WO2020186916A1 - 一种获取信道状态信息的方法和装置 - Google Patents

一种获取信道状态信息的方法和装置 Download PDF

Info

Publication number
WO2020186916A1
WO2020186916A1 PCT/CN2020/071773 CN2020071773W WO2020186916A1 WO 2020186916 A1 WO2020186916 A1 WO 2020186916A1 CN 2020071773 W CN2020071773 W CN 2020071773W WO 2020186916 A1 WO2020186916 A1 WO 2020186916A1
Authority
WO
WIPO (PCT)
Prior art keywords
users
cell
channel quality
reference signal
sliding window
Prior art date
Application number
PCT/CN2020/071773
Other languages
English (en)
French (fr)
Inventor
蒲磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020186916A1 publication Critical patent/WO2020186916A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communication technology, for example, to a method and device for acquiring channel state information.
  • the base station needs to obtain downlink channel quality information (Downlink Channel Quality Information) before transmitting data to user equipment (UE), and select the modulation and coding suitable for the current channel state according to the downlink channel quality information Scheme (Modulation and Coding Scheme, MCS).
  • Downlink Channel Quality Information Downlink Channel Quality Information
  • MCS Modulation and Coding Scheme
  • CSI-RS Channel State Information-Reference Signal
  • MCS Modulation and Coding Scheme
  • Knowing the accurate downlink channel quality status is of vital importance.
  • the following goals can be achieved through the downlink channel quality status: 1) Choose a reasonable downlink scheduling strategy according to the channel status of the UE; 2) Improve the user's downlink throughput; 3 ) Effectively control the Block Error Ratio (BLER) and so on.
  • BLER Block Error Ratio
  • the UE when the UE measures CSI-RS, it will measure the received power, interference power and noise of the received CSI-RS, and calculate the received CSI-RS based on the received power, interference power and noise Signal to Interference plus Noise Ratio (SINR), and use this to estimate the quality of the downlink channel, and then calculate the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) used to transmit downlink service data Use a reasonable modulation and coding strategy (Modulation and Coding Scheme, MCS).
  • SINR Signal to Interference plus Noise Ratio
  • CSI- The received power of the RS will be too high and too low. Due to the dynamic range of the UE's power measurement, the UE will not be able to measure the true CSI-RS received power, or the feedback information in the communication system is limited (such as CQI Report field limit), the CQI reported by the UE to the base station will be far from the real downlink channel quality. In this case, after the base station receives the distorted CQI fed back by the user, it calculates the CSI received by the UE based on this CQI. -When the SINR is at RS, an inaccurate result will be obtained.
  • PMI Precoding Matrix Indicator
  • the embodiments of the present application provide a method and device for acquiring channel state information, which can improve the accuracy of channel state information when a user is in extremely good or extremely bad channel quality.
  • the embodiment of the application provides a method for acquiring channel state information, including:
  • the embodiment of the present application provides an apparatus for acquiring channel state information, including:
  • the adjustment module is set to determine the need to adjust the reference signal according to the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell In the case of transmitting power of, adjusting the transmitting power of the reference signal, and transmitting the reference signal with the adjusted transmitting power;
  • the acquiring module is configured to receive the channel quality indicator CQI measured by the reference signal after adjusting the transmission power, and determine the signal-to-noise ratio SINR of the downlink channel according to the CQI and the transmission power adjustment amount of the reference signal.
  • the embodiment of the present application provides an apparatus for acquiring channel state information, including a processor and a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are executed by the processor, Any of the above methods for acquiring channel state information.
  • the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of any one of the foregoing methods for acquiring channel state information are implemented.
  • FIG. 1 is a flowchart of a method for acquiring channel state information proposed by an embodiment of this application
  • FIG. 2 is a schematic diagram of a sliding window according to an embodiment of the application.
  • FIG. 3 is a flowchart of a method for acquiring channel state information proposed in Example 1 of an embodiment of the application;
  • Example 4 is a flowchart of a method for acquiring channel state information proposed in Example 2 of an embodiment of the application;
  • Example 5 is a flowchart of a method for acquiring channel state information proposed in Example 3 of an embodiment of the application;
  • Example 6 is a flowchart of the method for acquiring channel state information proposed in Example 4 of the embodiment of the application;
  • FIG. 7 is a schematic structural composition diagram of an apparatus for acquiring channel state information proposed by another embodiment of the application.
  • an embodiment of the present application proposes a method for acquiring channel state information, including:
  • Step 1010 When the ratio of the number of users with extremely good channel quality in the cell to the total number of users in the cell, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell in determining the need to adjust the transmission of the reference signal is determined In the case of power, the transmission power of the reference signal is adjusted, and the reference signal is sent with the adjusted transmission power.
  • the reference signal may be any reference signal, for example, the reference signal includes: CSI-RS.
  • being at excellent channel quality means that the received power of the reference signal is too high, for example, being at excellent signal means that the received power of the reference signal is greater than or equal to the first preset power; being at extremely bad channel quality is It means that the received power of the reference signal is too low. For example, when the signal is extremely bad, it means that the received power of the reference signal is less than or equal to the second preset power.
  • the ratio of the number of users with extremely good channel quality to the total number of users in the cell and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell determines the need to adjust the reference
  • the transmission power of the signal includes at least one of the following: when the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell is greater than or equal to the first preset ratio, it is determined that the transmission of the reference signal needs to be reduced Power; when the ratio of the number of users with extremely good channel quality to the total number of users in the cell is less than the first preset ratio, and the number of users with extremely bad channel quality in the cell accounts for the total number of users in the cell When the ratio is greater than or equal to the second preset ratio, it is determined that the transmission power of the reference signal needs to be raised (that is, increased).
  • the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell is greater than or equal to the first preset ratio includes at least one of the following situations: The ratio of the number of users to the total number of users in the cell is greater than or equal to the first preset ratio, and the ratio of the number of users with extremely poor channel quality in the cell to the total number of users in the cell is greater than or equal to the second preset ratio; The ratio of the number of users with extremely good channel quality to the total number of users in the cell is greater than or equal to the first preset ratio, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell Less than the second preset ratio.
  • the transmission power of the reference signal is reduced; while in the cell, the number of users with excellent channel quality is small, and the number of users with extremely bad channel quality is large.
  • Increase the transmit power of the reference signal so that the dynamic range of the received power of the reference signal is reduced, which reduces the situation that the received power of the reference signal is outside the dynamic range of the user's power measurement and the limitation of the reported CQI in the CQI report field range
  • the accuracy of the feedback CQI is improved, that is, the accuracy of the SINR is improved, and the situation that the PMI reported multiple times at the very close point presents irregular and random jumps is further reduced.
  • adjusting the transmission power of the reference signal and sending the reference signal with the adjusted transmission power includes at least one of the following:
  • the transmission power of the reference signal When it is determined that the transmission power of the reference signal needs to be reduced, the transmission power of the reference signal is reduced, and the reference signal is transmitted with the reduced transmission power.
  • the default value of the transmission power of the reference signal is P0 and the power reduction offset is ⁇ ( ⁇ 0)
  • the reduced transmission power is P0+ ⁇ .
  • the transmission power of the reference signal is increased, and the reference signal is transmitted with the increased transmission power.
  • the default value of the transmission power of the reference signal is P0 and the power increase offset is ⁇ ( ⁇ >0)
  • the increased transmission power is P0+ ⁇ .
  • Step 1020 Receive the CQI measured by the reference signal after adjusting the transmission power, and determine the SINR of the downlink channel according to the CQI and the transmission power adjustment amount of the reference signal.
  • SINR real is the SINR of the downlink channel
  • CQI adjust (CQI adjust ) corresponding to the SINR
  • CQI adjust is the CQI measured by the reference signal after adjusting the transmit power
  • the need is determined according to the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell
  • the method further includes: determining the channel state of the user according to the information characterizing the wireless channel quality of the user; wherein the channel state includes at least one of the following: whether the user is The channel quality is extremely good, whether the user is in extremely bad channel quality; according to the channel state of the user in the cell, the ratio of the number of users with extremely good channel quality to the total number of users in the cell is calculated, and The ratio of the number of users with extremely bad channel quality to the total number of users in the cell.
  • the information that characterizes the quality of the wireless channel may be diverse.
  • the information that characterizes the wireless channel quality includes at least one of the following: CQI, Reference Signal Received Power (RSRP), SINR of Sounding Reference Signal (SRS), and Uplink Demodulation Reference Signal (DeModulation) Reference Signal, DMRS) SINR, etc.
  • the embodiment of the present application does not limit the foregoing information that characterizes the quality of the wireless channel, and may come from a terminal device or a network device.
  • determining the channel state of the user according to the information characterizing the wireless channel quality of the user includes at least one of the following: when all the information characterizing the wireless channel quality in the sliding window of the user is When it is greater than or equal to the first preset threshold, it is determined that the user has excellent channel quality; when all the information characterizing the wireless channel quality in the sliding window of the user is less than or equal to the second preset threshold, it is determined The user is in extremely bad channel quality.
  • the sliding window is used to maintain user information that characterizes the quality of the wireless channel.
  • the sliding window Refer to Figure 2 for an implementation example of the sliding window.
  • one sliding window can be maintained for each user.
  • a sliding window may be used exemplarily to maintain the CQI acquired several times.
  • a sliding window can be used exemplarily to maintain the RSRP acquired several times.
  • a sliding window may be used exemplarily to maintain the SINR of the SRS acquired several times.
  • the The method further includes at least one of the following: when it is determined that the length of the sliding window needs to be adjusted according to all the information characterizing the quality of the wireless channel in the sliding window, adjusting the length of the sliding window; when according to the sliding window When it is determined that the length of the sliding window does not need to be adjusted by all the information that characterizes the quality of the wireless channel in, the length of the sliding window is maintained unchanged.
  • the determining that the length of the sliding window needs to be adjusted according to all the information characterizing the quality of the wireless channel in the sliding window includes at least one of the following:
  • the length of the sliding window is expanded according to the following formula: Among them, winLen 1 is the length of the sliding window before the increase, winLen 2 is the length of the sliding window after the increase, and p is the window length growth factor.
  • the sliding window indicates that the user is at an excellent channel quality
  • the ratio of the number of information characterizing the wireless channel quality to the length of the sliding window is less than a third preset threshold, or the sliding window indicates that
  • the ratio of the number of information characterizing the quality of the wireless channel and the length of the sliding window where the user is in extremely bad channel quality is less than a fourth preset threshold
  • the method for judging whether it is under extreme channel conditions is to judge whether all the information that characterizes the quality of the wireless channel in the sliding window of the UE is an extreme value. Since the elements in the sliding window are periodically updated one by one, the shorter the window length, the easier it is to be judged as "UE is under extreme channel conditions" (assuming the window length is 1, then as long as there is an extreme characterization wireless The information value of the channel quality, the UE will be judged as "under extreme channel conditions"), on the contrary, the longer the window length, the more difficult it is to be judged as "the UE under extreme channel conditions" (assuming the window length is 100, Then the 100 pieces of information that characterize the quality of the wireless channel in the required window are all extreme values before the UE will be judged as "under extreme channel conditions”).
  • shortening the window length can make it easier for the UE to be judged as “under extreme channel conditions", and ultimately increase the frequency of triggering "adjusting CSI-RS power”.
  • the sliding window length adaptive adjustment algorithm can reasonably adjust the window length of each UE, and ultimately makes the frequency of triggering "adjusting CSI-RS power" not too high or too low.
  • determining that the length of the sliding window does not need to be adjusted according to all the information characterizing the quality of the wireless channel in the sliding window includes: when the sliding window indicates that the user is in an excellent channel quality The ratio of the number of information characterizing wireless channel quality to the length of the sliding window is greater than or equal to a third preset threshold, or the sliding window indicates that the user is in the characterizing wireless channel quality with extremely bad channel quality When the ratio of the number of information to the length of the sliding window is greater than or equal to the fourth preset threshold, it is determined that the length of the sliding window does not need to be adjusted.
  • the method further includes: setting initial parameters .
  • the initial parameters include: the length of the sliding window, the threshold (ie, the first preset threshold) that is determined to be the information indicating the quality of the wireless channel as having excellent channel quality, and the wireless channel quality that is determined as the extremely bad channel quality.
  • the threshold of the information i.e., the second preset threshold
  • the ratio of the number of users in the cell with excellent channel quality to the total number of users in the cell i.e. the first preset ratio
  • the threshold of the ratio of the number of users to the total number of users in the cell ie, the second preset ratio
  • the default value of the transmission power of the reference signal the power down offset, and the power up offset.
  • the embodiments of this application determine the need to adjust the transmission of the reference signal based on the ratio of the number of users with extremely good channel quality to the total number of users in the cell, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell.
  • Power adjust the transmit power of the reference signal, and determine the signal-to-noise ratio SINR of the downlink channel based on the CQI measured by the reference signal after adjusting the transmit power and the transmit power adjustment amount of the reference signal.
  • the channel quality is extremely bad, the error caused by the limited measurement capability of the user equipment or the limited feedback information is reduced, and the accuracy of the SINR is improved.
  • This example is an embodiment of the method for acquiring channel state information according to the embodiments of the application. It exemplarily explains how to use CQI as information to characterize the quality of the wireless channel, and use it as a criterion to determine the channel state of the user, and then Dynamically adjust the transmission power of CSI-RS to continuously obtain true and reliable downlink channel quality SINR. As shown in Figure 3, this example includes the following steps:
  • Step 3010 Set initial parameters.
  • the initial parameters set include: the length of the sliding window winLen, the CQI threshold cqiThr1 that is judged to be extremely good channel quality, the CQI threshold cqiThr2 that is judged to be extremely bad channel quality, and the number of users in the cell under extremely good channel quality
  • the ratio threshold ueNumThr1 of the total number of users in the cell, the ratio threshold ueNumThr2 of the number of users with extremely bad channel quality in the cell to the total number of users in the cell, the default value of CSI-RS transmission power P0, the power drop offset ⁇ , The power lift offset ⁇ .
  • Step 3020 Obtain the current CQI of each user, and store the new CQI feedback from the user in the sliding window.
  • Step 3030 According to the CQIs stored in the sliding windows of multiple users, determine the channel status of the user in turn; wherein, the channel status includes: whether it is under excellent channel quality (that is, whether it is under excellent channel quality), Whether the channel quality is extremely bad (that is, whether the channel quality is extremely bad).
  • Step 3040 Determine whether the ratio of the number of users with extremely good channel quality to the total number of users in the cell is greater than or equal to the threshold ueNumThr1, and whether the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell is determined respectively Greater than or equal to the threshold ueNumThr2.
  • Step 3050 reduce the transmission power of the CSI-RS: when the CSI-RS is transmitted next time, reduce the transmission power of the CSI-RS, that is, use P0+ ⁇ power for transmission; go to step 3070.
  • Step 3060 increase the transmission power of the CSI-RS: when the CSI-RS is transmitted next time, increase the transmission power of the CSI-RS, that is, use P0+ ⁇ power for transmission; go to step 3070.
  • Step 3070 According to the CQI adjust fed back by the CSI-RS after adjusting the transmission power measured by the user, combined with the power adjustment amount ⁇ in step 3050 or the power adjustment amount ⁇ in step 3060, the true downlink channel SINR is compensated by compensation.
  • the real downlink channel the real downlink channel
  • SINR corresponding to CQI adjust are SINR corresponding to CQI adjust ;
  • Step 3080 repeat steps 3020-3070 to continuously obtain the true and reliable downlink channel SINR, that is, go to step 3020.
  • This example is an embodiment of the method for obtaining channel state information according to the embodiments of the application. It exemplarily explains how to use RSRP as the information characterizing the quality of the wireless channel, and use it as a criterion to determine the channel state of the user, and then Dynamically adjust the transmission power of CSI-RS to continuously obtain true and reliable downlink channel quality SINR. As shown in Figure 4, this example includes the following steps:
  • Step 4010 Set initial parameters.
  • the initial parameters set include: the length of the sliding window winLen, the RSRP threshold rsrpThr1 judged as having excellent channel quality, the RSRP threshold rsrpThr2 judged as having extremely bad channel quality, and the number of users in the cell under excellent channel quality
  • the ratio threshold ueNumThr1 of the total number of users in the cell, the ratio threshold ueNumThr2 of the number of users with extremely bad channel quality in the cell to the total number of users in the cell, the default value of CSI-RS transmission power P0, the power drop offset ⁇ , The power lift offset ⁇ .
  • Step 4020 Obtain the current RSRP of each user, and store the new RSRP feedback from the user in the sliding window.
  • Step 4030 According to the RSRP stored in the sliding windows of multiple users, determine the channel status of the user in turn; wherein, the channel status includes: whether it is under excellent channel quality (that is, whether it is under excellent channel quality), Whether the channel quality is extremely bad (that is, whether the channel quality is extremely bad).
  • Step 4040 Determine whether the ratio of the number of users with extremely good channel quality to the total number of users in the cell is greater than or equal to the threshold ueNumThr1, and whether the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell is determined respectively Greater than or equal to the threshold ueNumThr2.
  • Step 4050 reduce the transmission power of the CSI-RS: when the CSI-RS is transmitted next time, reduce the transmission power of the CSI-RS, that is, use the P0+ ⁇ power for transmission; go to step 4070.
  • Step 4060 increase the transmission power of the CSI-RS: when the CSI-RS is transmitted next time, increase the transmission power of the CSI-RS, that is, use P0+ ⁇ power for transmission; go to step 4070.
  • Step 4070 According to the CQI adjust fed back by the CSI-RS after adjusting the transmission power measured by the user, combined with the power adjustment amount ⁇ in step 4050 or the power adjustment amount ⁇ in step 4060, the real downlink channel SINR is compensated (specific compensation method) Same as example one, no more details here).
  • Step 4080 repeat steps 4020-4070 to continuously obtain the true and reliable downlink channel SINR, that is, go to step 4020.
  • This example is an embodiment of the method for obtaining channel state information according to the embodiments of the application. It exemplarily illustrates how to use the SINR of the SRS as the information to characterize the quality of the wireless channel, and use it as a criterion to determine the channel state of the user , And then dynamically adjust the CSI-RS transmit power to continuously obtain a true and reliable downlink channel quality SINR. As shown in Figure 5, this example includes the following steps:
  • Step 5010 Set initial parameters.
  • the initial parameters set include: the length of the sliding window winLen, the threshold srsSINRThr1 of the SINR judged as the SRS with extremely good channel quality, and the threshold srsSINRThr2 of the SINR judged as the SRS with extremely bad channel quality.
  • Threshold ueNumThr1 the ratio of the number of users under channel quality to the total number of users in the cell ueNumThr1
  • CSI-RS transmit power default value P0, power Decrease offset ⁇ , power increase offset ⁇ .
  • Step 5020 Obtain the SINR of each user's current SRS, and store the newly measured SINR of each user's SRS in the sliding window.
  • Step 5030 According to the SINR of the SRS stored in the sliding windows of the multiple users, determine the channel state of the user in turn; where the channel state includes: whether the channel quality is under excellent channel quality (that is, whether the channel quality is excellent ), whether it is under extremely bad channel quality (that is, whether it is under extremely bad channel quality)
  • the user when the SINR of all SRSs in the sliding window of the user is greater than or equal to srsSINRThr1, the user is considered to be under excellent channel quality.
  • the SINR of all SRSs in the sliding window of the user is less than or equal to srsSINRThr2, the user is considered to be under extremely bad channel quality.
  • Step 5040 Determine whether the ratio of the number of users with extremely good channel quality to the total number of users in the cell is greater than or equal to the threshold ueNumThr1, and whether the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell is determined respectively Greater than or equal to the threshold ueNumThr2.
  • Step 5050 reduce the transmission power of the CSI-RS: when the CSI-RS is transmitted next time, reduce the transmission power of the CSI-RS, that is, use P0+ ⁇ power for transmission; go to step 5070.
  • Step 5060 increase the transmission power of the CSI-RS: when the CSI-RS is transmitted next time, increase the transmission power of the CSI-RS, that is, use the P0+ ⁇ power for transmission; go to step 5070.
  • Step 5070 According to the CQI adjust fed back by the CSI-RS after adjusting the transmit power measured by the user, combined with the power adjustment amount ⁇ in step 5050 or the power adjustment amount ⁇ in step 5060, the real downlink channel SINR is compensated for (specific compensation method Same as example one, no more details here).
  • Step 5080 repeat steps 5020-5070 to continuously obtain the true and reliable downlink channel SINR, that is, go to step 5020.
  • This example is an embodiment of a sliding window length adaptive adjustment algorithm, which exemplarily provides an adaptive sliding window length adjustment algorithm, according to which the length of the sliding window that maintains information characterizing the wireless channel quality is dynamically adjusted. As shown in Figure 6, this example includes the following steps:
  • Step 6010 Set initial parameters.
  • the initial parameters set include: the initial length of the sliding window winLen_init, the CQI threshold cqiThr1 judged as having excellent channel quality, the CQI threshold cqiThr2 judged as having extremely bad channel quality, the window length shortening threshold ratioThr1, and the window length shortening Threshold ratioThr2, window length growth factor p, window length shortening factor q.
  • Step 6020 Determine whether the length of the sliding window needs to be changed according to the status of the information representing the quality of the wireless channel maintained in the sliding window.
  • the information that is maintained in the sliding window that characterizes the quality of the wireless channel is CQI as an example for description, and other information that characterizes the quality of the wireless channel can be deduced by analogy, and will not be repeated here.
  • Step 6030 increase the window length, and expand the length of the sliding window according to the following formula: Among them, winLen 1 is the length of the sliding window before the increase, and winLen 2 is the length of the sliding window after the increase; go to step 6060.
  • Step 6040 shorten the length of the window, and shorten the length of the sliding window according to the following formula: Among them, winLen 3 is the length of the sliding window before shortening, and winLen 4 is the length of the sliding window after shortening;
  • Step 6050 maintain the window length: maintain the current window length unchanged; go to step 6060.
  • Step 6060 after the new CQI is stored in the next sliding window, repeat steps 6010-6050 to dynamically adjust the length of the sliding window.
  • the embodiment of this application first judges the channel state of the user according to the information characterizing the wireless channel quality as a criterion, and adjusts the transmission power of the CSI-RS accordingly, and then adjusts the CSI-RS reported according to the user's measured power CQI, combined with the amount of power adjustment, compensates to obtain the true downlink channel SINR, thereby improving the situation that exists in the case of extremely good or extremely bad channel quality due to limited user equipment measurement capabilities or limited feedback information of the communication system.
  • Various problems caused by distortion of the incoming downlink channel feedback information adopts a sliding window length adaptive adjustment algorithm in the maintenance method of the memory space storing the information characterizing the wireless channel quality, which optimizes the timing of CSI-RS power adjustment and improves the practicality of the algorithm.
  • the SINR of CQI, RSRP and SRS are used in the embodiments of this application. These are just a few optional methods; in actual implementation, it can be Various, for example, the SINR of the uplink DMRS can also be used to perceive the channel state of the user.
  • an apparatus for acquiring channel state information including: an adjustment module 701, configured to: according to the ratio of the number of users in a cell with excellent channel quality to the total number of users in the cell, And the ratio of the number of users with extremely poor channel quality in the cell to the total number of users in the cell.
  • the acquiring module 702 is configured to receive the channel quality indicator CQI measured by the reference signal after adjusting the transmission power, and determine the signal-to-noise ratio SINR of the downlink channel according to the CQI and the transmission power adjustment amount of the reference signal.
  • the reference signal may be any reference signal, for example, the reference signal includes: CSI-RS.
  • being at excellent channel quality means that the received power of the reference signal is too high, for example, being at excellent signal means that the received power of the reference signal is greater than or equal to the first preset power; being at extremely bad channel quality is It means that the received power of the reference signal is too low. For example, when the signal is extremely bad, it means that the received power of the reference signal is less than or equal to the second preset power.
  • the adjustment module 701 is configured to adopt at least one of the following methods to realize the ratio of the number of users with extremely good channel quality in the cell to the total number of users in the cell, and the users with extremely bad channel quality in the cell
  • the ratio of the number to the total number of users in the cell determines the need to adjust the transmission power of the reference signal: when the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell is greater than or equal to the first preset ratio, determine The transmission power of the reference signal needs to be reduced; when the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell is less than the first preset ratio, and the users with extremely bad channel quality in the cell
  • the ratio of the number to the total number of users in the cell is greater than or equal to the second preset ratio, it is determined that the transmission power of the reference signal needs to be increased (that is, increased).
  • the ratio of the number of users with excellent channel quality in the cell to the total number of users in the cell is greater than or equal to the first preset ratio includes at least one of the following situations: The ratio of the number of users to the total number of users in the cell is greater than or equal to the first preset ratio, and the ratio of the number of users with extremely poor channel quality in the cell to the total number of users in the cell is greater than or equal to the second preset ratio; The ratio of the number of users with extremely good channel quality to the total number of users in the cell is greater than or equal to the first preset ratio, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell Less than the second preset ratio.
  • the transmission power of the reference signal is reduced; while in the cell, the number of users with excellent channel quality is small, and the number of users with extremely bad channel quality is large.
  • Increase the transmit power of the reference signal so that the dynamic range of the received power of the reference signal is reduced, which reduces the situation that the received power of the reference signal is outside the dynamic range of the user's power measurement and the limitation of the reported CQI in the CQI report field range
  • the accuracy of the feedback CQI is improved, that is, the accuracy of the SINR is improved, and the situation that the PMI reported multiple times at the very close point presents irregular and random jumps is further reduced.
  • the adjustment module 701 is configured to adjust the transmission power of the reference signal in at least one of the following ways, and transmit the reference signal with the adjusted transmission power: when it is determined that the reference signal needs to be reduced When transmitting power, the transmission power of the reference signal is reduced, and the reference signal is transmitted with the reduced transmission power; specifically, when the default value of the transmission power of the reference signal is P0, the power reduction offset is ⁇ ( ⁇ 0 ), the reduced transmit power is P0+ ⁇ .
  • the transmission power of the reference signal is increased, and the reference signal is transmitted with the increased transmission power; specifically, when the default value of the transmission power of the reference signal is P0, the power is increased When the offset is ⁇ ( ⁇ >0), the raised transmit power is P0+ ⁇ .
  • the obtaining module 702 follows the formula Determine the SINR of the downlink channel.
  • SINR real is the SINR of the downlink channel, CQI adjust for the corresponding SINR; CQI adjust the reference signal that is measured by the adjusting transmit power of the CQI;
  • the adjustment module 701 is further configured to: determine the channel state of the user according to the information characterizing the wireless channel quality of the user; wherein the channel state includes at least one of the following: Whether the user is in extremely good channel quality and whether the user is in extremely bad channel quality; calculate the ratio of the number of users with extremely good channel quality in the cell to the total number of users in the cell according to the channel state of the user in the cell, And the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell.
  • the information that characterizes the quality of the wireless channel may be diverse.
  • the information characterizing the quality of the wireless channel includes at least one of the following: CQI, RSRP, SINR of SRS, SINR of DMRS, and so on.
  • the embodiment of the present application does not limit the foregoing information that characterizes the quality of the wireless channel, and may come from a terminal device or a network device.
  • the adjustment module 701 is configured to use at least one of the following methods to determine the channel state of the user according to the information characterizing the wireless channel quality of the user: when all the channels in the sliding window of the user are When the information characterizing the quality of the wireless channel is greater than or equal to the first preset threshold, it is determined that the user has excellent channel quality; when all the information characterizing the quality of the wireless channel in the sliding window of the user is less than or equal to At the second preset threshold, it is determined that the user is in extremely bad channel quality.
  • the sliding window is used to maintain user information that characterizes the quality of the wireless channel.
  • FIG 2 for an implementation example of the sliding window. It should be noted that a sliding window can be maintained for each user.
  • a sliding window may be used exemplarily to maintain the CQI acquired several times.
  • a sliding window can be used exemplarily to maintain the RSRP acquired several times.
  • a sliding window may be used exemplarily to maintain the SINR of the SRS acquired several times.
  • the adjustment module 701 is also set to perform at least one of the following: When it is determined that the length of the sliding window needs to be adjusted by the information characterizing the quality of the wireless channel, the length of the sliding window is adjusted; when it is determined that the sliding window does not need to be adjusted according to all the information characterizing the quality of the wireless channel in the sliding window The length of the sliding window remains unchanged.
  • the adjustment module 701 is configured to use at least one of the following methods to realize the determination that the length of the sliding window needs to be adjusted according to all the information characterizing the quality of the wireless channel in the sliding window: when all the information in the sliding window is The information that characterizes the quality of the wireless channel indicates that the user is at extremely good channel quality, or all the information that indicates the quality of the wireless channel in the sliding window indicates that the user is at extremely bad channel quality.
  • winLen 1 is the length of the sliding window before the increase
  • winLen 2 is the length of the sliding window after the increase
  • p is the window length growth factor
  • winLen 3 is the length of the sliding window before shortening
  • winLen 4 is the length of the shortened sliding window
  • q is the window length shortening factor
  • winLen_init is the initial length of the sliding window.
  • the method for judging whether it is under extreme channel conditions is to judge whether all the information that characterizes the quality of the wireless channel in the sliding window of the UE is an extreme value. Since the elements in the sliding window are periodically updated one by one, the shorter the window length, the easier it is to be judged as "UE is under extreme channel conditions" (assuming the window length is 1, then as long as there is an extreme characterization wireless The information value of the channel quality, the UE will be judged as "under extreme channel conditions"), on the contrary, the longer the window length, the more difficult it is to be judged as "the UE under extreme channel conditions" (assuming the window length is 100, Then the 100 pieces of information that characterize the quality of the wireless channel in the required window are all extreme values before the UE will be judged as "under extreme channel conditions”).
  • shortening the window length can make it easier for the UE to be judged as “under extreme channel conditions", and ultimately increase the frequency of triggering "adjusting CSI-RS power”.
  • the sliding window length adaptive adjustment algorithm can reasonably adjust the window length of each UE, and ultimately makes the frequency of triggering "adjusting CSI-RS power" not too high or too low.
  • the adjustment module 701 is configured to use the following method to determine that the length of the sliding window does not need to be adjusted according to all the information characterizing the wireless channel quality in the sliding window: when the sliding window indicates The ratio of the number of information that characterizes the wireless channel quality to the length of the sliding window is greater than or equal to the third preset threshold, or the sliding window indicates that the user is at channel quality When the ratio of the number of extremely bad information characterizing the wireless channel quality to the length of the sliding window is greater than or equal to the fourth preset threshold, it is determined that the length of the sliding window does not need to be adjusted.
  • the adjustment module 701 is further configured to: set initial parameters.
  • the initial parameters include: the length of the sliding window, the threshold (ie, the first preset threshold) that is determined to be the information indicating the quality of the wireless channel as having excellent channel quality, and the wireless channel quality that is determined as the extremely bad channel quality.
  • the threshold of the information i.e., the second preset threshold
  • the ratio of the number of users in the cell with excellent channel quality to the total number of users in the cell i.e. the first preset ratio
  • the threshold of the ratio of the number of users to the total number of users in the cell ie, the second preset ratio
  • the default value of the transmission power of the reference signal the power down offset, and the power up offset.
  • the embodiments of this application determine the need to adjust the transmission of the reference signal based on the ratio of the number of users with extremely good channel quality to the total number of users in the cell, and the ratio of the number of users with extremely bad channel quality in the cell to the total number of users in the cell.
  • Power adjust the transmit power of the reference signal, and determine the signal-to-noise ratio SINR of the downlink channel based on the CQI measured by the reference signal after adjusting the transmit power and the transmit power adjustment amount of the reference signal.
  • the channel quality is extremely bad, the error caused by the limited measurement capability of the user equipment or the limited feedback information is reduced, and the accuracy of the SINR is improved.
  • Another embodiment of the present application provides an apparatus for acquiring channel state information, including a processor and a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed by the processor , To implement any of the above methods for acquiring channel state information.
  • Another embodiment of the present application provides a computer-readable storage medium with a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, any one of the aforementioned methods for acquiring channel state information is implemented.
  • the disclosed method and device can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, such as: multiple modules or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the communication connection between the multiple components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical, mechanical, or other forms.
  • modules described above as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place or distributed on multiple network modules; Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the multiple functional modules in the embodiments of the present application may all be integrated into one processing module, or multiple modules may be individually used as one module, or two or more modules may be integrated into one module;
  • the integrated module can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • All or part of the steps of the above method embodiments can be implemented by a program instructing relevant hardware, the aforementioned program can be stored in a computer readable storage medium, and when the program is executed, the steps including the above method embodiment are executed; and
  • the aforementioned storage medium includes: a mobile storage device, a read-only memory (Read-Only Memory, ROM), a magnetic disk or an optical disc, and other media that can store program codes.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or non-transitory medium) and a communication medium (or transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random Access Memory (RAM), ROM, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory or other memory technologies, compact discs Read-only memory (Compact Disc Read-Only Memory, CD-ROM), digital versatile disk (Digital Video Disc, DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or can be used for Any other medium that stores desired information and can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种获取信道状态信息的方法和装置,所述方法包括:在根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率的情况下,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号;接收通过调整发射功率后的参考信号测量的信道质量指示CQI,根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR。

Description

一种获取信道状态信息的方法和装置
本申请要求在2019年03月18日提交中国专利局、申请号为201910204302.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及但不限于通信技术领域,例如涉及一种获取信道状态信息的方法和装置。
背景技术
在无线通信***中,基站向用户设备(User Equipment,UE)传输数据前,需要获取下行信道质量信息(Downlink Channel Quality Information),并根据下行信道质量信息选定适用于当前信道状态的调制和编码方案(Modulation and Coding Scheme,MCS)。信道状态信息-参考信号(CSI-RS,Channel State Information-Reference Signal)是一种由基站使用与UE约定的序列所发送的信号,UE接收到CSI-RS后,通过对CSI-RS的解调、测量以及计算接收强度来估计下行信道的质量状态。在UE完成计算后,将测得的信道状态以信道质量指示(Channel Quality Indicator,CQI)的形式,在上行信道中反馈给基站。获知准确的下行信道质量状态有着至关重要的意义,通过下行信道质量状态可达到如下目的:1)根据UE所处的信道状态选用合理的下行调度策略;2)提升用户的下行吞吐率;3)有效地控制块误码率(Block Error Ratio,BLER)等等。
在相关通信***中,UE对CSI-RS进行测量时,会测量所接收到的CSI-RS的接收功率、干扰功率以及噪声,并根据接收功率、干扰功率以及噪声计算所接收到的CSI-RS的信噪比(Signal to Interference plus Noise Ratio,SINR),并以此来估计下行信道质量的好坏,进而推算出用于发送下行业务数据的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)所使用的合理的调制与编码策略(Modulation and Coding Scheme,MCS)。
在这样的前提下,存在着如下问题:
1、在有些情况下,受限于UE的测量性能瓶颈,在UE处于极好的或极坏的信道质量之下时(比如,在UE距离基站非常近或非常远的情况下),CSI-RS的接收功率将会分别过高与过低,受限于UE的功率测量的动态范围,UE将无法测量得到真实的CSI-RS的接收功率,或是通信***中反馈信息的限制(如CQI上报字段范围的限制),UE上报给基站的CQI将会与真实的下行信道质量状况相去甚远,在这种情况下,基站接收到用户反馈的失真的CQI后,根据此 CQI推算UE接收CSI-RS时的SINR时,就会得到一个并不准确的结果。
2、在UE需要进行预编码矩阵(Precoding Matrix Indicator,PMI)的反馈时,会反馈具有最高CQI的PMI,如果有多个CQI最高的PMI,则随机选择一个PMI进行反馈;当UE距离基站十分近时,所有的PMI都具有CQI最高值,这时UE就会在所有的PMI中,随机反馈一个PMI,即UE在极近点多次上报的PMI将会呈现无规律的杂乱跳变,这在多个极近点UE间进行空分复用的过程中,会出现赋形方向絮乱的问题。
发明内容
本申请实施例提供了一种获取信道状态信息的方法和装置,能够在用户处于极好或极坏的信道质量时提高信道状态信息的准确性。
本申请实施例提供了一种获取信道状态信息的方法,包括:
在根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率的情况下,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号;
接收通过调整发射功率后的参考信号测量的信道质量指示CQI,根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR。
本申请实施例提供了一种获取信道状态信息的装置,包括:
调整模块,设置为在根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率的情况下,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号;
获取模块,设置为接收通过调整发射功率后的参考信号测量的信道质量指示CQI,根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR。
本申请实施例提供了一种获取信道状态信息的装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种获取信道状态信息的方法。
本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种获取信道状态信息的方法的步骤。
附图说明
图1为本申请一个实施例提出的获取信道状态信息的方法的流程图;
图2为本申请实施例的滑动窗的示意图;
图3为本申请实施例的示例一提出的获取信道状态信息的方法的流程图;
图4为本申请实施例的示例二提出的获取信道状态信息的方法的流程图;
图5为本申请实施例的示例三提出的获取信道状态信息的方法的流程图;
图6为本申请实施例的示例四提出的获取信道状态信息的方法的流程图;
图7为本申请另一个实施例提出的获取信道状态信息的装置的结构组成示意图。
具体实施方式
下文中将结合附图对本申请实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
参见图1,本申请实施例提出了一种获取信道状态信息的方法,包括:
步骤1010、当根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率时,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号。
在本申请实施例中,参考信号可以是任意参考信号,例如,参考信号包括:CSI-RS。
在本申请实施例中,处于信道质量极好是指参考信号的接收功率过高,例如,处于信号极好是指参考信号的接收功率大于或等于第一预设功率;处于信道质量极坏是指参考信号的接收功率过低,例如,处于信号极坏是指参考信号的接收功率小于或等于第二预设功率。
在本申请实施例中,根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率包括以下至少之一:当小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例时,确定需要降低所述参考信号的发射功率;当小区中所述处于信道质量极好 的用户数目占小区中总用户数的比例小于第一预设比例,且小区中所述处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于第二预设比例时,确定需要抬升(即提高)所述参考信号的发射功率。
在一实施例中,小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例包括以下至少一种情况:小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例,且小区中所述处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于第二预设比例;小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例,且小区中所述处于信道质量极坏的用户数目占小区中总用户数的比例小于第二预设比例。
本申请实施例在小区中处于信道质量极好的用户数目较多时,降低参考信号的发射功率;而在小区中处于信道质量极好的用户数目较少,处于信道质量极坏的用户数目较多时,抬升参考信号的发射功率,使得参考信号的接收功率的动态范围缩小,这样减少了参考信号的接收功率在用户的功率测量的动态范围之外的情况以及上报的CQI在CQI上报字段范围的限制之外的情况,从而提高了反馈的CQI的准确性,即提高了SINR的准确性,进一步减少了在极近点多次上报的PMI呈现无规律的杂乱跳变的情况。
在本申请实施例中,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号包括以下至少之一:
当确定需要降低所述参考信号的发射功率时,降低所述参考信号的发射功率,以降低后的发射功率发送所述参考信号。在一实施例中,当参考信号的发射功率默认值为P0,功率下降偏移量为α(α<0)时,降低后的发射功率为P0+α。
当确定需要抬升所述参考信号的发射功率时,抬升所述参考信号的发射功率,以抬升后的发射功率发送所述参考信号。在一实施例中,当参考信号的发射功率默认值为P0,功率抬升偏移量为β(β>0)时,抬升后的发射功率为P0+β。
步骤1020、接收通过调整发射功率后的参考信号测量的CQI,根据CQI和所述参考信号的发射功率调整量确定下行信道的SINR。
在本申请实施例中,按照公式
Figure PCTCN2020071773-appb-000001
确定下行信道的SINR。其中,SINR real为下行信道的SINR,
Figure PCTCN2020071773-appb-000002
为CQI 调整(CQI adjust)所对应的SINR;CQI adjust即为通过调整发射功率后的参考信号测量的CQI;
Figure PCTCN2020071773-appb-000003
在本申请另一个实施例中,根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率之前,该方法还包括:根据所述用户的表征无线信道质量的信息确定所述用户所处的信道状态;其中,所述信道状态包括以下至少之一:所述用户是否处于信道质量极好、所述用户是否处于信道质量极坏;根据小区中所述用户所处的信道状态计算小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例。
在本申请实施例中,表征无线信道质量的信息可以是多种多样的。例如,表征无线信道质量的信息包括以下至少之一:CQI、参考信号接收功率(Reference Signal Received Power,RSRP)、探测参考信号(Sounding Reference Signal,SRS)的SINR、上行的解调参考信号(DeModulation Reference Signal,DMRS)的SINR,等等。
本申请实施例对上述表征无线信道质量的信息不作限定,可以是来自于终端设备,也可以是来自于网络设备。
在本申请实施例中,根据用户的表征无线信道质量的信息确定所述用户所处的信道状态包括以下至少之一:当所述用户的滑动窗中的所有所述表征无线信道质量的信息均大于或等于第一预设门限时,确定所述用户处于信道质量极好;当所述用户的滑动窗中的所有所述表征无线信道质量的信息均小于或等于第二预设门限时,确定所述用户处于信道质量极坏。
在本申请实施例中,滑动窗用于维护用户的表征无线信道质量的信息。滑动窗的实现示例可参考图2。本实施例中,可以为每个用户维护一个滑动窗。
例如,当表征无线信道质量的信息为CQI时,可以示例性地使用一个滑动窗来维护数次获取到的CQI。
又如,当表征无线信道质量的信息是RSRP时,可以示例性地使用一个滑动窗来维护数次获取到的RSRP。
又如,当表征无线信道质量的信息是SRS的SINR时,可以示例性地使用一个滑动窗来维护数次获取到的SRS的SINR。
在本申请另一个实施例中,考虑到对于那些不需要使用功率调整后的CSI-RS来测量CQI的用户设备来说,CSI-RS功率的变化可能会为CQI的测量和反馈引入误差,因此为了保证***性能,就要将发射调整功率后的CSI-RS的频率维持在一个合理的范围内,于是根据所述用户的表征无线信道质量的信息确定所述用户所处的信道状态之前,该方法还包括以下至少之一:当根据所述 滑动窗中的所有所述表征无线信道质量的信息确定需要调整所述滑动窗的长度时,调整所述滑动窗的长度;当根据所述滑动窗中的所有所述表征无线信道质量的信息确定不需要调整所述滑动窗的长度时,维持所述滑动窗的长度不变。
在本申请实施例中,可以在滑动窗中存入新的表征无线信道质量的信息时,判断是否需要调整滑动窗的长度;或者定期判断是否需要调整滑动窗的长度;或者采用其他的触发条件,本申请实施例对此不作限定。
在一实施例中,所述根据滑动窗中的所有表征无线信道质量的信息确定需要调整滑动窗的长度包括以下至少之一:
当所述滑动窗中的所有所述表征无线信道质量的信息都表明所述用户处于信道质量极好,或所述滑动窗中的所有所述表征无线信道质量的信息都表明所述用户处于信道质量极坏时,确定需要增加所述滑动窗的长度。在一实施例中,将滑动窗的长度按照以下公式进行拓展:
Figure PCTCN2020071773-appb-000004
其中,winLen 1为增加前的滑动窗的长度,winLen 2为增加后的滑动窗的长度,p为窗长增长因子。
当所述滑动窗中表明所述用户处于信道质量极好的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比小于第三预设门限,或所述滑动窗中表明所述用户处于信道质量极坏的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比小于第四预设门限时,确定需要缩短所述滑动窗的长度;在一实施例中,将滑动窗的长度按照以下公式进行缩短:
Figure PCTCN2020071773-appb-000005
其中,winLen 3为缩短前的滑动窗的长度,winLen 4为缩短后的滑动窗的长度,q为窗长缩短因子,winLen_init为滑动窗的初始长度。
如上所述,对于单个UE来说,判断它是否处于极端信道条件下的方法是:判断该UE的滑动窗中的所有表征无线信道质量的信息是否都是极端的数值。由于滑动窗内的元素是周期性一个一个更新的,所以窗长越短,就越容易被判决为“UE处于极端信道条件下”(假设窗长为1,那么只要窗内有一个极端表征无线信道质量的信息值,该UE就会被判断为“处于极端信道条件下”),反之,窗长越长,就越难被判决为“UE处于极端信道条件下”(假设窗长为100,那么需要窗内的100个表征无线信道质量的信息都为极端值,该UE才会会被判断为“处于极端信道条件下”)。
对于滑动窗中的表征无线信道质量的信息都为极端值的用户,增长该UE的滑动窗,那么,要让该UE下一次还是被判决为“处于极端条件下”,窗内就又需要一些新的极端值。这样一来,触发判决“该UE处于极端信道条件下”的频率就会降低。这样的情况下,从小区整体来看,单位时间内被判断为“处于极端信道 条件下”的UE数目就会相对变少,进而使得触发“调整CSI-RS功率”的频率降低。
反之,缩短窗长的作法,可以使得UE更容易地被判决为“处于极端信道条件下”,最终使得触发“调整CSI-RS功率”的频率升高。
滑动窗长自适应调整算法能够合理地调整每个UE的窗长,最终使得触发“调整CSI-RS功率”的频率不会过高,也不会过低。
在一实施例中,根据所述滑动窗中的所有所述表征无线信道质量的信息确定不需要调整所述滑动窗的长度包括:当所述滑动窗中表明所述用户处于信道质量极好的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比大于或等于第三预设门限,或所述滑动窗中表明所述用户处于信道质量极坏的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比大于或等于第四预设门限时,确定不需要调整所述滑动窗的长度。
在本申请另一个实施例中,根据所述用户的表征无线信道质量的信息确定所述用户是否处于信道质量极好或所述用户是否处于信道质量极坏之前,该方法还包括:设置初始参数。
在一实施例中,初始参数包括:滑动窗的长度、判定为信道质量极好的表征无线信道质量的信息的门限(即第一预设门限)、判定为信道质量极坏的表征无线信道质量的信息的门限(即第二预设门限)、小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限(即第一预设比例)、小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限(即第二预设比例)、参考信号的发射功率默认值、功率下降偏移量、功率抬升偏移量。
本申请实施例基于小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率时,调整所述参考信号的发射功率,并基于通过调整发射功率后的参考信号测量的CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR,在用户处于极好或极坏的信道质量时减小了由于用户设备测量能力受限或反馈信息限制所带来的误差,提高了SINR的准确性。
示例一
本示例为本申请实施例的获取信道状态信息的方法的一个实施例,示例性地说明了如何使用CQI作为表征无线信道质量的信息,以此作为判据,判断用户所处的信道状态,进而动态调整CSI-RS的发射功率,持续获得真实可靠的下行信道质量SINR。如图3所示,本示例包含以下步骤:
步骤3010,设置初始参数。
本示例中,设定的初始参数包括:滑动窗的长度winLen,判定为信道质量极好的CQI门限cqiThr1,判定为信道质量极坏的CQI门限cqiThr2,小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限ueNumThr1,小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限ueNumThr2,CSI-RS的发射功率默认值P0,功率下降偏移量α,功率抬升偏移量β。
本示例中,设定滑动窗的长度winLen=8,判定为信道质量极好的CQI门限cqiThr1=15,判定为信道质量极坏的CQI门限cqiThr2=1,小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限ueNumThr1=0.4,小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限ueNumThr2=0.4,CSI-RS的发射功率默认值P0=17.8dBm,功率下降偏移量α=-12dB,功率抬升偏移量β=5dB。
上述参数的值是经过测试选取的,属于经验值。
步骤3020,获取每个用户当前的CQI,将用户新反馈的CQI存入滑动窗内,以winLen表示滑动窗的长度(即滑动窗能够容纳CQI的数目),本示例中winLen=8,滑动窗的实现示例可参考图2。需要说明的是,本示例中,是为每个用户维护一个滑动窗。
步骤3030,根据多个用户滑动窗中所存储的CQI,依次判断用户所处的信道状态;其中,信道状态包括:是否处于极好的信道质量之下(也即是否处于信道质量极好)、是否处于极坏的信道质量之下(也即是否处于信道质量极坏)。
对于一个用户,当在该用户的滑动窗中,所有的CQI都大于或等于cqiThr1时,认为该用户处于极好的信道质量之下。
对于一个用户,当在该用户的滑动窗中,所有的CQI都小于或等于cqiThr2时,认为该用户处于极坏的信道质量之下。
步骤3040,分别判断小区中处于信道质量极好的用户数目占小区中总用户数的比例是否大于或等于门限ueNumThr1,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例是否大于或等于门限ueNumThr2。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例大于或等于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例小于ueNumThr2时,转向步骤3050。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例小于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于ueNumThr2时,转向步骤3060。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例大于或等 于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于ueNumThr2时,转向步骤3050。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例小于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例小于ueNumThr2时,转向步骤3020。
步骤3050,降低CSI-RS的发射功率:在下一次发射CSI-RS时,降低CSI-RS的发射功率,即使用P0+α功率进行发射;转向步骤3070。
步骤3060,抬升CSI-RS的发射功率:在下一次发射CSI-RS时,抬升CSI-RS的发射功率,即使用P0+β功率进行发射;转向步骤3070。
步骤3070,根据用户测量调整发射功率后的CSI-RS所反馈的CQI adjust,结合步骤3050中的功率调整量α或步骤3060中的功率调整量β,补偿得到真实的下行信道SINR。
在本示例中,真实的下行信道
Figure PCTCN2020071773-appb-000006
其中,
Figure PCTCN2020071773-appb-000007
为CQI adjust所对应的SINR;
Figure PCTCN2020071773-appb-000008
步骤3080,重复步骤3020-3070,以持续获取真实可靠的下行信道SINR,也即转向步骤3020。
示例二
本示例为本申请实施例的获取信道状态信息的方法的一个实施例,示例性地说明了如何使用RSRP作为表征无线信道质量的信息,以此作为判据,判断用户所处的信道状态,进而动态调整CSI-RS的发射功率,持续获得真实可靠的下行信道质量SINR。如图4所示,本示例包含以下步骤:
步骤4010,设置初始参数。
本示例中,设定的初始参数包括:滑动窗的长度winLen,判定为信道质量极好的RSRP门限rsrpThr1,判定为信道质量极坏的RSRP门限rsrpThr2,小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限ueNumThr1,小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限ueNumThr2,CSI-RS的发射功率默认值P0,功率下降偏移量α,功率抬升偏移量β。
本示例中,设定滑动窗的长度winLen=8,判定为信道质量极好的RSRP门 限rsrpThr1=-70dBm,判定为信道质量极坏的RSRP门限rsrpThr2=-125dBm,小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限ueNumThr 1=0.4,小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限ueNumThr2=0.4,CSI-RS的发射功率默认值P0=17.8dBm,功率下降偏移量α=-12dB,功率抬升偏移量β=5dB。
上述参数的值是经过测试选取的,属于经验值。
步骤4020,获取每个用户当前的RSRP,将用户新反馈的RSRP存入滑动窗内,以winLen表示滑动窗的长度(即滑动窗能够容纳RSRP的数目),本示例中winLen=8,滑动窗的实现示例可参考图2。需要说明的是,本示例中,是为每个用户维护一个滑动窗。
步骤4030,根据多个用户滑动窗中所存储的RSRP,依次判断用户所处的信道状态;其中,信道状态包括:是否处于极好的信道质量之下(也即是否处于信道质量极好)、是否处于极坏的信道质量之下(也即是否处于信道质量极坏)。
对于一个用户,当在该用户的滑动窗中,所有的RSRP都大于或等于rsrpThr1时,认为该用户处于极好的信道质量之下。
对于一个用户,当在该用户的滑动窗中,所有的RSRP都小于或等于rsrpThr2时,认为该用户处于极坏的信道质量之下。
步骤4040,分别判断小区中处于信道质量极好的用户数目占小区中总用户数的比例是否大于或等于门限ueNumThr1,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例是否大于或等于门限ueNumThr2。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例大于或等于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例小于ueNumThr2时,转向步骤4050。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例小于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于ueNumThr2时,转向步骤4060。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例大于或等于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于ueNumThr2时,转向步骤4050。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例小于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例小于ueNumThr2时,转向步骤4020。
步骤4050,降低CSI-RS的发射功率:在下一次发射CSI-RS时,降低CSI-RS的发射功率,即使用P0+α功率进行发射;转向步骤4070。
步骤4060,抬升CSI-RS的发射功率:在下一次发射CSI-RS时,抬升CSI-RS的发射功率,即使用P0+β功率进行发射;转向步骤4070。
步骤4070,根据用户测量调整发射功率后的CSI-RS所反馈的CQI adjust,结合步骤4050中的功率调整量α或步骤4060中的功率调整量β,补偿得到真实的下行信道SINR(具体补偿方式同示例一,这里不再赘述)。
步骤4080,重复步骤4020-4070,以持续获取真实可靠的下行信道SINR,也即转向步骤4020。
示例三
本示例为本申请实施例的获取信道状态信息的方法的一个实施例,示例性地说明了如何使用SRS的SINR作为表征无线信道质量的信息,以此作为判据,判断用户所处的信道状态,进而动态调整CSI-RS的发射功率,持续获得真实可靠的下行信道质量SINR。如图5所示,本示例包含以下步骤:
步骤5010,设置初始参数。
本示例中,设定的初始参数包括:滑动窗的长度winLen,判定为信道质量极好的SRS的SINR的门限srsSINRThr1,判定为信道质量极坏的SRS的SINR的门限srsSINRThr2,小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限ueNumThr1,小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限ueNumThr2,CSI-RS的发射功率默认值P0,功率下降偏移量α,功率抬升偏移量β。
本示例中,设定滑动窗的长度winLen=8,判定为信道质量极好的SRS的SINR的门限srsSINRThr1=-12dB,判定为信道质量极坏的SRS的SINR的门限srsSINRThr2=28dB,小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限ueNumThr1=0.4,小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限ueNumThr2=0.4,CSI-RS的发射功率默认值P0=17.8dBm,功率下降偏移量α=-12dB,功率抬升偏移量β=5dB。
上述参数的值是经过测试选取的,属于经验值。
步骤5020,获取每个用户当前的SRS的SINR,将新测量得到的每个用户的SRS的SINR存入滑动窗内,以winLen表示滑动窗的长度(即滑动窗能够容纳SINR的数目),本实施例中winLen=8,滑动窗的实现示例可参考图2。需要说明的是,本示例中,是为每个用户维护一个滑动窗。
步骤5030,根据多个用户滑动窗中所存储的SRS的SINR,依次判断用户所处的信道状态;其中,信道状态包括:是否处于极好的信道质量之下(也即是否处于信道质量极好)、是否处于极坏的信道质量之下(也即是否处于信道质量极坏)
对于一个用户,当在该用户的滑动窗中,所有的SRS的SINR都大于或等于srsSINRThr1时,认为该用户处于极好的信道质量之下。
对于一个用户,当在该用户的滑动窗中,所有的SRS的SINR都小于或等于srsSINRThr2时,认为该用户处于极坏的信道质量之下。
步骤5040,分别判断小区中处于信道质量极好的用户数目占小区中总用户数的比例是否大于或等于门限ueNumThr1,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例是否大于或等于门限ueNumThr2。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例大于或等于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例小于ueNumThr2时,转向步骤5050.
当小区中处于信道质量极好的用户数目占小区中总用户数的比例小于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于ueNumThr2时,转向步骤5060。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例大于或等于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于ueNumThr2时,转向步骤5050。
当小区中处于信道质量极好的用户数目占小区中总用户数的比例小于ueNumThr1,且小区中处于信道质量极坏的用户数目占小区中总用户数的比例小于ueNumThr2时,转向步骤5020。
步骤5050,降低CSI-RS的发射功率:在下一次发射CSI-RS时,降低CSI-RS的发射功率,即使用P0+α功率进行发射;转向步骤5070。
步骤5060,抬升CSI-RS的发射功率:在下一次发射CSI-RS时,抬升CSI-RS的发射功率,即使用P0+β功率进行发射;转向步骤5070。
步骤5070,根据用户测量调整发射功率后的CSI-RS所反馈的CQI adjust,结合步骤5050中的功率调整量α或步骤5060中的功率调整量β,补偿得到真实的下行信道SINR(具体补偿方式同示例一,这里不再赘述)。
步骤5080,重复步骤5020-5070,以持续获取真实可靠的下行信道SINR,也即转向步骤5020。
示例四
本示例为滑动窗长自适应调整算法的一个实施例,示例性地提供了一种滑窗长度自适应调整算法,据此对维护表征无线信道质量的信息的滑动窗的长度进行动态调整。如图6所示,本示例包含以下步骤:
步骤6010,设置初始参数。
本实施例中,设定的初始参数包括:滑动窗的初始长度winLen_init,判定为信道质量极好的CQI门限cqiThr1,判定为信道质量极坏的CQI门限cqiThr2,窗长缩短门限ratioThr1,窗长缩短门限ratioThr2,窗长增长因子p,窗长缩短因子q。
本实施例中,设定滑动窗的初始长度winLen_init=8,判定为信道质量极好的CQI门限cqiThr1=15,判定为信道质量极坏的CQI门限cqiThr2=1,窗长缩短门限ratioThr1(即第三预设门限)=0.6,窗长缩短门限ratioThr2(即第四预设门限)=0.6,窗长增长因子p=1.5,窗长缩短因子q=1.5。
步骤6020,根据滑动窗中维护的表征无线信道质量的信息的状况,判定是否需要改变滑动窗的长度。
本示例中,以滑动窗中维护的表征无线信道质量的信息为CQI为例进行说明,其他的表征无线信道质量的信息以此类推,这里不再赘述。
当滑动窗中所有的CQI都大于或等于cqiThr1,或所有的CQI都小于或等于cqiThr2时,转向步骤6030。
当滑动窗中大于或等于cqiThr1的CQI的数目与当前滑动窗的长度winLen之比小于窗长缩短门限ratioThr1,或滑动窗中小于或等于cqiThr2的CQI的数目与当前滑动窗的长度winLen之比小于窗长缩短门限ratioThr2时,转向步骤6040。
当滑动窗中大于或等于cqiThr1的CQI的数目与当前滑动窗的长度winLen之比大于或等于窗长缩短门限ratioThr1,或滑动窗中小于或等于cqiThr2的CQI的数目与当前滑动窗的长度winLen之比大于或等于窗长缩短门限ratioThr2时,转向步骤6050。
步骤6030,增加窗长,将滑动窗的长度按照以下公式进行拓展:
Figure PCTCN2020071773-appb-000009
其中,winLen 1为增加前的滑动窗的长度,winLen 2为增加后的滑动窗的长度;转向步骤6060。
步骤6040,缩短窗长,将滑动窗的长度按照以下公式进行缩短:
Figure PCTCN2020071773-appb-000010
其中,winLen 3为缩短前的滑动窗的长度, winLen 4为缩短后的滑动窗的长度;
在缩短后的滑动窗中,只保留最新的winLen4次CQI数据;转向步骤6060。
步骤6050,维持窗长:维持当前窗长不变;转向步骤6060。
步骤6060,等到下一次滑动窗中存入新的CQI后,重复步骤6010-6050,动态地进行滑动窗的长度的调整。
本申请实施例先根据表征无线信道质量的信息作为判据,判断该用户所处的信道状态,并依此调整CSI-RS的发射功率,进而根据用户测量功率调整后的CSI-RS所上报的CQI,结合功率调整量,补偿得到真实的下行信道SINR,从而改善了在信道质量极好或极坏情况下所存在的,由于用户设备测量能力受限,或通信***反馈信息限制等原因所带来的下行信道反馈信息失真所造成的种种问题。此外,本申请实施例在对存储表征无线信道质量的信息的内存空间的维护方式中,采用了滑动窗长自适应调整算法,优化了CSI-RS功率调整的时机,提高了算法的实用性。
需要声明的是,用作表征无线信道质量的信息,本申请实施例中所使用的是CQI、RSRP和SRS的SINR,这仅仅是几种可选的方式;在实际的实施方式中,可以是多种多样的,例如也可以使用上行DMRS的SINR等——来感知用户所处的信道状态。
参见图7,本申请另一个实施例提出了一种获取信道状态信息的装置,包括:调整模块701,设置为当根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率时,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号;获取模块702,设置为接收通过调整发射功率后的参考信号测量的信道质量指示CQI,根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR。
在本申请实施例中,参考信号可以是任意参考信号,例如,参考信号包括:CSI-RS。
在本申请实施例中,处于信道质量极好是指参考信号的接收功率过高,例如,处于信号极好是指参考信号的接收功率大于或等于第一预设功率;处于信道质量极坏是指参考信号的接收功率过低,例如,处于信号极坏是指参考信号的接收功率小于或等于第二预设功率。
在本申请实施例中,调整模块701是设置为采用以下至少之一方式实现根据小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号 的发射功率:当小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例时,确定需要降低所述参考信号的发射功率;当小区中所述处于信道质量极好的用户数目占小区中总用户数的比例小于第一预设比例,且小区中所述处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于第二预设比例时,确定需要抬升(即提高)所述参考信号的发射功率。
在一实施例中,小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例包括以下至少一种情况:小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例,且小区中所述处于信道质量极坏的用户数目占小区中总用户数的比例大于或等于第二预设比例;小区中所述处于信道质量极好的用户数目占小区中总用户数的比例大于或等于第一预设比例,且小区中所述处于信道质量极坏的用户数目占小区中总用户数的比例小于第二预设比例。
本申请实施例在小区中处于信道质量极好的用户数目较多时,降低参考信号的发射功率;而在小区中处于信道质量极好的用户数目较少,处于信道质量极坏的用户数目较多时,抬升参考信号的发射功率,使得参考信号的接收功率的动态范围缩小,这样减少了参考信号的接收功率在用户的功率测量的动态范围之外的情况以及上报的CQI在CQI上报字段范围的限制之外的情况,从而提高了反馈的CQI的准确性,即提高了SINR的准确性,进一步减少了在极近点多次上报的PMI呈现无规律的杂乱跳变的情况。
在本申请实施例中,调整模块701是设置为采用以下至少之一方式实现调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号:当确定需要降低所述参考信号的发射功率时,降低所述参考信号的发射功率,以降低后的发射功率发送所述参考信号;具体的,当参考信号的发射功率默认值为P0,功率下降偏移量为α(α<0)时,降低后的发射功率为P0+α。当确定需要抬升所述参考信号的发射功率时,抬升所述参考信号的发射功率,以抬升后的发射功率发送所述参考信号;具体的,当参考信号的发射功率默认值为P0,功率抬升偏移量为β(β>0)时,抬升后的发射功率为P0+β。
在本发明实施例中,获取模块702按照公式
Figure PCTCN2020071773-appb-000011
确定下行信道的SINR。其中,SINR real为下行信道的SINR,
Figure PCTCN2020071773-appb-000012
为CQI adjust所对应的SINR;CQI adjust即为通过调整发射功率后的参考信号测量的CQI;
Figure PCTCN2020071773-appb-000013
在本申请另一个实施例中,调整模块701还设置为:根据所述用户的表征无线信道质量的信息确定所述用户所处的信道状态;其中,所述信道状态包括以下至少之一:所述用户是否处于信道质量极好、所述用户是否处于信道质量极坏;根据小区中所述用户所处的信道状态计算小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例。
在本申请实施例中,表征无线信道质量的信息可以是多种多样的。例如,表征无线信道质量的信息包括以下至少之一:CQI、RSRP、SRS的SINR、DMRS的SINR,等等。
本申请实施例对上述表征无线信道质量的信息不作限定,可以是来自于终端设备,也可以是来自于网络设备。
在本申请实施例中,调整模块701是设置为采用以下至少之一方式实现根据用户的表征无线信道质量的信息确定所述用户所处的信道状态:当所述用户的滑动窗中的所有所述表征无线信道质量的信息均大于或等于第一预设门限时,确定所述用户处于信道质量极好;当所述用户的滑动窗中的所有所述表征无线信道质量的信息均小于或等于第二预设门限时,确定所述用户处于信道质量极坏。
在本申请实施例中,滑动窗用于维护用户的表征无线信道质量的信息。滑动窗的实现示例可参考图2。需要说明的是,可以为每个用户维护一个滑动窗。
例如,当表征无线信道质量的信息为CQI时,可以示例性地使用一个滑动窗来维护数次获取到的CQI。
又如,当表征无线信道质量的信息是RSRP时,可以示例性地使用一个滑动窗来维护数次获取到的RSRP。
又如,当表征无线信道质量的信息是SRS的SINR时,可以示例性地使用一个滑动窗来维护数次获取到的SRS的SINR。
在本申请另一个实施例中,考虑到对于那些不需要使用功率调整后的CSI-RS来测量CQI的用户设备来说,CSI-RS功率的变化可能会为CQI的测量和反馈引入误差,因此为了保证***性能,就要将发射调整功率后的CSI-RS的频率维持在一个合理的范围内,于是调整模块701还设置为执行以下至少之一:当根据所述滑动窗中的所有所述表征无线信道质量的信息确定需要调整所述滑动窗的长度时,调整所述滑动窗的长度;当根据所述滑动窗中的所有所述表征无线信道质量的信息确定不需要调整所述滑动窗的长度时,维持所述滑动窗的长度不变。
在本申请实施例中,可以在滑动窗中存入新的表征无线信道质量的信息时,判断是否需要调整滑动窗的长度;或者定期判断是否需要调整滑动窗的长度;或者采用其他的触发条件,本申请实施例对此不作限定。
在一实施例中,调整模块701是设置为采用以下至少之一方式实现所述根据滑动窗中的所有表征无线信道质量的信息确定需要调整滑动窗的长度:当所述滑动窗中的所有所述表征无线信道质量的信息都表明所述用户处于信道质量极好,或所述滑动窗中的所有所述表征无线信道质量的信息都表明所述用户处于信道质量极坏时,确定需要增加所述滑动窗的长度;具体的,将滑动窗的长度按照以下公式进行拓展:
Figure PCTCN2020071773-appb-000014
其中,winLen 1为增加前的滑动窗的长度,winLen 2为增加后的滑动窗的长度,p为窗长增长因子;当所述滑动窗中表明所述用户处于信道质量极好的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比小于第三预设门限,或所述滑动窗中表明所述用户处于信道质量极坏的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比小于第四预设门限时,确定需要缩短所述滑动窗的长度;具体的,将滑动窗的长度按照以下公式进行缩短:
Figure PCTCN2020071773-appb-000015
其中,winLen 3为缩短前的滑动窗的长度,winLen 4为缩短后的滑动窗的长度,q为窗长缩短因子,winLen_init为滑动窗的初始长度。
如上所述,对于单个UE来说,判断它是否处于极端信道条件下的方法是:判断该UE的滑动窗中的所有表征无线信道质量的信息是否都是极端的数值。由于滑动窗内的元素是周期性一个一个更新的,所以窗长越短,就越容易被判决为“UE处于极端信道条件下”(假设窗长为1,那么只要窗内有一个极端表征无线信道质量的信息值,该UE就会被判断为“处于极端信道条件下”),反之,窗长越长,就越难被判决为“UE处于极端信道条件下”(假设窗长为100,那么需要窗内的100个表征无线信道质量的信息都为极端值,该UE才会会被判断为“处于极端信道条件下”)。
对于滑动窗中的表征无线信道质量的信息都为极端值的用户,增长该UE的滑动窗,那么,要让该UE下一次还是被判决为“处于极端条件下”,窗内就又需要一些新的极端值。这样一来,触发判决“该UE处于极端信道条件下”的频率就会降低。这样的情况下,从小区整体来看,单位时间内被判断为“处于极端信道条件下”的UE数目就会相对变少,进而使得触发“调整CSI-RS功率”的频率降低。
反之,缩短窗长的作法,可以使得UE更容易地被判决为“处于极端信道条件下”,最终使得触发“调整CSI-RS功率”的频率升高。
滑动窗长自适应调整算法能够合理地调整每个UE的窗长,最终使得触发“调整CSI-RS功率”的频率不会过高,也不会过低。
在一实施例中,调整模块701是设置为采用以下方式实现根据所述滑动窗中的所有所述表征无线信道质量的信息确定不需要调整所述滑动窗的长度:当所述滑动窗中表明所述用户处于信道质量极好的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比大于或等于第三预设门限,或所述滑动窗中表明所述用户处于信道质量极坏的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比大于或等于第四预设门限时,确定不需要调整所述滑动窗的长度。
在本申请另一个实施例中,调整模块701还设置为:设置初始参数。
在一实施例中,初始参数包括:滑动窗的长度、判定为信道质量极好的表征无线信道质量的信息的门限(即第一预设门限)、判定为信道质量极坏的表征无线信道质量的信息的门限(即第二预设门限)、小区中处于极好信道质量下的用户数目占小区内总用户数的比例门限(即第一预设比例)、小区中处于极坏信道质量下的用户数目占小区内总用户数的比例门限(即第二预设比例)、参考信号的发射功率默认值、功率下降偏移量、功率抬升偏移量。
本申请实施例基于小区中处于信道质量极好的用户数目占小区中总用户数的比例,以及小区中处于信道质量极坏的用户数目占小区中总用户数的比例确定需要调整参考信号的发射功率时,调整所述参考信号的发射功率,并基于通过调整发射功率后的参考信号测量的CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR,在用户处于极好或极坏的信道质量时减小了由于用户设备测量能力受限或反馈信息限制所带来的误差,提高了SINR的准确性。
本申请另一个实施例提出了一种获取信道状态信息的装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任一种获取信道状态信息的方法。
本申请另一个实施例提出了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种获取信道状态信息的方法。
本领域技术人员应当理解,本专利算法中多个处理模块的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现,比如:可由中央处理器(Central Processing Unit,CPU)、微处理器(Microprocessor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)实现。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法及装置,可以通过其他的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所 述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的多个组成部分相互之间的通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其他形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为模块显示的部件可以是、或也可以不是物理模块,即可以位于一个地方,也可以分布到多个网络模块上;可以根据实际的需要选择其中的部分或全部模块来实现本实施例方案的目的。
另外,在本申请实施例中的多个功能模块可以全部集成在一个处理模块中,也可以是多个模块分别单独作为一个模块,也可以两个或两个以上模块集成在一个模块中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等多种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、ROM、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、紧凑型光盘只读储存器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存 储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (11)

  1. 一种获取信道状态信息的方法,包括:
    在根据小区中处于信道质量极好的用户数目占所述小区中总用户数的比例,以及所述小区中处于信道质量极坏的用户数目占所述小区中总用户数的比例确定需要调整参考信号的发射功率的情况下,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号;
    接收通过调整发射功率后的参考信号测量的信道质量指示CQI,根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR。
  2. 根据权利要求1所述的方法,在所述根据小区中处于信道质量极好的用户数目占所述小区中总用户数的比例,以及所述小区中处于信道质量极坏的用户数目占所述小区中总用户数的比例确定需要调整参考信号的发射功率之前,还包括:
    根据所述小区中的用户的表征无线信道质量的信息确定所述用户所处的信道状态;其中,所述信道状态包括以下至少之一:所述用户是否处于信道质量极好、所述用户是否处于信道质量极坏;
    根据所述小区中所述用户所处的信道状态计算所述小区中处于信道质量极好的用户数目占所述小区中总用户数的比例,以及所述小区中处于信道质量极坏的用户数目占所述小区中总用户数的比例。
  3. 根据权利要求2所述的方法,其中,所述根据所述小区中的用户的表征无线信道质量的信息确定所述用户所处的信道状态包括以下至少之一:
    在所述用户的滑动窗中的所有表征无线信道质量的信息均大于或等于第一预设门限的情况下,确定所述用户处于信道质量极好;
    在所述用户的滑动窗中的所有表征无线信道质量的信息均小于或等于第二预设门限的情况下,确定所述用户处于信道质量极坏。
  4. 根据权利要求3所述的方法,在所述根据所述小区中的用户的表征无线信道质量的信息确定所述用户所处的信道状态之前,还包括以下至少之一:
    在根据所述滑动窗中的所有表征无线信道质量的信息确定需要调整所述滑动窗的长度的情况下,调整所述滑动窗的长度;
    在根据所述滑动窗中的所有表征无线信道质量的信息确定不需要调整所述滑动窗的长度的情况下,维持所述滑动窗的长度不变。
  5. 根据权利要求4所述的方法,其中,所述根据所述滑动窗中的所有表征无线信道质量的信息确定需要调整所述滑动窗的长度包括以下至少之一:
    在所述滑动窗中的所有表征无线信道质量的信息都表明所述用户处于信道 质量极好,或所述滑动窗中的所有所述表征无线信道质量的信息都表明所述用户处于信道质量极坏的情况下,确定需要增加所述滑动窗的长度;
    在所述滑动窗中表明所述用户处于信道质量极好的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比小于第三预设门限,或所述滑动窗中表明所述用户处于信道质量极坏的所述表征无线信道质量的信息的数目与所述滑动窗的长度之比小于第四预设门限的情况下,确定需要缩短所述滑动窗的长度。
  6. 根据权利要求1所述的方法,其中,所述根据小区中处于信道质量极好的用户数目占所述小区中总用户数的比例,以及所述小区中处于信道质量极坏的用户数目占所述小区中总用户数的比例确定需要调整参考信号的发射功率包括以下至少之一:
    在小区中所述处于信道质量极好的用户数目占所述小区中总用户数的比例大于或等于第一预设比例的情况下,确定需要降低所述参考信号的发射功率;
    在小区中所述处于信道质量极好的用户数目占所述小区中总用户数的比例小于第一预设比例,且所述小区中所述处于信道质量极坏的用户数目占所述小区中总用户数的比例大于或等于第二预设比例的情况下,确定需要抬升所述参考信号的发射功率。
  7. 根据权利要求6所述的方法,其中,所述调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号包括以下至少之一:
    在确定需要降低所述参考信号的发射功率的情况下,降低所述参考信号的发射功率,以降低后的发射功率发送所述参考信号;
    在确定需要抬升所述参考信号的发射功率的情况下,抬升所述参考信号的发射功率,以抬升后的发射功率发送所述参考信号。
  8. 根据权利要求1所述的方法,其中,所述根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR包括:
    按照公式
    Figure PCTCN2020071773-appb-100001
    确定下行信道的SINR;
    其中,SINR real为下行信道的SINR,
    Figure PCTCN2020071773-appb-100002
    为CQI adjust所对应的SINR;CQI adjust为通过调整发射功率后的参考信号测量的CQI;
    Figure PCTCN2020071773-appb-100003
    α为功率下降偏移量,β为功率抬升偏移量。
  9. 一种获取信道状态信息的装置,包括:
    调整模块,设置为在根据小区中处于信道质量极好的用户数目占所述小区中总用户数的比例,以及所述小区中处于信道质量极坏的用户数目占所述小区中总用户数的比例确定需要调整参考信号的发射功率的情况下,调整所述参考信号的发射功率,以调整后的发射功率发送所述参考信号;
    获取模块,设置为接收通过调整发射功率后的参考信号测量的信道质量指示CQI,根据所述CQI和所述参考信号的发射功率调整量确定下行信道的信噪比SINR。
  10. 一种获取信道状态信息的装置,包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现如权利要求1~8任一项所述的获取信道状态信息的方法。
  11. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1~8任一项所述的获取信道状态信息的方法。
PCT/CN2020/071773 2019-03-18 2020-01-13 一种获取信道状态信息的方法和装置 WO2020186916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910204302.3A CN111726181B (zh) 2019-03-18 2019-03-18 一种获取信道状态信息的方法和装置
CN201910204302.3 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020186916A1 true WO2020186916A1 (zh) 2020-09-24

Family

ID=72519620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071773 WO2020186916A1 (zh) 2019-03-18 2020-01-13 一种获取信道状态信息的方法和装置

Country Status (2)

Country Link
CN (1) CN111726181B (zh)
WO (1) WO2020186916A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691347A (zh) * 2021-08-18 2021-11-23 福州锐迪优通讯科技有限公司 一种手机信号屏蔽方法及***
WO2022078790A3 (en) * 2020-10-16 2022-07-07 Nokia Technologies Oy Coded csi rs for partial reciprocity

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114205906B (zh) * 2021-12-14 2022-10-11 电子科技大学 一种基于uwb信道质量评估的室内定位方法
CN114584232B (zh) * 2022-02-17 2024-03-29 赛特斯信息科技股份有限公司 基于信道探测参考信号的无线通信子带信噪比测量方法
CN116074961B (zh) * 2023-03-16 2023-07-04 ***通信有限公司研究院 信号传输方法、装置、电子设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312448A (zh) * 2012-03-16 2013-09-18 上海贝尔股份有限公司 确定信道状态信息的方法与装置
CN104218982A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 确定下行信道状态信息的方法和装置
CN105307258A (zh) * 2015-09-23 2016-02-03 上海华为技术有限公司 一种调整导频参考信号发射功率的方法及基站
US9775121B1 (en) * 2017-01-19 2017-09-26 Sprint Spectrum L.P. Dynamic control of reference-signal transmission power based on reference signal coverage quality at or near half-way point between base stations

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106403B (zh) * 2007-03-01 2011-07-20 华为技术有限公司 一种调整hspa下行物理信道发射功率的方法和装置
CN101867399B (zh) * 2009-04-20 2014-07-16 电子科技大学 一种多输入多输出***中的多用户调度方法及装置
CN103517214B (zh) * 2012-06-21 2017-03-15 成都鼎桥通信技术有限公司 基于群组用户终端的发射功率调整方法及基站
CN103416089B (zh) * 2012-10-30 2017-04-12 华为技术有限公司 一种负载平衡的方法及设备
CN103024921B (zh) * 2012-12-27 2015-10-28 西安交通大学 一种基于cqi反馈参数和sinr数值分组的调度方法
EP3160193B1 (en) * 2014-06-20 2018-08-22 Huawei Technologies Co., Ltd. Transmission power control command word generation method, device and system
CN106888477B (zh) * 2017-02-08 2019-07-09 中国联合网络通信集团有限公司 一种评估综合业务承载能力的方法和装置
CN109429247B (zh) * 2017-08-31 2020-09-11 ***通信集团公司 一种基于问题场景化的改善小区网络的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103312448A (zh) * 2012-03-16 2013-09-18 上海贝尔股份有限公司 确定信道状态信息的方法与装置
CN104218982A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 确定下行信道状态信息的方法和装置
CN105307258A (zh) * 2015-09-23 2016-02-03 上海华为技术有限公司 一种调整导频参考信号发射功率的方法及基站
US9775121B1 (en) * 2017-01-19 2017-09-26 Sprint Spectrum L.P. Dynamic control of reference-signal transmission power based on reference signal coverage quality at or near half-way point between base stations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022078790A3 (en) * 2020-10-16 2022-07-07 Nokia Technologies Oy Coded csi rs for partial reciprocity
CN113691347A (zh) * 2021-08-18 2021-11-23 福州锐迪优通讯科技有限公司 一种手机信号屏蔽方法及***

Also Published As

Publication number Publication date
CN111726181A (zh) 2020-09-29
CN111726181B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2020186916A1 (zh) 一种获取信道状态信息的方法和装置
US10057830B2 (en) Handover between cells based on signal quality and interference estimation
US10447455B2 (en) Enabling higher-order modulation in a cellular network
EP3306990A1 (en) Method and apparatus for deriving transmit power of ul (uplink) rs (reference signal) in a wireless communication system
JP2020022206A (ja) 無線通信システムにおけるビーム動作に対するパスロス導出のための方法及び装置
EP3557793B1 (en) Outer loop link adaptation adjustment method and apparatus
US9054834B2 (en) Selection of transport format in wireless communication systems
US10958372B2 (en) Radio link adaptation in communication systems
EP1993215A1 (en) Power control and handoff with power control commands and erasure indications
US8914686B2 (en) Throughput improvement in wireless systems
KR20070118529A (ko) 통신 시스템에서의 인접 섹터 간섭을 고려한 전력 제어 및스케줄링 방법
US8432866B1 (en) Channel quality
WO2015158105A1 (zh) 自适应信道质量指示选择的方法及装置和计算机存储介质
US8995282B2 (en) Fast channel probing
WO2015196589A1 (zh) 终端能力指示参数的反馈、反馈处理方法及装置
WO2016119128A1 (zh) 调制编码方式的选择方法及基站
US8437704B2 (en) System and method for resuming power control after interruption
US9629013B2 (en) Channel quality indication with filtered interference
US9185661B2 (en) Performing power control based on nominal packet size
US20190045400A1 (en) Adaptive and Proactive Feedback for Power and Performance Optimization
CN113452481A (zh) 一种信道质量指示修正方法及装置
CN110708149A (zh) 一种下行mcs确定方法和装置
CN109391351B (zh) 一种物理上行控制信道pucch的功率控制方法和基站
CN115242348A (zh) 自适应链路调制编码方法、***及基站
CN117479179A (zh) 信道质量指示cqi的动态调整方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773979

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20773979

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20773979

Country of ref document: EP

Kind code of ref document: A1