WO2020183957A1 - Oil supply device - Google Patents

Oil supply device Download PDF

Info

Publication number
WO2020183957A1
WO2020183957A1 PCT/JP2020/002997 JP2020002997W WO2020183957A1 WO 2020183957 A1 WO2020183957 A1 WO 2020183957A1 JP 2020002997 W JP2020002997 W JP 2020002997W WO 2020183957 A1 WO2020183957 A1 WO 2020183957A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor
refueling
liquefaction recovery
recovery system
oil supply
Prior art date
Application number
PCT/JP2020/002997
Other languages
French (fr)
Japanese (ja)
Inventor
直裕 小倉
Original Assignee
株式会社タツノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タツノ filed Critical 株式会社タツノ
Priority to JP2021505578A priority Critical patent/JP7392915B2/en
Publication of WO2020183957A1 publication Critical patent/WO2020183957A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/04Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring fuels, lubricants or mixed fuels and lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/04Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring fuels, lubricants or mixed fuels and lubricants
    • B67D7/0476Vapour recovery systems
    • B67D7/0478Vapour recovery systems constructional features or components
    • B67D7/049Vapour recovery methods, e.g. condensing the vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/38Arrangements of hoses, e.g. operative connection with pump motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/42Filling nozzles
    • B67D7/54Filling nozzles with means for preventing escape of liquid or vapour or for recovering escaped liquid or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/56Arrangements of flow-indicators, e.g. transparent compartments, windows, rotary vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/76Arrangements of devices for purifying liquids to be transferred, e.g. of filters, of air or water separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/78Arrangements of storage tanks, reservoirs or pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/80Arrangements of heating or cooling devices for liquids to be transferred

Definitions

  • the present invention relates to a refueling device, in particular, a refueling device provided at a gas station that supplies fuel oil to an automobile or the like and provided with a vapor liquefaction recovery system that recovers fuel oil vapor that flows out from a fuel tank of the automobile or the like during refueling. Regarding.
  • Patent Document 1 the applicant collects and cools the fuel oil vapor that flows out from the fuel tank of an automobile or the like during refueling, recovers the liquefied fuel oil, and collects the unliquefied fuel oil vapor.
  • the environmental load was reduced by adsorbing on the surface of the adsorbent, desorbing the adsorbed fuel oil vapor, and then sending it to the cooling process again for reuse.
  • a relief valve is provided to reduce the pressure in the adsorption tower to a predetermined value or less so that the pressure in the adsorption tower is optimized for the compression of the vapor. It is maintained to improve liquefaction efficiency.
  • the above invention is effective, but if the compression ratio of the vapor is too high, the pump will be overloaded and cause a failure. On the other hand, if the compressibility of the vapor is too low, there is a problem that the adsorption efficiency is lowered and the liquefaction recovery rate is deteriorated.
  • the present invention is a refueling device, in which one end is connected to a refueling tank and the other end is connected to a refueling hose having a refueling nozzle, and the refueling pipe is interposed. It has a refueling system having a refueling pump and a flow meter, a vapor return pipe whose one end opens in the vicinity of the refueling nozzle, and a liquefaction recovery device that liquefies the fuel oil vapor flowing through the vapor return pipe and recovers the fuel oil. It is characterized by comprising a vapor liquefaction recovery system and a diluting means for diluting the exhaust of the vapor liquefaction recovery system and releasing it to the atmosphere.
  • the relief valve for keeping the pressure in the adsorption tower below a predetermined value is deleted, even when a compression pump is used for the vapor liquefaction recovery system while maintaining the stable operation of the vapor liquefaction recovery system.
  • the capacity of the pump can be reduced, the rating of the motor for driving the pump can be reduced, and the vapor liquefaction recovery system can be made compact.
  • safety can be enhanced by diluting the exhaust gas of the vapor liquefaction recovery system and releasing it to the atmosphere.
  • the dilution means is provided at a hollow columnar base, an exhaust inlet and an air inlet provided above the base, and an exhaust inlet and an air inlet from which the exhaust gas of the vapor liquefaction recovery system flows in, and a bottom portion of the base.
  • the exhaust gas of the vapor liquefaction recovery system flowing in from the exhaust inlet can be diluted with the air from the air inlet to form a dilution pipe to be discharged from the outlet.
  • the diluting means is provided with an exhaust inflow port into which the exhaust gas of the vapor liquefaction recovery system flows in, a nozzle for injecting the exhaust gas of the vapor liquefaction recovery system flowing in from the exhaust inflow port, an air inlet, and the nozzle.
  • An ejector provided with a diffuser having an inlet portion in the vicinity, the air flowing in from the air inflow inlet is sucked into the inlet portion of the diffuser, mixed with the exhaust gas of the vapor liquefaction recovery system by the diffuser, and discharged from the diffuser.
  • the refueling device includes a densitometer for measuring the vapor concentration of the exhaust gas of the diluting means, and when the measured value of the densitometer exceeds a predetermined value, the drive of the refueling system and / and the vapor liquefaction recovery system is stopped. It is possible to prevent the vapor concentration in the exhaust gas from exceeding the lower explosive limit of gasoline.
  • the fuel oil vapor may be cooled and liquefied by the cooling liquid from the cooling unit, or the fuel oil vapor may be cooled and liquefied by the gasoline in the underground tank.
  • FIG. 1 is a front view
  • FIG. 2 is a side view. It is a partially cutaway perspective view of the refueling device shown in FIG.
  • FIG. 1 is a front view
  • FIG. 2 is a side view. It is a partially cutaway perspective view of the refueling device shown in FIG.
  • FIG. 1 is a front view
  • FIG. 2 is a side view.
  • FIG. 1 is a front view
  • (b) is a side view. It is a partially cutaway perspective view of the refueling device shown in FIG.
  • FIG. is a block diagram which shows the structure of the refueling apparatus shown in FIG. A diluting pipe for diluting the exhaust gas of the adsorption tower is shown, (a) is a perspective view, (b) is a top view of (a), and (c) is a side view of (a).
  • FIG. 1 is a front view
  • FIG. 1 is a side view
  • FIG. 1 is a front view
  • FIG. 5 It is a figure which shows the solid vapor barrier used when installing the refrigerating unit shown in FIG. 5,
  • (a) is a partially broken perspective view of the refueling device
  • (b) is the case where the solid vapor barrier is seen from the front side.
  • (C) is a perspective view of the solid vapor barrier when viewed from the back side.
  • It is a schematic front view for demonstrating the vapor barrier structure of the refueling apparatus which concerns on this invention.
  • FIG. 5 is an operation explanatory view of a circulation pump, an air cooling fan, a compressor, and a solenoid valve of the refrigeration unit shown in FIG.
  • the refueling device 1 includes a vapor liquefaction recovery system 2 and a refueling hose 4 (4A to 4C), which are characteristic parts of the present invention.
  • Refueling including a refueling nozzle 5 (5A to 5C) connected to one end of the refueling hose 4, a nozzle hook 6 (6A to 6C) for hooking the refueling nozzle 5, and a display unit 7 for displaying the refueling amount and the like. It includes a system 3.
  • the refueling system 3 has a refueling pipe 31 having one end connected to the refueling tank T, a refueling pump 32 provided in the refueling pipe 31, an electromagnetic valve 33 and a flow meter 34, and a safety joint 35 at the other end of the refueling pipe 31.
  • a refueling hose 4 connected via a refueling hose 4 and a refueling nozzle 5 provided at the tip of the refueling hose 4 and hooked on a nozzle hook 6 are provided.
  • Each component other than the refueling pump 32 is provided with 6 (3 oil types x 2 sets) each to support a plurality of oil types, and two automobiles can be refueled at the same time on both sides of the refueling device 1. it can.
  • the vapor liquefaction recovery system 2 includes a vapor return pipe 21 having one end opened in the vicinity of the refueling nozzle 5, a compression pump 22 and a separation unit 23 interposed in the vapor return pipe 21, and a motor 24 for driving the compression pump 22.
  • a refrigerating unit 20 and the like are provided.
  • the separation unit 23 is arranged in the vicinity of the condenser 23a for condensing the gasoline vapor (hereinafter referred to as “vapor”), and the vapor, air, and gasoline discharged from the condenser 23a.
  • Gas discharged from the gas-liquid separation measuring tank 23b which is arranged on both sides of the gas-liquid separation measuring tank 23b for separating the mixture of water and water into gas, gasoline and water, and the condenser 23a and the gas-liquid separation measuring tank 23b. It is provided with two adsorption towers 23c and 23d for desorbing and returning the vapor to the condenser 23a.
  • the separation unit 23 is a space for accommodating the condenser 23a and the two adsorption towers 23c and 23d (hereinafter referred to as "cooling unit") in order to cool the vapor and improve the condensation and adsorption performance.
  • 23e is configured to be filled with the cooling liquid (antifreeze liquid) from the refrigerating unit 20.
  • the two adsorption towers 23c and 23d are configured to have the same shape in order to unify the adsorption performance, and the inside is filled with an adsorbent such as silica gel, zeolite, or activated carbon.
  • an adsorbent such as silica gel, zeolite, or activated carbon.
  • the discharge pipes 13 of the two suction towers 23c and 23d are provided with the dilution pipe 28 shown in FIG.
  • the dilution pipe 28 is composed of a hollow cylindrical base portion 28a, an inflow port 28b and an air inflow port 28c provided in the upper part of the base portion 28a, and an discharge port 28d provided in the bottom portion of the base portion 28a.
  • the exhaust gas from the adsorption towers 23c and 23d flowing in from the inflow port 28b can be diluted with the air from the air inflow port 28c to further reduce the vapor concentration and then discharged from the discharge port 28d. it can.
  • each of the suction towers 23c and 23d is provided with a check valve 27 for introducing outside air into the suction towers 23c and 23d to convey the vapor.
  • a densitometer 29 (see FIG. 3) for measuring the vapor concentration of the gas flowing through the discharge pipe 13 is attached to the discharge pipe 13.
  • the refrigerating unit 20 includes a sub tank 41 and a coolant tank 42 for storing the coolant, a circulation pump 43 arranged in the coolant supply line 46, a flow rate sensor 44 and a temperature sensor 45, and a coolant.
  • a plate heat exchanger 53 arranged on the return line 47 is provided.
  • the refrigerating unit 20 includes a condenser 48, an air cooling fan 49 (49A, 49B), a compressor 51, an expansion valve 52 (52A, 52B), and a solenoid valve 50 in the refrigerant lines 54 and 55.
  • the coolant is cooled by using the refrigerant in the plate heat exchanger 53.
  • a solid vapor barrier 61 is interposed as shown in FIG.
  • the solid vapor barrier 61 is formed in an L-shaped plate shape, and the horizontal plate-shaped portion 61a is between the vapor liquefaction recovery system 2 and the freezing unit 20, and the vertical plate-shaped portion 61b is connected to the main body housing 8 of the refueling device 1. Even when the freezing unit 20 is shielded from the freezing unit 20 and the freezing unit 20 has a non-explosion-proof structure, safety is ensured by preventing vapor from entering the freezing unit 20.
  • the solid vapor barrier 61 is provided with through holes 61c at six locations of the horizontal plate-shaped portion 61a, cable clamps 61d are arranged in the through holes 61c, and the cable clamp 61d is arranged.
  • the cable is inserted while maintaining confidentiality through.
  • welding studs 61e are erected at four locations of the horizontal plate-shaped portion 61a, and bolts 61g are inserted into the through holes 61f formed at two locations of the vertical plate-shaped portion 61b, and a seal washer 61h is used.
  • the solid vapor barrier 61 is fixed to the vapor liquefaction recovery system 2 and the main body housing 8 while preventing the vapor from entering the refrigerating unit 20.
  • a plate-shaped vapor barrier (measurer side vapor barrier) 62 is also provided between the refueling system 3 and the display unit 7. Both vapor barriers 61 and 62 shield the inside of the display unit 7 and the refrigeration unit 20 from the vapor, ensuring safety even when the display unit 7 and the refrigeration unit 20 have a non-explosion-proof structure.
  • louvers 10 (10A, 10B) are provided in the refrigerating unit housings 9 (9A, 9B) accommodating the refrigerating unit 20, and air is sucked in and exhausted from these louvers 10 to freeze. It is possible to prevent heat from being trapped in the unit housing 9 and maintain high cooling efficiency.
  • a discharge port 12 is provided at the lower part of the refueling device 1, and the discharge port 12 communicates with the dilution pipe 28 via the discharge pipe 13.
  • step S1 it is determined whether or not the outside air temperature T is t1 to t2, for example, 10 ° C. to 40 ° C., and if it is within this range (step S1; Yes), the circulation pump.
  • the operation of 43 is started (step S2), it is determined in step S3 whether or not the amount Q of the coolant measured by the flow sensor 44 has reached the predetermined amount q1, and if it is q1, it is determined (step S3). ; Yes), it is determined in step S4 whether the outside air temperature T is lower than t1 or higher than t2, and in either case (step S4; Yes), the operation of the circulation pump 43 is stopped in step S5.
  • step S6 if the amount Q of the coolant does not reach the predetermined amount q1 in step S3 (step S3; No), an error is displayed in step S6 and the process ends.
  • a predetermined amount of coolant circulates when the outside air temperature T is in a predetermined temperature range.
  • step S11 it is determined whether or not the temperature T of the coolant measured by the temperature sensor 45 in step S11 is t3, for example, 2 ° C. or higher, and if it is 2 ° C. or higher (step S11; Yes), the compressor 51 is operated.
  • step S12 the refrigerant in the low-pressure gas state supplied from the plate heat exchanger 53 is compressed, converted into the high-pressure gas, and supplied to the condenser 48 via the refrigerant line 54.
  • the high-pressure gaseous refrigerant supplied from the compressor 51 is condensed by the condenser 48, converted into a high-pressure liquid refrigerant, and the heat of condensation is taken away, and the taken heat is released to the outside by the air blown by the air cooling fan 49. ..
  • the high-pressure liquid state refrigerant supplied from the condenser 48 via the refrigerant line 55 is changed to the low-pressure state by the expansion valve 52B and supplied to the plate heat exchanger 53 to cool the coolant.
  • the flow rate of the refrigerant flowing through the refrigerant lines 54 and 55 is controlled by adjusting the valve opening degree of the expansion valve 52B. In the above operation, the solenoid valve 50 is closed.
  • step S13 it is determined whether or not the temperature T of the coolant is t4, for example, -1 ° C. or lower, and if it is -1 ° C. or lower (step S13; Yes), the operation of the compressor 51 is stopped (step). S14), the cooling operation of the coolant is stopped.
  • the temperature of the coolant is maintained in a predetermined range, for example, -1 ° C. to 2 ° C.
  • step S21 it is determined whether or not the temperature T of the coolant is t5, for example, 2 ° C. or lower, and if it is 2 ° C. or lower (step S21; Yes), the solenoid valve 50 is opened (step S22), and the refrigerant By halving the flow rate of the refrigerant flowing through the lines 54 and 55, the cooling capacity of the refrigerating unit 20 is reduced to 50%.
  • step S23 it is determined whether or not the temperature T of the coolant is t6, for example, 3 ° C. or higher, and if it is 3 ° C. or higher (step S23; Yes), the solenoid valve 50 is closed (step S24) and frozen. Increase the cooling capacity of the unit 20 to 100%.
  • the coolant can be stably maintained at a predetermined temperature or lower, for example, about 2 ° C. throughout the year as shown in FIG.
  • the cooling liquid is supplied from the refrigerating unit 20 to the cooling unit 23e of the separation unit 23, and the condenser 23a and the two adsorption towers 23c and 23d in the cooling unit 23e are supplied. Cooling. The cooling liquid after cooling is returned to the freezing unit 20.
  • the compression pump 22 When the supply of gasoline is started from the refueling nozzle 5, the compression pump 22 is turned on, and the vapor generated by refueling and the air in the fuel tank of the vehicle are transferred to the compression side of the compression pump 22 via the vapor return pipe 21. It flows to 22a and is introduced into the condenser 23a.
  • the gas introduced into the condenser 23a is sent to the gas-liquid separation measuring tank 23b while being cooled by the cooling liquid flowing through the cooling unit 23e.
  • the vapor is compressed and cooled, and a part of the vapor is changed to gasoline, and a part of the air transported together with the vapor is changed to water.
  • Gasoline and water supplied to the gas-liquid separation measuring tank 23b settle to the bottom, and gasoline having a specific gravity smaller than that of water moves above the water. Then, by controlling a liquid level sensor (not shown), gasoline and water are discharged when gasoline and water are accumulated in a predetermined amount or more.
  • the vapor and air staying in the upper part of the gas-liquid separation measuring tank 23b are introduced into the adsorption tower 23c and the vapor is adsorbed.
  • the air introduced into the adsorption tower 23c together with the vapor is discharged to the outside through the dilution pipe 28.
  • the vapor adsorbed on the adsorption tower 23d is attached and detached.
  • the detached vapor is supplied to the vacuum side 22b of the compression pump 22 and returned to the vapor return pipe 21 again.
  • the vapor and air are introduced into the adsorption tower 23d by switching the flow path of the vapor or the like, and the vapor is adsorbed.
  • the air introduced into the suction tower 23d together with the vapor is discharged to the outside through the discharge pipe 13.
  • the vapor adsorbed on the adsorption tower 23c is attached and detached.
  • the detached vapor is supplied to the vacuum side 22b of the compression pump 22 and returned to the vapor return pipe 21 again.
  • the condenser 23a of the separation unit 23 and the two adsorption towers 23c and 23d are cooled by the coolant from the refrigerating unit 20, it is stable regardless of the season and the outside temperature. As a result, the fuel oil vapor can be cooled and the fuel oil vapor can be adsorbed, and the fuel oil vapor can be stably recovered while maintaining a high liquefaction recovery efficiency of the fuel oil vapor.
  • the coolant can be maintained at, for example, about 2 ° C. throughout the year.
  • this is a case where the power of the refrigerating unit 20 is always on, and when the power of the refrigerating unit 20 is turned off, the temperature of the coolant rises.
  • the coolant may not be cooled to a predetermined temperature or lower immediately after the refrigerating unit 20 is turned on, such as when a gas station is opened. If refueling is started in that state, the condenser 23a of the separation unit 23 may not be cooled. And since the two suction towers 23c and 23d are not sufficiently cooled, the vapor generated by refueling is not collected and is discharged from the discharge port 12 through the discharge pipe 13, and the refueling device 1 There is a risk that the vapor concentration in the exhaust will exceed the lower explosive limit of gasoline (about 1.4 vol%).
  • step S31; Yes when the power of the refrigerating unit 20 is turned on in step S31 (step S31; Yes), the operation of the circulation pump 43 is started (step S32). Further, even if the power of the refrigerating unit 20 is not turned on in step S31 (step S31; No), for example, the current time T becomes the gas station business start time T1 (for example, 30 minutes before the gas station business start time). In that case (step S33; Yes), the operation of the circulation pump 43 can be started (step S32). As a result, the coolant in the refrigerating unit 20 can be sufficiently cooled.
  • step S34 it is determined whether or not the amount Q of the coolant measured by the flow rate sensor 44 has reached the predetermined amount q1, and if it reaches q1 (step S34; Yes), the process proceeds to step S35. .. On the other hand, when the amount Q of the coolant is not the predetermined amount q1 (step S34; No), since the amount of the coolant is insufficient, an error is notified (step S36) and the operation is terminated. ..
  • step S35 it is determined whether or not the temperature T of the coolant is below the predetermined temperature t7, and if it is below t7 (step S35; Yes), the vapor recovery permission is output to the compression pump 22 (step). S37), the compression pump 22 starts operation. On the other hand, when the temperature T of the coolant is not lower than the predetermined temperature t7 (step S35; No), refueling is notified until the temperature falls below t7 (step S38).
  • step S41 When the vapor recovery permission is input in step S41 (step S41; Yes), the compression pump 22 becomes capable of sucking vapor and notifies the refueler of the availability of refueling (step S42).
  • step S39 when it is determined in step S39 that the temperature T of the coolant exceeds the predetermined temperature t7 (step S39; Yes), the refrigerating unit 20 outputs a vapor recovery permission stop to the compression pump 22 (step S39; Yes).
  • step S40 the compression pump 22 to which the vapor recovery permission stop is input from the refrigerating unit 20 (step S43; Yes) notifies the refueler that refueling is not possible (step S44), and ends the operation.
  • the refueler is notified that refueling is not possible until the coolant reaches a predetermined temperature, and the compression pump 22 cannot collect the vapor. Therefore, the vapor concentration in the exhaust of the refueling device 1 reaches the lower explosive limit of gasoline. It is possible to avoid exceeding.
  • the compression pump 22 not only the compression pump 22 but also the refueling system is used until the temperature T of the coolant becomes a predetermined temperature t7 or less, and then when the temperature T of the coolant exceeds the predetermined temperature t7.
  • the operation of 3 is also restricted.
  • the same operation as that of the first embodiment is designated by the same reference numerals and the description thereof will be omitted.
  • step S35 when it is determined in step S35 that the temperature T of the coolant has become a predetermined temperature t7 or less (step S35; Yes), a refueling permit and a vapor recovery permit are output to the refueling system 3 and the compression pump 22, respectively. (Step S51).
  • step S61 The refueling system 3 in which the refueling permission is input (step S61; Yes) notifies the refueler of the possibility of refueling (step S62), and the refueling system 3 is until the refueling permission stop is input (step S63; Yes). Refueling status continues.
  • step S52 when it is determined in step S52 that the temperature T of the coolant exceeds the predetermined temperature t7 (step S52; Yes), the refueling system 3 and the compression pump 22 are stopped from refueling permission and from vapor recovery permission, respectively. It is output (step S53).
  • the refueling system 3 in which the refueling permission stop is input notifies the refueler that refueling is not possible (step S64), and ends the operation. Further, the compression pump 22 also ends its operation as described above.
  • step S52 a case where the operation of the refueling system 3 and the compression pump 22 is stopped when it is determined that the temperature T of the coolant exceeds the predetermined temperature t7 (step S52; Yes) has been described.
  • the vapor concentration of the exhaust of the dilution pipe 28 is measured by the densitometer 29 shown in the above, and when it is determined that the measured value exceeds the threshold value, the operation of the refueling system 3 and the compression pump 22 is stopped, and the exhaust of the refueling device 1 is exhausted. It is possible to prevent the vapor concentration inside from exceeding the lower explosive limit of gasoline.
  • the coolant is sufficiently cooled and the vapor concentration of the exhaust gas of the dilution pipe 28 becomes sufficiently low, so that the exhaust gas is discharged to the atmosphere as it is through the exhaust port 12. There is no problem.
  • the exhaust gas of the dilution pipe 28 can be introduced into the gas flow path of the oil supply pump 32, the oil storage tank T, and the ventilation pipe connected to the oil storage tank T.
  • the vapor liquefaction recovery system since the previously existing relief valve is deleted in order to reduce the pressure in the suction towers 23c and 23d to a predetermined value or less, the vapor liquefaction recovery system maintains the stable operation of the vapor liquefaction recovery system. It is possible to reduce the capacity of the compression pump 22 of 2 and the rating of the motor 24 for driving the compression pump 22, and the vapor liquefaction recovery system 2 can be made compact. Further, the safety can be enhanced by diluting the exhaust gas of the vapor liquefaction recovery system 2 with the dilution pipe 28 and releasing it to the atmosphere.
  • FIG. 13 shows an ejector 30 that can be used in place of the dilution tube 28 shown in FIG.
  • the ejector 30 is composed of a columnar or prismatic base portion 30a and a columnar or prismatic projecting portion 30b projecting to the right from the base portion 30a.
  • An inflow port 30c into which exhaust gas from the suction towers 23c and 23d flows is opened in the ceiling portion of the base portion 30a, and a nozzle 30f is formed below the inflow port 30c.
  • An air inlet 30d opens on the right side surface of the protrusion 30b.
  • the discharge port 30e opens at the bottom of the base 30a.
  • the openings 30c to 30e communicate with each other via the internal space 30g and the diffuser 30h.
  • the air from the air inlet 30d is sucked in the internal space 30g and the suction towers 23c and 23d are sucked.
  • the exhaust from the air is diluted with the sucked air, the vapor concentration is further reduced, and the air is discharged from the discharge port 30e.
  • FIG. 14 shows the configuration of the second embodiment of the refueling device according to the present invention, in which the refueling device 71 does not include the refrigerating unit 20 of the refueling device 1 and is pumped from an oil storage tank pumped by the refueling pump 32.
  • the gasoline GA fills the condenser 23a and the cooling unit 23e accommodating the two adsorption towers 23c and 23d, and the condenser 23a and the two adsorption towers 23c and 23d are cooled by the gasoline GA.
  • the other configuration of the refueling device 71 is the same as that of the refueling device 1.
  • the present embodiment also has the effect of removing the relief valve in the same manner as described above, and enhances safety by diluting the exhaust gas of the vapor liquefaction recovery system 2 with the dilution pipe 28 and the ejector 30 and releasing it to the atmosphere. be able to.
  • the condenser 23a and the adsorption towers 23c and 23d are cooled by the coolant from the refrigerating unit 20 or the gasoline GA, but the condenser 23a and the adsorption towers 23c and 23d are not cooled. Can also be recovered.
  • the present invention is not limited to this, and the present invention can be applied to a device for supplying various highly volatile fuel oils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present invention achieves a compact vapor liquefaction recovery system without affecting the operational stability of the vapor liquefaction recovery system and improves the safety of an oil supply device. An oil supply device (1) that comprises an oil supply system (3), a vapor liquefaction recovery system (2), and a dilution means (a dilution pipe (28) or an ejector (30)). The oil supply system (3) has: an oil supply pipe (31) that is connected at one end to an oil storage tank (T) and is connected at the other end to an oil supply hose (4) that has an oil supply nozzle (5); and an oil supply pump (32) and a flowmeter (34) that are provided to the oil supply pipe (31). The vapor liquefaction recovery system (2) has: a vapor return pipe (21) that opens near the vapor supply nozzle (5) at one end; and a liquefaction recovery device that liquefies fuel oil vapor that flows in the vapor return pipe (21) and recovers fuel oil. The dilution means (28, 30) dilutes exhaust from the vapor liquefaction recovery system (2) and discharges the exhaust into the air. The oil supply device (1) may comprise a concentration meter (29) that measures the vapor concentration of the exhaust from the dilution means (28, 30) and suspend drive of the oil supply system (3) and/or the vapor liquefaction recovery system (2) when a measured value from the concentration meter (29) exceeds a prescribed value.

Description

給油装置Refueling device
 本発明は、給油装置に関し、特に、自動車等へ燃料油を供給する給油所に設置され、給油中に自動車等の燃料タンクから流出する燃料油ベーパを回収するベーパ液化回収系統を備えた給油装置に関する。 The present invention relates to a refueling device, in particular, a refueling device provided at a gas station that supplies fuel oil to an automobile or the like and provided with a vapor liquefaction recovery system that recovers fuel oil vapor that flows out from a fuel tank of the automobile or the like during refueling. Regarding.
  従来、自動車等の燃料タンクにガソリン等の揮発性の高い燃料油を供給する給油装置において、燃料タンクから給油量に応じた燃料油ベーパが流出する。この燃料油ベーパが大気中に放出されると、資源が無駄になるだけでなく、引火による火災の危険性や環境汚染を引き起こす虞もあった。 Conventionally, in a refueling device that supplies highly volatile fuel oil such as gasoline to a fuel tank of an automobile or the like, fuel oil vapor corresponding to the amount of refueling flows out from the fuel tank. When this fuel oil vapor is released into the atmosphere, not only resources are wasted, but there is also a risk of fire due to ignition and environmental pollution.
  そこで、本出願人は、特許文献1において、給油中に自動車等の燃料タンクから流出する燃料油ベーパを回収して冷却し、液化した燃料油を回収すると共に、液化しなかった燃料油ベーパを吸着剤の表面に吸着し、吸着された燃料油ベーパを脱着した後再び冷却工程へ送って再利用することで環境負荷を低減した。 Therefore, in Patent Document 1, the applicant collects and cools the fuel oil vapor that flows out from the fuel tank of an automobile or the like during refueling, recovers the liquefied fuel oil, and collects the unliquefied fuel oil vapor. The environmental load was reduced by adsorbing on the surface of the adsorbent, desorbing the adsorbed fuel oil vapor, and then sending it to the cooling process again for reuse.
 上記文献に記載の発明では、燃料油ベーパを吸着する際に、吸着塔内の圧力を所定値以下にするためのリリーフ弁を設け、吸着塔内の圧力をベーパの圧縮に最適となるように維持して液化効率を向上させている。 In the invention described in the above document, when the fuel oil vapor is adsorbed, a relief valve is provided to reduce the pressure in the adsorption tower to a predetermined value or less so that the pressure in the adsorption tower is optimized for the compression of the vapor. It is maintained to improve liquefaction efficiency.
日本特開2017-77903号公報Japanese Patent Application Laid-Open No. 2017-77903
 上記発明は有効であるが、ベーパの圧縮率が高すぎるとポンプに負荷がかかり故障の原因となる。一方、ベーパの圧縮率が低すぎると吸着効率が低下して液化回収率が悪化するという問題があった。 The above invention is effective, but if the compression ratio of the vapor is too high, the pump will be overloaded and cause a failure. On the other hand, if the compressibility of the vapor is too low, there is a problem that the adsorption efficiency is lowered and the liquefaction recovery rate is deteriorated.
 そこで、本発明は、上記問題を解消させると共に、ベーパ液化回収系統のコンパクト化を図り、給油装置の安全性を高めることを目的とする。 Therefore, it is an object of the present invention to solve the above problems, to make the vapor liquefaction recovery system compact, and to improve the safety of the refueling device.
 上記目的を達成するため、本発明は、給油装置であって、一端が貯油タンクに接続され、他端が給油ノズルを有する給油ホースに接続される給油管と、該給油管に介装された給油ポンプ及び流量計とを有する給油系統と、一端が前記給油ノズル近傍に開口するベーパ戻り管と、該ベーパ戻り管を流れる燃料油ベーパを液化して燃料油を回収する液化回収装置とを有するベーパ液化回収系統と、該ベーパ液化回収系統の排気を希釈して大気へ放出する希釈手段とを備えることを特徴とする。 In order to achieve the above object, the present invention is a refueling device, in which one end is connected to a refueling tank and the other end is connected to a refueling hose having a refueling nozzle, and the refueling pipe is interposed. It has a refueling system having a refueling pump and a flow meter, a vapor return pipe whose one end opens in the vicinity of the refueling nozzle, and a liquefaction recovery device that liquefies the fuel oil vapor flowing through the vapor return pipe and recovers the fuel oil. It is characterized by comprising a vapor liquefaction recovery system and a diluting means for diluting the exhaust of the vapor liquefaction recovery system and releasing it to the atmosphere.
 本発明によれば、吸着塔内の圧力を所定値以下にするためのリリーフ弁を削除したため、ベーパ液化回収系統の運転の安定を維持しながら、ベーパ液化回収系統に圧縮ポンプを用いた場合でもポンプの容量を小さくしたり、ポンプを駆動するためのモータの定格を小さくすることなどが可能となり、ベーパ液化回収系統のコンパクト化を図ることができる。また、ベーパ液化回収系統の排気を希釈して大気へ放出することで安全性を高めることができる。 According to the present invention, since the relief valve for keeping the pressure in the adsorption tower below a predetermined value is deleted, even when a compression pump is used for the vapor liquefaction recovery system while maintaining the stable operation of the vapor liquefaction recovery system. The capacity of the pump can be reduced, the rating of the motor for driving the pump can be reduced, and the vapor liquefaction recovery system can be made compact. In addition, safety can be enhanced by diluting the exhaust gas of the vapor liquefaction recovery system and releasing it to the atmosphere.
 上記給油装置において、前記希釈手段を、中空円柱状の基部と、該基部の上部に設けられ、前記ベーパ液化回収系統の排気が流入する排気流入口及び空気流入口と、前記基部の底部に設けられる排出口とを備え、前記排気流入口から流入する前記ベーパ液化回収系統の排気を前記空気流入口からの空気で希釈して前記排出口から排出する希釈管とすることができる。 In the refueling device, the dilution means is provided at a hollow columnar base, an exhaust inlet and an air inlet provided above the base, and an exhaust inlet and an air inlet from which the exhaust gas of the vapor liquefaction recovery system flows in, and a bottom portion of the base. The exhaust gas of the vapor liquefaction recovery system flowing in from the exhaust inlet can be diluted with the air from the air inlet to form a dilution pipe to be discharged from the outlet.
 また、前記希釈手段を、前記ベーパ液化回収系統の排気が流入する排気流入口と、該排気流入口から流入した前記ベーパ液化回収系統の排気を噴射するノズルと、空気流入口と、前記ノズルの近傍に入口部を有するディヒューザとを備え、前記空気流入口から流入した空気が前記ディヒューザの入口部に吸引され、該ディヒューザによって前記ベーパ液化回収系統の排気と混合して該ディヒューザから排出されるエジェクタとすることができる。 Further, the diluting means is provided with an exhaust inflow port into which the exhaust gas of the vapor liquefaction recovery system flows in, a nozzle for injecting the exhaust gas of the vapor liquefaction recovery system flowing in from the exhaust inflow port, an air inlet, and the nozzle. An ejector provided with a diffuser having an inlet portion in the vicinity, the air flowing in from the air inflow inlet is sucked into the inlet portion of the diffuser, mixed with the exhaust gas of the vapor liquefaction recovery system by the diffuser, and discharged from the diffuser. Can be.
 上記給油装置は、前記希釈手段の排気のベーパ濃度を測定する濃度計を備え、該濃度計の測定値が所定の値を超えると、前記給油系統又は/及び前記ベーパ液化回収系統の駆動を停止することができ、排気中のベーパ濃度がガソリンの爆発下限界を超えることを回避することができる。 The refueling device includes a densitometer for measuring the vapor concentration of the exhaust gas of the diluting means, and when the measured value of the densitometer exceeds a predetermined value, the drive of the refueling system and / and the vapor liquefaction recovery system is stopped. It is possible to prevent the vapor concentration in the exhaust gas from exceeding the lower explosive limit of gasoline.
 前記液化回収装置は、冷却ユニットからの冷却液によって前記燃料油ベーパを冷却して液化させてもよく、地下タンク内のガソリンによって前記燃料油ベーパを冷却して液化させてもよい。 In the liquefaction recovery device, the fuel oil vapor may be cooled and liquefied by the cooling liquid from the cooling unit, or the fuel oil vapor may be cooled and liquefied by the gasoline in the underground tank.
 以上のように、本発明によれば、ベーパ液化回収系統の運転の安定を維持しながら、ベーパ液化回収系統のコンパクト化を図り、給油装置の安全性を高めることができる。 As described above, according to the present invention, it is possible to improve the safety of the refueling device by making the vapor liquefaction recovery system compact while maintaining the stable operation of the vapor liquefaction recovery system.
本発明に係る給油装置の第1の実施形態を示す図であって、(a)は正面図、(b)は側面図である。It is a figure which shows the 1st Embodiment of the refueling apparatus which concerns on this invention, (a) is a front view, (b) is a side view. 図1に示す給油装置の一部破断斜視図である。It is a partially cutaway perspective view of the refueling device shown in FIG. 図1に示す給油装置の構成を示すブロック図である。It is a block diagram which shows the structure of the refueling apparatus shown in FIG. 吸着塔の排気を希釈する希釈管を示し、(a)は斜視図、(b)は(a)の上面図、(c)は(a)の側面図である。A diluting pipe for diluting the exhaust gas of the adsorption tower is shown, (a) is a perspective view, (b) is a top view of (a), and (c) is a side view of (a). 図1に示す給油装置に設けられる冷凍ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of the refrigerating unit provided in the refueling apparatus shown in FIG. 図5に示す冷凍ユニットを設置する際に用いるソリッドベーパーバリアを示す図であって、(a)は給油装置の一部破断全体斜視図、(b)はソリッドベーパーバリアを正面側から見た場合の斜視図、(c)はソリッドベーパーバリアを背面側から見た場合の斜視図である。It is a figure which shows the solid vapor barrier used when installing the refrigerating unit shown in FIG. 5, (a) is a partially broken perspective view of the refueling device, (b) is the case where the solid vapor barrier is seen from the front side. (C) is a perspective view of the solid vapor barrier when viewed from the back side. 本発明に係る給油装置のベーパーバリア構造を説明するための概略正面図である。It is a schematic front view for demonstrating the vapor barrier structure of the refueling apparatus which concerns on this invention. 図5に示す冷凍ユニットの循環ポンプ、コンプレッサ及び電磁弁の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation of the circulation pump, the compressor and the solenoid valve of the refrigerating unit shown in FIG. 図5に示す冷凍ユニットの循環ポンプ、空冷ファン、コンプレッサ及び電磁弁の動作説明図である。FIG. 5 is an operation explanatory view of a circulation pump, an air cooling fan, a compressor, and a solenoid valve of the refrigeration unit shown in FIG. 冷凍ユニットの電源投入直後における冷却液の冷却動作の第1の実施形態について説明するためのフローチャートである。It is a flowchart for demonstrating 1st Embodiment of the cooling liquid cooling operation immediately after power-on of a refrigerating unit. 冷凍ユニットの電源投入直後における冷却液の冷却動作の第2の実施形態について説明するためのフローチャートである。It is a flowchart for demonstrating the 2nd Embodiment of the cooling operation of a coolant immediately after power-on of a refrigerating unit. 本発明に係る給油装置と従来の給油装置とでベーパの冷却温度(冷却液の温度)を比較したグラフである。It is a graph which compared the cooling temperature (cooling liquid temperature) of the vapor between the refueling device which concerns on this invention, and the conventional refueling device. 吸着塔の排気を希釈するエジェクタを示す断面図である。It is sectional drawing which shows the ejector which dilutes the exhaust gas of a suction tower. 本発明に係る給油装置の第2の実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd Embodiment of the refueling apparatus which concerns on this invention.
 次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。 Next, a mode for carrying out the present invention will be described in detail with reference to the drawings.
 図1乃至図3は、本発明に係る給油装置の第1の実施形態を示し、この給油装置1は、本発明の特徴部分であるベーパ液化回収系統2と、給油ホース4(4A~4C)と、給油ホース4の一端に接続された給油ノズル5(5A~5C)と、給油ノズル5を掛けるためのノズル掛け6(6A~6C)と、給油量等を表示する表示部7を含む給油系統3とを備える。 1 to 3 show a first embodiment of a refueling device according to the present invention, in which the refueling device 1 includes a vapor liquefaction recovery system 2 and a refueling hose 4 (4A to 4C), which are characteristic parts of the present invention. Refueling including a refueling nozzle 5 (5A to 5C) connected to one end of the refueling hose 4, a nozzle hook 6 (6A to 6C) for hooking the refueling nozzle 5, and a display unit 7 for displaying the refueling amount and the like. It includes a system 3.
 給油系統3は、一端が貯油タンクTに接続された給油管31と、給油管31に設けられた給油ポンプ32、電磁弁33及び流量計34と、給油管31の他端に安全継手35を介して接続される給油ホース4と、給油ホース4の先端に設けられ、ノズル掛け6に掛けられる給油ノズル5等を備える。給油ポンプ32以外の各構成要素は、複数油種に対応するために各々6つ(3油種×2セット)ずつ設けられ、給油装置1の両側で2台の自動車に同時に給油を行うことができる。 The refueling system 3 has a refueling pipe 31 having one end connected to the refueling tank T, a refueling pump 32 provided in the refueling pipe 31, an electromagnetic valve 33 and a flow meter 34, and a safety joint 35 at the other end of the refueling pipe 31. A refueling hose 4 connected via a refueling hose 4 and a refueling nozzle 5 provided at the tip of the refueling hose 4 and hooked on a nozzle hook 6 are provided. Each component other than the refueling pump 32 is provided with 6 (3 oil types x 2 sets) each to support a plurality of oil types, and two automobiles can be refueled at the same time on both sides of the refueling device 1. it can.
 ベーパ液化回収系統2は、一端が給油ノズル5の近傍に開口するベーパ戻り管21と、ベーパ戻り管21に介装された圧縮ポンプ22及び分離ユニット23と、圧縮ポンプ22を駆動するモータ24、冷凍ユニット20等を備える。 The vapor liquefaction recovery system 2 includes a vapor return pipe 21 having one end opened in the vicinity of the refueling nozzle 5, a compression pump 22 and a separation unit 23 interposed in the vapor return pipe 21, and a motor 24 for driving the compression pump 22. A refrigerating unit 20 and the like are provided.
 分離ユニット23は、図3に示すように、ガソリンベーパ(以下「ベーパ」という)を凝縮させる凝縮器23aと、凝縮器23aの近傍に配置され、凝縮器23aから排出されるベーパ、空気、ガソリン及び水の混合物を、気体、ガソリン及び水に各々分離する気液分離計測槽23bと、凝縮器23a及び気液分離計測槽23bの両側に配置され、気液分離計測槽23bから排出される気体からベーパを吸着した後、脱着して凝縮器23aに戻すための2つの吸着塔23c、23dとを備える。 As shown in FIG. 3, the separation unit 23 is arranged in the vicinity of the condenser 23a for condensing the gasoline vapor (hereinafter referred to as “vapor”), and the vapor, air, and gasoline discharged from the condenser 23a. Gas discharged from the gas-liquid separation measuring tank 23b, which is arranged on both sides of the gas-liquid separation measuring tank 23b for separating the mixture of water and water into gas, gasoline and water, and the condenser 23a and the gas-liquid separation measuring tank 23b. It is provided with two adsorption towers 23c and 23d for desorbing and returning the vapor to the condenser 23a.
 さらに、分離ユニット23は、図示を省略するが、ベーパを冷却して凝縮及び吸着性能を向上させるため、凝縮器23a及び2つの吸着塔23c、23dを収容する空間(以下「冷却部」という)23eが冷凍ユニット20からの冷却液(不凍液)で満たされるように構成される。 Further, although not shown, the separation unit 23 is a space for accommodating the condenser 23a and the two adsorption towers 23c and 23d (hereinafter referred to as "cooling unit") in order to cool the vapor and improve the condensation and adsorption performance. 23e is configured to be filled with the cooling liquid (antifreeze liquid) from the refrigerating unit 20.
 2つの吸着塔23c、23dは、吸着性能を統一するために同一形状となるように構成され、内部にシリカゲル、ゼオライト、活性炭等の吸着材が充填される。 The two adsorption towers 23c and 23d are configured to have the same shape in order to unify the adsorption performance, and the inside is filled with an adsorbent such as silica gel, zeolite, or activated carbon.
 2つの吸着塔23c、23dの排出管13には、図4に示す希釈管28が設けられる。この希釈管28は、中空円柱状の基部28aと、基部28aの上部に設けられる流入口28b及び空気流入口28cと、基部28aの底部に設けられる排出口28dとで構成される。この希釈管28によれば、流入口28bから流入する吸着塔23c、23dからの排気を空気流入口28cからの空気で希釈し、ベーパ濃度をさらに低下させてから排出口28dから排出することができる。 The discharge pipes 13 of the two suction towers 23c and 23d are provided with the dilution pipe 28 shown in FIG. The dilution pipe 28 is composed of a hollow cylindrical base portion 28a, an inflow port 28b and an air inflow port 28c provided in the upper part of the base portion 28a, and an discharge port 28d provided in the bottom portion of the base portion 28a. According to the dilution pipe 28, the exhaust gas from the adsorption towers 23c and 23d flowing in from the inflow port 28b can be diluted with the air from the air inflow port 28c to further reduce the vapor concentration and then discharged from the discharge port 28d. it can.
 また、各吸着塔23c、23dには、吸着塔23c、23d内に外気を導入してベーパを搬送するための逆止弁27が付設される。排出管13には、排出管13を流れる気体のベーパ濃度を測定する濃度計29(図3参照)が付設される。 Further, each of the suction towers 23c and 23d is provided with a check valve 27 for introducing outside air into the suction towers 23c and 23d to convey the vapor. A densitometer 29 (see FIG. 3) for measuring the vapor concentration of the gas flowing through the discharge pipe 13 is attached to the discharge pipe 13.
 冷凍ユニット20は、図5に示すように、冷却液を貯留するサブタンク41及び冷却液タンク42と、冷却液供給ライン46に配置される循環ポンプ43、流量センサ44及び温度センサ45と、冷却液戻りライン47に配置されるプレート熱交換器53とを備える。 As shown in FIG. 5, the refrigerating unit 20 includes a sub tank 41 and a coolant tank 42 for storing the coolant, a circulation pump 43 arranged in the coolant supply line 46, a flow rate sensor 44 and a temperature sensor 45, and a coolant. A plate heat exchanger 53 arranged on the return line 47 is provided.
 また、冷凍ユニット20は、冷媒ライン54、55に、凝縮器48と、空冷ファン49(49A、49B)と、コンプレッサ51と、膨張弁52(52A、52B)と、電磁弁50とを備え、プレート熱交換器53において冷媒を用いて冷却液を冷却する。 Further, the refrigerating unit 20 includes a condenser 48, an air cooling fan 49 (49A, 49B), a compressor 51, an expansion valve 52 (52A, 52B), and a solenoid valve 50 in the refrigerant lines 54 and 55. The coolant is cooled by using the refrigerant in the plate heat exchanger 53.
 冷凍ユニット20をベーパ液化回収系統2の上部に設置するにあたり、図6に示すように、ソリッドベーパーバリア61を介在させる。このソリッドベーパーバリア61は、L字形の板状に形成され、水平板状部61aでベーパ液化回収系統2と冷凍ユニット20との間を、垂直板状部61bで給油装置1の本体ハウジング8と冷凍ユニット20との間を遮断し、冷凍ユニット20を非防爆構造とした場合でも、冷凍ユニット20にベーパが侵入するのを防止して安全を確保している。 When the refrigeration unit 20 is installed above the vapor liquefaction recovery system 2, a solid vapor barrier 61 is interposed as shown in FIG. The solid vapor barrier 61 is formed in an L-shaped plate shape, and the horizontal plate-shaped portion 61a is between the vapor liquefaction recovery system 2 and the freezing unit 20, and the vertical plate-shaped portion 61b is connected to the main body housing 8 of the refueling device 1. Even when the freezing unit 20 is shielded from the freezing unit 20 and the freezing unit 20 has a non-explosion-proof structure, safety is ensured by preventing vapor from entering the freezing unit 20.
 ソリッドベーパーバリア61には、図6(b)に示すように、水平板状部61aの六カ所に貫通孔61cが穿設され、各々の貫通孔61cにケーブルクランプ61dを配置し、ケーブルクランプ61dを介して機密性を維持しながらケーブルを挿通させている。また、水平板状部61aの四カ所に溶接スタッド61eを立設し、垂直板状部61bの二箇所に穿設した貫通孔61fには、ボルト61gを挿通させてシール座金61hを用いることで、冷凍ユニット20にベーパが侵入するのを防止しながらベーパ液化回収系統2及び本体ハウジング8にソリッドベーパーバリア61を固定している。 As shown in FIG. 6B, the solid vapor barrier 61 is provided with through holes 61c at six locations of the horizontal plate-shaped portion 61a, cable clamps 61d are arranged in the through holes 61c, and the cable clamp 61d is arranged. The cable is inserted while maintaining confidentiality through. Further, welding studs 61e are erected at four locations of the horizontal plate-shaped portion 61a, and bolts 61g are inserted into the through holes 61f formed at two locations of the vertical plate-shaped portion 61b, and a seal washer 61h is used. The solid vapor barrier 61 is fixed to the vapor liquefaction recovery system 2 and the main body housing 8 while preventing the vapor from entering the refrigerating unit 20.
 図7に示すように、ソリッドベーパーバリア61に加え、給油系統3と表示部7の間にも板状のベーパーバリア(計量器側ベーパーバリア)62を設けている。両ベーパーバリア61、62によって、表示部7及び冷凍ユニット20の内部をベーパーから遮断し、表示部7及び冷凍ユニット20を非防爆構造とした場合でも安全を確保している。 As shown in FIG. 7, in addition to the solid vapor barrier 61, a plate-shaped vapor barrier (measurer side vapor barrier) 62 is also provided between the refueling system 3 and the display unit 7. Both vapor barriers 61 and 62 shield the inside of the display unit 7 and the refrigeration unit 20 from the vapor, ensuring safety even when the display unit 7 and the refrigeration unit 20 have a non-explosion-proof structure.
 また、図1に示すように、冷凍ユニット20を収容した冷凍ユニットハウジング9(9A、9B)にルーバー10(10A、10B)を設け、これらのルーバー10より空気の吸排気を行うことで、冷凍ユニットハウジング9内に熱が篭もることを防止し、冷却効率を高く維持することができる。 Further, as shown in FIG. 1, louvers 10 (10A, 10B) are provided in the refrigerating unit housings 9 (9A, 9B) accommodating the refrigerating unit 20, and air is sucked in and exhausted from these louvers 10 to freeze. It is possible to prevent heat from being trapped in the unit housing 9 and maintain high cooling efficiency.
 さらに、図2に示すように、給油装置1の下部には、排出口12が設けられ、排出口12は、排出管13を介して希釈管28と連通している。 Further, as shown in FIG. 2, a discharge port 12 is provided at the lower part of the refueling device 1, and the discharge port 12 communicates with the dilution pipe 28 via the discharge pipe 13.
 次に、上記構成を有する給油装置1のベーパ回収動作について図面を参照しながら説明する。 Next, the vapor recovery operation of the refueling device 1 having the above configuration will be described with reference to the drawings.
 まず、分離ユニット23で用いる冷却液を冷凍ユニット20で冷却する動作について図5、図8及び図9を参照しながら説明する。 First, the operation of cooling the coolant used in the separation unit 23 in the refrigerating unit 20 will be described with reference to FIGS. 5, 8 and 9.
 図8に示すように、ステップS1で外気温度Tがt1~t2、例えば10℃~40℃であるか否かを判断し、この範囲内にある場合には(ステップS1;Yes)、循環ポンプ43の運転を開始し(ステップS2)、ステップS3で流量センサ44で測定された冷却液の量Qが所定の量q1となったか否かを判断し、q1となった場合には(ステップS3;Yes)、ステップS4で外気温度Tがt1より低いか、t2より高いか判断し、いずれかの場合には(ステップS4;Yes)、ステップS5で循環ポンプ43の運転を停止する。一方、ステップS3で冷却液の量Qが所定の量q1とならない場合には(ステップS3;No)、ステップS6でエラー表示をして終了する。上記動作によって、外気温度Tが所定の温度範囲の場合に所定量の冷却液が循環する。 As shown in FIG. 8, in step S1, it is determined whether or not the outside air temperature T is t1 to t2, for example, 10 ° C. to 40 ° C., and if it is within this range (step S1; Yes), the circulation pump. The operation of 43 is started (step S2), it is determined in step S3 whether or not the amount Q of the coolant measured by the flow sensor 44 has reached the predetermined amount q1, and if it is q1, it is determined (step S3). ; Yes), it is determined in step S4 whether the outside air temperature T is lower than t1 or higher than t2, and in either case (step S4; Yes), the operation of the circulation pump 43 is stopped in step S5. On the other hand, if the amount Q of the coolant does not reach the predetermined amount q1 in step S3 (step S3; No), an error is displayed in step S6 and the process ends. By the above operation, a predetermined amount of coolant circulates when the outside air temperature T is in a predetermined temperature range.
 また、ステップS11で温度センサ45で測定された冷却液の温度Tがt3、例えば2℃以上か否かを判断し、2℃以上の場合には(ステップS11;Yes)、コンプレッサ51の運転を開始し(ステップS12)、プレート熱交換器53より供給された低圧の気体の状態にある冷媒を圧縮し、高圧の気体に変換して冷媒ライン54を介して凝縮器48に供給する。次に、コンプレッサ51から供給された高圧気体状態の冷媒を凝縮器48で凝縮し、高圧液体状態の冷媒に変換して凝縮熱を奪い、奪った熱を空冷ファン49の送風によって外部に放出する。さらに、凝縮器48から冷媒ライン55を介して供給された高圧液体状態の冷媒を膨張弁52Bによって低圧状態に変化させてプレート熱交換器53に供給し、冷却液を冷却する。冷媒ライン54、55を流れる冷媒の流量は、膨張弁52Bの弁開度を調整することにより制御される。尚、上記動作では、電磁弁50は閉じている。 Further, it is determined whether or not the temperature T of the coolant measured by the temperature sensor 45 in step S11 is t3, for example, 2 ° C. or higher, and if it is 2 ° C. or higher (step S11; Yes), the compressor 51 is operated. At the start (step S12), the refrigerant in the low-pressure gas state supplied from the plate heat exchanger 53 is compressed, converted into the high-pressure gas, and supplied to the condenser 48 via the refrigerant line 54. Next, the high-pressure gaseous refrigerant supplied from the compressor 51 is condensed by the condenser 48, converted into a high-pressure liquid refrigerant, and the heat of condensation is taken away, and the taken heat is released to the outside by the air blown by the air cooling fan 49. .. Further, the high-pressure liquid state refrigerant supplied from the condenser 48 via the refrigerant line 55 is changed to the low-pressure state by the expansion valve 52B and supplied to the plate heat exchanger 53 to cool the coolant. The flow rate of the refrigerant flowing through the refrigerant lines 54 and 55 is controlled by adjusting the valve opening degree of the expansion valve 52B. In the above operation, the solenoid valve 50 is closed.
 次に、ステップS13で冷却液の温度Tがt4、例えば-1℃以下か否かを判断し、-1℃以下の場合には(ステップS13;Yes)、コンプレッサ51の運転を停止し(ステップS14)、冷却液の冷却動作を停止する。上記動作を繰り返すことで冷却液の温度が所定範囲、例えば-1℃~2℃に維持される。 Next, in step S13, it is determined whether or not the temperature T of the coolant is t4, for example, -1 ° C. or lower, and if it is -1 ° C. or lower (step S13; Yes), the operation of the compressor 51 is stopped (step). S14), the cooling operation of the coolant is stopped. By repeating the above operation, the temperature of the coolant is maintained in a predetermined range, for example, -1 ° C. to 2 ° C.
 さらに、ステップS21で冷却液の温度Tがt5、例えば2℃以下か否かを判断し、2℃以下の場合には(ステップS21;Yes)、電磁弁50を開き(ステップS22)、、冷媒ライン54、55を流れる冷媒の流量を半減させることで、冷凍ユニット20の冷却能力を50%に低下させる。次に、ステップS23で冷却液の温度Tがt6、例えば3℃以上か否かを判断し、3℃以上の場合には(ステップS23;Yes)、電磁弁50を閉じ(ステップS24)、冷凍ユニット20の冷却能力を100%に高める。上記動作によって、冷却液を安定して所定温度以下、例えば図12に示すように、年間を通して2℃程度に維持することができる。 Further, in step S21, it is determined whether or not the temperature T of the coolant is t5, for example, 2 ° C. or lower, and if it is 2 ° C. or lower (step S21; Yes), the solenoid valve 50 is opened (step S22), and the refrigerant By halving the flow rate of the refrigerant flowing through the lines 54 and 55, the cooling capacity of the refrigerating unit 20 is reduced to 50%. Next, in step S23, it is determined whether or not the temperature T of the coolant is t6, for example, 3 ° C. or higher, and if it is 3 ° C. or higher (step S23; Yes), the solenoid valve 50 is closed (step S24) and frozen. Increase the cooling capacity of the unit 20 to 100%. By the above operation, the coolant can be stably maintained at a predetermined temperature or lower, for example, about 2 ° C. throughout the year as shown in FIG.
  次に、ベーパ液化回収系統2によるベーパ回収動作について、図3を中心に図1及び図2を参照しながら説明する。 Next, the vapor recovery operation by the vapor liquefaction recovery system 2 will be described with reference to FIGS. 1 and 2 with reference to FIG.
 給油ポンプ32がオンになり、給油が開始されると、冷凍ユニット20から分離ユニット23の冷却部23eへ冷却液が供給され、冷却部23e内の凝縮器23a及び2つの吸着塔23c、23dを冷却する。冷却後の冷却液は、冷凍ユニット20に戻される。 When the refueling pump 32 is turned on and refueling is started, the cooling liquid is supplied from the refrigerating unit 20 to the cooling unit 23e of the separation unit 23, and the condenser 23a and the two adsorption towers 23c and 23d in the cooling unit 23e are supplied. Cooling. The cooling liquid after cooling is returned to the freezing unit 20.
 給油ノズル5からガソリンの供給を開始すると、圧縮ポンプ22がオンになり、給油に伴って発生したベーパと、車両の燃料タンク内の空気が、ベーパ戻り管21を介して圧縮ポンプ22の圧縮側22aへ流れて凝縮器23a内に導入される。 When the supply of gasoline is started from the refueling nozzle 5, the compression pump 22 is turned on, and the vapor generated by refueling and the air in the fuel tank of the vehicle are transferred to the compression side of the compression pump 22 via the vapor return pipe 21. It flows to 22a and is introduced into the condenser 23a.
 凝縮器23aに導入された気体は、冷却部23eを流れる冷却液によって冷却されながら気液分離計測槽23bへ送られる。ここで、ベーパは圧縮・冷却され、ベーパの一部がガソリンへ、またベーパと共に搬送された空気の一部が水へと状態変化する。 The gas introduced into the condenser 23a is sent to the gas-liquid separation measuring tank 23b while being cooled by the cooling liquid flowing through the cooling unit 23e. Here, the vapor is compressed and cooled, and a part of the vapor is changed to gasoline, and a part of the air transported together with the vapor is changed to water.
  気液分離計測槽23bに供給されたガソリン及び水は底部に沈降し、水より比重の小さいガソリンは水の上方に移動する。そして、図示しない液面センサの制御により、所定量以上ガソリンや水が溜まったところで、ガソリン及び水を各々排出する。 Gasoline and water supplied to the gas-liquid separation measuring tank 23b settle to the bottom, and gasoline having a specific gravity smaller than that of water moves above the water. Then, by controlling a liquid level sensor (not shown), gasoline and water are discharged when gasoline and water are accumulated in a predetermined amount or more.
 一方、気液分離計測槽23bの上部に滞留するベーパと空気は、吸着塔23cに導入されてベーパが吸着される。尚、ベーパと共に吸着塔23cの内部に導入された空気は、希釈管28を介して外部へ排出される。これと同時に、吸着塔23dに吸着されたベーパの脱着が行われる。脱着されたベーパは、圧縮ポンプ22の真空側22bへ供給されて再度ベーパ戻り管21へ戻される。 On the other hand, the vapor and air staying in the upper part of the gas-liquid separation measuring tank 23b are introduced into the adsorption tower 23c and the vapor is adsorbed. The air introduced into the adsorption tower 23c together with the vapor is discharged to the outside through the dilution pipe 28. At the same time, the vapor adsorbed on the adsorption tower 23d is attached and detached. The detached vapor is supplied to the vacuum side 22b of the compression pump 22 and returned to the vapor return pipe 21 again.
  ガソリンの給油量が所定値(例えば、50L)に達すると、ベーパ等の流路を切り替えることでベーパと空気は、吸着塔23dに導入されてベーパが吸着される。尚、ベーパと共に吸着塔23dの内部に導入された空気は、排出管13を介して外部へ排出される。これと同時に、吸着塔23cに吸着されたベーパの脱着が行われる。脱着されたベーパは、圧縮ポンプ22の真空側22bへ供給されて再度ベーパ戻り管21へ戻される。 When the amount of gasoline refueled reaches a predetermined value (for example, 50 L), the vapor and air are introduced into the adsorption tower 23d by switching the flow path of the vapor or the like, and the vapor is adsorbed. The air introduced into the suction tower 23d together with the vapor is discharged to the outside through the discharge pipe 13. At the same time, the vapor adsorbed on the adsorption tower 23c is attached and detached. The detached vapor is supplied to the vacuum side 22b of the compression pump 22 and returned to the vapor return pipe 21 again.
 上記のようにベーパ等の流路を切り替えることで、上記動作を繰り返し、2つの吸着塔23c、23dでベーパの吸着を交互に行う。これによって、吸着塔23c、23dが飽和状態となるのを防止し、給油時に発生するベーパを確実に回収することができる。 By switching the flow path of the vapor or the like as described above, the above operation is repeated, and the vapor is alternately adsorbed by the two adsorption towers 23c and 23d. As a result, it is possible to prevent the adsorption towers 23c and 23d from becoming saturated, and to reliably recover the vapor generated during refueling.
 以上のように、本実施の形態によれば、分離ユニット23の凝縮器23a及び2つの吸着塔23c、23dを冷凍ユニット20からの冷却液により冷却したため、季節や外気温に左右されずに安定して燃料油ベーパを冷却したり、燃料油ベーパを吸着することができ、燃料油ベーパの液化回収効率を高く維持しながら、安定して燃料油ベーパを回収することが可能となる。 As described above, according to the present embodiment, since the condenser 23a of the separation unit 23 and the two adsorption towers 23c and 23d are cooled by the coolant from the refrigerating unit 20, it is stable regardless of the season and the outside temperature. As a result, the fuel oil vapor can be cooled and the fuel oil vapor can be adsorbed, and the fuel oil vapor can be stably recovered while maintaining a high liquefaction recovery efficiency of the fuel oil vapor.
 上述のように、分離ユニット23で用いる冷却液を冷凍ユニット20で冷却することで、冷却液を、例えば年間を通して2℃程度に維持することができる。しかし、これは、冷凍ユニット20の電源が常に入っている場合であって、冷凍ユニット20の電源を切ると冷却液の温度は上昇する。 As described above, by cooling the coolant used in the separation unit 23 with the refrigerating unit 20, the coolant can be maintained at, for example, about 2 ° C. throughout the year. However, this is a case where the power of the refrigerating unit 20 is always on, and when the power of the refrigerating unit 20 is turned off, the temperature of the coolant rises.
 そのため、給油所の開店時等、冷凍ユニット20の電源投入直後は、冷却液が所定温度以下まで冷却されていない場合があり、その状態で給油が開始されると、分離ユニット23の凝縮器23a及び2つの吸着塔23c、23dが十分に冷却されていないため、給油に伴って発生したベーパが回収されずに排出管13を介して排出口12から排出されることになり、給油装置1の排気中のベーパ濃度がガソリンの爆発下限界(1.4vol%程度)を超える虞がある。 Therefore, the coolant may not be cooled to a predetermined temperature or lower immediately after the refrigerating unit 20 is turned on, such as when a gas station is opened. If refueling is started in that state, the condenser 23a of the separation unit 23 may not be cooled. And since the two suction towers 23c and 23d are not sufficiently cooled, the vapor generated by refueling is not collected and is discharged from the discharge port 12 through the discharge pipe 13, and the refueling device 1 There is a risk that the vapor concentration in the exhaust will exceed the lower explosive limit of gasoline (about 1.4 vol%).
 このような事態を回避するため、冷凍ユニット20の電源投入直後における冷却液の冷却動作の第1の実施形態について図10を参照しながら説明する。 In order to avoid such a situation, the first embodiment of the cooling liquid cooling operation immediately after the power of the refrigerating unit 20 is turned on will be described with reference to FIG.
 図10に示すように、ステップS31で冷凍ユニット20の電源を投入すると(ステップS31;Yes)、循環ポンプ43の運転を開始する(ステップS32)。また、ステップS31で冷凍ユニット20の電源が投入されなくても(ステップS31;No)、例えば、現在時刻Tが給油所営業開始時刻T1(例えば、給油所営業開始時間の30分前)になった場合にも(ステップS33;Yes)、循環ポンプ43の運転を開始することができる(ステップS32)。これにより、冷凍ユニット20内の冷却液を十分に冷却することができる。 As shown in FIG. 10, when the power of the refrigerating unit 20 is turned on in step S31 (step S31; Yes), the operation of the circulation pump 43 is started (step S32). Further, even if the power of the refrigerating unit 20 is not turned on in step S31 (step S31; No), for example, the current time T becomes the gas station business start time T1 (for example, 30 minutes before the gas station business start time). In that case (step S33; Yes), the operation of the circulation pump 43 can be started (step S32). As a result, the coolant in the refrigerating unit 20 can be sufficiently cooled.
 次に、ステップS34で流量センサ44で測定された冷却液の量Qが所定の量q1となったか否かを判断し、q1となった場合には(ステップS34;Yes)、ステップS35へ進む。一方、冷却液の量Qが所定の量q1となっていない場合には(ステップS34;No)、冷却液の量が不十分であるため、エラーを報知し(ステップS36)、動作を終了する。 Next, in step S34, it is determined whether or not the amount Q of the coolant measured by the flow rate sensor 44 has reached the predetermined amount q1, and if it reaches q1 (step S34; Yes), the process proceeds to step S35. .. On the other hand, when the amount Q of the coolant is not the predetermined amount q1 (step S34; No), since the amount of the coolant is insufficient, an error is notified (step S36) and the operation is terminated. ..
 ステップS35で冷却液の温度Tが所定の温度t7以下となったか否かを判断し、t7以下となった場合には(ステップS35;Yes)、圧縮ポンプ22にベーパ回収許可を出力し(ステップS37)、圧縮ポンプ22が運転を開始する。一方、冷却液の温度Tが所定の温度t7以下となっていない場合には(ステップS35;No)、温度t7以下になるまで給油不可を報知する(ステップS38)。 In step S35, it is determined whether or not the temperature T of the coolant is below the predetermined temperature t7, and if it is below t7 (step S35; Yes), the vapor recovery permission is output to the compression pump 22 (step). S37), the compression pump 22 starts operation. On the other hand, when the temperature T of the coolant is not lower than the predetermined temperature t7 (step S35; No), refueling is notified until the temperature falls below t7 (step S38).
 圧縮ポンプ22は、ステップS41でベーパ回収許可が入力されると(ステップS41;Yes)、ベーパ吸引可能になり、給油者に対して給油可を報知する(ステップS42)。 When the vapor recovery permission is input in step S41 (step S41; Yes), the compression pump 22 becomes capable of sucking vapor and notifies the refueler of the availability of refueling (step S42).
 冷凍ユニット20へ戻り、ステップS39で冷却液の温度Tが所定の温度t7を上回ったと判断されると(ステップS39;Yes)、冷凍ユニット20は、ベーパ回収許可停止を圧縮ポンプ22へ出力する(ステップS40)。これに伴い、冷凍ユニット20からベーパ回収許可停止が入力された圧縮ポンプ22は(ステップS43;Yes)、給油者に対して給油不可を報知し(ステップS44)、動作を終了する。 Returning to the refrigerating unit 20, when it is determined in step S39 that the temperature T of the coolant exceeds the predetermined temperature t7 (step S39; Yes), the refrigerating unit 20 outputs a vapor recovery permission stop to the compression pump 22 (step S39; Yes). Step S40). Along with this, the compression pump 22 to which the vapor recovery permission stop is input from the refrigerating unit 20 (step S43; Yes) notifies the refueler that refueling is not possible (step S44), and ends the operation.
 上記動作により、冷却液が所定の温度に達するまでは給油者に給油不可を報知すると共に、圧縮ポンプ22がベーパを回収できないため、給油装置1の排気中のベーパ濃度がガソリンの爆発下限界を超えることを回避することができる。 By the above operation, the refueler is notified that refueling is not possible until the coolant reaches a predetermined temperature, and the compression pump 22 cannot collect the vapor. Therefore, the vapor concentration in the exhaust of the refueling device 1 reaches the lower explosive limit of gasoline. It is possible to avoid exceeding.
 しかし、上記第1の実施形態においては、給油者に対して給油不可を報知するだけで、給油系統3の動作を制限していないため、給油者が給油不可に従わずに給油を行うこともあり得る。そこで、冷凍ユニット20の電源投入直後における冷却液の冷却動作の第2の実施形態について図11を参照しながら説明する。 However, in the first embodiment described above, since the refueling person is only notified that refueling is not possible and the operation of the refueling system 3 is not restricted, the refueling person may refuel without complying with the refueling prohibition. possible. Therefore, a second embodiment of the cooling liquid cooling operation immediately after the power of the refrigerating unit 20 is turned on will be described with reference to FIG.
 本実施の形態では、冷却液の温度Tが所定の温度t7以下になるまで、また、その後に冷却液の温度Tが所定の温度t7を上回った場合に、圧縮ポンプ22のみならず、給油系統3の動作も制限する。尚、上記第1の実施形態と同一の動作については同一の符号を付して説明を省略する。 In the present embodiment, not only the compression pump 22 but also the refueling system is used until the temperature T of the coolant becomes a predetermined temperature t7 or less, and then when the temperature T of the coolant exceeds the predetermined temperature t7. The operation of 3 is also restricted. The same operation as that of the first embodiment is designated by the same reference numerals and the description thereof will be omitted.
 冷凍ユニット20において、ステップS35で冷却液の温度Tが所定の温度t7以下になったと判断されると(ステップS35;Yes)、給油系統3及び圧縮ポンプ22に給油許可及びベーパ回収許可が各々出力される(ステップS51)。 In the refrigerating unit 20, when it is determined in step S35 that the temperature T of the coolant has become a predetermined temperature t7 or less (step S35; Yes), a refueling permit and a vapor recovery permit are output to the refueling system 3 and the compression pump 22, respectively. (Step S51).
 給油許可が入力された給油系統3は(ステップS61;Yes)、給油者に対して給油可を報知し(ステップS62)、給油許可停止が入力されるまで(ステップS63;Yes)、給油系統3の給油可状態が継続する。 The refueling system 3 in which the refueling permission is input (step S61; Yes) notifies the refueler of the possibility of refueling (step S62), and the refueling system 3 is until the refueling permission stop is input (step S63; Yes). Refueling status continues.
 冷凍ユニット20において、ステップS52で冷却液の温度Tが所定の温度t7を上回ったと判断されると(ステップS52;Yes)、給油系統3及び圧縮ポンプ22に給油許可停止及びベーパ回収許可停止が各々出力される(ステップS53)。 In the refrigerating unit 20, when it is determined in step S52 that the temperature T of the coolant exceeds the predetermined temperature t7 (step S52; Yes), the refueling system 3 and the compression pump 22 are stopped from refueling permission and from vapor recovery permission, respectively. It is output (step S53).
 給油許可停止が入力された給油系統3は(ステップS63;Yes)、給油者に対して給油不可を報知し(ステップS64)、動作を終了する。また、圧縮ポンプ22も上述のように動作を終了する。 The refueling system 3 in which the refueling permission stop is input (step S63; Yes) notifies the refueler that refueling is not possible (step S64), and ends the operation. Further, the compression pump 22 also ends its operation as described above.
 上記説明においては、冷却液の温度Tが所定の温度t7を上回ったと判断された際に(ステップS52;Yes)、給油系統3及び圧縮ポンプ22の動作を停止する場合について説明したが、図3に示す濃度計29によって希釈管28の排気のベーパ濃度を測定し、この測定値が閾値を超えたと判断された際に、給油系統3及び圧縮ポンプ22の動作を停止し、給油装置1の排気中のベーパ濃度がガソリンの爆発下限界を超えることを回避することができる。 In the above description, a case where the operation of the refueling system 3 and the compression pump 22 is stopped when it is determined that the temperature T of the coolant exceeds the predetermined temperature t7 (step S52; Yes) has been described. The vapor concentration of the exhaust of the dilution pipe 28 is measured by the densitometer 29 shown in the above, and when it is determined that the measured value exceeds the threshold value, the operation of the refueling system 3 and the compression pump 22 is stopped, and the exhaust of the refueling device 1 is exhausted. It is possible to prevent the vapor concentration inside from exceeding the lower explosive limit of gasoline.
 一方、図3に示すように、冷凍ユニット20の電源投入直後に冷却液が所定温度以下まで冷却されていない場合を回避するため、給油系統3と、冷凍ユニット20の電源を別々にし、冷凍ユニット20の電源を常時オンに維持することもできる。 On the other hand, as shown in FIG. 3, in order to avoid the case where the coolant is not cooled to a predetermined temperature or lower immediately after the power of the refrigerating unit 20 is turned on, the power supply of the refueling system 3 and the refrigerating unit 20 are separated, and the refrigerating unit It is also possible to keep the power supply of 20 on all the time.
 冷凍ユニット20の電源を常時オンに維持すれば、冷却液が十分に冷却されて希釈管28の排気のベーパ濃度が十分に低くなるため、この排気を排出口12を介してそのまま大気へ放出しても問題はない。しかし、より安全性を高めるために、希釈管28の排気を給油ポンプ32の気体流路や、貯油タンクT、貯油タンクTに接続される通気管に導入することができる。 If the power supply of the refrigerating unit 20 is kept on at all times, the coolant is sufficiently cooled and the vapor concentration of the exhaust gas of the dilution pipe 28 becomes sufficiently low, so that the exhaust gas is discharged to the atmosphere as it is through the exhaust port 12. There is no problem. However, in order to further enhance safety, the exhaust gas of the dilution pipe 28 can be introduced into the gas flow path of the oil supply pump 32, the oil storage tank T, and the ventilation pipe connected to the oil storage tank T.
 本実施の形態によれば、吸着塔23c、23d内の圧力を所定値以下にするために従来存在したリリーフ弁を削除したため、ベーパ液化回収系統の運転の安定を維持しながら、ベーパ液化回収系統2の圧縮ポンプ22の容量を小さくしたり、圧縮ポンプ22を駆動するためのモータ24の定格を小さくすることなどが可能となり、ベーパ液化回収系統2のコンパクト化を図ることができる。また、ベーパ液化回収系統2の排気を希釈管28によって希釈して大気へ放出することで安全性を高めることができる。 According to the present embodiment, since the previously existing relief valve is deleted in order to reduce the pressure in the suction towers 23c and 23d to a predetermined value or less, the vapor liquefaction recovery system maintains the stable operation of the vapor liquefaction recovery system. It is possible to reduce the capacity of the compression pump 22 of 2 and the rating of the motor 24 for driving the compression pump 22, and the vapor liquefaction recovery system 2 can be made compact. Further, the safety can be enhanced by diluting the exhaust gas of the vapor liquefaction recovery system 2 with the dilution pipe 28 and releasing it to the atmosphere.
 図13は、図4に示す希釈管28に代えて用いることのできるエジェクタ30を示す。このエジェクタ30は、円柱又は角柱状の基部30aと、基部30aから右方へ突出する円柱状又は角柱状の突出部30bとで構成される。基部30aの天井部には、吸着塔23c、23dからの排気が流入する流入口30cが開口し、流入口30cの下方にはノズル30fが形成される。突出部30bの右側面には、空気流入口30dが開口する。基部30aの底部に排出口30eが開口する。各開口30c~30eは、内部空間30g及びディヒューザ30hを介して連通する。 FIG. 13 shows an ejector 30 that can be used in place of the dilution tube 28 shown in FIG. The ejector 30 is composed of a columnar or prismatic base portion 30a and a columnar or prismatic projecting portion 30b projecting to the right from the base portion 30a. An inflow port 30c into which exhaust gas from the suction towers 23c and 23d flows is opened in the ceiling portion of the base portion 30a, and a nozzle 30f is formed below the inflow port 30c. An air inlet 30d opens on the right side surface of the protrusion 30b. The discharge port 30e opens at the bottom of the base 30a. The openings 30c to 30e communicate with each other via the internal space 30g and the diffuser 30h.
 このエジェクタ30によれば、流入口30cから流入する吸着塔23c、23dからの排気がノズル30fから噴射されると、内部空間30gにおいて空気流入口30dからの空気が吸引され、吸着塔23c、23dからの排気が吸引された空気で希釈され、ベーパ濃度がさらに低下して排出口30eから排出される。 According to the ejector 30, when the exhaust from the suction towers 23c and 23d flowing in from the inflow port 30c is injected from the nozzle 30f, the air from the air inlet 30d is sucked in the internal space 30g and the suction towers 23c and 23d are sucked. The exhaust from the air is diluted with the sucked air, the vapor concentration is further reduced, and the air is discharged from the discharge port 30e.
 図14は、本発明に係る給油装置の第2の実施形態の構成を示し、この給油装置71は、上記給油装置1の冷凍ユニット20を備えず、給油ポンプ32によって汲み上げられた貯油タンクからのガソリンGAによって凝縮器23a及び2つの吸着塔23c、23dを収容する冷却部23eが満たされ、凝縮器23a及び2つの吸着塔23c、23dがガソリンGAによって冷却される。給油装置71の他の構成は給油装置1と同様である。 FIG. 14 shows the configuration of the second embodiment of the refueling device according to the present invention, in which the refueling device 71 does not include the refrigerating unit 20 of the refueling device 1 and is pumped from an oil storage tank pumped by the refueling pump 32. The gasoline GA fills the condenser 23a and the cooling unit 23e accommodating the two adsorption towers 23c and 23d, and the condenser 23a and the two adsorption towers 23c and 23d are cooled by the gasoline GA. The other configuration of the refueling device 71 is the same as that of the refueling device 1.
 本実施の形態によっても、上記と同様にリリーフ弁を削除したことによる効果があり、ベーパ液化回収系統2の排気を希釈管28やエジェクタ30によって希釈して大気へ放出することで安全性を高めることができる。 The present embodiment also has the effect of removing the relief valve in the same manner as described above, and enhances safety by diluting the exhaust gas of the vapor liquefaction recovery system 2 with the dilution pipe 28 and the ejector 30 and releasing it to the atmosphere. be able to.
 尚、上記実施の形態においては、凝縮器23a及び吸着塔23c、23dを冷凍ユニット20からの冷却液又はガソリンGAにって冷却したが、凝縮器23a及び吸着塔23c、23dを冷却しないでベーパを回収することもできる。 In the above embodiment, the condenser 23a and the adsorption towers 23c and 23d are cooled by the coolant from the refrigerating unit 20 or the gasoline GA, but the condenser 23a and the adsorption towers 23c and 23d are not cooled. Can also be recovered.
 また、ガソリンベーパを液化回収する場合について説明したが、これに限らず、本発明は揮発性の高い様々な燃料油を供給する装置に適用可能である。 Further, the case where the gasoline vapor is liquefied and recovered has been described, but the present invention is not limited to this, and the present invention can be applied to a device for supplying various highly volatile fuel oils.
1 給油装置
2 ベーパ液化回収系統
3 給油系統
4(4A~4C) 給油ホース
5(5A~5C) 給油ノズル
6(6A~6C) ノズル掛け
7  表示部
8 本体ハウジング
9(9A、9B) 冷凍ユニットハウジング
10(10A、10B) ルーバー
11、12 排出口
13 排出管
20 冷凍ユニット
21 ベーパ戻り管
22 圧縮ポンプ
23 分離ユニット
24 モータ
25 ガソリン戻し弁
26 切替弁
27 逆止弁
28 希釈管
29 濃度計
30 エジェクタ
31 給油管
32 給油ポンプ
33 電磁弁
34 流量計
35 安全継手
41 サブタンク
42 冷却液タンク
43 循環ポンプ
44 流量センサ
45 温度センサ
46 冷却液供給ライン
47 冷却液戻りライン
48 凝縮器
49(49A、49B) 空冷ファン
50 電磁弁
51 コンプレッサ
52(52A、52B) 膨張弁
53 プレート熱交換器
54、55 冷媒ライン
61 ソリッドベーパーバリア
62 ベーパーバリア(計量器側ベーパーバリア)
65、66 導入管
71 給油装置
1 Refueling device 2 Vapor liquefaction recovery system 3 Refueling system 4 (4A-4C) Refueling hose 5 (5A-5C) Refueling nozzle 6 (6A-6C) Nozzle hook 7 Display unit 8 Main body housing 9 (9A, 9B) Refrigerating unit housing 10 (10A, 10B) Louver 11, 12 Discharge port 13 Discharge pipe 20 Refrigeration unit 21 Vapor return pipe 22 Compression pump 23 Separation unit 24 Motor 25 Gasoline return valve 26 Switching valve 27 Check valve 28 Diluting pipe 29 Concentration meter 30 Ejector 31 Refueling pipe 32 Refueling pump 33 Electromagnetic valve 34 Flow meter 35 Safety joint 41 Sub tank 42 Coolant tank 43 Circulation pump 44 Flow sensor 45 Temperature sensor 46 Coolant supply line 47 Coolant return line 48 Condenser 49 (49A, 49B) Air cooling fan 50 Electromagnetic valve 51 Compressor 52 (52A, 52B) Expansion valve 53 Plate heat exchanger 54, 55 Refrigerant line 61 Solid vapor barrier 62 Vapor barrier (measurer side vapor barrier)
65, 66 Introductory pipe 71 Refueling device

Claims (6)

  1.   一端が貯油タンクに接続され、他端が給油ノズルを有する給油ホースに接続される給油管と、該給油管に介装された給油ポンプ及び流量計とを有する給油系統と、
      一端が前記給油ノズル近傍に開口するベーパ戻り管と、該ベーパ戻り管を流れる燃料油ベーパを液化して燃料油を回収する液化回収装置とを有するベーパ液化回収系統と、
     該ベーパ液化回収系統の排気を希釈して大気へ放出する希釈手段とを備えることを特徴とする給油装置。
    A refueling pipe having one end connected to a refueling tank and the other end connected to a refueling hose having a refueling nozzle, and a refueling system having a refueling pump and a flow meter interposed in the refueling pipe.
    A vapor liquefaction recovery system having a vapor return pipe whose one end opens in the vicinity of the refueling nozzle and a liquefaction recovery device that liquefies the fuel oil vapor flowing through the vapor return pipe and recovers the fuel oil.
    A refueling device including a diluting means for diluting the exhaust gas of the vapor liquefaction recovery system and releasing it to the atmosphere.
  2.  前記希釈手段は、中空円柱状の基部と、該基部の上部に設けられ、前記ベーパ液化回収系統の排気が流入する排気流入口及び空気流入口と、前記基部の底部に設けられる排出口とを備え、前記排気流入口から流入する前記ベーパ液化回収系統の排気を前記空気流入口からの空気で希釈して前記排出口から排出する希釈管であることを特徴とする請求項1に記載の給油装置。 The dilution means has a hollow columnar base, an exhaust inlet and an air inlet provided above the base and into which the exhaust gas of the vapor liquefaction recovery system flows in, and an outlet provided at the bottom of the base. The refueling according to claim 1, wherein the exhaust gas of the vapor liquefaction recovery system flowing in from the exhaust inlet is diluted with air from the air inlet and discharged from the outlet. apparatus.
  3.  前記希釈手段は、前記ベーパ液化回収系統の排気が流入する排気流入口と、該排気流入口から流入した前記ベーパ液化回収系統の排気を噴射するノズルと、空気流入口と、前記ノズルの近傍に入口部を有するディヒューザとを備え、前記空気流入口から流入した空気が前記ディヒューザの入口部に吸引され、該ディヒューザによって前記ベーパ液化回収系統の排気と混合して該ディヒューザから排出されるエジェクタであることを特徴とする請求項1に記載の給油装置。 The diluting means is provided in the vicinity of the exhaust inlet where the exhaust gas of the vapor liquefaction recovery system flows in, the nozzle for injecting the exhaust gas of the vapor liquefaction recovery system flowing in from the exhaust inlet, the air inlet, and the vicinity of the nozzle. An ejector including a diffuser having an inlet portion, in which air flowing in from the air flow inlet is sucked into the inlet portion of the diffuser, mixed with the exhaust gas of the vapor liquefaction recovery system by the diffuser, and discharged from the diffuser. The refueling device according to claim 1, wherein the refueling device is characterized by the above.
  4.  前記希釈手段の排気のベーパ濃度を測定する濃度計を備え、
     該濃度計の測定値が所定の値を超えると、前記給油系統又は/及び前記ベーパ液化回収系統の駆動を停止することを特徴とする請求項1、2又は3に記載の給油装置。
    A densitometer for measuring the vapor concentration of the exhaust gas of the diluting means is provided.
    The refueling device according to claim 1, 2 or 3, wherein when the measured value of the densitometer exceeds a predetermined value, the driving of the refueling system and / and the vapor liquefaction recovery system is stopped.
  5.  前記液化回収装置は、冷却ユニットからの冷却液によって前記燃料油ベーパを冷却して液化させることを特徴とする請求項1乃至4のいずれかに記載の給油装置。 The refueling device according to any one of claims 1 to 4, wherein the liquefaction recovery device cools and liquefies the fuel oil vapor with a cooling liquid from a cooling unit.
  6.  前記液化回収装置は、地下タンク内のガソリンによって前記燃料油ベーパを冷却して液化させることを特徴とする請求項1乃至4のいずれかに記載の給油装置。 The refueling device according to any one of claims 1 to 4, wherein the liquefaction recovery device cools and liquefies the fuel oil vapor with gasoline in an underground tank.
PCT/JP2020/002997 2019-03-11 2020-01-28 Oil supply device WO2020183957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021505578A JP7392915B2 (en) 2019-03-11 2020-01-28 Refueling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019043357 2019-03-11
JP2019-043357 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020183957A1 true WO2020183957A1 (en) 2020-09-17

Family

ID=72426727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002997 WO2020183957A1 (en) 2019-03-11 2020-01-28 Oil supply device

Country Status (4)

Country Link
JP (1) JP7392915B2 (en)
KR (1) KR20200108756A (en)
CN (1) CN111675185A (en)
WO (1) WO2020183957A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135811U (en) * 1975-04-23 1976-11-02
JP2000264400A (en) * 1999-03-16 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Return gas treatment device for tank truck
JP2017077903A (en) * 2015-10-20 2017-04-27 株式会社タツノ Oil feed device
JP2017077921A (en) * 2015-10-22 2017-04-27 株式会社タツノ Oil feed device
CN207046857U (en) * 2017-05-01 2018-02-27 新昌县第六胶丸厂 A kind of flammable liquid retracting device
JP2018193130A (en) * 2017-05-19 2018-12-06 株式会社タツノ Oil feed device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769718A (en) * 2004-11-03 2006-05-10 东元电机股份有限公司 Returning oil injection pump of water cooling machine
WO2016013128A1 (en) * 2014-07-23 2016-01-28 株式会社タツノ Vapor recovery device
CN206072752U (en) * 2016-09-28 2017-04-05 中国石油大学(华东) A kind of liquid oxygen evaporator of simple energy-conservation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51135811U (en) * 1975-04-23 1976-11-02
JP2000264400A (en) * 1999-03-16 2000-09-26 Ishikawajima Harima Heavy Ind Co Ltd Return gas treatment device for tank truck
JP2017077903A (en) * 2015-10-20 2017-04-27 株式会社タツノ Oil feed device
JP2017077921A (en) * 2015-10-22 2017-04-27 株式会社タツノ Oil feed device
CN207046857U (en) * 2017-05-01 2018-02-27 新昌县第六胶丸厂 A kind of flammable liquid retracting device
JP2018193130A (en) * 2017-05-19 2018-12-06 株式会社タツノ Oil feed device

Also Published As

Publication number Publication date
CN111675185A (en) 2020-09-18
KR20200108756A (en) 2020-09-21
JPWO2020183957A1 (en) 2020-09-17
JP7392915B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR101039401B1 (en) Vapor recovery system
US4809515A (en) Open cycle cooled refrigerant recovery apparatus
KR102167308B1 (en) Fuel supplying apparatus
KR101183191B1 (en) Oil vapor recovery apparatus
KR101643712B1 (en) Oil vapor recovery equipment
KR102130606B1 (en) Gas supply apparatus
US6311508B1 (en) Refrigerating apparatus, refrigerator, air-cooled type condenser unit for refrigerating apparatus and compressor unit
JPH1194380A (en) Refrigeration cycle
KR101271759B1 (en) Apparatus for reducing emission of VOC for oil tanker
EP0961086B1 (en) Method for taking custody of, transporting and installing air conditioner
WO2020183957A1 (en) Oil supply device
CN116465107A (en) Refrigerating system and purifying method thereof
KR101906270B1 (en) Fuel supplying apparatus
KR101897477B1 (en) Vapor collecting device
CN107532826B (en) Turbine refrigerating device
JP5478927B2 (en) Refrigeration equipment
JP2008303795A (en) Gasoline vapor recovering adsorbing-desorbing tower
JP4441207B2 (en) Vapor gasoline recovery system
KR20070013409A (en) Appratus to separate uapor and liquid in the cooling system
JP4523907B2 (en) Combustion refrigerant recovery method and combustible refrigerant recovery apparatus
JPWO2020183957A5 (en)
JPH07120111A (en) Method and apparatus for centralized administration for prevention of atmospheric pollution due to refrigerant
WO2018014222A1 (en) Safe mobile fueling system
CN218972934U (en) Cold filling service equipment
JP5273954B2 (en) Gasoline vapor condensing container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20768256

Country of ref document: EP

Kind code of ref document: A1