,主控制器能根据所述第一角度检测单元和所述第二角度检测单元检测的信号获得舵面实际倾转角度。从而主控制器能根据所述舵面实际倾转角度实现准确有效的控制所述舵面。例如根据所述舵面实际倾转角度调整舵面倾转控制指令、在无人机起飞前对各个舵面的姿态进行自检等。
其中,在另一些实施例中,如图4所示,舵面控制结构12还包括角度反馈单元125,角度反馈单元125连接舵面传动轴124,角度反馈单元125还与驱动控制器121电性连接。角度反馈单元125连接舵面传动轴124,当舵面传动轴124转动时,角度反馈单元125能随着舵面传动轴124旋转,从而可以检测所述舵面的实际倾转角度即舵面实际倾转角度。角度反馈单元125将其产生的反馈信号发送驱动控制器121,驱动控制器121根据主控制器11发送的舵面倾转控制指令和所述反馈信号控制所述驱动机构运行。
其中,驱动控制器121可以根据驱动控制器121接收的所述反馈信号调整对驱动机构122的控制。在一些实施例中,驱动控制器121可以根据舵面倾转控制指令和所述反馈信号进行闭环控制。根据驱动控制器121接收的反馈信号获得舵面实际倾转角度,然后根据所述舵面实际倾转角度不断调整对驱动机构122的控制,以使舵面实际倾转角度不断接近所述舵面目标倾转角度,直至舵面实际倾转角度接近所述舵面目标倾转角度的程度满足预设的精度要求。
其中,主控制器11可以根据主控制器11获得的舵面实际倾转角度调整舵面倾转控制指令。在一些实施例中,主控制器11可以根据舵面目标倾转角度和所述舵面实际倾转角度进行闭环控制。即根据所述舵面实际倾转角度不断调整舵面倾转控制指令,以使舵面实际倾转角度不断接近所述舵面目标倾转角度,直至舵面实际倾转角度接近所述舵面目标倾转角度的程度满足预设的精度 要求。
在另一些实施例中,主控制器11根据舵面目标倾转角度和舵面实际倾转角度进行外闭环控制,驱动控制器121根据舵面倾转控制指令和驱动控制器121接收的所述反馈信号进行内闭环控制。即主控制器11的外闭环控制和驱动控制器121的内闭环控制结合进行,以提高控制效率。
主控制器11先根据舵面目标倾转角度发送舵面倾转控制指令给驱动控制器121,驱动控制器121根据舵面倾转控制指令和驱动控制器121接收的所述反馈信号进行内闭环控制。驱动控制器121在执行完所述内闭环控制后发送反馈指令给主控制器11。主控制器11再根据舵面目标倾转角度和主控制器11获得的舵面实际倾转角度调整舵面倾转控制指令。然后将调整后的舵面倾转控制指令发送给驱动控制器121进行内闭环控制,该内闭环控制结束后,驱动控制器121再次发送反馈指令给主控制器11,主控制器11再次进行外闭环控制,直至舵面实际倾转角度接近所述舵面目标倾转角度的程度满足主控制器11预设的精度要求。
在另一些实施例中,还可以根据所述第一角度检测单元和第二角度检测单元发送的信号在无人机100起飞前对各舵面控制结构进行自检,例如主控制器11先根据舵面目标倾转角度发送舵面倾转控制指令给驱动控制器121。驱动控制器121根据舵面倾转控制指令和驱动控制器121接收的所述反馈信号进行内闭环控制。驱动控制器121在执行完所述内闭环控制后发送反馈指令给主控制器11。主控制器11获得此时的舵面实际倾转角度,然后判断所述舵面实际倾转角度是否符合所述舵面目标倾转角度,如果所述舵面实际倾转角度符合所述舵面目标倾转角度,则说明对应的舵面控制结构运行正常,否则,则认为该舵面控制结构运行不正常。其中,所述舵面实际倾转角度符合所述舵面目标倾转角度,是指所述舵面实际倾转角度与所述舵面目标倾转角度的差别满足预设误差要求。
具体的,在一些实施例中,驱动机构122可以采用电机,例如有刷电机、无刷电机、直流电机、步进电机、交流感应电机等。传动机构123可以为齿轮组件,主控制器11可以采用单独设置的控制器,也可以利用无人机的飞控芯片。角度反馈单元125可以为电位器,或其他可以连接舵面传动轴并随所述舵面传动轴转动产生变化信号的装置。第一角度检测单元和所述第二角度检测单位为惯性测量单元(Inertial measurement unit,IMU)。
电位器通常由电阻体和可移动的电刷组成,当电刷沿着电阻体移动时,电阻体的阻值随着电刷的位移量发生变化,在电位器的输出端即可获得与位移量成一定关系的电阻值或者电压值。在实际应用时,电位器的电刷连接舵面传动轴124,当舵面传动轴124转动时,电位器的电刷也随之发生旋转,因此导致电位器输出管脚的电压发生变化。驱动控制器121接收到主控制器11的舵面倾转控制指令后,根据舵面倾转控制指令去驱动电机转动,电机转动后通过齿轮组件的力矩传动带动舵面传动轴转动,从而带动舵面改变角度。而在舵面传 动轴转动时会带动电位器转动,进而导致电位器输出端的电压发生变化。根据该电压的变化可以计算出舵面的角度变化,从而获得舵面实际倾转角度。
其中,主控制器11中执行的方法(例如外闭环控制方法、舵面控制结构自检方法等)可以通过在主控制器11中运行软件程序的方式实现。图5是主控制器11的硬件结构示意图,如图5所示,主控制器11包括:
一个或多个第一处理器11a以及第一存储器11b,图5中以一个第一处理器11a为例。
第一处理器11a和第一存储器11b可以通过总线或者其他方式连接,图5中以通过总线连接为例。
第一存储器11b作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。第一处理器11a通过运行存储在第一存储器11b中的非易失性软件程序、指令以及模块,从而执行主控制器11的各种功能应用以及数据处理,即实现上述实施例的闭环控制方法、舵面控制结构自检方法等。
第一存储器11b可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据主控制器的使用所创建的数据等。此外,第一存储器11b可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,第一存储器11b可选包括相对于第一处理器11a远程设置的存储器,这些远程存储器可以通过网络连接至中继点生成装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述第一存储器11b中,当被所述一个或者多个第一处理器11a执行时,执行上述的外闭环控制方法、舵面控制结构自检方法等。
其中,驱动控制器121中执行的方法(例如内闭环控制方法等)可以通过在驱动控制器121中运行软件程序的方式实现。图6是驱动控制器121的硬件结构示意图,如图6所示,驱动控制器121包括:
一个或多个第二处理器121a以及第二存储器121b,图6中以一个第二处理器121a为例。
第二处理器121a和第二存储器121b可以通过总线或者其他方式连接,图6中以通过总线连接为例。
第二存储器121b作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。第二处理器121a通过运行存储在第二存储器121b中的非易失性软件程序、指令以及模块,从而执行驱动控制器121的各种功能应用以及数据处理,即实现上述实施例的内闭环控制方法等。
第二存储器121b可以包括存储程序区和存储数据区,其中,存储程序区 可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据主控制器的使用所创建的数据等。此外,第二存储器121b可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,第二存储器121b可选包括相对于第二处理器121a远程设置的存储器,这些远程存储器可以通过网络连接至中继点生成装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述第二存储器121b中,当被所述一个或者多个第二处理器121a执行时,执行上述的方法。
需要说明的是,本发明的说明书及其附图中给出了本发明的较佳的实施例,但是,本发明可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本发明内容的额外限制,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本发明说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种无人机控制装置,用于无人机,所述无人机包括舵面,所述舵面设置于所述无人机的固定面上,其特征在于:所述控制装置包括主控制器、舵面控制结构和角度检测模块;
    所述舵面控制结构包括驱动控制器、驱动机构、传动机构和舵面传动轴;
    其中,所述驱动控制器分别与所述主控制器和所述驱动机构电性连接,所述驱动机构还通过所述传动机构连接所述舵面传动轴,所述舵面传动轴设于所述舵面上;
    所述角度检测模块包括第一角度检测单元和第二角度检测单元,所述第一角度检测单元和所述第二角度检测单元均与所述主控制器电性连接,所述第一角度检测单元设置于所述舵面上,所述第二角度检测单元设置于所述固定面上;
    所述主控制器用于根据舵面目标倾转角度发送舵面倾转控制指令给所述驱动控制器,以及根据所述第一角度检测单元和所述第二角度检测单元发送的信号获得所述第一角度检测单元对应舵面的舵面实际倾转角度;
    所述驱动控制器用于接收所述舵面倾转控制指令,根据所述舵面倾转控制指令控制所述驱动机构运行。
  2. 根据权利要求1所述的无人机控制装置,其特征在于,所述舵面控制结构还包括角度反馈单元,所述角度反馈单元连接所述舵面传动轴,用于检测所述舵面的舵面实际倾转角度,所述角度反馈单元还与所述驱动控制器电性连接;
    所述驱动控制器具体用于:
    执行内闭环控制,其中,所述内闭环控制包括:
    接收所述角度反馈单元发送的反馈信号;
    根据所述反馈信号获得舵面实际倾转角度;
    根据所述舵面实际倾转角度调整对所述驱动机构的控制,以使舵面实际倾转角度接近所述舵面倾转控制指令对应的舵面目标倾转角度。
  3. 根据权利要求1所述的无人机控制装置,其特征在于,所述主控制器具体用于:
    执行外闭环控制,其中,所述外闭环控制包括:
    接收所述第一角度检测单元和所述第二角度检测单元发送的信号,根据所述信号获得舵面实际倾转角度;
    根据所述舵面实际倾转角度调整所述舵面倾转控制指令,以使舵面实际倾转角度接近所述舵面目标倾转角度。
  4. 根据权利要求2所述的无人机控制装置,其特征在于,所述驱动控制器还用于在执行完所述内闭环控制后执行:
    发送反馈指令给所述主控制器。
  5. 根据权利要求4所述的无人机控制装置,其特征在于,所述主控制器具体用于:
    接收所述驱动控制器发送的所述反馈指令;
    根据所述反馈指令执行外闭环控制:
    接收所述第一角度检测单元和所述第二角度检测单元发送的信号,根据所述信号获得舵面实际倾转角度;
    根据所述舵面实际倾转角度调整所述舵面倾转控制指令,以使舵面实际倾转角度接近所述舵面目标倾转角度。
  6. 根据权利要求4所述的无人机控制装置,其特征在于,所述主控制器还用于:
    接收所述驱动控制器发送的所述反馈指令;
    根据所述反馈指令接收所述第一角度检测单元和所述第二角度检测单元发送的信号,根据所述信号获得舵面实际倾转角度,判断所述舵面实际倾转角度是否符合所述舵面目标倾转角度,如果所述舵面实际倾转角度符合所述舵面目标倾转角度,则确认对应的舵面控制结构正常。
  7. 根据权利要求1-6任一项所述的无人机控制装置,其特征在于,所述第一角度检测单元和所述第二角度检测单元的数量不相同,所述第二角度检测单元的数量为一个。
  8. 根据权利要求1-6任一项所述的无人机控制装置,其特征在于,所述第一角度检测单元和所述第二角度检测单元成对出现,所述第一角度检测单元和所述第二角度检测单元的数量相同。
  9. 根据权利要求1-6任一项所述的无人机控制装置,其特征在于,所述第一角度检测单元和所述第二角度检测单位为惯性测量单元,所述角度反馈单元为电位器,所述传动机构为齿轮组件,所述驱动机构为电机。
  10. 一种无人机,其特征在于,所述无人机包括:
    机身;
    与所述机身相连的机翼;
    以及权利要求1至9中任一项所述的无人机控制装置,所述无人机控制装置设于所述机身。
PCT/CN2020/078626 2019-03-19 2020-03-10 一种无人机控制装置和无人机 WO2020187094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910207575.3 2019-03-19
CN201910207575.3A CN109774918B (zh) 2019-03-19 2019-03-19 一种无人机控制装置和无人机

Publications (1)

Publication Number Publication Date
WO2020187094A1 true WO2020187094A1 (zh) 2020-09-24

Family

ID=66488309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078626 WO2020187094A1 (zh) 2019-03-19 2020-03-10 一种无人机控制装置和无人机

Country Status (2)

Country Link
CN (2) CN118220561A (zh)
WO (1) WO2020187094A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118220561A (zh) * 2019-03-19 2024-06-21 深圳市道通智能航空技术股份有限公司 一种无人机控制装置和无人机
CN110745234B (zh) * 2019-11-15 2023-02-10 西安爱生技术集团公司 一种内埋式无人机舵面操纵机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207758993U (zh) * 2017-12-11 2018-08-24 河北淳博航空科技有限公司 无人机的机翼***
CN108750103A (zh) * 2018-06-14 2018-11-06 广东伟力智能科技有限公司 一种可实现垂直定高飞行及水平定高飞行的飞行器
CN108820203A (zh) * 2018-05-29 2018-11-16 中山星图航空航天技术有限公司 一种倾转式垂直起降固定翼的无人机及飞行控制***
US20180370629A1 (en) * 2017-06-27 2018-12-27 Forward Robotics Inc. Tilt-rotor vertical takeoff and landing aircraft
CN109204806A (zh) * 2017-07-06 2019-01-15 深圳市道通智能航空技术有限公司 飞行器、倾转驱动机构及其控制方法
CN109774918A (zh) * 2019-03-19 2019-05-21 深圳市道通智能航空技术有限公司 一种无人机控制装置和无人机
CN210191802U (zh) * 2019-03-19 2020-03-27 深圳市道通智能航空技术有限公司 一种无人机控制装置和无人机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149032B2 (ja) * 1991-09-17 2001-03-26 株式会社トキメック 航空機の油圧操舵装置
CN102700706A (zh) * 2012-05-31 2012-10-03 西北工业大学 一种双余度舵机***和控制方法
CN103303454B (zh) * 2013-05-06 2016-01-20 西北工业大学 一种基于速度环换向的电动舵机装置及其控制方法
CN104554711B (zh) * 2014-09-12 2017-05-17 北京精密机电控制设备研究所 用于控制飞行器空气舵负载摆角的空气动力控制伺服***
CN104638993B (zh) * 2015-02-10 2017-04-19 中国航天科技集团公司第九研究院第七七一研究所 一种直流电机的换向控制电路及方法
CN106411206B (zh) * 2016-09-21 2018-08-31 北京精密机电控制设备研究所 一种主从式机电伺服协同运动控制***
CN107187582B (zh) * 2017-07-31 2019-10-29 中国商用飞机有限责任公司 一种襟缝翼操纵手柄
CN107902076A (zh) * 2017-12-18 2018-04-13 湖州振硕自动化科技有限公司 一种飞机副翼转角控制器
KR101890313B1 (ko) * 2018-03-15 2018-08-21 주식회사 컨트로맥스 오작동 및 고장을 방지하는 센서 신호 입력형 항공기용 전기식 구동장치
CN208134595U (zh) * 2018-05-07 2018-11-23 广西壮族自治区地理信息测绘院 一种荷载20公斤级长航时无人机
CN108791816B (zh) * 2018-07-16 2024-02-06 西安君晖航空科技有限公司 一种具有复合气动舵面的倾转机翼无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180370629A1 (en) * 2017-06-27 2018-12-27 Forward Robotics Inc. Tilt-rotor vertical takeoff and landing aircraft
CN109204806A (zh) * 2017-07-06 2019-01-15 深圳市道通智能航空技术有限公司 飞行器、倾转驱动机构及其控制方法
CN207758993U (zh) * 2017-12-11 2018-08-24 河北淳博航空科技有限公司 无人机的机翼***
CN108820203A (zh) * 2018-05-29 2018-11-16 中山星图航空航天技术有限公司 一种倾转式垂直起降固定翼的无人机及飞行控制***
CN108750103A (zh) * 2018-06-14 2018-11-06 广东伟力智能科技有限公司 一种可实现垂直定高飞行及水平定高飞行的飞行器
CN109774918A (zh) * 2019-03-19 2019-05-21 深圳市道通智能航空技术有限公司 一种无人机控制装置和无人机
CN210191802U (zh) * 2019-03-19 2020-03-27 深圳市道通智能航空技术有限公司 一种无人机控制装置和无人机

Also Published As

Publication number Publication date
CN109774918B (zh) 2024-03-29
CN109774918A (zh) 2019-05-21
CN118220561A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2020187092A1 (zh) 一种无人机控制装置和无人机
CN205554572U (zh) 无人飞行器及其机架
WO2020187094A1 (zh) 一种无人机控制装置和无人机
US10859409B2 (en) Rotation parameter detection method, encoder, laser radar and unmanned aerial vehicle
EP3684686B1 (en) Unmanned aerial vehicle with co-axial reversible rotors
US20180362146A1 (en) Tilt-rotor multicopters with variable pitch propellers
WO2019119201A1 (zh) 一种云台控制方法、无人机、云台及存储介质
US20200271269A1 (en) Method of controlling gimbal, gimbal, and unmanned aerial vehicle
WO2021244545A1 (zh) 一种无人机制导方法、无人机及存储介质
US11245848B2 (en) Method of controlling gimbal, gimbal and UAV
WO2020237528A1 (zh) 垂直起降无人机的飞行控制方法、设备及垂直起降无人机
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
WO2019137559A1 (zh) 定向天线的盲区跟踪方法、其装置及移动跟踪***
US20210122466A1 (en) Aerial vehicle with differential control mechanisms
US20230315124A1 (en) Multi-rotor unmanned aerial vehicle and control method thereof, control apparatus and computer-readable storage medium
WO2019210467A1 (zh) 云台控制方法与装置、云台***、无人机和计算机可读存储介质
WO2018068193A1 (zh) 控制方法、控制装置、飞行控制***与多旋翼无人机
WO2022033305A1 (zh) 一种无人机控制方法、装置及存储介质
CN210191802U (zh) 一种无人机控制装置和无人机
CN110291013B (zh) 云台的控制方法、云台及无人飞行器
CN111766888A (zh) 基于飞行器的控制方法以及飞行器
CN210000565U (zh) 一种无人机控制装置和无人机
WO2021232753A1 (zh) 飞行器及飞行器控制***
WO2021035623A1 (zh) 一种飞行控制方法、设备及飞行器
WO2019042095A1 (zh) 给定转速计算方法、装置、电调、动力***及无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774459

Country of ref document: EP

Kind code of ref document: A1