WO2020186395A1 - 关联成像方法及装置 - Google Patents

关联成像方法及装置 Download PDF

Info

Publication number
WO2020186395A1
WO2020186395A1 PCT/CN2019/078312 CN2019078312W WO2020186395A1 WO 2020186395 A1 WO2020186395 A1 WO 2020186395A1 CN 2019078312 W CN2019078312 W CN 2019078312W WO 2020186395 A1 WO2020186395 A1 WO 2020186395A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light intensity
ground glass
random fluctuation
light field
Prior art date
Application number
PCT/CN2019/078312
Other languages
English (en)
French (fr)
Inventor
张罗莎
王宇
王魁波
朱精果
杨光华
赵复生
韩哲
亓岩
颜博霞
韩春蕊
郭馨
陈进新
崔惠绒
罗艳
谢婉露
周翊
吴晓斌
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to PCT/CN2019/078312 priority Critical patent/WO2020186395A1/zh
Publication of WO2020186395A1 publication Critical patent/WO2020186395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Definitions

  • the invention relates to the field of optical imaging, in particular to a sub-wavelength correlation imaging method and device.
  • the optical system is equivalent to a low-pass filter. After the light wave carrying the target information passes through the finite aperture, the high-frequency components in the target information are filtered out, and the imaged detail information is lost, resulting in blurred image edges and reduced System resolution.
  • Associated imaging uses the total light intensity that reaches the detector after passing the imaging target to reconstruct the target image.
  • the effect of the limited aperture on the total light intensity of the system is only an attenuation factor, and the attenuation of the total light intensity is not It will cause the blur of the image edge, theoretically it can break through the diffraction limit of the classical optical system and achieve high-resolution imaging, so it has become a research hotspot at home and abroad.
  • Imaging mainly includes dual-arm related imaging and ghost imaging technology.
  • the schematic diagram of the dual-arm associated imaging structure is shown in Figure 1.
  • the laser 1 is used to illuminate the rotating ground glass 2 to generate pseudothermal light with random fluctuations in light intensity.
  • the signal light illuminates the imaging target 5 and carries the imaging target information
  • the signal light is received by the single-pixel detector 6, and the reference light is received by the area array detector 4 after being split.
  • the correlation result of the single-pixel detector 6 and the area array detector 4 is used to reconstruct the image of the imaging target.
  • the image imaging and image reconstruction speed of this system is slow.
  • the working principle of the area array detector 4 adopted in the scheme determines that each frame of image requires sufficient integration time and readout time, and subsequent analog processing circuits and data acquisition circuits will take more time.
  • most area array detectors are at the MHz level, and the more pixels, the longer the time required for each frame of image acquisition.
  • the resolution of the imaging system is limited by the size of the 4-pixel unit of the area array detector.
  • the schematic diagram of the ghost imaging structure is shown in Figure 2.
  • the laser 1 is used to illuminate the microlens array or the projection device 7 to generate pseudothermal light with known light intensity fluctuations to illuminate the imaging target 5, and the signal light carrying the imaging target information is passed by the single-pixel detector 6 After receiving, the total light intensity information received by the single-pixel detector 6 is correlated with the known pseudo-thermal light field information to reconstruct the image of the imaging target.
  • the system needs to introduce complex optical modules such as digital microlens arrays or projection systems to generate randomly fluctuating light field distributions.
  • the pixel unit of the digital microlens array is about 10 ⁇ m, and the resolution of the light field is relatively low after transmission. Currently, it can only be used for remote sensing, imaging of buildings or daily macroscopic objects. Therefore, it is urgent to design a more complete correlation imaging method to meet actual needs.
  • One aspect of the present invention provides an associated imaging method, including: S1, using laser to irradiate rotating ground glass to form a random fluctuating light field, wherein the light intensity of the random fluctuating light field is obtained by solving the interaction result between the laser and the micro-nano structure on the ground glass surface Obtain; S2, use the random fluctuation light field to illuminate the imaging target to form a light wave carrying the amplitude and phase information of the imaging target; S3, detect the light intensity of the light wave, and correlate the light intensity of the random fluctuation light field and the light wave intensity Calculate to generate an image of the imaging target.
  • step S1 solving the light intensity of the random fluctuation light field includes: constructing a simulated frosted glass surface model according to the surface shape of the frosted glass; establishing a coordinate system to divide the calculation range and calculation unit grid of the simulated frosted glass surface model; In the calculation range, the Maxwell equation is solved according to the divided calculation unit grid, and the light intensity of the random fluctuation light field is obtained.
  • solving Maxwell's equations according to the divided calculation unit grid within the calculation range includes: fixing the position of the simulated ground glass surface model, and solving to obtain the light intensity of a set of random fluctuation light fields; rotating simulation around the central axis according to a preset angle The ground glass surface model is solved to obtain the light intensity of another group of random fluctuation light fields; and so on, the simulated ground glass surface model is rotated for one week to solve the light intensity of n groups of random fluctuation light fields.
  • the resolution of the randomly fluctuating light field is adjusted by controlling the fineness of the calculation unit grid to improve the resolution of the image of the image target.
  • the correlation calculation of the light intensity of the randomly fluctuating light field and the light intensity of the light wave includes:
  • I 1 (x 1 ) is the light intensity of the light wave
  • I 2 (x 2 , y 2 ) is the light intensity of the randomly fluctuating light field
  • ⁇ I 1 (x 1 ) is the fluctuation of light intensity of light wave
  • ⁇ I 2 (x 2 , y 2 ) is the fluctuation of light intensity of random fluctuation light field
  • x 1 is the horizontal coordinate of the point detector for detecting light intensity of light wave
  • ( x 2 , y 2 ) are the position coordinates of the random fluctuation light field.
  • the image of the imaging target is generated according to the correlation function and ⁇ I 1 (x 1 ) ⁇ I 2 (x 2 , y 2 )> ⁇
  • constructing a simulated ground glass surface model according to the surface type of ground glass includes: setting the size, refractive index, and surface reflectivity of the simulated ground glass surface model.
  • the simulated ground glass surface model after constructing the simulated ground glass surface model according to the ground glass surface type, it further includes: inserting the light source model and setting the light source parameters of the light source model, where the light source parameters include the distance and relative angle between the light source model and the simulated ground glass surface model, and the value of the light source model Cross-sectional area, light source type, light source wavelength and polarization state.
  • the method further includes: measuring the surface profile of the ground glass using a surface profile measuring instrument or an atomic force microscope.
  • Another aspect of the present invention provides an associated imaging device for image reconstruction of an imaging target, including: a light source for emitting laser light; ground glass for modulating the laser light to form a random fluctuation light field, wherein the random fluctuation
  • the light intensity of the light field is obtained by solving the interaction result between the laser and the micro-nano structure on the ground glass surface; a single-pixel detector is used to detect the light intensity of the light wave carrying the imaging target amplitude and phase information generated by the random fluctuation light field illuminating the imaging target;
  • the image reconstruction module is used for correlation calculation of the light intensity of the random fluctuation light field and the light intensity of the light wave to reconstruct the image of the imaging target.
  • Fig. 1 schematically shows a schematic diagram of a traditional dual-arm intensity correlation imaging structure.
  • Fig. 2 schematically shows a schematic diagram of a ghost imaging structure.
  • Fig. 3 schematically shows a flow chart of a single-arm intensity correlation imaging method according to an embodiment of the present invention.
  • FIG. 4 schematically shows a schematic structural diagram of a single-arm intensity correlation imaging device according to an embodiment of the present invention.
  • the present invention provides a sub-wavelength correlation imaging method and device, which adopts a single-arm correlation imaging structure.
  • the signal light is no longer directly measured by an area array detector, or generated by a complex optical module such as a digital microlens array or a projection module.
  • the interaction result of the incident light wave on the surface of the ground glass is directly solved by Maxwell's equation, and the random fluctuation light field distribution of the illuminated imaging target is obtained. It avoids that the noise and errors introduced in the direct measurement process of the area array detector affect the image reconstruction accuracy and limit the image reconstruction resolution.
  • FIG. 3 is a flowchart of a single-arm intensity correlation imaging method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a single-arm intensity correlation imaging structure according to an embodiment of the present invention. As shown in Figures 3 and 4, the method includes:
  • step S1 it is first necessary to solve the Maxwell equation through simulation calculation to obtain the random fluctuating light field formed by the laser irradiating the rotating ground glass.
  • the surface profile of the ground glass 2 is measured using a surface profile measuring instrument or an atomic force microscope, and a simulated ground glass surface model is established in the electromagnetic field simulation software according to the measured surface profile, and the size, refractive index, and surface reflection of the model are set Rate and other parameters.
  • the light source parameters include the distance and relative angle between the light source model and the simulated ground glass surface model, the cross-sectional area of the light source model, the type of light source, the wavelength and polarization of the light source And set up near-field observation detectors to ensure the accuracy of calculations.
  • the smallest unit of the random fluctuation light field can be artificially controlled by the fineness of the grid of the simulation software to realize the adjustable resolution of the random fluctuation light field and improve the imaging resolution of the entire system.
  • the finer the minimum unit the longer the calculation time required. Even so, the calculation time of the random fluctuation light field distribution data does not affect the image reconstruction time in the actual imaging process.
  • the electromagnetic field simulation software adopts FDTD Solution, FEM, CST, etc.
  • the angle of rotation around the central axis is set to 0.365°, and after the final calculation, 1000 sets of random fluctuation light field intensity data are obtained.
  • S2 Use a random fluctuation light field to illuminate the imaging target to form a light wave carrying the amplitude and phase information of the imaging target.
  • the laser 1 emits the laser beam and irradiates the rotating ground glass 2 after beam expansion, and modulates on the rough surface of the ground glass 2 to form a random fluctuation light field distribution.
  • the random fluctuation light field is obtained by simulation calculation in step S1 .
  • the imaging target 5 is illuminated by a light field that forms random fluctuations, and the imaging target is modulated to form a light wave carrying the amplitude and phase information of the imaging target and continue to propagate.
  • S3 Detect the light intensity of the light wave, and perform correlation calculation on the light intensity of the randomly fluctuating light field and the light intensity of the light wave to generate an image of the imaging target.
  • the intensity and the light intensity of the light wave are correlated and calculated to obtain the intensity correlation term of the random fluctuation light field and the light wave ⁇ I 1 (x 1 ) ⁇ I 2 (x 2 , y 2 )>, where I 1 (x 1 )
  • ⁇ I 1 (x 1 ) is the fluctuation of the light intensity of the light wave carrying the imaging target amplitude and phase information
  • ⁇ I 2 (x 2 , y 2 ) is the fluctuation of the light intensity of the random fluctuation light field
  • x 1 is the detection carrying the imaging
  • the horizontal coordinates of the point detector of the target amplitude and phase information light wave light intensity, (x 2 , y 2 ) are the position coordinates of the random fluctuation light field.
  • the signal light is a random fluctuating light field obtained through simulation calculations, instead of direct measurement with an area array detector, which avoids the noise and errors introduced in the direct measurement process of the area array detector from affecting the image reconstruction accuracy, and random increase
  • the minimum accuracy of the falling light field distribution is only determined by the fineness and propagation distance of the smallest unit on the ground glass surface, and is no longer restricted by the pixel size of the area array detector, and sub-wavelength structure imaging can be achieved.
  • the embodiment of the present invention also provides a sub-wavelength correlation imaging device, as shown in FIG. 4, including:
  • the light source is used to emit laser light.
  • the laser 1 is used as the light source.
  • the ground glass 2 is used to modulate the laser to form a random fluctuating light field, where the light intensity of the random fluctuating light field is obtained by solving the interaction result between the laser and the micro-nano structure on the ground glass surface.
  • the calculation process of light intensity of random fluctuation light field is:
  • the light source parameters include the distance and relative angle between the light source model and the simulated ground glass surface model, the cross-sectional area of the light source model, the type of light source, the wavelength and polarization of the light source And set up near-field observation detectors to ensure the accuracy of calculations.
  • the single-pixel detector 6 is used to detect the light intensity of the light wave carrying the imaging target amplitude and phase information generated by the randomly fluctuating light field illuminating the imaging target 5.
  • the image reconstruction module 8 is used for correlation calculation of the light intensity of the random fluctuation light field and the light intensity of the light wave to reconstruct the image of the imaging target.
  • ⁇ I 1 (x 1 ) is the fluctuation of the light intensity of the light wave carrying the imaging target amplitude and phase information
  • ⁇ I 2 (x 2 , y 2 ) is the fluctuation of the light intensity of the random fluctuation light field
  • x 1 is the detection carrying the imaging
  • the horizontal coordinates of the point detector of the target amplitude and phase information light wave light intensity, (x 2 , y 2 ) are the position coordinates of the random fluctuation light field.
  • the image reconstruction module may be a hardware system storing associated calculation programs.
  • the present invention uses Maxwell’s equation to solve the interaction result of the incident light wave on the surface of the ground glass micro-nano structure, obtains the random fluctuation light field distribution of the illuminated imaging target, improves the image reconstruction speed and resolution, and realizes sub-wavelength Structure imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种关联成像方法及装置,方法包括:采用激光照射旋转的毛玻璃(2)形成随机涨落光场,其中,光场的光强通过求解激光与毛玻璃(2)表面微纳结构的交互结果得到(S1);使用随机涨落光场照明成像目标(5),形成携带有成像目标(5)振幅和相位信息的光波(S2);探测光波的光强,对随机涨落光场的光强及光波的光强进行关联计算以重建生成成像目标(5)的图像(S3)。关联成像方法及装置省去分光镜(3)与面阵探测器(4)、数字微透镜阵列或者投影***等复杂的光学模块,简化了成像***的复杂度,提高了成像速度;直接通过麦克斯韦方程求解入射光波与毛玻璃(2)表面微纳结构的交互结果,得到照明成像目标(5)的随机涨落光场分布,提高了图像重建的分辨率;并且可实现亚波长结构成像,扩大了关联成像的使用范围。

Description

关联成像方法及装置 技术领域
本发明涉及光学成像领域,尤其涉及一种亚波长关联成像方法及装置。
背景技术
传统的光学成像中,光学***相当于低通滤波器,携带目标信息的光波经过有限孔径后,目标信息中的高频成分被滤除,所成像的细节信息丢失,从而导致图像边缘模糊,降低***分辨率。关联成像由于采用经过成像目标后到达探测器的总光强进行目标图像重建,对于孔径有限的成像***,有限的孔径对***总光强的影响仅仅为一个衰减因子,总光强的衰减并不会导致图像边缘的模糊,理论上可以突破经典光学***衍射极限,实现高分辨率成像,因此成为国内外研究热点。
关联成像主要包括双臂关联成像及鬼成像技术。双臂关联成像结构示意图如图1所示,采用激光器1照射旋转的毛玻璃2,产生光强随机涨落的赝热光,经过分光镜3分光后,信号光照明成像目标5,携带成像目标信息的信号光被单像素探测器6接收,参考光经过分光后被面阵探测器4接收。采用单像素探测器6与面阵探测器4的关联结果重建成像目标的图像。该***图像成像及图像重建速度较慢。由于方案中采用的面阵探测器4的工作原理决定了每一帧图像都需要足够的积分时间、读出时间,并且后续的模拟处理电路和数据采集电路会花费更多时间。目前,面阵探测器大多处于MHz水平,并且像素越多每帧图像采集所需时间越长。同时成像***分辨率受制于面阵探测器4像素单元尺寸的限制。
鬼成像结构示意图如图2所示,采用激光器1照射微透镜阵列或者投影装置7,产生光强涨落已知的赝热光照明成像目标5,携带成像目标信息的信号光被单像素探测器6接收,将单像素探测器6接收的总光 强信息与已知的赝热光场信息做关联重建成像目标的图像。该***中需要引入数字微透镜阵列或者投影***等复杂的光学模块,用于产生随机涨落的光场分布。数字微透镜阵列的像素单元为10μm左右,光场经过传输后分辨率相对较低,目前仅能用于遥感、建筑物或日常宏观物体的成像。因此,急需设计一种更完善的关联成像方法以满足实际需求。
发明内容
本发明一方面提供一种关联成像方法,包括:S1,采用激光照射旋转的毛玻璃形成随机涨落光场,其中,随机涨落光场的光强通过求解激光与毛玻璃表面微纳结构的交互结果得到;S2,使用随机涨落光场照明成像目标,形成携带有成像目标振幅和相位信息的光波;S3,探测光波的光强,对随机涨落光场的光强及光波的光强进行关联计算以生成成像目标的图像。
可选地,在步骤S1中,求解随机涨落光场的光强包括:根据毛玻璃表面面型构建仿真毛玻璃表面模型;建立坐标系,对仿真毛玻璃表面模型划分计算范围及计算单元网格;在计算范围内按照划分的计算单元网格进行麦克斯韦方程求解,得到随机涨落光场的光强。
可选地,在计算范围内按照划分的计算单元网格进行麦克斯韦方程求解包括:固定仿真毛玻璃表面模型位置,求解得到一组随机涨落光场的光强;按照预设角度绕中心轴旋转仿真毛玻璃表面模型,求解得到另一组随机涨落光场的光强;以此类推,旋转仿真毛玻璃表面模型一周,求解得到n组随机涨落光场的光强。
可选地,通过控制计算单元网格的精细程度调节随机涨落光场的分辨率,以提高像目标的图像的分辨率。
可选地,对随机涨落光场的光强及光波的光强进行关联计算包括:
利用关联函数:<ΔI 1(x 1)ΔI 2(x 2,y 2)>=<I 1(x 1)I 2(x 2,y 2)>-<I 1(x 1)><I 2(x 2,y 2)>,其中,ΔI 1(x 1)=I 1(x 1)-<I 1(x 1)>ΔI 2(x 2,y 2)=I 2(x 2,y 2)-<I 2(x 2,y 2)>对随机涨落光场的光强及光波的光强进行关联计算,得到随机涨落光场与光波的强 度关联项<ΔI 1(x 1)ΔI 2(x 2,y 2)>;
其中,I 1(x 1)为光波的光强,I 2(x 2,y 2)为随机涨落光场的光强。ΔI 1(x 1)为光波光强的涨落,ΔI 2(x 2,y 2)为随机涨落光场光强的涨落,x 1为探测光波光强的点探测器横向坐标,(x 2,y 2)为随机涨落光场的位置坐标。
可选地,根据关联函数及<ΔI 1(x 1)ΔI 2(x 2,y 2)>∝|t(x 0)| 2生成成像目标的图像,其中t(x 0)为成像目标的强度函数。
可选地,根据毛玻璃表面面型构建仿真毛玻璃表面模型包括:设置仿真毛玻璃表面模型的尺寸、折射率及表面反射率。
可选地,在根据毛玻璃表面面型构建仿真毛玻璃表面模型之后还包括:***光源模型,设置光源模型的光源参数,其中光源参数包括光源模型与仿真毛玻璃表面模型的距离及相对角度,光源模型的横截面积、光源类型、光源波长及偏振态。
可选地,在根据毛玻璃表面面型构建仿真毛玻璃表面模型之前还包括:利用面型测量仪或者原子力显微镜测量毛玻璃的表面面型。
本发明另一方面提供一种关联成像装置,用于对成像目标进行图像重建,包括:光源,用于发射激光;毛玻璃,用于对激光进行调制形成随机涨落光场,其中,随机涨落光场的光强通过求解激光与毛玻璃表面微纳结构的交互结果得到;单像素探测器,用于探测随机涨落光场照明成像目标产生的携带有成像目标振幅和相位信息光波的光强;图像重建模块,用于对随机涨落光场的光强及光波的光强进行关联计算以重建成像目标的图像。
附图说明
图1示意性示出了传统双臂强度关联成像结构示意图。
图2示意性示出了鬼成像结构示意图。
图3示意性示出了本发明实施例单臂强度关联成像方法流程图。
图4示意性示出了本发明实施例单臂强度关联成像装置结构示意图。
【附图标记】
1-激光器
2-毛玻璃
3-分光镜
4-面阵探测器
5-成像目标
6-单像素探测器
7-微透镜阵列或者投影装置
8-图像重建模块
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提出一种亚波长关联成像方法及装置,采用单臂关联成像结构,信号光不再采用面阵探测器直接测量,或者通过复杂的光学模块如数字微透镜阵列或投影模块生成,而是直接通过麦克斯韦方程求解入射光波在毛玻璃表面微纳结构的交互结果,得到照明成像目标的随机涨落光场分布。避免了面阵探测器直接测量过程中引入的噪声和误差影响图像重建精度,限制图像重建分辨率。
本发明提出一种亚波长关联成像方法,图3是本发明实施例单臂强度关联成像方法流程图,图4是本发明实施例单臂强度关联成像结构示意图。如图3及图4所示,该方法包括:
S1,采用激光照射旋转的毛玻璃形成随机涨落光场,其中,随机涨落光场的光强通过求解激光与毛玻璃表面微纳结构的交互结果得到。
在上述步骤S1中,首先需要通过仿真计算求解麦克斯韦方程得到激光照射旋转的毛玻璃形成的随机涨落光场。
具体地,首先,采用面型测量仪或者原子力显微镜测量毛玻璃2的表面面型,并根据测量的表面面型在电磁场仿真软件中建立仿真毛玻璃表面模型,设置该模型的尺寸、折射率、表面反射率等参数。
然后,***光源模型,按照具体的光学结构设置该光源模型的光源参数,该光源参数包括光源模型与仿真毛玻璃表面模型的距离及相对角度,光源模型的横截面积、光源类型、光源波长及偏振态等,并设置近场观测探测器,确保计算的准确性。
最后,建立坐标系,对仿真毛玻璃表面模型划分计算范围及计算单元网格,在计算范围内按照划分的计算单元网格进行麦克斯韦方程求解,得到随机涨落光场的光强。计算过程中,固定仿真毛玻璃表面模型位置,求解得到一组随机涨落光场的光强,按照预设角度绕仿真毛玻璃表面模型的中心轴旋转仿真毛玻璃表面模型,求解得到另一组随机涨落光场的光强,以此类推,旋转仿真毛玻璃表面模型一周,求解得到n组随机涨落光场的光强,用于后续强度关联重建图像。该过程中随机涨落光场的最小单元可以由仿真软件的网格精细程度进行人为控制,实现随机涨落光场的分辨率可调,提高整个***的成像分辨率。最小单元越精细,所需计算时间越长。即便如此,随机涨落光场分布数据的计算时长并不影响实际成像过程中图像的重建时长。
在本发明一实施例中,电磁场仿真软件采用如FDTD Solution、FEM、CST等。
在本发明一实施例中,绕中心轴旋转的角度设置为0.365°,最终计算后得到1000组随机涨落光场光强数据。
由于采用的求解麦克斯韦方程得到随机涨落光场(信号光)的方式,不再采用分光镜与面阵探测器、数字微透镜阵列或者投影***等复杂的光学模块,简化了***的复杂度,实现单臂强度关联成像,并且提高了成像速度。
S2,使用随机涨落光场照明成像目标,形成携带有成像目标振幅和相位信息的光波。
成像过程中,激光器1发出激光经过扩束后照射旋转的毛玻璃2,在毛玻璃2的粗糙表面上经过调制形成随机涨落光场分布,该随机涨落光场为步骤S1中经过仿真计算得到的。使用形成随机涨落光场照明成像目标5,并经成像目标调制形成携带有成像目标振幅和相位信息的光 波继续传播。
S3,探测光波的光强,对随机涨落光场的光强及光波的光强进行关联计算以生成成像目标的图像。
通过单像素探测器6快速响应探测步骤S2中携带有成像目标振幅和相位信息的光波的光强,再利用关联函数:<ΔI 1(x 1)ΔI 2(x 2,y 2)>=<I 1(x 1)I 2(x 2,y 2)>-<I 1(x 1)><I 2(x 2,y 2)>,其中,ΔI 1(x 1)=I 1(x 1)-<I 1(x 1)>ΔI 2(x 2,y 2)=I 2(x 2,y 2)-<I 2(x 2,y 2)>对随机涨落光场的光强及光波的光强进行关联计算,得到随机涨落光场与光波的强度关联项<ΔI 1(x 1)ΔI 2(x 2,y 2)>,其中,I 1(x 1)为携带有成像目标振幅和相位信息光波的光强,I 2(x 2,y 2)为随机涨落光场的光强。ΔI 1(x 1)为携带有成像目标振幅和相位信息光波光强的涨落,ΔI 2(x 2,y 2)为随机涨落光场光强的涨落,x 1为探测携带有成像目标振幅和相位信息光波光强的点探测器横向坐标,(x 2,y 2)为所述随机涨落光场的位置坐标。
此时,信号光是通过仿真计算得到的随机涨落光场,而不是采用面阵探测器直接测量,避免了面阵探测器直接测量过程中引入的噪声和误差影响图像重建精度,并且随机涨落光场分布的最小精度仅决定于毛玻璃表面最小单元的精细程度和传播距离,不再受制于面阵探测器的像素尺寸,可实现亚波长结构成像。
对计算得到的每一组随机涨落光场光强数据与光波做关联计算的得到所有的关联项,根据所有的关联项及<ΔI 1(x 1)ΔI 2(x 2,y 2)>∝|t(x 0)| 2即可重建生成成像目标的图像,其中t(x 0)为成像目标的强度函数。
本发明实施例还提供一种亚波长关联成像装置,如图4所示,包括:
光源,用于发射激光,在本发明一实施例中,光源采用激光器1。
毛玻璃2,用于对激光进行调制形成随机涨落光场,其中,随机涨落光场的光强通过求解激光与毛玻璃表面微纳结构的交互结果得到。随机涨落光场的光强计算过程为:
首先,采用面型测量仪或者原子力显微镜测量毛玻璃2的表面面型,并根据测量的表面面型在电磁场仿真软件中建立仿真毛玻璃表面模型,设置该模型的尺寸、折射率、表面反射率等参数。
然后,***光源模型,按照具体的光学结构设置该光源模型的光源参数,该光源参数包括光源模型与仿真毛玻璃表面模型的距离及相对角度,光源模型的横截面积、光源类型、光源波长及偏振态等,并设置近场观测探测器,确保计算的准确性。
最后,建立坐标系,对仿真毛玻璃表面模型划分计算范围及计算单元网格,在计算范围内按照划分的计算单元网格进行麦克斯韦方程求解,得到随机涨落光场的光强。计算过程中,固定仿真毛玻璃表面模型位置,求解得到一组随机涨落光场的光强,按照预设角度绕仿真毛玻璃表面模型的中心轴旋转仿真毛玻璃表面模型,求解得到另一组随机涨落光场的光强,以此类推,旋转仿真毛玻璃表面模型一周,求解得到n组随机涨落光场的光强,用于后续强度关联重建图像。该过程中随机涨落光场的最小单元可以由仿真软件的网格精细程度进行人为控制,实现随机涨落光场的分辨率可调,提高整个***的成像分辨率。
单像素探测器6,用于探测随机涨落光场照明成像目标5产生的携带有成像目标振幅和相位信息光波的光强。
图像重建模块8,用于对随机涨落光场的光强及光波的光强进行关联计算以重建成像目标的图像。具体地,利用关联函数:<ΔI 1(x 1)ΔI 2(x 2,y 2)>=<I 1(x 1)I 2(x 2,y 2)>-<I 1(x 1)><I 2(x 2,y 2)>,其中,ΔI 1(x 1)=I 1(x 1)-<I 1(x 1)>ΔI 2(x 2,y 2)=I 2(x 2,y 2)-<I 2(x 2,y 2)>对随机涨落光场的光强及光波的光强进行关联计算,得到随机涨落光场与光波的强度关联项<ΔI 1(x 1)ΔI 2(x 2,y 2)>,其中,I 1(x 1)为携带有成像目标振幅和相位信息光波的光强,I 2(x 2,y 2)为随机涨落光场的光强。ΔI 1(x 1)为携带有成像目标振幅和相位信息光波光强的涨落,ΔI 2(x 2,y 2)为随机涨落光场光强的涨落,x 1为探测携带有成像目标振幅和相位信息光波光强的点探测器横向坐标,(x 2,y 2)为所述随机涨落光场的位置坐标。对计算得到的每一组随机涨落光场光强数据与光波做关联计算的得到所有的关联项,根据所有的关联项及<ΔI 1(x 1)ΔI 2(x 2,y 2)>∝|t(x 0)| 2即可重建生成成像目标的图像,其中t(x 0)为成像目标的强度函数。其中,图像重建模块可为储存有关联计算程序的硬件***。
综上所述,本发明通过麦克斯韦方程求解入射光波在毛玻璃表面微纳结构的交互结果,得到照明成像目标的随机涨落光场分布,提高了图像的重建速度及分辨率,且实现了亚波长结构成像。
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。
尽管已经参照本公开的特定示例性实施例示出并描述了本公开,但是本领域技术人员应该理解,在不背离所附权利要求及其等同物限定的本公开的精神和范围的情况下,可以对本公开进行形式和细节上的多种改变。因此,本公开的范围不应该限于上述实施例,而是应该不仅由所附权利要求来进行确定,还由所附权利要求的等同物来进行限定。

Claims (10)

  1. 一种关联成像方法,其特征在于,包括:
    S1,采用激光照射旋转的毛玻璃形成随机涨落光场,其中,所述随机涨落光场的光强通过求解所述激光与所述毛玻璃表面微纳结构的交互结果得到;
    S2,使用所述随机涨落光场照明成像目标,形成携带有所述成像目标振幅和相位信息的光波;
    S3,探测所述光波的光强,对所述随机涨落光场的光强及光波的光强进行关联计算以生成所述成像目标的图像。
  2. 根据权利要求1所述的关联成像方法,其特征在于,在步骤S1中,求解所述随机涨落光场的光强包括:
    根据所述毛玻璃表面面型构建仿真毛玻璃表面模型;
    建立坐标系,对所述仿真毛玻璃表面模型划分计算范围及计算单元网格;
    在所述计算范围内按照划分的计算单元网格进行麦克斯韦方程求解,得到所述随机涨落光场的光强。
  3. 根据权利要求2所述的关联成像方法,其特征在于,在所述计算范围内按照划分的计算单元网格进行麦克斯韦方程求解包括:
    固定所述仿真毛玻璃表面模型位置,求解得到一组随机涨落光场的光强;
    按照预设角度绕中心轴旋转所述仿真毛玻璃表面模型,求解得到另一组随机涨落光场的光强;
    以此类推,旋转所述仿真毛玻璃表面模型一周,求解得到n组随机涨落光场的光强。
  4. 根据权利要求2所述的关联成像方法,其特征在于,通过控制所述计算单元网格的精细程度调节所述随机涨落光场的分辨率,以提高所述像目标的图像的分辨率。
  5. 根据权利要求1所述的关联成像方法,其特征在于,对所述随机涨落光场的光强及光波的光强进行关联计算包括:
    利用关联函数:<ΔI 1(x 1)ΔI 2(x 2,y 2)>=<I 1(x 1)I 2(x 2,y 2)>-<I 1(x 1)><I 2(x 2,y 2)>,其中,ΔI 1(x 1)=I 1(x 1)-<I 1(x 1)>ΔI 2(x 2,y 2)=I 2(x 2,y 2)-<I 2(x 2,y 2)>对所述随机涨落光场的光强及光波的光强进行关联计算,得到所述随机涨落光场与光波的强度关联项<ΔI 1(x 1)ΔI 2(x 2,y 2)>;
    其中,I 1(x 1)为所述光波的光强,I 2(x 2,y 2)为所述随机涨落光场的光强。ΔI 1(x 1)为所述光波光强的涨落,ΔI 2(x 2,y 2)为所述随机涨落光场光强的涨落,x 1为探测所述光波光强的点探测器横向坐标,(x 2,y 2)为所述随机涨落光场的位置坐标。
  6. 根据权利要求5所述的关联成像方法,其特征在于,根据所述关联函数及<ΔI 1(x 1)ΔI 2(x 2,y 2)>∝|t(x 0)| 2生成所述成像目标的图像,其中t(x 0)为所述成像目标的强度函数。
  7. 根据权利要求2所述的关联成像方法,其特征在于,根据所述毛玻璃表面面型构建仿真毛玻璃表面模型包括:
    设置所述仿真毛玻璃表面模型的尺寸、折射率及表面反射率。
  8. 根据权利要求2所述的关联成像方法,其特征在于,在根据所述毛玻璃表面面型构建仿真毛玻璃表面模型之后还包括:
    ***光源模型,设置所述光源模型的光源参数,其中所述光源参数包括所述光源模型与所述仿真毛玻璃表面模型的距离及相对角度,所述光源模型的横截面积、光源类型、光源波长及偏振态。
  9. 根据权利要求2所述的关联成像方法,其特征在于,在根据所述毛玻璃表面面型构建仿真毛玻璃表面模型之前还包括:
    利用面型测量仪或者原子力显微镜测量所述毛玻璃的表面面型。
  10. 一种关联成像装置,用于对成像目标进行图像重建,其特征在于,包括:
    光源,用于发射激光;
    毛玻璃,用于对所述激光进行调制形成随机涨落光场,其中,所述随机涨落光场的光强通过求解所述激光与所述毛玻璃表面微纳结构的交互结果得到;
    单像素探测器,用于探测所述随机涨落光场照明所述成像目标产生 的携带有所述成像目标振幅和相位信息光波的光强;
    图像重建模块,用于对所述随机涨落光场的光强及光波的光强进行关联计算以重建所述成像目标的图像。
PCT/CN2019/078312 2019-03-15 2019-03-15 关联成像方法及装置 WO2020186395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078312 WO2020186395A1 (zh) 2019-03-15 2019-03-15 关联成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078312 WO2020186395A1 (zh) 2019-03-15 2019-03-15 关联成像方法及装置

Publications (1)

Publication Number Publication Date
WO2020186395A1 true WO2020186395A1 (zh) 2020-09-24

Family

ID=72518879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078312 WO2020186395A1 (zh) 2019-03-15 2019-03-15 关联成像方法及装置

Country Status (1)

Country Link
WO (1) WO2020186395A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327287A1 (en) * 2007-12-06 2012-12-27 U.S. Government As Represented By The Secretary Of The Army Method and system for producing image frames using quantum properties
CN103363924A (zh) * 2013-07-15 2013-10-23 中国科学院空间科学与应用研究中心 一种压缩的三维计算鬼成像***及方法
CN103674264A (zh) * 2013-12-17 2014-03-26 上海交通大学 一种基于周期衍射关联成像的图像融合装置及其方法
CN104883449A (zh) * 2015-06-05 2015-09-02 上海斐讯数据通信技术有限公司 一种基于关联成像的探测方法和***
CN105807289A (zh) * 2016-05-04 2016-07-27 西安交通大学 基于预置可调制光源的高速计算关联成像***及成像方法
CN107532945A (zh) * 2015-04-21 2018-01-02 科磊股份有限公司 用于倾斜装置设计的计量目标设计
CN109752844A (zh) * 2019-03-14 2019-05-14 中国科学院微电子研究所 一种基于随机光强涨落的成像方法和***
CN109900355A (zh) * 2019-03-15 2019-06-18 中国科学院微电子研究所 成像方法及装置
CN109900356A (zh) * 2019-03-15 2019-06-18 中国科学院微电子研究所 关联成像方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120327287A1 (en) * 2007-12-06 2012-12-27 U.S. Government As Represented By The Secretary Of The Army Method and system for producing image frames using quantum properties
CN103363924A (zh) * 2013-07-15 2013-10-23 中国科学院空间科学与应用研究中心 一种压缩的三维计算鬼成像***及方法
CN103674264A (zh) * 2013-12-17 2014-03-26 上海交通大学 一种基于周期衍射关联成像的图像融合装置及其方法
CN107532945A (zh) * 2015-04-21 2018-01-02 科磊股份有限公司 用于倾斜装置设计的计量目标设计
CN104883449A (zh) * 2015-06-05 2015-09-02 上海斐讯数据通信技术有限公司 一种基于关联成像的探测方法和***
CN105807289A (zh) * 2016-05-04 2016-07-27 西安交通大学 基于预置可调制光源的高速计算关联成像***及成像方法
CN109752844A (zh) * 2019-03-14 2019-05-14 中国科学院微电子研究所 一种基于随机光强涨落的成像方法和***
CN109900355A (zh) * 2019-03-15 2019-06-18 中国科学院微电子研究所 成像方法及装置
CN109900356A (zh) * 2019-03-15 2019-06-18 中国科学院微电子研究所 关联成像方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, CHUNLING: "Non-official translation: Theoretical and Experimental Research on Improving Ghost Imaging Quality", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE (BASIC SCIENCES), no. 2015-01, 15 January 2015 (2015-01-15), DOI: 20191127183816Y *
SUN, MENGJIE ET AL.: "A simple optical encryption based on shape merging technique in periodic diffraction correlation imaging", OPTICS EXPRESS, vol. 21, no. 16, 12 August 2013 (2013-08-12), XP055734224, DOI: 20191127185027Y *

Similar Documents

Publication Publication Date Title
CN109900356B (zh) 关联成像方法及装置
CN103472256B (zh) 基于面阵ccd空间滤波器的流动二维速度场测量方法及装置
CN106813575B (zh) 日冕仪外掩***置测量***及位置测量方法
CN109900355B (zh) 成像方法及装置
CN108180975A (zh) 一种非接触式振动测量***及方法
CN104279978A (zh) 三维图形检测装置及测量方法
CN103592108A (zh) Ccd芯片调制传递函数测试装置及方法
Ma et al. Single pixel 3D imaging with phase-shifting fringe projection
CN103148800B (zh) 一种基于光场传播的非标记三维显微方法和装置
CN103412467A (zh) 沿扫描方向进行均匀性补偿装置及利用该装置进行均匀性补偿方法
JP4133753B2 (ja) 迂曲面の光波干渉測定方法および迂曲面測定用の干渉計装置
CN103676487A (zh) 一种工件高度测量装置及其校正方法
CN110208294A (zh) 基于柯勒照明的单像素显微成像方法及***
Small et al. Augmenting CASI® BRDF measurement device to measure out-of-plane scatter with CCD pixel array
CN102878930B (zh) 一种位相物***相分布的定量测量方法和装置及其应用
WO2020186395A1 (zh) 关联成像方法及装置
Stapp et al. Simulation of a Fourier telescopy imaging system for objects in low earth orbit
CN115541602B (zh) 产品缺陷检测方法
CN108303039B (zh) 一种高斯光鬼成像的光强补偿方法
TWI637166B (zh) 微分相位對比顯微系統與方法
CN110160663A (zh) 一种高分辨率的近场波前测量装置和测量方法
CN105380638B (zh) 一种用于激光散斑血流速度的定量成像装置及其方法
CN104034636B (zh) 基于数字微镜平面结构光照明的粒子场测量装置及测量方法
CN203376558U (zh) 沿扫描方向进行均匀性补偿装置
CN106643553A (zh) 一种平面镜面形检测***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920397

Country of ref document: EP

Kind code of ref document: A1