WO2020184662A1 - Conductive and dielectric device obtained using boron sheet - Google Patents

Conductive and dielectric device obtained using boron sheet Download PDF

Info

Publication number
WO2020184662A1
WO2020184662A1 PCT/JP2020/010807 JP2020010807W WO2020184662A1 WO 2020184662 A1 WO2020184662 A1 WO 2020184662A1 JP 2020010807 W JP2020010807 W JP 2020010807W WO 2020184662 A1 WO2020184662 A1 WO 2020184662A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
liquid crystal
atomic layer
crystal
layer sheet
Prior art date
Application number
PCT/JP2020/010807
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 神戸
伶奈 細野
山下 拓也
笙太郎 今岡
ひなよ 田谷
美沙 清水
山元 公寿
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2020540515A priority Critical patent/JP6829920B1/en
Publication of WO2020184662A1 publication Critical patent/WO2020184662A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions

Definitions

  • the conductive device of the present invention has boron and oxygen as skeleton elements and is networked by a non-equilibrium bond with a boron-boron bond, with an oxygen-boron molar ratio (oxygen / boron) of less than 1.5.
  • this boron layered single crystal can be monolayered by physical and chemical dissolution methods. By applying a physical force to the crystal, a sheet material having a thickness corresponding to a single layer can be obtained on the substrate. Further, this layered single crystal is insoluble in a general aprotic organic solvent, but is dissolved by the addition of cryptondand or crown ether that captures metal ions between layers. In the state where the metal ions are dissolved, it is presumed that the boron sheet is also dispersed in the solution as a single layer.
  • the conductive material When the conductive material is a crystal of the conductive material (1), it exhibits anisotropic conduction. From another point of view, it exhibits anisotropic conduction between and within the crystal planes. Due to these characteristics, the electrode is a conductive device in which a voltage is applied between the crystal planes and the temperature dependence of the conductivity exhibits a semiconductor-like behavior, and the electrode applies a voltage in the crystal plane to the temperature of the conductivity. Provided are a conductive device or the like whose dependence exhibits metallic behavior.
  • (A) is a schematic view of the vertical cross section of the dielectric device of the example and the hot plate for heating
  • (b) is a photograph of the actually manufactured dielectric device viewed from above. It is a cycle characteristic of the dielectric constant ⁇ r'of the boron liquid crystal during the heating and cooling process of the dielectric device of the example. 275 ° C., at 100 mV, the frequency is the frequency dependence of the dielectric constant of the boron liquid crystal epsilon r 'between 20Hz ⁇ 10 6 Hz.
  • (A) is the dielectric constant ⁇ r'of the boron liquid crystal during the heating and cooling processes
  • (b) is the DSC curve of the boron liquid crystal under vacuum conditions in the glass capillary.
  • component Y is a boron oxide moiety containing B—OH.
  • the component Y is a site whose structure is similar to trivalent B 2 O 3 and B (OH) 3 (FIG. 3 (b)), and the binding state of BO is different from that of the skeletal site. According to the identification by measurement of the boron layered crystal containing this atomic layer sheet, it is as follows.
  • the amount of at least one selected from crown ether and cryptondand is not particularly limited, but an amount that is excessive with respect to the laminated sheet is preferable.
  • thermotropic liquid crystal maintains a liquid crystal state in a temperature range of at least -196 to 350 ° C.
  • the interference color of the liquid crystal phase I is stably shown up to 350 ° C.
  • the cooling process of the liquid crystal phase II to -50 ° C is measured by DSC under argon, other than the phase transition between the liquid crystal phases I and II. No peak is observed on the low temperature side. From this, it is considered that the transition point from the liquid crystal to the crystal exists on the lower temperature side than ⁇ 50 ° C. Further, even if the boron liquid crystal is immersed in liquid nitrogen (-196 ° C.), no change is observed in the liquid crystal structure.
  • thermotropic liquid crystal When this thermotropic liquid crystal is produced by heating crystals to 100 ° C. or higher, the distance between atomic layer sheets increases due to the heating.
  • the boron sheet structure of the liquid crystal phase II contains components in the c-axis direction, which is the stacking direction, and the peaks of (001), (101), and (111) are on the lower angle side than the crystal before heating.
  • the interplanar spacing (001), which indicates the layer spacing is 3.47 ⁇ in the crystalline state, whereas it is 3.54 ⁇ in the liquid crystal phase II, which is about 0. It is expanding by 1 ⁇ .
  • B (OH) 3 is a molecule with a perfect planar structure, but it has a three-dimensional tetrahedral structure by dehydration condensation and conversion to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / defect site also undergoes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that such changes in the ends and defects that break the stacking of the sheets create fluidity between the sheets and develop liquid crystallinity. It is considered that the reason why the transition from the liquid crystal to the crystal is not observed even if the boron layered crystal is once liquid crystallized and then cooled is because the dehydration condensation between B and OH that produces the liquid crystal state is irreversible.
  • the lyotropic liquid crystal in the present invention includes the atomic layer sheet described above.
  • a laminated sheet containing metal ions between a plurality of atomic layer sheets is included.
  • the details of the atomic layer sheet, the laminated sheet, the metal ion, and the like in the lyotropic liquid crystal of the present invention are as described above, and the description thereof will be omitted.
  • the electrode may be conducted by forming an electrode on a separate base material and physically contacting the electrode with the conductive material (1), or by forming the electrode directly on the surface of the conductive material (1). May be good.
  • the method for forming the electrode is not particularly limited, but for example, the electrode can be formed by a method such as vapor deposition or sputtering, and can be patterned into a desired shape by lithograph or etching treatment. Further, when the electrode is formed by using the conductive polymer or the conductive fine particles, the solution or dispersion of the conductive polymer or the dispersion of the conductive fine particles may be patterned by an inkjet method from the coating film. It may be formed by lithograph, laser ablation, or the like.
  • the conductive device includes a conductive material (2) including the atomic layer sheet described above, and an electrode to which a voltage is applied.
  • the electrodes are connected to a power source that applies voltage and / or current to the conductive material (2), such as a DC power source or an AC power source, to form a device.
  • a liquid crystal can be accommodated in a two-dimensional manner using an accommodating body such as a liquid crystal cell, and electrodes can be arranged on both sides thereof.
  • a transparent conductive film such as indium tin oxide alloy (ITO), tin oxide (NESA), zinc oxide (IZO), etc. may be formed on a transparent substrate such as glass, and this substrate may be arranged on a liquid crystal surface. it can.
  • the conductive device of the present invention using the conductive material (2) is expected to be industrially used in various technical fields such as nanocoils, nanocircuits, and light control films.
  • a single layer of the atomic layer sheet or a solution of a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets in a solvent is applied in a thin film form. It is a thin-layer sheet from which the solvent has been removed.
  • These forming methods are not particularly limited, but can be obtained, for example, by thinly applying the above-mentioned lyotropic liquid crystal composition to a substrate such as a plate and then removing the solvent.
  • Such a conductive material (3) is typically a thin film having a sheet having a single atomic layer to several layers as a main component.
  • the relative permittivity of most liquid crystals is about 2 to 3.
  • the relative permittivity of the thermotropic liquid crystal which is a dielectric material, is 10 or less, for example, about 2 to 3, which is equivalent to that of a general liquid crystal when the liquid crystal phase II is used, while the liquid crystal phase I when the, dramatically increased for example up to more than 10 5.
  • the dielectric device is not particularly limited, and examples thereof include a capacitor, an inductor, a transmission line, a dielectric filter, a dielectric antenna, and a dielectric resonator.
  • a capacitor an inductor
  • a transmission line a dielectric filter
  • a dielectric antenna a dielectric antenna
  • a dielectric resonator a dielectric resonator
  • the dielectric device When the means is an electrode, the dielectric device typically applies a dielectric material and a voltage and / or current from a power source to the dielectric material, or a voltage and / or current to the dielectric device.
  • a plurality of electrodes for supplying to the outside are electrically connected.
  • a pair of electrodes are electrically connected with a dielectric material interposed therebetween.
  • Specific examples include a MIM (Metal-Insulator-Metal) capacitor in which a dielectric material is sandwiched between electrodes.
  • the above-mentioned fluid thermotropic liquid crystal may be accommodated and sealed to maintain a constant shape.
  • the dielectric device may further include an electrode, and the electrode is in the manner described above. It is electrically connected to the dielectric material.
  • thermotropic liquid crystal a phase reversible phase transition with respect to temperature is controlled between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side, thereby controlling the phase transition between them.
  • a device for controlling the temperature which can reversibly express and control the relative dielectric constants of the different liquid crystal phases I and II, may be installed.
  • the dark part of the cross is visible on the peripheral edge because the optical axis of the liquid crystal domain is oriented along the direction of the orthogonal polarizing plate, and the polarized light is transmitted as it is without interfering with it. Therefore, it is considered that the boron sheets are concentrically oriented in the liquid crystal.
  • the weight loss of about 19% near the liquefaction temperature observed by the TG measurement is more than 5 times the value when it is assumed that the ends of the boron sheet and the defective sites are all dehydrated and condensed. It can also be seen that the decrease starts from the low temperature side as compared with the dehydration temperature of B (OH) 3 .
  • this weight loss as a result of creating a differential curve for the weight loss of TG near 100 ° C, it can be separated into two stages of weight loss, a broad decrease from around 75 ° C and a sharp decrease around 125 ° C. I understand (Fig. 17 (a)).
  • the Seebeck coefficient of boron crystals is much larger than that of general semiconductors, and the carrier concentration is considered to be low.
  • Dielectric device using boron layered liquid crystal and permittivity measurement A device was manufactured to measure the dielectric constant of boron liquid crystal using electrodes.
  • the boron crystal synthesized above was sandwiched between electrodes, and only one side was left and fixed with a bond to create an argon atmosphere, which was further vacuum-heated to form a liquid crystal (1st heating). Then, the remaining one side under anaerobic conditions was sealed by fixing with a bond.
  • the electrode arrangement in which the boron crystal is sandwiched between the pair of upper and lower substrates is that the boron crystal is sandwiched between the electrode surfaces in the center of the substrate and the upper and lower connecting portions are arranged along the opposite substrate end faces. The upper and lower connecting parts were shifted so that the surface was exposed to the outside, and the upper and lower boards were fixed.
  • the polarization of a dielectric can be divided into electronic polarization, ionic polarization, orientation polarization, and interfacial polarization based on four different polarization mechanisms. It is considered that the boron liquid crystal is oriented according to the electric field because the domain can move freely at high temperature, the distance between the sheets is extended, and ionic polarization by the anion sheet and potassium ion is generated to obtain a high dielectric constant. As the result of the XRD measurement, the interplanetary distance is longer than that of the crystal, so it is considered that a space where the cation (K + ) can move freely is created and a large polarization occurs. As described above, it showed a large dielectric constant boron crystal exceeds 10 5 over a wide frequency has a high thermal stability. Taking advantage of these characteristics, it is expected to lead to application to materials such as capacitors, sensors, and liquid crystal displays under extreme conditions.
  • CsBH 4 (Cs boron layered crystal) CsBH 4 was added to 40 ml of the solvent MeCN in a glove box in an argon gas atmosphere. The concentration of CsBH 4 was 8 mM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Provided is a conductive device obtained using a crystal or thermotropic liquid crystal that includes an atomic layer sheet, which has boron and oxygen as framework elements, in which a network is formed by non-equilibrium binding having boron-boron bonds, and in which the molar ratio of oxygen and boron (oxygen/boron) is less than 1.5, or includes a layered sheet containing a plurality of the atomic layer sheets and metal ions between the sheets. Also provided is a dielectric device obtained using the thermotropic liquid crystal.

Description

ホウ素シートを用いた導電性および誘電体デバイスConductive and dielectric devices with boron sheets
 本発明は、ホウ素シートを用いた導電性デバイスおよび誘電体デバイスに関するものであり、電気化学的な応用、例えば電場応答機能などへの応用に関する。 The present invention relates to a conductive device and a dielectric device using a boron sheet, and relates to an electrochemical application, for example, an application to an electric field response function.
 1次元のナノチューブやナノワイヤ、2次元の層状物質やナノシート、3次元の多孔物質やデンドリマー等の構造を精密に制御したナノ構造体は、空間と形状を利用することで多彩な機能と物性が発現する。 Nanostructures with precisely controlled structures such as one-dimensional nanotubes and nanowires, two-dimensional layered materials and nanosheets, and three-dimensional porous materials and dendrimers express various functions and physical properties by utilizing space and shape. To do.
 これらのうち炭素の原子層物質であるグラフェンは、機械強度、熱伝導性、電気伝導性等の物性に優れ、スコッチテープにグラファイトを貼り付けて剥がすことで得られることが2004年に発見されてから、その応用研究が進み、例えば、グラフェン類縁体は、グラフェンの修飾や構成元素の変更の観点から検討されてきた。 Of these, graphene, which is a carbon atomic layer material, has excellent physical properties such as mechanical strength, thermal conductivity, and electrical conductivity, and was discovered in 2004 to be obtained by attaching graphite to scotch tape and peeling it off. Therefore, its application research has progressed, and for example, graphene analogs have been studied from the viewpoint of modifying graphene and changing constituent elements.
 構成元素の変更の観点では、窒化ホウ素(BN)、シリセン(Si)、ゲルマネン(Ge)、ボロフェン(B)等が知られている。ボロフェンは、ホウ素単層ナノシートであり、Wangらは、気相真空系により36原子からなるB36クラスターの合成を行ない、光電子スペクトルと理論計算によるシミュレーションの比較から構造を同定することで、ボロフェン類似クラスターの合成を報告した(非特許文献1)。その後、単位構造ではなく2次元に広がるシートとしてのボロフェンは、Guisingerら(非特許文献2)、Wuら(非特許文献3)によって、超高真空下でのAg(111)面上へのホウ素の真空蒸着による合成が報告されている。このボロフェンは、大気下では存在し得ない物質である。一方ボロファンは、末端を水素で保護したホウ素単層ナノシートで、ディラック粒子の速度や機械強度がグラフェンを超えると見込まれ、理論計算では大気中で存在可能と予測されていたが、最近になってその合成が報告された(非特許文献4)。 Boron nitride (BN), silicene (Si), germanene (Ge), borophene (B) and the like are known from the viewpoint of changing the constituent elements. Borophene is a boron monolayer nanosheet, and Wang et al. Synthesize B 36 clusters consisting of 36 atoms by a vapor phase vacuum system and identify the structure by comparing photoelectron spectra and simulations by theoretical calculation. The synthesis of clusters was reported (Non-Patent Document 1). After that, borophene as a sheet that spreads two-dimensionally instead of a unit structure was subjected to boron on the Ag (111) plane under ultra-high vacuum by Guisinger et al. (Non-Patent Document 2) and Wu et al. (Non-Patent Document 3). Has been reported to be synthesized by vacuum deposition. This borophene is a substance that cannot exist in the atmosphere. Borofan, on the other hand, is a boron monolayer nanosheet with hydrogen-protected ends, and the speed and mechanical strength of Dirac particles are expected to exceed graphene, and theoretical calculations predicted that it could exist in the atmosphere, but recently. The synthesis has been reported (Non-Patent Document 4).
 あらゆるディスプレイに使用されている液晶材料は、現代社会を支える非常に重要な機能性材料である。液晶とは、結晶と液体の中間の性質を示す物質の状態である。結晶のような分子の長周期的な配向性を持ちつつも、液体のような流動性を示すことが特徴であり、低温での結晶状態と高温での液晶状態の中間の温度で現れる相である。1888年に最初の有機分子における液晶状態の発見が報告されて以来、その物理的および化学的性質の解明や、機能開拓が盛んに行われてきた。 The liquid crystal material used in all displays is a very important functional material that supports modern society. Liquid crystal is a state of matter that exhibits properties intermediate between crystals and liquids. It is characterized by exhibiting liquid-like fluidity while having long-period orientation of molecules such as crystals, and is a phase that appears at an intermediate temperature between the crystalline state at low temperature and the liquid crystal state at high temperature. is there. Since the discovery of the liquid crystal state in the first organic molecule was reported in 1888, its physical and chemical properties have been elucidated and its functions have been actively cultivated.
 このような液晶状態が発現するためには、方向を揃えて配列するための異方性部位と、流動性を生み出す部位を分子内に兼ね備える必要がある。一般的な液晶分子はベンゼン環を含む剛直な部位と、末端のアルキル鎖を構造中に持つ。これにより、ベンゼン環による剛直部位が互いに配向する一方で、アルキル鎖が流動性を示すため、結晶のような分子の長周期的な配向と液体のような流動性が同時に発現する。 In order for such a liquid crystal state to appear, it is necessary to have both an anisotropic site for arranging in the same direction and a site for producing fluidity in the molecule. A general liquid crystal molecule has a rigid site containing a benzene ring and an alkyl chain at the end in the structure. As a result, the rigid sites of the benzene ring are oriented with each other, while the alkyl chain exhibits fluidity, so that long-period orientation of molecules such as crystals and fluidity such as liquid are simultaneously exhibited.
 このように温度変化により結晶と液体の中間に現れる液晶は、サーモトロピック液晶と呼ばれている。サーモトロピック液晶は温度に依存した多彩な液晶相を持つことが特徴である。同じ液晶分子でも、結晶化温度に近い低温ではより配向度や規則性の高いスメクチック相と呼ばれる状態となり、液体への転移温度に近い高温側ではより配向度の低いネマチック相となることが多い。このような液晶分子が形成する液晶相は、その分子の構造や形状によっても大きく異なる。その他にも構造中にキラリティを持つ液晶分子や、不斉炭素を持たないバナナ型液晶分子では、分子が螺旋を巻きながら配向するキラル相が出現する。 The liquid crystal that appears between the crystal and the liquid due to temperature changes in this way is called a thermotropic liquid crystal. Thermotropic liquid crystals are characterized by having a variety of temperature-dependent liquid crystal phases. Even with the same liquid crystal molecule, at a low temperature close to the crystallization temperature, it becomes a state called a smectic phase having a higher degree of orientation and regularity, and at a high temperature side close to the transition temperature to a liquid, it often becomes a nematic phase with a lower degree of orientation. The liquid crystal phase formed by such a liquid crystal molecule differs greatly depending on the structure and shape of the molecule. In addition, in liquid crystal molecules having chirality in the structure and banana-type liquid crystal molecules having no asymmetric carbon, a chiral phase in which the molecules are oriented while spiraling appears.
 上述した液晶相は全て剛直部位が1次元の異方性を持つ棒状分子についてのものであるが、アルキル鎖を導入したフタロシアニンやトリフェニレンなどの平面分子によっても、円盤状分子の積層により液晶相が発現する。このようにサーモトロピック液晶では、分子の持つ1次元または2次元の異方性を利用することで、多彩な液晶相を発現することができる。 All of the liquid crystal phases described above are for rod-shaped molecules whose rigid sites have one-dimensional anisotropy, but even with planar molecules such as phthalocyanine and triphenylene into which an alkyl chain has been introduced, the liquid crystal phase can be formed by laminating disk-shaped molecules. Express. As described above, in the thermotropic liquid crystal, various liquid crystal phases can be expressed by utilizing the one-dimensional or two-dimensional anisotropy of the molecule.
 一方、温度による液晶変化のみではなく、溶液中で発現するリオトロピック液晶と呼ばれる液晶相も存在する。リオトロピック液晶は主に、アルキル鎖による疎水部位とイオン性の親水部位を構造中に持つ界面活性剤に見られる液晶相である。水溶液中での界面活性剤分子は、疎水効果等による自己組織化によって様々なミセル構造を作り、特に高濃度では長周期構造を形成する。これは、溶液中に溶解していながらも結晶のように分子が周期的に配列している状態であるため、液晶であるとされ広く研究されている。リオトロピック液晶は相変化が温度のみに依存するサーモトロピック液晶と異なり、溶液中であるゆえに相変化が液晶分子の濃度に強く依存していることが特徴である。 On the other hand, there is a liquid crystal phase called lyotropic liquid crystal that is expressed in solution as well as the change in liquid crystal due to temperature. Riotropic liquid crystals are mainly liquid crystal phases found in surfactants having a hydrophobic moiety due to an alkyl chain and an ionic hydrophilic moiety in the structure. Surfactant molecules in an aqueous solution form various micelle structures by self-assembly due to hydrophobic effects, etc., and form long-period structures, especially at high concentrations. This is considered to be a liquid crystal and has been widely studied because it is in a state in which molecules are periodically arranged like crystals even though it is dissolved in a solution. Unlike thermotropic liquid crystals, in which the phase change depends only on temperature, the lyotropic liquid crystal is characterized in that the phase change strongly depends on the concentration of liquid crystal molecules because it is in a solution.
 既存のサーモトロピック液晶はそのほとんどが完全な有機分子であるが、無機化合物との複合化が行われている例もある。これは分子内の剛直部位に無機ユニットを導入した液晶分子であり、小さいものでは金属錯体、大きいものではクラスターや金属ナノ粒子を無機ドメインとした液晶分子が合成されている(非特許文献5~7)。 Most of the existing thermotropic liquid crystals are completely organic molecules, but there are cases where they are compounded with inorganic compounds. This is a liquid crystal molecule in which an inorganic unit is introduced into a rigid site in the molecule, and a small one is a metal complex, and a large one is a liquid crystal molecule having a cluster or metal nanoparticles as an inorganic domain (Non-Patent Documents 5 to 5). 7).
 しかし、無機ドメインを持つ液晶でも、全て構造中に必ずアルキル鎖を含んでいる。これは、液晶状態では軟らかいアルキル鎖がほとんど融解した状態であり、液晶内で剛直部位を溶かす溶媒の役割を果たすためとされている。そのため、剛直部位を無機ユニットで構築することができても、流動性を生み出すアルキル鎖は代替することができず、完全に無機化合物のみからなるサーモトロピック液晶は報告例がなかった。 However, even liquid crystals with an inorganic domain always contain an alkyl chain in their structure. It is said that this is because the soft alkyl chain is almost melted in the liquid crystal state and acts as a solvent for dissolving the rigid portion in the liquid crystal. Therefore, even if the rigid portion can be constructed with an inorganic unit, the alkyl chain that produces fluidity cannot be replaced, and there has been no report of a thermotropic liquid crystal composed entirely of an inorganic compound.
 サーモトロピック液晶では完全無機液晶の報告例はない一方で、リオトロピック液晶では、2001年にGabrielらによって層状リン酸塩による完全無機の液晶が報告された(非特許文献8)。筆者らは無機層状物質中のナノシートの持つ2次元の強い異方性に着目し、層状リン酸塩から剥離したリン酸ナノシートを水に分散させることで、分散液にリオトロピック液晶性が発現することを見出した。このリン酸ナノシートの液晶性は、偏光顕微鏡下で分散液を観察した際に、分散液状態でありつつも、長周期構造に基づく複屈折による干渉色が見えることから確認された。また、液晶相の変化は、界面活性剤分子によるリオトロピック液晶と同様に、分散液中でのナノシートの濃度に依存することが確認されている。 While there are no reports of completely inorganic liquid crystals in thermotropic liquid crystals, in 2001, Gabriel et al. Reported completely inorganic liquid crystals using layered phosphate (Non-Patent Document 8). The authors focused on the two-dimensional strong anisotropy of nanosheets in inorganic layered substances, and dispersed the phosphoric acid nanosheets exfoliated from the layered phosphate in water to develop lyotropic liquid crystallinity in the dispersion. I found. The liquid crystallinity of this phosphoric acid nanosheet was confirmed by observing the dispersion under a polarizing microscope, because the interference color due to birefringence based on the long-period structure was visible even though it was in the dispersion state. It has also been confirmed that the change in the liquid crystal phase depends on the concentration of nanosheets in the dispersion, similar to the lyotropic liquid crystal due to the surfactant molecule.
 この発見をきっかけに、無機ナノシートの持つ液晶発現への可能性に注目が集められ、無機ナノシート液晶と呼ばれる分野が発展した(非特許文献9)。このような無機ナノシート液晶は、分散液中での剥離法が確立されている金属酸化物や粘土鉱物などのイオン性の層状物質で報告されていたが、2010年以降にはグラファイトからの剥離によるグラフェン(非特許文献10)や酸化グラフェン(非特許文献11)といった、溶液中での剥離が難しいナノシートでの報告もなされている。 With this discovery, attention was focused on the potential of inorganic nanosheets for liquid crystal expression, and the field called inorganic nanosheet liquid crystals developed (Non-Patent Document 9). Such inorganic nanosheet liquid crystals have been reported as ionic layered substances such as metal oxides and clay minerals for which a peeling method in a dispersion has been established, but after 2010, they are peeled from graphite. There are also reports on nanosheets such as graphene (Non-Patent Document 10) and graphene oxide (Non-Patent Document 11), which are difficult to peel off in a solution.
 ナノサイズのような微細な導電性材料としては、コイル状の炭素材料や金属(非特許文献12~14)のインダクタ挙動等が報告されている。一方、ホウ素系のシート状物質では、二次元ナノシートである窒化ホウ素の基礎的特性が明らかにされつつあるが(非特許文献15、16)、そのようなホウ素系のシート状物質の結晶における導電性の挙動の詳細は未だ解明されていない。最も有名な二次元物質であるグラフェンは、非常に高い移動度を持ち、また高い強度を持つ。しかし、金属性、両極性により、単原子層の製膜や加工には高いハードルがあり、デバイス応用への難易度は高くなっている。グラフェンやボロフェンでは、その構造に起因して、ゲート電圧に対し正でも負でも電圧がかかってしまうため、デバイスへの応用といった面では不利になり得る。これに対し、シートのマイナス電荷を利用することで正のゲート電圧でも電流が0となる可能性がある。このような面でデバイス応用に適した技術が望まれている。 As fine conductive materials such as nano size, inductor behavior of coiled carbon materials and metals (Non-Patent Documents 12 to 14) has been reported. On the other hand, in the boron-based sheet-like substance, the basic characteristics of boron nitride, which is a two-dimensional nanosheet, are being clarified (Non-Patent Documents 15 and 16), but the conductivity in the crystal of such a boron-based sheet-like substance. The details of sexual behavior have not yet been elucidated. Graphene, the most famous two-dimensional material, has extremely high mobility and high strength. However, due to the metallic nature and bipolarity, there are high hurdles in film formation and processing of the monatomic layer, and the difficulty of device application is high. Graphene and borophene are subject to a positive or negative voltage with respect to the gate voltage due to their structure, which can be disadvantageous in terms of application to devices. On the other hand, by using the negative charge of the sheet, the current may become 0 even at a positive gate voltage. In this respect, a technology suitable for device application is desired.
 液晶の導電性については、酸化グラフェンの円板状液晶について報告されているが(非特許文献17)、ホウ素系のシート状物質は、液晶の存在すら知られていないのが現状である。液晶性を利用し、配向膜を作成することで簡単にシートを作成できる技術や、アニオン性の原子層を利用することで、スイッチングが可能になる技術が望まれている。 Regarding the conductivity of liquid crystals, a disk-shaped liquid crystal of graphene oxide has been reported (Non-Patent Document 17), but the present situation is that even the existence of liquid crystals is not known for boron-based sheet-like substances. There is a demand for a technology that makes it easy to create a sheet by creating an alignment film using liquid crystallinity, and a technology that enables switching by using an anionic atomic layer.
 誘電体デバイスは、従来より各種の無機材料、有機材料が使用されているが、使用目的に適した性状、耐熱性、比誘電率の特性が要求される。無機材料のような熱への安定性を有しながら流動性を示す誘電体材料や、更には層状化合物であるペロブスカイトのような高い比誘電率(非特許文献18)を示し、また温度範囲に応じて比誘電率が大きく異なる誘電体材料は知られていない。 Various inorganic materials and organic materials have been conventionally used for dielectric devices, but properties suitable for the purpose of use, heat resistance, and relative permittivity are required. Dielectric materials that are stable to heat and show fluidity, such as inorganic materials, and high relative permittivity (Non-Patent Document 18), such as perovskite, which is a layered compound, are also shown in the temperature range. There are no known dielectric materials that differ greatly in relative permittivity.
 以上の背景において、これまでにない新規なホウ素原子層シートおよび積層シートが得ら、更に結晶のみならず液晶性をも示すという知見、そして、これらは結晶面内と結晶面間の活性化エネルギーの違いや導電性の違いにより、特異的な異方性伝導を示す等、その特徴的な電気的挙動を明らかにしたことに基づき、本発明は以下の導電性デバイスを提供する。別の側面において、この新規なホウ素シートによるサーモトロピック液晶は誘電体材料として機能し、特異的な比誘電率の温度特性を持つなど、その特徴的な電気的挙動を明らかにしたことに基づき、本発明は以下の誘電体デバイスを提供する。 Against the above background, it has been found that new boron atomic layer sheets and laminated sheets that have never been obtained are obtained, and that they exhibit not only crystal but also liquid crystal properties, and these are activation energies in and between crystal planes. The present invention provides the following conductive device based on the clarification of its characteristic electrical behavior such as showing specific anisotropic conduction due to the difference in conductivity and the difference in conductivity. In another aspect, the thermotropic liquid crystal made of this novel boron sheet functions as a dielectric material and has a specific relative permittivity temperature characteristic. Based on the clarification of its characteristic electrical behavior. The present invention provides the following dielectric devices.
 本発明の導電性デバイスは、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートを含む導電性材料と、電圧を印加する電極とを含む導電性デバイスであって、
 次の導電性材料(1)~(3)のいずれかと、前記導電性材料に電圧を印加する電極とを含む。
(1)前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含む結晶
(2)前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含むサーモトロピック液晶
(3)単層の前記原子層シート、または、前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートの溶媒への溶解物を薄膜状に塗布し、前記溶媒を除去した薄層シート
 本発明の誘電体デバイスは、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含むサーモトロピック液晶を有する誘電体材料と、前記誘電体材料に外部電場を作用させる手段とを含み、前記手段により外部電場を作用させることで、前記誘電体材料は電気的に分極する。
The conductive device of the present invention has boron and oxygen as skeleton elements and is networked by a non-equilibrium bond with a boron-boron bond, with an oxygen-boron molar ratio (oxygen / boron) of less than 1.5. A conductive device containing a conductive material containing a certain atomic layer sheet and an electrode to which a voltage is applied.
It includes any of the following conductive materials (1) to (3) and an electrode for applying a voltage to the conductive material.
(1) Crystal containing a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets (2) Thermo containing a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets Tropic liquid crystal (3) A single-layer atomic layer sheet or a solution of a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets is applied in a thin film form, and the solvent is applied. The removed thin-layer sheet The dielectric device of the present invention has a skeleton element of boron and oxygen, and is networked by a non-equilibrium bond having a boron-boron bond, and has a molar ratio of oxygen to boron (oxygen / boron). A dielectric material having a thermotropic liquid crystal containing an atomic layer sheet having a thickness of less than 1.5 and a laminated sheet containing metal ions between the atomic layer sheets, and a means for applying an external electric field to the dielectric material. By applying an external electric field by the means, the dielectric material is electrically polarized.
 本発明におけるホウ素原子層シートおよび積層シートにおいて、ホウ素の原子層物質のボトムアップ合成や大気圧中での液相合成、また大気中で安定であることは、従来技術と対比して特徴的な知見であり、このホウ素層状単結晶は物理的および化学的溶解法により単層化することができる。物理的な力を結晶に加えることで、基板上に単層に相当する厚さのシート物質を得ることができる。また、この層状単結晶は非プロトン性の一般的な有機溶媒には溶けないが、層間の金属イオンを捕捉するクリプタンドやクラウンエーテルの添加によって溶解する。金属イオンが溶け出した状態では、ホウ素シートも単層として溶液中に分散していると推測される。 In the boron atomic layer sheet and the laminated sheet in the present invention, bottom-up synthesis of boron atomic layer material, liquid phase synthesis in atmospheric pressure, and stability in the atmosphere are characteristic as compared with the prior art. It is a finding that this boron layered single crystal can be monolayered by physical and chemical dissolution methods. By applying a physical force to the crystal, a sheet material having a thickness corresponding to a single layer can be obtained on the substrate. Further, this layered single crystal is insoluble in a general aprotic organic solvent, but is dissolved by the addition of cryptondand or crown ether that captures metal ions between layers. In the state where the metal ions are dissolved, it is presumed that the boron sheet is also dispersed in the solution as a single layer.
 このホウ素層状結晶は加熱によって液晶に変化する。こうした熱のみでの液晶への変化は無機化合物ではこれまで例がなく、完全な無機化合物で初となる無溶媒での液晶化を達成した。ホウ素層状結晶からホウ素液晶への変化は化学変化を伴う不可逆な変化であるが、液晶相間の温度に対する可逆な相転移が示されたことから、ホウ素液晶が完全無機物質で初の無溶媒液晶というだけでなく、初のサーモトロピック液晶であることが実証された。ホウ素液晶が液晶相を保持できる温度範囲は、低温側は少なくとも-196℃から、高温側は少なくとも350℃までである。一般的な有機液晶の液晶温度範囲を見ると、例えばディスプレイに使用される最も有名な5CBで23~37℃であり、その他も概ね10~30℃程度の温度範囲である。一方、かなり広いものでは100℃を超えるようなものも存在する。これらに対して、ホウ素液晶の液晶温度範囲は約550℃にも及び、既存の有機液晶では実現できない極めて広い温度範囲で液晶相を保持できる。このようなホウ素液晶の極めて高い安定性は、ホウ素シートの2次元の強い異方性によって発現するものであると考えられ、ナノシートを持つ無機化合物ならではの構造に由来する安定性であると考えられる。 This boron layered crystal changes to liquid crystal by heating. This change to liquid crystal only by heat has never been seen in inorganic compounds, and we have achieved the first solvent-free liquid crystal conversion of a completely inorganic compound. The change from the boron layered crystal to the boron liquid crystal is an irreversible change accompanied by a chemical change, but since a reversible phase transition with respect to the temperature between the liquid crystal phases was shown, the boron liquid crystal is said to be the first completely inorganic substance without solvent. Not only that, it proved to be the first thermotropic liquid crystal. The temperature range in which the boron liquid crystal can retain the liquid crystal phase is at least -196 ° C. on the low temperature side and at least 350 ° C. on the high temperature side. Looking at the liquid crystal temperature range of a general organic liquid crystal, for example, the most famous 5CB used for a display is 23 to 37 ° C, and the others are also in a temperature range of about 10 to 30 ° C. On the other hand, there are some that exceed 100 ° C in a fairly wide range. On the other hand, the liquid crystal temperature range of the boron liquid crystal reaches about 550 ° C., and the liquid crystal phase can be maintained in an extremely wide temperature range that cannot be realized by the existing organic liquid crystal. It is considered that such extremely high stability of the boron liquid crystal is expressed by the two-dimensional strong anisotropy of the boron sheet, and it is considered that the stability is derived from the structure unique to the inorganic compound having nanosheets. ..
 前記導電性材料が、導電性材料(1)の結晶である場合、異方性伝導を示す。別の観点では、結晶面間と結晶面内で異方性伝導を示す。これらの特徴より、前記電極は結晶面間に電圧を印加し、伝導度の温度依存性が半導体的挙動を示す導電性デバイス、また前記電極は結晶面内に電圧を印加し、伝導度の温度依存性が金属的挙動を示す導電性デバイス等を提供する。 When the conductive material is a crystal of the conductive material (1), it exhibits anisotropic conduction. From another point of view, it exhibits anisotropic conduction between and within the crystal planes. Due to these characteristics, the electrode is a conductive device in which a voltage is applied between the crystal planes and the temperature dependence of the conductivity exhibits a semiconductor-like behavior, and the electrode applies a voltage in the crystal plane to the temperature of the conductivity. Provided are a conductive device or the like whose dependence exhibits metallic behavior.
 前記導電性材料が、導電性材料(2)のサーモトロピック液晶である場合、異方性伝導を示す。別の観点では、同心円配向の異方性伝導を示す。これらの特徴より、インダクタ挙動を示す導電性デバイス、また電流応答性を示し、光学的特性のスイッチングを可能とする、調光フィルム等に応用可能な導電性デバイスを提供する。 When the conductive material is the thermotropic liquid crystal of the conductive material (2), it exhibits anisotropic conduction. From another point of view, it exhibits anisotropic conduction of concentric orientation. From these features, we provide a conductive device that exhibits inductor behavior and a conductive device that exhibits current responsiveness and enables switching of optical characteristics, and can be applied to a light control film or the like.
 そしてホウ素層状物質は液晶として存在することで、構造のズレが生じ、従って電荷の偏りが生じる。また、ペロブスカイトのようにカチオンとアニオンの層が交互に積層している構造は、高温側の液晶相Iでは低温側の液晶相IIとは大きく異なる高い比誘電率を発現すると共に、温度に対して可逆な相転移を制御できるという、これまでにない特性を与える。このように、従来にはない特異的な性質を持つ誘電体材料とそれを用いたデバイスを提供する。 And since the boron layered substance exists as a liquid crystal, the structure is displaced, and therefore the charge is biased. In addition, a structure in which cation and anion layers are alternately laminated, such as perovskite, exhibits a high relative permittivity in the high temperature side liquid crystal phase I, which is significantly different from that in the low temperature side liquid crystal phase II, and with respect to temperature. It gives an unprecedented property of being able to control a reversible phase transition. As described above, a dielectric material having unique properties not found in the past and a device using the dielectric material are provided.
実施例において合成した針状結晶の写真である。It is a photograph of the needle-shaped crystal synthesized in the example. X線構造解析によるホウ素層状結晶の構造を示した図であり、(a)は層状断面、(b)と(c)は平面の結晶構造を示す。It is a figure which showed the structure of a boron layered crystal by X-ray structure analysis, (a) shows a layered cross section, (b) and (c) show a planar crystal structure. X線構造解析によるホウ素層状結晶の構造を示した図であり、(a)はホウ素原子層の単位格子の推定構造、(b)は末端・欠損部位の単位格子の推定構造、(c)はB-B結合とB-O結合の距離を示している。It is a figure which showed the structure of the boron layered crystal by X-ray structure analysis, (a) is the estimated structure of the unit cell of a boron atom layer, (b) is the estimated structure of the unit cell of a terminal / defect site, (c) is The distance between the BB bond and the BO bond is shown. ホウ素層状結晶(上)とB(OH)3(下)のIRスペクトルである。It is an IR spectrum of a boron layered crystal (top) and B (OH) 3 (bottom). (a)ホウ素層状結晶と(b)B23およびKBH4のXPSスペクトルである。It is XPS spectrum of (a) boron layered crystal and (b) B 2 O 3 and KBH 4 . (a)はX線単結晶構造解析における面指数分析、(b)はキャピラリー中のホウ素層状結晶のXRDパターンを示す。(A) shows the plane index analysis in the X-ray single crystal structure analysis, and (b) shows the XRD pattern of the boron layered crystal in the capillary. ホウ素層状結晶、B(OH)3およびB23の(a)紫外-可視吸収スペクトル、(b)近赤外吸収スペクトルである。These are (a) ultraviolet-visible absorption spectra and (b) near-infrared absorption spectra of boron layered crystals, B (OH) 3 and B 2 O 3 . (a)はホウ素層状結晶のSEM像、(b)はホウ素層状結晶から機械的圧力によって剥離したナノシートのSEM像である。(A) is an SEM image of the boron layered crystal, and (b) is an SEM image of the nanosheet peeled from the boron layered crystal by mechanical pressure. ホウ素層状結晶から剥離したナノシートのAFM像である。It is an AFM image of a nanosheet exfoliated from a boron layered crystal. ホウ素層状結晶から剥離したナノシートのAFM像と高さプロファイルである。AFM image and height profile of nanosheets exfoliated from boron layered crystals. ホウ素層状結晶をクラウンエーテルにより溶解しHOPG基板にキャストしたナノシートのAFM像である。It is an AFM image of a nanosheet in which boron layered crystals are dissolved with crown ether and cast on a HOPG substrate. ホウ素層状結晶から剥離したナノシートの(a)STEM像と(b)高分解TEM像である。It is (a) STEM image and (b) high decomposition TEM image of the nanosheet exfoliated from the boron layered crystal. ホウ素層状結晶から剥離したナノシートの格子パターンの高分解TEM像である。It is a highly decomposed TEM image of the lattice pattern of the nanosheet exfoliated from the boron layered crystal. (a)は50℃から120℃まで加熱する間におけるホウ素層状結晶の結晶から液晶への相転移過程、(b)は120℃から35℃まで冷却する間におけるホウ素層状結晶の形状変化の偏光顕微鏡像である。(A) is the phase transition process from the boron layered crystal to the liquid crystal during heating from 50 ° C. to 120 ° C., and (b) is a polarizing microscope of the shape change of the boron layered crystal during cooling from 120 ° C. to 35 ° C. It is a statue. (a)ホウ素層状結晶と(b)B(OH)3のTG曲線および(c)ホウ素層状結晶とホウ素液晶のIRスペクトルである。It is (a) the TG curve of the boron layered crystal and (b) B (OH) 3 and (c) the IR spectrum of the boron layered crystal and the boron liquid crystal. (a)はホウ素層状結晶とホウ素液晶のXPSスペクトル、(b)は結晶から液晶への変化として考えられるメカニズムを示す。(A) shows the XPS spectra of the boron layered crystal and the boron liquid crystal, and (b) shows the mechanism considered as the change from the crystal to the liquid crystal. (a)はホウ素層状結晶のTG曲線およびDTG曲線、(b)はアルゴンおよび真空雰囲気下(キャピラリー中)におけるホウ素結晶のDSC曲線である。(A) is a TG curve and a DTG curve of a boron layered crystal, and (b) is a DSC curve of a boron crystal under an argon and vacuum atmosphere (in a capillary). (a)はホウ素液晶の2時間でのIRスペクトルの変化、(b)は大気中での冷却過程の間におけるホウ素液晶のTG-DTA曲線である。(A) is the change in the IR spectrum of the boron liquid crystal in 2 hours, and (b) is the TG-DTA curve of the boron liquid crystal during the cooling process in the atmosphere. 固化後のホウ素液晶のSEM像である。It is an SEM image of a boron liquid crystal after solidification. ホウ素液晶のナノシートのTEM像(上)とナノシートの格子パターン(下)である。It is a TEM image (top) of a boron liquid crystal nanosheet and a lattice pattern (bottom) of a nanosheet. ガラスキャピラリー中における真空下でのホウ素結晶のDSC曲線である。It is a DSC curve of a boron crystal under vacuum in a glass capillary. 液晶相Iから液晶相IIへの相転移の間(左)と、液晶相Iと液晶相IIとの可逆相転移の間(右)におけるホウ素液晶の偏光顕微鏡像である。It is a polarizing microscope image of a boron liquid crystal between a phase transition from a liquid crystal phase I to a liquid crystal phase II (left) and a reversible phase transition between a liquid crystal phase I and a liquid crystal phase II (right). (a)室温におけるホウ素液晶の偏光顕微鏡像と(b)その拡大像である。(A) A polarizing microscope image of a boron liquid crystal at room temperature and (b) an enlarged image thereof. ホウ素層状結晶(シミュレーション)および液晶相IIのホウ素液晶のXRDパターンである。It is an XRD pattern of a boron layered crystal (simulation) and a boron liquid crystal of liquid crystal phase II. 高温でのホウ素液晶のTG曲線(左)と処理前後の試料の写真(左)である。It is a TG curve (left) of a boron liquid crystal at a high temperature and a photograph (left) of a sample before and after the treatment. (a)は20℃から-38.5℃への冷却過程の間におけるホウ素液晶の偏光顕微鏡像、(b)はアルゴン条件におけるホウ素液晶のDSC曲線である。(A) is a polarizing microscope image of the boron liquid crystal during the cooling process from 20 ° C. to −38.5 ° C., and (b) is a DSC curve of the boron liquid crystal under argon conditions. (a)はホウ素液晶を液体窒素中に1分および12時間浸漬した前(左)と後(右)の偏光顕微鏡像、(b)は急速に冷却したホウ素液晶とその相変化の偏光顕微鏡像である。(A) is a polarizing microscope image of before (left) and after (right) that the boron liquid crystal is immersed in liquid nitrogen for 1 minute and 12 hours, and (b) is a polarizing microscope image of rapidly cooled boron liquid crystal and its phase change. Is. 溶解したホウ素層状結晶の光学顕微鏡像(左)と各種溶媒へのホウ素層状結晶の溶解度の測定結果(右)である。It is an optical microscope image of the dissolved boron layered crystal (left) and the measurement result of the solubility of the boron layered crystal in various solvents (right). (a)はDMF中におけるリオトロピック液晶の形成、(b)はリオトロピック液晶のDMF揮発過程と結晶の生成を示す光学顕微鏡像である。(A) is an optical microscope image showing the formation of a lyotropic liquid crystal in DMF, and (b) is an optical microscope image showing the DMF volatilization process and crystal formation of the liotropic liquid crystal. DMF揮発後に堆積した結晶のSEM像である。It is an SEM image of the crystal deposited after DMF volatilization. DMF中への溶解によって剥離したホウ素ナノシートのAFM像である。8 is an AFM image of boron nanosheets exfoliated by dissolution in DMF. ホウ素層状結晶の伝導度測定のセットアップを示した図である。It is a figure which showed the setup of the conductivity measurement of a boron layered crystal. ホウ素層状結晶のインピーダンス測定におけるRC並列回路を示した図である。It is a figure which showed the RC parallel circuit in the impedance measurement of a boron layered crystal. ホウ素層状結晶のインピーダンスデータのナイキストプロットおよび円近似フィッティングである。Nyquist plot and circle approximation fitting of impedance data of boron layered crystals. ホウ素層状結晶(面間)における、インピーダンス法による温度を変化させた伝導度の測定結果を示す。The measurement result of the conductivity of the boron layered crystal (between planes) with the temperature changed by the impedance method is shown. ホウ素層状結晶(面内)における、インピーダンス法による温度を変化させた伝導度の測定結果を示す。The measurement result of the conductivity of the boron layered crystal (in-plane) with the temperature changed by the impedance method is shown. ホウ素層状結晶のインピーダンスデータのナイキストプロット(左:面間、右:面内)である。Nyquist plot of impedance data of boron layered crystals (left: in-plane, right: in-plane). ホウ素液晶のインピーダンス測定における、くし型電極とホットステージの組み合わせのセットアップを示した図である。It is a figure which showed the setup of the combination of the comb electrode and the hot stage in the impedance measurement of a boron liquid crystal. ホウ素液晶のナイキストプロットと、R-RCPE平行回路を用いたフィッティングである。It is a fitting using a boron liquid crystal Nyquist plot and an R-RCPE parallel circuit. くし型電極を用いたホウ素液晶のインピーダンスデータのアレニウスプロットである。It is an Arrhenius plot of the impedance data of a boron liquid crystal using a comb-shaped electrode. ホウ素層状結晶およびホウ素液晶のアレニウスプロットである。It is an Arrhenius plot of a boron layered crystal and a boron liquid crystal. ホウ素液晶とコイルのナイキストプロットの比較結果を示す。The comparison result of the Nyquist plot of the boron liquid crystal and the coil is shown. 異方性伝導および同心円配向によるホウ素液晶のインダクタ挙動を示す。The inductor behavior of a boron liquid crystal due to anisotropic conduction and concentric orientation is shown. ホウ素液晶のナイキストプロットの振幅依存性を示すグラフである。It is a graph which shows the amplitude dependence of the Nyquist plot of a boron liquid crystal. くし型電極を用いたホウ素液晶デバイスの模式図と、50℃、5V、1Hzでのホウ素液晶のON/OFF光学スイッチの顕微鏡観察像である。It is a schematic diagram of a boron liquid crystal device using a comb-shaped electrode, and the microscope observation image of the ON / OFF optical switch of a boron liquid crystal at 50 degreeC, 5V, 1Hz. ホウ素液晶への電圧印加による光学応答の顕微鏡像および写真である。It is a microscope image and a photograph of an optical response by applying a voltage to a boron liquid crystal. DMF中への溶解によって剥離したホウ素ナノシートの導電性AFMにより測定したI-V曲線である。It is an IV curve measured by the conductive AFM of the boron nanosheet exfoliated by dissolution in DMF. (a)は実施例の誘電体デバイスにおけるアルミニウム/酸化アルミニウム電極断面の模式図、(b)は誘電体デバイスの模式図(左は分解斜視図、右は平面図)である。(A) is a schematic view of a cross section of an aluminum / aluminum oxide electrode in the dielectric device of the embodiment, and (b) is a schematic view of the dielectric device (left is an exploded perspective view, right is a plan view). (a)は実施例の誘電体デバイスと加熱用ホットプレートの縦断面の模式図、(b)は実際に作製した誘電体デバイスを上から見た写真である。(A) is a schematic view of the vertical cross section of the dielectric device of the example and the hot plate for heating, and (b) is a photograph of the actually manufactured dielectric device viewed from above. 実施例の誘電体デバイスの加熱および冷却プロセス中におけるホウ素液晶の誘電率εr'のサイクル特性である。It is a cycle characteristic of the dielectric constant ε r'of the boron liquid crystal during the heating and cooling process of the dielectric device of the example. 275℃、100mVでの、周波数が20Hz~106Hz間におけるホウ素液晶の誘電率εr'の周波数依存性である。275 ° C., at 100 mV, the frequency is the frequency dependence of the dielectric constant of the boron liquid crystal epsilon r 'between 20Hz ~ 10 6 Hz. (a)は加熱および冷却プロセス中におけるホウ素液晶の誘電率εr'、(b)はガラス毛細管内の真空条件下でのホウ素液晶のDSC曲線である。(A) is the dielectric constant ε r'of the boron liquid crystal during the heating and cooling processes, and (b) is the DSC curve of the boron liquid crystal under vacuum conditions in the glass capillary. (a)、(b)はRbBH4より生成した針状結晶の顕微鏡写真、(c)は容器内の写真である。(A) and (b) are micrographs of needle-shaped crystals produced from RbBH 4 , and (c) are photographs of the inside of the container. (a)、(b)はRbBH4より生成した針状結晶のSEM写真、(c)はKBH4より生成した針状結晶のSEM写真、(d)はRbBH4より生成した針状結晶をスパーテルでへき開したSEM写真である。(A), (b) is an SEM photograph of needle-like crystals generated from RbBH 4, (c) is a SEM photograph of needle-like crystals generated from KBH 4, (d) is a spatula needle crystals produced from RbBH 4 It is an SEM photograph that was cleaved. Rbホウ素層状結晶(上)とKホウ素層状結晶(下)のFT-IRスペクトルである。It is an FT-IR spectrum of the Rb boron layered crystal (top) and the K boron layered crystal (bottom). Rbホウ素層状結晶のXRDスペクトルである。Kホウ素層状結晶(P-62m)のカチオンを入れ替えた構造のCaluculation peakと比較した。It is an XRD spectrum of an Rb boron layered crystal. It was compared with Caluculation peak having a structure in which the cations of the K boron layered crystal (P-62 m) were replaced. (a)は、Csホウ素層状結晶の合成において、加熱後に室温で静置後2日目のバイアルの写真、(b)は静置後1週間のバイアルの写真、(c)はその拡大写真、(d)はその顕微鏡写真である。(A) is a photograph of a vial 2 days after being allowed to stand at room temperature after heating in the synthesis of Cs boron layered crystals, (b) is a photograph of a vial one week after being allowed to stand, and (c) is an enlarged photograph thereof. (D) is a photomicrograph thereof. Csホウ素層状結晶(上)とKホウ素層状結晶(下)のFT-IRスペクトルである。It is an FT-IR spectrum of Cs boron layered crystal (top) and K boron layered crystal (bottom). 電圧(2.0V)を印加したときの液晶セルの応答を示す。The response of the liquid crystal cell when a voltage (2.0V) is applied is shown. (a)は176℃および263℃、(b)は281℃および298℃での液晶セルの応答を示す。(A) shows the response of the liquid crystal cell at 176 ° C. and 263 ° C., and (b) shows the response of the liquid crystal cell at 281 ° C. and 298 ° C. 電圧2.0V、50℃での液晶セルの電場応答を示す。The electric field response of the liquid crystal cell at a voltage of 2.0 V and 50 ° C. is shown. 電圧2.0V、室温での液晶セルの電場応答を示す。The electric field response of the liquid crystal cell at a voltage of 2.0 V and room temperature is shown. 電圧(1.0V)を印加したときの液晶セルの応答を示し、(a)は立ち下がり時間、(b)は立ち上がり時間である。The response of the liquid crystal cell when the voltage (1.0 V) is applied is shown, where (a) is the fall time and (b) is the rise time.
 以下に、本発明を詳細に説明する。
1.ホウ素原子層シートおよび積層シート
 本発明において、「原子層シート」は、ホウ素および酸素を主構成原子とする単原子層のシートであり、独立した単層シートの他、積層シート中の部分的な構成要素として存在する単層シート、独立した単層シートに電荷のバランスを保つ金属イオンが結合した金属イオン含有単層シート等も含む。本明細書では、ホウ素原子層シート、ナノシート等とも表記している。「積層シート」は、この原子層シートと、当該原子層シート間の金属イオンとを含む層状物質であり、本明細書では、ホウ素層状結晶等とも表記している。
The present invention will be described in detail below.
1. 1. Boron Atomic Layer Sheet and Laminated Sheet In the present invention, the "atomic layer sheet" is a monoatomic layer sheet containing boron and oxygen as main constituent atoms, and is a separate monolayer sheet or a partial sheet in the laminated sheet. It also includes a monolayer sheet existing as a component, a metal ion-containing monolayer sheet in which metal ions that maintain charge balance are bonded to an independent monolayer sheet, and the like. In this specification, it is also referred to as a boron atomic layer sheet, a nanosheet, or the like. The "laminated sheet" is a layered substance containing the atomic layer sheet and metal ions between the atomic layer sheets, and is also referred to as a boron layered crystal or the like in the present specification.
 ボロフェンはホウ素単体からなるシート状物質であるが、ホウ素が作る三角形の格子と、sp2ホウ素からなる六角形の空孔の比率によってその構造と安定性が議論される。三角形格子が存在するのは、一般的にホウ素の単体およびクラスターが、多中心結合による三角格子を単位ユニットとして安定な構造を形成するためであるとされている。本発明において「ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された」とは、ボロフェン等のホウ素含有原子層シートにおける従来の結合様式の議論に沿う形で、二次元の結合態様を表現したものである。 Borophene is a sheet-like substance composed of elemental boron, and its structure and stability are discussed by the ratio of the triangular lattice formed by boron to the hexagonal pores composed of sp 2 boron. It is generally said that the existence of a triangular lattice is due to the fact that simple substances and clusters of boron form a stable structure with a triangular lattice formed by multicenter bonding as a unit unit. In the present invention, "networked by a non-equilibrium bond having a boron-boron bond" expresses a two-dimensional bonding mode in line with the discussion of the conventional bonding mode in a boron-containing atomic layer sheet such as borophene. It is a thing.
(原子層シート)
 本発明における原子層シートは、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化され、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である。ある態様では、更にアルカリ金属イオンを含み、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である。これらの特定は、原子層シートがMBH4(Mはアルカリ金属イオンを示す。)の酸化生成物である場合に基づいて、また従来のホウ酸はホウ素-酸素結合のみで、高分子化(重合)した場合は三次元的になり原子層シートにならないことを考慮している。酸素とホウ素のモル比率(酸素/ホウ素)は、1.2以下、1.0以下、0.8以下であってよい。また0.1以上、0.3以上であってよい。アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)は、0.8以下、0.6以下、0.4以下であってよい。また0.01以上、0.05以上、0.1以上であってよい。
(Atomic layer sheet)
The atomic layer sheet in the present invention is networked by a non-equilibrium bond having boron and oxygen as skeleton elements and a boron-boron bond, and the molar ratio of oxygen to boron (oxygen / boron) is less than 1.5. .. In some embodiments, it further comprises alkali metal ions, and the molar ratio of alkali metal ions to boron (alkali metal ion / boron) is less than 1. These identifications are based on the case where the atomic layer sheet is an oxidation product of MBH 4 (M stands for alkali metal ion), and conventional boric acid is polymerized (polymerized) with only boron-oxygen bonds. ), It is considered that it becomes three-dimensional and does not become an atomic layer sheet. The molar ratio of oxygen to boron (oxygen / boron) may be 1.2 or less, 1.0 or less, 0.8 or less. Further, it may be 0.1 or more and 0.3 or more. The molar ratio of alkali metal ion to boron (alkali metal ion / boron) may be 0.8 or less, 0.6 or less, 0.4 or less. Further, it may be 0.01 or more, 0.05 or more, and 0.1 or more.
 以上のような原子層シートのうち、その一つの例として、骨格組成がB53である原子層シートについて説明する。
<組成がB53である原子層シート>
 上記において、原子層シートの「骨格」とは、組成がB53である図2(b)と(c)、図3(a)と(c)に示すような規則的な構造を持つ部位であり、主に末端部位や欠損部位以外のシート部分を占める。
Among the above atomic layer sheets, an atomic layer sheet having a skeleton composition of B 5 O 3 will be described as an example thereof.
<Atomic layer sheet with composition B 5 O 3 >
In the above, the "skeleton" of the atomic layer sheet has a regular structure as shown in FIGS. 2 (b) and (c) and FIGS. 3 (a) and 3 (c) having a composition of B 5 O 3 . It is a site and mainly occupies the sheet part other than the terminal part and the defective part.
 この原子層シートは骨格組成がB53である。図2(b)と(c)、図3(a)と(c)に示すように、ホウ素と酸素から成る原子層であり、酸素と結合したホウ素同士が歪んだ六角形を作るように結合しながら、二次元状に広がった平面を形成している。 This atomic layer sheet has a skeletal composition of B 5 O 3 . As shown in FIGS. 2 (b) and 2 (c) and FIGS. 3 (a) and 3 (c), it is an atomic layer composed of boron and oxygen, and boron bonded to oxygen is bonded so as to form a distorted hexagon. At the same time, it forms a plane that spreads out in two dimensions.
 ホウ素原子は、結晶の単位構造において六角形の頂点を占めるものと、六角形の各辺を占めるものとに分類される。六角形の各辺を占めるものは、交互に辺の内側、外側に位置している。従って骨格は、ホウ素-ホウ素結合の3回対称性を有する。 Boron atoms are classified into those that occupy the vertices of a hexagon in the unit structure of a crystal and those that occupy each side of a hexagon. Those occupying each side of the hexagon are alternately located inside and outside the sides. Therefore, the skeleton has three-fold symmetry of the boron-boron bond.
 酸素原子は、ホウ素原子による六角形の各辺で、3つのホウ素原子の隣接する2つのホウ素原子による2箇所のうち、1箇所を占有している(図2(b)と(c)、図3(a)と(c)において、便宜のために2箇所共に酸素原子を示しているが、図2(c)に示すようにその占有率は0.5である。)。 The oxygen atom occupies one of the two positions of the two adjacent boron atoms of the three boron atoms on each side of the hexagon formed by the boron atoms (FIGS. 2 (b) and 2 (c), FIG. In 3 (a) and (c), oxygen atoms are shown in both places for convenience, but the occupancy rate is 0.5 as shown in FIG. 2 (c).)
 ホウ素-ホウ素の結合距離は、1.6Åから1.9Åの間にあり、X線構造解析による値は1.784Åである。この結合距離はボロフェンに存在する2種類のホウ素-ホウ素結合の距離の平均値に近い値であり、単結合として報告されている値と酸素架橋として報告されている値の中間の値である。 The boron-boron bond distance is between 1.6Å and 1.9Å, and the value by X-ray structural analysis is 1.784Å. This bond length is close to the average value of the distances of the two types of boron-boron bonds present in borophene, and is an intermediate value between the value reported as a single bond and the value reported as an oxygen crosslink.
 ホウ素-酸素の結合距離は、X線構造解析による値は六角形の辺に位置するホウ素で1.339Å、六角形の頂点に位置するホウ素で1.420Åである。 The value of the boron-oxygen bond distance by X-ray structural analysis is 1.339Å for boron located on the side of the hexagon and 1.420Å for boron located at the apex of the hexagon.
 この原子層シートは、骨格部位である構成要素Xと、それ以外の構成要素Yとを含む。典型的な態様において、構成要素Yは、末端部位および/または欠損部位である。 This atomic layer sheet contains a component X which is a skeleton part and a component Y other than that. In a typical embodiment, the component Y is a terminal site and / or a defective site.
 典型的な態様において、構成要素Yは、B-OHを含むホウ素酸化物部位である。構成要素Yは、その構造が3価のB23やB(OH)3に類似する部位であり(図3(b))、骨格部位とはB-Oの結合状態が異なる。この原子層シートを含むホウ素層状結晶の測定による同定によれば、次のとおりである。 In a typical embodiment, component Y is a boron oxide moiety containing B—OH. The component Y is a site whose structure is similar to trivalent B 2 O 3 and B (OH) 3 (FIG. 3 (b)), and the binding state of BO is different from that of the skeletal site. According to the identification by measurement of the boron layered crystal containing this atomic layer sheet, it is as follows.
 IR測定(赤外吸収スペクトル)において、B-O伸縮に由来する2種類のピークを1300~1500cm-1付近に有し、かつBO-H伸縮に由来するピークを3100cm-1付近に有する。B-O伸縮に由来する2種類のピークのうち低波数側のピークが構成要素Xに対応している。具体的には、B-O領域のピークのうち、低波数側(1350cm-1付近)のピークが構成要素Xのホウ素シートに対応し、B(OH)3で見られるB-O伸縮ピークと位置が類似する高波数側(1420cm-1付近)のピークが構成要素Yに対応する。3100cm-1付近におけるBO-H伸縮由来のピークも構成要素Yに対応する。 In the IR measurement (infrared absorption spectrum), has has two peaks derived from BO stretch around 1300 ~ 1500 cm -1, and a peak derived from BO-H stretching in the vicinity of 3100 cm -1. Of the two types of peaks derived from BO expansion and contraction, the peak on the low wavenumber side corresponds to the component X. Specifically, among the peaks in the BO region, the peak on the low wavenumber side (near 1350 cm -1 ) corresponds to the boron sheet of the component X, and is the BO expansion and contraction peak seen in B (OH) 3. The peak on the high wavenumber side (near 1420 cm -1 ) with similar positions corresponds to the component Y. The peak derived from BO-H expansion and contraction near 3100 cm -1 also corresponds to the component Y.
 X線光電子分光測定において、190.5~193.0eVと、192.5~194.0eVに各々B-1s準位に由来するピークを有する。190.5~193.0eVのピークが構成要素Xに対応している。具体的には、構成要素Xに対応するピークはホウ素が3価の状態であるB23(193.3eV)と比較すると、やや低エネルギー側であることから、3価までの完全な酸化は進行していない。構成要素Xに対応するピークは2成分に分離可能であり、それぞれ構成要素Xのホウ素シート中の2種類のホウ素、すなわち結晶の単位構造において六角形の頂点を占めるものと、六角形の各辺を占めるものに対応している。最も酸化側の192.5~194.0eVのピークは、3価のホウ素を持つB23と一致し、構成要素Yに対応している。 In X-ray photoelectron spectroscopy, it has peaks derived from the B-1s level at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively. Peaks of 190.5 to 193.0 eV correspond to component X. Specifically, the peak corresponding to the component X is on the slightly lower energy side than B 2 O 3 (193.3 eV) in which boron is in a trivalent state, so that complete oxidation up to trivalent is performed. Is not progressing. The peak corresponding to the component X can be separated into two components, each of which occupies the apex of the hexagon in the unit structure of the crystal and the two types of boron in the boron sheet of the component X, and each side of the hexagon. Corresponds to what occupies. The peak of 192.5 to 194.0 eV on the most oxidized side coincides with B 2 O 3 having trivalent boron and corresponds to the component Y.
 紫外-可視吸収スペクトルにおいて、250nm以下の紫外領域に吸収を持ち、近赤外吸収スペクトルにおいて、1000~2500nmの近赤外領域にB-OやBO-Hの振動構造に由来するバンドを含む吸収を持つ。 In the ultraviolet-visible absorption spectrum, it has absorption in the ultraviolet region of 250 nm or less, and in the near infrared absorption spectrum, absorption containing a band derived from the vibration structure of BO or BO-H in the near infrared region of 1000 to 2500 nm. have.
 以上のように、この原子層シートは、骨格部位である構成要素Xは組成がB53であり、B-OHを含むホウ素酸化物部位である構成要素Yはその構造が3価のB23やB(OH)3に類似する。この原子層シートにおいて、これらの構成要素X、Yを含むシート全体における酸素とホウ素のモル比率(酸素/ホウ素)は、1.5未満であり、1.2以下、1.0以下であってよい。また0.6以上であり、0.7以上であってよい。 As described above, in this atomic layer sheet, the component X, which is a skeleton site, has a composition of B 5 O 3 , and the component Y, which is a boron oxide site containing B—OH, has a trivalent B structure. 2 Similar to O 3 and B (OH) 3 . In this atomic layer sheet, the molar ratio of oxygen to boron (oxygen / boron) in the entire sheet containing these components X and Y is less than 1.5, 1.2 or less, and 1.0 or less. Good. Further, it is 0.6 or more, and may be 0.7 or more.
(積層シート)
 本発明における積層シートは、以上に説明したような複数の原子層シートと、当該原子層シート間の金属イオンとを含む。原子層シートは、以上に説明したとおりのものであり、骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化され、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である。また本発明の結晶は、この積層シートを含む。
(Laminated sheet)
The laminated sheet in the present invention includes a plurality of atomic layer sheets as described above and metal ions between the atomic layer sheets. The atomic layer sheet is as described above and is networked by a non-equilibrium bond having boron and oxygen as skeleton elements and a boron-boron bond, and the molar ratio of oxygen to boron (oxygen / boron). Is less than 1.5. Further, the crystal of the present invention includes this laminated sheet.
 この積層シートにおいて、原子層シート間の金属イオンとしては、例えば、アルカリ金属イオン、アルカリ土類金属イオン等が挙げられる。アルカリ金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等が挙げられる。アルカリ土類金属イオンとしては、例えば、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等が挙げられる。これらの中でも、アルカリ金属イオン、特にカリウムイオンは好ましい態様である。アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)は、1未満である。 In this laminated sheet, examples of the metal ion between the atomic layer sheets include alkali metal ion and alkaline earth metal ion. Examples of the alkali metal ion include lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion and the like. Examples of the alkaline earth metal ion include beryllium ion, magnesium ion, calcium ion, strontium ion, barium ion and the like. Among these, alkali metal ions, particularly potassium ions, are a preferred embodiment. The molar ratio of alkali metal ions to boron (alkali metal ions / boron) is less than 1.
 骨格組成がB53である原子層シートの場合、図2(a)は積層シートの一例として参照される。この積層シートは、ホウ素と酸素を主原子とする原子層シートと、金属イオンが交互に積層する層状構造をなす。典型的な態様において、金属イオンは、積層面内において、原子層シートの単位構造におけるホウ素原子の六角形の内部に位置する。その結晶は、後述の製造方法では、ロッド状の単結晶として得られる。この針状の単結晶を含む典型的な態様では、結晶の伸長方向と積層方向であるc軸方向が一致し、伸長方向に沿って原子層シートが積層している。この積層シート(および結晶)は、積層シートの層間結合が脆弱で、機械的に圧力をかけることで、c軸方向(伸長方向)と垂直な方向に対し容易にへき開できる。例えば、結晶に対してHOPG基板を上から押し付けることで結晶をへき開し、表面に付着した結晶片のナノシートが積み重なる様子を観測することができる。 In the case of an atomic layer sheet having a skeleton composition of B 5 O 3 , FIG. 2A is referred to as an example of a laminated sheet. This laminated sheet has a layered structure in which metal ions are alternately laminated with an atomic layer sheet containing boron and oxygen as main atoms. In a typical embodiment, the metal ion is located in the laminated plane inside the hexagon of boron atoms in the unit structure of the atomic layer sheet. The crystal is obtained as a rod-shaped single crystal by the production method described later. In a typical embodiment including the needle-shaped single crystal, the elongation direction of the crystal and the c-axis direction, which is the stacking direction, coincide with each other, and the atomic layer sheets are laminated along the elongation direction. This laminated sheet (and crystal) has a weak interlayer bond of the laminated sheet, and can be easily cleaved in a direction perpendicular to the c-axis direction (elongation direction) by applying mechanical pressure. For example, by pressing the HOPG substrate against the crystal from above, the crystal can be cleaved and the state in which nanosheets of crystal pieces adhering to the surface are stacked can be observed.
(積層シートの剥離物の製造方法)
 本発明における積層シート(および結晶)は、この積層シートと、クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種とを、有機溶媒を含む溶媒中に添加し、積層シートを剥離することができる。本発明における積層シートは、ファンデルワールス力で積層するグラファイトなどと異なり、アニオン性のホウ素シートとカチオン性の金属イオンのイオン性相互作用により積層しているため、クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種で層間の金属イオン捕捉することで、金属イオンを有機溶媒中に溶出させ、シート構造を保持したまま積層シートを剥離することができる。
(Manufacturing method of peeled material of laminated sheet)
In the laminated sheet (and crystals) in the present invention, the laminated sheet and at least one selected from crown ether and cryptonde can be added to a solvent containing an organic solvent to peel off the laminated sheet. The laminated sheet in the present invention is different from graphite and the like laminated by van der Waals force, and is laminated by an ionic interaction between an anionic boron sheet and a cationic metal ion. Therefore, at least selected from crown ether and cryptonde. By capturing the metal ions between the layers with one type, the metal ions can be eluted in the organic solvent and the laminated sheet can be peeled off while maintaining the sheet structure.
 剥離物は、単層の原子層シートを含む。例えば、上記方法によって得られた溶液をHOPG基板上に接触させ、溶媒を除去することによって、HOPG表面に付着した結晶片を単層シートもしくはそれに近いナノシートとして観察することができる。 The peeled material includes a single-layer atomic layer sheet. For example, by contacting the solution obtained by the above method on a HOPG substrate and removing the solvent, the crystal pieces adhering to the HOPG surface can be observed as a single-layer sheet or a nanosheet close thereto.
 上記方法において、有機溶媒としては、特に限定されないが、例えば、非プロトン性中極性溶媒(アセトニトリル、プロピオニトリル等のニトリル類、ジクロロメタン、ジクロロエタン、クロロホルム(トリクロロメタン)、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類、アセトン、2-ブタノン、メチルエチルケトン、イソブチルメチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、デカン酸メチル、ラウリル酸メチル、アジピン酸ジイソブチル等のエステル類等)を含むことが好ましい。 In the above method, the organic solvent is not particularly limited, but for example, halogenation of an aproton neutral solvent (nitriles such as acetonitrile and propionitrile, dichloromethane, dichloroethane, chloroform (trichloromethane), carbon tetrachloride and the like). Ethers such as hydrocarbons, diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ketones such as acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, cyclohexanone, etc. , Ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, esters such as diisobutyl adipate, etc.) are preferably contained.
 また、これらの非プロトン性中極性溶媒と共に、それらと相溶する、非プロトン性高極性溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N'-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等)、非プロトン性低極性溶媒(ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類等)、プロトン性溶媒(メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノール等のアルコール類、ギ酸、酢酸等のカルボン酸類、ニトロメタン等)を混合した溶媒であってもよい。また、有機溶媒を含む溶媒としては、水を含むものであってもよい。 Also, along with these aprotic neutral polar solvents, aprotic highly polar solvents (N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, sulfolane, dihexamethylphosphate triamide) that are compatible with them. , 1,3-Dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, 1-methyl-2-pyrrolidinone, etc., aprotic low polar solvents (aromatic hydrocarbons such as benzene, toluene, xylene, etc.) , Pentan, hexane, cyclohexane, aliphatic hydrocarbons such as octane, etc.), protic solvents (methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc. It may be a solvent in which alcohols, carboxylic acids such as formic acid and acetic acid, nitromethane, etc.) are mixed. Further, the solvent containing an organic solvent may contain water.
 上記方法において、クラウンエーテルは、(-CH2-CH2-O-)nで表される大環状のエーテルであり、例えば、12-クラウン-4、15-クラウン-5、18-クラウン-6、ジベンゾ-18-クラウン-6、ジアザ-18-クラウン-6等が挙げられる。クリプタンドは、2つ以上の環からなるかご状の多座配位子であり、例えば、[2.2.2]クリプタンド等が挙げられる。 In the above method, the crown ether is a macrocyclic ether represented by (-CH 2- CH 2- O-) n , for example, 12-crown-4, 15-crown-5, 18-crown-6. , Dibenzo-18-crown-6, diaza-18-crown-6 and the like. Cryptand is a cage-like polydentate ligand consisting of two or more rings, and examples thereof include [2.2.2] cryptonde.
 クラウンエーテルおよびクリプタンドから選ばれる少なくとも1種の添加量は、特に限定されないが、積層シートに対して過剰となる量が好ましい。 The amount of at least one selected from crown ether and cryptondand is not particularly limited, but an amount that is excessive with respect to the laminated sheet is preferable.
 本発明における積層シート(および結晶)は、非プロトン性高極性溶媒に溶解することによっても、積層シートを剥離することができる。得られた溶液をHOPG基板上に接触させ、溶媒を除去することによって、HOPG表面に付着した結晶片を単層シートもしくはそれに近いナノシートとして観察することができる。非プロトン性高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N'-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等が挙げられる。 The laminated sheet (and crystals) in the present invention can also be peeled off by dissolving it in an aprotic highly polar solvent. By bringing the obtained solution into contact with the HOPG substrate and removing the solvent, the crystal pieces adhering to the HOPG surface can be observed as a single-layer sheet or a nanosheet close to it. Examples of aprotic highly polar solvents include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethylphosphate triamide, 1,3-dimethyl-2-imidazolidinone, and N. , N'-dimethylpropylene urea, 1-methyl-2-pyrrolidinone and the like.
(原子層シート、積層シートの製造方法)
 本発明における原子層シートや積層シートのような、ホウ素と酸素を含む原子層シートおよび/または積層シートは、例えば、有機溶媒を含む溶媒中に、不活性ガス雰囲気下でMBH4(Mはアルカリ金属イオンを示す。)を添加し溶液を調製し、この溶液を、酸素を含む雰囲気に曝すことによって製造することができる。酸素を含む雰囲気に曝す工程では、原子層シートや積層シートの結晶を成長させることができる。
(Manufacturing method of atomic layer sheet and laminated sheet)
Atomic layer sheets and / or laminated sheets containing boron and oxygen, such as atomic layer sheets and laminated sheets in the present invention, are MBH 4 (M is alkaline) in a solvent containing an organic solvent under an inert gas atmosphere, for example. It can be produced by adding (showing metal ions)) to prepare a solution and exposing the solution to an atmosphere containing oxygen. In the step of exposing to an atmosphere containing oxygen, crystals of an atomic layer sheet or a laminated sheet can be grown.
 MBH4のアルカリ金属イオンMとしては、例えば、アルカリ金属イオン、アルカリ土類金属イオン等が挙げられる。これらの中でも、カリウムイオンは好ましい態様である。 Examples of the alkali metal ion M of MBH 4 include alkali metal ion and alkaline earth metal ion. Of these, potassium ion is the preferred embodiment.
 MBH4の濃度は、特に限定されないが、好ましくは0.5~10mM、より好ましくは1~2mMである。 The concentration of MBH 4 is not particularly limited, but is preferably 0.5 to 10 mM, more preferably 1 to 2 mM.
 不活性ガスとしては、MBH4との反応性を有しないものであれば特に限定されないが、例えば、アルゴン等の希ガス、窒素等が挙げられる。例えば、グローブボックスのような大気中の酸素を遮断し得る環境下で、MBH4との反応性を有しない不活性ガスに置換して、有機溶媒を含む溶媒中にMBH4を添加し溶液を調製する。 The inert gas is not particularly limited as long as it does not have reactivity with MBH 4, and examples thereof include a rare gas such as argon and nitrogen. For example, in an environment that can block oxygen in the air, such as a glove box, it is replaced with an inert gas having no reactivity with the MBH 4, the added solution MBH 4 in a solvent comprising an organic solvent Prepare.
 有機溶媒としては、特に限定されないが、例えば、非プロトン性中極性溶媒(アセトニトリル、プロピオニトリル等のニトリル類、ジクロロメタン、ジクロロエタン、クロロホルム(トリクロロメタン)、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類、アセトン、2-ブタノン、メチルエチルケトン、イソブチルメチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、デカン酸メチル、ラウリル酸メチル、アジピン酸ジイソブチル等のエステル類等)を含むことが好ましい。また、これらの非プロトン性中極性溶媒と共に、それらと相溶する、非プロトン性高極性溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N'-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等)、非プロトン性低極性溶媒(ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類等)、プロトン性溶媒(メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノール等のアルコール類、ギ酸、酢酸等のカルボン酸類、ニトロメタン等)を混合した溶媒であってもよい。また、有機溶媒を含む溶媒としては、水を含むものであってもよい。 The organic solvent is not particularly limited, but for example, aprotonic neutral solvents (nitriles such as acetonitrile and propionitrile, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane), carbon tetrachloride, etc., Ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, ketones such as acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, cyclohexanone, ethyl acetate , Butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, esters such as diisobutyl adipate, etc.) are preferably contained. Also, along with these aprotic neutral polar solvents, aprotic highly polar solvents (N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, sulfolane, dihexamethylphosphate triamide) that are compatible with them. , 1,3-Dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, 1-methyl-2-pyrrolidinone, etc., aprotic low polar solvents (aromatic hydrocarbons such as benzene, toluene, xylene, etc.) , Pentan, hexane, cyclohexane, aliphatic hydrocarbons such as octane, etc.), protic solvents (methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc. It may be a solvent in which alcohols, carboxylic acids such as formic acid and acetic acid, nitromethane, etc.) are mixed. Further, the solvent containing an organic solvent may contain water.
 酸素を含む雰囲気としては、特に限定されないが、大気下に解放することは好ましい態様である。 The atmosphere containing oxygen is not particularly limited, but it is a preferable mode to release it into the atmosphere.
 酸素を含む雰囲気に曝した後、一旦加熱してもよい。加熱温度としては、特に限定されないが、30~40℃が好ましい。加熱時間は、30分~2時間が好ましい。 After being exposed to an atmosphere containing oxygen, it may be heated once. The heating temperature is not particularly limited, but is preferably 30 to 40 ° C. The heating time is preferably 30 minutes to 2 hours.
 酸素を含む雰囲気に曝した後、当該雰囲気において静置することが好ましい。酸素を含む雰囲気に曝す温度と時間は、特に限定されないが、結晶を十分に成長させる点等から、上記加熱した場合はその後、温度は室温(15~25℃)が好ましく、時間は3日間~1ケ月が好ましい。 After being exposed to an atmosphere containing oxygen, it is preferable to leave it in that atmosphere. The temperature and time of exposure to an atmosphere containing oxygen are not particularly limited, but from the viewpoint of sufficient crystal growth and the like, after the above heating, the temperature is preferably room temperature (15 to 25 ° C.), and the time is from 3 days to 3 days. One month is preferable.
2.サーモトロピック液晶
 本発明におけるサーモトロピック液晶は、以上に説明した原子層シートを含む。典型的な態様では、複数の原子層シート間に金属イオンを内包する積層シートを含む。このサーモトロピック液晶における、原子層シートおよび積層シートや金属イオン等に関する詳細は、前述のとおりでありその説明を省略する。
2. 2. Thermotropic liquid crystal The thermotropic liquid crystal in the present invention includes the atomic layer sheet described above. In a typical embodiment, a laminated sheet containing metal ions between a plurality of atomic layer sheets is included. Details of the atomic layer sheet, the laminated sheet, the metal ion, and the like in this thermotropic liquid crystal are as described above, and the description thereof will be omitted.
 このサーモトロピック液晶は、大気に開放し静置することによって生成する固化物をSEM観察より、板状のドメインが配向して渦巻きを形成し、液晶中でホウ素シートが同心円状に配向していると考えられる。TEM観察より、シートがそれぞれ単層や2層、4~5層といった、非常に薄いシートであると考えられる。 In this thermotropic liquid crystal, the plate-like domain is oriented to form a spiral by SEM observation of the solidified product produced by opening it to the atmosphere and allowing it to stand, and the boron sheets are concentrically oriented in the liquid crystal. it is conceivable that. From TEM observation, it is considered that the sheet is a very thin sheet such as a single layer, two layers, and four to five layers, respectively.
 このサーモトロピック液晶は、高温側の液晶相Iと低温側の液晶相IIとの間で、温度に対して可逆な相転移を制御できる。液晶相IとIIの転移は、温度に対して可逆であり吸発熱を伴う。相転移の温度は、限定的ではないが、液晶相IIから液晶相Iへの転移は、例えば昇温過程において145~155℃付近でみられ、液晶相Iから液晶相IIへの転移は、過冷却状態を経由する場合にはより低温となり得るが、例えば冷却過程において50~60℃付近でみられる。液晶の周縁部にのみ干渉色が見える液晶相Iと比べ、液晶全体に干渉色を呈する液晶相IIは、より配向度が高い状態であると考えられる。本発明のサーモトロピック液晶は、液晶相Iと液晶相IIのいずれも、液体のような流動性を持ちつつも、偏光顕微鏡下で結晶のような干渉色を呈する。 This thermotropic liquid crystal can control a phase transition reversible with respect to temperature between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side. The transition between liquid crystal phases I and II is reversible with respect to temperature and is endothermic. The temperature of the phase transition is not limited, but the transition from the liquid crystal phase II to the liquid crystal phase I is observed, for example, in the vicinity of 145 to 155 ° C. in the heating process, and the transition from the liquid crystal phase I to the liquid crystal phase II is. The temperature can be lower when passing through the supercooled state, but it is observed at around 50 to 60 ° C. in the cooling process, for example. It is considered that the liquid crystal phase II, which exhibits the interference color on the entire liquid crystal, has a higher degree of orientation than the liquid crystal phase I, in which the interference color is visible only on the peripheral edge of the liquid crystal. In the thermotropic liquid crystal of the present invention, both liquid crystal phase I and liquid crystal phase II have liquid-like fluidity, but exhibit crystal-like interference colors under a polarizing microscope.
 このサーモトロピック液晶は、複数の原子層シート間に金属イオンを内包する積層シートを含む結晶を、100℃以上に加熱することにより得ることができる。加熱温度は、105℃以上、110℃以上、あるいは120℃以上であってよく、その上限は、液晶が熱分解する温度を超えない限り、特に限定されないが、例えば350℃以下である。 This thermotropic liquid crystal can be obtained by heating a crystal containing a laminated sheet containing metal ions between a plurality of atomic layer sheets to 100 ° C. or higher. The heating temperature may be 105 ° C. or higher, 110 ° C. or higher, or 120 ° C. or higher, and the upper limit thereof is not particularly limited as long as it does not exceed the temperature at which the liquid crystal is thermally decomposed, but is, for example, 350 ° C. or lower.
 得られた液晶は、上記加熱温度に対して不可逆となる。すなわち結晶を一度昇温して液晶に変化した後は、冷却しても再び結晶へ転移することはなく、液晶状態を保持する。この液晶の配向性は、ホウ素シートの2次元の強い異方性から生み出され、流動性は層間結合の弱さによって発現していると考えられる。 The obtained liquid crystal is irreversible with respect to the above heating temperature. That is, once the temperature of the crystal is raised to change to a liquid crystal, the crystal does not transfer to the crystal again even if it is cooled, and the liquid crystal state is maintained. It is considered that the orientation of the liquid crystal is produced by the two-dimensional strong anisotropy of the boron sheet, and the fluidity is expressed by the weak interlayer bond.
 このサーモトロピック液晶は、少なくとも-196~350℃の温度領域で、液晶状態を保持する。室温から加熱すると、350℃まで安定に液晶相Iの干渉色を示し、液晶相IIの-50℃までの冷却過程をアルゴン下でDSCにより測定すると、液晶相IとIIの間の相転移以外には低温側にピークは観測されない。このことから、液晶から結晶への転移点は-50℃よりも低温側に存在すると考えられる。更にホウ素液晶を液体窒素(-196℃)に浸漬しても、液晶組織に変化は見られない。 This thermotropic liquid crystal maintains a liquid crystal state in a temperature range of at least -196 to 350 ° C. When heated from room temperature, the interference color of the liquid crystal phase I is stably shown up to 350 ° C., and when the cooling process of the liquid crystal phase II to -50 ° C is measured by DSC under argon, other than the phase transition between the liquid crystal phases I and II. No peak is observed on the low temperature side. From this, it is considered that the transition point from the liquid crystal to the crystal exists on the lower temperature side than −50 ° C. Further, even if the boron liquid crystal is immersed in liquid nitrogen (-196 ° C.), no change is observed in the liquid crystal structure.
 このサーモトロピック液晶は、結晶を100℃以上に加熱することによって生成すると、前記加熱によって、原子層シート間の距離が増加する。液晶相IIのホウ素シート構造は、図6に示すように積層方向であるc軸方向の成分を含む(001)や(101)、(111)のピークは前記加熱前の結晶よりも低角度側にシフトし、後述の測定結果によれば、層間隔を示す(001)の面間隔は、結晶状態では3.47Åであるのに対して、液晶相IIでは3.54Åであり、約0.1Å拡大している。すなわち、液晶相IIはホウ素シート面内方向の配向秩序は保持しつつ、積層方向のみが拡大している状態であり、こうした層間方向の拡大から、液晶の流動性が生じていると考えられる。 When this thermotropic liquid crystal is produced by heating crystals to 100 ° C. or higher, the distance between atomic layer sheets increases due to the heating. As shown in FIG. 6, the boron sheet structure of the liquid crystal phase II contains components in the c-axis direction, which is the stacking direction, and the peaks of (001), (101), and (111) are on the lower angle side than the crystal before heating. According to the measurement results described later, the interplanar spacing (001), which indicates the layer spacing, is 3.47Å in the crystalline state, whereas it is 3.54Å in the liquid crystal phase II, which is about 0. It is expanding by 1Å. That is, the liquid crystal phase II is in a state in which only the stacking direction is expanded while maintaining the orientation order in the in-plane direction of the boron sheet, and it is considered that the fluidity of the liquid crystal is generated from such expansion in the interlayer direction.
 このサーモトロピック液晶は、前記原子層シートの骨格組成がB53である場合、前記原子層シートは、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む。構成要素Xについては前述のとおりでありその詳細な説明を省略する。 In this thermotropic liquid crystal, when the skeleton composition of the atomic layer sheet is B 5 O 3 , the atomic layer sheet contains the component X which is the skeleton portion and the other component Y. The component X is as described above, and detailed description thereof will be omitted.
 構成要素Yについては次のとおりである。前記100℃以上の加熱によるホウ素層状結晶からホウ素液晶への変化は、一般的な有機液晶で見られる熱相転移ではなく、化学変化を伴う変化である。具体的には、B(OH)3が脱水縮合してB23へと変化する、ホウ素シート末端・欠損部位のB-OH間の脱水縮合を伴う。IR測定によれば、ホウ素層状結晶で3100cm-1付近に見られていた末端部位BO-H由来のピークが、液晶へ変化後には消失する。XPS測定によれば、結晶で見られていた末端・欠損部位由来の高酸化状態のホウ素に対応するピークが、低エネルギー側のピークと比較して相対的に減少する。B(OH)3は完全な平面構造の分子であるが、脱水縮合してB23に変化することで、立体的な四面体構造をとる。そのため、ホウ素シート末端・欠損部位の平面上のB(OH)xも、シート内の隣接末端と脱水縮合することで立体的な構造変化を起こすと考えられる。こうしたシートの積層を崩すような末端・欠損の変化により、シート間に流動性が生まれ、液晶性が発現すると考えられる。ホウ素層状結晶を一度液晶化させた後、冷却しても液晶から結晶への転移が見られないのは、液晶状態を生み出すB-OH間の脱水縮合が不可逆であるためと考えられる。 The component Y is as follows. The change from the boron layered crystal to the boron liquid crystal due to heating at 100 ° C. or higher is not a thermal phase transition seen in a general organic liquid crystal, but a change accompanied by a chemical change. Specifically, it is accompanied by dehydration condensation between B and OH at the end of the boron sheet and the defect site, in which B (OH) 3 is dehydrated and condensed to B 2 O 3 . According to the IR measurement, the peak derived from the terminal portion BO-H, which was observed in the vicinity of 3100 cm -1 in the boron layered crystal, disappears after the change to the liquid crystal. According to the XPS measurement, the peak corresponding to the highly oxidized boron derived from the terminal / defective site observed in the crystal is relatively reduced as compared with the peak on the low energy side. B (OH) 3 is a molecule with a perfect planar structure, but it has a three-dimensional tetrahedral structure by dehydration condensation and conversion to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / defect site also undergoes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that such changes in the ends and defects that break the stacking of the sheets create fluidity between the sheets and develop liquid crystallinity. It is considered that the reason why the transition from the liquid crystal to the crystal is not observed even if the boron layered crystal is once liquid crystallized and then cooled is because the dehydration condensation between B and OH that produces the liquid crystal state is irreversible.
3.リオトロピック液晶
 本発明におけるリオトロピック液晶は、以上に説明した原子層シートを含む。典型的な態様では、複数の原子層シート間に金属イオンを内包する積層シートを含む。本発明のリオトロピック液晶における、原子層シートおよび積層シートや金属イオン等に関する詳細は、前述のとおりでありその説明を省略する。
3. 3. Riotropic liquid crystal The lyotropic liquid crystal in the present invention includes the atomic layer sheet described above. In a typical embodiment, a laminated sheet containing metal ions between a plurality of atomic layer sheets is included. The details of the atomic layer sheet, the laminated sheet, the metal ion, and the like in the lyotropic liquid crystal of the present invention are as described above, and the description thereof will be omitted.
 このリオトロピック液晶は、積層シートを含む結晶を溶媒に溶解することによって得られる。例えば、溶媒へ溶解後、溶媒を揮発させると、溶液が流動性を持ちつつも、結晶のような干渉色を示し、半球状の液晶相が出現する。この液晶相は液滴の周縁部に沿って干渉色が呈色しており、偏光顕微鏡で観察すると、2枚の偏光板の方向に沿って、垂直な十字方向に暗色部が現れ、これはホウ素シートの配向に由来すると考えられる。 This lyotropic liquid crystal is obtained by dissolving crystals containing a laminated sheet in a solvent. For example, when the solvent is volatilized after being dissolved in the solvent, the solution exhibits a crystal-like interference color while having fluidity, and a hemispherical liquid crystal phase appears. This liquid crystal phase develops an interference color along the peripheral edge of the droplet, and when observed with a polarizing microscope, a dark colored portion appears in a vertical cross direction along the direction of the two polarizing plates. It is considered to be derived from the orientation of the boron sheet.
 このリオトロピック液晶は、溶媒と、この溶媒中におけるリオトロピック液晶とを含む組成物として調製することができる。溶媒としては、特に限定されないが、有機溶媒を含む溶媒、その中でも非プロトン性高極性溶媒を含む溶媒が好ましい。非プロトン性高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジヘキサメチルリン酸トリアミド、1,3-ジメチル-2-イミダゾリジノン、N,N'-ジメチルプロピレン尿素、1-メチル-2-ピロリジノン等が挙げられる。これらの中でも、N,N-ジメチルホルムアミドは好ましい溶媒である。 This lyotropic liquid crystal can be prepared as a composition containing a solvent and the lyotropic liquid crystal in this solvent. The solvent is not particularly limited, but a solvent containing an organic solvent, and among them, a solvent containing an aprotic highly polar solvent is preferable. Examples of aprotic highly polar solvents include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, sulfolane, dihexamethylphosphate triamide, 1,3-dimethyl-2-imidazolidinone, and N. , N'-dimethylpropylene urea, 1-methyl-2-pyrrolidinone and the like. Of these, N, N-dimethylformamide is the preferred solvent.
 その他、溶媒としては、特に限定されないが、例えば、非プロトン性中極性溶媒(アセトニトリル、プロピオニトリル等のニトリル類、ジクロロメタン、ジクロロエタン、クロロホルム(トリクロロメタン)、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等のエーテル類、アセトン、2-ブタノン、メチルエチルケトン、イソブチルメチルケトン、ジイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、デカン酸メチル、ラウリル酸メチル、アジピン酸ジイソブチル等のエステル類等)、非プロトン性低極性溶媒(ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ペンタン、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類等)、プロトン性溶媒(メタノール、エタノール、2-プロパノール、1-ブタノール、1,1-ジメチル-1-エタノール、ヘキサノール、デカノール等のアルコール類、ギ酸、酢酸等のカルボン酸類、ニトロメタン等)等の有機溶媒や、水等が挙げられる。これらの溶媒は、非プロトン性高極性溶媒と共に、それらと相溶する形態で使用することが好ましい。 Other solvents are not particularly limited, but for example, aprotic neutral solvents (nitriles such as acetonitrile and propionitrile, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform (trichloromethane) and carbon tetrachloride). , Diethyl ether, tetrahydrofuran, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether and other ethers, acetone, 2-butanone, methyl ethyl ketone, isobutyl methyl ketone, diisobutyl ketone, cyclohexanone and other ketones, acetic acid Ethyl, butyl acetate, propylene glycol monomethyl ether acetate, methyl decanoate, methyl laurate, esters such as diisobutyl adipate, etc.), aprotic low-polarity solvents (aromatic hydrocarbons such as benzene, toluene, xylene, pentane, etc.) , Hexoxides such as hexane, cyclohexane and octane), protic solvents (alcohols such as methanol, ethanol, 2-propanol, 1-butanol, 1,1-dimethyl-1-ethanol, hexanol, decanol, etc. Examples include organic solvents such as carboxylic acids such as formic acid and acetic acid, nitromethane, etc., and water. These solvents are preferably used together with aprotic highly polar solvents in a form compatible with them.
4.導電性デバイス
 本発明の導電性デバイスは、以上に説明した原子層シートを含む導電性材料と、電圧を印加する電極とを含む導電性デバイスであって、次の導電性材料(1)~(3)のいずれかと、前記導電性材料に電圧を印加する電極とを含む。
(1)前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含む結晶
(2)前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含むサーモトロピック液晶
(3)単層の前記原子層シート、または、前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートの溶媒への溶解物を薄膜状に塗布し、前記溶媒を除去した薄層シート
(導電性材料(1)を用いた導電性デバイス)
 導電性材料(1)の結晶は、同心円配向の異方性伝導を示す。別の観点では、結晶面間と結晶面内で異方性伝導を示す。これらの異方性伝導は、結晶面内と結晶面間の活性化エネルギーの違いや導電性の違いに起因している。
4. Conductive device The conductive device of the present invention is a conductive device including the conductive material containing the atomic layer sheet described above and an electrode to which a voltage is applied, and is the following conductive materials (1) to (1). Includes any of 3) and an electrode that applies a voltage to the conductive material.
(1) Crystal containing a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets (2) Thermo containing a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets Tropic liquid crystal (3) A single-layer atomic layer sheet or a solution of a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets is applied in a thin film form, and the solvent is applied. Removed thin-layer sheet (conductive device using conductive material (1))
The crystal of the conductive material (1) exhibits anisotropic conduction in a concentric orientation. From another point of view, it exhibits anisotropic conduction between and within the crystal planes. These anisotropic conductions are caused by the difference in activation energy and the difference in conductivity between the crystal plane and the crystal plane.
 結晶面間と面内の伝導度の温度依存を測定したインピ-ダンスプロット(以下ナイキストプロットと記載する)より、結晶面間では、温度に依存し伝導度が大きく変化し、高温になるほど高い伝導度を示し、半導体的挙動を示す。これに対して、結晶面内では伝導度の温度依存性が低く、金属的な伝導をする。このように、ホウ素層状結晶の面内と面間で異方的な伝導性を持つ。 From the impedance plot (hereinafter referred to as Nyquist plot), which measures the temperature dependence of the conductivity between and in the crystal planes, the conductivity changes greatly depending on the temperature between the crystal planes, and the higher the temperature, the higher the conductivity. Shows the degree and shows semiconductor-like behavior. On the other hand, in the crystal plane, the temperature dependence of conductivity is low, and metallic conduction is performed. In this way, the boron layered crystal has anisotropic conductivity in-plane and between the planes.
 導電性デバイスは、導電性材料(1)と、電圧を印加する電極とを含む。 The conductive device includes a conductive material (1) and an electrode to which a voltage is applied.
 導電性材料(1)を用いた場合における電極の材料は特に限定されず、導電性材料との接触面における電気抵抗等を考慮し、導電性を持つ任意の材料を用いることができる。例えば、金、銀、白金、銅、インジウム、アルミニウム、マグネシウム、ニッケル、クロム、鉄、錫、タンタル、パラジウム、テルル、イリジウム、ルテニウム、ゲルマニウム、タングステン、モリブデン、リチウム、ベリリウム、ナトリウム、カリウム、カルシウム、亜鉛、酸化インジウムスズ合金(ITO)、酸化スズ(NESA)、酸化インジウム亜鉛(IZO)、酸化モリブデン、マグネシウム/インジウム合金、マグネシウム/銅合金、マグネシウム/銀合金、マグネシウム/アルミニウム合金、クロム/モリブデン合金、アルミニウム/リチウム合金、アルミニウム/スカンジウム/リチウム合金、ナトリウム/カリウム合金等の金属や合金、更には、フッ素ドープ酸化亜鉛、導電率を向上させたシリコン単結晶、多結晶シリコン、アモルファスシリコン等のシリコン系材料、カーボンブラック、グラファイト、グラッシーカーボン等の炭素材料等が挙げられる。これらはバルク状、薄片状、微粒子状等、様々な形態で使用できる。その他に、電極の材料としては、ドーピング処理などで導電率を向上させた導電性ポリマー(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸の錯体等)等が挙げられる。これらは、1種単独で使用してもよく、複数を組み合わせて使用してもよい。電極は、別途の基材に電極を形成し、これを導電性材料(1)に物理的に接触させて導通してもよく、あるいは導電性材料(1)の表面に電極を直接形成してもよい。電極の形成方法としては、特に限定されないが、例えば、蒸着やスパッタリング等の方法を用いて形成することができ、リソグラフやエッチング処理により、所望の形状にパターニングできる。また、導電性ポリマーや導電性微粒子を用いて電極を形成する場合には、導電性ポリマーの溶液あるいは分散液、導電性微粒子の分散液を、インクジェット法によりパターニングしてもよく、塗工膜からリソグラフやレーザーアブレーション等により形成してもよい。導電性ポリマーや導電性微粒子を含むインク、導電性ペースト(銀ペースト、カーボンペーストなど)等を凸版、凹版、平版、スクリーン印刷などの印刷法でパターニングする方法を用いることもできる。導電性材料(2)、(3)を用いた場合にも、電極には上記のような態様が考慮される。 The material of the electrode when the conductive material (1) is used is not particularly limited, and any material having conductivity can be used in consideration of the electric resistance on the contact surface with the conductive material. For example, gold, silver, platinum, copper, indium, aluminum, magnesium, nickel, chromium, iron, tin, tantalum, palladium, tellurium, iridium, ruthenium, germanium, tungsten, molybdenum, lithium, berylium, sodium, potassium, calcium, Zinc, indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide (IZO), molybdenum oxide, magnesium / indium alloy, magnesium / copper alloy, magnesium / silver alloy, magnesium / aluminum alloy, chromium / molybdenum alloy , Aluminum / lithium alloys, aluminum / scandium / lithium alloys, sodium / potassium alloys and other metals and alloys, as well as fluorine-doped zinc oxide, silicon single crystals with improved conductivity, polycrystalline silicon, silicon such as amorphous silicon, etc. Examples thereof include alloy materials, carbon materials such as carbon black, graphite, and glassy carbon. These can be used in various forms such as bulk, flaky, and fine particles. In addition, as the material of the electrode, a complex of a conductive polymer (for example, polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyethylene dioxythiophene (PEDOT)) and polystyrene sulfonic acid whose conductivity has been improved by doping treatment or the like. Etc.) etc. These may be used individually by 1 type, and may be used in combination of a plurality of types. The electrode may be conducted by forming an electrode on a separate base material and physically contacting the electrode with the conductive material (1), or by forming the electrode directly on the surface of the conductive material (1). May be good. The method for forming the electrode is not particularly limited, but for example, the electrode can be formed by a method such as vapor deposition or sputtering, and can be patterned into a desired shape by lithograph or etching treatment. Further, when the electrode is formed by using the conductive polymer or the conductive fine particles, the solution or dispersion of the conductive polymer or the dispersion of the conductive fine particles may be patterned by an inkjet method from the coating film. It may be formed by lithograph, laser ablation, or the like. It is also possible to use a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste (silver paste, carbon paste, etc.) or the like by a printing method such as letterpress, intaglio, lithographic printing, or screen printing. Even when the conductive materials (2) and (3) are used, the above-described aspects are taken into consideration for the electrodes.
 電極は、導電性材料(1)に電圧および/または電流を与える電源、例えば直流電源や交流電源に接続されてデバイスを構成する。また、回路装置のような多数の要素からなる電子デバイスの一要素として、本発明の導電性デバイスが構成されてもよい。 The electrodes are connected to a power source that applies voltage and / or current to the conductive material (1), such as a DC power source or an AC power source, to form a device. Further, the conductive device of the present invention may be configured as one element of an electronic device composed of a large number of elements such as a circuit device.
 本発明の導電性デバイスにおける一例では、電極は結晶面間に電圧を印加し、伝導度の温度依存性が半導体的挙動を示す。この場合、結晶は、例えばその結晶面が電極に対し平行となるように配置することができる。 In one example of the conductive device of the present invention, the electrode applies a voltage between the crystal planes, and the temperature dependence of the conductivity exhibits semiconductor-like behavior. In this case, the crystals can be arranged, for example, so that their crystal planes are parallel to the electrodes.
 本発明の導電性デバイスにおける別の例では、電極は結晶内に電圧を印加し、伝導度の温度依存性が金属的挙動を示す。この場合、結晶は、例えばその結晶面が電極に対し垂直となるように配置することができる。 In another example of the conductive device of the present invention, the electrode applies a voltage in the crystal, and the temperature dependence of the conductivity exhibits metallic behavior. In this case, the crystals can be arranged, for example, so that their crystal planes are perpendicular to the electrodes.
 導電性材料(1)を用いた本発明の導電性デバイスは、電子デバイス、ポリマーナノコンポジット材料など、様々な技術分野において産業上の利用が期待される。 The conductive device of the present invention using the conductive material (1) is expected to be industrially used in various technical fields such as electronic devices and polymer nanocomposite materials.
(導電性材料(2)を用いた導電性デバイス)
 導電性材料(2)のサーモトロピック液晶は、異方性伝導を示す。別の観点では、同心円配向の異方性伝導を示す。これらの異方性伝導は、結晶面内と結晶面間の活性化エネルギーの違いや導電性の違いに起因している。
(Conductive device using conductive material (2))
The thermotropic liquid crystal of the conductive material (2) exhibits anisotropic conduction. From another point of view, it exhibits anisotropic conduction of concentric orientation. These anisotropic conductions are caused by the difference in activation energy and the difference in conductivity between the crystal plane and the crystal plane.
 結晶から液晶化した際の伝導度の変化と一連の活性化エネルギーを算出した結果より、導電性材料(2)のサーモトロピック液晶はイオン伝導が示唆される。この液晶におけるホウ素結晶のナノシートは、液晶性を持つとともにアニオン性を持つ。アニオン性の原子層を利用することで、キャリアドープによるスイッチングが可能になる。ホウ素シートでは元々持っているマイナス電荷を利用することで正のゲート電圧でも電流が0となる可能性があるなど、デバイス応用に適する点を有していることから、トランジスタ等への利用も期待できる。 From the results of calculating the change in conductivity and a series of activation energies when liquid crystal is formed from crystals, it is suggested that the thermotropic liquid crystal of the conductive material (2) has ionic conduction. The boron crystal nanosheets in this liquid crystal have both liquid crystal and anionic properties. By using an anionic atomic layer, switching by carrier doping becomes possible. Boron sheets are suitable for device applications, such as the fact that the current may become 0 even at a positive gate voltage by using the negative charge that they originally have, so they are expected to be used for transistors, etc. it can.
 ホウ素層状物質は面内で活性化エネルギーが極めて小さい金属的な挙動、面間で半導体的な挙動を示す。そのため、液晶により球晶配向した導電性材料(2)は、伝導が容易な層が曲率を有する。すなわちコイルと同様の特性が発現し、同心円配向の異方性伝導コイルのようなインダククタ挙動を示す。具体的には、ホウ素結晶における伝導度の異方性に由来し、ホウ素液晶では特異な逆半円のナイキストプロットが観測され、市販のコイルで見られるインダククタ挙動と非常に類似している。二次元シートの伝導が、面内が並ぶ円周に沿って生じ、それによってコイル等で見られるインダクタ挙動が起きているのではないかと考えられる。インダクタ挙動を示す振幅の範囲は、例えば、0.001~0.05Vである。好ましくは0.002~0.01V、より好ましくは0.003~0.005Vの範囲である。周波数は、特に限定されないが、例えば、100kHz~10Hzの範囲が考慮される。振幅が大きくなると、コンデンサー挙動も確認される。 The boron layered substance exhibits metallic behavior with extremely low activation energy in the plane and semiconductor behavior between the planes. Therefore, in the conductive material (2) that is spherically oriented by the liquid crystal, the layer that is easy to conduct has a curvature. That is, it exhibits the same characteristics as the coil and exhibits inductor behavior like an anisotropic conduction coil with concentric orientation. Specifically, due to the anisotropy of conductivity in boron crystals, a peculiar inverted semicircular Nyquist plot is observed in boron liquid crystals, which is very similar to the inductor behavior seen in commercially available coils. It is considered that the conduction of the two-dimensional sheet occurs along the circumference of the in-plane line, which causes the inductor behavior seen in the coil and the like. The range of amplitude that exhibits inductor behavior is, for example, 0.001 to 0.05V. It is preferably in the range of 0.002 to 0.01V, more preferably 0.003 to 0.005V. The frequency is not particularly limited, but for example, a range of 100 kHz to 10 Hz is considered. As the amplitude increases, the behavior of the capacitor is also confirmed.
 導電性材料(2)のサーモトロピック液晶は、ホウ素液晶が繰り返し動作可能な、光学的な電流応答挙動、特に透過と散乱の電流応答挙動を示す。例えば、ホウ素液晶の電流応答性は、電圧のONとOFFによって液晶の散乱と透過が可逆に変化する。これは導電性と電場配向性に異方性を持つ液晶ドメインに電圧を印加した際に見られる、電流効果による挙動であると考えられ、液晶の動的散乱モードで説明できる。動的散乱モードは液晶の光学励起状態の一つで、電圧印加部では入射光が白濁して見える。ホウ素液晶のONとOFFによる散乱と透過のスイッチングにより、目視では、電圧を印加しない状態では光を透過するのに対して、電圧を印加すると液晶の光の散乱に伴い白く濁る様子が確認できる。この現象を利用する例として調光フィルムが挙げられ、ホウ素液晶が、電圧を印加しないと光を透過し、印加すると光を散乱して不透明になり、スイッチ一つでブラインド化するようなデバイスへの応用が考慮される。液晶性を利用し、配向膜を作成することで簡単にシートを作成できることから、ホウ素液晶は完全無機液晶としてのデバイス応用に適している。 The thermotropic liquid crystal of the conductive material (2) exhibits an optical current response behavior, particularly transmission and scattering current response behavior, in which the boron liquid crystal can repeatedly operate. For example, the current responsiveness of a boron liquid crystal reversibly changes the scattering and transmission of the liquid crystal depending on whether the voltage is turned on or off. This is considered to be the behavior due to the current effect seen when a voltage is applied to the liquid crystal domain having anisotropy in conductivity and electric field orientation, and can be explained by the dynamic scattering mode of the liquid crystal. The dynamic scattering mode is one of the optically excited states of the liquid crystal, and the incident light appears cloudy at the voltage application part. By switching between scattering and transmission by turning the boron liquid crystal on and off, it can be visually confirmed that light is transmitted when no voltage is applied, whereas when a voltage is applied, the liquid crystal becomes cloudy due to scattering of light. An example of utilizing this phenomenon is a dimming film, which is used for devices in which boron liquid crystal transmits light when no voltage is applied, and when applied, it scatters light and becomes opaque, making it blind with a single switch. Applications are considered. Boron liquid crystals are suitable for device applications as completely inorganic liquid crystals because sheets can be easily made by making an alignment film using liquid crystal properties.
 導電性デバイスは、以上に説明した原子層シートを含む導電性材料(2)と、電圧を印加する電極とを含む。 The conductive device includes a conductive material (2) including the atomic layer sheet described above, and an electrode to which a voltage is applied.
 電極は、導電性材料(2)に電圧および/または電流を与える電源、例えば直流電源や交流電源に接続されてデバイスを構成する。例えば、液晶セル等の収容体を用いて二次元状に液晶を収容し、その両面に電極を配置することができる。光学的特性を利用するデバイスでは、電極や、電極を配置した基材は、上記両面のうち少なくとも一方が透明性を持つことが好ましい。例えば、酸化インジウムスズ合金(ITO)、酸化スズ(NESA)、酸化インジウム亜鉛(IZO)等のような透明導電膜を、ガラス等の透明基板に形成し、この基板を液晶面に配置することができる。液晶は結晶と比べて薄く広がった液体であり、液晶セル等の面伝導の構成が例示され、液晶性を利用した配向膜であってもよい。調光フィルムや表示装置等では、フィルム面や表示面において光学的な電流応答挙動を多様とするように、独立に電圧印加が可能な複数、特に多数の電極を液晶面に配置してもよい。 The electrodes are connected to a power source that applies voltage and / or current to the conductive material (2), such as a DC power source or an AC power source, to form a device. For example, a liquid crystal can be accommodated in a two-dimensional manner using an accommodating body such as a liquid crystal cell, and electrodes can be arranged on both sides thereof. In a device that utilizes optical characteristics, it is preferable that at least one of the electrodes and the base material on which the electrodes are arranged has transparency. For example, a transparent conductive film such as indium tin oxide alloy (ITO), tin oxide (NESA), zinc oxide (IZO), etc. may be formed on a transparent substrate such as glass, and this substrate may be arranged on a liquid crystal surface. it can. The liquid crystal is a liquid that spreads thinner than the crystal, and the configuration of surface conduction such as a liquid crystal cell is exemplified, and an alignment film utilizing the liquid crystal property may be used. In a dimming film, a display device, or the like, a plurality of electrodes, particularly a large number of electrodes, to which a voltage can be independently applied may be arranged on the liquid crystal surface so as to vary the optical current response behavior on the film surface or the display surface. ..
 導電性材料(2)を用いた本発明の導電性デバイスは、ナノコイルやナノ回路、調光フィルムなど様々な技術分野において産業上の利用が期待される。
(導電性材料(3)を用いた導電性デバイス)
 導電性材料(3)は、単層の前記原子層シート、または、前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートの溶媒への溶解物を薄膜状に塗布し、前記溶媒を除去した薄層シートである。これらの形成方法は特に限定されないが、例えば、前述のリオトロピック液晶組成物を板状等の基材に薄く塗布した後、溶媒を除去することで得ることができる。このような導電性材料(3)は、典型的には原子層が単層から数層までのシートを主要な構成物とする薄膜である。
The conductive device of the present invention using the conductive material (2) is expected to be industrially used in various technical fields such as nanocoils, nanocircuits, and light control films.
(Conductive device using conductive material (3))
As the conductive material (3), a single layer of the atomic layer sheet or a solution of a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets in a solvent is applied in a thin film form. It is a thin-layer sheet from which the solvent has been removed. These forming methods are not particularly limited, but can be obtained, for example, by thinly applying the above-mentioned lyotropic liquid crystal composition to a substrate such as a plate and then removing the solvent. Such a conductive material (3) is typically a thin film having a sheet having a single atomic layer to several layers as a main component.
 導電性AFMを使用したホウ素シートの電流測定では、直流電圧に対する電流応答が見られ、導電性材料(3)のようなホウ素シートが電子伝導性を持つことが確認されている。 In the current measurement of the boron sheet using the conductive AFM, a current response to the DC voltage was observed, and it was confirmed that the boron sheet such as the conductive material (3) has electron conductivity.
 導電性デバイスは、導電性材料(3)と、電圧を印加する電極とを含む。 The conductive device includes a conductive material (3) and an electrode to which a voltage is applied.
 電極は、導電性材料(3)に電圧および/または電流を与える電源、例えば直流電源や交流電源に接続されてデバイスを構成する。例えば、板状等の基材表面に形成した薄層のホウ素シートの両面に、電極を配置することができる。薄層のホウ素シートを形成した基材自体を一方の電極とすることができる。 The electrodes are connected to a power source that applies voltage and / or current to the conductive material (3), such as a DC power source or an AC power source, to form a device. For example, electrodes can be arranged on both sides of a thin boron sheet formed on the surface of a base material such as a plate. The base material itself on which the thin boron sheet is formed can be used as one of the electrodes.
 導電性材料(3)を用いた本発明の導電性デバイスは、フィルム(積層)構造にすることで超小型チップインダクタなど、様々な技術分野において産業上の利用が期待される。 The conductive device of the present invention using the conductive material (3) is expected to be industrially used in various technical fields such as ultra-small chip inductors by forming a film (laminated) structure.
5.誘電体デバイス
 本発明の誘電体デバイスは、以上に説明したサーモトロピック液晶を有する誘電体材料と、この誘電体材料に外部電場を作用させる手段とを含み、前記手段により外部電場を作用させることで、誘電体材料は電気的に分極する。
5. Dielectric device The dielectric device of the present invention includes a dielectric material having a thermotropic liquid crystal described above and a means for applying an external electric field to the dielectric material, and by applying an external electric field by the means. , The dielectric material is electrically polarized.
 ホウ素層状物質は液晶として存在することから、構造のズレが生じ、従って電荷の偏りが生じ、誘電体材料として機能すると考えられる。従来、ほとんどの液晶において比誘電率は2~3程度である。本発明の誘電体デバイスは、誘電体材料であるサーモトロピック液晶の比誘電率が、液晶相IIのときは一般的な液晶と同等の10以下、例えば2~3程度である一方、液晶相Iのときは、例えば105を超えるまで飛躍的に上昇する。周波数依存で誘電率測定すると105を超える大きな比誘電率を20Hz~106Hzの広い周波数で達成し、温度依存測定では、室温では10以下であった誘電率が温度を上げると150℃~275℃で104~105程度まで飛躍的に上昇する。ペロブスカイト構造のチタン酸バリウムは、キュリー点において2万以上の比誘電率を持つものも報告されているが、本発明におけるサーモトロピック液晶は、ペロブスカイトのようにカチオンとアニオンの層が交互に積層していることから、高温側の液晶相Iでは低温側の液晶相IIとは大きく異なる高い比誘電率を発現すると共に、温度に対して可逆な相転移を制御できるという、これまでにない特性を与えると考えられる。高温側の液晶相Iで比誘電率が大きく上昇することは、原子層シート同士の層間距離や、原子層シートの配向の影響が考慮される。 Since the boron layered substance exists as a liquid crystal, it is considered that the structure is displaced and therefore the charge is biased to function as a dielectric material. Conventionally, the relative permittivity of most liquid crystals is about 2 to 3. In the dielectric device of the present invention, the relative permittivity of the thermotropic liquid crystal, which is a dielectric material, is 10 or less, for example, about 2 to 3, which is equivalent to that of a general liquid crystal when the liquid crystal phase II is used, while the liquid crystal phase I when the, dramatically increased for example up to more than 10 5. A large specific dielectric constant of greater than 10 5 as measured dielectric constant at a frequency dependent achieved over a wide frequency of 20 Hz ~ 10 6 Hz, temperature dependent measurements, the dielectric constant was 10 or less at room temperature raises the temperature when 0.99 ° C. ~ dramatically increased to 10 4 to 10 about 5 at 275 ℃. It has been reported that barium titanate having a perovskite structure has a relative permittivity of 20,000 or more at the Curie point, but the thermotropic liquid crystal in the present invention has layers of cations and anions alternately laminated like perovskite. Therefore, the liquid crystal phase I on the high temperature side exhibits a high relative permittivity that is significantly different from that of the liquid crystal phase II on the low temperature side, and the phase transition reversible with respect to temperature can be controlled, which is an unprecedented characteristic. It is thought to give. The large increase in the relative permittivity in the liquid crystal phase I on the high temperature side is considered to be affected by the interlayer distance between the atomic layer sheets and the orientation of the atomic layer sheets.
 本発明において、「サーモトロピック液晶を有する誘電体材料」とは、サーモトロピック液晶のみからなる誘電体材料が含まれると共に、サーモトロピック液晶と他の物質との混合物、特に均一な混合物をも包含する。本発明における主要な態様では、サーモトロピック液晶のみからなる誘電体材料であるか、他の物質を含む場合であっても誘電体材料のうち少量または微量成分である。 In the present invention, the "dielectric material having a thermotropic liquid crystal" includes a dielectric material composed only of a thermotropic liquid crystal, and also includes a mixture of the thermotropic liquid crystal and another substance, particularly a uniform mixture. .. In the main aspect of the present invention, it is a dielectric material consisting only of a thermotropic liquid crystal, or a small amount or a trace amount of the dielectric material even if it contains other substances.
 誘電体デバイスとしては、特に限定されないが、例えば、キャパシタ、インダクタ、伝送線路、誘電体フィルタ、誘電体アンテナ、誘電体共振器等が挙げられる。これらの用途においては、回路基板、積層回路素子基板等における、その構成要素、埋設デバイス、モジュールとして、あるいは高周波誘電体デバイスにおけるレンズとしての使用も考慮される。 The dielectric device is not particularly limited, and examples thereof include a capacitor, an inductor, a transmission line, a dielectric filter, a dielectric antenna, and a dielectric resonator. In these applications, use as a component, an embedded device, a module in a circuit board, a laminated circuit element board, or the like, or as a lens in a high-frequency dielectric device is also considered.
 誘電体材料に外部電場を作用させる手段としては、例えば、電極や、高周波等の電波等が挙げられる。 Examples of means for applying an external electric field to the dielectric material include electrodes, radio waves such as high frequencies, and the like.
 当該手段が電極である場合、典型的には、誘電体デバイスは、誘電体材料と、この誘電体材料に電源からの電圧および/または電流を作用させ、あるいは電圧および/または電流を誘電体デバイスから外部へ供給するための複数の電極が電気的に接続される。例えば、複数の電極として一対の電極が誘電体材料を挟んで電気的に接続される。具体的な例としては、誘電体材料が電極と電極とで挟まれたMIM(Metal-Insulator-Metal)キャパシタ等が挙げられる。目的とする機能を発現するために、流動性の上記サーモトロピック液晶を収容、封止等により一定の形状に保つように構成してもよい。電極は、金属のような導体であればその材料は特に限定されず、単層や、異種材料の積層体等であってよい。また、誘電体材料の電気的な分極をデバイスとして利用し得る限りにおいて、このような導体に導体以外の材料、例えば絶縁膜を積層し、導体と上記サーモトロピック液晶との間や、上記サーモトロピック液晶に接する導体の反対側の面に介在させたものであってもよい。絶縁膜としては、例えば、金属酸化物等が挙げられる。 When the means is an electrode, the dielectric device typically applies a dielectric material and a voltage and / or current from a power source to the dielectric material, or a voltage and / or current to the dielectric device. A plurality of electrodes for supplying to the outside are electrically connected. For example, as a plurality of electrodes, a pair of electrodes are electrically connected with a dielectric material interposed therebetween. Specific examples include a MIM (Metal-Insulator-Metal) capacitor in which a dielectric material is sandwiched between electrodes. In order to exhibit the desired function, the above-mentioned fluid thermotropic liquid crystal may be accommodated and sealed to maintain a constant shape. The material of the electrode is not particularly limited as long as it is a conductor such as metal, and may be a single layer, a laminate of different materials, or the like. Further, as long as the electrical polarization of the dielectric material can be used as a device, a material other than the conductor, for example, an insulating film is laminated on such a conductor, and between the conductor and the thermotropic liquid crystal, or the thermotropic. It may be interposed on the opposite surface of the conductor in contact with the liquid crystal. Examples of the insulating film include metal oxides and the like.
 当該手段が高周波等の電波である場合、例えば、受信および/または送信する通信電波を含む。また変調や、周波数の一部または全部を遮蔽する電波を含む。例えば、誘電体材料が、伝送線路、フィルタ、アンテナ、共振器、レンズ等として機能する使用が考慮され、そのような具体的構成は、これらの用途における従来技術が参照される。その他、テラヘルツの外部電場を作用させることで誘電特性を利用したり誘電率測定を行う構成が含まれる。そのような機能を発現するために流動性の上記サーモトロピック液晶を収容し、特定の形状へ賦形するケーシングを用いてもよい。また、当該手段が高周波等の電波であって、これらのような目的のために誘電体材料を機能させるために、誘電体デバイスは更に電極を含んでもよく、電極は、上記したような態様で誘電体材料へ電気的に接続される。 When the means is a radio wave such as a high frequency, it includes, for example, a communication radio wave to be received and / or transmitted. It also includes modulation and radio waves that block some or all of the frequencies. For example, the use of dielectric materials as functions as transmission lines, filters, antennas, resonators, lenses, etc. is considered, and such specific configurations refer to prior art in these applications. In addition, a configuration is included in which the dielectric property is utilized or the dielectric constant is measured by applying an external electric field of terahertz. In order to exhibit such a function, a casing containing the fluid thermotropic liquid crystal and shaping it into a specific shape may be used. Further, in order for the means to be a radio wave such as a high frequency wave and the dielectric material to function for such a purpose, the dielectric device may further include an electrode, and the electrode is in the manner described above. It is electrically connected to the dielectric material.
 また、誘電体デバイスには、上記サーモトロピック液晶について、高温側の液晶相Iと低温側の液晶相IIとの間で温度に対して可逆な相転移を制御し、これにより、これらの間で異なる液晶相Iと液晶相IIの各々の比誘電率を可逆に発現させ、かつ制御可能な、温度を制御する装置が設置されてもよい。 Further, in the dielectric device, regarding the thermotropic liquid crystal, a phase reversible phase transition with respect to temperature is controlled between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side, thereby controlling the phase transition between them. A device for controlling the temperature, which can reversibly express and control the relative dielectric constants of the different liquid crystal phases I and II, may be installed.
 以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
1.ホウ素層状単結晶
1-1.結晶の合成
 アルゴンガス雰囲気のグローブボックス中において、CHCl3:MeCN=1:1の溶媒中に、KBH4のMeOH溶液(5.0mg/mL)を添加した。KBH4の濃度は1.4mMとした。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
1. 1. Boron layered single crystal 1-1. Crystal Synthesis In a glove box in an argon gas atmosphere, a MeOH solution of KBH 4 (5.0 mg / mL) was added to a solvent of CHCl 3 : MeCN = 1: 1. The concentration of KBH 4 was 1.4 mM.
 得られた溶液を大気下に解放した後、40℃で1時間加熱した。その後、室温で2週間静置した。 After releasing the obtained solution to the atmosphere, it was heated at 40 ° C. for 1 hour. Then, it was allowed to stand at room temperature for 2 weeks.
 静置後、最長で約2cmの針状結晶の生成を確認した(図1)。 After standing, it was confirmed that needle-shaped crystals with a maximum length of about 2 cm were formed (Fig. 1).
1-2.単結晶X線構造解析
 得られた針状結晶の単結晶X線構造解析を行った。
1-2. Single crystal X-ray structure analysis The single crystal X-ray structure analysis of the obtained needle-shaped crystal was performed.
 単結晶XRD測定を行ない構造を解析した結果、ホウ素と酸素から成る原子層と、カリウムイオンが交互に積層する層状構造が得られた(図2(a))。ホウ素と酸素の層では、酸素と結合したホウ素同士が歪んだ六角形を作るように結合しながら、二次元状に広がった原子層シートを形成していることがわかった(図2(b)、(c))。また、このホウ素原子層は歪のない完全平面であることがわかった。 As a result of analyzing the structure by performing single crystal XRD measurement, an atomic layer composed of boron and oxygen and a layered structure in which potassium ions are alternately laminated were obtained (Fig. 2 (a)). In the layer of boron and oxygen, it was found that the boron bonded to oxygen was bonded to each other so as to form a distorted hexagon, forming a two-dimensionally spread atomic layer sheet (Fig. 2 (b)). , (C)). It was also found that this boron atomic layer was a perfect plane without distortion.
 占有率はKが1、六角形の頂点部のBが1、六角形の辺上のBが0.635、Oが0.5となっている。OはBが作る六角形の各辺で2箇所のうち1箇所を占有していると考えられる(図2(c))。組成はホウ素シートに末端部位が必ず存在することを考慮して決定した(後述 図3(a)、(b))。 The occupancy rate is 1 for K, 1 for B at the apex of the hexagon, 0.635 for B on the side of the hexagon, and 0.5 for O. It is considered that O occupies one of the two locations on each side of the hexagon formed by B (Fig. 2 (c)). The composition was determined in consideration of the fact that the end portion is always present in the boron sheet (see FIGS. 3 (a) and 3 (b) described later).
 ホウ素-ホウ素の結合距離1.784Åはボロフェンに存在する2種類のホウ素-ホウ素結合の距離(1.876Å、1.614Å)の平均値に近い値となった。また結晶内B-Bは、単結合の1.61Å(Z. Anorg. Allg. Chem. 2017, 643, 517)と酸素架橋の1.824Å(Inorg. Chem. 2015, 54, 2910)の中間の値となった(図3(c))。 The boron-boron bond distance of 1.784Å was close to the average value of the two types of boron-boron bond distances (1.876Å and 1.614Å) present in borophene. Intra-crystal BB is between 1.61Å of single bond (Z. Anorg. Allg. Chem. 2017, 643, 517) and 1.824Å of oxygen cross-linking (Inorg. Chem. 2015, 54, 2910). It became a value (Fig. 3 (c)).
 ホウ素シートとその末端・欠損部位では、B-Oの結合状態が異なることが予想されるため、IR測定によるホウ素層状結晶中での結合状態の評価を試みた(図4)。その結果、B-O伸縮が見られる1300~1500cm―1付近に2種類のピークが得られた(図4)。このB-O領域のピークのうち、高波数側(1420cm―1)のブロードなピークが、B(OH)3で見られるB-O伸縮ピークと位置が類似しているため、B-O領域の2種類のピークのうち高エネルギー側のピークが末端・欠損部位に由来し、低波数側(1350cm―1)のシャープなピークがホウ素シートに由来すると考えられる。また、3100cm―1付近にBO-H伸縮由来のピークが観測されたことから、末端部位にB-OH結合が存在することがわかった。以上より、ホウ素層状結晶中に、ホウ素原子層シートとその末端・欠損としてB(OH)3類似部位の存在が示唆された。 Since it is expected that the bond state of BO differs between the boron sheet and its terminal / defective site, an attempt was made to evaluate the bond state in the boron layered crystal by IR measurement (Fig. 4). As a result, two types of peaks were obtained in the vicinity of 1300 to 1500 cm- 1 where BO expansion and contraction was observed (Fig. 4). Of the peaks in the BO region, the broad peak on the high wavenumber side (1420 cm- 1 ) is similar in position to the BO expansion and contraction peak seen in B (OH) 3 , so the BO region It is considered that the peak on the high energy side of the two types of peaks is derived from the terminal / defect site, and the sharp peak on the low wavenumber side (1350 cm- 1 ) is derived from the boron sheet. In addition, a peak derived from BO-H expansion and contraction was observed near 3100 cm- 1 , indicating that a B-OH bond was present at the terminal site. From the above, it was suggested that the boron atomic layer sheet and its terminals / defects were B (OH) 3 similar sites in the boron layered crystal.
1-3.XPS測定による酸化状態の評価と末端部位の定量
 XPS測定を行ない、ホウ素の酸化状態を評価した(図5)。測定の結果、原料のKBH4ではB 1s由来のピークが185.6eVに出現するのに対し、ホウ素層状結晶ではピークトップが約6eV高エネルギー側にシフトしており、結晶の生成に伴うホウ素の酸化が示唆された(図5(a)、(b))。一方、Bが3価の状態であるB23(193.3eV)と比較すると、やや低エネルギー側であることから、3価までの完全な酸化は進行していなことがわかった(図5(a)、(b))。
1-3. Evaluation of Oxidized State by XPS Measurement and Quantification of Terminal Sites XPS measurement was performed to evaluate the oxidized state of boron (Fig. 5). As a result of the measurement, in the raw material KBH 4 , the peak derived from B 1s appears at 185.6 eV, whereas in the boron layered crystal, the peak top is shifted to the high energy side of about 6 eV, and the boron accompanying the formation of the crystal Oxidation was suggested (FIGS. 5 (a), 5 (b)). On the other hand, when compared with B 2 O 3 (193.3 eV) in which B is in a trivalent state, it is found that complete oxidation up to trivalent has not progressed because it is on the slightly lower energy side (Fig.). 5 (a), (b)).
 さらに、得られたホウ素層状結晶のブロードなピークは3成分に分離可能であることがわかった(図5(a))。ピーク分離の結果、最も酸化側のピーク3が3価のホウ素を持つB23と一致し、ピーク1と2がそれよりも還元側に位置していることがわかった。よって、ピーク3がB(OH)3類似末端部位に対応し、ピーク1と2がそれぞれホウ素シート中の2種類のホウ素に対応していると考えられる。これらのピークの面積比から、ホウ素シートと末端部位の存在比を算出した結果、単位格子の比で3.1:1.0となることがわかった。 Furthermore, it was found that the broad peak of the obtained boron layered crystal was separable into three components (FIG. 5 (a)). As a result of peak separation, it was found that the peak 3 on the most oxidizing side coincided with B 2 O 3 having trivalent boron, and the peaks 1 and 2 were located on the reducing side. Therefore, it is considered that peak 3 corresponds to the B (OH) 3 similar terminal site, and peaks 1 and 2 correspond to two types of boron in the boron sheet, respectively. As a result of calculating the abundance ratio of the boron sheet and the terminal portion from the area ratio of these peaks, it was found that the ratio of the unit cell was 3.1: 1.0.
 単結晶X線構造解析から、ホウ素層状結晶の面指数付けを行なった結果、結晶の伸長方向と積層方向であるc軸方向が一致していることがわかり、伸長方向に沿ってホウ素原子層が積層していることがわかった(図6(a))。 From the single crystal X-ray structure analysis, as a result of surface indexing of the boron layered crystal, it was found that the elongation direction of the crystal and the c-axis direction, which is the stacking direction, coincide with each other, and the boron atom layer was formed along the elongation direction. It was found that they were laminated (Fig. 6 (a)).
 結晶の伸長方向は粉末XRD測定からも確認することができる。キャピラリー中でのホウ素層状結晶の粉末XRD測定を行ない、得られた回折パターンと結晶構造から計算される回折パターンのシミュレーションとの比較を行なった(図6(b))。ホウ素層状結晶はロッド状の形状であるため、キャピラリー中では管に対して結晶の伸長方向が平行になるように配向する。そしてX線は回転するキャピラリーに対して垂直方向から入射するため、結晶の伸長方向の回折線はほとんど観測されないことが予想された。測定の結果、(100)や(110)、(200)といったa、b軸成分のみを含む面の回折ピークが、シミュレーションと一致する回折角で観測された一方で、c軸成分を含むピークはほとんど出現せず、層間隔である(001)の非常に弱い回折ピークが観測されたのみであった。このことから、積層方向が結晶の伸長方向に一致することが確認され、ロッド状の結晶がホウ素原子層の積層によって形成されていることが判明した。 The elongation direction of the crystal can also be confirmed from the powder XRD measurement. The powder XRD of the boron layered crystal in the capillary was measured, and the obtained diffraction pattern was compared with the simulation of the diffraction pattern calculated from the crystal structure (FIG. 6 (b)). Since the boron layered crystal has a rod-like shape, it is oriented so that the elongation direction of the crystal is parallel to the tube in the capillary. Since X-rays are incident on the rotating capillary from the vertical direction, it is expected that almost no diffraction line in the elongation direction of the crystal is observed. As a result of the measurement, the diffraction peaks of the surface containing only the a and b-axis components such as (100), (110) and (200) were observed at the diffraction angles consistent with the simulation, while the peaks containing the c-axis component were observed. It rarely appeared, and only a very weak diffraction peak with a layer spacing of (001) was observed. From this, it was confirmed that the stacking direction coincided with the elongation direction of the crystals, and it was found that the rod-shaped crystals were formed by stacking the boron atomic layers.
1-4.ホウ素層状結晶の吸収スペクトル
 ホウ素層状結晶の吸収スペクトルの測定を行なった(図7)。固体拡散反射用セルを用いることで、結晶状態で拡散反射スペクトルの測定を行ない、Kubelka-Munk変換を行なうことで吸収スペクトルを得た。測定の結果、250nm以下の紫外領域に吸収を観測した(図7(a))。この吸収端からバンドギャップを算出した結果、ホウ素層状結晶が約5.4eVのバンドギャップを持つ半導体であることがわかった。
1-4. Absorption spectrum of boron layered crystal The absorption spectrum of the boron layered crystal was measured (Fig. 7). The diffuse reflection spectrum was measured in the crystalline state by using the solid diffuse reflection cell, and the absorption spectrum was obtained by performing the Kubelka-Munk conversion. As a result of the measurement, absorption was observed in the ultraviolet region of 250 nm or less (Fig. 7 (a)). As a result of calculating the bandgap from this absorption edge, it was found that the boron layered crystal is a semiconductor having a bandgap of about 5.4 eV.
 また、長波長領域でのスペクトル測定の結果、ホウ素層状結晶が1000~2500nm(4000~10000cm-1)の近赤外領域において吸収を持つことがわかった(図7(b))。近赤外領域においては、B23やB(OH)3でもホウ素層状結晶と異なる波長で吸収が見られることから、これらはB-OやO-Hの振動構造に由来する吸収であると考えられる。 In addition, as a result of spectral measurement in the long wavelength region, it was found that the boron layered crystal had absorption in the near infrared region of 1000 to 2500 nm (4000 to 10000 cm -1 ) (FIG. 7 (b)). In the near-infrared region, absorption is also observed in B 2 O 3 and B (OH) 3 at wavelengths different from those of the boron layered crystal, so these are absorptions derived from the vibrational structure of BO and OH. it is conceivable that.
1-5.SEMによる形状観察とホウ素層状結晶の力学特性
 ホウ素層状単結晶の形状をより詳細に調べるためにFE-SEM観察を行なった結果、結晶が六角柱のロッド形状であることが確認された(図8(a))。ロッドの側面の部分を拡大すると、結晶の伸長方向に沿って層状構造が発達している様子が観察でき、単結晶の縞模様が層状構造に由来するものであることがわかった。
1-5. Shape observation by SEM and mechanical properties of boron layered crystal As a result of FE-SEM observation to investigate the shape of the boron layered single crystal in more detail, it was confirmed that the crystal had a hexagonal column rod shape (Fig. 8). (A)). When the side surface of the rod was enlarged, it was observed that the layered structure was developed along the elongation direction of the crystal, and it was found that the striped pattern of the single crystal was derived from the layered structure.
 このホウ素層状結晶にスパーテル等で機械的に圧力をかけることで、伸長方向と垂直な方向に対し容易にへき開できることがわかった。へき開した結晶をSEMで観察した結果、層構造の崩壊によるナノシートの部分的な生成が確認された(図8(b))。また、一部ではミクロンオーダーの非常に平滑なナノシート表面が見られた。こうした機械的剥離の容易性から、ホウ素層状結晶の層間結合が非常に弱いことが示唆された。 It was found that by mechanically applying pressure to this boron layered crystal with a spatula or the like, cleavage can be easily performed in the direction perpendicular to the elongation direction. As a result of observing the cleaved crystals with SEM, partial formation of nanosheets due to the collapse of the layer structure was confirmed (Fig. 8 (b)). In addition, a very smooth nanosheet surface on the order of microns was observed in some areas. From the ease of such mechanical peeling, it was suggested that the interlayer bond of the boron layered crystal was very weak.
1-6.AFMによるナノシート観察
 ホウ素層状結晶の機械的剥離により容易にナノシートが生成することが判明したため、AFMによるナノシートの表面観察を行なった(図9、図10)。ホウ素層状結晶に対してHOPG基板を上から押し付けることで結晶をへき開し、表面に付着した結晶片をAFMで直接観察した(図9(a))。ナノシートが歪んだ部分や、完全に水平でない部分が多いが、一部でほぼ水平なナノシートが積み重なる様子を観測した(図9(b))。シート部分と下地のHOPG部分で位相が明確に異なることから、ホウ素シートであると判断した。形状像の最も厚さの小さいシートで高さを実測した結果、シートが平面な完全な平坦ではないためばらつきが出てはいるが、平均約2.0nm程度の厚さであることがわかった(図10)。以上から、これらのシートが単層から数層程度の非常に薄いシートであると考えられる。このようにAFM観察の結果、複数枚積層したシートが確認され、最も薄い箇所で高さ約0.9nmの単層シートの観察に成功した。シートの高さが最も薄い箇所で高さが約0.9nmであり、AFM測定による単層グラフェンの高さが0.8nm(Science, 2004, 306, 666.)であることと相関している。
1-6. Observation of nanosheets by AFM Since it was found that nanosheets were easily formed by mechanical peeling of boron layered crystals, the surface of the nanosheets was observed by AFM (FIGS. 9 and 10). The HOPG substrate was pressed against the boron layered crystal from above to cleave the crystal, and the crystal fragments adhering to the surface were directly observed by AFM (FIG. 9A). It was observed that the nanosheets were distorted and there were many parts that were not completely horizontal, but some of the nanosheets were almost horizontal (Fig. 9 (b)). Since the phases of the sheet portion and the underlying HOPG portion were clearly different, it was judged to be a boron sheet. As a result of actually measuring the height of the sheet with the smallest thickness of the shape image, it was found that the average thickness was about 2.0 nm, although there were variations because the sheet was not completely flat and flat. (Fig. 10). From the above, it is considered that these sheets are very thin sheets having a single layer to several layers. As a result of AFM observation in this way, a plurality of laminated sheets were confirmed, and a single-layer sheet having a height of about 0.9 nm was successfully observed at the thinnest part. The height of the sheet is about 0.9 nm at the thinnest point, which correlates with the height of single-layer graphene measured by AFM of 0.8 nm (Science, 2004, 306, 666.). ..
 次に、クラウンエーテルおよびクリプタンドによるホウ素層状結晶の溶解、単層化を試みた。CHCl3:MeCN=1:1の溶媒中に、結晶を分散し、18-クラウン-6またはクリプタンドを過剰としてホウ素層状単結晶を溶解した。この溶液をHOPG基板にキャストし、クロロホルムで洗浄し、過剰の18-クラウン-6またはクリプタンドを除去した。単層シートの観察を試みた。AFMでは、表面に付着した結晶片をAFMで観察、HOPG基板上に単層シートと思われる高さ約0.9nmのナノシートが観察され(図11 18-クラウン-6を使用)、STMでも同様に高さ約0.7nm程度シートの観察に成功した。これらの結果から、クラウンエーテル等によるホウ素層状結晶の単層化の達成が示唆された。 Next, we attempted to dissolve and monolayer the boron layered crystals with crown ether and cryptondand. The crystals were dispersed in a solvent of CHCl 3 : MeCN = 1: 1 and the boron layered single crystal was dissolved with an excess of 18-crown-6 or cryptondand. The solution was cast on a HOPG substrate and washed with chloroform to remove excess 18-crown-6 or cryptondand. An attempt was made to observe a single-layer sheet. In AFM, crystal fragments adhering to the surface were observed by AFM, and nanosheets with a height of about 0.9 nm, which seemed to be a single-layer sheet, were observed on the HOPG substrate (using Fig. 11 18-crown-6), and the same was true for STM. We succeeded in observing the sheet with a height of about 0.7 nm. From these results, it was suggested that the boron layered crystal was monolayered with crown ether or the like.
1-7.TEMによるナノシート観察
 TEM観察によりナノシートの形状・表面観察も行なった。AFMサンプルの調製方法と同様であり、ホウ素層状結晶の上からマイクロメッシュ付きのTEMグリッドを押し付けることで結晶をへき開し、グリッド表面に付着したシートをTEMで観察した(図12(a):STEM像、図12(b)および図13:高分解TEM像)。その結果、STEMではシートの積層構造とナノシートが直接観察され(図12(a))、高分解TEMではグリッドのメッシュよりコントラストの弱い非常に薄いシートの観測に成功した(図12(b))。観察箇所の中の最も薄いシートで約15層程度であることが確認された。
1-7. Nanosheet observation by TEM The shape and surface of the nanosheet were also observed by TEM observation. Similar to the method for preparing an AFM sample, the crystal was cleaved by pressing a TEM grid with a micromesh over the boron layered crystal, and the sheet adhering to the grid surface was observed by TEM (FIG. 12 (a): STEM). Image, FIG. 12 (b) and FIG. 13: high resolution TEM image). As a result, in STEM, the laminated structure of sheets and nanosheets were directly observed (Fig. 12 (a)), and in high-resolution TEM, very thin sheets with weaker contrast than the grid mesh were successfully observed (Fig. 12 (b)). .. It was confirmed that the thinnest sheet in the observation area had about 15 layers.
 さらに、これらのシートの高倍率観察により、格子を観測することにも成功した(図13)。一部のシート表面からは六角状の回折点が得られ、ホウ素シートと同じ六方対称性が観測された。また、一部では間隔が0.343nmの格子も観測された。これはホウ素層状結晶の層間隔の0.347nmと一致していることから、原子層の積層を実測していることがわかった。これらのことから、機械剥離により非常に薄いナノシートへ剥離可能であると実証され、ホウ素層状結晶の層間相互作用が弱いことが示された。 Furthermore, we succeeded in observing the grid by observing these sheets at high magnification (Fig. 13). Hexagonal diffraction points were obtained from the surface of some sheets, and the same hexagonal symmetry as that of the boron sheet was observed. In addition, some grids with an interval of 0.343 nm were also observed. Since this coincides with the layer spacing of the boron layered crystal of 0.347 nm, it was found that the atomic layer deposition was actually measured. From these facts, it was demonstrated that it was possible to peel into very thin nanosheets by mechanical peeling, and it was shown that the interlayer interaction of boron layered crystals was weak.
2.ホウ素層状結晶の熱による液晶化とその特性
2-1.ホウ素層状結晶の熱による液晶化
 液晶への変化は偏光顕微鏡観察により確認することができる。液体のような流動性を持ちつつも、偏光顕微鏡下で結晶のような干渉色を呈する状態が液晶である。酸素や水の影響を遮断するために、結晶をキャピラリー中に真空封管し、加熱ステージ付き偏光顕微鏡を用いて、昇温過程における形態と干渉色の変化を観察した。
2. 2. Liquid crystal formation by heat of boron layered crystals and its characteristics 2-1. Liquid crystal formation of boron layered crystals due to heat The change to liquid crystal can be confirmed by observation with a polarizing microscope. A liquid crystal is a state in which it has a fluidity like a liquid but exhibits an interference color like a crystal under a polarizing microscope. In order to block the influence of oxygen and water, the crystals were vacuum-sealed in the capillary, and the change in morphology and interference color during the heating process was observed using a polarizing microscope with a heating stage.
 50℃から120℃まで5℃/min以下の昇温速度でゆっくり加熱した結果、ロッド状のホウ素層状結晶が105℃付近から融けはじめ、形状が液状に変化し始める様子が観測された(図14(a))。形状は液状であるが、その周縁部には干渉色が見られることから、ホウ素結晶が液体ではなく液晶へ変化していることがわかった。 As a result of slowly heating from 50 ° C. to 120 ° C. at a heating rate of 5 ° C./min or less, it was observed that the rod-shaped boron layered crystals began to melt from around 105 ° C. and the shape began to change to liquid (FIG. 14). (A)). Although the shape is liquid, an interference color is observed at the periphery thereof, indicating that the boron crystals have changed to liquid crystals instead of liquids.
 さらに、120℃まで加熱した後に35℃まで5℃/minで冷却する過程を観察した結果、液晶が徐々に円状へと形状を変える様子が見られた(図14(b))。周縁部に常に干渉色を呈しているにも関わらず、流動的に形状が変化したことから、冷却過程でも液晶状態であることがわかる。このことから、結晶を一度昇温して液晶に変化した後は、35℃まで冷却しても再び結晶へ転移することはなく、液晶状態を保持することがわかった。この液晶の配向性はホウ素シートの2次元の強い異方性から生み出され、流動性は層間結合の弱さによって発現していると考えられる。周縁部に十字の暗色部が見えるのは、直交した偏光板の方向に沿って液晶ドメインの光軸が配向し、偏光を干渉せずにそのまま透過してしまうためである。よって、液晶中でホウ素シートが同心円状に配向していると考えられる。 Furthermore, as a result of observing the process of heating to 120 ° C. and then cooling to 35 ° C. at 5 ° C./min, it was observed that the liquid crystal gradually changed its shape into a circular shape (FIG. 14 (b)). Although the peripheral portion always exhibits an interference color, the shape changes fluidly, indicating that the liquid crystal state is maintained even during the cooling process. From this, it was found that after the crystal was once heated and changed to liquid crystal, it did not transfer to the crystal again even when cooled to 35 ° C., and the liquid crystal state was maintained. It is considered that the orientation of the liquid crystal is produced by the two-dimensional strong anisotropy of the boron sheet, and the fluidity is expressed by the weakness of the interlayer bond. The dark part of the cross is visible on the peripheral edge because the optical axis of the liquid crystal domain is oriented along the direction of the orthogonal polarizing plate, and the polarized light is transmitted as it is without interfering with it. Therefore, it is considered that the boron sheets are concentrically oriented in the liquid crystal.
 ホウ素層状結晶からホウ素液晶への変化の熱分析による観測を試みた。アルゴン下でホウ素層状結晶のTG測定を行なった結果、偏光顕微鏡観察で液晶への変化が確認された約100~120℃付近で約19%の重量減少が観測された(図15(a))。このことから、ホウ素層状結晶からホウ素液晶への変化が一般的な有機液晶で見られる熱相転移ではなく、化学変化を伴う変化であると判明した。また、この重量減少温度は、B(OH)3が脱水縮合してB23へと変化する温度と類似しているため(図15(b))、結晶から液晶への変化が、ホウ素シート末端・欠損部位のB-OH間の脱水縮合を伴うものであると示唆された。 We attempted to observe the change from boron layered crystals to boron liquid crystal by thermal analysis. As a result of TG measurement of boron layered crystals under argon, a weight loss of about 19% was observed at around 100 to 120 ° C., where a change to liquid crystal was confirmed by polarizing microscope observation (FIG. 15 (a)). .. From this, it was found that the change from the boron layered crystal to the boron liquid crystal is not a thermal phase transition seen in a general organic liquid crystal, but a change accompanied by a chemical change. Further, since this weight loss temperature is similar to the temperature at which B (OH) 3 is dehydrated and condensed to B 2 O 3 (FIG. 15 (b)), the change from crystal to liquid crystal is boron. It was suggested that it was accompanied by dehydration condensation between B-OH at the end of the sheet and the defect site.
 結晶から液晶への転移に伴い、ホウ素シートの末端・欠損部位のB-OH間の脱水縮合が進行しているかを確認するために、IR測定でBO-H伸縮の観測を試みた。約120℃で真空加熱して液晶に変化させた後に測定を行なった結果、ホウ素層状結晶で3100cm-1付近に見られていた末端部位BO-H由来のピークが、液晶へ変化後には消失することがわかった(図15(c))。このことから、ホウ素層状結晶からホウ素液晶への変化に伴い、末端・欠損部位のB-OH間で脱水縮合が進行していることが示された。 In order to confirm whether dehydration condensation between B-OH at the terminal and defective sites of the boron sheet is progressing with the transition from the crystal to the liquid crystal, an attempt was made to observe BO-H expansion and contraction by IR measurement. As a result of measurement after changing to liquid crystal by vacuum heating at about 120 ° C., the peak derived from the terminal part BO-H, which was seen in the vicinity of 3100 cm -1 in the boron layered crystal, disappears after changing to liquid crystal. It was found (Fig. 15 (c)). From this, it was shown that dehydration condensation is proceeding between B-OH at the terminal / defective site with the change from the boron layered crystal to the boron liquid crystal.
 さらにXPS測定により、液晶化前後でのホウ素の酸化状態の比較を行なった。HOPG基板上でホウ素結晶を液晶化させ、測定を行なった。その結果、結晶で見られていた末端・欠損部位由来の高酸化状態のホウ素に対応するピークが、低エネルギー側のピークと比較して相対的に減少していることがわかった(図16(a))。このことからも、液晶化プロセスによって、末端・欠損部位におけるB(OH)3部位の構造変化を伴うことが確認された。 Furthermore, the oxidation state of boron before and after liquid crystal formation was compared by XPS measurement. Boron crystals were liquid crystallized on the HOPG substrate and measured. As a result, it was found that the peak corresponding to the highly oxidized boron derived from the terminal / defect site, which was observed in the crystal, was relatively reduced as compared with the peak on the low energy side (Fig. 16 (Fig. 16). a)). From this, it was confirmed that the liquid crystallization process was accompanied by structural changes in the B (OH) 3 sites at the terminal and defective sites.
 ホウ素シート末端・欠損部位のB-OH間の脱水縮合に伴い液晶に変化することから、液晶化メカニズムを考察した。B(OH)3は完全な平面構造の分子であるが、脱水縮合してB23に変化することで、立体的な四面体構造をとる。そのため、ホウ素シート末端・欠損部位の平面上のB(OH)xも、シート内の隣接末端と脱水縮合することで立体的な構造変化を起こすと考えられる。こうしたシートの積層を崩すようなに末端・欠損の変化により、シート間に流動性が生まれ、液晶性が発現すると考えられる(図16(b))。ホウ素層状結晶を一度液晶化させた後に35℃まで冷却しても、液晶から結晶への転移が見られないのも、液晶状態を生み出すB-OH間の脱水縮合が不可逆であるためだと考えられる。 Since the liquid crystal changes with dehydration condensation between B and OH at the end of the boron sheet and the defect site, the liquid crystal formation mechanism was considered. B (OH) 3 is a molecule with a perfect planar structure, but it has a three-dimensional tetrahedral structure by dehydration condensation and conversion to B 2 O 3 . Therefore, it is considered that B (OH) x on the plane of the boron sheet end / defect site also undergoes a three-dimensional structural change by dehydration condensation with the adjacent end in the sheet. It is considered that fluidity is generated between the sheets and liquid crystallinity is exhibited due to changes in the ends and defects so as to break the stacking of the sheets (FIG. 16 (b)). Even if the boron layered crystal is once liquefied and then cooled to 35 ° C, no transition from the liquid crystal to the crystal is observed because the dehydration condensation between B and OH that produces the liquid crystal state is irreversible. Be done.
 TG測定で見られた液晶化温度付近での約19%の重量減少は、ホウ素シート末端・欠損部位が全て脱水縮合したと仮定した際の5倍以上の値である。また、B(OH)3の脱水温度と比較しても低温側から減少が始まっていることがわかる。この重量減少を解明するために、TGの100℃付近の重量減少について微分曲線を作成した結果、75℃付近からのブロードな減少と125℃付近の鋭い減少の2段階の重量減少に分離できることがわかった(図17(a))。B(OH)3の脱水縮合温度に対応するのは高温側の減少であるため、高温側の約3%分の減少がホウ素シート末端部位のB-OH間の脱水縮合に対応し、低温側の約16%の減少はH2Oなどの吸着溶媒の脱離に由来すると考えられる。 The weight loss of about 19% near the liquefaction temperature observed by the TG measurement is more than 5 times the value when it is assumed that the ends of the boron sheet and the defective sites are all dehydrated and condensed. It can also be seen that the decrease starts from the low temperature side as compared with the dehydration temperature of B (OH) 3 . In order to clarify this weight loss, as a result of creating a differential curve for the weight loss of TG near 100 ° C, it can be separated into two stages of weight loss, a broad decrease from around 75 ° C and a sharp decrease around 125 ° C. I understand (Fig. 17 (a)). Since the decrease on the high temperature side corresponds to the dehydration condensation temperature of B (OH) 3 , the decrease of about 3% on the high temperature side corresponds to the dehydration condensation between B and OH at the end of the boron sheet, and the decrease on the low temperature side. It is considered that the decrease of about 16% is due to the desorption of the adsorption solvent such as H 2 O.
 DSC測定による液晶化温度付近の熱流量測定も行なった。結晶を直接Alパンの上に置き、アルゴン下で測定を行なった結果、1周目昇温過程の液晶化温度付近において、約110℃と約125℃付近に2本の吸熱ピークが重なって観測された(図17(b))。それに対して、結晶を真空封管したままキャピラリーごとAlパンに乗せて測定した結果、同じく2本の吸熱ピークが得られたが、高温側の125℃のピークは位置の変化が見られなかった一方で、低温側のピークは強度減少するとともに75℃付近へ低温シフトした。このことから、真空下でも温度が変わらない高温側のピークがシート末端B-OH間の脱水縮合に対応し、真空下で強度減少及び低温シフトした低温側のピークが吸着水の脱離に由来することが示唆された。 The heat flow rate near the liquid crystal temperature was also measured by DSC measurement. As a result of placing the crystal directly on the Al pan and measuring under argon, two endothermic peaks were observed overlapping at about 110 ° C and about 125 ° C near the liquid crystal temperature in the first round heating process. (Fig. 17 (b)). On the other hand, as a result of measuring the crystals by placing them on an Al pan together with the capillary while the crystals were vacuum-sealed, the same two endothermic peaks were obtained, but the peaks at 125 ° C on the high temperature side did not change in position. On the other hand, the peak on the low temperature side decreased in intensity and shifted to around 75 ° C. From this, the peak on the high temperature side where the temperature does not change even under vacuum corresponds to the dehydration condensation between the sheet terminal B-OH, and the peak on the low temperature side where the strength decreases and shifts to low temperature under vacuum is derived from the desorption of adsorbed water. It was suggested to do.
 DTGおよびDSC測定の結果から、ホウ素結晶および液晶が吸湿性を持つことが示唆されたため、IRとTG-DTAから水吸着をモニタリングした。ホウ素層状結晶を約150℃で真空加熱して液晶化し、大気開放後のIRの時間経過を測定した。その結果、約3400cm-1のH2OのO-H伸縮由来のピークの強度が、液晶化後1回目の測定から5分、1時間、2時間と時間が経過するごとに増大していく様子が観測された(図18(a))。このことから、ホウ素液晶が吸湿性を持つことが示された。 Since the results of DTG and DSC measurements suggested that boron crystals and liquid crystals had hygroscopicity, water adsorption was monitored from IR and TG-DTA. The boron layered crystals were vacuum-heated at about 150 ° C. to liquid crystallize, and the time elapsed of IR after opening to the atmosphere was measured. As a result, the intensity of the peak derived from the OH expansion and contraction of H 2 O of about 3400 cm -1 increases every 5 minutes, 1 hour, and 2 hours from the first measurement after liquid crystal formation. The situation was observed (Fig. 18 (a)). From this, it was shown that the boron liquid crystal has hygroscopicity.
 また、液晶に吸着する水分量を定量するために、液晶化して大気開放した後の質量変化をTG-DTAで測定した。その結果、約40℃以下から約21%の質量増加が観測された(図18(b))。IRの測定結果と合わせると、これはH2Oの吸着に対応していることがわかる。また、この吸着量は結晶での重量減少分ともほぼ一致していることがわかる。以上から、ホウ素液晶が吸湿性を持つことと、前記において見られたTG測定での重量減少の1段階目が吸着水の脱離に対応することが示唆され、2段階目がB-OH間の脱水縮合に対応していることがわかった。 Further, in order to quantify the amount of water adsorbed on the liquid crystal, the mass change after liquid crystal formation and opening to the atmosphere was measured by TG-DTA. As a result, a mass increase of about 21% was observed from about 40 ° C. or lower (Fig. 18 (b)). When combined with the IR measurement results, it can be seen that this corresponds to the adsorption of H 2 O. In addition, it can be seen that this adsorption amount is almost the same as the weight loss in the crystal. From the above, it is suggested that the boron liquid crystal has hygroscopicity and that the first step of weight reduction in the TG measurement seen above corresponds to the desorption of adsorbed water, and the second step is between B and OH. It was found that it corresponds to the dehydration condensation of.
2-2.SEMおよびTEM観察
 ホウ素液晶を偏光顕微鏡で観察すると、周縁部に特に強く干渉色を呈した液滴のように見える。この液晶をSEMで観察することにより、液晶構造やドメインの観測を試みた。しかしSEM観察を行なった結果、半球状の液晶の観察には成功したが、液晶の内部はその流動性のために激しく動いており、ドメインや構造の直接観察はできなかった。また、長時間電子線を照射しても液晶が固化することはなかった。
2-2. SEM and TEM observation When the boron liquid crystal is observed with a polarizing microscope, it looks like droplets having a particularly strong interference color on the peripheral edge. By observing this liquid crystal with SEM, we tried to observe the liquid crystal structure and domain. However, as a result of SEM observation, although the hemispherical liquid crystal was successfully observed, the inside of the liquid crystal was moving violently due to its fluidity, and the domain and structure could not be directly observed. In addition, the liquid crystal did not solidify even when irradiated with an electron beam for a long time.
 一方、ホウ素液晶は真空下では安定に液晶相を保持できるが、大気開放することで固化することがわかった。これは酸化もしくは水による構造の変化等に起因すると考えられる。液晶状態での直接観察はできなかったので、固化後の形状観察を行なった。 On the other hand, it was found that boron liquid crystal can stably maintain the liquid crystal phase under vacuum, but solidifies when it is opened to the atmosphere. This is considered to be due to structural changes due to oxidation or water. Since direct observation in the liquid crystal state was not possible, shape observation was performed after solidification.
 HOPG上でホウ素結晶を液晶化させ、1晩大気開放して固化させた後にSEMで観察した。その結果、板状のドメインが配向して渦巻きを形成している様子が観測された(図19)。内側ほど板状ドメインが立ち、外側ほど寝ている状態である。局所的に拡大すると、板状フレークが互いに一方向に配向している様子も観察できた。このことから、液晶状態での配向を保持したまま固化したと考えられる。また、この板状フレークはホウ素シートにより形成されていると考えられる。 Boron crystals were liquefied on HOPG, opened to the atmosphere overnight to solidify, and then observed by SEM. As a result, it was observed that the plate-shaped domains were oriented to form a spiral (Fig. 19). The plate-like domain stands on the inner side, and sleeps on the outer side. When locally enlarged, it was also possible to observe how the plate-shaped flakes were oriented in one direction with each other. From this, it is considered that the liquid crystal solidified while maintaining the orientation in the liquid crystal state. Further, it is considered that the plate-shaped flakes are formed of a boron sheet.
 さらに、より微細な形状を観察するために、TEM測定を行なった。グリッド上で結晶を真空加熱することで液晶化させ、数日大気下に放置し固化させた後に観察した。その結果、ホウ素結晶を剥離した際と同様の非常にコントラストの薄いシートが観察された(図20)。さらにこのシートの表面の格子の観察にも成功し、格子間隔が0.20nmの六角状の回折点が観測された。これはホウ素シートの面内方向の対称性と一致しているとともに、(200)面の間隔(0.20nm)とも一致しているため、ホウ素シートを直接観察していると考えられる。このことから、液晶化後もシート構造を保持していることが示された。さらに、観察するシートによって、六角状の回折点の組が1組や2組、4~5組のものが存在することがわかった。これはグラフェンで見られる現象であり、層ごとにシートの積み重なりがずれることで、積層するシートの数が六角形の組の数になって回折点に現れていると考えられる。このことから、格子を観測したシートがそれぞれ単層や2層、4~5層といった、非常に薄いシートであることがわかった。 Furthermore, TEM measurement was performed to observe a finer shape. The crystals were liquefied by vacuum heating on the grid, left in the atmosphere for several days to solidify, and then observed. As a result, a sheet having a very low contrast similar to that when the boron crystals were peeled off was observed (FIG. 20). Furthermore, we succeeded in observing the lattice on the surface of this sheet, and a hexagonal diffraction point with a lattice spacing of 0.20 nm was observed. This is consistent with the in-plane symmetry of the boron sheet and also with the spacing (0.20 nm) of the (200) planes, so it is considered that the boron sheet is directly observed. From this, it was shown that the sheet structure was maintained even after the liquid crystal formation. Furthermore, it was found from the observation sheet that there were one set, two sets, and four to five sets of hexagonal diffraction points. This is a phenomenon seen in graphene, and it is considered that the number of sheets to be stacked becomes the number of hexagonal pairs and appears at the diffraction point because the stacking of sheets is shifted for each layer. From this, it was found that the sheets in which the lattice was observed were very thin sheets such as a single layer, two layers, and four to five layers, respectively.
2-3.ホウ素無機液晶のサーモトロピック特性
 ホウ素液晶の2つの液晶相の相転移挙動をDSCにより確認することができた。冷却・昇温速度はどちらも5℃/minとし、キャピラリーに真空封管したホウ素液晶のDSC測定を行なった結果、1周目の冷却過程で液晶相Iから液晶相IIへの転移に由来する鋭い発熱ピークが得られた(図21)。さらに、2周目の昇温過程で約150℃に液晶相IIから液晶相Iへの転移に由来するブロードな吸熱ピークが得られた。昇温過程の吸熱ピークと比べ、冷却過程の発熱ピークが鋭く低温側にあるのは、液晶相IからIIへの転移が過冷却状態を経由しているためであると考えられる。以上から、ホウ素液晶において、液晶相IとIIの間で熱による相転移挙動が観測された。
2-3. Thermotropic characteristics of boron inorganic liquid crystal The phase transition behavior of the two liquid crystal phases of the boron liquid crystal could be confirmed by DSC. As a result of DSC measurement of the boron liquid crystal vacuum-sealed in the capillary with both the cooling and temperature rising rates set to 5 ° C./min, it is derived from the transition from the liquid crystal phase I to the liquid crystal phase II in the cooling process of the first lap. A sharp exothermic peak was obtained (Fig. 21). Further, a broad endothermic peak derived from the transition from the liquid crystal phase II to the liquid crystal phase I was obtained at about 150 ° C. in the temperature raising process of the second lap. It is considered that the reason why the exothermic peak in the cooling process is sharper and lower on the low temperature side than the endothermic peak in the heating process is that the transition from the liquid crystal phase I to II goes through the supercooled state. From the above, in the boron liquid crystal, the phase transition behavior due to heat was observed between the liquid crystal phases I and II.
 DSC測定で観測された液晶相間の転移は、温度可変ステージを用いた偏光顕微鏡で確認することができる。結晶をキャピラリーに真空封管し、偏光顕微鏡で観察しながら200℃まで加熱すると、液晶相Iへと変化する現象が見られた(図22左)。これは前記において見ていた周縁部のみに干渉色を呈する液晶相である。この液晶相IIを10℃/minの速度で冷却する過程を観察した結果、約57℃で全体に干渉色が現れ、有機液晶で見られるような段階的な虹色の干渉色を液晶全体に示す液晶相IIへの転移が観測された。この相転移挙動はDSCで観測された発熱ピークに対応すると考えられる。液晶の周縁部にのみ干渉色が見える液晶相Iと比べ、液晶全体に干渉色を呈する液晶相IIは、より配向度が高い状態であると考えられる。 The transition between the liquid crystal phases observed by DSC measurement can be confirmed by a polarizing microscope using a variable temperature stage. When the crystals were vacuum-sealed in a capillary and heated to 200 ° C. while observing with a polarizing microscope, a phenomenon of changing to liquid crystal phase I was observed (Fig. 22, left). This is a liquid crystal phase that exhibits an interference color only in the peripheral portion seen above. As a result of observing the process of cooling this liquid crystal phase II at a rate of 10 ° C./min, an interference color appeared as a whole at about 57 ° C., and a gradual rainbow-colored interference color as seen in an organic liquid crystal was applied to the entire liquid crystal. The transition to the liquid crystal phase II shown was observed. This phase transition behavior is considered to correspond to the exothermic peak observed by DSC. It is considered that the liquid crystal phase II, which exhibits the interference color on the entire liquid crystal, has a higher degree of orientation than the liquid crystal phase I, in which the interference color is visible only on the peripheral edge of the liquid crystal.
 さらに、この液晶相間の転移の可逆性を検証した。液晶相IIへ転移した後に室温まで冷却し再び昇温した結果、約140℃付近で液晶相IIの干渉色が消失し始め、再び液晶相Iへと転移することがわかった(図22右)。これはDSCの昇温過程での吸熱ピークに対応する挙動だと考えられる。この液晶相Iを150℃から再び冷却した結果、再び約54℃付近で液晶相IIへと転移することがわかった。これらのことから、液晶相IとIIの転移が温度に対して可逆であることが示された。 Furthermore, the reversibility of the transition between the liquid crystal phases was verified. As a result of shifting to the liquid crystal phase II, cooling to room temperature, and raising the temperature again, it was found that the interference color of the liquid crystal phase II began to disappear at about 140 ° C. and the transition to the liquid crystal phase I was performed again (Fig. 22, right). .. This is considered to be the behavior corresponding to the endothermic peak in the temperature rise process of DSC. As a result of cooling the liquid crystal phase I again from 150 ° C., it was found that the liquid crystal phase I transitioned to the liquid crystal phase II again at around 54 ° C. From these results, it was shown that the transition between liquid crystal phases I and II is reversible with respect to temperature.
 DSCの冷却過程では、液晶相IからIIへの変化は過冷却状態を経由することが示唆された。そこで、冷却速度を10℃/minから20℃/minへと変更して、液晶相IからIIへの転移挙動の変化を偏光顕微鏡で観察した。その結果、10℃/minでは約55℃で液晶相IからIIへの転移が見られたが、20℃/minでは室温まで冷却してはじめて液晶相IIの干渉色が出現し始めた(図23(a))。高倍率観察の結果、20℃/minの際よりもかなり小さい数十μm程度の液晶のドメインが観察された。また、この液晶ドメインは、2枚の偏光板の偏光方向に沿って中心から十字に広がる暗色部が特徴的な、シュリーレン組織という液晶組織を持つことがわかった(図23(b))。こうした冷却速度による液晶相IIの転移温度と液晶ドメインサイズの変化からも、液晶相IからIIへの相転移が過冷却状態を経由することが示された。 It was suggested that in the cooling process of DSC, the change from liquid crystal phase I to II goes through the supercooled state. Therefore, the cooling rate was changed from 10 ° C./min to 20 ° C./min, and the change in the transition behavior from the liquid crystal phase I to II was observed with a polarizing microscope. As a result, a transition from liquid crystal phase I to II was observed at about 55 ° C. at 10 ° C./min, but at 20 ° C./min, the interference color of liquid crystal phase II began to appear only after cooling to room temperature (Fig.). 23 (a)). As a result of high-magnification observation, a liquid crystal domain of about several tens of μm, which is considerably smaller than that at 20 ° C./min, was observed. Further, it was found that this liquid crystal domain has a liquid crystal structure called a schlieren structure, which is characterized by a dark color portion extending in a cross shape from the center along the polarization directions of the two polarizing plates (FIG. 23 (b)). The changes in the transition temperature of the liquid crystal phase II and the size of the liquid crystal domain due to the cooling rate also indicate that the phase transition from the liquid crystal phase I to II goes through the supercooled state.
 液晶相IIの構造を解明するために、キャピラリーに真空封管したホウ素液晶の室温での粉末XRD測定を行なった。その結果、ホウ素層状結晶と一致する(100)と(110)、(200)の回折パターンが得られ、液晶相IIがホウ素シート構造を保持していることが判明した(図24)。一方で、積層方向であるc軸方向の成分を含む(001)や(101)、(111)のピークは低角度側にシフトしていることがわかった。層間隔を示す(001)の面間隔は、結晶状態では3.47Åであるのに対して、液晶相IIでは3.54Åであり、約0.1Å拡大していることがわかった。このことから、液晶相IIはホウ素シート面内方向の配向秩序は保持しつつ、積層方向のみが拡大している状態であることがわかった。こうした層間方向の拡大から、液晶の流動性が生じていると考えられる。 In order to elucidate the structure of liquid crystal phase II, powder XRD measurement of boron liquid crystal vacuum-sealed in a capillary was performed at room temperature. As a result, the diffraction patterns of (100), (110), and (200) consistent with the boron layered crystal were obtained, and it was found that the liquid crystal phase II retained the boron sheet structure (FIG. 24). On the other hand, it was found that the peaks of (001), (101), and (111) containing the components in the c-axis direction, which is the stacking direction, are shifted to the low angle side. It was found that the plane spacing of (001), which indicates the layer spacing, was 3.47Å in the crystalline state, whereas it was 3.54Å in the liquid crystal phase II, which was expanded by about 0.1Å. From this, it was found that the liquid crystal phase II is in a state in which only the stacking direction is expanded while maintaining the orientation order in the in-plane direction of the boron sheet. It is considered that the fluidity of the liquid crystal is generated from the expansion in the interlayer direction.
 偏光顕微鏡を用いて液晶相Iの高温域の安定性を評価した。キャピラリーに真空封管したホウ素液晶を加熱し、液晶の干渉色を何度まで保持するかを検証した。室温から加熱した結果、350℃まで安定に液晶相Iの干渉色を示すことが判明した。一方、350℃を超えた後は、周縁部の干渉色が明滅を繰り返す不安定な挙動を示し、365℃付近から完全に干渉色が消滅することがわかった。一度干渉色が消えた後は、冷却しても再び干渉色が現れることがなかったため、恐らくホウ素シートが分解したものだと考えられる。このことから、ホウ素液晶が液晶相を保持する最高温度が350℃であることがわかった。分解するまで等方液体にはならず、液晶相を保持し続けるのは、液晶ドメインであるホウ素シートの強い2次元の異方性のために、配向した状態が非常に安定であるためだと考えられる。 The stability of the liquid crystal phase I in the high temperature range was evaluated using a polarizing microscope. The boron liquid crystal vacuum-sealed in the capillary was heated, and it was verified how many times the interference color of the liquid crystal was retained. As a result of heating from room temperature, it was found that the interference color of the liquid crystal phase I was stably exhibited up to 350 ° C. On the other hand, after the temperature exceeded 350 ° C., the interference color at the peripheral edge showed an unstable behavior of repeating blinking, and it was found that the interference color completely disappeared from around 365 ° C. Once the interference color disappeared, the interference color did not appear again even after cooling, so it is probable that the boron sheet was decomposed. From this, it was found that the maximum temperature at which the boron liquid crystal retains the liquid crystal phase is 350 ° C. It does not become an isotropic liquid until it decomposes, and keeps the liquid crystal phase because the oriented state is very stable due to the strong two-dimensional anisotropy of the boron sheet, which is the liquid crystal domain. Conceivable.
 350℃以上での分解挙動は、TGからも確認することができる。アルゴン下でのTG測定の結果、350℃付近から約12%の重量減少が見られた(図25)。測定前は白色の結晶であるホウ素層状結晶が、測定後には黒く変色しており、一度融けて再び固化したような形状であることから、350℃での重量減少が熱分解によるものだと示唆された。 The decomposition behavior at 350 ° C or higher can also be confirmed from TG. As a result of TG measurement under argon, a weight loss of about 12% was observed from around 350 ° C. (Fig. 25). The boron layered crystal, which is a white crystal before the measurement, turns black after the measurement and has a shape that seems to have melted and solidified again, suggesting that the weight loss at 350 ° C is due to thermal decomposition. Was done.
 偏光顕微鏡下で液晶相IIを冷却することで、ホウ素液晶の低温域における安定性を評価した。過冷却の可能性を排除するために、冷却装置を用いて5℃/min以下の速度で徐冷し、液晶相IIから結晶へ転移する温度の検証を試みた。20℃から冷却した結果、装置限界温度である-38.5℃まで冷却しても液晶組織が変化することはなかった(図26(a))。このことから、少なくとも約-40℃までは液晶相を安定に保持できることがわかった。 The stability of the boron liquid crystal in the low temperature range was evaluated by cooling the liquid crystal phase II under a polarizing microscope. In order to eliminate the possibility of supercooling, a cooling device was used to slowly cool at a rate of 5 ° C./min or less, and an attempt was made to verify the temperature at which the liquid crystal phase II transitions to crystals. As a result of cooling from 20 ° C., the liquid crystal structure did not change even when cooled to the device limit temperature of −38.5 ° C. (FIG. 26 (a)). From this, it was found that the liquid crystal phase can be stably maintained up to at least about −40 ° C.
 また、-50℃までの冷却過程をアルゴン下でのDSC測定でも検証した結果、液晶相IとIIの間の相転移以外に、低温側にピークは観測されなかった(図26(b))。このことから、液晶から結晶への転移点は-50℃よりも低温側に存在すると考えられる。 In addition, as a result of verifying the cooling process up to -50 ° C by DSC measurement under argon, no peak was observed on the low temperature side other than the phase transition between the liquid crystal phases I and II (Fig. 26 (b)). .. From this, it is considered that the transition point from the liquid crystal to the crystal exists on the lower temperature side than −50 ° C.
 以上から、ホウ素液晶が低温域で安定であるために、冷却装置を使用した偏光顕微鏡観察では、結晶への転移点を観測できないことがわかった。そこで、ホウ素液晶を液体窒素に浸漬することによる結晶化を試みた。キャピラリーごと液体窒素に1分及び1晩浸漬したが、液晶組織に変化は見られなかった(図27(a))。ホウ素液晶が低温域で非常に安定である可能性もある一方、急冷によるガラス状態への転移の可能性も考えられるが、少なくとも液体窒素での冷却による結晶への転移は観測されなかった。 From the above, it was found that the transition point to the crystal cannot be observed by polarizing microscope observation using a cooling device because the boron liquid crystal is stable in the low temperature range. Therefore, we attempted to crystallize the boron liquid crystal by immersing it in liquid nitrogen. The capillaries were immersed in liquid nitrogen for 1 minute and overnight, but no change was observed in the liquid crystal structure (Fig. 27 (a)). While the boron liquid crystal may be very stable in the low temperature range, it may be transferred to the glass state by quenching, but at least the transition to crystals by cooling with liquid nitrogen was not observed.
 液晶相IIが低温域で非常に安定である可能性が考えられたため、液晶相Iの状態から急冷することで、液晶相IIを経由せずに直接液晶相Iの結晶化を試みた。200℃の液晶相Iの状態から室温に急冷した結果、急冷直後には非常に鋭い線のような組織が無数に発達する結晶相が出現することがわかった(図27(b))。しかし、室温下で静置していると徐々に結晶相の鋭い線が消失しはじめ、組織が変化する様子が観測された。そして急冷から40分後には完全に液晶相IIへ変化したことがわかった。結晶相への転移が見えたことから、ホウ素液晶は結晶にもなりうるということがわかった。そして、結晶相に一度変化した後に、徐々に液晶相IIに変化したことから、室温では液晶相IIが過冷却状態ではないことがわかる。よって、室温における液晶相IIの高い安定性が実証された。 Since it was considered that the liquid crystal phase II might be very stable in the low temperature range, we tried to crystallize the liquid crystal phase I directly without going through the liquid crystal phase II by quenching from the state of the liquid crystal phase I. As a result of quenching from the state of the liquid crystal phase I at 200 ° C. to room temperature, it was found that immediately after the quenching, a crystal phase in which innumerable structures such as very sharp lines develop appeared (Fig. 27 (b)). However, when it was allowed to stand at room temperature, the sharp lines of the crystal phase gradually began to disappear, and it was observed that the structure changed. It was found that 40 minutes after the quenching, the liquid crystal phase II was completely changed. Since the transition to the crystal phase was visible, it was found that the boron liquid crystal could also be a crystal. Then, after changing to the crystalline phase once, it gradually changed to the liquid crystal phase II, indicating that the liquid crystal phase II is not in a supercooled state at room temperature. Therefore, the high stability of Liquid Crystal Phase II at room temperature was demonstrated.
3.溶解による原子層化とリオトロピック液晶性
3-1.ホウ素層状結晶の溶解性検証
 ホウ素層状結晶はファンデルワールス力で積層するグラファイトなどと異なり、アニオン性のホウ素シートとカリウムカチオンのイオン性相互作用により積層しているため、高極性溶媒によりK+を溶出させることで、シート構造を保持したまま、ホウ素シートの溶解が期待できる。
3. 3. Atomic layering by dissolution and lyotropic liquid crystallinity 3-1. Verification of Solubility of Boron Layered Crystals Unlike graphite, which is laminated by van der Waals force, boron layered crystals are laminated by the ionic interaction of anionic boron sheets and potassium cations, so K + can be obtained by using a highly polar solvent. By eluting, dissolution of the boron sheet can be expected while maintaining the sheet structure.
 そこで、ホウ素層状結晶の各種溶媒に対する溶解性を検証した。シャーレ上に置いたホウ素結晶に各溶媒をそれぞれ10μLずつキャストし、溶解する過程を光学顕微鏡で観察した。その結果、溶解性を持つ溶媒をキャストした際には、ロッド状結晶が徐々に小さくなり、最終的に完全に溶解して消失する様子が確認された(図28)。9種類の溶媒に対する溶解性を検証した結果、H2Oやメタノール、エタノールといったプロトン性溶媒と、DMF、DMSOの非プロトン性高極性溶媒へ溶解することがわかった。 Therefore, the solubility of the boron layered crystals in various solvents was verified. 10 μL of each solvent was cast on a boron crystal placed on a petri dish, and the process of dissolution was observed with an optical microscope. As a result, it was confirmed that when the soluble solvent was cast, the rod-shaped crystals gradually became smaller and finally completely dissolved and disappeared (FIG. 28). Nine result of verification of solubility in a solvent, and a protic solvent H 2 O and methanol, such as ethanol, DMF, were found to dissolve the non-protonic highly polar solvent DMSO.
 溶媒へ溶解後のシート構造保持を確認するために、ホウ素結晶を溶解した溶液の吸収スペクトルを測定した。DMF溶液の近赤外領域における吸収スペクトルを測定した結果、ホウ素層状結晶の固体拡散反射で得られたスペクトルと一致する吸収が得られた。このことから、DMF溶液中では、溶解後もホウ素シート構造を保持していることが示唆された。 The absorption spectrum of the solution in which the boron crystals were dissolved was measured in order to confirm the retention of the sheet structure after dissolution in the solvent. As a result of measuring the absorption spectrum of the DMF solution in the near infrared region, absorption consistent with the spectrum obtained by solid diffuse reflection of the boron layered crystal was obtained. From this, it was suggested that the boron sheet structure was retained even after dissolution in the DMF solution.
3-2.リオトロピック液晶性の検証
 HOPG基板上でホウ素層状結晶をDMFに完全に溶解し、溶媒が揮発する過程を偏光顕微鏡で観察することで、ホウ素層状結晶のリオトロピック液晶性を検証した。液晶性の発現は偏光顕微鏡観察により確認することができる。溶液が流動性を持ちつつも、結晶のような干渉色を示せば、液晶状態であるといえる。その結果、結晶の溶解直後は透明な溶液となるが、溶媒が揮発する過程で半球状の液晶相の出現が観測された(図29(a))。このことから、ホウ素層状結晶がDMFへの溶解により、既存の無機層状結晶と同様にリオトロピック液晶性を発現することが示された。
3-2. Verification of Riotropic Liquid Crystal Properties The liotropic liquid crystal properties of the boron layered crystals were verified by completely dissolving the boron layered crystals in DMF on the HOPG substrate and observing the process of volatilization of the solvent with a polarizing microscope. The expression of liquid crystallinity can be confirmed by observation with a polarizing microscope. If the solution has fluidity but exhibits a crystal-like interference color, it can be said to be in a liquid crystal state. As a result, a transparent solution was obtained immediately after the crystals were dissolved, but the appearance of a hemispherical liquid crystal phase was observed in the process of volatilizing the solvent (FIG. 29 (a)). From this, it was shown that the boron layered crystals exhibit liotropic liquid crystallinity by dissolution in DMF, similar to the existing inorganic layered crystals.
 この液晶相は液滴の周縁部に沿って干渉色が呈色しており2枚の偏光板の方向に沿って、垂直な十字方向に暗色部が現れていることがわかる(図29(b)。これはホウ素シートの配向に由来する液晶相だと考えられる。この液晶相をさらに放置し、DMFの揮発が進むと、徐々に液晶周縁部の干渉色が弱くなり、最終的に多結晶が生成することがわかった。 It can be seen that this liquid crystal phase develops an interference color along the peripheral edge of the droplet, and a dark color appears in the vertical cross direction along the direction of the two polarizing plates (FIG. 29 (b). ). It is considered that this is a liquid crystal phase derived from the orientation of the boron sheet. If this liquid crystal phase is left to stand and the DMF volatilizes, the interference color of the peripheral part of the liquid crystal gradually weakens, and finally polycrystals. Was found to be generated.
 SEM測定による、DMF揮発後の残渣結晶の形状観察を行なった。偏光顕微鏡で観察した多結晶の直接観察に成功した。その結果、約20nm程度の板状フレークが大量に見られ、この板状フレークが積層して多結晶を形成していることがわかった(図30)。このフレークを部分的に拡大すると、シートが積層した層状構造が観測されたため、ホウ素層状結晶をDMFに溶解した後もシートは分解せず、シート構造を保持していることが示された。 The shape of the residual crystal after volatilization of DMF was observed by SEM measurement. We succeeded in directly observing the polycrystals observed with a polarizing microscope. As a result, a large amount of plate-shaped flakes having a size of about 20 nm were observed, and it was found that these plate-shaped flakes were laminated to form polycrystals (FIG. 30). When the flakes were partially enlarged, a layered structure in which sheets were laminated was observed, indicating that the sheet did not decompose even after the boron layered crystals were dissolved in DMF, and the sheet structure was retained.
3-3.DMF溶解による原子層剥離
 ホウ素層状結晶のDMF溶解が示されたため、これを利用した原子層剥離を行なった。ホウ素結晶をDMFに溶解し、HOPG基板上にキャストすることで、ホウ素シートの基板塗布を試みた。
3-3. Atomic layer exfoliation by DMF dissolution Since DMF dissolution of boron layered crystals was shown, atomic layer exfoliation was performed using this. An attempt was made to apply a boron sheet to a substrate by dissolving boron crystals in DMF and casting it on a HOPG substrate.
 ホウ素層状結晶のDMF溶液をHOPG基板上にキャストし、AFM観察を行なった。DMFは高沸点であるため、キャスト後真空下で1週間乾燥させた後に測定した。AFM観察の結果、高さ約2nm程度の均一な原子層の観察に成功した(図31)。結晶構造から予測されるホウ素シートの厚さ(層間0.35nm)よりは厚いが、これはAFMのオフセットによるものと、層表面のカリウムイオンおよびDMFの吸着によるものだと考えられる。 A DMF solution of boron layered crystals was cast on a HOPG substrate, and AFM observation was performed. Since DMF has a high boiling point, it was measured after being cast and dried under vacuum for 1 week. As a result of AFM observation, we succeeded in observing a uniform atomic layer with a height of about 2 nm (Fig. 31). It is thicker than the thickness of the boron sheet predicted from the crystal structure (0.35 nm between layers), which is considered to be due to the offset of AFM and the adsorption of potassium ions and DMF on the layer surface.
4.導電性デバイス
 以上のように、13族のホウ素を含有したクラスターが2次元構造を持つことが見出された。またこの層状物質は約100℃で脱水し、液晶化する特徴を有する。これらの伝導度特性について測定を行い、層状構造から発現する特異な電子物性を見出した。
4. Conductive device As described above, it was found that the boron-containing cluster of Group 13 has a two-dimensional structure. Further, this layered substance has a characteristic of being dehydrated at about 100 ° C. and liquid crystallized. These conductivity characteristics were measured, and the peculiar electronic properties expressed from the layered structure were found.
 ホウ素2次元クラスターは溶媒に水素化ホウ素カリウムを溶解させたのち、35℃で1時間加熱し静置することで生成する。これまでアセトニトリル:クロロホルム=1:1溶媒を用いていたが、収率の向上を目指し溶媒の変更を検討した。その結果、アセトニトリルのみで結晶が得られた。これは水素化ホウ素カリウムの溶解度の違いが影響していると考えられる。アセトニトリルのみの溶媒では(生成物)/(出発物)=44%(質量割合比)で得られた。このアセトニトリル中での結晶合成は効率的であり、結晶の大量合成を可能にし、物性の測定が可能となった。 Boron two-dimensional clusters are formed by dissolving potassium borohydride in a solvent, heating at 35 ° C for 1 hour, and allowing to stand. So far, acetonitrile: chloroform = 1: 1 solvent has been used, but changing the solvent was examined with the aim of improving the yield. As a result, crystals were obtained only with acetonitrile. This is thought to be due to the difference in the solubility of potassium borohydride. In the solvent of acetonitrile alone, (product) / (starter) = 44% (mass ratio) was obtained. The crystal synthesis in acetonitrile was efficient, enabled mass synthesis of crystals, and made it possible to measure physical properties.
4-1.ホウ素層状結晶の伝導度測定
(伝導度測定のセットアップ)
 くし形電極Pt(BAS製)上に結晶を1本置き、ホットステージ上で加熱することで温度可変での伝導度測定を行った(図32)。サンプルは窒素雰囲気下になるようホットステージごと簡易グローブボックスの中に入れ測定を行った。温度計はKenis製のデジタル温度ロガーを使用した。
4-1. Conductivity measurement of boron layered crystals (conductivity measurement setup)
One crystal was placed on the comb-shaped electrode Pt (manufactured by BAS) and heated on a hot stage to measure the conductivity at a variable temperature (FIG. 32). The sample was placed in a simple glove box together with the hot stage so as to be in a nitrogen atmosphere for measurement. A digital temperature logger manufactured by Kenis was used as the thermometer.
(ホウ素結晶のインピーダンス測定)
 くし形電極(BAS製)上に結晶を1本置き、Ar下でホットステージ上にて加熱することで温度可変インピーダンス測定を行った。インピーダンス測定では、交流で周波数を変化させながら電気化学測定を行うため、粒界、バルク、電極界面といった応答速度が異なるものに対して、周波数により抵抗成分を分離することができるメリットがある。まず結晶面間方向に対する測定を行い、フィッティングはRC並列回路(図33)を用いた。
(Measurement of impedance of boron crystal)
A variable temperature impedance was measured by placing one crystal on a comb-shaped electrode (manufactured by BAS) and heating it on a hot stage under Ar. In impedance measurement, electrochemical measurement is performed while changing the frequency with alternating current, so there is an advantage that resistance components can be separated according to frequency for objects having different response speeds such as grain boundaries, bulk, and electrode interface. First, the measurement was performed in the direction between the crystal planes, and an RC parallel circuit (FIG. 33) was used for the fitting.
 303、311、321、333、341Kで測定を行い、伝導度の温度依存を測定した。高温になるほど高い伝導度を示し結晶面間では半導体的な伝導をすることが分かった。伝導度はσ=2.1×10-5(S/cm)(341K)と求められた(図34、図35)。アレニウスプロットから、算出した活性化エネルギーはEa=0.21eVであった。 Measurements were made at 303, 311 and 321 and 333 and 341K, and the temperature dependence of conductivity was measured. It was found that the higher the temperature, the higher the conductivity, and the semiconductor-like conductivity between the crystal planes. The conductivity was determined to be σ = 2.1 × 10 -5 (S / cm) (341K) (FIGS. 34 and 35). The activation energy calculated from the Arrhenius plot was Ea = 0.21 eV.
 アレニウスの式はキャリアの速度と活性化エネルギーの関係を表す式である。
反応の速度定数kは
The Arrhenius equation is an equation that expresses the relationship between carrier velocity and activation energy.
The reaction rate constant k is
Figure JPOXMLDOC01-appb-C000001
A:温度に無関係な定数(
Ea:活性化エネルギー(1molあたり)
R:気体定数
T:絶対温度
で表される。アレニウスの式の対数をとると
Figure JPOXMLDOC01-appb-C000001
A: Constants independent of temperature (
Ea: Activation energy (per mol)
R: Gas constant T: Expressed in absolute temperature. Taking the logarithm of the Arrhenius equation
Figure JPOXMLDOC01-appb-C000002
となり、以下のように変数(i)~(iv)をとれば、次の1次式(1)とみなすことができる。
Figure JPOXMLDOC01-appb-C000002
Then, if the variables (i) to (iv) are taken as follows, it can be regarded as the following linear equation (1).
Figure JPOXMLDOC01-appb-C000003
 この形式で描いたグラフはアレニウスプロットと呼ばれる。この形式を用いて実測された反応速度とそのときの温度の逆数を片対数グラフにプロットすれば、回帰分析の手法を用いて係数m、bを求めて活性化エネルギーなどを実験的に求めることができる。
Figure JPOXMLDOC01-appb-C000003
The graph drawn in this format is called the Arrhenius plot. If the reaction rate actually measured using this format and the reciprocal of the temperature at that time are plotted on a semi-log graph, the coefficients m and b can be obtained using the regression analysis method to experimentally obtain the activation energy and the like. Can be done.
 同様に結晶を電極に対して結晶の成長方向が垂直になる向きに置き結晶面内の測定を試みた。303、311、321、333、341Kで測定を行い、伝導度の温度依存を測定した。すると結晶面間とは異なり、結晶面内では温度依存性が低く金属的な伝導をすることが分かった。伝導度はσ=8.3×10-8(S/cm)(353K)と求められ、活性化エネルギーEa≒0eVであった(図36)。 Similarly, the crystal was placed in a direction in which the growth direction of the crystal was perpendicular to the electrode, and measurement in the crystal plane was attempted. Measurements were made at 303, 311 and 321 and 333 and 341K, and the temperature dependence of conductivity was measured. Then, it was found that unlike between the crystal planes, the temperature dependence was low in the crystal planes and metallic conduction was performed. The conductivity was determined to be σ = 8.3 × 10 -8 (S / cm) (353K), and the activation energy Ea≈0eV (FIG. 36).
 結晶面間と面内のナイキストプロットと模式図をまとめて示す(図37)。温度に依存し伝導度が大きく変化し半導体的な導電性を持つ結晶面間に対して、結晶面内では温度を変化させても伝導度が変化せず金属的な伝導をすることが分かった。このようにして、ホウ素層状結晶の面内と面間で異方的な伝導性を持つことを見出した。
(ホウ素液晶のインピーダンス測定)
 次に、くし形電極(Pt, BAS製)上に結晶を置き、加熱し液晶化させることで温度可変インピーダンス測定を行った。顕微鏡写真とともにセットアップを示す(図38)。
Nyquist plots and schematic views between and in the crystal planes are shown together (Fig. 37). It was found that the conductivity does not change even if the temperature is changed in the crystal planes, and metallic conduction occurs between the crystal planes, which have semiconductor-like conductivity because the conductivity changes greatly depending on the temperature. .. In this way, it was found that the boron layered crystal has anisotropic conductivity in-plane and between the planes.
(Measurement of impedance of boron liquid crystal)
Next, the temperature variable impedance was measured by placing the crystal on a comb-shaped electrode (Pt, manufactured by BAS) and heating it to make it liquid crystal. The setup is shown with a photomicrograph (Fig. 38).
 ホウ素液晶のフィッティングは円のゆがみを考慮するR+RCPE並列回路を用いた(図39)。Pの値が1より小さくなり、結晶と比べてイオン伝導が加わったことによる円のゆがみが観測された。 The boron liquid crystal fitting used an R + RCPE parallel circuit that takes into account the distortion of the circle (Fig. 39). The value of P became smaller than 1, and the distortion of the circle was observed due to the addition of ionic conduction compared to the crystal.
 433-343Kにわたるアレニウスプロットを図40に示す。液晶は結晶と比べて薄く広がった液体であり、面伝導を算出した。伝導度は433Kのときσ=3.4×10-8(S)、343Kのときσ=7.1×10-11(S)と変化した。また活性化エネルギーEa=0.89eVであった。この値は半導体であるゲルマニウム等と同程度の値であった。 An Arrhenius plot over 433-343K is shown in FIG. The liquid crystal is a liquid that spreads thinner than the crystal, and the surface conduction was calculated. The conductivity changed as σ = 3.4 × 10 -8 (S) at 433K and σ = 7.1 × 10 -11 (S) at 343K. The activation energy Ea = 0.89 eV. This value was about the same as that of germanium, which is a semiconductor.
 同一の試料において結晶から液晶化した際の一連の伝導度の変化を示す(図41)。実験は番号の順で行い、約30℃から昇温して100℃まで結晶の伝導度と活性化エネルギーを観測している。その後、100℃を超えると脱水とともに液晶化がおこり、160℃からの冷却過程で液晶の伝導度と活性化エネルギーを求めている。 A series of changes in conductivity when liquid crystal is formed from crystals in the same sample is shown (Fig. 41). The experiments are carried out in numerical order, and the conductivity and activation energy of the crystal are observed from about 30 ° C. to 100 ° C. After that, when the temperature exceeds 100 ° C., liquid crystal formation occurs along with dehydration, and the conductivity and activation energy of the liquid crystal are obtained in the cooling process from 160 ° C.
4-2.ホウ素層状液晶の物性
(ホウ素液晶の伝導機構について)
 伝導機構についてさらに解明するためにキャリアの同定を行った。ゼーベック係数による判別法を用い、半導体に温度勾配をかけ、キャリアが拡散した際に発生する電位を測ることでn型半導体かp型半導体か区別した。測定方法としては、サンプルをITO基板に挟んでホットプレート上に置き、その温度に伴う電位差を調べた。その結果高温側が高電圧となった。これより、このホウ素クラスターのキャリアは電子であり、n型半導体であることが分かった。
4-2. Physical properties of boron layered liquid crystal (conduction mechanism of boron liquid crystal)
Carriers were identified to further elucidate the conduction mechanism. Using the Seebeck coefficient discrimination method, a temperature gradient was applied to the semiconductor, and the potential generated when the carriers diffused was measured to distinguish between an n-type semiconductor and a p-type semiconductor. As a measuring method, a sample was sandwiched between ITO substrates and placed on a hot plate, and the potential difference with the temperature was examined. As a result, the high voltage side became high voltage. From this, it was found that the carriers of this boron cluster are electrons and are n-type semiconductors.
 また、ゼーベック係数Sについて、S=Vs/ΔTであり、ゼーベック電圧Vs=0.1V、高温側の温度が68℃、低温側の温度が60℃であった。よっておおよそのゼーベック係数はS=1.3×104(μV/K)と求められた。 The Seebeck coefficient S was S = Vs / ΔT, the Seebeck voltage Vs = 0.1 V, the temperature on the high temperature side was 68 ° C, and the temperature on the low temperature side was 60 ° C. Thus approximate Seebeck coefficient was determined to S = 1.3 × 10 4 (μV / K).
 飽和領域にある時のn型半導体のゼーベック係数は
S =-(k/e)[ln(Nc/nd)+C]    C:運動項
と表され、キャリア濃度が高いものほどゼーベック係数は小さくなる。ホウ素結晶のゼーベック係数は一般的な半導体と比べると非常に大きく、キャリア濃度は低いと考えられる。
The Seebeck coefficient of an n-type semiconductor when it is in the saturation region is expressed as S =-(k / e) [ln (N c / nd ) + C] C: motion term, and the higher the carrier concentration, the smaller the Seebeck coefficient. Become. The Seebeck coefficient of boron crystals is much larger than that of general semiconductors, and the carrier concentration is considered to be low.
(インダクタンス特性)
 ホウ素結晶における伝導度の異方性に由来し、ホウ素液晶において特異な逆半円のナイキストプロットを観測した。これが市販のコイルで見られるインダクタンス特性と非常に似ていることが明らかとなった。インピーダンス法で得られるサンプルと100μH、10μH、100nHのコイルのナイキストプロットを示す(図42)。これらのグラフは類似しており、どれも逆半円のスペクトルを観測した。ホウ素液晶とコイルとのグラフの類似性から、ホウ素液晶のインダクタンスが100nH程度であることを確認した。ホウ素2次元クラスターが液晶化した際に同心円状に配向することに由来し、インダクタンス特性を持つことが示唆された(図43)。ナイキストプロットの振幅依存性から(図44)、概ね0.001V以上でのインダクタ挙動を確認した。振幅0.1V程度ではコンデンサー挙動も確認された。
(Inductance characteristics)
Due to the anisotropy of conductivity in the boron crystal, a peculiar inverted semicircle Nyquist plot was observed in the boron liquid crystal. It became clear that this was very similar to the inductance characteristics found in commercially available coils. A sample obtained by the impedance method and a Nyquist plot of 100 μH, 10 μH, and 100 nH coils are shown (FIG. 42). These graphs are similar, and all observed spectra of inverted semicircles. From the similarity of the graphs of the boron liquid crystal and the coil, it was confirmed that the inductance of the boron liquid crystal was about 100 nH. It was suggested that the two-dimensional boron clusters are oriented concentrically when liquid crystallized and have inductance characteristics (Fig. 43). From the amplitude dependence of the Nyquist plot (Fig. 44), the inductor behavior at about 0.001 V or higher was confirmed. Capacitor behavior was also confirmed at an amplitude of about 0.1 V.
(電流応答性の検証)
 以上から、ホウ素液晶の導電性が確認されたため、ホウ素液晶の電流応答性の検証を行なった。電流応答のセルには、2mm四方の電極部に対して、10mmごとに正極と負極が交互に配列するくし型電極を使用した。粉末状にすりつぶしたホウ素層状結晶をくし型電極部に乗せ、上からカバーガラスで押さえつけながら200℃で真空加熱することで、液晶セルを作製した。
(Verification of current responsiveness)
Since the conductivity of the boron liquid crystal was confirmed from the above, the current responsiveness of the boron liquid crystal was verified. For the current response cell, a comb-shaped electrode was used in which positive electrodes and negative electrodes were alternately arranged every 10 mm with respect to a 2 mm square electrode portion. A liquid crystal cell was produced by placing a powdered boron layered crystal on a comb-shaped electrode portion and heating it in a vacuum at 200 ° C. while pressing it with a cover glass from above.
 また、この挙動の可逆性を検証した結果、電圧のONとOFFによって液晶の散乱と透過が可逆に変化することが確認された(図45)。これらより、ホウ素液晶が繰り返し動作可能な、透過と散乱の電流応答挙動を示すことが判明した。これは導電性と電場配向性に異方性を持つ液晶ドメインに電圧を印加した際に見られる、電流効果による挙動であると考えられる。これらよりホウ素液晶が、電圧を印加しないと光を透過し、印加すると光を散乱して不透明になるような、調光フィルムとして応用可能なことが示唆された。 In addition, as a result of verifying the reversibility of this behavior, it was confirmed that the scattering and transmission of the liquid crystal change reversibly depending on whether the voltage is turned on or off (Fig. 45). From these, it was clarified that the boron liquid crystal exhibits the current response behavior of transmission and scattering that can be repeatedly operated. This is considered to be the behavior due to the current effect seen when a voltage is applied to the liquid crystal domain having anisotropy in conductivity and electric field orientation. From these, it was suggested that the boron liquid crystal can be applied as a light control film in which light is transmitted when a voltage is not applied, and when a voltage is applied, the light is scattered and becomes opaque.
 さらに、ホウ素液晶のONとOFFによる散乱と透過のスイッチングの、目視での観測も行った。くし型電極の一部を拡大すると、電圧をかけていない状態では光を透過するのに対して、電圧を印加すると液晶の光の散乱に伴い、白く濁る様子が目視で確認された(図46)。偏光顕微鏡を用いてこのスイッチングを確認した。このことから、ホウ素液晶の調光フィルムとしての応用の可能性を実証した。 Furthermore, we also visually observed the switching between scattering and transmission by turning the boron liquid crystal on and off. When a part of the comb-shaped electrode was enlarged, light was transmitted when no voltage was applied, but when a voltage was applied, it was visually confirmed that the light became cloudy due to the scattering of the liquid crystal light (FIG. 46). ). This switching was confirmed using a polarizing microscope. From this, the possibility of application of boron liquid crystal as a light control film was demonstrated.
 以上から、ホウ素液晶が導電性や誘電特性などの電気特性を持つことを明らかにし、これらの特性を活かして光学的な電流応答挙動を示すことを明らかにした。また、この光学挙動が電圧のONとOFFによって繰り返し動作可能であることも示し、ホウ素液晶が完全無機液晶として、液晶材料へ応用可能であることを実証した。 From the above, it was clarified that boron liquid crystal has electrical characteristics such as conductivity and dielectric characteristics, and that it exhibits optical current response behavior by utilizing these characteristics. It was also shown that this optical behavior can be repeatedly operated by turning the voltage on and off, demonstrating that the boron liquid crystal can be applied to a liquid crystal material as a completely inorganic liquid crystal.
4-3.DMF溶解による原子層へ剥離したホウ素シートの導電性
 図31において、基板上へのホウ素シートの塗布を達成したため、これにより導電性AFMを用いたホウ素シートの導電性測定が可能となった(図47)。導電性AFMはコンタクトモードで測定するため、HOPG表面とは異なり、探針により引っかかれてホウ素シートの形状が観察しづらくなっていることがわかる。シートの真上で-5V~4.7Vの直流電圧を印加し、I-V曲線を測定した結果、直流電圧に対する応答が得られた。応答曲線の比較から、HOPGと比べると傾きが小さいが、ホウ素シートが導電性を持つことが実証された。
4-3. Conductivity of Boron Sheet Peeled to Atomic Layer by DMF Dissolution In Fig. 31, the coating of the boron sheet on the substrate was achieved, which made it possible to measure the conductivity of the boron sheet using the conductive AFM (Fig.). 47). Since the conductive AFM is measured in the contact mode, it can be seen that unlike the HOPG surface, the shape of the boron sheet is difficult to observe because it is scratched by the probe. As a result of applying a DC voltage of -5V to 4.7V directly above the sheet and measuring the IV curve, a response to the DC voltage was obtained. From the comparison of the response curves, it was demonstrated that the boron sheet has conductivity, although the slope is smaller than that of HOPG.
5.ホウ素層状液晶を用いた誘電体デバイスと誘電率測定
 電極によるホウ素液晶の誘電率測定をするためにデバイスを作製した。
5. Dielectric device using boron layered liquid crystal and permittivity measurement A device was manufactured to measure the dielectric constant of boron liquid crystal using electrodes.
 図48(a)に示すように、ガラス(SiO2)基板上に、クロム薄膜を介してアルミニウム薄膜を形成し、電極とした。アルミニウム薄膜は、表面の酸化皮膜(Al23)が絶縁膜として機能する。図48(a)、(b)に示すように、電極形状は、ホウ素液晶が配置される基板中央の電極面と、基板端面に沿う平行かつ長い矩形状の接続部とを有し、これらの電極面と接続部を繋いだパターンとした。この電極を設けた基板は、ホウ素液晶を挟む上下一対を作製した。 As shown in FIG. 48 (a), an aluminum thin film was formed on a glass (SiO 2 ) substrate via a chromium thin film to form an electrode. The oxide film (Al 2 O 3 ) on the surface of the aluminum thin film functions as an insulating film. As shown in FIGS. 48A and 48B, the electrode shape has an electrode surface in the center of the substrate on which the boron liquid crystal is arranged, and a parallel and long rectangular connection portion along the end surface of the substrate. The pattern was made by connecting the electrode surface and the connection part. As the substrate provided with this electrode, a pair of upper and lower parts sandwiching a boron liquid crystal was prepared.
 図48(b)に示すように、上記において合成したホウ素結晶を電極で挟み、1辺だけ残してボンドで固定してからアルゴン雰囲気とし、更に真空加熱することで液晶化した(1st heating)。その後、嫌気下で残る1辺をボンドで固定することで封止した。上下一対の基板でホウ素結晶を挟んだ電極配置は、平面視で、基板中央の電極面でホウ素結晶を挟み、かつ基板端面に沿う接続部は対向する基板端面に沿って上下の接続部が配置されるようにし、上下の接続部は表面が外部に露出するようにずらして上下の基板を固定した。 As shown in FIG. 48 (b), the boron crystal synthesized above was sandwiched between electrodes, and only one side was left and fixed with a bond to create an argon atmosphere, which was further vacuum-heated to form a liquid crystal (1st heating). Then, the remaining one side under anaerobic conditions was sealed by fixing with a bond. The electrode arrangement in which the boron crystal is sandwiched between the pair of upper and lower substrates is that the boron crystal is sandwiched between the electrode surfaces in the center of the substrate and the upper and lower connecting portions are arranged along the opposite substrate end faces. The upper and lower connecting parts were shifted so that the surface was exposed to the outside, and the upper and lower boards were fixed.
 図49に示すように、アルミニウム電極は剥がれやすいため、基板端面に沿う接続部には超音波ハンダ付けを行い、電源に接続される導線を上から当てられるようにしてワニ口クリップで固定した。ハンダはセラソルザ(R)(Pb-Snハンダに数種の微量元素を添加)を用いた。また図49に示すように、基板下面にはホットプレートを設置し、基板と電極を所定温度に加熱できるようにした。 As shown in FIG. 49, since the aluminum electrode is easily peeled off, ultrasonic soldering was performed on the connection portion along the end surface of the substrate, and the lead wire connected to the power supply was fixed with an alligator clip so as to be applied from above. Cerasolza (R) (several trace elements added to Pb-Sn solder) was used as the solder. Further, as shown in FIG. 49, a hot plate was installed on the lower surface of the substrate so that the substrate and the electrodes could be heated to a predetermined temperature.
(温度依存誘電率測定)
 メトラーサーモシステムによって上下で挟んで加熱しながら精密LCRメータによって測定した。室温から275℃まで加熱冷却を繰り返しながら100mV、10kHzで測定した結果を図50に示す。室温では10以下であった誘電率が175℃まで温度を上げると飛躍的に上昇し、105を超える巨大誘電率が示された。また、275℃まで加熱すると誘電率は徐々に上昇し下げると徐々に下降した。そして、125℃まで温度を下げると再び比誘電率は10前後へと戻った。さらに、加熱冷却を繰り返してもその値が下がることなく2回目3回目の加熱冷却時も再現良く繰り返し巨大誘電率が示された。このことから、セル内でホウ素液晶が分解していないことが示唆された。
(Temperature-dependent permittivity measurement)
It was measured by a precision LCR meter while being sandwiched between the top and bottom by the METTLER THERMO system and heated. FIG. 50 shows the results of measurement at 100 mV and 10 kHz while repeating heating and cooling from room temperature to 275 ° C. Dramatically increase the dielectric constant was 10 or less at room temperature raises the temperature to 175 ° C., giant dielectric constant of greater than 10 5 is shown. Further, when heated to 275 ° C., the dielectric constant gradually increased, and when it decreased, it gradually decreased. Then, when the temperature was lowered to 125 ° C., the relative permittivity returned to around 10. Further, even if the heating and cooling were repeated, the value did not decrease, and the huge dielectric constant was repeatedly shown with good reproducibility during the second and third heating and cooling. This suggests that the boron liquid crystal is not decomposed in the cell.
(周波数依存誘電率測定)
 20Hzから106Hzの周波数で275℃での比誘電率を測定した(図51)。その結果、周波数が小さくなるにつれて比誘電率は大きくなり105を超える大きな比誘電率を20Hz~105Hzの広い周波数で達成した。
(Frequency-dependent permittivity measurement)
It was measured relative dielectric constant at 275 ° C. at a frequency of 20Hz from 10 6 Hz (Fig. 51). As a result, the relative large dielectric constant dielectric constant of greater than become 10 5 increases as the frequency decreases to achieve a wide frequency of 20 Hz ~ 105 Hz.
(比誘電率と相転移の関係性)
 ホウ素液晶は温度を上昇させたとき150℃付近で相転移をし、下げたとき100℃付近で相転移が起こることがDSC測定により明らかにされている。温度が低く流動性が低い状態は液晶相II、高い時の流動性が高い相は液晶相Iである。図52(a)は、加熱および冷却プロセス中のホウ素液晶の誘電率εr'、(b)はガラス毛細管内の真空条件下でのホウ素液晶のDSC曲線である。DSCによる相転移温度は比誘電率の上昇と下降する温度の関係と一致した。
(Relationship between relative permittivity and phase transition)
It has been clarified by DSC measurement that the boron liquid crystal undergoes a phase transition at around 150 ° C. when the temperature is raised and a phase transition occurs at around 100 ° C. when the temperature is lowered. The state where the temperature is low and the fluidity is low is the liquid crystal phase II, and the phase where the temperature is high and the fluidity is high is the liquid crystal phase I. FIG. 52 (a) shows the dielectric constant ε r'of the boron liquid crystal during the heating and cooling processes, and FIG. 52 (b) shows the DSC curve of the boron liquid crystal under vacuum conditions in the glass capillary. The phase transition temperature by DSC was consistent with the relationship between the rising and falling temperatures of the relative permittivity.
(考察)
 ホウ素液晶は基板上で同心円状に配向していることがSEMにより確認されている。基板に挟んだ時のシートの配向は分かっておらず、XRD測定によって調査した。ホウ素液晶を基板に挟んでXRD測定すると、温度120℃、角度0°の時(001)(101)由来のピークは観測されなかった。しかし、角度を変えて、45°の時ピークが出現した。このことからシートが基板に平行に配向し、層間距離が伸びていることが示唆された。
(Discussion)
It has been confirmed by SEM that the boron liquid crystal is concentrically oriented on the substrate. The orientation of the sheet when sandwiched between the substrates was unknown and was investigated by XRD measurement. When the boron liquid crystal was sandwiched between the substrates and XRD measurement was performed, no peak derived from (001) (101) was observed at a temperature of 120 ° C. and an angle of 0 °. However, at different angles, a peak appeared at 45 °. This suggests that the sheets are oriented parallel to the substrate and the interlayer distance is extended.
 まず、結晶を測定したところ結晶の比誘電率は通常の物質と同等程度であった。しかし、加熱することで液晶化して測定すると105を超える大きな比誘電率を示した。今回の測定で得られた比誘電率の105という値は一般的な物質と比べて極めて高いものである。それはチタン酸バリウムなどの高容量コンデンサーを上回る値であることが分かった(測定条件は100mV、20Hz~106Hz、膜厚200μm、275℃)。さらに、周波数依存で誘電率測定をしたところ105を超える大きな比誘電率を20Hz~106Hzの広い周波数で達成した。温度依存測定では、室温では10以下であった誘電率が温度を上げると150℃~275℃で104~105程度まで飛躍的に上昇することが示された。この液晶は温度を上昇させたとき150℃付近で相転移をし、下げたとき100℃付近で相転移が起こることがDSC測定によって分かっている。それは比誘電率の上昇と下降する温度の関係と類似し、相転移によるスイッチングであると考えられる。さらに、この挙動は加熱冷却を2度、3度繰り返した時も同様に可逆的に発現し、分解することなく高い熱安定性を示す。誘電率が高くなるメカニズムについて考察した。まず、誘電体の分極は、4つの異なる分極メカニズムに基づいて、電子分極、イオン分極、配向分極、界面分極に分けることができる。ホウ素液晶は高温時にドメインが自由に動けるようになることで電場に従って配向し、シート間距離が伸びて、アニオンシートとカリウムイオンによるイオン分極が生じて高い誘電率が得られていると考えられる。XRD測定の結果の通り、結晶と比べて面間距離が伸びているので、カチオン(K+)が自由に動ける空間ができ、大きな分極が生じていると考えられる。以上のように、ホウ素液晶が高い熱安定性を持ち広い周波数で105を上回る巨大誘電率を示した。それらの特性を生かして極端な条件下でのキャパシタやセンサー、液晶ディスプレイ等の材料への応用に繋がると期待される。 First, when the crystal was measured, the relative permittivity of the crystal was about the same as that of a normal substance. However, it showed a large specific dielectric constant of greater than 10 5 as measured by liquid crystallization by heating. A value of 10 5 of the resulting dielectric constant in this measurement is very high compared to common materials. It was found to be a value greater than a high capacity capacitor such as barium titanate (measurement conditions 100mV, 20Hz ~ 10 6 Hz, thickness 200μm, 275 ℃). In addition, a large specific dielectric constant of greater than 10 5 was the dielectric constant measured at a frequency dependent achieved over a wide frequency of 20 Hz ~ 10 6 Hz. Temperature dependent measurements were shown to dramatically increased to 10 4 to 10 approximately 5 in raising the 0.99 ° C. ~ 275 ° C. The temperature of 10 or less a dielectric constant at room temperature. It is known from DSC measurement that this liquid crystal undergoes a phase transition at around 150 ° C. when the temperature is raised, and a phase transition occurs at around 100 ° C. when the temperature is lowered. It is similar to the relationship between the temperature rise and fall of the relative permittivity, and is considered to be switching due to the phase transition. Furthermore, this behavior is similarly reversibly expressed when heating and cooling are repeated twice or three times, and exhibits high thermal stability without decomposition. The mechanism of increasing the permittivity was considered. First, the polarization of a dielectric can be divided into electronic polarization, ionic polarization, orientation polarization, and interfacial polarization based on four different polarization mechanisms. It is considered that the boron liquid crystal is oriented according to the electric field because the domain can move freely at high temperature, the distance between the sheets is extended, and ionic polarization by the anion sheet and potassium ion is generated to obtain a high dielectric constant. As the result of the XRD measurement, the interplanetary distance is longer than that of the crystal, so it is considered that a space where the cation (K + ) can move freely is created and a large polarization occurs. As described above, it showed a large dielectric constant boron crystal exceeds 10 5 over a wide frequency has a high thermal stability. Taking advantage of these characteristics, it is expected to lead to application to materials such as capacitors, sensors, and liquid crystal displays under extreme conditions.
6.ルビジウム(Rb)、セシウム(Cs)をカチオンとするホウ素層状単結晶
(Rbホウ素層状結晶)
 アルゴンガス雰囲気のグローブボックス中において、溶媒のMeCN中に、RbBH4を添加した。RbBH4の濃度は8mMとした。
6. Boron layered single crystal with rubidium (Rb) and cesium (Cs) as cations (Rb boron layered crystal)
RbBH 4 was added to the solvent MeCN in a glove box in an argon gas atmosphere. The concentration of RbBH 4 was 8 mM.
 得られた溶液を大気下に解放した後、40℃で1時間加熱した。その後、室温で1週間静置した。 After releasing the obtained solution to the atmosphere, it was heated at 40 ° C. for 1 hour. Then, it was allowed to stand at room temperature for one week.
 静置後、横縞があり、カリウムホウ素層状結晶と同様にドメインが積層しているような構造の針状結晶の生成を確認した(図53(a)、(b)、(c))。 After standing, it was confirmed that acicular crystals having horizontal stripes and having a structure in which domains were laminated in the same manner as potassium boron layered crystals were formed (FIGS. 53 (a), (b), (c)).
 Rbホウ素層状結晶のSEM観察を行った。図54(a)、(b)はRbBH4より生成した針状結晶のSEM写真、(c)はKBH4より生成した針状結晶のSEM写真である。RbBH4より生成した針状結晶はKBH4より生成した針状結晶と同様の層状構造を有している。図54(d)はRbBH4より生成した針状結晶をスパーテルでへき開したSEM写真である。六角形のドメインを持ち、Rbホウ素結晶はKホウ素層状結晶と類似した構造を持つことが確認された。 SEM observation of Rb boron layered crystals was performed. Figure 54 (a), a (b) is an SEM photograph of needle-like crystals generated from RbBH 4, (c) is a SEM photograph of needle-like crystals generated from KBH 4. Needle crystals produced from RbBH 4 has the same layered structure and needle-like crystals generated from KBH 4. FIG. 54 (d) is an SEM photograph of needle-shaped crystals generated from RbBH 4 cleaved with a spatula. It was confirmed that the Rb boron crystal has a hexagonal domain and has a structure similar to that of the K boron layered crystal.
 Rbホウ素層状結晶のFT-IR測定とXRD測定を行った。図55は、Rbホウ素層状結晶(上)とKホウ素層状結晶(下)のFT-IRスペクトルである。Rbホウ素層状結晶はKホウ素層状結晶とスペクトルが一致し、ホウ素と酸素の層が同じネットワークであることが示唆された。図56はRbホウ素層状結晶のXRDスペクトルである。Kホウ素層状結晶(P-62m)のカチオンを入れ替えた構造のCaluculation peakと比較した。パターンが類似しており、面間隔の差は0.133Åであり、カチオンが入れ替わった構造(P-62m)をとることが確認された。 FT-IR measurement and XRD measurement of Rb boron layered crystals were performed. FIG. 55 is an FT-IR spectrum of an Rb boron layered crystal (top) and a K boron layered crystal (bottom). The spectrum of the Rb boron layered crystal matched that of the K boron layered crystal, suggesting that the boron and oxygen layers are in the same network. FIG. 56 is an XRD spectrum of an Rb boron layered crystal. It was compared with Caluculation peak having a structure in which the cations of the K boron layered crystal (P-62 m) were replaced. It was confirmed that the patterns were similar, the difference in surface spacing was 0.133Å, and the structure (P-62m) in which the cations were exchanged was adopted.
(Csホウ素層状結晶)
 アルゴンガス雰囲気のグローブボックス中において、溶媒のMeCN40ml中に、CsBH4を添加した。CsBH4の濃度は8mMとした。
(Cs boron layered crystal)
CsBH 4 was added to 40 ml of the solvent MeCN in a glove box in an argon gas atmosphere. The concentration of CsBH 4 was 8 mM.
 1時間攪拌後、得られた溶液を大気下に解放した後、40℃で1時間加熱した。その後、室温で1週間以上静置した。 After stirring for 1 hour, the obtained solution was released to the atmosphere and then heated at 40 ° C. for 1 hour. Then, it was allowed to stand at room temperature for 1 week or more.
 図57(a)は、加熱後に室温で静置後2日目のバイアルの写真、(b)は静置後1週間目のバイアルの写真、(c)はその拡大写真、(d)はその顕微鏡写真である。静置後2日目のバイアルでは針状結晶が出現していた。静置後1週間のバイアルでは、ほぼシート状の結晶で針状のものはほとんど無く、(c)の顕微鏡写真より針状のものがシートに成長したと考えられる。 FIG. 57 (a) is a photograph of a vial 2 days after being allowed to stand at room temperature after heating, (b) is a photograph of a vial 1 week after being allowed to stand, (c) is an enlarged photograph thereof, and (d) is a photograph thereof. It is a micrograph. Needle-shaped crystals appeared in the vial on the second day after standing. In the vial for 1 week after standing, there were almost no sheet-like crystals and needle-like ones, and it is considered that the needle-like ones grew into sheets from the micrograph of (c).
 Csホウ素層状結晶のFT-IR測定を行った(図58)。CsでもKホウ素層状結晶とほぼ同様のスペクトルが確認された。 FT-IR measurement of Cs boron layered crystals was performed (Fig. 58). A spectrum similar to that of the K boron layered crystal was confirmed in Cs.
7.液晶の電場応答挙動に関する動作温度範囲、電場応答時間、動作電圧
 ホウ素層状液晶はボロフェン類似のシート状分子からなる。このシートは面間より面内の導電性の方が大きく、シート面に対して垂直方向に電荷をもつため、動的散乱現象の発現が期待できる。そこでホウ素液晶の電場応答性を調べた。
7. Operating temperature range, electric field response time, and operating voltage related to the electric field response behavior of liquid crystals Boron layered liquid crystals consist of sheet-like molecules similar to borophene. Since this sheet has greater in-plane conductivity than inter-plane and has an electric charge in the direction perpendicular to the sheet surface, it can be expected that a dynamic scattering phenomenon will occur. Therefore, the electric field responsiveness of the boron liquid crystal was investigated.
 ホウ素液晶の電場応答性を調べるにあたり、前述したくし形電極を用いたセルの作製を行った。ホウ素結晶をくし形電極に乗せ、カバーガラスを被せてクリップで挟み固定した。この状態で真空加熱により液晶化した後、グローブボックス内で接着剤を4辺に塗布し、セルを封止した。 In investigating the electric field responsiveness of the boron liquid crystal, a cell was prepared using the comb-shaped electrode described above. Boron crystals were placed on a comb-shaped electrode, covered with a cover glass, and fixed by sandwiching them with clips. After liquefying by vacuum heating in this state, an adhesive was applied to the four sides in the glove box to seal the cell.
 上記のように作成したセルを用いて、液晶の電場応答性を調べた。液晶セルを温度可変ステージ上で220℃加熱しながら、直流電圧(2.0V)を印加し、光学顕微鏡で観察した。その結果、電圧印加前は光を透過し明るく見えていた液晶が、電圧を印加した際に光を反射して暗く見えた。電圧印加を止めると再び液晶は透明に見え、再度電圧を印加すると再び暗く見えた。また、液晶セルが電場に応答する様子を目視でも確認した。電圧(1.0V)を印加すると、電圧印加前は透明に見えていた液晶が、電圧を印加すると白く曇って見えた。このように、ホウ素液晶セルに電圧を印加すると、電圧のOFF/ONに対して液晶が光を透過/反射する応答を示すことが分かった。 Using the cell created as described above, the electric field responsiveness of the liquid crystal was investigated. A DC voltage (2.0 V) was applied while heating the liquid crystal cell at 220 ° C. on a variable temperature stage, and the liquid crystal cell was observed with an optical microscope. As a result, the liquid crystal that transmitted light and looked bright before the voltage was applied reflected the light and looked dark when the voltage was applied. When the voltage was stopped, the liquid crystal appeared transparent again, and when the voltage was applied again, it looked dark again. It was also visually confirmed that the liquid crystal cell responded to the electric field. When a voltage (1.0 V) was applied, the liquid crystal that looked transparent before the voltage was applied appeared white and cloudy when the voltage was applied. As described above, it was found that when a voltage is applied to the boron liquid crystal cell, the liquid crystal exhibits a response of transmitting / reflecting light in response to the voltage OFF / ON.
 異方性分子が並んだ液晶では、物性値も異方性を示すことが知られ、このことが液晶の電場応答のもととなっている。分子長軸の向きの電導度が短軸方向より大きく、誘電率は短軸方向の方が大きいネマチック液晶では、低電圧を印加すると誘電異方性に従ってこのように、電場に対し垂直に配向する。しかしより高い電圧を印加して、電荷の流れが生じると、電導方向である超軸方向を電場と揃えようとする力が働く。これにより液晶分子はランダムに動き、光を散乱する。これは動的散乱と呼ばれるものである。本実施例のホウ素液晶も、電導度はシートの面間より面内の方が大きく、誘電率は面間の方が大きいと考えられる。そのため電場を受けた際、誘電異方性に従う配列と電導方向との相反によって上の液晶と同じように不安定に動き、光を散乱すると考えられる。 It is known that a liquid crystal in which anisotropic molecules are lined up also exhibits anisotropy in physical properties, which is the source of the electric field response of the liquid crystal. In a nematic liquid crystal in which the conductivity in the direction of the molecular major axis is larger than that in the minor axis direction and the dielectric constant is larger in the minor axis direction, when a low voltage is applied, the nematic liquid crystal is oriented perpendicular to the electric field in this way according to the dielectric anisotropy. .. However, when a higher voltage is applied and a charge flow occurs, a force acts to align the superaxial direction, which is the conduction direction, with the electric field. As a result, the liquid crystal molecules move randomly and scatter light. This is called dynamic scattering. It is considered that the boron liquid crystal of this embodiment also has a higher conductivity in the plane than in the plane of the sheet and a dielectric constant in the plane. Therefore, when it receives an electric field, it is considered that it moves unstable like the above liquid crystal due to the reciprocity between the arrangement following the dielectric anisotropy and the conduction direction, and scatters light.
7-1.電場応答時の輝度の変化
 このように、液晶に電圧を印加すると、電圧のOFF/ONに対して顕微鏡像が明/暗に変化することが分かった。この変化をより詳細に調べるため、動画の輝度を数値化して、その変化を調べることとした。液晶セルに電圧を印加した際の動画を1コマずつ静止画にし、8ビットのグレースケール画像に変換した。画像内で液晶がある場所の平均輝度値を調べ、電圧OFF時とON時の数値をプロットした(図59)。その結果、電圧のOFF/ONによって輝度値が高/低に繰り返し変化することが数値によっても示された。
7-1. Change in brightness during electric field response As described above, it was found that when a voltage is applied to the liquid crystal, the microscope image changes brightly / dark with respect to the voltage OFF / ON. In order to investigate this change in more detail, we decided to quantify the brightness of the moving image and examine the change. The moving image when the voltage was applied to the liquid crystal cell was converted into a still image frame by frame and converted into an 8-bit grayscale image. The average luminance value of the place where the liquid crystal is located in the image was examined, and the numerical values when the voltage was OFF and when the voltage was ON were plotted (FIG. 59). As a result, it was also shown by the numerical values that the brightness value repeatedly changed to high / low depending on the voltage OFF / ON.
7-2.液晶の動作温度範囲
 ホウ素層状液晶はボロフェン類似のシート状分子により構成される。従来の有機分子と比較して異方性が非常に大きく、広い温度範囲で液晶相を呈することが明らかとなった。そこで、ホウ素液晶を用いた熱安定性の高い液晶デバイスの実証を行った。
7-2. Operating temperature range of liquid crystal Boron layered liquid crystal is composed of sheet-like molecules similar to borophene. It has been clarified that the anisotropy is very large as compared with the conventional organic molecule, and the liquid crystal phase is exhibited in a wide temperature range. Therefore, we demonstrated a liquid crystal device with high thermal stability using boron liquid crystal.
 前記のとおり、250℃では電圧印加時に顕微鏡像が明/暗に変化することが分かっていた。次にその前後での液晶の動作を調べた。液晶を176℃(ステージ200℃)、263℃(ステージ300℃)に加熱して、それぞれに直流電圧(それぞれ3.6V、1.8V)を印加して顕微鏡観察を行った。顕微鏡像と輝度値の変化を図60(a)に示す。その結果、どちらの温度でも、220℃の時と同様に電圧のOFF/ONに応答したスイッチング挙動が見られた。また、液晶の温度が133℃(ステージ150℃)の時電圧(1.2V)を印加すると、これまでと同様に液晶の動作が確認された。以上により、133~263℃まで、液晶が電場に応答して光を散乱する挙動を示すことが分かった。 As mentioned above, it was known that the microscope image changed brightly / darkly when a voltage was applied at 250 ° C. Next, the operation of the liquid crystal before and after that was investigated. The liquid crystal was heated to 176 ° C. (stage 200 ° C.) and 263 ° C. (stage 300 ° C.), and a DC voltage (3.6 V, 1.8 V, respectively) was applied to each of them for microscopic observation. The changes in the microscope image and the brightness value are shown in FIG. 60 (a). As a result, switching behavior in response to voltage OFF / ON was observed at both temperatures, as at 220 ° C. Further, when a voltage (1.2 V) was applied when the temperature of the liquid crystal was 133 ° C. (stage 150 ° C.), the operation of the liquid crystal was confirmed as before. From the above, it was found that the liquid crystal exhibits a behavior of scattering light in response to an electric field from 133 to 263 ° C.
 上記のように133~263℃までは、液晶の繰り返しの電場応答が見られた。さらに高温で電圧を印加し、動作温度の上限を調べた。281℃(ステージ320℃)で電圧(0.5V)を印加したところ、液晶が明/暗に動作する様子が確認できた。しかし298℃(ステージ340℃)で透明だった液晶に電圧(0.5V)を印加すると、光を透過しなくなり視野が暗くなったが、その後電圧印加を止めても液晶が透明には戻らなかった(図60(b))。液晶を加熱していった際に熱分解する温度よりは低いものの、電圧の刺激を受けて分解してしまったのだと考えられる。 As described above, the repeated electric field response of the liquid crystal was observed from 133 to 263 ° C. A voltage was applied at a higher temperature, and the upper limit of the operating temperature was investigated. When a voltage (0.5 V) was applied at 281 ° C (stage 320 ° C), it was confirmed that the liquid crystal operated brightly / darkly. However, when a voltage (0.5 V) was applied to the liquid crystal that was transparent at 298 ° C (stage 340 ° C), the light did not pass through and the field of view became dark, but the liquid crystal did not return to transparent even if the voltage application was stopped after that. (Fig. 60 (b)). Although it is lower than the temperature at which the liquid crystal is thermally decomposed when it is heated, it is considered that the liquid crystal was decomposed by the stimulation of the voltage.
 このように、液晶の電場応答の温度上限は液晶が分解する手前の280℃程度であることが分かった。 As described above, it was found that the upper limit of the temperature of the electric field response of the liquid crystal is about 280 ° C before the liquid crystal decomposes.
 次に液晶の動作温度の下限を調べることとした。液晶セルを温度可変ステージ上で50℃加熱しながら、直流電圧(2.0V)を印加し光学顕微鏡で観察した。その結果、電圧印加前は光を透過し明るく見えていた液晶が、電圧を印加した際に光を反射して暗く見えた。電圧印加を止めると再び液晶は透明に見え、ONとOFFの繰り返しによる可逆な動作を確認した。(図61)。 Next, we decided to investigate the lower limit of the operating temperature of the liquid crystal. While heating the liquid crystal cell at 50 ° C. on a variable temperature stage, a DC voltage (2.0 V) was applied and observed with an optical microscope. As a result, the liquid crystal that transmitted light and looked bright before the voltage was applied reflected the light and looked dark when the voltage was applied. When the voltage application was stopped, the liquid crystal appeared transparent again, and reversible operation by repeating ON and OFF was confirmed. (Fig. 61).
 室温では液晶の粘性が高いため、液晶に非常に高い溶解性を持ち、且つ高沸点・低凝固点である極性溶媒NMP(N-メチル-2-ピロリドン)を滴下したものを電極に乗せ、直流電圧(2.0V)を印加し光学顕微鏡で観察した。結果を図62に示す。室温でも液晶が再現よく電場応答をしていることが確認できた。 Since the liquid crystal is highly viscous at room temperature, a polar solvent NMP (N-methyl-2-pyrrolidone), which has a very high solubility in the liquid crystal and has a high boiling point and a low freezing point, is placed on the electrode and a DC voltage is applied. (2.0V) was applied and observed with an optical microscope. The results are shown in FIG. It was confirmed that the liquid crystal had a good electric field response even at room temperature.
7-3.電場応答時間
 上記のように、ホウ素液晶の電場応答挙動を輝度値によって追跡できることが分かった。これを用いて液晶の応答時間について調べた。液晶セル(220℃)に電圧(1.0V)を印加した際に1000frames/sで撮影した動画を1コマずつ画像として切り出し、OFF時の輝度を100%、ON時の輝度を0%として、1/1000sごとに液晶の輝度をプロットした(図63(a)、(b)。電圧印加時に輝度が100~10%に変化するのにかかる時間を立ち下がり時間、電圧印加を止めてから輝度が0~90%に変化するのにかかる時間を立ち上がり時間として測定した。その結果、立ち下がり時間が25ms、立ち上がり時間が60ms程度であった。ホウ素液晶の応答時間は、代表的な動的散乱型液晶であるAPAPA(立ち下がり時間1~5ms、立ち上がり時間~30ms)と比較すると長いが、一般的な動的散乱型液晶の応答時間(立ち下がり時間10~50ms、立ち上がり時間30~150ms)と比べると遜色ない応答時間であることが分かった。
7-3. Electric field response time As described above, it was found that the electric field response behavior of the boron liquid crystal can be traced by the brightness value. Using this, the response time of the liquid crystal was investigated. When a voltage (1.0 V) is applied to the liquid crystal cell (220 ° C.), a moving image shot at 1000 frames / s is cut out as an image frame by frame, and the brightness when OFF is 100% and the brightness when ON is 0%. The brightness of the liquid crystal was plotted every 1 / 1000s (FIGS. 63 (a) and 63 (b). The time required for the brightness to change to 100 to 10% when the voltage was applied was the fall time, and the brightness after the voltage application was stopped. The time required for the change from 0 to 90% was measured as the rise time. As a result, the fall time was about 25 ms and the rise time was about 60 ms. The response time of the boron liquid crystal was typical dynamic scattering. Although it is longer than APAPA (falling time 1 to 5 ms, rising time to 30 ms), which is a type liquid crystal, it has a response time (falling time 10 to 50 ms, rising time 30 to 150 ms) of a general dynamic scattering type liquid crystal. It turned out that the response time was comparable to that of the other.
7-4.液晶の動作電圧
 上記の液晶動作温度の検討にあたって、各温度で液晶が動かない小さな電圧から0.1Vずつ上昇させて、液晶が動き始める電圧を印加した。その最低駆動電圧を表1に示す。動作電圧には少しばらつきがあるが、0.5V以上の電圧で動作できることが分かった。
7-4. Operating voltage of the liquid crystal In examining the operating temperature of the liquid crystal, a voltage was applied to start the movement of the liquid crystal by increasing it by 0.1 V from a small voltage at which the liquid crystal does not move at each temperature. The minimum drive voltage is shown in Table 1. Although there is some variation in the operating voltage, it was found that it can operate at a voltage of 0.5V or higher.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この液晶の電場応答は、動的散乱モードと似たメカニズムで起こるものと考えられるが、従来の動的散乱型液晶では電圧が5~20V必要であったことと比べると、大変小さい電圧で駆動することが分かる。 The electric field response of this liquid crystal is thought to occur by a mechanism similar to the dynamic scattering mode, but it is driven by a very small voltage compared to the conventional dynamic scattering type liquid crystal that required a voltage of 5 to 20V. You can see that it does.
 また、320℃での動作開始電圧が0.5Vとなっているが、これは流動性が向上しているためと考えられる。このことから、減粘剤の添加によって、これ以下の低温や相転移後の液晶でも、さらに小さい電圧で駆動できる可能性が期待される。 Also, the operation start voltage at 320 ° C is 0.5V, which is considered to be due to the improved fluidity. From this, it is expected that the addition of the thickener can drive the liquid crystal at a lower temperature or after the phase transition with a smaller voltage.
 次に電圧の許容範囲を調べた。その結果を表2に示す。従来5~10V程度の電圧が必要であったことと比べ、この液晶は低電圧で電池(1.5V)でも駆動するということは、より広い場面で使用できるというメリットがある。 Next, the allowable range of voltage was investigated. The results are shown in Table 2. Compared to the conventional need for a voltage of about 5 to 10V, the fact that this liquid crystal can be driven by a battery (1.5V) at a low voltage has the advantage that it can be used in a wider range of situations.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (36)

  1.  骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートを含む導電性材料と、電圧を印加する電極とを含む導電性デバイスであって、
     次の導電性材料(1)~(3)のいずれかと、前記導電性材料に電圧を印加する電極とを含む、導電性デバイス。
    (1)前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含む結晶
    (2)前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含むサーモトロピック液晶
    (3)単層の前記原子層シート、または、前記原子層シートと、前記原子層シート間の金属イオンとを含む積層シートの溶媒への溶解物を薄膜状に塗布し、前記溶媒を除去した薄層シート
    Conductivity containing an atomic layer sheet having boron and oxygen as skeleton elements and a non-equilibrium bond with a boron-boron bond, networked with a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5 A conductive device that includes a material and electrodes that apply voltage.
    A conductive device comprising any of the following conductive materials (1) to (3) and an electrode that applies a voltage to the conductive material.
    (1) Crystal containing a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets (2) Thermo containing a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets Tropic liquid crystal (3) A single-layer atomic layer sheet or a solution of a laminated sheet containing the atomic layer sheet and metal ions between the atomic layer sheets is applied in a thin film form, and the solvent is applied. Removed thin layer sheet
  2.  前記導電性材料は、導電性材料(1)の結晶である請求項1に記載の導電性デバイス。 The conductive device according to claim 1, wherein the conductive material is a crystal of the conductive material (1).
  3.  前記導電性材料(1)の結晶は、異方性伝導を示す請求項2に記載の導電性デバイス。 The conductive device according to claim 2, wherein the crystal of the conductive material (1) exhibits anisotropic conduction.
  4.  前記導電性材料(1)の結晶は、結晶面間と結晶面内で異方性伝導を示す請求項2に記載の導電性デバイス。 The conductive device according to claim 2, wherein the crystal of the conductive material (1) exhibits anisotropic conduction between crystal planes and in the crystal planes.
  5.  前記電極は結晶面間に電圧を印加し、伝導度の温度依存性が半導体的挙動を示す請求項2に記載の導電性デバイス。 The conductive device according to claim 2, wherein a voltage is applied between the crystal planes of the electrodes, and the temperature dependence of conductivity exhibits semiconductor-like behavior.
  6.  前記電極は結晶面内に電圧を印加し、伝導度の温度依存性が金属的挙動を示す請求項2に記載の導電性デバイス。 The conductive device according to claim 2, wherein a voltage is applied to the electrode in the crystal plane, and the temperature dependence of the conductivity exhibits metallic behavior.
  7.  前記原子層シートは、更にアルカリ金属イオンを含み、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項2~6のいずれか一項に記載の導電性デバイス。 The conductive device according to any one of claims 2 to 6, wherein the atomic layer sheet further contains alkali metal ions, and the molar ratio of alkali metal ions to boron (alkali metal ion / boron) is less than 1.
  8.  前記原子層シートは、MBH4(Mはアルカリ金属イオンを示す。)の酸化生成物である請求項2~7のいずれか一項に記載の導電性デバイス。 The conductive device according to any one of claims 2 to 7, wherein the atomic layer sheet is an oxidation product of MBH 4 (M represents an alkali metal ion).
  9.  前記原子層シートは、骨格組成がB53である請求項2~8のいずれか一項に記載の導電性デバイス。 The conductive device according to any one of claims 2 to 8, wherein the atomic layer sheet has a skeletal composition of B 5 O 3 .
  10.  前記原子層シートは、前記骨格がホウ素-ホウ素結合を有する3回対称性を有する請求項9に記載の導電性デバイス。 The conductive device according to claim 9, wherein the atomic layer sheet has three-fold symmetry in which the skeleton has a boron-boron bond.
  11.  前記原子層シートは、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む請求項9または10に記載の導電性デバイス。 The conductive device according to claim 9 or 10, wherein the atomic layer sheet includes a component X which is a skeleton portion and a component Y other than the component X.
  12.  前記原子層シートは、前記構成要素Yが、末端部位および/または欠損部位である請求項11に記載の導電性デバイス。 The conductive device according to claim 11, wherein the atomic layer sheet has the component Y as a terminal portion and / or a defective portion.
  13.  前記原子層シートは、前記構成要素Yが、B-OHを含むホウ素酸化物部位である請求項11または12に記載の導電性デバイス。 The conductive device according to claim 11 or 12, wherein the atomic layer sheet is a boron oxide moiety containing B-OH.
  14.  前記原子層シートは、X線光電子分光測定において、190.5~193.0eVと、192.5~194.0eVに各々B-1s準位に由来するピークを有する請求項11~13のいずれか一項に記載の導電性デバイス。 The atomic layer sheet is any one of claims 11 to 13 having peaks derived from the B-1s level at 190.5 to 193.0 eV and 192.5 to 194.0 eV, respectively, in X-ray photoelectron spectroscopy. The conductive device according to one item.
  15.  前記原子層シートは、前記X線光電子分光測定において、190.5~193.0eVのピークが前記構成要素Xに対応している請求項14に記載の導電性デバイス。 The conductive device according to claim 14, wherein the atomic layer sheet has a peak of 190.5 to 193.0 eV corresponding to the component X in the X-ray photoelectron spectroscopy measurement.
  16.  前記原子層シートは、IR測定において、B-O伸縮に由来する2種類のピークを1300~1500cm-1付近に有し、かつBO-H伸縮に由来するピークを3100cm-1付近に有する請求項10~15のいずれか一項に記載の導電性デバイス。 The atomic layer sheet, according to claim having the IR measurement, has two types of peak derived from BO stretch around 1300 ~ 1500 cm -1, and a peak derived from BO-H stretching in the vicinity of 3100 cm -1 The conductive device according to any one of 10 to 15.
  17.  前記原子層シートは、前記IR測定において、B-O伸縮に由来する2種類のピークのうち低波数側のピークが前記構成要素Xに対応している請求項16に記載の導電性デバイス。 The conductive device according to claim 16, wherein the atomic layer sheet corresponds to the component X in the IR measurement, in which the peak on the low wavenumber side of the two types of peaks derived from BO expansion and contraction corresponds to the component X.
  18.  前記導電性材料は、導電性材料(2)のサーモトロピック液晶である請求項1に記載の導電性デバイス。 The conductive device according to claim 1, wherein the conductive material is a thermotropic liquid crystal of the conductive material (2).
  19.  前記導電性材料(2)のサーモトロピック液晶は、異方性伝導を示す請求項18に記載の導電性デバイス。 The conductive device according to claim 18, wherein the thermotropic liquid crystal of the conductive material (2) exhibits anisotropic conduction.
  20.  前記導電性材料(2)のサーモトロピック液晶は、同心円配向の異方性伝導を示す請求項18に記載の導電性デバイス。 The conductive device according to claim 18, wherein the thermotropic liquid crystal of the conductive material (2) exhibits anisotropic conduction of concentric orientation.
  21.  前記導電性材料(2)のサーモトロピック液晶は、インダクタ挙動を示す請求項18に記載の導電性デバイス。 The conductive device according to claim 18, wherein the thermotropic liquid crystal of the conductive material (2) exhibits inductor behavior.
  22.  インダクタ挙動を示す振幅の範囲が、0.001~0.05Vである請求項21に記載の導電性デバイス。 The conductive device according to claim 21, wherein the amplitude range showing the inductor behavior is 0.001 to 0.05V.
  23.  前記金属イオンがアルカリ金属イオンであり、前記積層シートは、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項18~22のいずれか一項に記載の導電性デバイス。 The conductivity according to any one of claims 18 to 22, wherein the metal ion is an alkali metal ion, and the laminated sheet has a molar ratio of alkali metal ion to boron (alkali metal ion / boron) of less than 1. device.
  24.  前記原子層シートが、MBH4(Mはアルカリ金属イオンを示す。)の酸化生成物である請求項18~23のいずれか一項に記載の導電性デバイス。 The conductive device according to any one of claims 18 to 23, wherein the atomic layer sheet is an oxidation product of MBH 4 (M represents an alkali metal ion).
  25.  前記原子層シートは、骨格組成がB53である請求項18~24のいずれか一項に記載の導電性デバイス。 The conductive device according to any one of claims 18 to 24, wherein the atomic layer sheet has a skeletal composition of B 5 O 3 .
  26.  前記原子層シートの骨格が、ホウ素-ホウ素結合を有する3回対称性を有する請求項25に記載の導電性デバイス。 The conductive device according to claim 25, wherein the skeleton of the atomic layer sheet has a boron-boron bond and has three-fold symmetry.
  27.  前記原子層シートが、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む請求項25または26に記載の導電性デバイス。 The conductive device according to claim 25 or 26, wherein the atomic layer sheet includes a component X that is the skeleton portion and other components Y.
  28.  前記構成要素Yが、末端部位および/または欠損部位である請求項27に記載の導電性デバイス。 The conductive device according to claim 27, wherein the component Y is a terminal site and / or a defective site.
  29.  骨格元素にホウ素と酸素を有し、ホウ素-ホウ素結合を有する非平衡結合によりネットワーク化された、酸素とホウ素のモル比率(酸素/ホウ素)が1.5未満である原子層シートと、前記原子層シート間の金属イオンとを含む積層シートを含むサーモトロピック液晶を有する誘電体材料と、前記誘電体材料に外部電場を作用させる手段とを含み、前記手段により外部電場を作用させることで、前記誘電体材料は電気的に分極する、誘電体デバイス。 An atomic layer sheet having boron and oxygen as skeleton elements and a network of non-equilibrium bonds having a boron-boron bond and a molar ratio of oxygen to boron (oxygen / boron) of less than 1.5, and the atoms. A dielectric material having a thermotropic liquid crystal containing a laminated sheet containing metal ions between layer sheets and a means for applying an external electric field to the dielectric material are included, and the external electric field is applied by the means. Dielectric materials are electrically polarized, dielectric devices.
  30.  前記サーモトロピック液晶は、高温側の液晶相Iと低温側の液晶相IIとの間で、温度に対して可逆な相転移を制御でき、液晶相Iと液晶相IIで異なる比誘電率を示す請求項29に記載の誘電体デバイス。 The thermotropic liquid crystal can control a phase transition reversible with respect to temperature between the liquid crystal phase I on the high temperature side and the liquid crystal phase II on the low temperature side, and the liquid crystal phase I and the liquid crystal phase II show different specific dielectric constants. 29. The dielectric device according to claim 29.
  31.  前記金属イオンがアルカリ金属イオンであり、前記積層シートは、アルカリ金属イオンとホウ素のモル比率(アルカリ金属イオン/ホウ素)が1未満である請求項29または30に記載の誘電体デバイス。 The dielectric device according to claim 29 or 30, wherein the metal ion is an alkali metal ion, and the laminated sheet has a molar ratio of alkali metal ion to boron (alkali metal ion / boron) of less than 1.
  32.  前記原子層シートが、MBH4(Mはアルカリ金属イオンを示す。)の酸化生成物である請求項29~31のいずれか一項に記載の誘電体デバイス。 The dielectric device according to any one of claims 29 to 31, wherein the atomic layer sheet is an oxidation product of MBH 4 (M represents an alkali metal ion).
  33.  前記原子層シートは、骨格組成がB53である請求項29~32のいずれか一項に記載の誘電体デバイス。 The dielectric device according to any one of claims 29 to 32, wherein the atomic layer sheet has a skeletal composition of B 5 O 3 .
  34.  前記原子層シートの骨格が、ホウ素-ホウ素結合を有する3回対称性を有する請求項33に記載の誘電体デバイス。 The dielectric device according to claim 33, wherein the skeleton of the atomic layer sheet has a boron-boron bond and has three-fold symmetry.
  35.  前記原子層シートが、前記骨格部位である構成要素Xと、それ以外の構成要素Yとを含む請求項33または34に記載の誘電体デバイス。 The dielectric device according to claim 33 or 34, wherein the atomic layer sheet includes a component X that is the skeleton portion and other components Y.
  36.  前記構成要素Yが、末端部位および/または欠損部位である請求項35に記載の誘電体デバイス。 The dielectric device according to claim 35, wherein the component Y is a terminal site and / or a defective site.
PCT/JP2020/010807 2019-03-14 2020-03-12 Conductive and dielectric device obtained using boron sheet WO2020184662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020540515A JP6829920B1 (en) 2019-03-14 2020-03-12 Conductive and dielectric devices with boron sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019047639 2019-03-14
JP2019-047639 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020184662A1 true WO2020184662A1 (en) 2020-09-17

Family

ID=72426774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010807 WO2020184662A1 (en) 2019-03-14 2020-03-12 Conductive and dielectric device obtained using boron sheet

Country Status (2)

Country Link
JP (1) JP6829920B1 (en)
WO (1) WO2020184662A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050052A (en) * 2013-05-09 2018-03-29 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Direct and sequential formation of boron nitride and graphene on substrates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050052A (en) * 2013-05-09 2018-03-29 サンエディソン・セミコンダクター・リミテッドSunEdison Semiconductor Limited Direct and sequential formation of boron nitride and graphene on substrates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUO, W. W. ET AL.: "The adsorption and dissociation of oxygen on Ag(III) supported x3 borophene", PHYSICA B: CONDENSED MATTER, vol. 537, 31 January 2018 (2018-01-31), pages 1 - 6, XP085365832 *
ZHANG, RUIQI ET AL.: "Two-Dimensional Stoichiometric Boron Oxides as a Versatile Platform for Electronic Structure Engineering", JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 8, no. 18, 2017, pages 4347 - 4353, XP055629710, DOI: 10.1021/acs.jpclett.7b01721 *

Also Published As

Publication number Publication date
JP6829920B1 (en) 2021-02-17
JPWO2020184662A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
Liu et al. Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides
Chandran et al. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast
Tholkappiyan et al. Investigation on spinel MnCo 2 O 4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application
Zhang et al. A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode
Li et al. Solvothermal elemental direct reaction to CdE (E= S, Se, Te) semiconductor nanorod
Zhang et al. Facile preparation, optical and electrochemical properties of layer-by-layer V2O5 quadrate structures
Asiya et al. Reliable optoelectronic switchable device implementation by CdS nanowires conjugated bent-core liquid crystal matrix
CN102583340B (en) High-conductivity graphene material with low-temperature gas-phase reduction and preparation method thereof
Marx et al. Bent-core liquid crystal (LC) decorated gold nanoclusters: synthesis, self-assembly, and effects in mixtures with bent-core LC hosts
Nithiyanantham et al. Shape-selective formation of MnWO 4 nanomaterials on a DNA scaffold: magnetic, catalytic and supercapacitor studies
Pal et al. CdS nanowires encapsulated liquid crystal in-plane switching of LCD device
Pal et al. Switching of ferroelectric liquid crystal doped with cetyltrimethylammonium bromide-assisted CdS nanostructures
Alsawafta et al. Improved electrochromic properties of vanadium pentoxide nanorods prepared by thermal treatment of sol-gel dip-coated thin films
Zhao et al. ZnTeMoO 6: a strong second-harmonic generation material originating from three types of asymmetric building units
Hameed et al. Synthesis of Sm3+ and Gd3+ ions embedded in nano-structure barium titanate prepared by sol-gel technique: terahertz, dielectric and up-conversion study
Teli et al. Effect of thermal annealing on physiochemical properties of spray-deposited β-MnO2 thin films for electrochemical supercapacitor
Roy et al. Template free synthesis of CdSnO3 micro-cuboids for dye sensitized solar cells
Zhao et al. Hexagonal and prismatic nanowalled ZnO microboxes
Peksa et al. Revisiting a perovskite-like copper-formate framework NH4 [Cu (HCOO) 3]: order–disorder transition influenced by Jahn-Teller distortion and above room-temperature switching of the nonlinear optical response between two SHG-active states
Baláž et al. Rapid mechanochemical synthesis of nanostructured mohite Cu 2 SnS 3 (CTS)
Gu et al. Preparation and photoluminescence of single-crystalline GdVO4: Eu3+ nanorods by hydrothermal conversion of Gd (OH) 3 nanorods
Zhang et al. General approach for two-dimensional rare-earth oxyhalides with high gate dielectric performance
JP6829920B1 (en) Conductive and dielectric devices with boron sheets
Wu et al. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method
Ozin Tin (IV) sulfide–alkylamine composite mesophase: a new class of thermotropic liquid crystals

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020540515

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770086

Country of ref document: EP

Kind code of ref document: A1