WO2020186682A1 - 一种静电雾化喷头荷质比测量***及其测量方法 - Google Patents

一种静电雾化喷头荷质比测量***及其测量方法 Download PDF

Info

Publication number
WO2020186682A1
WO2020186682A1 PCT/CN2019/098340 CN2019098340W WO2020186682A1 WO 2020186682 A1 WO2020186682 A1 WO 2020186682A1 CN 2019098340 W CN2019098340 W CN 2019098340W WO 2020186682 A1 WO2020186682 A1 WO 2020186682A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower cylinder
electrostatic atomization
cylinder
atomization nozzle
liquid
Prior art date
Application number
PCT/CN2019/098340
Other languages
English (en)
French (fr)
Inventor
欧鸣雄
吴敏敏
贾卫东
龚辰
周慧涛
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to EP19920240.9A priority Critical patent/EP3816640B1/en
Priority to US17/047,073 priority patent/US11150288B2/en
Publication of WO2020186682A1 publication Critical patent/WO2020186682A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/24Arrangements for measuring quantities of charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • A01M7/0096Testing of spray-patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/40Filters located upstream of the spraying outlets

Definitions

  • the patent of the invention relates to an electrostatic atomization nozzle charge-to-mass ratio measurement system and a measurement method thereof. Specifically, it relates to an electrostatic atomization nozzle charge-mass ratio measurement and monitoring function suitable for real-time measurement and monitoring of the electrostatic atomization nozzle charge-mass ratio parameter
  • the measurement system and the measurement method thereof are suitable for real-time measurement and monitoring of the charge-to-mass ratio parameters of the electrostatic atomization nozzle in the fields of agricultural plant protection spraying and industrial electrostatic spraying.
  • Electrostatic atomization technology is a liquid atomization spraying technology widely used in agricultural plant protection spraying, electrostatic spraying, electrostatic atomization spray combustion and industrial electrostatic dust removal.
  • the electrostatic atomization nozzle developed based on electrostatic atomization technology has spray flow The characteristics of small size, fine particle size, uniform droplets, easy adsorption of the target and good back adhesion effect, especially in the field of agricultural plant protection machinery spray application technology, agricultural plant protection spray machinery that uses electrostatic atomization nozzles often saves drugs and water , The advantages of high work efficiency and good pest control effect, therefore, electrostatic atomization nozzles have been widely used in products such as knapsack sprayers, stretcher sprayers, mist sprayers and orchard sprayers.
  • the charge-to-mass ratio parameter is a key indicator that determines the performance of the electrostatic atomization nozzle, and it has an important influence on the spraying effect of the electrostatic atomization nozzle.
  • the traditional charge-to-mass ratio measuring device mainly uses Faraday cylinders or grids as the droplet collecting parts.
  • the charged droplets sprayed by the nozzles are collected through these droplet collecting parts, that is, the electrostatic atomization nozzles are collected by the Faraday cylinders or grids.
  • the charged droplets are sprayed within a certain time (ie spraying time, generally between tens of seconds to several minutes), and the total mass of the collected droplets is measured by a balance weighing instrument, and the flow is measured by an ammeter
  • the current value generated by the charged droplets of the Faraday tube or grid, etc. is calculated by the current value I, the total mass of the droplets m and the spray time t, and the calculation formula is as follows: ) Shows:
  • the liquid flows or stores in the electrostatic atomization nozzle, Faraday tube (or grid), water outlet pipe and weighing container, etc.
  • the liquid needs to be carried out manually during or after the weighing. Treatment, each component does not form a closed liquid circulation system, and the liquid sprayed by the electrostatic atomization nozzle cannot be recycled.
  • the test liquid When facing the test liquid with special requirements or conducting long-term tests, it is prone to liquid leakage, pollution or serious waste. And other issues.
  • the Chinese patent document with application number 201210457633.6 discloses an electrostatic spray charge-to-mass ratio measuring device.
  • the device is composed of a liquid collecting cylinder, a measuring cylinder, a precision electronic balance, a picoammeter, and a data acquisition and processing system.
  • the measuring device is collected by a liquid collecting cylinder.
  • Charged fog drops, the liquid collecting cylinder is composed of an outer liquid collecting cylinder, an inner liquid collecting cylinder and an insulator between the inner and outer cylinders.
  • the liquid inside the liquid collecting cylinder is transported to the measuring cylinder through a hose, and the mist in the measuring cylinder is treated by a precision electronic balance.
  • the total mass of drops is weighed and a picoammeter is used for current measurement.
  • This measuring device is a traditional charge-to-mass ratio measuring device.
  • the Chinese patent document with the application number 201310359398.3 discloses a device for real-time measurement of the charge-to-mass ratio of charged droplets that is easy to disassemble and disassemble.
  • the device is composed of a movable base, a bracket, a support plate, a hanger, an ammeter tray, a balance tray and a Faraday tube.
  • the device also uses a Faraday tube to collect charged droplets and a balance to measure the total mass of the droplets.
  • the patent uses a movable base and other mechanisms to make the measurement device easy to disassemble and move.
  • the patent content It is an improved design of traditional measuring device.
  • the Chinese patent document with application number 201310690188.2 discloses a spray rod type multi-nozzle electrostatic spray charge-to-mass ratio measuring device, which consists of an L-shaped bracket, a vertical moving platform, a horizontal sliding table, a Faraday tube, a precision balance, an ammeter, and a lifting mechanism.
  • the device uses a Faraday tube to collect charged droplets, and uses a precision balance to measure the total mass of the droplets.
  • This invention adds horizontal movement and vertical lifting functions to the traditional measurement device, making the measurement device suitable for spray rod type
  • the multi-nozzle charge-to-mass ratio measurement is also an improved design of the traditional measurement device.
  • the Chinese patent document with the application number 201610007625.X discloses a device for measuring the charge-to-mass ratio of electrostatic spray droplets.
  • the device is mainly composed of a Faraday cylinder, a charge meter, a weight sensor, a water outlet pipe, a liquid collection barrel and a computer.
  • the Faraday canister is used to collect the charged droplets, and the charged droplets in the Faraday canister are transported to the liquid collection barrel through the outlet pipe, and then the weight sensor is used to measure the total mass of the droplets in the liquid collection barrel.
  • This device is also a kind of traditional The charge-to-mass ratio measuring device.
  • the Chinese patent document with application number 201810322387.0 discloses a test bed for testing the charge-to-mass ratio of airborne plant protection electrostatic spray droplets.
  • the test bed is composed of a net-like charge-to-mass ratio collection box, a water collection tank, an electrostatic spray system, a picoammeter and a computer.
  • the test bench mainly uses a net-like charge-to-mass ratio collection box to collect charged droplets.
  • the net-like charge-to-mass ratio collection box is composed of a multilayer copper mesh.
  • the picoammeter is connected to the copper mesh to measure the The current generated by the charged fog droplets is collected by the water collecting trough of the device, which is convenient for weighing.
  • the test bench is also a traditional charge-to-mass ratio measuring device.
  • the charge-to-mass ratio parameter is a key indicator of the performance of the electrostatic atomization nozzle.
  • the traditional charge-to-mass ratio measuring device and method have problems such as long measurement time, slow response and poor accuracy.
  • the present invention designs an electrostatic atomization nozzle charge-mass ratio measurement system and its measurement based on the principle of constant free flow when the liquid flows through the container nozzle
  • the method has the function of real-time measurement and monitoring of the charge-to-mass ratio parameters of the electrostatic atomization nozzle, and has the characteristics of high accuracy and fast response.
  • An electrostatic atomization nozzle charge-to-mass ratio measurement system which includes an electrostatic atomization nozzle, an insulating support, an upper cylinder, a water retaining ring, an anti-vortex plate, a rectifier plate, a lower cylinder, a lower cylinder outlet pipe, and an ammeter , Metal wire, liquid level pipe, ultrasonic level gauge, water storage tank, water supply pipe, liquid pump, branch pipe, pressure regulating valve, throttle valve, filter, flow meter and computer.
  • the upper cylinder is formed by connecting a gradually expanding upper cylinder end cover and a thin-walled cylindrical upper cylinder cylinder in the circumferential direction.
  • the lower end of the upper cylinder is an opening, and the upper end of the upper cylinder is an upper cylinder end cover.
  • the center of the end cover of the upper cylinder is provided with a center hole of the end cover.
  • the lower cylinder is formed by welding a thin-walled cylindrical lower cylinder and a tapered lower cylinder bottom cover in the circumferential direction.
  • the upper end of the lower cylinder is an opening, and the lower end of the lower cylinder bottom cover is connected to the lower cylinder.
  • the upper cylinder and the lower cylinder are connected by the upper cylinder flange and the lower cylinder flange, thereby forming an inner cylindrical space with openings at both ends between the upper cylinder and the lower cylinder.
  • the electrostatic atomization nozzle, the upper cylinder and the lower cylinder are sequentially connected from top to bottom.
  • the electrostatic atomization nozzle is installed in the center of the center hole of the end cover, and the spraying direction of the charged droplets is vertically downward.
  • the ammeter is connected to the flange of the lower cylinder through a metal wire, so that the current generated by the charged droplets sprayed by the electrostatic atomization nozzle into the lower cylinder can be measured in real time.
  • the charged droplets sprayed by the electrostatic atomization nozzle are gathered in the inside of the lower cylinder. Under the influence of the gravity of the liquid, the liquid flows to the water storage tank through the outlet pipe of the lower cylinder.
  • the bottom end of the water storage tank is connected with the water supply pipe and the liquid pump to store The liquid in the water tank can be transported to the inlet of the electrostatic atomization nozzle by the liquid pump, and sprayed into the lower cylinder through the electrostatic atomization nozzle again.
  • the water supply pipe is connected with the branch pipe, and part of the liquid delivered by the liquid pump flows back to the water storage tank through the branch pipe.
  • the liquid level tube is L-shaped, which is composed of a horizontal short tube and a vertical long tube with a thin-walled round tube structure.
  • the horizontal short tube communicates with the inside of the lower cylinder.
  • the upper end of the vertical long tube is equipped with an ultrasonic level gauge.
  • the level gauge can measure the height of the liquid level inside the liquid level tube and the lower cylinder in real time.
  • the ammeter, ultrasonic level meter and flow meter are connected to the computer through the data line, and the measurement data of the ammeter, ultrasonic level meter and flow meter are obtained and processed in real time through the computer to realize real-time measurement and monitoring of the electrostatic atomization nozzle charge-to-mass ratio parameters Function.
  • the upper cylinder is fixed at the top fixed end through an insulating bracket, and the inner diameter of the upper cylinder is equal to the inner diameter D 1 of the lower cylinder.
  • the wall thickness of the upper cylinder is 8 mm-12 mm.
  • the water retaining ring is a thin-walled cylindrical structure coaxial with the upper cylinder, which is located inside the upper cylinder, and its upper end surface is connected with the lower surface of the upper cylinder end cover.
  • the value of the inner diameter of the water retaining ring is half of the inner diameter D 1 of the lower cylinder, and the thickness of the water retaining ring is 2 mm-4 mm.
  • the edge of the upper cylinder end cover is provided with a number of end cover vents, so that the internal cylindrical space between the upper cylinder and the lower cylinder is connected to the outside atmosphere, and the end cover vents are along the edge of the upper cylinder end cover
  • the circumferential direction is evenly distributed.
  • the insulating support, the upper cylinder and the water retaining ring are made of insulating materials, such as rubber, polyethylene, polypropylene or polyvinyl chloride.
  • the vortex plate is a cross structure composed of flat steel bars
  • the rectifier plate is a circular steel plate structure full of circular flow holes.
  • the vortex preventing plate and the rectifying plate are arranged horizontally in the lower cylinder from top to bottom, and the liquid collected in the lower cylinder passes through the vortex preventing plate and the rectifying plate during downward flow.
  • the upper end of the lower cylinder is welded with a lower cylinder flange, and the lower cylinder flange and the upper cylinder flange are matched and fixedly connected, thereby realizing the coaxial fixed connection between the upper cylinder and the lower cylinder ,
  • a gasket is arranged between the lower cylinder flange and the upper cylinder flange to prevent liquid leakage.
  • the lower cylinder and the outlet pipe of the lower cylinder are made of metal materials, such as carbon steel, stainless steel and aluminum alloy.
  • the outer surface should be treated with polymer spraying to improve its insulation performance with the outside world.
  • the wall thickness of the lower cylinder and the outlet pipe of the lower cylinder is 5 mm-8 mm.
  • the upper cylinder and the lower cylinder are both thin-walled cylindrical structures, and the lower cylinder has a short cylindrical pipe structure.
  • the inner diameter of the lower cylinder D 1 ranges from 0.3 m to 0.6 m between the cylinder outlet pipe diameter d 1 in the range of -0.005 to 0.001 meters meters, the cylinder outlet pipe length L in the range of 1 4d 1 -5d 1, the cylindrical tubular body, the tubular body
  • the bottom cover and the outlet pipe of the lower cylinder are connected sequentially from top to bottom.
  • the design formula of the height H of the lower cylinder is as follows:
  • H is the height of the lower cylinder, in meters
  • q is the design spray flow rate of the measurement system, in cubic meters per second
  • g is the acceleration of gravity, the unit is meters/square second;
  • d 1 is the inner diameter of the outlet pipe of the lower cylinder, in meters
  • a rectifier plate with a horizontal circular steel plate structure is arranged inside the lower cylinder.
  • the surface of the rectifier plate is provided with a certain number of circular flow holes.
  • the diameter of the circular flow holes d 2 , the number of circular flow holes N and The inner diameter D 1 of the lower cylinder shall satisfy the following relationship:
  • d 2 is the diameter of the circular flow hole, the unit is meter
  • N is the number of circular flow holes
  • D 1 is the inner diameter of the lower cylinder, in meters.
  • the liquid level tube is located on the side of the lower cylinder and is composed of a horizontal short tube and a vertical long tube welded together.
  • the horizontal short tube is arranged in a horizontal direction and the vertical long tube is arranged in a vertical direction.
  • the upper end of the vertical long pipe is provided with a liquid level pipe vent hole to make the inside of the liquid level pipe communicate with the outside atmosphere.
  • the horizontal short pipe communicates with the inside of the lower cylinder, so that the inside of the liquid level pipe and the lower cylinder are connected.
  • the inside and outside atmosphere are connected with each other, and the center height of the vent hole of the liquid level pipe should be higher than the height of the end face of the lower cylinder flange.
  • An ultrasonic level gauge is installed at the upper end of the vertical long pipe, and the probe direction of the ultrasonic level gauge is vertically downward.
  • the ultrasonic level gauge can measure the height of the liquid level inside the liquid level pipe and the lower cylinder in real time.
  • the level tube is made of metal materials, such as carbon steel, stainless steel and aluminum alloy, and its outer surface should be sprayed with polymer.
  • the wall thickness of the liquid level tube is 4 mm-6 mm, and the wall thickness of the liquid level tube should not be greater than the wall thickness of the lower cylinder.
  • the ammeter is a microammeter or a picoammeter. The input end of the ammeter is connected to the outer surface of the lower cylinder flange through a metal wire, and the output end of the ammeter is connected to the ground terminal.
  • the storage tank is a cylindrical container with a closed bottom and an open upper end. It is located below the outlet pipe of the lower cylinder.
  • the inside of the storage tank is electrostatically atomized through the water supply pipe, liquid pump, throttle valve, filter and flowmeter.
  • the inlet of the nozzle is connected, the flow meter is located near the inlet of the electrostatic atomization nozzle, and the spray flow rate of the electrostatic atomization nozzle is obtained in real time through the flow meter.
  • the water supply pipe is connected with the branch pipe.
  • the branch pipe is provided with a pressure regulating valve. By controlling the pressure regulating valve, the output pressure of the liquid pump and the spray pressure of the electrostatic atomization nozzle can be adjusted.
  • the outlet of the branch pipe faces the upper opening direction of the water storage tank, so that part of the liquid can flow back into the water storage tank through the branch pipe and the pressure regulating valve.
  • the water storage tank is made of metal materials, such as carbon steel, stainless steel and aluminum alloy materials, and the water supply pipes and branch pipes are made of insulating materials, such as rubber, polyethylene, polypropylene or polyvinyl chloride.
  • the measuring system has the following two working modes:
  • the first working mode is used to measure the charge-to-mass ratio parameters of the electrostatic atomization nozzle of the electrostatic sprayer in the working state.
  • the electrostatic atomizer and the electrostatic atomization nozzle are directly connected, and the electrostatic atomization nozzle is a component of the electrostatic sprayer
  • the liquid sprayed by the electrostatic atomization nozzle is provided by the electrostatic sprayer.
  • the electrostatic atomization nozzle is an independent component to be tested and is not connected to the external electrostatic sprayer.
  • the liquid Under the driving of the liquid pump, the liquid is discharged from the electrostatic atomization nozzle, lower cylinder, and lower cylinder.
  • Water pipes, water storage tanks and water supply pipe components form a closed loop to provide liquid for the continuous spraying of the electrostatic atomization nozzle to ensure the progress of the spray test.
  • the output pressure of the liquid pump and the spray of the electrostatic atomization nozzle are adjusted by controlling the pressure regulating valve. Pressure, realize the parameter measurement of charge-to-mass ratio under different spray pressures.
  • the liquid pump, the pressure regulating valve and the throttle valve are in an open state.
  • the charged droplets sprayed downward from the electrostatic atomization nozzle are gathered in the inside of the lower cylinder, and under the action of gravity, they gather in the lower cylinder.
  • the liquid inside flows to the water storage tank through the outlet pipe of the lower cylinder, and the charge carried by the charged droplets will also flow to the ground through the lower cylinder, the metal wire and the ammeter, so the ammeter can be used to measure the electrostatic atomization nozzle sprayed on the lower cylinder in real time.
  • the current value generated by the charged mist droplets inside the body is gathered in the inside of the lower cylinder, and under the action of gravity, they gather in the lower cylinder.
  • the liquid level inside the lower cylinder is relatively low, and the flow of liquid flowing to the reservoir through the outlet pipe of the lower cylinder is less than the spray flow of the electrostatic atomization nozzle.
  • the liquid inside the lower cylinder The level height gradually increases. According to the principle of constant free outflow when the liquid flows through the nozzle of the container, the flow of liquid flowing through the outlet pipe of the lower cylinder to the water storage tank also increases, and the liquid level inside the lower cylinder is at a certain value. At this time, the flow of liquid flowing through the outlet pipe of the lower cylinder to the water storage tank will be equal to the spray flow of the electrostatic atomization nozzle.
  • the spray flow rate Q can be obtained by the following calculation formula (2):
  • Q is the spray flow rate of the electrostatic atomization nozzle, the unit is cubic meter/second;
  • k 0 is the flow factor, which is a dimensionless number;
  • d 1 is the inner diameter of the outlet pipe of the lower cylinder, in meters;
  • g is the acceleration of gravity , The unit is meter/square second;
  • h is the height of the liquid level inside the lower cylinder, and the unit is meter.
  • the present invention calculates the charge-to-mass ratio parameter through the calculation formula (3):
  • the ultrasonic level gauge can measure the liquid level inside the lower cylinder, and based on the principle of constant free flow when the liquid flows through the nozzle of the container, the spray flow rate at this time can be indirectly calculated.
  • the current value generated by the charged droplets sprayed on the inside of the lower cylinder by the electrostatic atomization nozzle is measured by an ammeter.
  • the charge-to-mass ratio parameter value of the electrostatic atomization nozzle at this time can be obtained from the spray flow value and current value, thereby realizing the real-time measurement and monitoring of the electrostatic atomization nozzle's charge-mass ratio parameter.
  • the measurement data acquisition methods are divided into the following two:
  • the specific measurement method includes the following steps:
  • the computer obtains the current I data output by the ammeter in real time according to the sampling period T 1 of the ammeter, and obtains the liquid level height h data output by the ultrasonic level gauge in real time according to the sampling period T 2 of the ultrasonic level gauge.
  • the sampling time of is t1
  • the value range of t1 is 30T-50T, where T is the larger value of T 1 and T 2 ;
  • the computer first calculates the fluctuation coefficient of the array h1 with Where max(h1) is the maximum value in the array h1, min(h1) is the minimum value in the array h1, h1 m is the median of the array h1;
  • the computer processes the arrays I1 and h1, and calculates the mean values of the arrays I1 and h1 respectively with And will with Respectively output as the real-time current value and real-time liquid level height value of this spray test;
  • the specific measurement method includes the following steps:
  • the computer obtains the current I data output by the ammeter in real time according to the sampling period T 1 of the ammeter, and obtains the liquid level height h data output by the ultrasonic level gauge in real time according to the sampling period T 2 of the ultrasonic level gauge.
  • the flowmeter sampling period T 3 obtains the spray flow rate q data output by the flowmeter in real time.
  • the sampling time of the computer is t2, and the value range of t2 is 30T-50T, where T is the maximum of T 1 , T 2 and T 3 ;
  • the computer system calculates the charge-to-mass ratio parameters of the electrostatic atomization nozzle according to the real-time current value and real-time liquid level height value output by the spray test, according to the above calculation formula (3 ) It can be seen that the specific calculation formula of the charge-to-mass ratio parameter is as follows:
  • is the charge-to-mass ratio parameter of the electrostatic atomization nozzle, and the unit is microcoulomb/kg;
  • is the density of the liquid sprayed by the electrostatic atomization nozzle; the unit is kilogram per cubic meter;
  • d 1 is the inner diameter of the outlet pipe of the lower cylinder, in meters
  • g is the acceleration of gravity, the unit is meters/square second;
  • k 1 1080-1120
  • the electrostatic atomization nozzle charge-to-mass ratio measurement system and the measurement method thereof provided by the present invention have the following characteristics:
  • the present invention designs a measurement system that can obtain the spray flow rate of the electrostatic atomization nozzle in real time.
  • the system uses the upper cylinder and the lower cylinder as the droplets. Collecting components, with the help of the lower cylinder, liquid level tube and ultrasonic level gauge, real-time measurement of the liquid level in the lower cylinder to indirectly measure the spray flow of the electrostatic atomization nozzle, realizing the external spray flow of the electrostatic atomization nozzle Real-time measurement, eliminating the need to install a flow meter inside the electrostatic sprayer to measure the spray flow rate.
  • the measurement system provided by the present invention uses the upper cylinder and the lower cylinder as the droplet collecting parts, and directly realizes the real-time measurement of the spray flow through the liquid level tube on the side of the lower cylinder, the ultrasonic level gauge and other parts. There is no need to transfer or guide the charged droplets to other containers for weighing, and the test process is simpler, eliminating the measurement errors caused by the adsorption, evaporation and leakage of the charged droplets during the transfer or guiding process.
  • the measurement system provided by the present invention can directly calculate and obtain the charge-to-mass ratio parameters of the electrostatic atomization nozzle through the introduction of the current value I and the spray flow rate Q, because the sampling time of the measurement system (between several milliseconds to tens of milliseconds) ) Is very short, so the measurement system has good real-time performance.
  • the charge-to-mass ratio measurement method based on the calculation formula (3) eliminates the spray time in the traditional measurement method, reduces the source of error, and simplifies the test process.
  • the electrostatic atomization nozzle, lower cylinder, lower cylinder water outlet pipe, water storage tank, water supply pipe, liquid pump and pressure regulating valve form a closed liquid circulation system.
  • the liquid realizes a closed loop inside the measuring system.
  • the measurement system can provide liquid with a certain spray pressure for the continuous spraying of the electrostatic atomization nozzle, and the liquid can be inside the measurement system Recycling is not easy to cause problems such as liquid leakage and pollution, and it also has the advantages of adjustable spray pressure.
  • Figure 1 is a schematic structural diagram of the overall scheme of an embodiment of the present invention.
  • Figure 2 is a partial cross-sectional view of the same embodiment, including parts such as an upper cylinder, a lower cylinder, and a liquid level tube;
  • Figure 3 is a radial cross-sectional view of the anti-vortex plate of the same embodiment
  • Figure 4 is a radial cross-sectional view of the rectifying plate of the same embodiment
  • Electrostatic atomization nozzle 2. Insulation support, 3. Upper cylinder, 4. Water retaining ring, 5. Anti-vortex plate, 6. Rectifier plate, 7. Lower cylinder, 8. Lower cylinder Water pipe, 9. Ammeter, 10. Metal wire, 11. Liquid level tube, 12. Ultrasonic level gauge, 13. Water tank, 14. Water supply pipe, 15. Liquid pump, 16. Branch pipeline, 17. Pressure regulating valve, 18. Throttle valve, 19. Filter, 20. Flow meter, 21. Electrostatic sprayer water supply pipe, 22. End cap center hole, 23. Upper cylinder end cap, 24. End cap vent, 25. Upper cylinder Body cylinder, 26. Upper cylinder flange, 27. Lower cylinder flange, 28. Lower cylinder, 29.
  • Lower cylinder bottom cover, 30 Lower cylinder inner diameter D 1 , 31. Lower Cylinder height H, 32. Lower cylinder water outlet pipe inner diameter d 1 , 33. Lower cylinder water outlet pipe length L 1 , 34. Horizontal short pipe, 35. Vertical long pipe, 36. Liquid level pipe vent, 37. Circular flow hole, 38. The diameter of the circular flow hole d 2 .
  • Figures 1 to 4 jointly determine the structure of this embodiment of the measurement system.
  • the following is combined with the drawings of the embodiment of the present invention, A clear and complete description of the electrostatic atomization nozzle charge-to-mass ratio measurement system and measurement method of the present invention:
  • FIG. 1 and Figure 2 it is a schematic diagram of the electrostatic atomization nozzle charge-to-mass ratio measurement system provided by the embodiment of the present invention.
  • the measurement system consists of the electrostatic atomization nozzle 1, the insulating support 2, the upper cylinder 3, and the water retaining ring 4. , Anti-vortex plate 5, rectifier plate 6, lower cylinder 7, lower cylinder outlet pipe 8, ammeter 9, metal wire 10, liquid level pipe 11, ultrasonic level gauge 12, water storage tank 13, water supply pipe 14, liquid pump 15. Branch pipeline 16, pressure regulating valve 17, throttle valve 18, filter 19, flow meter 20 and computer.
  • the upper cylinder 3 is composed of a gradually expanding upper cylinder end cover 23 and a thin-walled cylindrical upper cylinder cylinder 25.
  • the lower end of the upper cylinder 3 is an opening, and the upper end of the upper cylinder 3 is an upper cylinder end cover 23. , The center of the upper cylinder end cap 23 is provided with an end cap center hole 22.
  • the lower cylinder 7 is formed by welding a thin-walled cylindrical lower cylinder 28 and a tapered lower cylinder bottom cover 29 along the circumferential direction.
  • the upper end of the lower cylinder 7 is an opening, and the lower end of the lower cylinder bottom cover 29 Connected with the outlet pipe 8 of the lower cylinder.
  • the upper cylinder body 3 and the lower cylinder body 7 are connected in the vertical direction by the upper cylinder body flange 26 and the lower cylinder body flange 27, and an inner cylinder with openings at both ends is formed between the upper cylinder body 3 and the lower cylinder body 7 ⁇ .
  • the electrostatic atomization nozzle 1, the upper cylinder 3 and the lower cylinder 7 are connected in a vertical direction from top to bottom.
  • the electrostatic atomization nozzle 1 is installed in the center of the center hole 22 of the end cap, and the spraying direction of the charged droplets is vertical. Straight down.
  • the ammeter 9 is connected to the flange 27 of the lower cylinder through a metal wire 10. The charged droplets sprayed by the electrostatic atomization nozzle 1 gather inside the lower cylinder 7.
  • the liquid level tube 11 is L-shaped and consists of a horizontal short tube 34 and a vertical long tube 35 with a thin-walled round tube structure.
  • the horizontal short tube 34 communicates with the inside of the lower cylinder 7, and the upper end of the vertical long tube 35 is equipped with ultrasonic liquid
  • the level gauge 12 can measure the level of the liquid level inside the liquid level tube 11 and the lower cylinder 7 in real time through the ultrasonic level gauge 12.
  • the ammeter 9, the ultrasonic level gauge 12, and the flow meter 20 are connected to the computer through a data cable, and the measurement data of the ammeter 9, the ultrasonic level gauge 12, and the flow meter 20 are obtained and processed in real time through the computer, so as to realize the charging of the electrostatic atomization nozzle 1
  • the insulating bracket 2 is respectively fixedly connected with the upper cylinder end cover 23 and the top fixed end, and the upper cylinder 3 is fixed at the top fixed end through the insulating bracket 2.
  • the inner diameter of the upper cylinder 25 is equal to the inner diameter D 1 of the lower cylinder, the inner diameter of the upper cylinder 25 is 0.4 meters, and the wall thickness of the upper cylinder 3 is 8 mm.
  • the water retaining ring 4 is a thin-walled cylindrical structure coaxial with the upper cylinder 3, which is located inside the upper cylinder 3, and its upper end surface is connected with the lower surface of the upper cylinder end cover 23.
  • the inner diameter of the water retaining ring 4 is taken as The value is 0.2 meters to ensure that the charged droplets sprayed by the electrostatic atomization nozzle 1 will not directly hit the inner surface of the water retaining ring 4, and the thickness of the water retaining ring 4 is 2 mm.
  • the edge of the upper cylinder end cover 23 is provided with several end cover vent holes 24, so that the inner cylindrical space between the upper cylinder body 3 and the lower cylinder body 7 is in communication with the outside atmosphere, and the end cover vent holes 24 are along the upper cylinder
  • the body end cover 23 is evenly distributed in the circumferential direction, the inner diameter of the end cover vent hole 24 is 10 mm, and the number is 12.
  • the insulating support 2, the upper cylinder 3 and the water retaining ring 4 are made of insulating materials, such as rubber, polyethylene, polypropylene or polyvinyl chloride.
  • an anti-vortex plate 5 and a rectifying plate 6 are provided inside the lower cylinder cylinder 28.
  • the anti-vortex plate 5 is a cross structure composed of flat steel bars.
  • the rectifying plate 6 is a circular steel plate structure full of circular flow holes 37.
  • the vortex preventing plate 5 and the rectifying plate 6 are arranged horizontally from top to bottom inside the lower cylinder cylinder 28, and the liquid collected in the lower cylinder 7 passes through the vortex preventing plate 5 during downward flow. ⁇ rectifier board 6.
  • the upper end surface of the lower cylinder 28 is welded with a lower cylinder flange 27, and the lower cylinder flange 27 and the upper cylinder flange 26 are matched and fixedly connected, thereby realizing the connection between the upper cylinder 3 and the lower cylinder 7
  • the fixed connection between the lower cylinder flange 27 and the upper cylinder flange 26 is provided with a sealing gasket to prevent liquid leakage.
  • the lower cylinder body 7 and the lower cylinder body outlet pipe 8 are made of metal materials, such as carbon steel, stainless steel and aluminum alloy, and their outer surfaces should be treated with polymer spraying to improve their insulation performance with the outside world.
  • the wall thickness of the anti-vortex plate 5, the rectifying plate 6, the lower cylinder 7 and the lower cylinder water outlet pipe 8 are all 6 mm.
  • the upper cylinder 25 and the lower cylinder 28 are both thin-walled cylindrical structures, wherein the inner diameter D 1 of the lower cylinder is 0.4 meters, and the lower cylinder 8 is a cylinder.
  • the inner diameter d 1 of the outlet pipe of the lower cylinder is 0.0035 meters, and the length L 1 of the outlet pipe of the lower cylinder is 0.015 meters.
  • the design formula of the height H of the lower cylinder is as follows:
  • a horizontal round steel plate structure rectifying plate 6 is arranged inside the lower cylinder 28.
  • the surface of the rectifying plate 6 is provided with a certain number of equally spaced circular flow holes 37, of which the circular flow
  • the hole diameter d 2 , the number of circular flow holes N and the inner diameter D 1 of the lower cylinder should satisfy the following relationship:
  • the inner diameter D 1 of the lower cylinder of the embodiment is 0.4 meters, the diameter d 2 of the circular flow holes is 60 mm, and the number of circular flow holes N is 21, which meets the above design requirements.
  • the liquid level tube 11 is located on the side of the lower cylinder 7, which is composed of a horizontal short tube 34 and a vertical long tube 35 welded together.
  • the horizontal short tube 34 is arranged in a horizontal direction, and the vertical long tube 35 is vertical.
  • the inner diameter of the horizontal short tube 34 and the vertical long tube 35 is 0.1 meters, and the wall thickness is 6 mm.
  • the upper end of the vertical long pipe 35 is provided with a liquid level pipe vent 36, so that the inside of the liquid level pipe 11 is communicated with the outside atmosphere, and at the same time, the horizontal short pipe 34 communicates with the inside of the lower cylinder 7, so that the liquid level pipe 11
  • the inside, the inside of the lower cylinder 7 and the outside atmosphere are connected to each other, the center height of the liquid level pipe vent hole 36 should be higher than the end surface height of the lower cylinder flange 27, and the diameter of the liquid level pipe vent hole 36 is 50 Mm.
  • An ultrasonic level gauge 12 is installed at the upper end of the vertical long pipe 35, and the probe direction of the ultrasonic level gauge 12 is vertically downward.
  • the ultrasonic level gauge 12 can measure the liquid level inside the liquid level pipe 11 and the lower cylinder 7 in real time.
  • the liquid level tube 11 is made of metal materials, such as carbon steel, stainless steel, and aluminum alloy, and its outer surface should be sprayed with polymer.
  • the ammeter 9 is a microammeter or a picoammeter. The input end of the ammeter 9 is connected to the outer surface of the lower cylinder flange 27 through a metal wire 10, and the output end of the ammeter 9 is connected to the ground terminal.
  • the water storage tank 13 is a cylindrical container with a closed bottom and an open upper end. It is located below the outlet pipe 8 of the lower cylinder.
  • the water storage tank 13 passes through the water supply pipe 14, the liquid pump 15, and the throttle The valve 18, the filter 19, and the flow meter 20 communicate with the inlet of the electrostatic atomization nozzle 1.
  • the flow meter 20 is located near the entrance of the electrostatic atomization nozzle 1, and the spray flow rate of the electrostatic atomization nozzle 1 is obtained in real time through the flow meter 20.
  • the liquid in the water storage tank 13 is driven by the liquid pump 15 to flow through the water supply pipe 14, the throttle valve 18, the filter 19, the flow meter 20 and the electrostatic atomization nozzle 1, and then sprayed by the electrostatic atomization nozzle 1 to the lower cylinder 7 It flows into the water storage tank 13 through the outlet pipe 8 of the lower cylinder again, thereby forming a closed loop of liquid flow inside the measuring system.
  • the water supply pipe 14 is connected to the branch pipe 16.
  • the branch pipe 16 is provided with a pressure regulating valve 17, which can adjust the output pressure of the liquid pump 15 and The spray pressure of the electrostatic atomization nozzle 1.
  • the outlet of the branch pipe 16 is located above the water storage tank 13 and faces the upper opening direction of the water storage tank 13 so that part of the liquid can flow back into the water storage tank 13 through the branch pipe 16 and the pressure regulating valve 17.
  • the water storage tank 13 is made of metal materials, such as carbon steel, stainless steel, and aluminum alloy.
  • the water supply pipe 14 and the branch pipe 16 are made of insulating materials, such as rubber, polyethylene, polypropylene, or polyvinyl chloride.
  • the measurement system has two working modes:
  • the first working mode is used to measure the charge-to-mass ratio parameters of the electrostatic atomization nozzle 1 of the electrostatic sprayer in the working state.
  • the electrostatic atomization nozzle 1 and the electrostatic sprayer are directly connected, and the external electrostatic sprayer is electrostatic
  • the atomizing nozzle 1 provides the liquid to be sprayed.
  • the electrostatic atomizing nozzle 1 is a component of the electrostatic sprayer.
  • the electrostatic atomization nozzle 1 is an independent component to be tested, and is not connected to an external electrostatic sprayer.
  • the liquid pump 15 the liquid flows in the electrostatic atomization nozzle 1, lower cylinder 7, and The lower cylinder water outlet pipe 8, the water storage tank 13, and the water supply pipe 14 form a closed loop inside to provide liquid for the continuous spraying of the electrostatic atomization nozzle 1 to ensure the spray test.
  • the charge-to-mass ratio parameter of the electrostatic atomization nozzle 1 is measured in the second working mode, the liquid pump 15, the pressure regulating valve 17, and the throttle valve 18 are in the open state, and the computer simultaneously obtains the ammeter 9, the ultrasonic level gauge 12 and The measurement data of the flow meter 20.
  • the specific measurement method includes the following steps:
  • the computer obtains the current I data output by the ammeter 9 in real time according to the sampling period T 1 of the ammeter, and obtains the liquid level height h output by the ultrasonic level gauge 12 in real time according to the sampling period T 2 of the ultrasonic level gauge.
  • the computer t1, t1 is in the range of 30T-50T, where T is a larger value of 2 T 1 and T.
  • the computer first calculates the fluctuation coefficient of the array h1 with Where max(h1) is the maximum value in the array h1, min(h1) is the minimum value in the array h1, h1 m is the median of the array h1.
  • the computer processes the arrays I1 and h1, and calculates the mean values of the arrays I1 and h1 respectively with And will with They are respectively output as the real-time current value and real-time liquid level height value of this spray test.
  • the fluctuation coefficients S1 h1 and S2 h1 cannot satisfy the conditions S1 h1 ⁇ 6% and 97% ⁇ S2 h1 ⁇ 103%, the computer will still with They are respectively output as the real-time current value and real-time liquid level height value of this spray test.
  • the fluctuation coefficients S1 h1 and S2 h1 are also output simultaneously to provide reference for the testers.
  • the specific measurement method includes the following steps:
  • the computer obtains the current I data output by the ammeter 9 in real time according to the sampling period T 1 of the ammeter, and obtains the liquid level height h output by the ultrasonic level gauge 12 in real time according to the sampling period T 2 of the ultrasonic level gauge.
  • the computer system calculates the charge-to-mass ratio parameter of the electrostatic atomization nozzle according to the real-time current value and the real-time liquid level height value output by the spray test.
  • the specific calculation formula of the charge-to-mass ratio parameter is as follows:
  • is the charge-to-mass ratio parameter of the electrostatic atomization nozzle, and the unit is microcoulomb/kg;
  • is the density of the liquid sprayed by the electrostatic atomization nozzle; the unit is kilogram per cubic meter;
  • d 1 is the inner diameter of the outlet pipe of the lower cylinder, in meters
  • g is the acceleration of gravity, the unit is meters/square second;
  • k 1 1080-1120

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种静电雾化喷头(1)荷质比测量***及其测量方法,该***包括静电雾化喷头(1)、上筒体(3)、下筒体(7)、电流表(9)、液位管(11)、超声液位计(12)、蓄水槽(13)和液泵(15),静电雾化喷头(1)、上筒体(3)和下筒体(7)从上至下依次联结,上筒体(3)和下筒体(7)通过法兰(26、27)联结,并形成一个两端开孔的内部筒状空间,电流表(9)通过金属导线(10)与下筒体法兰(27)相连,液位管(11)与下筒体(7)连通,液位管(11)上端装有超声液位计(12),蓄水槽(13)位于下筒体出水管(8)的下方,液泵(15)和供水管(14)可将蓄水槽(13)内的液体输送至静电雾化喷头(1),计算机实时获取和处理电流表(9)等部件的测量数据,给出了下筒体(7)高度H等参数的设计公式,以及荷质比参数的测量方法。该***具有荷质比参数的实时测量和监控功能,并具有精度高和响应快等特点。

Description

一种静电雾化喷头荷质比测量***及其测量方法 技术领域
本发明专利涉及一种静电雾化喷头荷质比测量***及其测量方法,具体的说,涉及一种适用于静电雾化喷头荷质比参数实时测量和监控功能的静电雾化喷头荷质比测量***及其测量方法,该测量***适用于农业植保喷雾和工业静电喷涂等领域的静电雾化喷头荷质比参数的实时测量和监控。
背景技术
静电雾化技术是一种广泛应用于农业植保喷雾、静电喷涂、静电雾化喷雾燃烧和工业静电除尘等领域的液体雾化喷施技术,基于静电雾化技术研制的静电雾化喷头具有喷雾流量小、粒径细、雾滴均匀、靶标易吸附和背面附着效果好等特点,尤其是在农业植保机械喷雾施药技术领域,采用静电雾化喷头的农业植保喷雾机械往往具有省药、省水、作业效率高和病虫害防治效果好等优点,因此,静电雾化喷头在背负式喷雾机、担架式喷雾机、弥雾机和果园喷雾机等产品上获得了较为广泛的应用。荷质比参数是决定静电雾化喷头产品性能的关键指标,其对于静电雾化喷头的喷洒效果具有重要影响。
传统的荷质比测量装置主要采用法拉第筒或网格作为雾滴收集部件,通过这些雾滴收集部件收集由喷头所喷洒出来的荷电雾滴,即通过法拉第筒或网格收集静电雾化喷头在一定时间(即喷雾时间,一般在数十秒至数分钟之间)内喷洒的荷电雾滴,并通过天平等称重仪对收集到的雾滴总质量进行测量,同时通过电流表测量流经法拉第筒或网格等部件的荷电雾滴所产生的电流值,通过电流值I、雾滴总质量m和喷雾时间t来进行喷头荷质比参数的计算,其计算公式如式(1)所示:
Figure PCTCN2019098340-appb-000001
式中:ε是静电雾化喷头的荷质比参数,单位是微库伦/千克;C是荷电雾滴的总电荷量,单位是微库伦;I是通过电流表所测量到的流经雾滴收集部件的荷电雾滴所产生的电流值,单位是微库伦/秒;m是静电雾化喷头喷洒的雾滴总质量,单位是千克;t是静电雾化喷头的喷雾时间,单位是秒。
传统测量装置存在的主要问题在于:
1、由于静电喷雾***的绝缘性等要求,传统测量装置无法通过流量计等仪器直接测量静电雾化喷头的喷雾流量参数,其主要采用称重法测量喷头在喷雾时间(数十秒至数分钟之间)内喷洒的雾滴总质量,并通过引入喷雾时间来计算静电雾化喷头在该时间内的平均荷质比参数,因而导致传统测量方法存在测量时间长和***响应慢等问题。
2、传统测量方法和测量装置需要通过法拉第筒或网格收集荷电雾滴,为了测量雾滴总质量,还需要将法拉第筒或网格上的收集的荷电雾滴转移或引导至称量所采用的容器内(量筒等),在荷电雾滴从法拉第筒或网格转移至容器的过程中,由于液体在法拉第筒或网格表面等表面的吸附、蒸发和漏失等因素,使得荷电雾滴在流入容器的过程中产生损耗,增加了雾滴总质量测量的***误差,从而增大了荷质比参数的测量误差,同时也增加了测量时间。
3、传统方法在计算荷质比参数时,需要引入喷雾时间来计算荷质比参数的数值,但现有测量***在喷雾***启闭的控制、喷雾参数的稳定性和喷雾时间的测量等方面还十分粗糙,甚至部分喷雾***采用手工操作,从而导致喷雾时间的测量也存在一定误差,从而使得荷质比参数的测量误差进一步增大。
4、在传统测量装置中,液体在静电雾化喷头、法拉第筒(或网格)、出水管道和称重用容器等部件内流动或存储,液体在称重过程中或者称重以后需要由人工进行处理,各个部件没有形成封闭的液体循环***,静电雾化喷头喷洒的液体无法循环使用,在面对有特殊要求的试验用液体或进行长时间的试验时,容易出现液体泄露、污染或浪费严重等问题。
在以往有关荷质比参数测量装置和方法的专利文献中,主要以传统的荷质比测量装置和测量方法为主,典型的专利文献情况总结如下:
申请号201210457633.6的中国专利文献公开了一种静电喷雾荷质比测量装置,该装置由集液筒、量筒、精密电子天平、皮安表、数据采集和处理***组成,测量装置通过集液筒收集荷电雾滴,集液筒由集液外筒、集液内筒和内外筒之间的绝缘体组成,集液筒内部的液体通过软管输送至量筒,其通过精密电子天平对于量筒内的雾滴总质量进行称重,并采用皮安表进行电流测量,该测量装置属于一种传统的荷质比测量装置。
申请号201310359398.3的中国专利文献公开了一种易拆装荷电雾滴荷质比实时测量装置,该装置由可移动底座、支架、支撑板、挂架、电流表托盘、天平托盘和法拉第筒组成,该装置同样采用法拉第筒收集荷电雾滴,采用天平测量雾滴总质量,和传统测试装置相比,该专利通过设计的移动底座等机构使得测量装置具有易拆卸和移动的功能,该专利内容属于传统测量装置的一种改良设计。
申请号201310690188.2的中国专利文献公开了一种喷杆式多喷头静电喷雾荷质比测量设备,该设备由L型支架、垂直移动平台、水平滑台、法拉第筒、精密天平、电流表和升降机构等组成,该装置采用法拉第筒收集荷电雾滴,并使用精密天平测量雾滴总质量,该发明在传统测量装置基础上增加了水平移动和竖直升降功能,使得该测量装置适用于喷杆式多喷头的荷质比测量,该专利内容也属于传统测量装置的一种改良设计。
申请号201610007625.X的中国专利文献公开了一种测量静电喷雾雾滴荷质比的装置,该装置主要由法拉第筒、电荷量表、重量传感器、出水管道、液体收集桶和计算机组成,其同样采用法拉第筒收集荷电雾滴,并通过出水管道将法拉第筒中的荷电雾滴输送到液体收集桶中,然后利用重量传感器测量液体收集桶里的雾滴总质量,该装置也是属于一种传统的荷质比测量装置。
申请号201810322387.0的中国专利文献公开了一种航空植保静电喷雾雾滴荷质比检测试验台,该试验台由网状荷质比收集箱、集水槽、静电喷雾***、皮安表和计算机等组成,该试验台主要采用网状荷质比收集箱收集荷电雾滴,该网状荷质比收集箱由多层铜网组成,皮安表通过与铜网连接从而可以测量流经铜网的荷电雾滴所产生的电流,该装置集水槽将收集的雾滴集中起来,便于称重,该试验台也是属于一种传统的荷质比测量装置。
发明内容
荷质比参数是静电雾化喷头性能的关键指标,传统的荷质比测量装置和测量方法存在着测量时间长、响应慢和精度差等问题。为了提高静电雾化喷头荷质比参数测量***的实时性和精度,本发明基于液体流经容器管嘴时的恒定自由出流原理设计了一种静电雾化喷头荷质比测量***及其测量方法,其具有静电雾化喷头荷质比参数的实时测量和监控功能,并具有精度高和响应快等特点。
本发明的技术方案是:
一、测量***的结构方案
一种静电雾化喷头荷质比测量***,该测量***包括静电雾化喷头、绝缘支架、上筒体、挡水环、防涡板、整流板、下筒体、下筒体出水管、电流表、金属导线、液位管、超声液位计、蓄水槽、供水管、液泵、分支管道、压力调节阀、节流阀、过滤器、流量计和计算机。上筒体由渐扩形的上筒体端盖和薄壁圆筒形的上筒体圆筒沿圆周方向联结而成,上筒体的下端为开口,上筒体的上端为上筒体端盖,上筒体端盖的中心开有端盖中心孔。下筒体由薄壁圆筒形的下筒体圆筒和渐缩形的下筒体底盖沿圆周方向焊接而成,下筒体的上端为开口,下筒体底盖的下端与下筒体出水管相连接。上筒体和下筒体通过上筒体法兰和下筒体法兰相联结,由此在上筒体和下筒体之间形成一个两端开孔的内部筒状空间。静电雾化喷头、上筒体和下筒体从上至下依次联结,静电雾化喷头安装在端盖中心孔的中心位置,其荷电雾滴喷洒方向竖直向下。电流表通过金属导线与下筒体法兰相连,从而可以实时测量由静电雾化喷头喷洒在下筒体内部的荷电雾滴所产生的电流。静电雾化喷头喷洒的荷电雾滴聚集在下筒体的内部,在液体自身重力的影响下,液体通过下筒体出水管流向蓄水槽,蓄水槽的底端与供水管和液泵连通,蓄水槽内的液体能够通过液泵输送至静电雾化喷头的进口,并再次通过静电雾化喷头喷洒到下筒体的内部。供水管和分支管道相连通,液泵输送的部分液体通过分支管道回流到蓄水槽。液位管呈L形,其由薄壁圆管结构的水平短管和竖直长管组成,水平短管与下筒体的内部连通,竖直长管的上端安装有超声液位计,通过超声液位计可实时测量液位管和下筒体内部的液位高度值。电流表、超声液位计和流量计通过数据线连接到计算机,通过计算机实时获取和处理电流表、超声液位计和流量计的测量数据,实现对静电雾化喷头荷质比参数进行实时测量和监控的功能。
上筒体通过绝缘支架固定在顶部固定端,上筒体圆筒的内径与下筒体圆筒内径D 1相等。上筒体的壁厚取值为8毫米-12毫米。挡水环是一个与上筒体同轴的薄壁圆筒形结构,其位于上筒体的内部,其上端面与上筒体端盖的下表面联结。挡水环的内径数值为下筒体圆筒内径D 1的一半,挡水环的厚度取值为2毫米-4毫米。上筒体端盖的边缘开设有若干个端盖通气孔,使得上筒体和下筒体之间的内部筒状空间与外界大气相联通,端盖通气孔沿着上筒体端盖的边缘圆周方向呈均匀分布。绝缘支架、上筒体和挡水环由绝缘材料制作而成,例如橡胶、聚乙烯、 聚丙烯或聚氯乙烯材料。
下筒体圆筒的内部设置有防涡板和整流板,防涡板为扁平钢条所组成的十字交叉结构,整流板为一个布满圆形过流孔的圆形钢板结构。防涡板和整流板从上至下依次水平布置在下筒体圆筒的内部,聚集在下筒体内部的液体在向下流动过程中分别经过防涡板和整流板。下筒体圆筒的上部端面焊接有下筒体法兰,下筒体法兰和上筒体法兰之间配对固定联结,由此实现上筒体和下筒体之间的同轴固定联结,下筒体法兰和上筒体法兰之间设置有密封垫,防止液体的泄露。下筒体和下筒体出水管由金属材料制作而成,例如碳钢、不锈钢和铝合金材料,其外表面应进行聚合物喷涂处理,提高其与外界的绝缘性能。下筒体和下筒体出水管的壁厚取值为5毫米-8毫米。
上筒体圆筒和下筒体圆筒均为薄壁圆筒形结构,下筒体出水管为一个圆柱形短管结构,其中下筒体圆筒内径D 1的取值范围为0.3米-0.6米之间,下筒体出水管内径d 1的取值范围为0.001米-0.005米,下筒体出水管长度L 1的取值范围为4d 1-5d 1,下筒体圆筒、下筒体底盖和下筒体出水管从上至下依次联结,下筒体高度H的设计公式如下:
Figure PCTCN2019098340-appb-000002
式中:H是下筒体高度,单位是米;
q是测量***的设计喷雾流量,单位是立方米/秒;
g是重力加速度,单位是米/平方秒;
d 1是下筒体出水管内径,单位是米;
k 1是修正系数,k 1=1.6~2.4。
下筒体圆筒内部布置有水平的圆形钢板结构的整流板,整流板表面开设有一定数量的圆形过流孔,其中圆形过流孔直径d 2、圆形过流孔数量N和下筒体圆筒内径D 1之间应满足以下关系:
Figure PCTCN2019098340-appb-000003
式中:d 2是圆形过流孔直径,单位是米;
N是圆形过流孔数量;
D 1是下筒体圆筒内径,单位是米。
液位管位于下筒体的侧面,其由水平短管和竖直长管焊接组成,水平短管呈水平方向布置,竖直长管呈竖直方向布置。竖直长管的上端开设有液位管通气孔,使得液位管的内部与外界大气相连通,与此同时水平短管与下筒体的内部连通,从而使得液位管内部、下筒体内部和外界大气之间互相连通,液位管通气孔的中心高度应高于下筒体法兰的端面高度。竖直长管的上端安装有超声液位计,超声液位计的探头方向竖直向下,通过超声液位计可实时测量液位管和下筒体内部的液位高度值。液位管由金属材料制作而成,例如碳钢、不锈钢和铝合金材料,其外表面应进行聚合物喷涂处理。液位管的壁厚取值为4毫米-6毫米,液位管的壁厚值应不大于下筒体的壁厚值。电流表选择微安表或者皮安表,电流表的输入端通过金属导线与下筒体法兰的外表面相连,电流表的输出端与接地端相连。
蓄水槽为一个底端封闭、上端开口的圆筒形容器,其位于下筒体出水管的下方,蓄水槽的内部通过供水管、液泵、节流阀、过滤器和流量计与静电雾化喷头的进口相连通,流量计位于静电雾化喷头的进口附近,通过流量计实时获取静电雾化喷头的喷雾流量。液泵和节流阀之间为供水管,供水管与分支管道相连,分支管道上设置有压力调节阀,通过控制压力调节阀可以调节液泵的输出压力和静电雾化喷头的喷雾压力。分支管道的出口朝向蓄水槽的上端开口方向,使得部分液体可以通过分支管道和压力调节阀回流到蓄水槽内部。蓄水槽由金属材料制作而成,例如碳钢、不锈钢和铝合金材料,供水管和分支管道由绝缘材料制作而成,例如橡胶、聚乙烯、聚丙烯或聚氯乙烯材料。
二、荷质比测量***的工作原理
1、荷质比测量***的工作模式
按照静电雾化喷头和测量***工作状态的不同,该测量***具有以下两种工作模式:
第一种工作模式,用于测量静电喷雾机的静电雾化喷头在工作状态下的荷质比参数,此时静电喷雾机和静电雾化喷头直接连接,静电雾化喷头是静电喷雾机的组成部分,在喷雾试验时,静电雾化喷头喷洒的液体由静电喷雾机提供。在第一种工作模式下进行静电雾化喷头的荷质比参数测量时,液泵、压力调节阀和节流阀处于关闭状态。
第二种工作模式,静电雾化喷头作为一个独立的待测部件,不与外部的静电喷雾机相连接,在液泵的驱动下,液体在静电雾化喷头、下筒体、下筒体出水管、蓄水槽和供水管部件内部形成闭式循环,为静电雾化喷头的持续喷洒提供液体,保证喷雾试验的进行,同时通过控制压力调节阀调节液泵的输出压力和静电雾化喷头的喷雾压力,实现不同喷雾压力下的荷质比参数测量。在第二种工作模式下进行静电雾化喷头的荷质比参数测量时,液泵、压力调节阀和节流阀处于开启状态。
2、荷质比测量***的工作原理
当静电雾化喷头处于第一种工作模式或第二种工作模式时,静电雾化喷头向下喷洒出来的荷电雾滴都聚集在下筒体的内部,在重力的作用下,聚集在下筒体内部的液体通过下筒体出水管流向蓄水槽,而荷电雾滴所携带的电荷也将通过下筒体、金属导线和电流表流向地面,因此通过电流表可以实时测量由静电雾化喷头喷洒在下筒体内部的荷电雾滴所产生的电流值。在初始喷雾阶段,下筒体内部的液位高度比较低,通过下筒体出水管流向蓄水槽的液体流量小于静电雾化喷头的喷雾流量,随着喷雾试验的持续,下筒体内部的液位高度逐渐增高,按照液体流经容器管嘴时的恒定自由出流原理,通过下筒体出水管流向蓄水槽的液体流量也随之增大,当下筒体内部的液位高度处于某一定值时,通过下筒体出水管流向蓄水槽的液体流量将和静电雾化喷头的喷雾流量相等,此时,下筒体内部的流动处于稳定状态,下筒体内部的液位高度值和电流表的电流值也处于稳定状态。按照液体流经容器管嘴时的恒定自由出流原理可知,喷雾流量Q可通过如下计算公式(2)获得:
Figure PCTCN2019098340-appb-000004
式中:Q是静电雾化喷头的喷雾流量,单位是立方米/秒;k 0是流量因子,其为无量纲数;d 1是下筒体出水管内径,单位是米;g是重力加速度,单位是米/平方秒;h是下筒体内部的液位高度值,单位是米。
基于静电雾化喷头荷质比参数的定义,通过引入喷雾流量的计算公式(2),本发明通过计算公式(3)计算荷质比参数:
Figure PCTCN2019098340-appb-000005
式中:ε是静电雾化喷头的荷质比参数,单位是微库伦/千克;C是荷电雾 滴的总电荷量,单位是微库伦;I是通过电流表所测量到的流经雾滴收集部件的荷电雾滴所产生的电流值,单位是安培;m是静电雾化喷头喷洒的雾滴总质量,单位是千克;Q是静电雾化喷头的喷雾流量,单位是立方米/秒;ρ是静电雾化喷头喷洒的液体密度;单位是千克每立方米;k 1是修正系数,
Figure PCTCN2019098340-appb-000006
k 0是流量因子,其为无量纲数;d 1是下筒体出水管内径,单位是米;g是重力加速度,单位是米/平方秒;h是下筒体内部的液位高度值,单位是米。
由上述阐述可知,通过超声液位计可以测量下筒体内部的液位高度值,并基于液体流经容器管嘴时的恒定自由出流原理,间接计算获得此时的喷雾流量值,与此同时,通过电流表测量由静电雾化喷头喷洒在下筒体内部的荷电雾滴所产生的电流值。在此基础上,由喷雾流量值和电流值可获得静电雾化喷头在此时的荷质比参数值,从而实现了对静电雾化喷头荷质比参数的实时测量和监控。
三、荷质比测量***的测量方法
1、测量数据获取方法
根据测量***的工作模式,其测量数据获取方法分为以下两种:
(1)第一种工作模式的测量数据获取方法
当测量***处于第一种工作模式时,通过计算机实时获取电流表和超声液位计的测量数据,具体的测量方法包括以下步骤:
在静电雾化喷头进行喷雾试验时,计算机按照电流表采样周期T 1实时获取电流表输出的电流I数据,按照超声液位计采样周期T 2实时获取超声液位计输出的液位高度h数据,计算机的采样时长为t1,t1的取值范围为30T-50T,其中T为T 1和T 2中的较大值;
在***试验时,计算机在采样时长t1内获取电流I和液位高度h数据分别生成数组I1=[I1 1、I1 2、······I1 n]和h1=[h1 1、h1 2、······h1 n];计算机首先计算数组h1的波动系数
Figure PCTCN2019098340-appb-000007
Figure PCTCN2019098340-appb-000008
其中max(h1)为数组h1中的最大值,min(h1)为数组h1中的最小值,
Figure PCTCN2019098340-appb-000009
h1 m为数组h1的中位数;
当波动系数S1 h1和S2 h1同时满足条件S1 h1≤6%和97%≤S2 h1≤103%时,则计算机对数组I1和h1进行处理,分别计算获得数组I1和h1的均值
Figure PCTCN2019098340-appb-000010
Figure PCTCN2019098340-appb-000011
并将
Figure PCTCN2019098340-appb-000012
Figure PCTCN2019098340-appb-000013
分别作为本次喷雾试验的实时电流值和实时液位高度值输出;
当波动系数S1 h1和S2 h1不能同时满足条件S1 h1≤6%和97%≤S2 h1≤103%时,计算机还是将
Figure PCTCN2019098340-appb-000014
Figure PCTCN2019098340-appb-000015
分别作为本次喷雾试验的实时电流值和实时液位高度值输出,与此同时,将波动系数S1 h1和S2 h1也同步输出,为试验人员提供参考。
(2)第二种工作模式的测量数据获取方法
当测量***处于第二种工作模式时,通过计算机实时获取电流表、超声液位计和流量计的测量数据,具体的测量方法包括以下步骤:
在静电雾化喷头进行喷雾试验时,计算机按照电流表采样周期T 1实时获取电流表输出的电流I数据,按照超声液位计采样周期T 2实时获取超声液位计输出的液位高度h数据,按照流量计采样周期T 3实时获取流量计输出的喷雾流量q数据,计算机的采样时长为t2,t2的取值范围为30T-50T,其中T为T 1、T 2和T 3中的最大值;
在***试验时,计算机在采样时长t2内获取电流I、液位高度h和喷雾流量q数据分别生成数组I2=[I2 1、I2 2、······I2 n]、h2=[h2 1、h2 2、······h2 n]和q1=[q1 1、q1 2、······q1 n];计算机首先计算数组h2和q1的波动系数
Figure PCTCN2019098340-appb-000016
Figure PCTCN2019098340-appb-000017
其中max(h2)为数组h2中的最大值,min(h2)为数组h2中的最小值,
Figure PCTCN2019098340-appb-000018
Figure PCTCN2019098340-appb-000019
h2 m为数组h2的中位数,max(q1)为数组q1中的最大值,min(q1)为数组q1中的最小值,
Figure PCTCN2019098340-appb-000020
q1 m为数组q1的中位数;
当波动系数S1 h2、S2 h2、S1 q1和S2 q1同时满足条件S1 h2≤6%、97%≤S2 h2≤103%、S1 q1≤3%和98%≤S2 q1≤102%时,则计算机对数组I2和h2进行处理,分别计算获得数组I2和h2的均值
Figure PCTCN2019098340-appb-000021
Figure PCTCN2019098340-appb-000022
并将
Figure PCTCN2019098340-appb-000023
Figure PCTCN2019098340-appb-000024
分别作为本次喷雾试验的实时电流值和实时液位高度值输出;
当波动系数S1 h2、S2 h2、S1 q1和S2 q1不能同时满足条件S1 h2≤6%、97%≤S2 h2≤103%、S1 q1≤3%和98%≤S2 q1≤102%时,计算机还是将
Figure PCTCN2019098340-appb-000025
Figure PCTCN2019098340-appb-000026
分别作 为本次喷雾试验的实时电流值和实时液位高度值输出,与此同时,将波动系数S1 h2、S2 h2、S1 q1和S2 q1也同步输出,为试验人员提供参考。
2、荷质比参数的测量计算方法
当测量***处于第一种工作模式或第二种工作模式时,计算机***根据喷雾试验输出的实时电流值和实时液位高度值计算静电雾化喷头的荷质比参数,根据上述计算公式(3)可知,荷质比参数的具体计算公式如下:
Figure PCTCN2019098340-appb-000027
式中:ε是静电雾化喷头的荷质比参数,单位是微库伦/千克;
ρ是静电雾化喷头喷洒的液体密度;单位是千克每立方米;
d 1是下筒体出水管内径,单位是米;
g是重力加速度,单位是米/平方秒;
k 1是修正系数,k 1=1080-1120;
Figure PCTCN2019098340-appb-000028
Figure PCTCN2019098340-appb-000029
是测量***试验过程中的实时电流值,单位是安培;
Figure PCTCN2019098340-appb-000030
Figure PCTCN2019098340-appb-000031
是测量***试验过程中的实时液位高度值,单位是米。
相对于现有技术中的荷质比参数的传统测量装置和方法而言,本发明提供的喷头静电雾化喷头荷质比测量***及其测量方法具有以下特点:
(1)基于液体流经容器管嘴时的恒定自由出流原理,本发明设计了一种能够实时获取静电雾化喷头喷雾流量的测量***,该***采用上筒体和下筒体作为雾滴收集部件,借助于下筒体、液位管和超声液位计等部件,实时测量下筒体内的液位高度来间接测量静电雾化喷头的喷雾流量,实现了静电雾化喷头喷雾流量的外部实时测量,从而不需要通过静电喷雾机内部安装流量计等方式测量喷雾流量。
(2)本发明提供的测量***采用上筒体和下筒体作为雾滴收集部件,并直接通过下筒体侧面的液位管、超声液位计等部件实现喷雾流量的实时测量,试验过程中不需要将荷电雾滴转移或引导至其他容器进行称量,试验过程更为简单,消除了荷电雾滴在转移或引导过程中的吸附、蒸发和漏失等因素造成的测量误差。
(3)本发明提供的测量***通过电流值I和喷雾流量Q的引入,可以直接计算获得静电雾化喷头的荷质比参数,由于该测量***的采样时长(数毫秒至数十毫秒之间)非常短,因而该测量***具有良好的实时性。与此同时,基于计算公式(3)的荷质比测量方法消除了传统测量方法中的喷雾时间,减少了误差来源,简化了试验流程。
(4)在本发明提供的测量***中,静电雾化喷头、下筒体、下筒体出水管、蓄水槽、供水管、液泵和压力调节阀等部件组成了一个封闭的液体循环***,液体在测量***内部实现了封闭循环。当静电雾化喷头作为一个独立的待测部件,并且不与外部的静电喷雾机相连接时,测量***可以为静电雾化喷头的持续喷洒提供具有一定喷雾压力的液体,液体可以在测量***内部循环使用,不易出现液体泄漏和污染等问题,同时还具有喷雾压力可调节等优点。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明:
图1是本发明一个实施例的总体方案结构示意图;
图2是同一个实施例的包括上筒体、下筒体和液位管等部件在内的局部剖视图;
图3是同一个实施例的防涡板径向剖视图;
图4是同一个实施例的整流板径向剖视图;
图中:1.静电雾化喷头,2.绝缘支架,3.上筒体,4.挡水环,5.防涡板,6.整流板,7.下筒体,8.下筒体出水管,9.电流表,10.金属导线,11.液位管,12.超声液位计,13.蓄水槽,14.供水管,15.液泵,16.分支管道,17.压力调节阀,18.节流阀,19.过滤器,20.流量计,21.静电喷雾机供水管,22.端盖中心孔,23.上筒体端盖,24.端盖通气孔,25.上筒体圆筒,26.上筒体法兰,27.下筒体法兰,28.下筒体圆筒,29.下筒体底盖,30.下筒体圆筒内径D 1,31.下筒体高度H,32.下筒体出水管内径d 1,33.下筒体出水管长度L 1,34.水平短管,35.竖直长管,36.液位管通气孔,37.圆形过流孔,38.圆形过流孔直径d 2
具体实施方式
图1至图4共同确定了这个测量***实施例的结构,该实施例的设计喷雾流量q=1.2升/分钟=2×10 -5立方米/秒,下面结合本发明实施例的附图,对本发明的 静电雾化喷头荷质比测量***和测量方法进行清楚、完整地描述:
如图1和图2所示,为本发明实施例提供的静电雾化喷头荷质比测量***示意图,该测量***由静电雾化喷头1、绝缘支架2、上筒体3、挡水环4、防涡板5、整流板6、下筒体7、下筒体出水管8、电流表9、金属导线10、液位管11、超声液位计12、蓄水槽13、供水管14、液泵15、分支管道16、压力调节阀17、节流阀18、过滤器19、流量计20和计算机组成。上筒体3由渐扩形的上筒体端盖23和薄壁圆筒形的上筒体圆筒25组成,上筒体3的下端为开口,上筒体3的上端为上筒体端盖23,上筒体端盖23的中心开有端盖中心孔22。下筒体7由薄壁圆筒形的下筒体圆筒28和渐缩形的下筒体底盖29沿圆周方向焊接而成,下筒体7的上端为开口,下筒体底盖29的下端与下筒体出水管8相连接。上筒体3和下筒体7沿竖直方向通过上筒体法兰26和下筒体法兰27相联结,上筒体3和下筒体7之间形成一个两端开孔的内部筒状空间。静电雾化喷头1、上筒体3和下筒体7沿竖直方向从上至下依次联结,静电雾化喷头1安装在端盖中心孔22的中心位置,其荷电雾滴喷洒方向竖直向下。电流表9通过金属导线10与下筒体法兰27相连。静电雾化喷头1喷洒的荷电雾滴聚集在下筒体7的内部,在液体自身重力的影响下,液体通过下筒体出水管8流向蓄水槽13,蓄水槽13的底端与供水管14和液泵15连通,蓄水槽13内的液体可以通过液泵15输送至静电雾化喷头1的进口,并再次通过静电雾化喷头1喷洒到下筒体7的内部。供水管14和分支管道16相连通,液泵15输送的部分液体通过分支管道16回流到蓄水槽13。液位管11呈L形,其由薄壁圆管结构的水平短管34和竖直长管35组成,水平短管34与下筒体7的内部连通,竖直长管35的上端安装有超声液位计12,通过超声液位计12可实时测量液位管11和下筒体7内部的液位高度值。电流表9、超声液位计12和流量计20通过数据线连接到计算机,通过计算机实时获取和处理电流表9、超声液位计12、和流量计20的测量数据,实现对静电雾化喷头1荷质比参数进行实时测量和监控的功能。
如图1所示,绝缘支架2分别与上筒体端盖23和顶部固定端之间固定联结,上筒体3通过绝缘支架2固定在顶部固定端。上筒体圆筒25的内径与下筒体圆筒内径D 1相等,上筒体圆筒25的内径取值为0.4米,上筒体3的壁厚取值为8毫米。挡水环4是一个与上筒体3同轴的薄壁圆筒形结构,其位于上筒体3的内 部,其上端面与上筒体端盖23的下表面联结,挡水环4的内径取值为0.2米,以保证静电雾化喷头1喷洒的荷电雾滴不会直接撞击在挡水环4的内表面上,挡水环4的厚度取值为2毫米。上筒体端盖23的边缘开设有若干个端盖通气孔24,使得上筒体3和下筒体7之间的内部筒状空间与外界大气相联通,端盖通气孔24沿着上筒体端盖23的圆周方向呈均匀分布,端盖通气孔24的内径为10毫米,数量为12。绝缘支架2、上筒体3和挡水环4由绝缘材料制作而成,例如橡胶、聚乙烯、聚丙烯或聚氯乙烯材料。
如图2所示,下筒体圆筒28的内部设置有防涡板5和整流板6。如图3所示,防涡板5为扁平钢条所组成的十字交叉结构,如图4所示,整流板6为一个布满圆形过流孔37的圆形钢板结构。如图2所示,防涡板5和整流板6从上至下依次水平布置在下筒体圆筒28的内部,聚集在下筒体7内部的液体在向下流动过程中分别经过防涡板5和整流板6。下筒体圆筒28的上部端面焊接有下筒体法兰27,下筒体法兰27和上筒体法兰26之间配对固定联结,由此实现上筒体3和下筒体7之间的固定联结,下筒体法兰27和上筒体法兰26之间设置有密封垫,防止液体的泄露。下筒体7和下筒体出水管8由金属材料制作而成,例如碳钢、不锈钢和铝合金材料,其外表面应进行聚合物喷涂处理,提高其与外界的绝缘性能。防涡板5、整流板6、下筒体7和下筒体出水管8的壁厚取值均为6毫米。
如图2所示,上筒体圆筒25和下筒体圆筒28均为薄壁圆筒形结构,其中下筒体圆筒内径D 1取值为0.4米,下筒体出水管8为一个圆柱形短管结构,下筒体出水管内径d 1取值为0.0035米,下筒体出水管长度L 1取值为0.015米,下筒体高度H的设计公式如下:
Figure PCTCN2019098340-appb-000032
式中:H是下筒体高度,单位是米;q是测量***的设计喷雾流量,单位是立方米/秒;g是重力加速度,单位是米/平方秒,实施例的重力加速度g取值9.81米/平方秒;d 1是下筒体出水管内径,单位是米;k 1是修正系数,k 1=1.6~2.4。按照上述设计公式,确定实施例的下筒体高度H取值范围为0.44米-0.65米,最终确定下筒体高度H取值为0.5米。
如图4所示,下筒体圆筒28内部布置有水平的圆形钢板结构的整流板6,整 流板6表面开设有一定数量等距分布的圆形过流孔37,其中圆形过流孔直径d 2、圆形过流孔数量N和下筒体圆筒内径D 1之间应满足以下关系:
Figure PCTCN2019098340-appb-000033
式中:d 2是圆形过流孔直径,单位是米;N是圆形过流孔数量;D 1是下筒体圆筒内径,单位是米。实施例的下筒体圆筒内径D 1取值为0.4米,圆形过流孔直径d 2取值为60毫米,圆形过流孔数量N为21,满足上述设计要求。
如图2所示,液位管11位于下筒体7的侧面,其由水平短管34和竖直长管35焊接组成,水平短管34呈水平方向布置,竖直长管35呈竖直方向布置,水平短管34和竖直长管35的内径取值为0.1米,壁厚取值为6毫米。竖直长管35的上端开设有液位管通气孔36,使得液位管11的内部与外界大气相连通,与此同时水平短管34与下筒体7的内部连通,从而使得液位管11内部、下筒体7内部和外界大气之间互相连通,液位管通气孔36的中心高度应高于下筒体法兰27的端面高度,液位管通气孔36的直径取值为50毫米。竖直长管35的上端安装有超声液位计12,超声液位计12的探头方向竖直向下,通过超声液位计12可实时测量液位管11和下筒体7内部的液位高度值。液位管11由金属材料制作而成,例如碳钢、不锈钢和铝合金材料,其外表面应进行聚合物喷涂处理。电流表9选择微安表或者皮安表,电流表9的输入端通过金属导线10与下筒体法兰27的外表面相连,电流表9的输出端与接地端相连。
如图2所示,蓄水槽13为一个底端封闭、上端开口的圆筒形容器,其位于下筒体出水管8的下方,蓄水槽13的内部通过供水管14、液泵15、节流阀18、过滤器19和流量计20与静电雾化喷头1的进口相连通,流量计20位于静电雾化喷头1的进口附近,通过流量计20实时获取静电雾化喷头1的喷雾流量。蓄水槽13内的液体在液泵15驱动下流经供水管14、节流阀18、过滤器19、流量计20和静电雾化喷头1,然后由静电雾化喷头1喷洒到下筒体7的内部,并再次经过下筒体出水管8流向蓄水槽13,由此在测量***内部形成液体流动的闭式循环。液泵15和节流阀18之间为供水管14,供水管14与分支管道16相连,分支管道16上设置有压力调节阀17,通过控制压力调节阀17可以调节液泵15的输出压力和静电雾化喷头1的喷雾压力。分支管道16的出口位于蓄水槽13的 上方,并朝向蓄水槽13的上端开口方向,使得部分液体可以通过分支管道16和压力调节阀17回流到蓄水槽13内部。蓄水槽13由金属材料制作而成,例如碳钢、不锈钢和铝合金材料,供水管14和分支管道16由绝缘材料制作而成,例如橡胶、聚乙烯、聚丙烯或聚氯乙烯材料。
如图1所示,该测量***具有两种工作模式:
第一种工作模式,用于测量静电喷雾机的静电雾化喷头1在工作状态下的荷质比参数,此时静电雾化喷头1和静电喷雾机直接连接,由外部的静电喷雾机为静电雾化喷头1提供喷洒的液体,静电雾化喷头1是静电喷雾机的组成部分,在第一种工作模式下进行静电雾化喷头1的荷质比参数测量时,液泵15、压力调节阀17和节流阀18处于关闭状态,计算机仅仅获取电流表9和超声液位计12的测量数据,液体没有在测量***内部形成闭式循环。
第二种工作模式,静电雾化喷头1作为一个独立的待测部件,不与外部的静电喷雾机相连接,在液泵15的驱动下,液体在静电雾化喷头1、下筒体7、下筒体出水管8、蓄水槽13和供水管14等部件内部形成闭式循环,为静电雾化喷头1的持续喷洒提供液体,保证喷雾试验的进行。在第二种工作模式下进行静电雾化喷头1的荷质比参数测量时,液泵15、压力调节阀17和节流阀18处于开启状态,计算机同时获取电流表9、超声液位计12和流量计20的测量数据。
当测量***处于第一种工作模式时,通过计算机实时获取电流表和超声液位计的测量数据,具体的测量方法包括以下步骤:
在静电雾化喷头1进行喷雾试验时,计算机按照电流表采样周期T 1实时获取电流表9输出的电流I数据,按照超声液位计采样周期T 2实时获取超声液位计12输出的液位高度h数据,计算机的采样时长为t1,t1的取值范围为30T-50T,其中T为T 1和T 2中的较大值。
在***试验时,计算机在采样时长t1内获取电流I和液位高度h数据分别生成数组I1=[I1 1、I1 2、······I1 n]和h1=[h1 1、h1 2、······h1 n];计算机首先计算数组h1的波动系数
Figure PCTCN2019098340-appb-000034
Figure PCTCN2019098340-appb-000035
其中max(h1)为数组h1中的最大值,min(h1)为数组h1中的最小值,
Figure PCTCN2019098340-appb-000036
h1 m为数组h1的中位数。
当波动系数S1 h1和S2 h1同时满足条件S1 h1≤6%和97%≤S2 h1≤103%时,则计算 机对数组I1和h1进行处理,分别计算获得数组I1和h1的均值
Figure PCTCN2019098340-appb-000037
Figure PCTCN2019098340-appb-000038
并将
Figure PCTCN2019098340-appb-000039
Figure PCTCN2019098340-appb-000040
分别作为本次喷雾试验的实时电流值和实时液位高度值输出。当波动系数S1 h1和S2 h1不能同时满足条件S1 h1≤6%和97%≤S2 h1≤103%时,计算机还是将
Figure PCTCN2019098340-appb-000041
Figure PCTCN2019098340-appb-000042
分别作为本次喷雾试验的实时电流值和实时液位高度值输出,与此同时,将波动系数S1 h1和S2 h1也同步输出,为试验人员提供参考。
当测量***处于第二种工作模式时,通过计算机实时获取电流表、超声液位计和流量计的测量数据,具体的测量方法包括以下步骤:
在静电雾化喷头1进行喷雾试验时,计算机按照电流表采样周期T 1实时获取电流表9输出的电流I数据,按照超声液位计采样周期T 2实时获取超声液位计12输出的液位高度h数据,按照流量计采样周期T 3实时获取流量计20输出的喷雾流量q数据,计算机的采样时长为t2,t2的取值范围为30T-50T,其中T为T 1、T 2和T 3中的最大值。
在***试验时,计算机在采样时长t2内获取电流I、液位高度h和喷雾流量q数据分别生成数组I2=[I2 1、I2 2、······I2 n]、h2=[h2 1、h2 2、······h2 n]和q1=[q1 1、q1 2、······q1 n];计算机首先计算数组h2和q1的波动系数
Figure PCTCN2019098340-appb-000043
Figure PCTCN2019098340-appb-000044
其中max(h2)为数组h2中的最大值,min(h2)为数组h2中的最小值,
Figure PCTCN2019098340-appb-000045
Figure PCTCN2019098340-appb-000046
h2 m为数组h2的中位数,max(q1)为数组q1中的最大值,min(q1)为数组q1中的最小值,
Figure PCTCN2019098340-appb-000047
q1 m为数组q1的中位数。
当波动系数S1 h2、S2 h2、S1 q1和S2 q1同时满足条件S1 h2≤6%、97%≤S2 h2≤103%、S1 q1≤3%和98%≤S2 q1≤102%时,则计算机对数组I2和h2进行处理,分别计算获得数组I2和h2的均值
Figure PCTCN2019098340-appb-000048
Figure PCTCN2019098340-appb-000049
并将
Figure PCTCN2019098340-appb-000050
Figure PCTCN2019098340-appb-000051
分别作为本次喷雾试验的实时电流值和实时液位高度值输出。当波动系数S1 h2、S2 h2、S1 q1和S2 q1不能同时满足条件S1 h2≤6%、97%≤S2 h2≤103%、S1 q1≤3%和98%≤S2 q1≤102%时,计算机还是将
Figure PCTCN2019098340-appb-000052
Figure PCTCN2019098340-appb-000053
分别作 为本次喷雾试验的实时电流值和实时液位高度值输出,与此同时,将波动系数S1 h2、S2 h2、S1 q1和S2 q1也同步输出,为试验人员提供参考。
在试验过程中,计算机***根据喷雾试验输出的实时电流值和实时液位高度值计算静电雾化喷头的荷质比参数,荷质比参数的具体计算公式如下:
Figure PCTCN2019098340-appb-000054
式中:ε是静电雾化喷头的荷质比参数,单位是微库伦/千克;
ρ是静电雾化喷头喷洒的液体密度;单位是千克每立方米;
d 1是下筒体出水管内径,单位是米;
g是重力加速度,单位是米/平方秒;
k 1是修正系数,k 1=1080-1120;
Figure PCTCN2019098340-appb-000055
Figure PCTCN2019098340-appb-000056
是测量***试验过程中的实时电流值,单位是安培;
Figure PCTCN2019098340-appb-000057
Figure PCTCN2019098340-appb-000058
是测量***试验过程中的实时液位高度值,单位是米。

Claims (9)

  1. 一种静电雾化喷头荷质比测量***,该测量***包括静电雾化喷头、绝缘支架、上筒体、挡水环、防涡板、整流板、下筒体、下筒体出水管、电流表、金属导线、液位管、超声液位计、蓄水槽、供水管、液泵、分支管道、压力调节阀、节流阀、过滤器、流量计和计算机;上筒体由渐扩形的上筒体端盖和薄壁圆筒形的上筒体圆筒沿圆周方向联结而成,上筒体的下端为开口,上筒体的上端为上筒体端盖,上筒体端盖的中心开有端盖中心孔;下筒体由薄壁圆筒形的下筒体圆筒和渐缩形的下筒体底盖沿圆周方向焊接而成,下筒体的上端为开口,下筒体底盖的下端与下筒体出水管相连接;上筒体和下筒体通过上筒体法兰和下筒体法兰相联结,由此在上筒体和下筒体之间形成一个两端开孔的内部筒状空间;静电雾化喷头、上筒体和下筒体从上至下依次联结,静电雾化喷头安装在端盖中心孔的中心位置,其荷电雾滴喷洒方向竖直向下;电流表通过金属导线与下筒体法兰相连,从而可以实时测量由静电雾化喷头喷洒在下筒体内部的荷电雾滴所产生的电流;静电雾化喷头喷洒的荷电雾滴聚集在下筒体的内部,在液体自身重力的影响下,液体通过下筒体出水管流向蓄水槽,蓄水槽的底端与供水管和液泵连通,蓄水槽内的液体能够通过液泵输送至静电雾化喷头的进口,并再次通过静电雾化喷头喷洒到下筒体的内部;供水管和分支管道相连通,液泵输送的部分液体通过分支管道回流到蓄水槽;液位管呈L形,其由薄壁圆管结构的水平短管和竖直长管组成,水平短管与下筒体的内部连通,竖直长管的上端安装有超声液位计,通过超声液位计可实时测量液位管和下筒体内部的液位高度值;电流表、超声液位计和流量计通过数据线连接到计算机,通过计算机实时获取和处理电流表、超声液位计和流量计的测量数据,实现对静电雾化喷头荷质比参数进行实时测量和监控的功能。
  2. 如权利要求1所述的一种静电雾化喷头荷质比测量***,其特征在于,上筒体通过绝缘支架固定在顶部固定端,上筒体圆筒的内径与下筒体圆筒内径D 1相等;挡水环是一个与上筒体同轴的薄壁圆筒形结构,其位于上筒体的内部,其上端面与上筒体端盖的下表面联结;挡水环的内径数值为下筒体圆筒内径D 1的一半,上筒体端盖的边缘开设有若干个端盖通气孔,使得上筒体和下筒体之间的内部筒状空间与外界大气相联通,端盖通气孔沿着上筒体端盖的边缘圆周方向呈均匀分布;绝缘支架、上筒体和挡水环由绝缘材料制作而成;下筒体圆筒的内部设置有防涡板和整流板,防涡板为扁平钢条所组成的十字交叉结构,整流板为一 个布满圆形过流孔的圆形钢板结构;防涡板和整流板从上至下依次水平布置在下筒体圆筒的内部,聚集在下筒体内部的液体在向下流动过程中分别经过防涡板和整流板;下筒体圆筒的上部端面焊接有下筒体法兰,下筒体法兰和上筒体法兰之间配对固定联结,由此实现上筒体和下筒体之间的同轴固定联结,下筒体法兰和上筒体法兰之间设置有密封垫,防止液体的泄露;下筒体和下筒体出水管由金属材料制作而成,其外表面应进行聚合物喷涂处理,提高其与外界的绝缘性能。
  3. 如权利要求2所述的一种静电雾化喷头荷质比测量***,其特征在于,上筒体的壁厚取值为8毫米-12毫米;挡水环的厚度取值为2毫米-4毫米;所述绝缘材料为橡胶、聚乙烯、聚丙烯或聚氯乙烯材料;下筒体和下筒体出水管的壁厚取值为5毫米-8毫米;制备下筒体和下筒体出水管的金属材料为碳钢、不锈钢和铝合金材料。
  4. 如权利要求1所述的一种静电雾化喷头荷质比测量***,其特征在于,上筒体圆筒和下筒体圆筒均为薄壁圆筒形结构,下筒体出水管为一个圆柱形短管结构,其中下筒体圆筒内径D 1的取值范围为0.3米-0.6米之间,下筒体出水管内径d 1的取值范围为0.001米-0.005米,下筒体出水管长度L 1的取值范围为4d 1-5d 1,下筒体圆筒、下筒体底盖和下筒体出水管从上至下依次联结,下筒体高度H的设计公式如下:
    Figure PCTCN2019098340-appb-100001
    式中:H是下筒体高度,单位是米;
    q是测量***的设计喷雾流量,单位是立方米/秒;
    g是重力加速度,单位是米/平方秒;
    d 1是下筒体出水管内径,单位是米;
    k 1是修正系数,k 1=1.6~2.4;
    下筒体圆筒内部布置有水平的圆形钢板结构的整流板,整流板表面开设有一定数量的圆形过流孔,其中圆形过流孔直径d 2、圆形过流孔数量N和下筒体圆筒内径D 1之间应满足以下关系:
    Figure PCTCN2019098340-appb-100002
    式中:d 2是圆形过流孔直径,单位是米;
    N是圆形过流孔数量;
    D 1是下筒体圆筒内径,单位是米。
  5. 如权利要求1所述的一种静电雾化喷头荷质比测量***,其特征在于,液位管位于下筒体的侧面,其由水平短管和竖直长管焊接组成,水平短管呈水平方向布置,竖直长管呈竖直方向布置;竖直长管的上端开设有液位管通气孔,使得液位管的内部与外界大气相连通,与此同时水平短管与下筒体的内部连通,从而使得液位管内部、下筒体内部和外界大气之间互相连通,液位管通气孔的中心高度应高于下筒体法兰的端面高度;竖直长管的上端安装有超声液位计,超声液位计的探头方向竖直向下,通过超声液位计可实时测量液位管和下筒体内部的液位高度值;液位管由金属材料制作而成,其外表面应进行聚合物喷涂处理;电流表的输入端通过金属导线与下筒体法兰的外表面相连,电流表的输出端与接地端相连;蓄水槽为一个底端封闭、上端开口的圆筒形容器,其位于下筒体出水管的下方,蓄水槽的内部通过供水管、液泵、节流阀、过滤器和流量计与静电雾化喷头的进口相连通,流量计位于静电雾化喷头的进口附近,通过流量计实时获取静电雾化喷头的喷雾流量;液泵和节流阀之间为供水管,供水管与分支管道相连,分支管道上设置有压力调节阀,通过控制压力调节阀可以调节液泵的输出压力和静电雾化喷头的喷雾压力;分支管道的出口朝向蓄水槽的上端开口方向,使得部分液体可以通过分支管道和压力调节阀回流到蓄水槽内部;蓄水槽由金属材料制作而成,供水管和分支管道由绝缘材料制作而成。
  6. 如权利要求5所述的一种静电雾化喷头荷质比测量***,其特征在于,所述制备液位管和蓄水槽的金属材料为碳钢、不锈钢和铝合金材料;液位管的壁厚取值为4毫米-6毫米,液位管的壁厚值应不大于下筒体的壁厚值,电流表选择微安表或者皮安表;制备供水管和分支管道的绝缘材料为橡胶、聚乙烯、聚丙烯或聚氯乙烯材料。
  7. 如权利要求1所述的一种静电雾化喷头荷质比测量***,其特征在于,所述测量***具有以下两种工作模式:
    第一种工作模式,用于测量静电喷雾机的静电雾化喷头在工作状态下的荷质比参数,此时静电喷雾机和静电雾化喷头直接连接,静电雾化喷头是静电喷雾机的组成部分,在喷雾试验时,静电雾化喷头喷洒的液体由静电喷雾机提供;在第一种工作模式下进行静电雾化喷头的荷质比参数测量时,液泵、压力调节阀和节流阀处于关闭状态;
    第二种工作模式,静电雾化喷头作为一个独立的待测部件,不与外部的静电喷雾机相连接,在液泵的驱动下,液体在静电雾化喷头、下筒体、下筒体出水管、蓄水槽和供水管部件内部形成闭式循环,为静电雾化喷头的持续喷洒提供液体,保证喷雾试验的进行,同时通过控制压力调节阀调节液泵的输出压力和静电雾化喷头的喷雾压力,实现不同喷雾压力下的荷质比参数测量;在第二种工作模式下进行静电雾化喷头的荷质比参数测量时,液泵、压力调节阀和节流阀处于开启状态。
  8. 使用如权利要求1所述静电雾化喷头荷质比测量***进行测量的方法,其特征在于,
    当测量***处于第一种工作模式时,通过计算机实时获取电流表和超声液位计的测量数据,具体的测量方法包括以下步骤:
    在静电雾化喷头进行喷雾试验时,计算机按照电流表采样周期T 1实时获取电流表输出的电流I数据,按照超声液位计采样周期T 2实时获取超声液位计输出的液位高度h数据,计算机的采样时长为t1,t1的取值范围为30T-50T,其中T为T 1和T 2中的较大值;
    在***试验时,计算机在采样时长t1内获取电流I和液位高度h数据分别生成数组I1=[I1 1、I1 2、······I1 n]和h1=[h1 1、h1 2、······h1 n];计算机首先计算数组h1的波动系数
    Figure PCTCN2019098340-appb-100003
    Figure PCTCN2019098340-appb-100004
    其中max(h1)为数组h1中的最大值,min(h1)为数组h1中的最小值,
    Figure PCTCN2019098340-appb-100005
    h1 m为数组h1的中位数;
    当波动系数S1 h1和S2 h1同时满足条件S1 h1≤6%和97%≤S2 h1≤103%时,则计算机对数组I1和h1进行处理,分别计算获得数组I1和h1的均值
    Figure PCTCN2019098340-appb-100006
    Figure PCTCN2019098340-appb-100007
    并将
    Figure PCTCN2019098340-appb-100008
    Figure PCTCN2019098340-appb-100009
    分别作为本次喷雾试验的实时电流值和实时液位高度值输出;
    当波动系数S1 h1和S2 h1不能同时满足条件S1 h1≤6%和97%≤S2 h1≤103%时,计算机还是将
    Figure PCTCN2019098340-appb-100010
    Figure PCTCN2019098340-appb-100011
    分别作为本次喷雾试验的实时电流值和实时液位高度值输出,与此同时,将波动系数S1 h1和S2 h1也同步输出,为试验人员提供参考;
    当测量***处于第二种工作模式时,通过计算机实时获取电流表、超声液位 计和流量计的测量数据,具体的测量方法包括以下步骤:
    在静电雾化喷头进行喷雾试验时,计算机按照电流表采样周期T 1实时获取电流表输出的电流I数据,按照超声液位计采样周期T 2实时获取超声液位计输出的液位高度h数据,按照流量计采样周期T 3实时获取流量计输出的喷雾流量q数据,计算机的采样时长为t2,t2的取值范围为30T-50T,其中T为T 1、T 2和T 3中的最大值;
    在***试验时,计算机在采样时长t2内获取电流I、液位高度h和喷雾流量q数据分别生成数组I2=[I2 1、I2 2、······I2 n]、h2=[h2 1、h2 2、······h2 n]和q1=[q1 1、q1 2、······q1 n];计算机首先计算数组h2和q1的波动系数
    Figure PCTCN2019098340-appb-100012
    Figure PCTCN2019098340-appb-100013
    其中max(h2)为数组h2中的最大值,min(h2)为数组h2中的最小值,
    Figure PCTCN2019098340-appb-100014
    Figure PCTCN2019098340-appb-100015
    h2 m为数组h2的中位数,max(q1)为数组q1中的最大值,min(q1)为数组q1中的最小值,
    Figure PCTCN2019098340-appb-100016
    q1 m为数组q1的中位数;
    当波动系数S1 h2、S2 h2、S1 q1和S2 q1同时满足条件S1 h2≤6%、97%≤S2 h2≤103%、S1 q1≤3%和98%≤S2 q1≤102%时,则计算机对数组I2和h2进行处理,分别计算获得数组I2和h2的均值
    Figure PCTCN2019098340-appb-100017
    Figure PCTCN2019098340-appb-100018
    并将
    Figure PCTCN2019098340-appb-100019
    Figure PCTCN2019098340-appb-100020
    分别作为本次喷雾试验的实时电流值和实时液位高度值输出;
    当波动系数S1 h2、S2 h2、S1 q1和S2 q1不能同时满足条件S1 h2≤6%、97%≤S2 h2≤103%、S1 q1≤3%和98%≤S2 q1≤102%时,计算机还是将
    Figure PCTCN2019098340-appb-100021
    Figure PCTCN2019098340-appb-100022
    分别作为本次喷雾试验的实时电流值和实时液位高度值输出,与此同时,将波动系数S1 h2、S2 h2、S1 q1和S2 q1也同步输出,为试验人员提供参考。
  9. 如权利要求8所述的方法,其特征在于,当测量***处于第一种工作模式或第二种工作模式时,计算机***根据喷雾试验输出的实时电流值和实时液位高度值计算静电雾化喷头的荷质比参数,荷质比参数的具体计算公式如下:
    Figure PCTCN2019098340-appb-100023
    式中:ε是静电雾化喷头的荷质比参数,单位是微库伦/千克;
    ρ是静电雾化喷头喷洒的液体密度;单位是千克每立方米;
    d 1是下筒体出水管内径,单位是米;
    g是重力加速度,单位是米/平方秒;
    k 1是修正系数,k 1=1080-1120;
    Figure PCTCN2019098340-appb-100024
    Figure PCTCN2019098340-appb-100025
    是测量***试验过程中的实时电流值,单位是安培;
    Figure PCTCN2019098340-appb-100026
    Figure PCTCN2019098340-appb-100027
    是测量***试验过程中的实时液位高度值,单位是米。
PCT/CN2019/098340 2019-03-15 2019-07-30 一种静电雾化喷头荷质比测量***及其测量方法 WO2020186682A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19920240.9A EP3816640B1 (en) 2019-03-15 2019-07-30 Charge-to-mass ratio measurement system for electrostatic atomizing spray nozzle and measurement method therefor
US17/047,073 US11150288B2 (en) 2019-03-15 2019-07-30 System for measuring charge-to-mass ratio of electrostatic atomization nozzle and measurement method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910196052.3 2019-03-15
CN201910196052.3A CN109975623B (zh) 2019-03-15 2019-03-15 一种静电雾化喷头荷质比测量***及其测量方法

Publications (1)

Publication Number Publication Date
WO2020186682A1 true WO2020186682A1 (zh) 2020-09-24

Family

ID=67078844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098340 WO2020186682A1 (zh) 2019-03-15 2019-07-30 一种静电雾化喷头荷质比测量***及其测量方法

Country Status (4)

Country Link
US (1) US11150288B2 (zh)
EP (1) EP3816640B1 (zh)
CN (1) CN109975623B (zh)
WO (1) WO2020186682A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112595539A (zh) * 2020-12-31 2021-04-02 黑龙江省农业机械工程科学研究院 农用药液高压静电喷雾试验台

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975623B (zh) 2019-03-15 2020-12-18 江苏大学 一种静电雾化喷头荷质比测量***及其测量方法
CN110570391A (zh) * 2019-07-24 2019-12-13 天津科技大学 一种基于Image J的喷雾冷冻涂覆效果的图像分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345905A (ja) * 1992-06-12 1993-12-27 Kawasaki Steel Corp 高圧水アトマイズ噴霧槽液面計測装置
CN104237974A (zh) * 2014-09-11 2014-12-24 河海大学 一种虹吸节流翻斗雨量计
CN105676010A (zh) * 2016-01-07 2016-06-15 华南农业大学 一种测量静电喷雾雾滴荷质比的装置
CN108459213A (zh) * 2018-04-11 2018-08-28 黑龙江八农垦大学 航空植保静电喷雾雾滴荷质比检测试验台
CN208137933U (zh) * 2017-11-23 2018-11-23 王清江 一种智能液位监测装置
CN109975623A (zh) * 2019-03-15 2019-07-05 江苏大学 一种静电雾化喷头荷质比测量***及其测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264641A (en) * 1977-03-17 1981-04-28 Phrasor Technology Inc. Electrohydrodynamic spraying to produce ultrafine particles
US4581675A (en) * 1980-09-02 1986-04-08 Exxon Research And Engineering Co. Electrostatic atomizing device
GB0229493D0 (en) * 2002-12-18 2003-01-22 Battelle Memorial Institute Aroma dispensing device
WO2006043656A1 (ja) * 2004-10-21 2006-04-27 Hoya Corporation 微粒子堆積装置及び微粒子堆積方法
CN103149461B (zh) 2012-11-15 2015-04-22 江苏大学 静电喷雾荷质比测量装置
WO2014194272A2 (en) * 2013-05-31 2014-12-04 University Of Washington Through Its Center For Commercialization Droplet-mass spectrometer interface
CN103439589B (zh) 2013-08-19 2015-10-28 江苏大学 一种易拆装荷电雾滴荷质比实时测量装置
CN103675486B (zh) 2013-12-17 2017-01-18 江苏大学 喷杆式多喷头静电喷雾荷质比测量设备
TWI675202B (zh) * 2018-11-30 2019-10-21 財團法人工業技術研究院 流體管路內部靜電量測系統及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345905A (ja) * 1992-06-12 1993-12-27 Kawasaki Steel Corp 高圧水アトマイズ噴霧槽液面計測装置
CN104237974A (zh) * 2014-09-11 2014-12-24 河海大学 一种虹吸节流翻斗雨量计
CN105676010A (zh) * 2016-01-07 2016-06-15 华南农业大学 一种测量静电喷雾雾滴荷质比的装置
CN208137933U (zh) * 2017-11-23 2018-11-23 王清江 一种智能液位监测装置
CN108459213A (zh) * 2018-04-11 2018-08-28 黑龙江八农垦大学 航空植保静电喷雾雾滴荷质比检测试验台
CN109975623A (zh) * 2019-03-15 2019-07-05 江苏大学 一种静电雾化喷头荷质比测量***及其测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816640A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112595539A (zh) * 2020-12-31 2021-04-02 黑龙江省农业机械工程科学研究院 农用药液高压静电喷雾试验台

Also Published As

Publication number Publication date
CN109975623B (zh) 2020-12-18
EP3816640A4 (en) 2022-04-06
US20210148961A1 (en) 2021-05-20
CN109975623A (zh) 2019-07-05
EP3816640A1 (en) 2021-05-05
EP3816640B1 (en) 2022-10-12
US11150288B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2020186682A1 (zh) 一种静电雾化喷头荷质比测量***及其测量方法
CN105676010A (zh) 一种测量静电喷雾雾滴荷质比的装置
Ellis et al. PM—power and machinery: Design factors affecting spray characteristics and drift performance of air induction nozzles
CN105115870B (zh) 一种微米级气溶胶测量仪器标定***和方法
CN105842132A (zh) 一种航空施药喷雾自动测试***
CN113074927B (zh) 燃油喷嘴雾化特性综合基础试验装置及试验方法
CN109696287B (zh) 一种大气边界层环境风洞湿沉积模拟装置
CN104849036A (zh) 一种除雾旋流分离器性能测试实验装置
CN108514793A (zh) 一种气液混合静电喷雾除尘降温装置
CN109596370A (zh) 一种喷雾试验***
CN104405553A (zh) 柴油机喷油嘴各孔喷油规律测量装置
CN108918607A (zh) 一种室内建材表面污染气体散发强度的实地监测装置
CN203459060U (zh) 一种大颗粒多分散相气溶胶发生装置
CN108426810A (zh) 一种空气中颗粒物平均浓度的测量装置
CN106840636A (zh) 一种喷嘴喷雾均匀性检测装置
CN208239256U (zh) 一种空气中颗粒物平均浓度的测量装置
CN101430221A (zh) 天然气管道内粒子成像装置
CN208770586U (zh) 一体式纳米微雾净化器
CN206593842U (zh) 一种喷嘴喷雾均匀性检测装置
CN106940248A (zh) 测量扁平扇形喷嘴横向喷射不均匀度的装置及方法
CN209356031U (zh) 一种流量计双重测量标定装置
CN204439732U (zh) 便携式静电喷雾荷质比自动测量仪
CN108459213B (zh) 航空植保静电喷雾雾滴荷质比检测试验台
CN110702397A (zh) 一种植保无人机喷雾漂移量测试装置及方法
CN114577650A (zh) 一种多参数可调的射流、管流相结合的气液固冲蚀磨损实验装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE